

ffi rs.indd 03/27/2015 Page i

LPIC-1®:
Linux Professional Institute

Certification
Study Guide
Fourth Edition

ffi rs.indd 03/27/2015 Page iii

LPIC-1®:
Linux Professional Institute

Certification Study Guide
Exams 101-400 and 102-400

Fourth Edition

Christine Bresnahan

Richard Blum

ffi rs.indd 03/27/2015 Page iv

Senior Acquisitions Editor: Kenyon Brown
Development Editor: Gary Schwartz
Technical Editor: Kevin Ryan
Production Editor: Rebecca Anderson
Copy Editor: Judy Flynn
Editorial Manager: Mary Beth Wakefield
Production Manager: Kathleen Wisor
Associate Publisher: Jim Minatel
Media Supervising Producer: Richard Graves
Book Designers: Judy Fung and Bill Gibson
Proofreader: Word One, New York
Indexer: Johnna VanHoose
Project Coordinator, Cover: Brent Savage
Cover Designer: Wiley
Cover Image: © Getty Images Inc./Jeremy Woodhouse
Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-02118-6
ISBN: 978-1-119-02120-9 (ebk.)
ISBN: 978-1-119-02119-3 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent pro-
fessional person should be sought. Neither the publisher nor the author shall be liable for damages arising here-
from. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source
of further information does not mean that the author or the publisher endorses the information the organization
or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is
read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2015933955

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission.LPIC-1 is a registered trademark of Linux Professional Institute, Inc. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

10 9 8 7 6 5 4 3 2 1

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible, and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sybex for their outstanding work on
this project. Thanks to Kenyon Brown, the acquisitions editor, for offering us the oppor-
tunity to work on this book. Also thanks to Gary Schwartz, the development editor, for
keeping things on track and making this book more presentable. Thanks, Gary, for all
your hard work and diligence. The technical editor, Kevin E. Ryan, did a wonderful job of
double-checking all of the work in the book in addition to making suggestions to improve
the content. We would also like to thank Carole Jelen at Waterside Productions, Inc., for
arranging this opportunity for us and for helping us out in our writing careers.

Christine would particularly like to thank her husband, Timothy, for his encourage-
ment, patience, and willingness to listen, even when he has no idea what she is talking
about.

About the Authors

Richard Blum, CompTIA Linux+, LPIC-1, has worked in the IT industry for more than 25
years as both a system and network administrator, and he has published numerous Linux
and open-source books. Rich is an online instructor for Linux and Web programming
courses that are used by colleges and universities across the United States. When he is not
being a computer nerd, Rich enjoys spending time with his wife, Barbara, and two daugh-
ters, Katie Jane and Jessica.

Christine Bresnahan, CompTIA Linux+, LPIC-1, started working with computers more
than 25 years ago in the IT industry as a systems administrator. Christine is an Adjunct
Professor at Ivy Tech Community College where she teaches Linux certifi cation and
Python programming classes. She also writes books and produces instructional resources
for the classroom.

ffi rs.indd 03/27/2015 Page ix

Contents at a Glance
Introduction xix

Assessment Test xxxvii

Answers to the Assessment Test xliv

Part I Exam 101-400 1

Chapter 1 Exploring Linux Command-Line Tools 3

Chapter 2 Managing Software 47

Chapter 3 Configuring Hardware 107

Chapter 4 Managing Files 177

Chapter 5 Booting Linux and Editing Files 233

Part II Exam 102-400 277

Chapter 6 Configuring the X Window System, Localization,
and Printing 279

Chapter 7 Administering the System 343

Chapter 8 Configuring Basic Networking 407

Chapter 9 Writing Scripts, Configuring Email, and Using Databases 453

Chapter 10 Securing Your System 523

Appendix Answers 575

Index 613

ftoc.indd 03/26/2015 Page xi

Contents
Introduction xix

Assessment Test xxxvii

Answers to the Assessment Test xliv

Part I Exam 101-400 1

Chapter 1 Exploring Linux Command-Line Tools 3

Understanding Command-Line Basics 4
Exploring Your Linux Shell Options 4
Using a Shell 5
Exploring Shell Configuration 13
Using Environment Variables 13
Getting Help 14

Using Streams, Redirection, and Pipes 16
Exploring File Descriptors 17
Redirecting Input and Output 17
Piping Data between Programs 19
Generating Command Lines 20

Processing Text Using Filters 22
File-Combining Commands 22
File-Transforming Commands 24
File-Formatting Commands 28
File-Viewing Commands 31
File-Summarizing Commands 33

Using Regular Expressions 35
Understanding Regular Expressions 35
Using grep 36
Using sed 38

Summary 41
Exam Essentials 41
Review Questions 42

Chapter 2 Managing Software 47

Package Concepts 48
Using RPM 50

RPM Distributions and Conventions 50
The rpm Command Set 52
Extracting Data from RPMs 56
Using Yum 57
RPM and Yum Configuration Files 61

xii Contents

ftoc.indd 03/26/2015 Page xii

RPM Compared to Other Package Formats 62
Using Debian Packages 63

Debian Distributions and Conventions 63
The dpkg Command Set 64
Using apt-cache 67
Using apt-get 68
Using dselect, aptitude, and Synaptic 72
Reconfiguring Packages 73
Debian Packages Compared to Other Package Formats 73
Configuring Debian Package Tools 74

Converting between Package Formats 75
Package Dependencies and Conflicts 77

Real and Imagined Package Dependency Problems 77
Workarounds for Package Dependency Problems 78
Startup Script Problems 80

Managing Shared Libraries 81
Library Principles 81
Locating Library Files 83
Library Management Commands 85

Managing Processes 87
Understanding the Kernel: The First Process 88
Examining Process Lists 88
Understanding Foreground and

Background Processes 95
Managing Process Priorities 96
Killing Processes 97

Summary 99
Exam Essentials 99
Review Questions 101

Chapter 3 Configuring Hardware 107

Configuring the Firmware and
Core Hardware 108

Understanding the Role of the Firmware 108
IRQs 112
I/O Addresses 115
DMA Addresses 116
Boot Disks and Geometry Settings 117
Coldplug and Hotplug Devices 119

Configuring Expansion Cards 120
Configuring PCI Cards 121
Learning about Kernel Modules 122
Loading Kernel Modules 124

Contents xiii

ftoc.indd 03/26/2015 Page xiii

Removing Kernel Modules 125
Configuring USB Devices 126

USB Basics 126
Linux USB Drivers 127
USB Manager Applications 128

Configuring Hard Disks 129
Configuring PATA Disks 129
Configuring SATA Disks 130
Configuring SCSI Disks 130
Configuring External Disks 132

Designing a Hard Disk Layout 132
Why Partition? 133
Understanding Partitioning Systems 133
An Alternative to Partitions: LVM 136
Mount Points 136
Common Partitions and Filesystem Layouts 137

Creating Partitions and Filesystems 139
Partitioning a Disk 140
Preparing a Partition for Use 145

Maintaining Filesystem Health 151
Tuning Filesystems 151
Maintaining a Journal 156
Checking Filesystems 157
Monitoring Disk Use 158

Mounting and Unmounting Filesystems 161
Temporarily Mounting or Unmounting Filesystems 162
Permanently Mounting Filesystems 167

Summary 169
Exam Essentials 170
Review Questions 172

Chapter 4 Managing Files 177

Using File Management Commands 178
Naming Files 178
Exploring Wildcard Expansion Rules 180
Understanding the File Commands 180
Archiving File Commands 187
Managing Links 195
Understanding the Directory Commands 198

Managing File Ownership 199
Assessing File Ownership 199
Changing a File’s Owner 200
Changing a File’s Group 200

xiv Contents

ftoc.indd 03/26/2015 Page xiv

Controlling Access to Files 200
Understanding Permissions 201
Changing a File’s Mode 206
Setting the Default Mode and Group 210
Changing File Attributes 212

Managing Disk Quotas 213
Enabling Quota Support 214
Setting Quotas for Users 215

Locating Files 216
Getting to Know the FHS 216
Employing Tools to Locate Files 222

Summary 226
Exam Essentials 226
Review Questions 228

Chapter 5 Booting Linux and Editing Files 233

Installing Boot Loaders 234
Boot Loader Principles 235
Using GRUB Legacy as the Boot Loader 238
Using GRUB 2 as the Boot Loader 243
Using Alternative Boot Loaders 245

Understanding the Boot Process 247
Extracting Information about the Boot Process 247
Locating and Interpreting Boot Messages 248
The Boot Process 248

The Initialization Process 249
Using the SysV Initialization Process 250

Runlevel Functions 250
Identifying the Services in a Runlevel 252
Managing Runlevel Services 253
Checking Your Runlevel 255
Changing Runlevels on a Running System 255

Using the systemd Initialization Process 258
Units and Targets 259
Configuring Units 260
Setting the Default Target 261
The systemctl Program 262

Using the Upstart Initialization Process 263
Using Upstart-Native Methods 264
Using SysV Compatibility Methods 264

Editing Files with vi 265
Understanding Vi Modes 265
Exploring Basic Text-Editing Procedures 266
Saving Changes 269

Contents xv

ftoc.indd 03/26/2015 Page xv

Summary 270
Exam Essentials 270
Review Questions 272

Part II Exam 102-400 277

Chapter 6 Configuring the X Window System, Localization,
and Printing 279

Configuring Basic X Features 280
X Server Options for Linux 280
Methods of Configuring X 282
X Configuration Options 285
Obtaining X Display Information 293

Configuring X Fonts 295
Font Technologies and Formats 296
Configuring X Core Fonts 296
Configuring a Font Server 299
Configuring Xft Fonts 300

Managing GUI Logins 301
The X GUI Login System 301
Running an XDMCP Server 302
Configuring an XDMCP Server 304

Using X for Remote Access 306
X Client-Server Principles 306
Using Remote X Clients 307

X Accessibility 310
Keyboard and Mouse Accessibility Issues 310
Screen Display Settings 312
Using Additional Assistive Technologies 314

Configuring Localization and Internationalization 315
Setting Your Time Zone 315
Querying and Setting Your Locale 318

Configuring Printing 321
Conceptualizing the Linux Printing Architecture 321
Understanding PostScript and Ghostscript 322
Running a Printing System 324
Configuring CUPS 324
Monitoring and Controlling the Print Queue 330

Summary 335
Exam Essentials 335
Review Questions 337

xvi Contents

ftoc.indd 03/26/2015 Page xvi

Chapter 7 Administering the System 343

Managing Users and Groups 344
Understanding Users and Groups 344
Configuring User Accounts 348
Configuring Groups 359
Viewing Individual Account Records 362

Tuning User and System Environments 364
Using Log and Journal Files 365

Understanding syslogd 366
Setting Logging Options 366
Manually Logging Data 369
Rotating Log Files 370
Reviewing Log File Contents 373
Exploring the systemd Journal System 374

Maintaining the System Time 379
Understanding Linux Time Concepts 379
Manually Setting the Time 380
Using Network Time Protocol 381

Running Jobs in the Future 389
Understanding the Role of cron 389
Creating System cron Jobs 390
Creating User cron Jobs 391
Using anacron 394
Using at 396

Summary 399
Exam Essentials 399
Review Questions 401

Chapter 8 Configuring Basic Networking 407

Understanding TCP/IP Networking 408
Knowing the Basic Functions of Network Hardware 408
Investigating Types of Network Hardware 409
Understanding Network Packets 411
Understanding Network Protocol Stacks 411
Knowing TCP/IP Protocol Types 413

Understanding Network Addressing 414
Using Network Addresses 414
Resolving Hostnames 421
Network Ports 424

Configuring Linux for a Local Network 427
Network Hardware Configuration 428
Configuring with DHCP 428

Contents xvii

ftoc.indd 03/26/2015 Page xvii

Configuring with a Static IP Address 429
Configuring Routing 432
Using GUI Configuration Tools 434
Using the ifup and ifdown Commands 434
Configuring Hostnames 435

Diagnosing Network Connections 438
Testing Basic Connectivity 438
Tracing a Route 439
Checking Network Status 441
Examining Raw Network Traffic 441
Using Additional Tools 443

Summary 445
Exam Essentials 445
Review Questions 447

Chapter 9 Writing Scripts, Configuring Email, and
Using Databases 453

Managing the Shell Environment 454
Reviewing Environment Variables 454
Understanding Common Environment Variables 455
Using Aliases 459
Modifying Shell Configuration Files 460

Writing Scripts 462
Beginning a Shell Script 463
Using Commands in Shell Scripts 463
Running a Shell Script 465
Using Variables in Shell Scripts 470
Using Conditional Expressions 478
Using Loops 485
Using Lists 493
Using Functions 495

Managing Email 497
Understanding Email 498
Choosing Email Software 498
Working with Email 500

Managing Data with SQL 504
Picking a SQL Package 505
Understanding SQL Basics 505
Using MySQL 506

Summary 515
Exam Essentials 515
Review Questions 517

xviii Contents

ftoc.indd 03/26/2015 Page xviii

Chapter 10 Securing Your System 523

Administering Network Security 524
Using Super Server Restrictions 525
Disabling Unused Servers 530

Administering Local Security 540
Securing Passwords 540
Limiting root Access 544
Auditing User Access 547
Setting Login, Process, and Memory Limits 551
Locating SUID/SGID Files 553

Configuring SSH 555
Understanding SSH Basics 555
Setting SSH Options 556
Preventing SSH Security Problems 563

Using GPG 563
Generating Keys 564
Importing Keys 565
Revoking a Key 566
Encrypting and Decrypting Data 566
Signing Messages and Verifying Signatures 567

Summary 567
Exam Essentials 568
Review Questions 570

Appendix Answers 575

Chapter 1: Exploring Linux
Command-Line Tools 576

Chapter 2: Managing Software 579
Chapter 3: Configuring Hardware 583
Chapter 4: Managing Files 586
Chapter 5: Booting Linux and

Editing Files 590
Chapter 6: Configuring the X Window System,

Localization, and Printing 593
Chapter 7: Administering the System 597
Chapter 8: Configuring Basic Networking 601
Chapter 9: Writing Scripts, Configuring Email,

and Using Databases 605
Chapter 10: Securing Your System 609

Index 613

fl ast.indd 03/26/2015 Page xix

Introduction

Why should you learn about Linux? It’s a fast-growing operating system, and it is
 inexpensive and fl exible. Linux is also a major player in the small and mid-size server
fi eld, and it’s an increasingly viable platform for workstation and desktop use as well. By
understanding Linux, you’ll increase your standing in the job market. Even if you already
know Windows or Mac OS and your employer uses these systems exclusively, understand-
ing Linux will give you an edge when you’re looking for a new job or you’re looking for a
 promotion. For instance, this knowledge will help you make an informed decision about if
and when you should deploy Linux.

The Linux Professional Institute (LPI) has developed its LPIC-1 certifi cation as an intro-
ductory certifi cation for people who want to enter careers involving Linux. The exam is
meant to certify that an individual has the skills necessary to install, operate, and trouble-
shoot a Linux system and is familiar with Linux-specifi c concepts and basic hardware.

The purpose of this book is to help you pass the LPIC-1 exams (101-400 and 102-400),
updated in 2015. Because these exams cover basic Linux installation, confi guration, main-
tenance, applications, networking, and security, those are the topics that are emphasized
in this book. You’ll learn enough to get a Linux system up and running and to confi gure it
for many common tasks. Even after you’ve taken and passed the LPIC-1 exams, this book
should remain a useful reference.

What Is Linux?
Linux is a clone of the Unix operating system (OS) that has been popular in academia and many
business environments for years. Formerly used exclusively on large mainframes, Unix and
Linux can now run on small computers, which are actually far more powerful than the main-
frames of just a few years ago. Because of its mainframe heritage, Unix (and hence also Linux)
scales well to perform today’s demanding scientifi c, engineering, and network server tasks.

Linux consists of a kernel, which is the core control software, and many libraries and
utilities that rely on the kernel to provide features with which users interact. The OS is
available in many different distributions, which are collections of a specifi c kernel with
 specifi c support programs.

Why Become Linux Certified?
Several good reasons to get your Linux certifi cation exist. There are four major benefi ts:

Relevance The exams were designed with the needs of Linux professionals in mind.
Surveys of Linux administrators were performed to learn what they actually needed to
know to do their jobs.

Quality The exams have been extensively tested and validated using psychometric stan-
dards. The result is an ability to discriminate between competent administrators and those
who must still learn more material.

xx Introduction

fl ast.indd 03/26/2015 Page xx

Neutrality LPI is an organization that doesn’t itself market any Linux distribution.
This fact removes the motivation to create an exam that’s designed as a way to market a
 particular distribution.

Support Major players in the Linux world support the exams.

How to Become Certified
The certifi cation is available to anyone who passes the two required exams: 101-400 and
102-400 (often referred to as simply 101 and 102). You don’t have to work for a particular
company. It’s not a secret society.

Pearson VUE administers the exam. The exam can be taken at any Pearson VUE testing
center. If you pass, you will get a certifi cate in the mail saying that you have passed.

To register for the exam with Pearson VUE, call (877) 619-2096 or register
online at www.vue.com. However you do it, you’ll be asked for your name,
mailing address, phone number, employer, when and where you want to
take the test (that is, which testing center), and your credit card number
(arrangement for payment must be made at the time of registration).

Who Should Buy This Book
Anybody who wants to pass the certifi cation exams may benefi t from this book. This book
covers the material that someone new to Linux will need to learn the OS from the begin-
ning, and it continues to provide the knowledge you need up to a profi ciency level suffi cient
to pass the two exams. You can pick up this book and learn from it even if you’ve never
used Linux before, although you’ll fi nd it an easier read if you’ve at least casually used
Linux for a few days. If you’re already familiar with Linux, this book can serve as a review
and as a refresher course for information with which you might not be completely familiar.
In either case, reading this book will help you pass the exams.

This book is written with the assumption that you know at least a little bit about Linux
(what it is and possibly a few Linux commands). We also assume that you know some basics
about computers in general, such as how to use a keyboard, how to insert a disc into an optical
drive, and so on. Chances are that you have used computers in a substantial way in the past—
perhaps even Linux, as an ordinary user, or maybe you have used Windows or Mac OS. We do
not assume that you have extensive knowledge of Linux system administration, but if you’ve
done some system administration, you can still use this book to fi ll in gaps in your knowledge.

As a practical matter, you’ll need a Linux system with which to practice
and learn in a hands-on way. Neither the exams nor this book covers actu-
ally installing Linux on a computer from scratch, although some of the
prerequisites (such as disk partitioning) are covered. You may need to refer
to your distribution’s documentation to learn how to accomplish this task.
Alternatively, several vendors sell computers with Linux preinstalled.

Introduction xxi

fl ast.indd 03/26/2015 Page xxi

How This Book Is Organized
This book consists of 10 chapters plus supplementary information: an online glossary,
this introduction, and the assessment test after the introduction. The chapters are orga-
nized as follows:

 ■ Chapter 1, “Exploring Linux Command-Line Tools,” covers the basic tools that you
need to interact with Linux. These include shells, redirection, pipes, text filters, and
regular expressions.

 ■ Chapter 2, “Managing Software,” describes the programs that you’ll use to manage
software. Much of this task is centered around the RPM and Debian package manage-
ment systems. The chapter also covers handling shared libraries and managing
processes (that is, running programs).

 ■ Chapter 3, “Configuring Hardware,” focuses on Linux’s interactions with the hard-
ware on which it runs. Specific hardware and procedures for using it include the BIOS,
expansion cards, USB devices, hard disks, and the partitions and filesystems used on
hard disks.

 ■ Chapter 4, “Managing Files,” covers the tools used to manage files. This includes com-
mands to manage files, ownership, and permissions as well as Linux’s standard direc-
tory tree and tools for archiving files.

 ■ Chapter 5, “Booting Linux and Editing Files,” explains how Linux boots up and how
you can edit files in Linux. Specific topics include the GRUB Legacy and GRUB 2 boot
loaders, boot diagnostics, runlevels, and the vi editor.

 ■ Chapter 6, “Configuring the X Window System, Localization, and Printing,” describes
the Linux GUI and printing subsystems. Topics include X configuration, managing
GUI logins, configuring location-specific features, enabling accessibility features, and
setting up Linux to use a printer.

 ■ Chapter 7, “Administering the System,” describes miscellaneous administrative tasks.
These include user and group management, tuning user environments, managing log
files, setting the clock, and running jobs in the future.

 ■ Chapter 8, “Configuring Basic Networking,” focuses on basic network configuration.
Topics include TCP/IP basics, setting up Linux on a TCP/IP network, and network
diagnostics.

 ■ Chapter 9, “Writing Scripts, Configuring Email, and Using Databases,” covers these
miscellaneous topics. Scripts are small programs that administrators often use to help
automate common tasks. Email, of course, is an important topic for any computer user,
particularly on Linux, which often runs an email server for local or remote use. Linux
can run databases that help you store and retrieve information, and these tools can be
very important ones on many Linux systems.

 ■ Chapter 10, “Securing Your System,” covers security. Specific subjects include network
security, local security, and the use of encryption to improve security.

Chapters 1 through 5 cover the 101-400 exam, while Chapters 6 through 10 cover the
102-400 exam. These make up Part I and Part II of the book, respectively.

xxii Introduction

fl ast.indd 03/26/2015 Page xxii

What’s Included in the Book
We’ve included several study learning tools throughout the book:

Assessment Test At the end of this introduction is an assessment test that you can use to
check your readiness for the exam. Take this test before you start reading the book; it will
help you determine the areas you might need to brush up on. The answers to the assessment
test questions appear on a separate page after the last question of the test. Each answer
includes an explanation and a note telling you the chapter in which the material appears.

Objective Map and Opening List of Objectives An objective map shows you where each of
the exam objectives is covered in this book. In addition, each chapter opens with a list of the
exam objectives it covers. Use these to see exactly where each of the exam topics is covered.

Exam Essentials Each chapter, just after the summary, includes a number of exam essen-
tials. These are the key topics you should take from the chapter in terms of areas to focus
on when preparing for the exam.

Chapter Review Questions To test your knowledge as you progress through the book,
there are review questions at the end of each chapter. As you fi nish each chapter, answer the
review questions and then check your answers—the correct answers and explanations are
in Appendix A. You can go back to reread the section that deals with each question you got
wrong to ensure that you answer correctly the next time you’re tested on the material.

The review questions, assessment test, and other testing elements included in
this book are not derived from the actual exam questions, so don’t memorize
the answers to these questions and assume that doing so will enable you to
pass the exam. You should learn the underlying topic, as described in the text
of the book. This will help you answer the questions provided with this book
and pass the exam. Learning the underlying topic is also the approach that
will serve you best in the workplace—the ultimate goal of a certification.

To get the most out of this book, you should read each chapter from start to fi nish and
then check your memory and understanding with the end-of-chapter elements. Even if
you’re already familiar with a topic, you should skim the chapter; Linux is complex enough
that there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

Interactive Online Learning Environment
and Test Bank
The interactive online learning environment that accompanies the book provides a test
bank with study tools to help you prepare for the certifi cation exam—and increase your
chances of passing it the fi rst time! The test bank includes the following:

Introduction xxiii

fl ast.indd 03/26/2015 Page xxiii

Sample Tests All of the questions in this book are provided, including the Assessment
Test, which you’ll fi nd at the end of this introduction, and the Chapter Tests that include
the Review Questions at the end of each chapter. In addition, there are two Practice Exams.
Use these questions to test your knowledge of the study guide material. The online test
bank runs on multiple devices.

Flashcards Questions are provided in digital fl ashcard format (a question followed by a
single correct answer). You can use the fl ashcards to reinforce your learning and provide
last-minute test prep before the exam.

Other Study Tools A glossary of key terms from this book and their defi nitions are
 available as a fully searchable PDF.

Go to http://sybextestbanks.wiley.com to register and gain access to
this interactive online learning environment and test bank with study tools.

Conventions Used in This Book
This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as onscreen prompts.
In particular, look for the following styles:

 ■ Italicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

 ■ A monospaced font indicates the contents of configuration files, messages displayed
at a text-mode Linux shell prompt, filenames, text-mode command names, and
 Internet URLs.

 ■ Italicized monospaced text indicates a variable—information that differs from one
 system or command run to another, such as the name of a client computer or a process
ID number.

 ■ Bold monospaced text is information that you’re to type into the computer, usu-
ally at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by non-bold monospaced $ or # command prompts, denoting
regular user or system administrator use, respectively.)

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

A note indicates information that’s useful or interesting but that’s some-
what peripheral to the main text. A note might be relevant to a small
number of networks, for instance, or it may refer to an outdated feature.

xxiv Introduction

fl ast.indd 03/26/2015 Page xxiv

A tip provides information that can save you time or frustration and that
may not be entirely obvious. A tip might describe how to get around a limi-
tation or how to use a feature to perform an unusual task.

Warnings describe potential pitfalls or dangers. If you fail to heed a warn-
ing, you may end up spending a lot of time recovering from a bug, or you
may even end up restoring your entire system from scratch.

Sidebar

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fi t

into the main fl ow of the text.

Real World Scenario

A real-world scenario is a type of sidebar that describes a task or example that’s particu-

larly grounded in the real world. This may be a situation we or somebody we know has

encountered, or it may be advice on how to work around problems that are common in

real-world, working Linux environments.

E X E R C I S E

An exercise is a procedure that you should try on your own computer to help you learn

about the material in the chapter. Don’t limit yourself to the procedures described in the

exercises though! Try other commands and procedures to truly learn about Linux.

The Exam Objectives

Behind every computer industry exam, you can be sure to fi nd exam objectives—the
broad topics in which exam developers want to ensure your competency. The offi cial
exam objectives are listed here. (They’re also printed at the start of the chapters in which
they’re covered.)

Introduction xxv

fl ast.indd 03/26/2015 Page xxv

Exam objectives are subject to change at any time without prior notice and
at LPI’s sole discretion. Please visit LPI’s website (www.lpi.org) for the
most current listing of exam objectives.

Exam 101-400 Objectives

Following are the areas in which you must be profi cient in order to pass the 101-400 exam.
This exam is broken into four topics (101–104), each of which has three to eight objectives.
Each objective has an associated weight, which refl ects its importance to the exam as a
whole. The four main topics are as follows:

Subject Area

101 System Architecture

102 Linux Installation and Package Management

103 GNU and Unix Commands

104 Devices, Linux Filesystems, Filesystem Hierarchy Standard

101 System Architecture

101.1 Determine and configure hardware settings (Chapter 3)

 ■ Enable and disable integrated peripherals

 ■ Configure systems with or without external peripherals such as keyboards

 ■ Differentiate between the various types of mass storage devices

 ■ Know the differences between coldplug and hotplug devices

 ■ Determine hardware resources for devices

 ■ Tools and utilities to list various hardware information (e.g., lsusb, lspci, etc.)

 ■ Tools and utilities to manipulate USB devices

 ■ Conceptual understanding of sysfs, udev, hald, dbus

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/sys, /proc, /dev, modprobe, lsmod, lspci, lsusb

xxvi Introduction

fl ast.indd 03/26/2015 Page xxvi

101.2 Boot the system (Chapter 5)

 ■ Provide common commands to the boot loader and options to the kernel at boot time

 ■ Demonstrate knowledge of the boot sequence from BIOS to boot completion

 ■ Understanding of SysVinit and systemd

 ■ Awareness of Upstart

 ■ Check boot events in the log file

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
dmesg, BIOS, bootloader, kernel, init, initramfs, SysVinit, systemd

101.3 Change runlevels/boot targets and shutdown or reboot
system (Chapter 5)

 ■ Set the default runlevel or boot target

 ■ Change between runlevels/boot targets, including single user mode

 ■ Shutdown and reboot from the command line

 ■ Alert users before switching runlevels/boot targets or other major system events

 ■ Properly terminate processes

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
/etc/inittab, shutdown, init, /etc/init.d, telinit, systemd, systemctl, /etc/
systemd/, /usr/lib/systemd/, wall

102 Linux Installation and Package Management

102.1 Design hard disk layout (Chapter 3)

 ■ Allocate filesystems and swap space to separate partitions or disks

 ■ Tailor the design to the intended use of the system

 ■ Ensure that the /boot partition conforms to the hardware architecture requirements
for booting

 ■ Knowledge of basic features of LVM

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
/ (root) filesystem, /var filesystem, /home filesystem, /boot filesystem, swap space,
mount points, partitions

102.2 Install a boot manager (Chapter 5)

 ■ Providing alternative boot locations and backup boot options

 ■ Install and configure a boot loader such as GRUB Legacy

Introduction xxvii

fl ast.indd 03/26/2015 Page xxvii

 ■ Perform basic configuration changes for GRUB 2

 ■ Interact with the boot loader

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/boot/grub/menu.lst, grub.cfg and grub.conf, grub-install, grub-mkconfig, MBR

102.3 Manage shared libraries (Chapter 2)

 ■ Identify shared libraries

 ■ Identify the typical locations of system libraries

 ■ Load shared libraries

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
ldd, ldconfig, /etc/ld.so.conf, LD_LIBRARY_PATH

102.4 Use Debian package management (Chapter 2)

 ■ Install, upgrade, and uninstall Debian binary packages

 ■ Find packages containing specific files or libraries which may or may not be installed

 ■ Obtain package information like version, content, dependencies, package integrity, and
installation status (whether or not the package is installed)

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
/etc/apt/sources.list, dpkg, dpkg-reconfigure, apt-get, apt-cache, aptitude

102.5 Use RPM and YUM package management (Chapter 2)

 ■ Install, reinstall, upgrade. and remove packages using RPM and YUM

 ■ Obtain information on RPM packages such as version, status, dependencies, integrity,
and signatures

 ■ Determine what files a package provides, as well as find which package a specific file
comes from

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
rpm, rpm2cpio, /etc/yum.conf, /etc/yum.repos.d/, yum, yumdownloader

103 GNU and Unix Commands

103.1 Work on the command line (Chapter 1)

 ■ Use single shell commands and one-line command sequences to perform basic tasks on
the command line

 ■ Use and modify the shell environment. including defining, referencing, and exporting
environment variables

xxviii Introduction

fl ast.indd 03/26/2015 Page xxviii

 ■ Use and edit command history

 ■ Invoke commands inside and outside the defined path

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
bash, echo, env, exec, export, pwd, set, unset, man, uname, history, .bash_history

103.2 Process text streams using filters (Chapter 1)

 ■ Send text files and output streams through text utility filters to modify the output
using standard Unix commands

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
cat, cut, expand, fmt, head, od, join, less, nl, paste, pr, sed, sort, split, tail, tr,
unexpand, uniq, wc

103.3 Perform basic file management (Chapter 4)

 ■ Copy, move, and remove files and directories individually

 ■ Copy multiple files and directories recursively

 ■ Remove files and directories recursively

 ■ Use simple and advanced wildcard specifications in commands

 ■ Using find to locate and act on files based on type, size, or time

 ■ Usage of tar, cpio, and dd

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
cp, find, mkdir, mv, ls, rm, rmdir, touch, tar, cpio, dd, file, gzip, gunzip, bzip2, xz,
file globbing

103.4 Use streams, pipes, and redirects (Chapter 1)

 ■ Redirecting standard input, standard output, and standard error

 ■ Pipe the output of one command to the input of another command

 ■ Use the output of one command as arguments to another command

 ■ Send output to both STDOUT and a file

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
tee, xargs

103.5 Create, monitor, and kill processes (Chapter 2)

 ■ Run jobs in the foreground and background

 ■ Signal a program to continue running after logout

 ■ Monitor active processes

 ■ Select and sort processes for display

Introduction xxix

fl ast.indd 03/26/2015 Page xxix

 ■ Send signals to processes

 ■ The following is a partial list of the files, terms and utilities covered in this objective: &,
bg, fg, jobs, kill, nohup, ps, top, free, uptime, pgrep, pkill, killall, screen

103.6 Modify process execution priorities (Chapter 2)

 ■ Know the default priority of a job that is created

 ■ Run a program with higher or lower priority than the default

 ■ Change the priority of a running process

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
nice, ps, renice, top

103.7 Search text files using regular expressions (Chapter 1)

 ■ Create simple regular expressions containing several notational elements

 ■ Use regular expression tools to perform searches through a filesystem or
file content

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
grep, egrep, fgrep, sed, regex(7)

103.8 Perform basic file editing operations using vi (Chapter 5)

 ■ Navigate a document using vi

 ■ Use basic vi modes

 ■ Insert, edit, delete, copy, and find text

 ■ The following is a partial list of the files, terms and utilities covered in this objective:
vi, /, ?, h, j, k, l, i, o, a, c, d, p, y, dd, yy, ZZ, :w!, :q!, :e!

104 Devices, Linux Filesystems, Filesystem
Hierarchy Standard

104.1 Create partitions and filesystems (Chapter 3)

 ■ Manage MBR partition tables

 ■ Use various mkfs commands to create various filesystems, such as ext2, ext3, ext4,
xfs, vfat

 ■ Awareness of ReiserFS and Btrfs

 ■ Basic knowledge of gdisk and parted with GPT

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
fdisk, gdisk, parted, mkfs, mkswap

xxx Introduction

fl ast.indd 03/26/2015 Page xxx

104.2 Maintain the integrity of filesystems (Chapter 3)

 ■ Verify the integrity of filesystems

 ■ Monitor free space and inodes

 ■ Repair simple filesystem problems

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
du, df, fsck, e2fsck, mke2fs, debugfs, dumpe2fs, tune2fs, xfs tools (such as xfs_
metadump and xfs_info)

104.3 Control mounting and unmounting of filesystems
(Chapter 3)

 ■ Manually mount and unmount filesystems

 ■ Configure filesystem mounting on bootup

 ■ Configure user mountable removeable filesystems

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/fstab, /media, mount, umount

104.4 Manage disk quotas (Chapter 4)

 ■ Set up a disk quota for a filesystem

 ■ Edit, check, and generate user quota reports

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
quota, edquota, repquota, quotaon

104.5 Manage file permissions and ownership (Chapter 4)

 ■ Manage access permissions on regular and special files as well as directories

 ■ Use access modes such as SUID, SGID, and the sticky bit to maintain security

 ■ Know how to change the file creation mask

 ■ Use the group field to grant file access to group members

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
chmod, umask, chown, chgrp

104.6 Create and change hard and symbolic links (Chapter 4)

 ■ Create links

 ■ Identify hard and/or soft links

 ■ Copying versus linking files

 ■ Use links to support system administration tasks

 ■ This utility is covered in this objective: ln, ls

Introduction xxxi

fl ast.indd 03/26/2015 Page xxxi

104.7 Find system files and place files in the correct location
(Chapter 4)

 ■ Understand the correct locations of files under the FHS

 ■ Find files and commands on a Linux system

 ■ Know the location and purpose of important files and directories as defined in the FHS

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
find, locate, updatedb, whereis, which, type, /etc/updatedb.conf

Exam 102-400 Objectives

The 102-400 exam comprises six topics (105–110), each of which contains three or four
 objectives. The six major topics are as follows:

Subject Area

105 Shells, Scripting, and Data Management

106 User Interfaces and Desktops

107 Administrative Tasks

108 Essential System Services

109 Networking Fundamentals

110 Security

105 Shells, Scripting, and Data Management

105.1 Customize and use the shell environment (Chapter 9)

 ■ Set environment variables (e.g., PATH) at login or when spawning a new shell

 ■ Write bash functions for frequently used sequences of commands

 ■ Maintain skeleton directories for new user accounts

 ■ Set command search path with the proper directory

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
source, /etc/bash.bashrc, /etc/profile, env, export, set, unset, ~/.bash_profile,
~/.bash_login, ~/.profile, ~/.bashrc, ~/.bash_logout, function, alias, lists

xxxii Introduction

fl ast.indd 03/26/2015 Page xxxii

105.2 Customize or write simple scripts (Chapter 9)

 ■ Use standard sh syntax (loops, tests)

 ■ Use command substitution

 ■ Test return values for success or failure or other information provided by
a command

 ■ Perform conditional mailing to the superuser

 ■ Correctly select the script interpreter through the shebang (#!) line

 ■ Manage the location, ownership, execution, and SUID rights of scripts

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
for, while, test, if, read, seq, exec

105.3 SQL data management (Chapter 9)

 ■ Use of basic SQL commands

 ■ Perform basic data manipulation

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
insert, update, select, delete, from, where, group by, order by, join

106 User Interfaces and Desktops

106.1 Install and configure X11 (Chapter 6)

 ■ Verify that the video card and monitor are supported by an X server

 ■ Awareness of the X font server

 ■ Basic understanding and knowledge of the X Window configuration file

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/X11/xorg.conf, xhost, DISPLAY, xwininfo, xdpyinfo, X

106.2 Set up a display manager (Chapter 6)

 ■ Basic configuration of LightDM

 ■ Turn the display manager on or off

 ■ Change the display manager greeting

 ■ Awareness of XDM, KDM, and GDM

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
lightdm, /etc/lightdm

Introduction xxxiii

fl ast.indd 03/26/2015 Page xxxiii

106.3 Accessibility (Chapter 6)

 ■ Basic knowledge of keyboard accessibility settings (AccessX)

 ■ Basic knowledge of visual settings and themes

 ■ Basic knowledge of assistive technologies (ATs)

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
sticky/repeat keys, slow/bounce/toggle keys, mouse keys, high contrast/large Print
Desktop themes, screen reader, Braille display, screen magnifier, onscreen keyboard,
Gestures (used at login; for example, gdm), Orca, GOK, emacspeak

107 Administrative Tasks

107.1 Manage user and group accounts and related system
files (Chapter 7)

 ■ Add, modify, and remove users and groups

 ■ Manage user/group info in password/group databases

 ■ Create and manage special-purpose and limited accounts

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/passwd, /etc/shadow, /etc/group, /etc/skel, chage, getent, groupadd,
 groupdel, groupmod, passwd, useradd, userdel, usermod

107.2 Automate system administration tasks by scheduling
jobs (Chapter 7)

 ■ Manage cron and at jobs

 ■ Configure user access to cron and at services

 ■ Configure anacron

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/cron.{d,daily,hourly,monthly,weekly}, /etc/at.deny, /etc/at.allow, /etc
/crontab, /etc/cron.allow, /etc/cron.deny, /var/spool/cron/*, crontab, at, atq,
atrm, anacron, /etc/anacrontab

107.3 Localization and internationalization (Chapter 6)

 ■ Configure locale settings and environment variables

 ■ Configure time zone settings and environment variables

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/timezone, /etc/localtime, /usr/share/zoneinfo, environment variables (LC_*,
LC_ALL, LANG, TZ), /usr/bin/locale, tzselect, tzconfig, date, iconv, UTF-8, ISO-
8859, ASCII, Unicode

xxxiv Introduction

fl ast.indd 03/26/2015 Page xxxiv

108 Essential System Services

108.1 Maintain system time (Chapter 7)

 ■ Set the system date and time

 ■ Set the hardware clock to the correct time in UTC

 ■ Configure the correct time zone

 ■ Basic NTP configuration

 ■ Knowledge of using the pool.ntp.org service

 ■ Awareness of the ntpq command

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/usr/share/zoneinfo, /etc/timezone, /etc/localtime, /etc/ntp.conf, date,
hwclock, ntpd, ntpdate, pool.ntp.org

108.2 System logging (Chapter 7)

 ■ Configuration of the syslog daemon

 ■ Understanding of standard facilities, priorities, and actions

 ■ Configuration of logrotate

 ■ Awareness of rsyslog and syslog-ng

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
syslog.conf, syslogd, klogd, /var/log, logger, logrotate, /etc/logrotate.conf,
/etc/logrotate.d/, journalctl, /etc/system/journal.conf, /var/log/journal/

108.3 Mail Transfer Agent (MTA) basics (Chapter 9)

 ■ Create email aliases

 ■ Configure email forwarding

 ■ Knowledge of commonly available MTA programs (postfix, sendmail, qmail, exim)
(no configuration)

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
~/.forward, sendmail emulation layer commands, newaliases, mail, mailq, postfix,
sendmail, exim, qmail

108.4 Manage printers and printing (Chapter 6)

 ■ Basic CUPS configuration (for local and remote printers)

 ■ Manage user print queues

 ■ Troubleshoot general printing problems

 ■ Add and remove jobs from configured printer queues

Introduction xxxv

fl ast.indd 03/26/2015 Page xxxv

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
CUPS configuration files, tools and utilities; /etc/cups; lpd legacy interface
(lpr, lprm, lpq)

109 Networking Fundamentals

109.1 Fundamentals of Internet protocols (Chapter 8)

 ■ Demonstrate an understanding of network masks and CIDR notation

 ■ Knowledge of the differences between private and public “dotted quad” IP addresses

 ■ Knowledge about common TCP and UDP ports (20, 21, 22, 23, 25, 53, 80, 110, 123,
139, 143, 161, 162, 389, 443, 465, 514, 636, 993, 995)

 ■ Knowledge about the differences and major features of UDP, TCP, and ICMP

 ■ Knowledge of the major differences between IPv4 and IPV6

 ■ Knowledge of the basic features of IPv6

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/services, IPv4, IPv6, subnetting, TCP, UDP, ICMP

109.2 Basic network configuration (Chapter 8)

 ■ Manually and automatically configure network interfaces

 ■ Basic TCP/IP host configuration

 ■ Setting a default route

 ■ The following is a partial list of the files, terms, and utilities covered in this objective: /etc/
hostname, /etc/hosts, /etc/nsswitch.conf, ifconfig, ifup, ifdown, ip, route, ping

109.3 Basic network troubleshooting (Chapter 8)

 ■ Manually and automatically configure network interfaces and routing tables to include
adding, starting, stopping, restarting, deleting, or reconfiguring network interfaces

 ■ Change, view, or configure the routing table and correct an improperly set default
route manually

 ■ Debug problems associated with the network configuration

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
ifconfig, ip, ifup, ifdown, route, host, hostname, dig, netstat, ping, ping6,
traceroute, traceroute6, tracepath, tracepath6, netcat

109.4 Configure client-side DNS (Chapter 8)

 ■ Query remote DNS servers

 ■ Configure local name resolution and use remote DNS servers

xxxvi Introduction

fl ast.indd 03/26/2015 Page xxxvi

 ■ Modify the order in which name resolution is done

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/hosts, /etc/resolv.conf, /etc/nsswitch.conf, host, dig, getent

110 Security

110.1 Perform security administration tasks (Chapter 10)

 ■ Audit a system to find files with the SUID/SGID bit set

 ■ Set or change user passwords and password aging information

 ■ Be able to use nmap and netstat to discover open ports on a system

 ■ Set up limits on user logins, processes, and memory usage

 ■ Determine which users have logged in to the system or are currently logged in

 ■ Basic sudo configuration and usage

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
find, passwd, lsof, nmap, chage, netstat, sudo, /etc/sudoers, su, usermod, ulimit,
who, w, last

110.2 Set up host security (Chapter 10)

 ■ Awareness of shadow passwords and how they work

 ■ Turn off network services not in use

 ■ Understand the role of TCP wrappers

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
/etc/nologin, /etc/passwd, /etc/shadow, /etc/xinetd.d/*, /etc/xinetd.conf,
/etc/inetd.d/*, /etc/inetd.conf, /etc/inittab, /etc/init.d/*, /etc/hosts
.allow, /etc/hosts.deny

110.3 Securing data with encryption (Chapter 10)

 ■ Perform basic OpenSSH 2 client configuration and usage

 ■ Understand the role of OpenSSH 2 server host keys

 ■ Perform basic GnuPG configuration and usage

 ■ Understand SSH port tunnels (including X11 tunnels)

 ■ The following is a partial list of the files, terms, and utilities covered in this objective:
ssh, ssh-keygen, ssh-agent, ssh-add, ~/.ssh/id_rsa and id_rsa.pub, ~/.ssh/id_dsa
and id_dsa.pub, /etc/ssh/ssh_host_rsa_key and ssh_host_rsa_key.pub, /etc/
ssh/ssh_host_dsa_key and ssh_host_dsa_key.pub, ~/.ssh/authorized_keys, /etc/
ssh_known_hosts, gpg, ~/.gnupg/*

fl ast.indd 03/26/2015 Page xxxvii

Assessment Test

1. Which section in the X server configuration file defines the combination of monitors and
video cards that you’re using on your Linux system?

A. Monitor

B. Screen

C. Modeline

D. Device

E. Module

2. How can you tell whether your system is using inetd or xinetd as a super server?
(Select two.)

A. Type ps ax | grep inetd, and examine the output for signs of inetd or xinetd.

B. Type superserver to see a report on which super server is running.

C. Look for the /etc/inetd.conf file or /etc/xinetd.d subdirectory, which are signs of
inetd or xinetd, respectively.

D. Examine the /etc/inittab file to see which super server is launched by init, which is
responsible for this task.

E. Type netstat -a | grep inet and examine the output for signs of inetd or xinetd.

3. How does the lpc utility for CUPS differ from its counterpart in BSD LPD and LPRng?

A. The lpc utility is unique to CUPS; it doesn’t ship with BSD LPD or LPRng.

B. CUPS doesn’t ship with an lpc command, but BSD LPD and LPRng do.

C. CUPS’s lpc is much more complex than its counterpart in BSD LPD and LPRng.

D. CUPS’s lpc is much simpler than its counterpart in BSD LPD and LPRng.

E. The lpc utility is identical in all three of these printing systems.

4. What file would you edit to restrict the number of simultaneous logins a user can employ?

A. /etc/pam.d/login-limits

B. /etc/bashrc

C. /etc/security/limits.conf

D. /etc/inittab

E. /etc/passwd

5. Which of the following are required when configuring a computer to use a static IP
address? (Select two.)

A. The IP address of the DHCP server

B. The hostname of the NBNS server

C. The computer’s IP address

D. The network mask

E. The IP address of the NTP server

xxxviii Assessment Test

fl ast.indd 03/26/2015 Page xxxviii

6. What does the following command accomplish?
$ wc report.txt | tee wc

A. It launches the wc editor on both the report.txt and wc.txt files; each file opens in
its own window.

B. It displays a count of the windows in which the report.txt file is displayed and shows
that information in a new window called wc.

C. It creates a count of newlines, words, and bytes in the report.txt file and then
displays a count of these statistics about the report it just generated.

D. It cleans up any memory leaks associated with the tee program’s use of the report
.txt file.

E. It displays a count of newlines, words, and bytes in the report.txt file and copies
that output to the wc file.

7. Which of the following characters defines the end of an OS or kernel definition in /boot/
grub/grub.cfg?

A. ;

B.)

C. }

D. */

E. None of the above; the definition ends with the title line beginning the next entry.

8. What does the number 703 represent in the following /etc/passwd entry?
george:x:703:100:George Brown:/home/george:/bin/tcsh

A. The account’s human ID (HID) number

B. The account’s process ID (PID) number

C. The account’s group ID (GID) number

D. The account’s globally unique ID (GUID) number

E. The account’s user ID (UID) number

9. What does the grep command accomplish?

A. It creates a pipeline between two programs.

B. It searches files’ contents for a pattern.

C. It concatenates two or more files.

D. It displays the last several lines of a file.

E. It locates files on the hard disk.

10. Which of the following are journaling filesystems for Linux? (Select three.)

A. vfat

B. ReiserFS

C. Ext2fs

Assessment Test xxxix

fl ast.indd 03/26/2015 Page xxxix

D. Ext3fs

E. XFS

11. You’ve configured your computer to use SMTP and IMAP via a tunneled SSH connection
to your ISP’s email server for improved security. Why might you still want to use GPG
encryption for your emails on top of the encryption provided by SSH?

A. The SSH tunnel reaches only as far as the first email server; GPG encrypts data on all
of the computers all the way to or from your email correspondents.

B. SSH encryption is notoriously poor for email, although it’s perfectly adequate for login
sessions; thus, adding GPG encryption improves security.

C. SSH doesn’t encrypt the headers of the email messages; GPG encrypts the headers to
keep snoopers from learning your correspondents’ identities.

D. Using GPG guarantees that your email messages won’t contain unwanted viruses or
worms that might infect your correspondents’ computers.

E. Configured in this way, SSH will encrypt the email headers and bodies but not any
attachments to your email.

12. Which of the following ports are commonly used to retrieve email from an email server
computer? (Select two.)

A. 110

B. 119

C. 139

D. 143

E. 443

13. You’re experiencing sporadic problems with a Secure Shell (SSH) login server—sometimes
users can log in and sometimes they can’t. What might you try immediately after a failure
to help diagnose this problem?

A. On the server computer, type http://localhost:631 into a web browser to access the
SSH configuration page and check its error subpage for error messages.

B. Type diagnose sshd to run a diagnostic on the SSH server daemon (sshd).

C. Type tail /var/log/messages to look for error messages from the server.

D. Examine the /dev/ssh device file to look for error messages from the server.

E. On the server computer, type sshd to view SSH’s diagnostic messages.

14. What is the function of the ~/.profile file?

A. It’s the user configuration file for the ProFTP server.

B. It’s one of a user’s bash startup scripts.

C. It’s the user configuration file for the ProFile file manager.

D. Its presence tells tcsh to ignore file modes.

E. It holds the user’s encrypted password.

xl Assessment Test

fl ast.indd 03/26/2015 Page xl

15. You want your computer to remind you to get your car inspected in two years. What is the
best way to do this among the specified options?

A. Create a program that repeatedly checks the time and, when two years have passed,
displays a message to get your car inspected.

B. Type cal day month year, where day, month, and year specify the date of the future
inspection, to have Linux run a program that you then specify on that date.

C. Create a cron job that runs hourly. This job should check the date and, when the
 correct date comes up, use mail to notify you of the need for a car inspection.

D. Use the NTP GUI calendar program to create an alarm for the specified date. The
program will then display the message you enter at the specified date and time.

E. Type at date, where date is a date specification. You can then specify a command,
such as mail with appropriate options, to notify you of the need to get your car
inspected.

16. How would you configure a computer to use the computer whose IP address is 172.24.21.1
as a gateway for all network traffic that’s not otherwise configured?

A. gateway default 172.24.21.1

B. gateway 172.24.21.1

C. route gateway 172.24.21.1

D. route add default gw 172.24.21.1

E. gw 172.24.21.1

17. What software can you use to drive a Braille display device? (Select two.)

A. Emacspeak

B. BRLTTY

C. A 2.6.26 or later kernel

D. GOK

E. A framebuffer driver

18. Which is true of source RPM packages?

A. They consist of three files: an original source tarball, a patch file of changes, and a
PGP signature indicating the authenticity of the package.

B. They require programming knowledge to rebuild.

C. They can sometimes be used to work around dependency problems with a
binary package.

D. They are necessary to compile software for RPM-based distributions.

E. They always contain software that’s licensed under terms of the GPL.

19. Which utility should you use by itself to rename the file pumpkin.txt to lantern.txt?

A. dd

B. rm

Assessment Test xli

fl ast.indd 03/26/2015 Page xli

C. cp

D. mv

E. ln

20. You want to run a lengthy scientific simulation program, called simbigbang, which doesn’t
require any user interaction; the program operates solely on disk files. If you don’t want to
tie up the shell from which you run the program, what should you type to run simbigbang
in the background?

A. start simbigbang

B. simbigbang &

C. bg simbigbang

D. background simbigbang

E. nice simbigbang

21. Which of the following commands will install an RPM package file called
 theprogram-1.2.3-4.i386.rpm on a computer? (Select two.)

A. rpm -Uvh theprogram-1.2.3-4.i386.rpm

B. rpm -i theprogram-1.2.3-4.i386.rpm

C. rpm -U theprogram

D. rpm -e theprogram-1.2.3-4.i386.rpm

E. rpm -Vp theprogram-1.2.3-4.i386.rpm

22. What tool can diagnose and fix many common Linux filesystem problems?

A. mkfs

B. fsck

C. chkdsk

D. scandisk

E. fdisk

23. You’ve just installed MySQL, and you intend to use it to store information about the
 animals in a zoo, from the anteaters to the zebras. What command are you likely to use
first, once you start MySQL?

A. CREATE DATABASE animals;

B. USE animals;

C. CREATE TABLE animals;

D. INSERT INTO animals;

E. UPDATE animals;

24. Which of the following commands displays help on topic, when typed in a Linux
shell? (Select two.)

A. manual topic

B. man topic

xlii Assessment Test

fl ast.indd 03/26/2015 Page xlii

C. ? topic

D. info topic

E. hint topic

25. A computer’s hardware clock keeps track of the time while the computer is powered off.
In what formats may this time be stored on an x86 Linux system? (Select two.)

A. Coordinated Universal Time (UTC)

B. Internet Time

C. Local time

D. 12-hour time

E. Mars time

26. You want to know what kernel modules are currently loaded. What command would
you type to learn this information?

A. insmod

B. depmod

C. modprobe

D. lsmod

E. modinfo

27. You want to enable all members of the music group to read the instruments.txt file,
which currently has 0640 (-rw-r-----) permissions, ownership by root, and group
 ownership by root. How might you accomplish this goal? (Select two.)

A. Type chown music instruments.txt in the file’s directory.

B. Type chgrp music instruments.txt in the file’s directory.

C. Type chgroup music instruments.txt in the file’s directory.

D. Type chmod 0600 instruments.txt in the file’s directory.

E. Type chown :music instruments.txt in the file’s directory.

28. You want to create a link to the /usr/local/bin directory in another location. Which of
the following statements is true?

A. You can do this only if /usr/local/bin is on a journaling filesystem.

B. You must own /usr/local/bin to create the link.

C. You can create the link only if the link’s location is on the same filesystem as the
original directory.

D. Only the system administrator can do this.

E. The link will probably have to be a symbolic link.

29. Which of the following, when typed in vi’s command mode, saves a file and quits the
program? (Select two.)

A. :rq

B. :wq

Assessment Test xliii

fl ast.indd 03/26/2015 Page xliii

C. :re

D. :we

E. ZZ

30. A user’s home directory includes a file called ~/.forward that consists of one line: |~/
junkme. What is the effect of this configuration?

A. The user’s incoming mail is forwarded to the junkme user on the same system.

B. The user’s incoming mail is stored in the ~/junkme file.

C. The user’s incoming mail is sent through the ~/junkme program file.

D. The user’s incoming mail is flagged as spam and deleted.

E. The user’s incoming mail is forwarded to the same user on the junkme computer.

fl ast.indd 03/26/2015 Page xliv fl ast.indd 03/26/2015 Page xliv

Answers to the Assessment Test

1. B. The Monitor section defi nes the monitor options and settings but doesn’t combine it
with the video card, so option A is incorrect. The Modeline line defi nes the available video
modes in the Monitor section, but it doesn’t defi ne video cards, so option C is incorrect.
Option D, the Device section, is also incorrect; it defi nes the video card but doesn’t match
it with a monitor on the system. Option E is incorrect because the Module section defi nes
which X server modules (or drivers) are loaded but it doesn’t match monitors and video
cards. Option B, the Screen section, tells the X server about the combination of video
cards and monitors that you’re using, so it’s the correct answer. For more information, see
 Chapter 6, “Confi guring the X Window System, Localization, and Printing.”

2. A, C. Examining a process listing (obtained from ps) for signs of the super server is the
most reliable way to determine which one is actually running, so option A is correct.
The presence of the super server’s confi guration fi le or fi les (as in option C) is also a good
 diagnostic, although some older systems that have been upgraded may have both sets of
confi guration fi les. There is no standard superserver utility to report on which one is
used, so option B is incorrect. Most distributions launch the super server through a SysV
startup script; the /etc/inittab fi le isn’t directly involved in this process, so examining it
would be pointless, and option D is incorrect. Although the output of netstat -ap,
when typed as root, will include an indication of any instance of inetd or xinetd that’s
listening for connections, option E omits the critical -p option, which causes the program
to display process names. Thus, option E is incorrect. For more information, see Chapter
10, “ Securing Your System.”

3. D. The lpc utility is used to start, stop, change the priority of, and otherwise control jobs
in a print queue. CUPS ships with an lpc utility, but it’s quite rudimentary compared to
the lpc utilities of BSD LPD and LPRng. Instead, CUPS relies on its Web-based interface
to provide the ability to control print jobs. Thus, option D is correct, and the remaining
options must logically all be incorrect. For more information, see Chapter 6.

4. C. The /etc/security/limits.conf fi le defi nes various limits on user resources,
 including the number of simultaneous logins individual users are permitted. Thus, option C
is correct. The /etc/pam.d/login-limits fi le (option A) is fi ctitious, although login limits
do rely on the pam_limits module to the Pluggable Authentication System (PAM). The
/etc/bashrc fi le (option B) is a global bash startup script fi le, but it’s not normally used
to impose login limits. The /etc/inittab fi le (option D) is a key Linux startup fi le, but it
doesn’t have any direct bearing on imposing login limits. The /etc/passwd fi le (option E)
defi nes many key account features, but login limits are not among these. For more informa-
tion, see Chapter 10.

5. C, D. The computer’s IP address (option C) and network mask (aka subnet mask or
 netmask; option D) are the most critical components in TCIP/IP network confi guration.
(Additional information that you may need to provide on many networks includes the IP
addresses of one to three DNS servers, the hostname or IP address of a router, and
the computer’s hostname.) You shouldn’t need the IP address of a Dynamic Host

Answers to the Assessment Test xlv

fl ast.indd 03/26/2015 Page xlv

Confi guration Protocol (DHCP) server (option A)—and if a DHCP server is present,
chances are you should be using DHCP rather than static IP address assignment. A Net-
BIOS Name Service (NBNS) server (option B) converts between names and IP addresses
on NetBIOS networks. The hostname of such a computer isn’t likely to be a critical con-
fi guration element, although you may need to provide this information to Samba for some
operations to function correctly when sharing fi les. A Network Time Protocol (NTP) server
(option E) helps you maintain system time on all of your computers, but this isn’t required
for basic network confi guration. For more information, see Chapter 8, “Confi guring Basic
Networking.”

6. E. The wc command displays a count of newlines, words, and bytes in the specifi ed fi le
(report.txt). Piping this data through tee causes a copy of the output to be stored in the
new fi le (wc in this example—you shouldn’t run this command in the same directory as the
wc executable fi le!). Thus, option E is correct. Contrary to option A, wc is not an editor, and
the remaining syntax wouldn’t cause two fi les to open in separate windows even if wc were
an editor. Contrary to option B, wc doesn’t count windows or open a new window. Option
C describes the effect of wc report | wc—that is, it overlooks the tee command. Con-
trary to option D, wc has nothing to do with cleaning up memory leaks, and tee doesn’t
directly use the report.txt fi le. For more information, see Chapter 1, “Exploring Linux
Command-Line Tools.”

7. C. The grub.cfg fi lename indicates a GRUB 2 confi guration fi le. In such fi les, each OS
or kernel stanza begins with a menuentry line and an open curly brace ({) and ends with
a close curly brace (}). Thus, option C is correct. Some confi guration fi les and program-
ming languages use semicolons (;) at the end of most lines, but this isn’t true of GRUB 2,
so option A is incorrect. Although close parentheses ()) are used to terminate some types
of options in some confi guration fi les, including disk identifi ers in GRUB 2’s confi guration
fi le, they aren’t used to terminate whole OS or kernel defi nitions in this fi le, so option B is
incorrect. The string */ terminates comments in C program fi les but isn’t commonly used
in GRUB 2 confi guration fi les, so option D is incorrect. Option E would be correct if the
question had asked about a GRUB Legacy confi guration fi le (menu.lst or grub.conf), but
the question specifi es a GRUB 2 confi guration fi le (grub.cfg); the two boot loaders termi-
nate their OS/kernel stanzas differently, so option E is incorrect. For more information, see
Chapter 5, “Booting Linux and Editing Files.”

8. E. The third fi eld of /etc/passwd entries holds the UID number for the account, so option
E is correct. Linux doesn’t use any standard identifi er called a human ID (HID; option
A), although the acronym HID stands for human interface device, a class of USB devices.
Accounts don’t have PID numbers (option B); those belong to running processes. The
account’s GID number (option C) is stored in the fourth fi eld of /etc/passwd—100 in this
example. Linux accounts don’t use globally unique ID (GUID) numbers, so option D is
incorrect. For more information, see Chapter 7, “Administering the System.”

9. B. The grep command scans fi les to fi nd those that contain a specifi ed string or pattern,
as described by option B. In the case of text fi les, grep displays the matching line or lines;
for binary fi les, it reports that the fi le matches the pattern. The method of creating a pipe-
line (option A) involves separating two commands with a vertical bar (|). The grep com-
mand can be used in a pipeline, but it doesn’t create one. The command that concatenates

xlvi Answers to the Assessment Test

fl ast.indd 03/26/2015 Page xlvi

fi les (option C) is cat, and the command that displays the last several lines of a fi le (option
D) is tail. Several commands, such as find, locate, and whereis locate fi les (option E),
but grep is not among them. For more information, see Chapter 1.

10. B, D, E. ReiserFS (option B) was written from scratch for Linux. The Third Extended
Filesystem (ext3fs; option D) is a journaling fi lesystem based on the older non-journaling
Second Extended Filesystem (ext2fs; option C). The Extents Filesystem (XFS; option E) is
a journaling fi lesystem written by SGI for Irix and later ported to Linux. The Virtual File
Allocation Table (vfat; option A) is a non-journaling fi lesystem designed by Microsoft for
Windows. For more information, see Chapter 3, “Confi guring Hardware.”

11. A. Option A correctly describes the features of SSH and GPG in this context. Option B
is incorrect because SSH should do a fi ne job of encrypting your email so that it can’t be
decoded between your system and your ISP’s email server. Option C has it backward; email
transferred via SSH will be completely encrypted, including both headers and body. GPG
doesn’t encrypt headers, just message bodies. Option D is incorrect because GPG isn’t a
virus scanner, just an encryption tool. Option E is incorrect because the SSH tunnel will
encrypt everything in the SMTP transfer, including email attachments. For more informa-
tion, see Chapter 10.

12. A, D. Port 110 (option A) is assigned to the Post Offi ce Protocol (POP), and port 143
(option D) is assigned to the Internet Message Access Protocol (IMAP), both of which
may be used to retrieve email messages from an email server system. Port 119 (option B) is
assigned to the Network News Transfer Protocol (NNTP), port 139 (option C) is assigned
to the Server Message Block/Common Internet File System (SMB/CIFS) protocol, and
port 443 (option E) is assigned to the Hypertext Transfer Protocol with SSL encryption
(HTTPS), none of which is commonly used for email retrieval. For more information, see
Chapter 8.

13. C. Log fi les, such as /var/log/messages and sometimes others in /var/log, often
contain useful information concerning server errors. The tail program displays the last
few lines of a fi le, so using it to examine log fi les immediately after a problem occurs can
be a useful diagnostic procedure. Option C correctly combines these features. The http://
localhost:631 URL of option A accesses the Common Unix Printing System (CUPS) con-
fi guration utility, which has nothing to do with SSH. There is no standard diagnose utility
(option B) to help diagnose server problems, and there is no standard /dev/ssh fi le (option
D). The sshd program is the SSH server itself, so option E will simply launch the server. For
more information, see Chapter 5.

14. B. The ~./profile fi le is one of several bash startup scripts, as stated in option B. It has
nothing to do with the ProFTP server (option A) or the tcsh shell (option D). The ProFile
fi le manager mentioned in option C is fi ctitious. Users’ encrypted passwords (option E) are
usually stored in /etc/shadow. For more information, see Chapter 9, “Writing Scripts,
Confi guring Email, and Using Databases.”

15. E. The at utility was created to run programs at one specifi ed point in the future. Thus,
option E will accomplish the stated goal. Options A and C might also work, but neither is
the best way to accomplish this goal. Option A will tie up CPU time, and if the program

Answers to the Assessment Test xlvii

fl ast.indd 03/26/2015 Page xlvii

crashes or the system is shut down during the intervening two years, the message will never
be displayed. Option C would be more reliable, but it adds unnecessary complexity to your
hourly cron job schedule. The cal program displays a text-mode calendar, enabling you
to identify the days of a week for a given month; it doesn’t schedule future jobs, as option
B suggests. A GUI calendar program, as specifi ed in option D, might work, but NTP is
the Network Time Protocol, a protocol and like-named program for synchronizing clocks
across a network. Thus, NTP isn’t the tool for the job, and option D is incorrect. For more
information, see Chapter 7.

16. D. Option D provides the correct command to add 172.24.21.1 as the default gateway.
Options A and B both use the fi ctitious gateway command, which doesn’t exist and there-
fore won’t work unless you create a script of this name. Option C uses the correct route
command, but there is no gateway option to route; you must use add default gw, as in
option D. There is no standard gw command, so option E is incorrect. For more informa-
tion, see Chapter 8.

17. B, C. The BRLTTY package is an add-on daemon for handling a Braille display device,
and some features for using these devices have been added to the 2.6.26 kernel, so options
B and C are correct. Emacspeak (option A) is speech-synthesis software; it can be used to
“speak” a text display to a user, but it doesn’t interface with Braille displays. GOK (option
D) is an onscreen keyboard, not a Braille display tool. Framebuffer drivers (option E) are
kernel drivers for managing conventional video cards; they aren’t used to drive Braille
displays. For more information, see Chapter 6.

18. C. Some dependencies result from dynamically linking binaries to libraries at compile time,
and so they can be overcome by recompiling the software from a source RPM, so option
C is correct. Option A describes Debian source packages, not RPM packages. Recompil-
ing a source RPM requires only issuing an appropriate command, although you must also
have appropriate compilers and libraries installed. Thus, option B is overly pessimistic.
Source tarballs can also be used to compile software for RPM systems, although this
results in none of RPM’s advantages. Thus, option D is overly restrictive. The RPM format
doesn’t impose any licensing requirements, contrary to option E. For more information, see
 Chapter 2.

19. D. The mv utility can be used to rename fi les as well as move them from one location to
another, so option D is correct. The dd utility (option A) is used to copy fi les to backups, rm
(option B) is used to remove (delete) fi les, cp (option C) copies fi les, and ln (option E)
creates links. For more information, see Chapter 4.

20. B. Appending an ampersand (&) to a command causes that command to execute in the
background. The program so launched still consumes CPU time, but it won’t monopolize
the shell you used to launch it. Thus, option B is correct. The start (option A) and
background (option D) commands are fi ctitious. Although bg (option C) does place a job
into the background, it doesn’t launch a program that way; it places a process that has
already been suspended (by pressing Ctrl+Z) into the background. The nice utility (option
E) launches a program with modifi ed priority, but a program so launched still monopolizes
its shell unless you take additional steps. For more information, see Chapter 2.

xlviii Answers to the Assessment Test

fl ast.indd 03/26/2015 Page xlviii

21. A, B. The -Uvh parameter (option A) issues an upgrade command (which installs the
program whether or not an earlier version is installed) and creates a series of hash marks
to display the command’s progress. The -i parameter (option B) installs the program if it’s
not already installed but causes no progress display. Option C uses a package name, not a
complete fi lename, and so it will fail to install the package fi le. The -e option (option D)
removes a package. Option E’s -Vp option verifi es the package fi le but doesn’t install it. For
more information, see Chapter 2.

22. B. Option B, fsck, is Linux’s fi lesystem check utility. It’s similar in purpose to the DOS and
Windows CHKDSK and ScanDisk utilities (similar to options C and D), but these DOS and
Windows utilities don’t work on Linux fi lesystems like ext2fs or ReiserFS. Option A, mkfs,
creates new fi lesystems; it doesn’t diagnose or fi x fi lesystem problems. Option E, fdisk, is
a tool for creating or modifying disk partitions; it doesn’t manage the fi lesystems they con-
tain. For more information, see Chapter 3.

23. A. A freshly installed MySQL database is unlikely to have a ready-made database of ani-
mals, so your fi rst task is to create that database with the CREATE DATABASE command, as
shown in option A. (You could call the database something other than animals, of course.)
The USE command in option B will be useful only once the database has been created. Once
the database is created, you can use CREATE TABLE, as in option C, to create a table; how-
ever, you’ll need an existing database fi rst, and this command also requires information
about the type of data to be stored, which option C doesn’t provide. Option D’s INSERT
INTO command stores data into a table once it’s been created, so it’s far from the fi rst com-
mand you’ll use. It also requires additional specifi cation of the data to be stored, so it’s
incomplete. Option E’s UPDATE command modifi es existing entries, so you’ll use this com-
mand only after you’ve created the database and added at least one animal to it. (Option E
is also an incomplete command even then.) For more information, see Chapter 9.

24. B, D. The correct answers, man and info (options B and D), are two common Linux help
packages. Although ? (option C) is a common help command within certain interactive pro-
grams, it isn’t a help command in bash or other common Linux shells. There is no common
command called manual (option A), nor is hint (option E) a valid bash command or com-
mon program name. For more information, see Chapter 1.

25. A, C. Unix systems traditionally store time in UTC (aka Greenwich mean time), and Linux
may do so as well. Thus, option A is correct. Most other x86 PC OSs traditionally store
time as the local time, however, so Linux also supports this option and option C is also
correct. Internet Time (option B) is an alternative to the 24-hour clock in which the day is
broken into 1,000 “beats.” Standard PC BIOSs don’t support this time format. Likewise,
a 12-hour clock isn’t terribly useful to computers because it doesn’t differentiate a.m. from
p.m., making option D incorrect. Although the length of the Martian day is similar to that
of Earth (24 hours and 37 minutes), those wanting to colonize Mars will have to wait for
PC clocks to support setting time for the Red Planet; option E is incorrect. For more infor-
mation, see Chapter 7.

26. D. Typing lsmod (option D) produces a list of the modules that are currently loaded. The
insmod (option A) and modprobe (option C) programs both load modules—either a single
module or a single module and all those on which it depends, respectively. The depmod
command (option B) generates the modules.dep fi le that contains module dependency

Answers to the Assessment Test xlix

fl ast.indd 03/26/2015 Page xlix

information. The modinfo command (option E) displays information, such as its
version number and author, on a single module. For more information, see Chapter 3.

27. B, E. The chgrp and chown commands can both change the group ownership of a fi le.
The chgrp command takes a group name and a fi lename as parameters, as in option B.
The chown command normally changes a fi le’s owner; but if you provide a group name
preceded by a dot (.) or a colon (:), as in option E, it changes the group of a fi le. The chown
command as used in option A, will change the primary ownership of the fi le to the music
user, if such a user exists on the system; it won’t change the group ownership. There is no
standard chgroup command, as in option C. Option D will change the permissions to 0600
(-rw-------), which will be a step backward with respect to the goal stated. For more
information, see Chapter 4.

28. E. Hard links to directories are not permitted by most fi lesystems, so you’ll probably have
to create a symbolic link, as noted in option E. Links don’t rely on a fi lesystem journal, so
option A is incorrect. Contrary to option B, anybody may create a link, not just the origi-
nal’s owner. Option C describes a restriction of hard links, but because this link will prob-
ably have to be a symbolic link, this restriction is unimportant and option C is incorrect.
Option D describes a more severe restriction than option B, but it’s incorrect for the same
reasons. For more information, see Chapter 4.

29. B, E. The colon (:) starts ex mode, from which you can enter commands. In ex mode, r
includes a fi le in an existing one, w writes a fi le, e loads an entirely new fi le, and q quits the
program. Thus the desired combination is :wq (option B). As a special case, ZZ does the
same thing, so option E is also correct. For more information, see Chapter 5.

30. C. The ~/.forward fi le is a user email forwarding fi le. The vertical bar character (|) at the
start of such a fi le is a code to send the email through the specifi ed program fi le, so option
C is correct. To do as option A describes, the fi le would need to read junkme or junkme@
hostname, where hostname is the computer’s hostname. To do as option B describes, the
leading vertical bar would have to be omitted. It’s conceivable that the ~/junkme script does
as option D describes, but there’s no way of knowing this for certain. To do as option E
describes, the fi le would have to read user@junkme, where user is the username. For more
information, see Chapter 9.

fl ast.indd 03/26/2015 Page li

LPIC-1®:
Linux Professional Institute

Certification
Study Guide
Fourth Edition

c01.indd 04/13/2015 Page 1

PART

I
Exam 101-400

c01.indd 04/13/2015 Page 3

Chapter

1
Exploring Linux
Command-Line Tools

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 103.1 Work on the command line

 ✓ 103.2 Process text streams using filters

 ✓ 103.4 Use streams, pipes, and redirects

 ✓ 103.7 Search text files using regular expressions

http://technet24.ir/

c01.indd 04/13/2015 Page 4

Linux borrows heavily from Unix, and Unix began as a
text-based operating system (OS). Unix and Linux retain
much of this heritage, which means to understand how to use

and, especially administer Linux, you must understand at least the basics of its command-
line tools. Using command-line tools requires the use of a shell. A shell is a program that
accepts and interprets text-mode commands and provides an interface to the system.

This chapter begins with basic shell information, including the various shell programs
available and the procedures for using them. From there, this chapter covers streams,
pipes, and redirection, which you can use to move input and output between programs or
between fi les and programs. These techniques are frequently combined with text processing
using fi lters—commands you can use to manipulate text without the help of a conventional
text editor. Sometimes you must manipulate text in an abstract way, using codes to
represent several different types of text. This chapter, therefore, covers this topic as well.

Understanding Command-Line Basics

Before you do anything else with Linux, you should understand how to use a Linux shell.
The shell allows you to enter commands as needed. Which commands can be entered
depends on which shell program is running. Several of the available shell programs are
briefl y described.

In using shell commands, you should also understand shell environment variables,
which are placeholders for data that may be useful to many programs. Finally, it is helpful
to know how to get help with the shell commands you’re trying to use.

Exploring Your Linux Shell Options
The shell to be used for entering commands is confi gured for each individual user, and
Linux provides a range of available shells. A complete shell list would be quite long, but the
following shells are among the more common choices:

bash The GNU Bourne Again Shell (bash) is based on the earlier Bourne shell for Unix
but extends it in several ways. In Linux, bash is the most common default shell for user
accounts, and it’s the one emphasized in this book and on the exam.

sh The Bourne shell upon which bash is based goes by the name sh. It’s not often used in
Linux and the sh command is often a pointer to the bash shell or other shells.

http://technet24.ir/

Understanding Command-Line Basics 5

c01.indd 04/13/2015 Page 5

tcsh This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some
circles, but no major Linux distributions make it the default shell. Although it’s similar
to bash in many respects, some operational details differ. For instance, you don’t assign
environment variables the same way in tcsh as in bash.

csh The original C shell isn’t used much on Linux, but if a user is familiar with csh, tcsh
makes a good substitute.

ksh The Korn shell (ksh) was designed to take the best features of the Bourne shell and the
C shell and extend them. It has a small but dedicated following among Linux users.

zsh The Z shell (zsh) takes shell evolution further than the Korn shell, incorporating
features from earlier shells and adding still more.

In addition to these shells, dozens more obscure ones are available. In Linux, most
users run bash because it is the most popular shell. Some other OSs use csh or tcsh as
the default, so if your users have backgrounds on non-Linux Unix-like OSs, they may be
more familiar with these other shells. You can change a user’s default shell by editing their
account, as described in Chapter 7, “Administering the System.”

Be aware that there are two types of default shells. The default interactive shell is the
shell program a user uses to enter commands, run programs from the command line,
run shell scripts, and so on. The other default shell type is a default system shell. The
default system shell is used by the Linux system to run system shell scripts, typically at
startup.

The fi le /bin/sh is a pointer to the system’s default system shell—normally /bin/bash
for Linux. However, be aware that, on some distributions, the /bin/sh points to a different
shell. For example, on Ubuntu, /bin/sh points to the dash shell, /bin/dash.

Using a Shell
Linux shell use is fairly straightforward for anybody who’s used a text-mode OS before:
You type a command, possibly including options to it, and the computer executes the
command. For the most part, Linux commands are external—that is, they’re programs
that are separate from the shell.

A few commands are internal to the shell, though, and knowing the distinction can be
important. You should also know some of the tricks that can make using the command
shell easier—how to have the computer complete a long command or fi lename, retrieve a
command you’ve recently run, or edit a command you’ve recently used (or haven’t yet fully
entered).

Starting a Shell
If you log into Linux using a text-mode login screen, you have logged into a virtual console
terminal and, most likely, you’ll be dropped directly into your default shell. The shell
program is what presents the prompt and accepts subsequent commands.

http://technet24.ir/

6 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 6

If you log into Linux using a graphical user interface (GUI) login screen, you’ll have to
start a terminal emulator manually in order to reach your default shell. Some GUIs provide
a menu option, such as xterm or terminal, to start a terminal emulator program. These
programs enable you to run text-mode programs within Linux, and by default they come
up running your shell. If you can’t fi nd such a menu option, look for a menu option that
enables you to run an arbitrary command. Select it, and type xterm or konsole as the
command name. This will launch a terminal emulator program that will run a shell.

Once you start a terminal or log into a virtual console terminal, the shell will provide
you with a prompt for entering commands. Remember that the shell is a program providing
you with an interface to the Linux system.

A good fi rst command to try, uname, will show what operating system is being run:

$ uname

Linux

$

That’s not too interesting. You can fi nd out additional information by tacking on the -a
option to the command. Be sure to include the necessary space between the command and
the option:

$ uname -a

Linux server01.class.com 2.6.32-431.5.1.el6.x86_64 #1 SMP Wed Feb 12

00:41:43 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

$

The uname -a command provides a lot more information, including the current Linux
kernel being used (2.6.32) as well as the system’s hostname (server01.class.com). The
uname command is an external command. The shell also provides internal commands. It’s
important to know the difference between the two command types, as explained in the
next section.

Using Internal and External Commands
Internal commands are, as you might expect, built into the shell program. Thus they are
also called built-in commands. Most shells offer a similar set of internal commands, but
shell-to-shell differences do exist. Internal commands that you’re likely to use enable you to
perform some common tasks:

Change the Working Directory Whenever you’re running a shell, you’re working in a
specifi c directory. The cd command changes the current working directory. For instance,
typing cd /home/sally changes the current working directory to the /home/sally
directory.

You can use shortcut characters with the cd command as well. The tilde (~) character is a
useful shortcut; it stands for your home directory. Thus typing cd ~ will have the same
effect as typing cd /home/sally if your home directory is /home/sally.

Display the Working Directory The pwd command displays (“prints” to the screen) the
current working directory. This command is helpful, especially after you have changed
your working directory, to ensure you ended up in the right place.

http://technet24.ir/

Understanding Command-Line Basics 7

c01.indd 04/13/2015 Page 7

Display a Line of Text The echo command displays the text you enter. For instance,
typing echo Hello causes the system to display the string Hello. This may seem pointless,
but it’s useful in scripts (described in Chapter 9, “Writing Scripts, Confi guring Email, and
Using Databases”), and it can also be a good way to review the contents of environment
variables (described later in this chapter, in the section “Using Environment Variables”).

Time an Operation The time command times how long subsequent commands take to
execute. For instance, typing time pwd tells you how long the system took to execute the
pwd command. The time is displayed after the full command terminates. Three times are
displayed: total execution time (aka real time), user CPU time, and system CPU time. The
fi nal two values tell you about CPU time consumed, which is likely to be much less than the
total execution time.

Set Options In its most basic form, the set command displays a wide variety of options
relating to bash shell operation. These options are formatted much like environment vari-
ables, but they aren’t the same things. You can pass various options to set to have it affect
a wide range of shell operations.

Terminate the Shell The exit and logout commands both terminate the shell. The exit
command terminates any shell, but the logout command terminates only login shells.
Login shells are shell programs that are launched automatically when you initiate a text-
mode login as opposed to those that run in xterm windows or other terminal emulators.

The preceding list isn’t complete. Later sections of this chapter and later
chapters describe some additional internal commands. Consult your shell’s
documentation for a complete list of its internal commands.

You can quickly determine if a command is a built-in command by using the type com-
mand. Just enter the command type before the name of the command you wish to check:

$ type pwd

pwd is a shell builtin

$

$ type cd

cd is a shell builtin

$

$ type bash

bash is /bin/bash

$

Some of these internal commands are duplicated by external commands that do the
same thing. But those external commands aren’t always installed on all systems. You can
see if there are internal commands with installed duplicate external commands by using the
-a option on the type command:

$ type -a cd

cd is a shell builtin

http://technet24.ir/

8 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 8

$

$ type -a pwd

pwd is a shell builtin

pwd is /bin/pwd

$

You can see that on this system, there is no external cd command installed. However, it
does have an external pwd command installed.

Keep in mind that even when external commands are installed, the internal command
takes precedence. To access the external command, you must provide the complete external
command path, as in typing /usr/bin/time rather than time.

Confusion over Internal and External Commands

When duplicate internal and external commands exist, they sometimes produce subtly

different results or accept different options. These differences may occasionally cause

problems if you are unaware of them. For example, the time built-in command returns

slightly different results than the /usr/bin/time external command:

$ time pwd

/home/Christine

real 0m0.002s

user 0m0.002s

sys 0m0.001s

$

$ /usr/bin/time pwd

/home/Christine

0.00user 0.00system 0:00.04elapsed 24%CPU

 (0avgtext+0avgdata 2336maxresident)k

56inputs+0outputs (1major+173minor)pagefaults 0swaps

$

As you can see, bash’s internal time shows the time to execute the pwd command in a

very nice format, while the external time command /usr/bin/time is not only a little

sloppy in appearance, it also provides additional details. Be mindful of the potential

behavior differences between internal and external commands.

When you type a command that’s not recognized by the shell as one of its internal com-
mands, the shell checks its path to fi nd a program by that name to execute it. The path is a
list of directories in which commands can be found. It’s defi ned by the $PATH environment

http://technet24.ir/

Understanding Command-Line Basics 9

c01.indd 04/13/2015 Page 9

variable, as described shortly in “Using Environment Variables.” A typical user account
has about half a dozen or so directories in its path. You can add and remove directories to
the shell’s path by changing the $PATH environment variable in a shell confi guration fi le, as
described in “Exploring Shell Confi guration” later in this chapter.

You can run programs that aren’t on the path by providing a complete path name on
the command line. For instance, typing ./myprog runs the myprog program in the current
directory. Typing /home/arthur/thisprog runs the thisprog program in the /home/
arthur directory.

The root account should normally have a shorter path than ordinary
user accounts. Typically, you’ll omit directories that store GUI and other
user-oriented programs from root’s path in order to discourage use
of the root account for routine operations. This minimizes the risk of
security breaches related to buggy or compromised binaries being run
by root. Most important, root’s path should never include the current

directory (./). Placing this directory in root’s path makes it possible for a
local troublemaker to trick root into running replacements for common
programs. Omitting the current directory from ordinary user paths is also
generally a good idea. If this directory must be part of the ordinary user
path, it should appear at the end of the path so that the standard programs
take precedence over any replacement programs in the current directory.

Whether you need to enter the path or not for a command, the program fi le must be
marked as executable. This is done via the execute bit that’s stored with the fi le. Standard
programs are marked as executable when they’re installed, but if you need to adjust a
program’s executable status, you can do so with the chmod command, as described in
Chapter 4, “Managing Files.”

Performing Some Shell Command Tricks
Many users fi nd typing commands to be tedious and error-prone. This is particularly true
of slow or sloppy typists. For this reason, Linux shells include various tools that can help
speed up operations. The fi rst of these is command completion: Type part of a command or
a fi lename (as an option to the command), and then press the Tab key. The shell tries to fi ll
in the rest of the command or the fi lename. If just one command or fi lename matches the
characters you’ve typed so far, the shell fi lls the rest of the command (or fi lename) for you
and adds a space after it.

If the characters you’ve typed don’t uniquely identify a command (or fi lename), the shell
fi lls in what it can and then stops. Depending on the shell and its confi guration, it may
beep. If you press the Tab key again, the system responds by displaying the possible
completions. You can then type another character or two and, if you haven’t completed the
command (or fi lename), press the Tab key again to have the process repeat.

The most fundamental Linux commands have fairly short names—mv, ls, set,
and so on. However, some other commands are much longer, such as traceroute or

http://technet24.ir/

10 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 10

service --status-all. Filenames can also be quite lengthy—up to 255 characters on
many fi lesystems. Thus command completion can save a lot of time when you’re typing.
It can also help you avoid typos.

The most popular Linux shells, including bash and tcsh, support command
and filename completion. Some older shells, though, don’t support this
helpful feature.

Another useful shell shortcut is history. The shell history keeps a record of every com-
mand you type. If you’ve typed a long command recently and want to use it again or use a
minor variant of it, you can pull the command out of the history.

There are several rather easy methods to retrieve commands. It comes down to deter-
mining the method you like best:

Retrieve a Command The simplest way to do this is to press the Up arrow key on your
keyboard; this brings up the previous command. Pressing the Up arrow key repeatedly
moves through multiple commands so you can fi nd the one you want. If you overshoot,
press the Down arrow key to move down the history. The Ctrl+P and Ctrl+N keystrokes
double for the Up and Down arrow keys, respectively.

Search for a Command Press Ctrl+R to begin a backward (reverse) search, and begin
typing characters that should be unique to the command you want to fi nd. The characters
you type need not be the ones that begin the command; they can exist anywhere in the
command. You can either keep typing until you fi nd the correct command or, after you’ve
typed a few characters, press Ctrl+R repeatedly until you fi nd the one you want.

The Ctrl+S keystroke is used to search forward in the command history. You can press
the Ctrl+S keystroke while using the backward search. This reverses the history search from
backward to forward. If you used a backward search and have passed by what you need,
then this keystroke is useful.

If the Ctrl+S keystroke causes your terminal to hang, press Ctrl+Q to resume
terminal operations. To keep your terminal from hanging when Ctrl+S is
used, type stty -ixon at the command line.

In either event, if you can’t find the command you want or if you change your mind and
want to terminate the search, press Ctrl+G to do so.

Frequently, after fi nding a command in the history, you want to edit it. The bash shell,
like many shells, provides editing features modeled after those of the Emacs editor:

Move within the Line Press Ctrl+A or Ctrl+E to move the cursor to the start or end of
the line, respectively. The Left and Right arrow keys move within the line a character at a
time. Ctrl+B and Ctrl+F do the same, moving backward and forward within a line. Pressing
Ctrl plus the Left or Right arrow key moves backward or forward a word at a time, as does
pressing Esc and then B or F.

http://technet24.ir/

Understanding Command-Line Basics 11

c01.indd 04/13/2015 Page 11

Delete Text Pressing Ctrl+D or the Delete key deletes the character under the cursor.
Pressing the Backspace key deletes the character to the left of the cursor. Pressing Ctrl+K
deletes all text from the cursor to the end of the line. Pressing Ctrl+X and then Backspace
deletes all of the text from the cursor to the beginning of the line.

Transpose Text Pressing Ctrl+T transposes the character before the cursor with the
character under the cursor. Pressing Esc and then T transposes the two words immediately
before (or under) the cursor.

Change Case Pressing Esc and then U converts text from the cursor to the end of the word
to uppercase. Pressing Esc and then L converts text from the cursor to the end of the word to
lowercase. Pressing Esc and then C converts the letter under the cursor (or the fi rst letter of
the next word) to uppercase, leaving the rest of the word unaffected.

Invoke an Editor You can launch a full-fl edged editor to edit a command by pressing
Ctrl+X followed by Ctrl+E. The bash shell attempts to launch the editor defi ned by the
$FCEDIT or $EDITOR environment variable, or it launches Emacs as a last resort.

These editing commands are just the most useful ones supported by bash. In practice,
you’re likely to make heavy use of command and fi lename completion, the command
history, and perhaps a few editing features.

If you prefer the vi editor to Emacs, you can use a vi-like mode in bash by
typing set -o vi. (vi is described in Chapter 5, “Booting Linux and Edit-
ing Files.”)

The history command provides an interface to view and manage the history. Typing
history alone displays all of the commands in the history (typically the latest 500
commands).

To retrieve the last command in your shell history, type !! and press Enter. This will not
only show you the command you recalled but execute it as well:

$!!

type -a pwd

pwd is a shell builtin

pwd is /bin/pwd

$

You can execute a command by number via typing an exclamation mark followed by
its number, as in !210 to execute command 210. Typing history -c clears the history,
which can be handy if you’ve recently typed commands you’d rather not have discovered by
others, such as commands that include passwords.

The bash history is stored in the .bash_history fi le in your home directory. This is an
ordinary plain-text fi le, so you can view it with a text editor or a command such as less
(described later, in “Paging through Files with less”).

http://technet24.ir/

12 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 12

Because your bash history is stored in a file, it can be examined by
anybody who can read that file. Some commands enable you to type
passwords or other sensitive data on the same line as the commands
themselves, which can therefore be risky. The ~/.bash_history file does
not record what you type in response to other programs’ prompts, just
what you type at the bash prompt itself. Thus, if you have a choice, you
should let commands that require passwords (or other sensitive data)
prompt you to enter this data rather than enter such information as
options to the command at the bash prompt.

In Exercise 1.1, you’ll experiment with your shell’s completion and command-editing tools.

E X E R C I S E 1 .1

Editing Commands

To experiment with your shell’s completion and command-editing tools, follow these steps:

1. Log in as an ordinary user.

2. Create a temporary directory by typing mkdir test. (Directory and fi le manipula-

tion commands are described in more detail in Chapter 4.)

3. Change into the test directory by typing cd test.

4. Create a few temporary fi les by typing touch one two three. This command

creates three empty fi les named one, two, and three.

5. Type ls -l t and, without pressing the Enter key, press the Tab key. The system

may beep at you or display two three. If it doesn’t display two three, press the

Tab key again and it should do so. This reveals that either two or three is a valid

completion to your command, because these are the two fi les in the test directory

whose fi lenames begin with the letter t.

6. Type h, and again without pressing the Enter key, press the Tab key. The system

should complete the command (ls -l three), at which point you can press the Enter

key to execute it. (You’ll see information on the fi le.)

7. Press the Up arrow key. You should see the ls -l three command appear on the

command line.

8. Press Ctrl+A to move the cursor to the beginning of the line.

9. Press the Right arrow key once, and type es (without pressing the Enter key). The

command line should now read less -l three.

10. Press the Right arrow key once, and press the Delete key three times. The command

should now read less three. Press the Enter key to execute the command. (Note

that you can do so even though the cursor isn’t at the end of the line.) This invokes

the less pager on the three fi le. (The less pager is described more fully later in

http://technet24.ir/

Understanding Command-Line Basics 13

c01.indd 04/13/2015 Page 13

“Paging through Files with less.”) Because this fi le is empty, you’ll see a mostly

empty screen.

11. Press the Q key to exit from the less pager.

Exploring Shell Configuration
Shells, like many Linux programs, are confi gured through fi les that hold confi guration
options in a plain-text format. The bash confi guration fi les are actually bash shell scripts,
which are described more fully in Chapter 9. A couple of examples of these confi guration
fi les are ~/.bashrc and /etc/profile.

Even without knowing much about shell scripting, you can make simple changes to
these fi les. Edit them in your favorite text editor, and change whatever needs changing.
For instance, you can add directories to the $PATH environment variable, which takes a
colon-delimited list of directories.

Be careful when changing your bash configuration files, particularly the
global bash configuration files. Save a backup of the original file before
making changes, and test your changes immediately by logging in using
another virtual terminal. If you spot a problem, revert to your saved copy
until you determine the problem’s causes and create a working file.

Using Environment Variables
Environment variables are like variables in programming languages—they hold data to
be referred to by the variable name. Environment variables differ from programs’ internal
variables in that they’re part of the program’s environment, and other programs, such as
the shell, can modify this environment. Programs can rely on environment variables to set
information that can apply to many different programs. For instance, many text-based
programs need to know the capabilities of the terminal program you use. This information
is conveyed in the $TERM environment variable, which is likely to hold a value such as xterm
or linux. Programs that need to position the cursor, display color text, or perform other
tasks that depend on terminal-specifi c capabilities can customize their output based on this
information.

Chapter 9 describes environment variables and their manipulation in more detail. For
the moment, you should know that you can set them in bash by using an assignment (=)
operator followed by the export command. A fun environment variable to change is the
$PS1 variable. It modifi es your shell prompt:

$

$ PS1="My New Prompt: "

My New Prompt: export PS1

My New Prompt:

http://technet24.ir/

14 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 14

You can combine these two commands into a single form:

My New Prompt: export PS1="Prompt: "

Prompt:

Prompt:

Either method sets the $PS1 environment variable to a new setting. When setting an
environment variable, you omit the dollar sign, but subsequent references include a dollar
sign to identify the environment variable as such. Thereafter, programs that need this infor-
mation can refer to the environment variable. In fact, you can do so from the shell yourself
using the echo command:

$ Prompt: echo $PS1

Prompt:

An echo of the $PS1 variable value can be a little confusing because it just shows your
current prompt setting. However, you can get a better feel for displaying an environment
variable by viewing the $PATH variable using echo:

Prompt: echo $PATH

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

Prompt:

That’s a little better. Remember, the $PATH environment variable provides the shell with
a directory list to search when you’re entering command or program names.

Some environment variables, including the $PATH environment variable,
are set automatically when you log in via the shell configuration files. If a
program uses environment variables, its documentation should say so.

You can also view the entire environment by typing env. The result is likely to be several
dozen lines of environment variables and their values. Chapter 9 describes what many of
these variables are in more detail.

To delete an environment variable, use the unset command. The command takes the
name of an environment variable (without the leading $ symbol) as an option. For instance,
unset PS1 removes the $PS1 environment variable. But if you do this, you will have no
shell prompt!

Getting Help
Linux provides a text-based help system known as man. This command’s name is short for
manual, and its entries (its man pages) provide succinct summaries of what a command, fi le,
or other feature does. For instance, to learn about man itself, you can type man man. The
result is a description of the man command.

http://technet24.ir/

Understanding Command-Line Basics 15

c01.indd 04/13/2015 Page 15

To peruse the manual pages for a particular command or topic, you type man followed
by the command or topic as an option. For example, to read about the export command,
you would type man export at the prompt. If you wanted to learn more about the shell
built-in (internal) commands, you would type man builtin at the prompt.

The man utility uses the less pager by default to display information. This program
displays text a page at a time. Press the spacebar to move forward a page, Esc followed by
V to move back a page, the arrow keys to move up or down a line at a time, the slash (/)
key to search for text, and so on. (Type man less to learn all the details, or consult the
upcoming section “Paging through Files with less.”) When you’re done, press Q to exit
less and the man page it’s displaying.

You aren’t stuck using the less pager with the man utility. You can change the pager by
using the -P option. For example, if you decided to use the more pager instead to look up
information on the uname command, you would type man -P /bin/more uname at the
shell prompt.

Occasionally, the problem arises where you can’t remember the exact name of a
command to look up. The man utility has an option to help you here. You can use the
-k option along with a keyword or two to search through the man pages:

$ man -k "system information"

dumpe2fs (8) - dump ext2/ext3/ext4 filesystem information

[…]

uname (1) - print system information

$

The returned information (shown as a partial listing above) can give you some clues as
to your desired command name. Be aware that poor keyword choices may not produce the
results you seek.

On some older Linux distributions, you may get no results from a man
utility keyword search. This is most likely due to a missing whatis
database. The whatis database contains a short description of each man
page, and it is necessary for keyword searches. To create it or update it,
type makewhatis at the prompt. You will need to do this as superuser, and
it may take several minutes to run.

Linux man pages are organized into several sections, which are summarized in
Table 1.1. Sometimes a single keyword has entries in multiple sections. For instance, passwd
has entries under both section 1 and section 5. In most cases, man returns the entry in the
lowest-numbered section, but you can force the issue by preceding the keyword by the
section number. For instance, typing man 5 passwd returns information on the passwd fi le
format rather than the passwd command.

http://technet24.ir/

16 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 16

TA B LE 1.1 Manual sections

Section number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, and so on)

8 System administration commands (programs run mostly or exclusively
by root)

9 Kernel routines

Some programs have moved away from man pages to info pages. The basic purpose of
info pages is the same as that for man pages. However, info pages use a hypertext format
so that you can move from section to section of the documentation for a program. Type
info info to learn more about this system.

There are also pages specifi cally for the built-in (internal) commands called the help
pages. To read the help pages for a particular built-in command, type help command. For
instance, to get help on the pwd command, type help pwd at the shell prompt. To learn
more about how to use the help pages, type help help at the shell prompt.

The man pages, info pages, and help pages are usually written in a terse style. They’re
intended as reference tools, not tutorials! They frequently assume basic familiarity with the
command, or at least with Linux in general. For more tutorial information, you must look
elsewhere, such in books or on the Web.

Using Streams, Redirection, and Pipes

Streams, redirection, and pipes are some of the more powerful command-line tools in
Linux. Linux treats the input to and output from programs as a stream, which is a data
entity that can be manipulated. Ordinarily, input comes from the keyboard and output
goes to the screen. You can redirect these input and output streams to come from or go to
other sources, such as fi les. Similarly, you can pipe the output of one program as input into
another program. These facilities can be great tools to tie together multiple programs.

http://technet24.ir/

Using Streams, Redirection, and Pipes 17

c01.indd 04/13/2015 Page 17

Part of the Unix philosophy to which Linux adheres is, whenever possible,
to do complex things by combining multiple simple tools. Redirection
and pipes help in this task by enabling simple programs to be combined
together in chains, each link feeding off the output of the preceding link.

Exploring File Descriptors
To begin understanding redirection and pipes, you must fi rst understand the different fi le
descriptors. Linux handles all objects as fi les. This includes a program’s input and output
stream. To identify a particular fi le object, Linux uses fi le descriptors:

Standard Input Programs accept keyboard input via standard input, abbreviated STDIN.
Standard input’s fi le descriptor is 0 (zero). In most cases, this is the data that comes into the
computer from a keyboard.

Standard Output Text-mode programs send most data to their users via standard out-
put, abbreviated STDOUT. Standard output is normally displayed on the screen, either in
a full-screen text-mode session or in a GUI terminal emulator, such as an xterm. Standard
output’s fi le descriptor is 1 (one).

Standard Error Linux provides a second type of output stream, known as standard error,
abbreviated STDERR. Standard error’s fi le descriptor is 2 (two). This output stream is
intended to carry high-priority information such as error messages. Ordinarily, standard
error is sent to the same output device as standard output, so you can’t easily tell them
apart. You can redirect one independently of the other, though, which can be handy. For
instance, you can redirect standard error to a fi le while leaving standard output going to
the screen. This allows you to view the error messages at a later time.

Internally, programs treat STDIN, STDOUT, and STDERR just like data fi les—they
open them, read from or write to the fi les, and close them when they’re done. This is why
the fi le descriptors are necessary and why they can be used in redirection.

Redirecting Input and Output
To redirect input or output, you use operators following the command, including any
options it takes. For instance, to redirect the STDOUT of the echo command, you would
type something like this:

$ echo $PATH 1> path.txt

$

$ cat path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

The result is that the fi le path.txt contains the output of the command (in this case, the
value of the $PATH environment variable). The operator used to perform this redirection
was > and the fi le descriptor used to redirect STDOUT was 1 (one).

http://technet24.ir/

18 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 18

The cat command allows you to display a file’s contents to STDOUT. It is
described further in the section “Processing Text Using Filters” later in this
chapter.

A nice feature of redirecting STDOUT is that you do not have to use its fi le descriptor,
only the operator. Here’s an example of leaving out the 1 (one) fi le descriptor, when redi-
recting STDOUT:

$ echo $PATH > another_path.txt

$

$ cat another_path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

You can see that even without the STDOUT fi le descriptor, the output was redirected to
a fi le. However, the redirection operator (>) was still needed.

You can also leave out the STDIN fi le descriptor when using the appropriate redirection
operator. Redirection operators exist to achieve several effects, as summarized in Table 1.2.

TA B LE 1. 2 Common redirection operators

Redirection operator Effect

> Creates a new file containing standard output. If the specified file
exists, it’s overwritten. No file descriptor necessary.

>> Appends standard output to the existing file. If the specified file
doesn’t exist, it’s created. No file descriptor necessary.

2> Creates a new file containing standard error. If the specified file
exists, it’s overwritten. File descriptor necessary.

2>> Appends standard error to the existing file. If the specified file
doesn’t exist, it’s created. File descriptor necessary.

&> Creates a new file containing both standard output and standard error.
If the specified file exists, it’s overwritten. No file descriptors necessary.

< Sends the contents of the specified file to be used as standard input.
No file descriptor necessary.

<< Accepts text on the following lines as standard input. No file
descriptor necessary.

<> Causes the specified file to be used for both standard input and
standard output. No file descriptor necessary.

http://technet24.ir/

Using Streams, Redirection, and Pipes 19

c01.indd 04/13/2015 Page 19

Most of these redirectors deal with output, both because there are two types of output
(standard output and standard error) and because you must be concerned with what to
do in case you specify a fi le that already exists. The most important input redirector is <,
which takes the specifi ed fi le’s contents as standard input.

A common trick is to redirect standard output or standard error to /dev/
null. This file is a device that’s connected to nothing; it’s used when you
want to get rid of data. For instance, if the whine program is generating too
many unimportant error messages, you can type whine 2> /dev/null to
run it and discard its error messages.

One redirection operator that requires elaboration is the << operator. This operator
implements something called a here document. A here document takes text from subse-
quent lines as standard input. Chances are you won’t use this redirector on the command
line. Subsequent lines are standard input, so there’s no need to redirect them. Rather, you
might use this command in a script to pass data to an interactive program. Unlike with
most redirection operators, the text immediately following the << code isn’t a fi lename;
instead, it’s a word that’s used to mark the end of input. For instance, typing someprog
<< EOF causes someprog to accept input until it sees a line that contains only the string
EOF (without even a space following it).

Some programs that take input from the command line expect you to
terminate input by pressing Ctrl+D. This keystroke corresponds to an
end-of-file marker using the American Standard Code for Information
Interchange (ASCII).

Piping Data between Programs
Programs can frequently operate on other programs’ outputs. For instance, you might use
a text-fi ltering command (such as the ones described shortly in “Processing Text Using
Filters”) to manipulate text output by another program. You can do this with the help of
redirection operators: send the fi rst program’s standard output to a fi le, and then redi-
rect the second program’s standard input to read from that fi le. This method is awkward,
though, and it involves the creation of a fi le that you might easily overlook, leading to
unnecessary clutter on your system.

The solution is to use data pipes (aka pipelines). A pipe redirects the fi rst program’s stan-
dard output to the second program’s standard input, and it is denoted by a vertical bar (|):

$ first | second

For instance, suppose that first generates some system statistics, such as system uptime,
CPU use, number of users logged in, and so on. This output might be lengthy, so you want
to trim it a bit. You might therefore use second, which could be a script or command that
echoes from its standard input only the information in which you’re interested. (The grep
command, described in “Using grep,” is often used in this role.)

http://technet24.ir/

20 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 20

Pipes can be used in sequences of arbitrary length:

$ first | second | third | fourth | fifth | sixth [...]

Another redirection tool often used with pipes is the tee command. This command
splits standard input so that it’s displayed on standard output and in as many fi les as you
specify. Typically, tee is used in conjunction with data pipes so that a program’s output can
be both stored and viewed immediately. For instance, to view and store the output of the
echo $PATH command, you might type this:

$ echo $PATH | tee path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

$ cat path.txt

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

Notice that not only were the results of the command displayed to STDOUT, but they
were also redirected to the path.txt fi le by the tee command. Ordinarily, tee overwrites
any fi les whose names you specify. If you want to append data to these fi les, pass the -a
option to tee.

Generating Command Lines
Sometimes you’ll fi nd yourself needing to conduct an unusual operation on your Linux
server. For instance, suppose you want to remove every fi le in a directory tree that belongs
to a certain user. With a large directory tree, this task can be daunting!

The usual fi le-deletion command, rm (described in more detail in Chapter 4), doesn’t
provide an option to search for and delete every fi le that matches a specifi c criterion. One
command that can do the search portion is find (also described in more detail in Chapter 4).
This command displays all of the fi les that match the criteria you provide. If you could
combine the output of find to create a series of command lines using rm, the task would be
solved. This is precisely the purpose of the xargs command.

The xargs command builds a command from its standard input. The basic syntax for
this command is as follows:

xargs [options] [command [initial-arguments]]

The command is the command you want to execute, and initial-arguments is a list of
arguments you want to pass to the command. The options are xargs options; they aren’t
passed to command. When you run xargs, it runs command once for every word passed to it
on standard input, adding that word to the argument list for command. If you want to pass
multiple options to the command, you can protect them by enclosing the group in quota-
tion marks.

http://technet24.ir/

Using Streams, Redirection, and Pipes 21

c01.indd 04/13/2015 Page 21

For instance, consider the task of deleting several fi les that belong to a particular user.
You can do this by piping the output of find to xargs, which then calls rm:

find / -user Christine | xargs -d "\n" rm

The fi rst part of this command (find / -user Christine) fi nds all of the fi les in direc-
tory tree (/) and its subdirectories that belong to user Christine. (Since you are looking
through the entire directory tree, you need superuser privileges for this to work properly.)
This list is then piped to xargs, which adds each input value to its own rm command.
Problems can arise if fi lenames contain spaces because by default xargs uses both spaces
and newlines as item delimiters. The -d "\n" option tells xargs to use only newlines as
delimiters, thus avoiding this problem in this context. (The find command separates each
found fi lename with a newline.)

It is important to exercise caution when using the rm command with
superuser privileges. This is especially true when piping the files to
delete into the rm command. You could easily delete the wrong files
unintentionally.

A tool that’s similar to xargs in many ways is the backtick (̀), which is a character to
the left of the 1 key on most keyboards. The backtick is not the same as the single quote
character ('), which is located to the right of the semicolon (;) on most keyboards.

Text within backticks is treated as a separate command whose results are substituted
on the command line. For instance, to delete those user fi les, you can type the following
command:

rm `find ./ -user Christine`

The backtick solution works fi ne in some cases, but it breaks down in more complex
situations. The reason is that the output of the backtick-contained command is passed to
the command it precedes as if it had been typed at the shell. By contrast, when you use
xargs, it runs the command you specify (rm in these examples) once for each of the input
items. What’s more, you can’t pass options such as -d "\n" to a backtick. Thus these two
examples will work the same in many cases, but not in all of them.

Use of the backtick is falling out of favor because backticks are so often
confused with single quotation marks. In several shells, you can use $()
instead. For instance, the backtick example used in the preceding example
would be changed to

rm $(find ./ -user Christine)

This command works just as well, and it is much easier to read and
understand.

http://technet24.ir/

22 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 22

Processing Text Using Filters

In keeping with Linux’s philosophy of providing small tools that can be tied together
via pipes and redirection to accomplish more complex tasks, many simple commands to
manipulate text are available. These commands accomplish tasks of various types, such as
combining fi les, transforming the data in fi les, formatting text, displaying text, and sum-
marizing data.

Many of the following descriptions include input-file specifications. In
most cases, you can omit these input-file specifications, in which case the
utility reads from standard input instead.

File-Combining Commands
The fi rst text-fi ltering commands are those used to combine two or more fi les into one fi le.
Three important commands in this category are cat, join, and paste, which join fi les end
to end based on fi elds in the fi le or by merging on a line-by-line basis.

Combining Files with cat
The cat command’s name is short for concatenate, and this tool does just that: It links
together an arbitrary number of fi les end to end and sends the result to standard output.
By combining cat with output redirection, you can quickly combine two fi les into one:

$ cat first.txt second.txt > combined.txt

$

$ cat first.txt

Data from first file.

$

$ cat second.txt

Data from second file.

$

$ cat combined.txt

Data from first file.

Data from second file.

$

Although cat is offi cially a tool for combining fi les, it’s also commonly used to display
the contents of a short fi le to STDOUT. If you type only one fi lename as an option, cat
displays that fi le. This is a great way to review short fi les; but for long fi les, you’re better off
using a full-fl edged pager command, such as more or less.

http://technet24.ir/

Processing Text Using Filters 23

c01.indd 04/13/2015 Page 23

You can add options to have cat perform minor modifi cations to the fi les as it combines
them:

Display Line Ends If you want to see where lines end, add the -E or --show-ends option.
The result is a dollar sign ($) at the end of each line.

Number Lines The -n or --number option adds line numbers to the beginning of every line.
The -b or --number-nonblank option is similar, but it numbers only lines that contain text.

Minimize Blank Lines The -s or --squeeze-blank option compresses groups of blank
lines down to a single blank line.

Display Special Characters The -T or --show-tabs option displays tab characters as ^I.
The -v or --show-nonprinting option displays most control and other special characters
using carat (̂) and M- notations.

The tac command is similar to cat, but it reverses the order of lines in the output:

$ cat combined.txt

Data from first file.

Data from second file.

$

$ tac combined.txt

Data from second file.

Data from first file.

$

Joining Files by Field with join
The join command combines two fi les by matching the contents of specifi ed fi elds within
the fi les. Fields are typically space-separated entries on a line. However, you can specify
another character as the fi eld separator with the -t char option, where char is the character
you want to use. You can cause join to ignore case when performing comparisons by using
the -i option.

The effect of join may best be understood through a demonstration. Consider Listing
1.1 and Listing 1.2, which contain data on telephone numbers. Listing 1.1 shows the names
associated with those numbers, and Listing 1.2 shows whether the numbers are listed or
unlisted.

Listing 1.1: Demonstration file containing telephone numbers and names

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-7929 Jones, Theresa

555-9871 Orwell, Samuel

http://technet24.ir/

24 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 24

Listing 1.2: Demonstration file containing telephone number listing status

555-2397 unlisted

555-5116 listed

555-7929 listed

555-9871 unlisted

You can display the contents of both fi les using join:

$ join listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry unlisted

555-5116 Carter, Gertrude listed

555-7929 Jones, Theresa listed

555-9871 Orwell, Samuel unlisted

By default, join uses the fi rst fi eld as the one to match across fi les. Because Listing 1.1
and Listing 1.2 both place the phone number in this fi eld, it’s the key fi eld in the output.
You can specify another fi eld by using the -1 or -2 option to indicate the join fi eld for
the fi rst or second fi le, respectively. For example, type join -1 3 -2 2 cameras.txt
lenses.txt to join using the third fi eld in cameras.txt and the second fi eld in lenses.
txt. The -o FORMAT option enables more complex specifi cations for the output fi le’s format.
You can consult the man page for join for even more details.

The join command can be used at the core of a set of simple customized database-
manipulation tools using Linux text-manipulation commands. It’s very limited by itself,
though. For instance, it requires its two fi les to have the same ordering of lines. (You can
use the sort command to ensure this is so.)

Merging Lines with paste
The paste command merges fi les line by line, separating the lines from each fi le with tabs,
as shown in the following example, using Listings 1.1 and 1.2 again:

$ paste listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry 555-2397 unlisted

555-5116 Carter, Gertrude 555-5116 listed

555-7929 Jones, Theresa 555-7929 listed

555-9871 Orwell, Samuel 555-9871 unlisted

You can use paste to combine data from fi les that aren’t keyed with fi elds suitable for
use by join. Of course, to be meaningful, the fi les’ line numbers must be exactly equiva-
lent. Alternatively, you can use paste as a quick way to create a two-column output of
textual data; however, the alignment of the second column may not be exact if the fi rst
column’s line lengths aren’t exactly even.

File-Transforming Commands
Many of Linux’s text-manipulation commands are aimed at transforming the contents of
fi les. These commands don’t actually change fi les’ contents but instead send the changed

http://technet24.ir/

Processing Text Using Filters 25

c01.indd 04/13/2015 Page 25

fi les’ contents to standard output. You can then pipe this output to another command or
redirect it into a new fi le.

An important file-transforming command is sed. This command is very
complex and is covered later in this chapter in “Using sed.”

Converting Tabs to Spaces with expand
Sometimes text fi les contain tabs but programs that need to process the fi les don’t cope well
with tabs. In such a case, you may want to convert tabs to spaces. The expand command
does this.

By default, expand assumes a tab stop every eight characters. You can change this
spacing with the -t num or --tabs=num option, where num is the tab spacing value.

Displaying Files in Octal with od
Some fi les aren’t easily displayed in ASCII. For example, most graphics fi les, audio fi les,
and so on use non-ASCII characters that look like gibberish. Worse, these characters can
do strange things to your display if you try to view such a fi le with cat or a similar tool.
For instance, your font may change, or your console may begin beeping uncontrollably.
Nonetheless, you may sometimes want to display such fi les, particularly if you want to
investigate the structure of a data fi le.

In such a case, od (whose name stands for octal dump) can help. It displays a fi le in an
unambiguous format—octal (base 8) numbers by default. For instance, consider Listing 1.2
as parsed by od:

$ od listing1.2.txt

0000000 032465 026465 031462 033471 072440 066156 071551 062564

0000020 005144 032465 026465 030465 033061 066040 071551 062564

0000040 005144 032465 026465 034467 034462 066040 071551 062564

0000060 005144 032465 026465 034071 030467 072440 066156 071551

0000100 062564 005144

0000104

The fi rst fi eld on each line is an index into the fi le in octal. For instance, the second line
begins at octal 20 (16 in base 10) bytes into the fi le. The remaining numbers on each line
represent the bytes in the fi le. This type of output can be diffi cult to interpret unless you’re
well versed in octal notation and perhaps in the ASCII code.

Although od is nominally a tool for generating octal output, it can generate many
other output formats, such as hexadecimal (base 16), decimal (base 10), and even ASCII
with escaped control characters. Consult the man page for od for details on creating these
variants.

http://technet24.ir/

26 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 26

Sorting Files with sort
Sometimes you’ll create an output fi le that you want sorted. To do so, you can use a
command that’s called, appropriately enough, sort. This command can sort in several
ways, including the following:

Ignore Case Ordinarily, sort sorts by ASCII value, which differentiates between upper-
case and lowercase letters. The -f or --ignore-case option causes sort to ignore case.

Month Sort The -M or --month-sort option causes the program to sort by three-letter
month abbreviation (JAN through DEC).

Numeric Sort You can sort by number by using the -n or --numeric-sort option.

Reverse Sort Order The -r or --reverse option sorts in reverse order.

Sort Field By default, sort uses the fi rst fi eld as its sort fi eld. You can specify another fi eld
with the -k field or --key=field option. (The field can be two numbered fi elds separated
by commas, to sort on multiple fi elds.)

As an example, suppose you wanted to sort Listing 1.1 by fi rst name. You could do so
like this:

$ sort -k 3 listing1.1.txt

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-9871 Orwell, Samuel

555-7929 Jones, Theresa

The sort command supports a large number of additional options, many of them quite
exotic. Consult sort’s man page for details.

Breaking a File into Pieces with split
The split command can split a fi le into two or more fi les. Unlike most of the
text-manipulation commands described in this chapter, this command requires you to enter
an output fi lename or, more precisely, an output fi lename prefi x, to which is added an alpha-
betic code. You must also normally specify how large you want the individual fi les to be:

Split by Bytes The -b size or --bytes=size option breaks the input fi le into pieces of
size bytes. This option can have the usually undesirable consequence of splitting the fi le
mid-line.

Split by Bytes in Line-Sized Chunks You can break a fi le into fi les of no more than a
 specifi ed size without breaking lines across fi les by using the -C=size or --line-bytes=size
option. (Lines will still be broken across fi les if the line length is greater than size.)

Split by Number of Lines The -l lines or --lines=lines option splits the fi le into
chunks with no more than the specifi ed number of lines.

http://technet24.ir/

Processing Text Using Filters 27

c01.indd 04/13/2015 Page 27

As an example, consider breaking Listing 1.1 into two parts by number of lines:

$ split -l 2 listing1.1.txt numbers

The result is two fi les, numbersaa and numbersab, which together hold the original con-
tents of listing1.1.txt.

If you don’t specify any defaults (as in split listing1.1.txt), the result is output
fi les split into 1,000-line chunks, with names beginning with x (xaa, xab, and so on). If you
don’t specify an input fi lename, split uses standard input.

Translating Characters with tr
The tr command changes individual characters from standard input. Its syntax is as follows:

tr [options] SET1 [SET2]

You specify the characters you want replaced in a group (SET1) and the characters with
which you want them to be replaced as a second group (SET2). Each character in SET1 is
replaced with the one at the equivalent position in SET2. Here’s an example using Listing 1.1:

$ tr BCJ bc < listing1.1.txt

555-2397 beckett, barry

555-5116 carter, Gertrude

555-7929 cones, Theresa

555-9871 Orwell, Samuel

The tr command relies on standard input, which is the reason for the input
redirection (<) in this example. This is the only way to pass the command
a file.

This example translates some, but not all, of the uppercase characters to lowercase. Note
that SET2 in this example was shorter than SET1. The result is that tr substitutes the last
available letter from SET2 for the missing letters. In this example, the J in Jones became a c.
The -t or --truncate-set1 option causes tr to truncate SET1 to the size of SET2 instead.

Another tr option is -d, which causes the program to delete the characters from SET1.
When using -d, you omit SET2 entirely.

The tr command also accepts a number of shortcuts, such as [:alnum:] (all numbers
and letters), [:upper:] (all uppercase letters), [:lower:] (all lowercase letters), and
[:digit:] (all digits). You can specify a range of characters by separating them with dashes
(-), as in A-M for characters between A and M, inclusive. Consult tr’s man page for a complete
list of these shortcuts.

Converting Spaces to Tabs with unexpand
The unexpand command is the logical opposite of expand; it converts multiple spaces to
tabs. This can help compress the size of fi les that contain many spaces and can be helpful if
a fi le is to be processed by a utility that expects tabs in certain locations.

http://technet24.ir/

28 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 28

Like expand, unexpand accepts the -t num or --tabs=num option, which sets the tab
spacing to once every num characters. If you omit this option, unexpand assumes a tab stop
every eight characters.

Deleting Duplicate Lines with uniq
The uniq command removes duplicate lines. It’s most likely to be useful if you’ve sorted
a fi le and don’t want duplicate items. For instance, suppose you want to summarize
Shakespeare’s vocabulary. You might create a fi le with all of the Bard’s works, one word
per line. You can then sort this fi le using sort and pass it through uniq. Using a shorter
example fi le containing the text to be or not to be, that is the question (one word
per line), the result looks like this:

$ sort shakespeare.txt | uniq

be

is

not

or

question

that

the

to

Note that the words to and be, which appeared in the original fi le twice, appear only
once in the uniq-processed version.

File-Formatting Commands
The next three commands—fmt, nl, and pr—reformat the text in a fi le. The fi rst of these
is designed to reformat text fi les, such as when a program’s README documentation fi le uses
lines that are too long for your display. The nl command numbers the lines of a fi le, which
can be helpful in referring to lines in documentation or correspondence. Finally, pr is a
print-processing tool; it formats a document in pages suitable for printing.

Reformatting Paragraphs with fmt
Sometimes text fi les arrive with outrageously long line lengths, irregular line lengths, or
other problems. Depending on the diffi culty, you may be able to cope simply by using
an appropriate text editor or viewer to read the fi le. If you want to clean up the fi le a bit,
though, you can do so with fmt. If called with no options (other than the input fi lename, if
you’re not having it work on standard input), the program attempts to clean up paragraphs,
which it assumes are delimited by two or more blank lines or by changes in indentation.
The new paragraph formatting defaults to paragraphs that are no more than 75 characters
wide. You can change this with the -width, -w width, and --width=width options, which
set the line length to width characters.

http://technet24.ir/

Processing Text Using Filters 29

c01.indd 04/13/2015 Page 29

Numbering Lines with nl
As described earlier, in “Combining Files with cat,” you can number the lines of a fi le
with that command. The cat line-numbering options are limited, though, if you need to
do complex line numbering. The nl command is the tool to use in this case. In its simplest
form, you can use nl alone to accomplish much the same goal as cat -b achieves: number-
ing all the non-blank lines in a fi le. You can add many options to nl to achieve various
special effects:

Body Numbering Style You can set the numbering style for the bulk of the lines with the
-b style or --body-numbering=style option, where style is a style format code, described
shortly.

Header and Footer Numbering Style If the text is formatted for printing and has
headers or footers, you can set the style for these elements with the -h style or --header-
numbering=style option for the header and -f style or --footer-numbering=style option
for the footer.

Page Separator Some numbering schemes reset the line numbers for each page. You can
tell nl how to identify a new page with the -d=code or --section-delimiter=code option,
where code is a code for the character that identifi es the new page.

Line-Number Options for New Pages Ordinarily, nl begins numbering each new page
with line 1. If you pass the -p or --no-renumber option, though, it doesn’t reset the line
number with a new page.

Number Format You can specify the numbering format with the -n format or --number-
format=format option, where format is ln (left justifi ed, no leading zeros), rn (right justi-
fi ed, no leading zeros), or rz (right justifi ed with leading zeros).

The body, header, and footer options enable you to specify a numbering style for each of
these page elements, as described in Table 1.3.

TA B LE 1. 3 Styles used by nl

Style code Description

t The default behavior is to number lines that aren’t empty. You can make this
default explicit by using a style code of t.

a This style code causes all lines to be numbered, including empty lines.

n This style code causes all line numbers to be omitted, which may be
desirable for headers or footers.

pREGEXP This option causes only lines that match the specified regular expression
(REGEXP) to be numbered. Regular expressions are described later in “Using
Regular Expressions.”

http://technet24.ir/

30 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 30

As an example, suppose you’ve created a script, buggy, but you fi nd that it’s not working
as you expect. When you run it, you get error messages that refer to line numbers, so you
want to create a version of the script with lines that are numbered for easy reference. You
can do so by calling nl with the option to number all lines, including blank lines (-b a):

$ nl -b a buggy > numbered-buggy.txt

Because the input file doesn’t have any explicit page delimiters, the output
will be numbered in a single sequence. The nl command doesn’t try to
impose its own page-length limits.

The numbered-buggy.txt fi le created by this command isn’t useful as a script because of
the line numbers that begin each line. You can, however, load it into a text editor or display
it with a pager such as less to view the text and see the line numbers along with the com-
mands they contain.

Preparing a File for Printing with pr
If you want to print a plain-text fi le, you may want to prepare it with headers, footers, page
breaks, and so on. The pr command was designed to do this. In its most basic form, you
pass the command a fi le:

$ pr myfile.txt

The result is text formatted for printing on a line printer—that is, pr assumes an
80-character line length in a monospaced font. Of course, you can also use pr in a pipe,
either to accept input piped from another program or to pipe its output to another program.
(The recipient program might be lpr, which is used to print fi les, as described in Chapter 6,
“Confi guring the X Window System, Localization, and Printing.”)

By default, pr creates output that includes the original text with headers, which lists the
current date and time, the original fi lename, and the page number. You can tweak the out-
put format in a variety of ways, including the following:

Generate Multicolumn Output Passing the -numcols or --columns=numcols option
creates output with numcols columns. For example, if you typed pr -3 myfile.txt, the
output would be displayed in three columns. Note that pr doesn’t reformat text; if lines are
too long, they’re truncated or run over into multiple columns.

Generate Double-Spaced Output The -d or --double-space option causes double-spaced
output from a single-spaced fi le.

Use Form Feeds Ordinarily, pr separates pages by using a fi xed number of blank lines.
This works fi ne if your printer uses the same number of lines that pr expects. If you have
problems with this issue, you can pass the -F, -f, or --form-feed option, which causes pr
to output a form-feed character between pages. This works better with some printers.

Set Page Length The -l lines or --length=lines option sets the length of the page
in lines.

http://technet24.ir/

Processing Text Using Filters 31

c01.indd 04/13/2015 Page 31

Set the Header Text The -h text or --header=text option sets the text to be displayed in
the header, replacing the fi lename. To specify a multi-word string, enclose it in quotes, as in
--header="My File". The -t or --omit-header option omits the header entirely.

Set Left Margin and Page Width The -o chars or --indent=chars option sets the left
margin to chars characters. This margin size is added to the page width, which defaults to
72 characters and can be explicitly set with the -w chars or --width chars option.

These options are just the beginning; pr supports many more options, which are
described in its man page. As an example of pr in action, consider printing a double-spaced
and numbered version of a confi guration fi le (say, /etc/profile) for your reference. You
can do this by piping together cat and its -n option to generate a numbered output, pr and
its -d option to double-space the result, and lpr to print the fi le:

$ cat -n /etc/profile | pr -d | lpr

The result should be a printout that might be handy for taking notes on the confi gura-
tion fi le. One caveat, though: If the fi le contains lines that approach or exceed 80 characters
in length, the result can be single lines that spill across two lines. The result will be
disrupted page boundaries. As a workaround, you can set a somewhat short page length
with -l and use -f to ensure that the printer receives form feeds after each page:

$ cat -n /etc/profile | pr -dfl 50 | lpr

The pr command is built around assumptions about printer capabilities that
were reasonable in the early 1980s. It’s still useful today, but you might pre-
fer to look into GNU Enscript (www.codento.com/people/mtr/genscript/).
This program has many of the same features as pr, but it generates Post-
Script output that can take better advantage of modern printer features.

File-Viewing Commands
Sometimes you just want to view a fi le or part of a fi le. A few commands can help you
accomplish this goal without loading the fi le into a full-fl edged editor.

As described earlier, the cat command is also handy for viewing short files.

Viewing the Starts of Files with head
Sometimes all you need to do is see the fi rst few lines of a fi le. This may be enough to
identify what a mystery fi le is, for instance; or you may want to see the fi rst few entries of a
log fi le to determine when that fi le was started. You can accomplish this goal with the head

http://technet24.ir/

32 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 32

command, which echoes the fi rst 10 lines of one or more fi les to standard output. (If you
specify multiple fi lenames, each one’s output is preceded by a header to identify it.) You can
modify the amount of information displayed by head in two ways:

Specify the Number of Bytes The -c num or --bytes=num option tells head to display num
bytes from the fi le rather than the default 10 lines.

Specify the Number of Lines You can change the number of lines displayed with the -n
num or --lines=num option.

Viewing the Ends of Files with tail
The tail command works just like head, except that tail displays the last 10 lines of a fi le.
(You can use the -c or --bytes, and -n or --lines options to change the amount of data
displayed, just as with head.) This command is useful for examining recent activity in log
fi les or other fi les to which data may be appended.

The tail command supports several options that aren’t present in head and that enable
the program to handle additional duties, including the following:

Track a File The -f or --follow option tells tail to keep the fi le open and to display new
lines as they’re added. This feature is helpful for tracking log fi les because it enables you to
see changes as they’re made to the fi le.

Stop Tracking on Program Termination The --pid=pid option tells tail to terminate
tracking (as initiated by -f or --follow) once the process with a process ID (PID) of pid
terminates. (PIDs are described in more detail in Chapter 2, “Managing Software.”)

Some additional options provide more obscure capabilities. Consult tail’s man page
for details.

You can combine head with tail to display or extract portions of a file. For
instance, suppose you want to display lines 11 through 15 of a file, sample.
txt. You can extract the first 15 lines of the file with head and then display
the last five lines of that extraction with tail. The final command would be
head -n 15 sample.txt | tail -n 5.

Paging through Files with less
The less command’s name is a joke; it’s a reference to the more command, which was an
early fi le pager. The idea was to create a better version of more, so the developers called it
less (“less is more”).

The idea behind less (and more, for that matter) is to enable you to read a fi le a screen
at a time. When you type less filename, the program displays the fi rst few lines of
filename. You can then page back and forth through the fi le:

 ■ Pressing the spacebar moves forward through the file a screen at a time.

 ■ Pressing Esc followed by V moves backward through the file a screen at a time.

http://technet24.ir/

Processing Text Using Filters 33

c01.indd 04/13/2015 Page 33

 ■ The Up and Down arrow keys move up or down through the file a line at a time.

 ■ You can search the file’s contents by pressing the slash (/) key followed by the search
term. For instance, typing /portable finds the first occurrence of the string portable
after the current position. Typing a slash followed by the Enter key moves to the next
occurrence of the search term. Typing n alone repeats the search forward, while typing
N alone repeats the search backward.

 ■ You can search backward in the file by using the question mark (?) key rather than the
slash key.

 ■ You can move to a specific line by typing g followed by the line number, as in g50 to
go to line 50.

 ■ When you’re done, type q to exit from the program.

Unlike most of the programs described here, less can’t be readily used in a pipe, except
as the fi nal command in the pipe. In that role, though, less is very useful because it enables
you to examine lengthy output conveniently.

Although less is quite common on Linux systems and is typically
configured as the default text pager, some Unix-like systems use more in
this role. Many of less’s features, such as the ability to page backward in a
file, don’t work in more.

One additional less feature can be handy: Typing h displays less’s internal help system.
This display summarizes the commands you may use, but it’s long enough that you must
use the usual less paging features to view it all! When you’re done with the help screens,
just type q as if you were exiting from viewing a help document with less. This action will
return you to your original document.

File-Summarizing Commands
The fi nal text-fi ltering commands described here are used to summarize text in one way
or another. The cut command takes segments of an input fi le and sends them to standard
output, while the wc command displays some basic statistics on the fi le.

Extracting Text with cut
The cut command extracts portions of input lines and displays them on standard output.
You can specify what to cut from input lines in several ways:

By Byte The -b list or --bytes=list option cuts the specifi ed list of bytes from the input
fi le. (The format of list is described shortly.)

By Character The -c list or --characters=list option cuts the specifi ed list of characters
from the input fi le. In practice, this method and the by-byte method usually produce identical
results. (If the input fi le uses a multibyte encoding system, though, the results won’t be identical.)

http://technet24.ir/

34 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 34

By Field The -f list or --fields=list option cuts the specifi ed list of fi elds from the
input fi le. By default, a fi eld is a tab-delimited section of a line, but you can change the
delimiting character with the -d char, --delim=char, or --delimiter=char option, where
char is the character you want to use to delimit fi elds. Ordinarily, cut echoes lines that
don’t contain delimiters. Including the -s or --only-delimited option changes this behav-
ior so that the program doesn’t echo lines that don’t contain the delimiter character.

Many of these options take a list option, which is a way to specify multiple bytes, char-
acters, or fi elds. You make this specifi cation by number. It can be a single number (such as
4), a closed range of numbers (such as 2-4), or an open range of numbers (such as -4 or 4-).
In this fi nal case, all bytes, characters, or fi elds from the beginning of the line to the speci-
fi ed number (or from the specifi ed number to the end of the line) are included in the list.

The cut command is frequently used in scripts to extract data from some other command’s
output. For instance, suppose you’re writing a script and the script needs to know the hard-
ware address of your Ethernet adapter. This information can be obtained from the ifconfig
command (described in more detail in Chapter 8, “Confi guring Basic Networking”):

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:76:96:A3:73

 inet addr:192.168.1.3 Bcast:192.168.1.255

Mask:255.255.255.0

 inet6 addr: fe80::20c:76ff:fe96:a373/64 Scope:Link

 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500

Metric:1

 RX packets:7127424 errors:0 dropped:0 overruns:0 frame:0

 TX packets:5273519 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:6272843708 (5982.2 Mb) TX bytes:1082453585 (1032.3 Mb)

 Interrupt:10 Base address:0xde00

Unfortunately, most of this information is extraneous for the desired purpose. The
hardware address is the 6-byte hexadecimal number following HWaddr. To extract that
data, you can combine grep (described shortly in “Using grep”) with cut in a pipe:

$ ifconfig eth0 | grep HWaddr | cut -d " " -f 11

00:0C:76:96:A3:73

Of course, in a script, you would probably assign this value to a variable or otherwise
process it through additional pipes. (Chapter 9 describes scripts in more detail.)

Obtaining a Word Count with wc
The wc command produces a word count (that’s where it gets its name), as well as line and
byte counts, for a fi le:

$ wc file.txt

 308 2343 15534 file.txt

http://technet24.ir/

Using Regular Expressions 35

c01.indd 04/13/2015 Page 35

This fi le contains 308 lines (or more precisely, 308 newline characters), 2,343 words,
and 15,534 bytes. You can limit the output to the newline count, the word count, the byte
count, or a character count with the --lines (-l), --words (-w), --bytes (-c), or --chars
(-m) option, respectively. You can also learn the maximum line length with the --max-line-
length (-L) option.

For an ordinary ASCII file, the character and byte counts will be identical.
These values may diverge for files that use multibyte character encodings.

Using Regular Expressions

Many Linux programs employ regular expressions, which are tools for describing or
matching patterns in text. Regular expressions are similar in principle to the wildcards
that can be used to specify multiple fi lenames. At their simplest, regular expressions
can be plain text without adornment. However, certain characters are used to denote
patterns. Because of their importance, regular expressions are described in the following
section.

Two programs that make heavy use of regular expressions, grep and sed, are also
covered. These programs search for text within fi les and permit editing of fi les from the
command line, respectively.

Understanding Regular Expressions
Two forms of regular expression are common: basic and extended. Which form you must
use depends on the program. Some accept one form or the other, but others can use either
type, depending on the options passed to the program. (Some programs use their own
minor or major variants on either of these classes of regular expression.) The differences
between basic and extended regular expressions are complex and subtle, but the fundamen-
tal principles of both are similar.

The simplest type of regular expression is an alphabetic string, such as Linux or HWaddr.
These regular expressions match any string of the same size or longer that contains the
regular expression. For instance, the HWaddr regular expression matches HWaddr, This is
the HWaddr, and The HWaddr is unknown. The real strength of regular expressions comes
in the use of nonalphabetic characters, which activate advanced matching rules:

Bracket Expressions Characters enclosed in square brackets ([]) constitute bracket
expressions, which match any one character within the brackets. For instance, the regular
expression b[aeiou]g matches the words bag, beg, big, bog, and bug.

Range Expressions A range expression is a variant of a bracket expression. Instead of
listing every character that matches, range expressions list the start and end points
separated by a dash (-), as in a[2-4]z. This regular expression matches a2z, a3z, and a4z.

http://technet24.ir/

36 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 36

Any Single Character The dot (.) represents any single character except a newline. For
instance, a.z matches a2z, abz, aQz, or any other three-character string that begins with a
and ends with z.

Start and End of Line The carat (̂) represents the start of a line, and the dollar sign ($)
denotes the end of a line.

Repetition Operators A full or partial regular expression may be followed by a special
symbol to denote how many times a matching item must exist. Specifi cally, an asterisk (*)
denotes zero or more occurrences, a plus sign (+) matches one or more occurrences, and a
question mark (?) specifi es zero or one match. The asterisk is often combined with the dot
(as in .*) to specify a match with any substring. For instance, A.*Lincoln matches any
string that contains A and Lincoln, in that order—Abe Lincoln and Abraham Lincoln are
just two possible matches.

Multiple Possible Strings The vertical bar (|) separates two possible matches; for instance,
car|truck matches either car or truck.

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses are often
used to specify how operators are to be applied; for example, you can put parentheses
around a group of words that are concatenated with the vertical bar to ensure that the
words are treated as a group, any one of which may match, without involving surrounding
parts of the regular expression.

Escaping If you want to match one of the special characters, such as a dot, you must
escape it—that is, precede it with a backslash (\). For instance, to match a computer
hostname (say, twain.example.com), you must escape the dots, as in twain\.example\.com.

The preceding descriptions apply to extended regular expressions. Some details are
different for basic regular expressions. In particular, the ?, +, |, (, and) symbols lose their
special meanings. To perform the tasks handled by these characters, some programs, such
as grep, enable you to recover the functions of these characters by escaping them (say, using
\| instead of |). Whether you use basic or extended regular expressions depends on which
form the program supports. For programs such as grep, which support both, you can use
either. Which form you choose is mostly a matter of personal preference.

You can get more help on regular expressions at the command-line by
 typing man 7 regex. The certification objectives list this particular man
page as regex(7).

Regular expression rules can be confusing, particularly when you’re fi rst introduced to
them. Some examples of their use, in the context of the programs that use them, will help.
The next couple of sections provide such examples.

Using grep
The grep command is extremely useful. It searches for fi les that contain a specifi ed string
and returns the name of the fi le and (if it’s a text fi le) a line of context for that string. The
basic grep syntax is as follows:

grep [options] regexp [files]

http://technet24.ir/

Using Regular Expressions 37

c01.indd 04/13/2015 Page 37

The regexp is a regular expression, as just described. The grep command supports a
large number of options. Some of the common options enable you to modify the way the
program searches fi les:

Count Matching Lines Instead of displaying context lines, grep displays the number of
lines that match the specifi ed pattern if you use the -c or --count option.

Specify a Pattern Input File The -f file or --file=file option takes pattern input from
the specifi ed fi le rather than from the command line.

Ignore Case You can perform a search that isn’t case sensitive, rather than the default
case-sensitive search, by using the -i or --ignore-case option.

Search Recursively The -r or --recursive option searches in the specifi ed directory and
all subdirectories rather than simply the specifi ed directory. You can use rgrep rather than
specify this option.

Use a Fixed Strings Pattern If you want to turn off the grep command’s use of regular
expressions and use basic pattern searching instead, you can use the -F or --fixed-strings
option. Alternatively, you can use fgrep rather than grep. Either way, the characters in the
basic pattern string are treated literally. For example, $ is treated literally as a $ and not as
a regular expression.

Use an Extended Regular Expression The grep command interprets regexp as a basic
regular expression by default. To use an extended regular expression, you can pass the
-E or --extended-regexp option. Alternatively, you can call egrep rather than grep. This
variant command uses extended regular expressions by default.

A simple example of grep uses a regular expression with no special components:

$ grep -r eth0 /etc/*

This example fi nds all the fi les in /etc that contain the string eth0 (the identifi er
for the fi rst wired Ethernet device on most Linux distributions). Because the example
includes the -r option, it searches recursively, so fi les in subdirectories of /etc are
examined in addition to those in /etc itself. For each matching text fi le, the line that
contains the string is printed.

Some files in /etc can’t be read by ordinary users. Thus if you type this
command as a non-root user, you’ll see some error messages relating to
grep’s inability to open files.

Suppose you want to locate all the fi les in /etc that contain the string eth0 or eth1. You can
enter the following command, which uses a bracket expression to specify both variant devices:

$ grep eth[01] /etc/*

A still more complex example searches all fi les in /etc that contain the hostname
twain.example.com or bronto.pangaea.edu and, later on the same line, the number

http://technet24.ir/

38 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 38

127. This task requires using several of the regular expression features. Expressed using
extended regular expression notation, the command looks like this:

$ grep -E "(twain\.example\.com|bronto\.pangaea\.edu).*127" /etc/*

This command illustrates another feature you may need to use: shell quoting. Because
the shell uses certain characters, such as the vertical bar and the asterisk, for its own
purposes, you must enclose certain regular expressions in quotes lest the shell attempt to
parse the regular expression and pass a modifi ed version of what you type to grep.

You can use grep in conjunction with commands that produce a lot of output in order
to sift through that output for the material that’s important to you. (Several examples
throughout this book use this technique.) For example, suppose you want to fi nd the
process ID (PID) of a running xterm. You can use a pipe to send the result of a ps
command (described in Chapter 2) through grep:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their PIDs. You can
even do this in series, using grep to restrict further the output on some other criterion,
which can be useful if the initial pass still produces too much output.

Using sed
The sed command directly modifi es a fi le’s contents, sending the changed fi le to standard
output. Its syntax can take one of two forms:

sed [options] -f script-file [input-file]

sed [options] script-text [input-file]

In either case, input-file is the name of the fi le you want to modify. (Modifi cations are
temporary unless you save them in some way, as illustrated shortly.) The script (script-text
or the contents of script-file) is the set of commands you want sed to perform. When you
pass a script directly on the command line, the script-text is typically enclosed in single
quote marks. Table 1.4 summarizes a few sed commands that you can use in its scripts.

TA B LE 1. 4 Common sed commands

Command Addresses Meaning

= 0 or 1 Display the current line number.

a\text 0 or 1 Append text to the file.

i\text 0 or 1 Insert text into the file.

http://technet24.ir/

Using Regular Expressions 39

c01.indd 04/13/2015 Page 39

Command Addresses Meaning

r filename 0 or 1 Append text from filename into the file.

c\text Range Replace the selected range of lines with the
provided text.

s/regexp/
replacement

Range Replace text that matches the regular expression
(regexp) with replacement.

w filename Range Write the current pattern space to the specified file.

q 0 or 1 Immediately quit the script, but print the current
pattern space.

Q 0 or 1 Immediately quit the script.

Table 1.4 is incomplete; sed is quite complex, and this section merely intro-
duces this tool.

The Addresses column of Table 1.4 requires elaboration: sed commands operate on
addresses, which are line numbers. Commands may take no addresses, in which case they
operate on the entire fi le. If one address is specifi ed, they operate on the specifi ed line.
If two addresses (a range) are specifi ed, the commands operate on that range of lines,
inclusive.

In operation, sed looks something like this:

$ sed 's/2012/2013/' cal-2012.txt > cal-2013.txt

This command processes the input fi le, cal-2012.txt, using sed’s s command to replace
the fi rst occurrence of 2012 on each line with 2013. (If a single line may have more than one
instance of the search string, you must perform a global search by appending g to the com-
mand string, as in s/2012/2013/g.) By default, sed sends the modifi ed fi le to standard out-
put, so this example uses redirection to send the output to cal-2013.txt. The idea in this
example is to convert a fi le created for the year 2012 quickly so that it can be used in 2013.
If you don’t specify an input fi lename, sed works from standard input, so it can accept the
output of another command as its input.

Although it’s conceptually simple, sed is a very complex tool; even a modest summary of
its capabilities would fi ll a chapter. You can consult its man page for basic information, but to
understand sed fully, you may want to consult a book that tackles this tough subject, such as
our book Linux Command Line and Shell Scripting Bible, 3rd Edition (Wiley, 2015).

Certain sed commands, including the substitution command, are also used
in vi, which is described more fully in Chapter 5.

http://technet24.ir/

40 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 40

Doing One Thing in Many Ways

As you become experienced with Linux and compare notes with other Linux administra-

tors, you may fi nd that the way you work is different from the way others work. This is

because Linux often provides multiple methods to solve certain problems. For instance,

ASCII text fi les use certain characters to encode the end of a line. Unix (and Linux) use a

single line feed character (ASCII 0x0a, sometimes represented as \n), whereas DOS and

Windows use the combination of a carriage return (ASCII 0x0d or \r) and a line feed.

When moving ASCII fi les between computers, you may need to convert from one form to

the other. How can you do this?

One solution is to use a special-purpose program, such as dos2unix or unix2dos. You

could type dos2unix file.txt to convert file.txt from DOS-style to Unix-style

ASCII, for instance. This is usually the simplest solution, but not all distributions have

these utilities installed by default or even available to install.

Another approach is to use tr. For instance, to convert from DOS style to Unix style, you

might type this:

$ tr -d \\r < dosfile.txt > unixfile.txt

This approach won’t work when converting from Unix style to DOS style, though. For

that, you can use sed:

sed s/$/"\r"/ unixfile.txt > dosfile.txt

Variants on both the tr and sed commands exist. For instance, sometimes the quotes

around \r may be omitted from the sed command; whether they’re required depends on

your shell and its confi guration.

Yet another approach is to load the fi le into a text editor and then save it using different

fi le-type settings. (Not all editors support such changes, but some do.)

Many other examples exist of multiple solutions to a problem. Sometimes one solution

stands out above others as being superior, but at other times the differences may be sub-

tle, or each approach may have merit in particular situations. Thus it’s best to be at least

somewhat familiar with many of the alternatives, such as the options described through-

out this book.

http://technet24.ir/

Exam Essentials 41

c01.indd 04/13/2015 Page 41

Summary

The command line is the key to Linux. Even if you prefer GUI tools to text-mode tools,
understanding text-mode commands is necessary to fully manage a Linux system. This
task begins with the shell, which accepts commands you type and displays the results
of those commands. In addition, shells support linking programs together via pipes and
redirecting programs’ input and output. These features enable you to perform complex
tasks using simple tools by having each program perform its own small part of the task.
This technique is frequently used with Linux text fi lters, which manipulate text fi les in
various ways—sorting text by fi elds, merging multiple fi les, and so on.

Exam Essentials

Summarize features that Linux shells offer to speed up command entry. The command
history often enables you to retrieve an earlier command that’s similar or identical to the
one you want to enter. Tab completion reduces typing effort by letting the shell fi nish long
command names or fi lenames. Command-line editing lets you edit a retrieved command or
change a typo before committing the command.

Describe the purpose of the man command. The man command displays the manual page
for the keyword (command, fi lename, system call, or other feature) that you type. This
documentation provides succinct summary information that’s useful as a reference to learn
about exact command options or features.

Explain the purpose of environment variables. Environment variables store small pieces
of data—program options, information about the computer, and so on. This information
can be read by programs and used to modify program behavior in a way that’s appropriate
for the current environment.

Describe the difference between standard output and standard error. Standard output
carries normal program output, whereas standard error carries high-priority output, such
as error messages. The two can be redirected independently of one another.

Explain the purpose of pipes. Pipes tie programs together by feeding the standard output
from the fi rst program into the second program’s standard input. They can be used to link
together a series of simple programs to perform more complex tasks than any one of the
programs could manage.

Describe the filter commands. The various simple fi lter commands allow the manipula-
tion of text. These commands accomplish tasks of various types, such as combining fi les,
transforming the data in fi les, formatting text, displaying text, and summarizing data.

Summarize the structure of regular expressions. Regular expressions are strings that
describe other strings. They can contain normal alphanumeric characters, which match the
exact same characters in the string they are describing, as well as several special symbols
and symbol sets that match multiple different characters. The combination is a powerful
pattern-matching tool used by many Linux programs.

http://technet24.ir/

42 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 42

Review Questions

1. You type a command into bash and pass a long filename to it, but after you enter the com-
mand, you receive a File not found error message because of a typo in the filename. How
might you proceed?

A. Retype the command, and be sure you type the filename correctly, letter by letter.

B. Retype the command, but press the Tab key after typing a few letters of the long file-
name to ensure that the filename is entered correctly.

C. Press the Up arrow key, and use bash’s editing features to correct the typo.

D. Any of the above.

E. None of the above.

2. Which of the following commands is implemented as an internal command in bash?

A. cat

B. less

C. tee

D. sed

E. echo

3. You type echo $PROC, and the computer replies Go away. What does this mean?

A. No currently running processes are associated with your shell, so you may log out
without terminating them.

B. The remote computer PROC isn’t accepting connections; you should contact its adminis-
trator to correct the problem.

C. Your computer is handling too many processes; you must kill some of them to regain
control of the computer.

D. Your central processing unit (CPU) is defective and must be replaced as soon
as possible.

E. You, one of your configuration files, or a program you’ve run has set the $PROC envi-
ronment variable to Go away.

4. What does the pwd command accomplish?

A. It prints the name of the working directory.

B. It changes the current working directory.

C. It prints wide displays on narrow paper.

D. It parses web page URLs for display.

E. It prints the terminal’s width in characters.

5. What is the surest way to run a program (say, myprog) that’s located in the current working
directory?

A. Type ./ followed by the program name: ./myprog.

B. Type the program name alone: myprog.

http://technet24.ir/

Review Questions 43

c01.indd 04/13/2015 Page 43

C. Type run followed by the program name: run myprog.

D. Type /. followed by the program name: /.myprog.

E. Type the program name followed by an ampersand (&): myprog &.

6. How does man display information by default on most Linux systems?

A. Using a custom X-based application

B. Using the Firefox web browser

C. Using the info browser

D. Using the vi editor

E. Using the less pager

7. You want to store the standard output of the ifconfig command in a text file (file.txt)
for future reference, and you want to wipe out any existing data in the file. You do not
want to store standard error in this file. How can you accomplish these goals?

A. ifconfig < file.txt

B. ifconfig >> file.txt

C. ifconfig > file.txt

D. ifconfig | file.txt

E. ifconfig 2> file.txt

8. What is the effect of the following command?
$ myprog &> input.txt

A. Standard error to myprog is taken from input.txt.

B. Standard input to myprog is taken from input.txt.

C. Standard output and standard error from myprog are written to input.txt.

D. All of the above.

E. None of the above.

9. How many commands can you pipe together at once?

A. 2

B. 3

C. 4

D. 16

E. >16

10. You want to run an interactive script, gabby, which produces a lot of output in response to
the user’s inputs. To facilitate future study of this script, you want to copy its output to a
file. How might you do this?

A. gabby > gabby-out.txt

B. gabby | tee gabby-out.txt

C. gabby < gabby-out.txt

D. gabby &> gabby-out.txt

E. gabby `gabby-out.txt`

http://technet24.ir/

44 Chapter 1 ■ Exploring Linux Command-Line Tools

c01.indd 04/13/2015 Page 44

11. A text-mode program, verbose, prints a lot of bogus “error” messages to standard error.
How might you get rid of those messages while still interacting with the program?

A. verbose | quiet

B. verbose &> /dev/null

C. verbose 2> /dev/null

D. verbose > junk.txt

E. quiet-mode verbose

12. How do the > and >> redirection operators differ?

A. The > operator creates a new file or overwrites an existing one; the >> operator creates
a new file or appends to an existing one.

B. The > operator creates a new file or overwrites an existing one; the >> operator
appends to an existing file or issues an error message if the specified file doesn’t exist.

C. The > operator redirects standard output; the >> operator redirects standard error.

D. The > operator redirects standard output; the >> operator redirects standard input.

E. The > operator writes to an existing file but fails if the file doesn’t exist; the >>
operator writes to an existing file or creates a new one if it doesn’t already exist.

13. What program would you use to display the end of a configuration file?

A. uniq

B. cut

C. tail

D. wc

E. fmt

14. What is the effect of the following command?
$ pr report.txt | lpr

A. The file report.txt is formatted for printing and sent to the lpr program.

B. The files report.txt and lpr are combined together into one file and sent to
standard output.

C. Tabs are converted to spaces in report.txt, and the result is saved in lpr.

D. The file report.txt is printed, and any error messages are stored in the file lpr.

E. None of the above.

15. Which of the following commands will number the lines in aleph.txt? (Select three.)

A. fmt aleph.txt

B. nl aleph.txt

C. cat -b aleph.txt

D. cat -n aleph.txt

E. od -nl aleph.txt

http://technet24.ir/

Review Questions 45

c01.indd 04/13/2015 Page 45

16. You have a data file, data.txt, to be processed by a particular program. However, the
program cannot handle data separated by tabs. The data.txt file’s data is separated by
a tab stop at every eight characters. What command should you use before processing the
data file with the program?

A. od data.txt > data1.txt

B. expand data.txt >> data.txt

C. fmt --remove-tabs data.txt

D. expand data.txt > data1.txt

E. unexpand -t 8 data.txt

17. Which of the following commands will change all occurrences of dog in the file animals.
txt to mutt in the screen display?

A. sed –s "dog" "mutt" animals.txt

B. grep –s "dog||mutt" animals.txt

C. sed 's/dog/mutt/g' animals.txt

D. cat animals.txt | grep –c "dog" "mutt"

E. fmt animals.txt | cut 'dog' > 'mutt'

18. You’ve received an ASCII text file (longlines.txt) that uses no carriage returns within
paragraphs but two carriage returns between paragraphs. The result is that your preferred
text editor displays each paragraph as a very long line. How can you reformat this file so
that you can more easily edit it (or a copy)?

A. sed 's/Ctrl-M/NL/' longlines.txt

B. fmt longlines.txt > longlines2.txt

C. cat longlines.txt > longlines2.txt

D. pr longlines.txt > longlines2.txt

E. grep longlines.txt > longlines2.txt

19. Which of the following commands will print lines from the file world.txt that contain
matches to changes and changed?

A. grep change[ds] world.txt

B. sed change[d-s] world.txt

C. od "change'd|s'" world.txt

D. cat world.txt changes changed

E. find world.txt "change(d|s)"

20. Which of the following regular expressions will match the strings dog, dug, and various
other strings but not dig?

A. d.g

B. d[ou]g

C. d[o-u]g

D. di*g

E. d.ig

http://technet24.ir/

http://technet24.ir/

c02.indd 03/26/2015 Page 47

Chapter

2
Managing Software

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 102.3 Manage shared libraries

 ✓ 102.4 Use Debian package management

 ✓ 102.5 Use RPM and Yum package management

 ✓ 103.5 Create, monitor, and kill processes

 ✓ 103.6 Modify process execution priorities

http://technet24.ir/

c02.indd 03/26/2015 Page 48

A Linux system is defi ned largely by the collection of
software it contains. The Linux kernel, the libraries used by
many packages, the shells used to interpret commands, the

X Window System GUI, the servers, and more all make up the system’s software environ-
ment. Many of the chapters in this book are devoted to confi guring specifi c software
components, but they all have something in common: tools used to install, uninstall,
upgrade, and otherwise manipulate the software.

Ironically, this commonality is a major source of differences between Linux systems.
Two major Linux package management tools exist: RPM Package Manager (RPM) and
Debian. (Several less-common package management systems also exist.) With few excep-
tions, each individual Linux computer uses precisely one package management system, so
you’ll need to know only one to administer a single system. To be truly fl uent in all things
Linux, though, you should at least be somewhat familiar with both of them. Thus this
chapter describes both.

This chapter also covers libraries—software components that can be used by many
different programs. Libraries help reduce the disk space and memory requirements of
complex programs, but they also require some attention. If that attention isn’t given to
them, they can cause problems by their absence or because of incompatibilities between
them and their dependent software’s versions.

Package management, and in some sense library management, relates to programs as fi les
on your hard disk. Once run, though, programs are dynamic entities. Linux provides tools to
help you manage running programs (known as processes)—you can learn what processes are
running, change their priorities, and terminate processes that you don’t want running.

Package Concepts

Before proceeding, you should understand some of the principles that underlie Linux pack-
age management tools. Any computer’s software is like a house of cards: One program may
rely on multiple other programs or libraries, each of which relies on several more, and so
on. The foundation upon which all of these programs rely is the Linux kernel. Any of these
packages can theoretically be replaced by an equivalent one; however, doing so sometimes
causes problems. Worse still, removing one card from the stack could cause the whole
house of cards to come tumbling down.

Linux package management tools are intended to help build and modify this house of
cards by tracking what software is installed. The information that the system maintains
helps to avoid problems in several ways:

http://technet24.ir/

Package Concepts 49

c02.indd 03/26/2015 Page 49

Packages The most basic information that package systems maintain is information about
software packages—that is, collections of fi les that are installed on the computer. Packages
are usually distributed as single fi les that are similar to tarballs (archives created with the
tar utility and usually compressed with gzip or bzip2) or zip fi les. Once installed, most
packages consist of dozens or hundreds of fi les, and the package system tracks them all.
Packages include additional information that aids in the subsequent duties of package
management systems.

Installed File Database Package systems maintain a database of installed fi les. The data-
base includes information about every fi le installed via the package system, the name of the
package to which each of those fi les belongs, and associated additional information.

Dependencies One of the most important types of information maintained by the
package system is dependency information—that is, the requirements of packages for one
another. For instance, if SuperProg relies on UltraLib to do its work, the package database
records this information. If you attempt to install SuperProg when UltraLib isn’t installed,
the package system won’t let you do so. Similarly, if you try to uninstall UltraLib when
SuperProg is installed, the package system won’t let you. (You can override these prohi-
bitions, as described later in “Forcing the Installation.” Doing so is usually inadvisable,
though.)

Checksums The package system maintains checksums and assorted ancillary infor-
mation about fi les. This information can be used to verify the validity of the installed
software. This feature has its limits, though; it’s intended to help you spot disk errors,
accidental overwriting of fi les, or other non-sinister problems. It’s of limited use in
detecting intrusions because an intruder could use the package system to install altered
system software.

Upgrades and Uninstallation By tracking fi les and dependencies, package systems permit
easy upgrades and uninstallation: Tell the package system to upgrade or remove a pack-
age, and it will replace or remove every fi le in the package. Of course, this assumes that the
upgrade or uninstallation doesn’t cause dependency problems; if it does, the package system
will block the operation unless you override it.

Binary Package Creation Both the RPM and Debian package systems provide tools to
help create binary packages (those that are installed directly) from source code. This feature
is particularly helpful if you’re running Linux on a peculiar CPU: you can download source
code and create a binary package, even if the developers didn’t provide explicit support for
your CPU. Creating a binary package from source has advantages over compiling software
from source in more conventional ways, because you can then use the package management
system to track dependencies, attend to individual fi les, and so on.

Both the RPM and Debian package systems provide all of these basic features, although
the details of their operation differ. These two package systems are incompatible with one
another in the sense that their package fi les and their installed fi le databases are different;
that is, you can’t directly install an RPM package on a Debian-based system or vice versa.
(Tools to convert between formats do exist, and developers are working on ways to inte-
grate the two package formats better.)

http://technet24.ir/

50 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 50

Most distributions install just one package system. It’s possible to install
more than one, though, and some programs (such as alien) require both
for full functionality. Actually using both systems to install software is
inadvisable because their databases are separate. If you install a library
using a Debian package and then try to install an RPM package that relies
on that library, RPM won’t realize that the library is already installed and
will return an error.

Using RPM

The most popular package manager in the Linux world is the RPM Package Manager
(RPM). RPM is also available on non-Linux platforms, although it sees less use outside
the Linux world. The RPM system provides all of the basic tools described in the preced-
ing section, “Package Concepts,” such as a package database that allows for identifying
 confl icts and ownership of particular fi les.

RPM Distributions and Conventions
Red Hat developed RPM for its own distribution. Red Hat released the software under the
General Public License (GPL), however, so that others are free to use it in their own distri-
butions—and this is precisely what has happened. Some distributions, such as Mandriva
 (formerly Mandrake) and Yellow Dog, are based on Red Hat, so they use RPMs as well as
many other parts of the Red Hat distribution. Others, such as SUSE, borrow less from the
Red Hat template, but they do use RPMs. Of course, all Linux distributions share many
common components, so even those that weren’t originally based on Red Hat are very
similar to it in many ways other than their use of RPM packages. On the other hand,
distributions that were originally based on Red Hat have diverged from it over time. As a
result, the group of RPM-using distributions shows substantial variability, but all of them
are still Linux distributions that provide the same basic tools, such as the Linux kernel,
common shells, an X server, and so on.

Red Hat has splintered into three distributions: Fedora is the downloadable
version favored by home users, students, and businesses on a tight
budget. The Red Hat name is now reserved for the for-pay version of the
distribution, known more formally as Red Hat Enterprise Linux (RHEL).
CentOS is a freely redistributable version intended for enterprise users.

RPM is a cross-platform tool. As noted earlier, some non-Linux Unix systems can use
RPM, although most don’t use it as their primary package-distribution system. RPM
 supports any CPU architecture. Red Hat Linux is or has been available for at least fi ve

http://technet24.ir/

Using RPM 51

c02.indd 03/26/2015 Page 51

CPUs: x86, x86-64 (aka AMD64, EM64T, and x64), IA-64, Alpha, and SPARC. Among
the distributions mentioned earlier, Pidora is an ARM processor distribution. (It runs on
the popular Raspberry Pi device.) and SUSE is available on x86, x86-64, and PowerPC
systems. For the most part, source RPMs are transportable across architectures—you can
use the same source RPM to build packages for x86, AMD64, PowerPC, ARM, SPARC,
or any other platform you like. Some programs are composed of architecture-independent
scripts and so need no recompilation. There are also documentation and confi guration
packages that work on any CPU.

The convention for naming RPM packages is as follows:

packagename-a.b.c-x.arch.rpm

Each of the fi lename components has a specifi c meaning:

Package Name The fi rst component (packagename) is the name of the package, such as
samba or samba-server for the Samba fi le and print server. Note that the same program
may be given different package names by different distribution maintainers.

Version Number The second component (a.b.c) is the package version number, such as
3.6.5. The version number doesn’t have to be three numbers separated by periods, but
that’s the most common form. The program author assigns the version number.

Build Number The number following the version number (x) is the build number (also
known as the release number). This number represents minor changes made by the package
maintainer, not by the program author. These changes may represent altered startup scripts
or confi guration fi les, changed fi le locations, added documentation, or patches appended to
the original program to fi x bugs or to make the program more compatible with the target
Linux distribution. Many distribution maintainers add a letter code to the build number to
distinguish their packages from those of others. Note that these numbers are not compa-
rable across package maintainers—George’s build number 5 of a package is not necessarily
an improvement on Susan’s build number 4 of the same package.

Architecture The fi nal component preceding the .rpm extension (arch) is a code for the
package’s architecture. The i386 architecture code is common; it represents a fi le com-
piled for any x86 CPU from the 80386 onward. Some packages include optimizations for
Pentiums or newer (i586 or i686), and non-x86 binary packages use codes for their CPUs,
such as ppc for PowerPC CPUs or x86_64 for the x86-64 platform. Scripts, documentation,
and other CPU-independent packages generally use the noarch architecture code. The main
exception to this rule is source RPMs, which use the src architecture code.

As an example of RPM version numbering, the Fedora 20 distribution for x86-64 ships
with a Samba package called samba-4.1.9-4.fc20.x86_64.rpm, indicating that this is build
4.fc20 of Samba 4.1.9, compiled with x86-64 optimizations. These naming conventions are
just that, though—conventions. It’s possible to rename a package however you like, and it
will still install and work. The information in the fi lename is retained within the package.
This fact can be useful if you’re ever forced to transfer RPMs using a medium that doesn’t
allow for long fi lenames. In fact, early versions of SUSE eschewed long fi lenames, preferring
short fi lenames such as samba.rpm.

http://technet24.ir/

52 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 52

In an ideal world, any RPM package will install and run on any RPM-based distribution
that uses an appropriate CPU type. Unfortunately, compatibility issues can crop up from
time to time, including the following:

 ■ Distributions may use different versions of the RPM utilities. This problem can com-
pletely prevent an RPM from one distribution from being used on another.

 ■ An RPM package designed for one distribution may have dependencies that are unmet
in another distribution. A package may require a newer version of a library than is
present on the distribution you’re using, for instance. You can usually overcome this
problem by installing or upgrading the package dependencies, but sometimes doing
so causes problems because the upgrade may break other packages. By rebuilding the
package you want to install from a source RPM, you can often work around these
problems, but sometimes the underlying source code also needs the upgraded libraries.

 ■ An RPM package may be built to depend on a package of a particular name, such
as samba-client depending on samba-common, but if the distribution you’re using
has named the package differently, the rpm utility will object. You can override this
objection by using the --nodeps switch, but sometimes the package won’t work once
installed. Rebuilding from a source RPM may or may not fix this problem.

 ■ Even when a dependency appears to be met, different distributions may include slightly
different files in their packages. For this reason, a package meant for one distribution
may not run correctly when installed on another distribution. Sometimes installing an
additional package will fix this problem.

 ■ Some programs include distribution-specific scripts or configuration files. This prob-
lem is particularly acute for servers, which may include startup scripts that go in /etc/
rc.d/init.d or elsewhere. Overcoming this problem usually requires that you remove
the offending script after installing the RPM and either start the server in some other
way or write a new startup script, perhaps modeled after one that came with some
other server for your distribution.

In most cases, it’s best to use the RPMs intended for your distribution. RPM
 meta-packagers, such as the Yellow Dog Updater, Modifi ed (Yum), can simplify locating
and installing packages designed for your distribution. If you’re forced to go outside of
your distribution’s offi cially supported list of packages, mixing and matching RPMs from
different distributions usually works reasonably well for most programs. This is particu-
larly true if the distributions are closely related or you rebuild from a source RPM. If you
have trouble with an RPM, though, you may do well to try to fi nd an equivalent package
that was built with your distribution in mind.

The rpm Command Set
The main RPM utility program is known as rpm. Use this program to install or upgrade a
package at the shell prompt. The rpm command has the following syntax:

rpm [operation][options] [package-files|package-names]

http://technet24.ir/

Using RPM 53

c02.indd 03/26/2015 Page 53

Table 2.1 summarizes the most common rpm operations, and Table 2.2 summarizes the
most important options. Be aware, however, that rpm is a complex tool, so this listing is
necessarily incomplete. For information about operations and options more obscure than
those listed in Table 2.1 and Table 2.2, see the man pages for rpm. Many of rpm’s less-used
features are devoted to the creation of RPM packages by software developers.

TA B LE 2 .1 Common rpm operations

Operation Description

-i Installs a package; system must not contain a package of the
same name

-U Installs a new package or upgrades an existing one

-F or --freshen Upgrades a package only if an earlier version already exists

-q Queries a package—finds whether a package is installed, what
files it contains, and so on

-V or --verify Verifies a package—checks that its files are present and
unchanged since installation

-e Uninstalls a package

-b Builds a binary package, given source code and configuration
files; moved to the rpmbuild program with RPM version 4.2

--rebuild Builds a binary package, given a source RPM file; moved to the
rpmbuild program with RPM version 4.2

--rebuilddb Rebuilds the RPM database to fix errors

TA B LE 2 . 2 Most important rpm options

Option
Used with
operations Description

--root dir Any Modifies the Linux system having a root directory
located at dir. This option can be used to maintain
one Linux installation discrete from another one (say,
during OS installation or emergency maintenance).

--force -i, -U, -F Forces installation of a package even when it
means overwriting existing files or packages.

http://technet24.ir/

54 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 54

Option
Used with
operations Description

-h or --hash -i, -U, -F Displays a series of hash marks (#) to indicate the
progress of the operation.

-v -i, -U, -F Used in conjunction with the -h option to produce
a uniform number of hash marks for each package.

--nodeps -i, -U, -F, -e Specifies that no dependency checks be
performed. Installs or removes the package even if
it relies on a package or file that’s not present or is
required by a package that’s not being uninstalled.

--test -i, -U, -F Checks for dependencies, conflicts, and other
problems without actually installing the package.

--prefix path -i, -U, -F Sets the installation directory to path (works only
for some packages).

-a or --all -q, -V Queries or verifies all packages.

-f file or --file
file

-q, -V Queries or verifies the package that owns file.

-p package-file -q Queries the uninstalled RPM package-file.

-i -q Displays package information, including the pack-
age maintainer, a short description, and so on.

-R or --requires -q Displays the packages and files on which this one
depends.

-l or --list -q Displays the files contained in the package.

To use rpm, you combine one operation with one or more options. In most cases, you
include one or more package names or package fi lenames as well. (A package fi lename
is a complete fi lename, but a package name is a shortened version. For instance, a package
fi lename might be samba-4.1.9-4.fc20.x86_64.rpm, whereas the matching package
name is samba.) You can issue the rpm command once for each package, or you can list
multiple packages, separated by spaces, on the command line. The latter is often preferable
when you’re installing or removing several packages, some of which depend on others
in the group. Issuing separate commands in this situation requires that you install the

TA B LE 2 . 2 Most important rpm options (continued)

http://technet24.ir/

Using RPM 55

c02.indd 03/26/2015 Page 55

depended-on package fi rst or remove it last, whereas issuing a single command allows you
to list the packages on the command line in any order.

Some operations require that you give a package fi lename, and others require a package
name. In particular, -i, -U, -F, and the rebuild operations require package fi lenames; -q,
-V, and -e normally take a package name, although the -p option can modify a query (-q)
operation to work on a package fi lename.

When you’re installing or upgrading a package, the -U operation is generally the most
useful because it enables you to install the package without manually uninstalling the old
one. This one-step operation is particularly helpful when packages contain many dependen-
cies; rpm detects these and can perform the operation should the new package fulfi ll the
dependencies provided by the old one.

To use rpm to install or upgrade a package from an RPM fi le that you have already
downloaded to your local system, issue a command similar to the following:

rpm -Uvh samba-4.1.9-4.fc20.x86_64.rpm

You can also use rpm -ivh in place of rpm -Uvh if you don’t already have a samba pack-
age installed.

It’s possible to distribute the same program under different names. In
this situation, upgrading may fail or it may produce a duplicate installa-
tion, which can yield bizarre program-specific malfunctions. Red Hat has
described a formal system for package naming to avoid such problems,
but they still occur occasionally. Therefore, it’s best to upgrade a package
using a subsequent release provided by the same individual or organiza-
tion that provided the original.

Verify that the package is installed with the rpm -qi command, which displays informa-
tion such as when and on what computer the binary package was built. Listing 2.1 demon-
strates this command. (rpm -qi also displays an extended plain-English summary of what
the package is, which has been omitted from Listing 2.1.)

Listing 2.1: RPM query output

$ rpm -qi samba

Name : samba

Epoch : 2

Version : 4.1.9

Release : 4.fc20

Architecture: x86_64

Install Date: Tue 02 Sep 2014 01:02:33 AM EDT

Group : System Environment/Daemons

Size : 1699739

http://technet24.ir/

56 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 56

License : GPLv3+ and LGPLv3+

Signature : RSA/SHA256, Sat 02 Aug 2014 12:05:26 PM EDT, Key ID

 2eb161fa246110c1

Source RPM : samba-4.1.9-4.fc20.src.rpm

Build Date : Fri 01 Aug 2014 05:51:43 PM EDT

Build Host : buildvm-10.phx2.fedoraproject.org

Relocations : (not relocatable)

Packager : Fedora Project

Vendor : Fedora Project

URL : http://www.samba.org/

Summary : Server and Client software to interoperate with

Windows machines

Description :

Samba is the standard Windows interoperability suite of programs for

Linux and Unix.

Extracting Data from RPMs
Occasionally you may want to extract data from RPMs without installing the package. For
instance, this can be a good way to retrieve the original source code from a source RPM for
compiling the software without the help of the RPM tools or to retrieve fonts or other non-
program data for use on a non-RPM system.

RPM fi les are actually modifi ed cpio archives. Thus, converting the fi les into cpio fi les
is relatively straightforward, whereupon you can use cpio to retrieve the individual fi les.
To do this job, you need to use the rpm2cpio program that ships with most Linux distri-
butions. (You can even use this tool on distributions that don’t use RPM.) This program
takes a single argument—the name of the RPM fi le—and outputs the cpio archive
on standard output. Thus, if you want to create a cpio archive fi le, you must redirect
the output:

$ rpm2cpio samba-4.1.9-4.fc20.src.rpm > samba-4.1.9-4.fc20.src.cpio

The redirection operator (>) is described in more detail in Chapter 1,
“Exploring Linux Command-Line Tools,” as is the pipe operator (|), which
is mentioned shortly. Chapter 4, “Managing Files,” describes cpio in
more detail.

You can then extract the data using cpio, which takes the -i option to extract an
archive and --make-directories to create directories:

$ cpio -i --make-directories < samba-4.1.9-4.fc20.src.cpio

http://technet24.ir/

Using RPM 57

c02.indd 03/26/2015 Page 57

Alternatively, you can use a pipe to link these two commands together without creating
an intermediary fi le:

$ rpm2cpio samba-4.1.9-4.fc20.src.rpm | cpio -i --make-directories

In either case, the result is an extraction of the fi les in the archive in the current
directory. In the case of binary packages, this is likely to be a series of subdirectories that
mimic the layout of the Linux root directory—that is, usr, lib, etc, and so on, although
precisely which directories are included depends on the package. For a source package,
the result of the extraction process is likely to be a source code tarball, a .spec fi le (which
holds information that RPM uses to build the package), and perhaps some patch fi les.

When you’re extracting data from an RPM file using rpm2cpio and
cpio, create a holding subdirectory and then extract the data into this
subdirectory. This practice will ensure that you can find all of the files. If
you extract files in your home directory, some of them may get lost among
your other files. If you extract files as root in the root (/) directory, they
could conceivably overwrite files that you want to keep.

Another option for extracting data from RPMs is to use alien, which is described later
in “Converting between Package Formats.” This program can convert an RPM into a
Debian package or a tarball.

Using Yum
Yum (http://yum.baseurl.org), mentioned earlier, is one of several meta-packagers—it
enables you to install a package and all its dependencies easily using a single command line.
When using Yum, you don’t even need to locate and download the package fi les because
Yum does this for you by searching in one or more repositories—Internet sites that host
RPM fi les for a particular distribution.

Yum originated with the fairly obscure Yellow Dog Linux distribution, but it’s since
been adopted by Red Hat, CentOS, Fedora, and some other RPM-based distributions.
Yum isn’t used by all RPM-based distributions, though; SUSE and Mandriva, to name
just two, each uses their own meta-packager. Debian-based distributions generally employ
the Advanced Package Tools (APT), as described later in “Using apt-get.” Nonetheless,
because of the popularity of Red Hat, CentOS, and Fedora, knowing Yum can be valuable.

The most basic way to use Yum is with the yum command, which has the following
syntax:

yum [options] [command] [package...]

Which options are available depend on the command you use. Table 2.3 describes
 common yum commands.

http://technet24.ir/

58 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 58

TA B LE 2 . 3 Common yum commands

Command Description

install Installs one or more packages by package name. Also installs
dependencies of the specified package or packages.

update Updates the specified package or packages to the latest available
version. If no packages are specified, yum updates every installed
package.

check-update Checks to see whether updates are available. If they are, yum
displays their names, versions, and repository area (updates or
extras, for instance).

upgrade Works like update with the --obsoletes flag set, which handles
obsolete packages in a way that’s superior when performing a distri-
bution version upgrade.

remove or erase Deletes a package from the system; similar to rpm -e, but yum also
removes depended-on packages.

list Displays information about a package, such as the installed version
and whether an update is available.

provides or
 whatprovides

Displays information about packages that provide a specified pro-
gram or feature. For instance, typing yum provides samba lists all
the Samba-related packages, including every available update. Note
that the output can be copious.

search Searches package names, summaries, packagers, and descriptions
for a specified keyword. This is useful if you don’t know a package’s
name but can think of a word that’s likely to appear in one of these
fields but not in these fields for other packages.

info Displays information about a package, similar to the rpm -qi
 command.

clean Cleans up the Yum cache directory. Running this command from time
to time is advisable, lest downloaded packages chew up too much
disk space.

shell Enters the Yum shell mode, in which you can enter multiple Yum
commands one after another.

resolvedep Displays packages matching the specified dependency.

localinstall Installs the specified local RPM files, using your Yum repositories to
resolve dependencies.

http://technet24.ir/

Using RPM 59

c02.indd 03/26/2015 Page 59

Command Description

localupdate Updates the system using the specified local RPM files, using your
Yum repositories to resolve dependencies. Packages other than
those updated by local files and their dependencies are not updated.

deplist Displays dependencies of the specified package.

In most cases, using Yum is easier than using RPM directly to manage packages because
Yum fi nds the latest available package, downloads it, and installs any required dependen-
cies. Yum has its limits, though; it’s only as good as its repositories, so it can’t install soft-
ware that’s not stored in those repositories.

If you use Yum to upgrade all packages automatically on your system, you’re
effectively giving control of your system to the distribution maintainer.
Although Red Hat or other distribution maintainers are unlikely to try to
break into your computer in this way, an automatic update with minimal
supervision on your part could easily break something on your system,
particularly if you’ve obtained packages from unusual sources in the past.

If you don’t want to install the package but merely want to obtain it, you can use yumdown-
loader. Type this command followed by the name of a package and the latest version of the
package will be downloaded to the current directory. This can be handy if you need to update
a system that’s not connected to the Internet; you can use another computer that runs the
same distribution to obtain the packages and then transfer them to the target system.

If you prefer to use GUI tools rather than command-line tools, you should be aware that
GUI front-ends to yum exist. Examples include yumex and kyum. You can use the text-mode
yum to install these front-ends, as in yum install kyum.

Exercise 2.1 runs you through the process of managing packages using the rpm utility.

E X E R C I S E 2 .1

Managing Packages Using RPM

To manage packages using the rpm utility, follow these steps:

1. Log into the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from your

distribution that you know you haven’t installed, but if you try a random package, you

may fi nd that it’s already installed or has unmet dependencies. As an example, this

lab uses the installation of zsh-5.0.6-1.fc20.x86_64.rpm, a shell that’s not installed

by default on most systems, from the Fedora 20 DVD onto a Fedora 20 system. You

must adjust the commands as necessary if you use another RPM fi le in your tests.

http://technet24.ir/

60 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 60

E X E R C I S E 2 .1 (c ont inue d)

3. Launch an xterm from the desktop environment’s menu system if you used a

GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting

Session ➢ New Root Console from a Konsole window, or by using sudo (if it’s

confi gured) to run the commands in the following steps.

5. Type rpm -q zsh to verify that the package isn’t currently installed. The system

should respond with the message package zsh is not installed.

6. Type rpm -qpi zsh-5.0.6-1.fc20.x86_64.rpm. (You’ll need to provide a com-

plete path to the package fi le if it’s not in your current directory.) The system should

respond by displaying information about the package, such as the version number,

the vendor, the hostname of the machine on which it was built, and a package

description.

7. Type rpm -ivh zsh-5.0.6-1.fc20.x86_64.rpm. The system should install the

 package and display a series of hash marks (#) as it does so.

8. Type rpm -q zsh. The system should respond with the complete package name,

including the version and build numbers. This response verifi es that the package is

installed.

9. Type zsh. This launches a Z shell, which functions much like the more common bash

and tcsh shells. You’re likely to see your command prompt change, but you can issue

most of the same commands you can use with bash or tcsh.

10. Type rpm -V zsh. The system shouldn’t produce any output—just a new command

prompt. The verify (-V or --verify) command checks the package fi les against data

stored in the database. Immediately after installation, most packages should show

no deviations. (A handful of packages will be modifi ed during installation, but zsh

isn’t one of them.)

11. Type rpm -e zsh. The system shouldn’t produce any output—just a new command

prompt. This command removes the package from the system. Note that you’re

removing the zsh package while running the zsh program. Linux continues to run

the zsh program you’re using, but you’ll be unable to launch new instances of the

program. Some programs may misbehave if you do this because fi les will be missing

after you remove the package.

12. Type exit to exit zsh and return to your normal shell.

13. Type rpm -q zsh. The system should respond with a package zsh is not

installed error because you’ve just uninstalled the package.

14. Type yum install zsh. The system should check your repositories, download zsh,

and install it. It will ask for confi rmation before beginning the download.

15. Type rpm -q zsh. The results should be similar to those in step 8, although the ver-

sion number may differ.

http://technet24.ir/

Using RPM 61

c02.indd 03/26/2015 Page 61

16. Type rpm -e zsh. This step removes zsh from the system but produces no output,

just as in step 11.

The fi nal three steps will work only if your distribution uses Yum. If you’re using a distri-

bution that uses another tool, you may be able to locate and use its equivalent, such as

zypper for SUSE.

RPM and Yum Configuration Files
Ordinarily, you needn’t explicitly confi gure RPM or Yum; distributions that use RPM con-
fi gure it in reasonable ways by default. Sometimes, though, you may want to tweak a few
details, particularly if you routinely build source RPM packages and want to optimize the
output for your computer. You may also want to add a Yum repository for some unusual
software you run. To do so, you typically edit an RPM or Yum confi guration fi le.

The main RPM confi guration fi le is /usr/lib/rpm/rpmrc. This fi le sets a variety of
options, mostly related to the CPU optimizations used when compiling source packages.
You shouldn’t edit this fi le, though; instead, you should create and edit /etc/rpmrc
(to make global changes) or ~/.rpmrc (to make changes on a per-user basis). The main
reason to create such a fi le is to implement architecture optimizations—for instance, to
optimize your code for your CPU model by passing appropriate compiler options when
you build a source RPM into a binary RPM. This is done with the optflags line:

optflags: athlon -O2 -g -march=i686

This line tells RPM to pass the -O2 -g -march-i686 options to the compiler whenever
it’s building for the athlon platform. Although RPM can determine your system’s archi-
tecture, the optflags line by itself isn’t likely to be enough to set the correct fl ags. Most
default rpmrc fi les include a series of buildarchtranslate lines that cause rpmbuild (or rpm
for older versions of RPM) to use one set of optimizations for a whole family of CPUs. For
x86 systems, these lines typically look like this:

buildarchtranslate: athlon: i386

buildarchtranslate: i686: i386

buildarchtranslate: i586: i386

buildarchtranslate: i486: i386

buildarchtranslate: i386: i386

These lines tell RPM to translate the athlon, i686, i586, i486, and i386 CPU codes to
use the i386 optimizations. This effectively defeats the purpose of any CPU-specifi c opti-
mizations you create on the optflags line for your architecture, but it guarantees that the
RPMs you build will be maximally portable. To change matters, you must alter the line for
your CPU type, as returned when you type uname -p. For instance, on an Athlon-based
system, you might enter the following line:

buildarchtranslate: athlon: athlon

http://technet24.ir/

62 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 62

Thereafter, when you rebuild a source RPM, the system will use the appropriate Athlon
optimizations. The result can be a slight performance boost on your own system but
reduced portability—depending on the precise optimizations you choose, such packages
may not run on non-Athlon CPUs. (Indeed, you may not even be able to install them on
non-Athlon CPUs!)

Yum is confi gured via the /etc/yum.conf fi le, with additional confi guration fi les in the
/etc/yum.repos.d/ directory. The yum.conf fi le holds basic options, such as the direc-
tory to which Yum downloads RPMs and where Yum logs its activities. Chances are that
you won’t need to modify this fi le. The /etc/yum.repos.d/ directory, on the other hand,
potentially holds several fi les, each of which describes a Yum repository—that is, a site
that holds RPMs that may be installed via Yum. You probably shouldn’t directly edit these
fi les; instead, if you want to add a repository, you should manually download the RPM that
includes the repository confi guration and install it using rpm. The next time you use Yum,
it will access your new repository along with the old ones. Several Yum repositories exist,
mostly for Red Hat, CentOS, and Fedora, such as the following:

Livna This repository (http://rpm.livna.org/) hosts multimedia tools, such as addi-
tional codecs and video drivers.

KDE Red Hat Red Hat, CentOS, and Fedora favor the GNU Network Object Model
Environment (GNOME) desktop environment, although they ship with the K Desktop
Environment (KDE) too. The repository at http://kde-redhat.sourceforge.net provides
improved KDE RPMs for those who favor KDE.

Fresh RPMs This repository (http://freshrpms.net) provides additional RPMs, mostly
focusing on multimedia applications and drivers.

Many additional repositories exist. Try a Web search on terms such as yum repository,
or check the web page of any site that hosts unusual software that you want to run to see
whether it provides a Yum repository. If so, it should provide an RPM or other instructions
on adding its site to your Yum repository list.

RPM Compared to Other Package Formats
RPM is a very fl exible package management system. In most respects, it’s comparable to
Debian’s package manager, and it offers many more features than tarballs. When compared
to Debian packages, the greatest strength of RPMs is probably their ubiquity. Many soft-
ware packages are available in RPM form from their developers and/or from distribution
maintainers.

Distribution packagers frequently modify the original programs in order to
make them integrate more smoothly into the distribution as a whole. For
instance, distribution-specific startup scripts may be added, program binaries
may be relocated from default /usr/local subdirectories, and program source
code may be patched to fix bugs or add features. Although these changes can
be useful, you may not want them, particularly if you’re using a program on a
distribution other than the one for which the package was intended.

http://technet24.ir/

Using Debian Packages 63

c02.indd 03/26/2015 Page 63

The fact that there are so many RPM-based distributions can be a boon. You may be
able to use an RPM intended for one distribution on another, although, as noted earlier,
this isn’t certain. In fact, this advantage can turn into a drawback if you try to mix and
match too much—you can wind up with a mishmash of confl icting packages that can be
diffi cult to disentangle.

The RPMFind website, http://rpmfind.net, is an extremely useful
resource when you want to find an RPM of a specific program. Another
site with similar characteristics is Fresh RPMs, http://freshrpms.net.
These sites include links to RPMs built by programs’ authors, specific
distributions’ RPMs, and those built by third parties. Adding such sites
as Yum repositories to your repository library can make it even easier to
install new programs.

Compared to tarballs, RPMs offer much more sophisticated package management tools.
This can be important when you’re upgrading or removing packages and also for verifying
the integrity of installed packages. On the other hand, although RPMs are common in the
Linux world, they’re less common on other platforms. Therefore, you’re more likely to fi nd
tarballs of generic Unix source code, and tarballs are preferred if you’ve written a program
that you intend to distribute for other platforms.

Using Debian Packages

In their overall features, Debian packages are similar to RPMs, but the details of operation
for each differ, and Debian packages are used on different distributions than are RPMs.
Because each system uses its own database format, RPMs and Debian packages aren’t inter-
changeable without converting formats. Using Debian packages requires knowing how to
use the dpkg, dselect, and apt-get commands. A few other commands can also be helpful.

Debian Distributions and Conventions
As the name implies, Debian packages originated with the Debian distribution. Since that
time, the format has been adopted by several other distributions, including Ubuntu, Linux
Mint, and Xandros. Such distributions are derived from the original Debian, which means
that packages from the original Debian are likely to work well on other Debian-based
systems. Although Debian doesn’t emphasize fl ashy GUI confi guration tools, its derivatives
tend to be more GUI-centric, which makes these distributions more appealing to Linux
novices. The original Debian favors a system that’s as bug free as possible, and it tries to
adhere strictly to open-source software principles rather than invest effort in GUI confi gu-
ration tools. The original Debian is unusual in that it’s maintained not by a company that
is motivated by profi t but rather by volunteers who are motivated by the desire to build a
product they want to use.

http://technet24.ir/

64 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 64

Like RPM, the Debian package format is neutral with respect to both OS and CPU
type. Debian packages are extremely rare outside Linux, although attempts to use various
systems that used the Debian package system and software library atop non-Linux kernels
have been made, and largely abandoned, with the exception of kFreeBSD (www.debian.
org/ports/kfreebsd-gnu/).

The original Debian distribution has been ported to many different CPUs, including x86,
x86-64, IA-64, ARM, PowerPC, Alpha, 680x0, MIPS, and SPARC. The original architec-
ture was x86, and subsequent ports exist at varying levels of maturity. Derivative distribu-
tions generally work only on x86 or x86-64 systems, but this could change in the future.

Debian packages follow a naming convention similar to that for RPMs, but Debian pack-
ages sometimes omit codes in the fi lename to specify a package’s architecture, particularly
on x86 packages. When these codes are present, they may differ from RPM conventions. For
instance, a fi lename ending in i386.deb indicates an x86 binary, powerpc.deb is a PowerPC
binary, and all.deb indicates a CPU-independent package, such as documentation or scripts.
As with RPM fi les, this fi le-naming convention is only that—a convention. You can rename
a fi le as you see fi t, either to include or omit the processor code. There is no code for Debian
source packages because, as described in the upcoming section “Debian Packages Compared
to Other Package Formats,” Debian source packages consist of several separate fi les.

The dpkg Command Set
Debian packages are incompatible with RPM packages, but the basic principles of opera-
tion are the same across both package types. Like RPMs, Debian packages include depen-
dency information, and the Debian package utilities maintain a database of installed
packages, fi les, and so on. You use the dpkg command to install a Debian package. This
command’s syntax is similar to that of rpm:

dpkg [options][action] [package-files|package-name]

action is the action to be taken; common actions are summarized in Table 2.4. The
options (Table 2.5) modify the behavior of the action, much like the options to rpm.

TA B LE 2 . 4 dpkg primary actions

Action Description

-i or --install Installs a package

--configure Reconfigures an installed package: runs the post-installation
script to set site-specific options

-r or --remove Removes a package but leaves configuration files intact

-P or --purge Removes a package, including configuration files

--get-selections Displays currently installed packages

http://technet24.ir/

Using Debian Packages 65

c02.indd 03/26/2015 Page 65

Action Description

-p or --print-avail Displays information about an installed package

-I or --info Displays information about an uninstalled package file

-l pattern or --list
pattern

Lists all installed packages whose names match pattern

-L or --listfiles Lists the installed files associated with a package

-S pattern or
--search pattern

Locates the package(s) that own the file(s) specified by pattern

-C or --audit Searches for partially installed packages and suggests what to do
with them

TA B LE 2 .5 Options for fine-tuning dpkg actions

Option
Used with
actions Description

--root=dir All Modifies the Linux system using a root directory located
at dir. Can be used to maintain one Linux installation
discrete from another one, say during OS installation or
emergency maintenance.

-B or --auto-
deconfigure

-r Disables packages that rely on one that is being
removed.

--force-things Assorted Overrides defaults that would ordinarily cause dpkg to
abort. Consult the dpkg man page for details of what
(specified by things) this option does.

--ignore-depends
=package

-i, -r Ignores dependency information for the specified
 package.

--no-act -i, -r Checks for dependencies, conflicts, and other problems
without actually installing or removing the package.

--recursive -i Installs all packages that match the package-name
 wildcard in the specified directory and all subdirectories.

-G -i Doesn’t install the package if a newer version of the
same package is already installed.

-E or --skip-
same-version

-i Doesn’t install the package if the same version of the
package is already installed.

http://technet24.ir/

66 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 66

As with rpm, dpkg expects a package name in some cases and a package fi lename in others.
Specifi cally, --install (-i) and --info (-I) both require the package fi lename, but the other
commands take the shorter package name.

As an example, consider the following command, which installs the samba_4.1.6+dfsg-
1ubuntu2.1404.3_amd64.deb package:

dpkg -i samba_4.1.6+dfsg-1ubuntu2.1404.3_amd64.deb

If you’re upgrading a package, you may need to remove an old package before installing
the new one. To do this, use the -r option to dpkg, as in the following:

dpkg -r samba

To fi nd information about an installed package, use the -p parameter to dpkg, as shown
in Listing 2.2. This listing omits an extended English description of what the package does.

Listing 2.2: dpkg package information query output

$ dpkg -p samba

Package: samba

Priority: optional

Section: net

Installed-Size: 11157

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

Architecture: amd64

Version: 2:4.1.6+dfsg-1ubuntu2.14.04.3

Replaces: libsamdb0 (<< 4.0.0~alpha17~), python-samba (<< 2:4.1.4+dfsg-3),

 samba-ad-dc, samba-common (<= 2.0.5a-2), samba-doc (<< 2:4.0.5~), samba-

libs (<< 2:4.1.4+dfsg-2), samba4

Depends: adduser, heimdal-hdb-api-8, libpam-modules, libpam-runtime (>=

 1.0.1-11), lsb-base (>= 4.1+Debian), procps, python (>= 2.7), python-

dnspython, python-ntdb, python-samba, samba-common (= 2:4.1.6+dfsg-

1ubuntu2.14.04.3), samba-common-bin (= 2:4.1.6+dfsg-1ubuntu2.14.04.3),

samba-dsdb-modules, tdb-tools, update-inetd, sysv-rc (>= 2.88dsf-24) |

file-rc (>= 0.8.16), python (<< 2.8), python2.7:any, libasn1-8-heimdal (>=

1.4.0+git20110226), libbsd0 (>= 0.5.0), libc6 (>= 2.14), libcomerr2 (>=

1.01), libhdb9-heimdal (>= 1.4.0+git20110226), libkdc2-heimdal (>=

1.4.0+git20110226), libkrb5-26-heimdal (>= 1.4.0+git20110226), libldb1

(>= 0.9.21), libpopt0 (>= 1.14), libpython2.7 (>= 2.7), libroken18-heimdal

 (>=

1.4.0+git20110226), libtalloc2 (>= 2.0.4~git20101213), libtdb1 (>=

1.2.7+git20101214), libtevent0 (>= 0.9.14), samba-libs (= 2:4.1.6+dfsg-

1ubuntu2.14.04.3)

Pre-Depends: dpkg (>= 1.15.6~), multiarch-support

http://technet24.ir/

Using Debian Packages 67

c02.indd 03/26/2015 Page 67

Recommends: attr, logrotate, samba-vfs-modules

Suggests: bind9 (>= 1:9.5.1), bind9utils, ldb-tools, ntp, smbldap-tools,

winbind, ufw

Conflicts: libldb1 (<< 1:1.1.15), samba (<< 2:3.3.0~rc2-5), samba-ad-dc,

samba-doc (<< 2:4.0.5~), samba-tools, samba4 (<< 4.0.0~alpha6-2)

Enhances: bind9, ntp

Size: 838626

Debian-based systems often use a pair of somewhat higher-level utilities, apt-get and
dselect, to handle package installation and removal. These utilities are described later in
“Using apt-get” and “Using dselect, aptitude, and Synaptic.” Their interfaces can be
very useful when you want to install several packages, but dpkg is often more convenient
when you’re manipulating just one or two packages. Because dpkg can take package fi le-
names as input, it’s also the preferred method of installing a package that you download
from an unusual source or create yourself.

Using apt-cache
The APT suite of tools includes a program, apt-cache, that’s intended solely to provide
information about the Debian package database (known in Debian terminology as the
package cache). You may be interested in using several features of this tool:

Display Package Information Using the showpkg subcommand, as in apt-cache showpkg
samba, displays information about the package. The information displayed is different from
that returned by dpkg’s informational actions.

Display Package Statistics You can learn how many packages you’ve installed, how many
dependencies are recorded, and various other statistics about the package database by pass-
ing the stats subcommand, as in apt-cache stats.

Find Unmet Dependencies If a program is reporting missing libraries or fi les, typing
apt-cache unmet may help; this function of apt-cache returns information about unmet
dependencies, which may help you track down the source of missing-fi le problems.

Display Dependencies Using the depends subcommand, as in apt-cache depends
samba, shows all of the specifi ed package’s dependencies. This information can be helpful
in tracking down dependency-related problems. The rdepends subcommand fi nds reverse
dependencies—packages that depend on the one you specify.

Locate All Packages The pkgnames subcommand displays the names of all the packages
installed on the system. If you include a second parameter, as in apt-cache pkgnames
sa, the program returns only those packages that begin with the specifi ed string.

Several more subcommands and options exist, but these are the ones you’re most likely
to use. Several apt-cache subcommands are intended for package maintainers and debug-
ging serious package database problems rather than day-to-day system administration.
Consult the man page for apt-cache for more information.

http://technet24.ir/

68 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 68

Using apt-get
APT, with its apt-get utility, is Debian’s equivalent to Yum on certain RPM-based distri-
butions. This meta-packaging tool lets you perform easy upgrades of packages, especially
if you have a fast Internet connection. Debian-based systems include a fi le, /etc/apt/
sources.list, that specifi es locations from which important packages can be obtained.
If you installed the OS from a CD-ROM drive, this fi le will initially list directories on the
installation CD-ROM in which packages can be found. There are also likely to be a few
lines near the top, commented out with hash marks (#), indicating directories on an FTP
site or a website from which you can obtain updated packages. (These lines may be uncom-
mented if you did a network install initially.)

Don’t add a site to /etc/apt/sources.list unless you’re sure it can be
trusted. The apt-get utility does automatic and semiautomatic upgrades,
so if you add a network source to sources.list and that source contains
unreliable programs or programs with security holes, your system will
become vulnerable after upgrading via apt-get.

Although APT is most strongly associated with Debian systems, a port to RPM-based
systems is also available. Check http://apt4rpm.sourceforge.net for information about
this port.

The apt-get utility works by obtaining information about available packages from the
sources listed in /etc/apt/sources.list and then using that information to upgrade or
install packages. The syntax is similar to that of dpkg:

apt-get [options][command] [package-names]

Table 2.6 lists the apt-get commands, and Table 2.7 lists the most commonly used
options. In most cases, you won’t use any options with apt-get—just a single command and
possibly one or more package names. One particularly common use of this utility is to keep
your system up-to-date with any new packages. The following two commands will accom-
plish this goal if /etc/apt/sources.list includes pointers to up-to-date fi le archive sites:

apt-get update

apt-get dist-upgrade

TA B LE 2 .6 apt-get commands

Command Description

update Obtains updated information about packages available from the
installation sources listed in /etc/apt/sources.list.

upgrade Upgrades all installed packages to the newest versions available,
based on locally stored information about available packages.

http://technet24.ir/

Using Debian Packages 69

c02.indd 03/26/2015 Page 69

Command Description

dselect-upgrade Performs any changes in package status (installation, removal, and so
on) left undone after running dselect.

dist-upgrade Similar to upgrade, but performs “smart” conflict resolution to avoid
upgrading a package if doing so would break a dependency.

install Installs a package by package name (not by package filename), obtaining
the package from the source that contains the most up-to-date version.

remove Removes a specified package by package name.

source Retrieves the newest available source package file by package file-
name using information about available packages and installation
archives listed in /etc/apt/sources.list.

check Checks the package database for consistency and broken package
installations.

clean Performs housekeeping to help clear out information about retrieved files
from the Debian package database. If you don’t use dselect for package
management, run this from time to time in order to save disk space.

autoclean Similar to clean, but removes information only about packages that
can no longer be downloaded.

TA B LE 2 .7 Most-useful apt-get options

Option
Used with
commands Description

-d or --download-only upgrade,
dselect-upgrade,
install, source

Downloads package files but doesn’t
install them.

-f or --fix-broken install, remove Attempts to fix a system on which depen-
dencies are unsatisfied.

-m, --ignore-missing,
or --fix-missing

upgrade, dselect-
upgrade, install,
remove, source

Ignores all package files that can’t be
retrieved (because of network errors,
missing files, or the like).

-q or --quiet All Omits some progress indicator informa-
tion. May be doubled (for instance, -qq) to
 produce still less progress information.

http://technet24.ir/

70 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 70

Option
Used with
commands Description

-s, --simulate, --just-
print, --dry-run,
--recon, or --no-act

All Performs a simulation of the action
without actually modifying, installing, or
removing files.

-y, --yes, or --assume-
yes

All Produces a “yes” response to any yes/no
prompt in installation scripts.

-b, --compile, or
--build

source Compiles a source package after
retrieving it.

--no-upgrade install Causes apt-get to not upgrade a package
if an older version is already installed.

If you use APT to upgrade all packages on your system automatically,
you’re effectively giving control of your computer to the distribution
maintainer. Although Debian or other distribution maintainers are unlikely
to try to break into your computer in this way, an automatic update with
minimal supervision on your part could easily break something on your
system, particularly if you’ve obtained packages from unusual sources in
the past.

In Exercise 2.2, you’ll familiarize yourself with the Debian package system.

E X E R C I S E 2 . 2

Managing Debian Packages

To manage Debian packages, follow these steps:

1. Log into the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from

your distribution that you know you haven’t installed; if you try a random package,

however, you may fi nd that it’s already installed or has unmet dependencies. As an

example, this lab uses the installation of zsh_5.0.2-3ubuntu6_amd64.deb, a shell

that’s not installed by default on most systems, obtained using the -d option to

apt-get on an Ubuntu 14.04 system. You must adjust the commands as necessary

if you use another package, distribution, or architecture in your tests.

TA B LE 2 .7 Most-useful apt-get options (continued)

http://technet24.ir/

Using Debian Packages 71

c02.indd 03/26/2015 Page 71

3. Launch an xterm from the desktop environment’s menu system if you used a

GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting

Session ➢ New Root Console from a Konsole window, or by using sudo (if it’s

confi gured) to run the commands in the following steps.

5. Type dpkg -L zsh to verify that the package isn’t currently installed. This command

responds with a list of fi les associated with the package if it’s installed or with an

error that reads Package 'zsh' is not installed if it’s not.

6. Type dpkg –I zsh_5.0.2-3ubuntu6_amd64.deb. (You’ll need to add a complete

path to the package fi le if it’s not in your current directory.) The system should respond

by displaying information about the package, such as the version number, dependen-

cies, the name of the package maintainer, and a package description.

7. Type dpkg -i zsh_5.0.2-3ubuntu6_amd64.deb. The system should install the

package and display a series of lines summarizing its actions as it does so.

8. Type dpkg -p zsh. The system should respond with information about the package

similar to that displayed in step 6.

9. Type zsh. This launches a Z shell, which functions much like the more common bash

and tcsh shells. You’re likely to see your command prompt change slightly, but you

can issue most of the same commands that you can use with bash or tcsh.

10. Type dpkg -P zsh. This command removes the package from the system, including

confi guration fi les. It may produce a series of warnings about non-empty directories

that it couldn’t remove. Note that you’re removing the zsh package while running

the zsh program. Linux continues to run the zsh program you’re using, but you’ll be

unable to launch new instances of the program. Some programs may misbehave

because fi les will be missing after you remove the package.

11. Type exit to exit from zsh and return to your normal shell.

12. Type dpkg -L zsh. The system should respond with a Package 'zsh' is not

installed error, because you’ve just uninstalled it.

13. Type apt-get install zsh to install zsh using the APT system. Depending on

your confi guration, the system may download the package from an Internet site or

ask you to insert a CD-ROM. If it asks for a CD-ROM, insert it and press the Enter key.

The system should install the package.

14. Type dpkg -p zsh. The system should respond with information about the package

similar to that displayed in step 6 or step 8.

15. Type dpkg -P zsh. This command removes the package from the system, as

described in step 10.

http://technet24.ir/

72 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 72

Using dselect, aptitude, and Synaptic
The dselect program is a high-level package browser. Using it, you can select packages to
install on your system from the APT archives defi ned in /etc/apt/sources.list, review
the packages that are already installed on your system, uninstall packages, and upgrade
packages. Overall, dselect is a powerful tool, but it can be intimidating to the uninitiated
because it presents a lot of options that aren’t obvious, using a text-mode interactive user
interface. Because of that, most Linux distributions don’t install it by default. Nonetheless,
it’s well worth taking the time to install it and getting to know how to use it.

Although dselect supports a few command-line options, they’re mostly obscure or
minor (such as options to set the color scheme). Consult dselect’s man page for details. To
use the program, type dselect. The result is the dselect main menu, as shown running in
an Ubuntu desktop in Figure 2.1.

F I GU R E 2 .1 The dselect utility provides access to APT features using a menu system.

Another text-based Debian package manager is aptitude. In interactive mode, aptitude
is similar to dselect in a rough way, but aptitude adds menus accessed by pressing Ctrl+T
and rearranges some features. You can also pass various commands to aptitude on the com-
mand line, as in aptitude search samba, which searches for packages related to Samba.
Features accessible from the command line (or the interactive interface) include the following:

Update Package Lists You can update package lists from the APT repositories by typing
aptitude update.

Install Software The install command-line option installs a named package. This com-
mand has several variant names and syntaxes that modify its action. For instance, typing
aptitude install zsh installs the zsh package, but typing aptitude install zsh-
(with a trailing dash) and aptitude remove zsh both uninstall zsh.

http://technet24.ir/

Using Debian Packages 73

c02.indd 03/26/2015 Page 73

Upgrade Software The full-upgrade and safe-upgrade options both upgrade all
installed packages. The safe-upgrade option is conservative about removing packages or
installing new ones and so may fail; full-upgrade is less conservative about these actions,
and so it is more likely to complete its tasks. However, it may break software in the process.

Search for Packages The search option, noted earlier, searches the database for packages
matching the specifi ed name. The result is a list of packages, one per line, with summary
codes for each package’s install status, its name, and a brief description.

Clean Up the Database The autoclean option removes already-downloaded packages
that are no longer available, and clean removes all downloaded packages.

Obtain Help Typing aptitude help results in a complete list of options.

Broadly speaking, aptitude combines the interactive features of dselect with the com-
mand-line options of apt-get. All three programs provide similar functionality, so you can
use whichever one you prefer.

A tool that’s similar to dselect and aptitude in some ways is Synaptic, but Synaptic
is a GUI X-based program and, as such, is easier to use. Overall, dselect, aptitude, and
Synaptic are useful tools, particularly if you need to locate software but don’t know its
exact name—the ability to browse and search the available packages can be a great boon.
Unfortunately, the huge package list can be intimidating.

Reconfiguring Packages
Debian packages often provide more-extensive initial setup options than do their RPM
counterparts. Frequently, the install script included in the package asks a handful of
questions, such as querying for the name of an outgoing mail relay system for a mail server
program. These questions help the package system set up a standardized confi guration that
has nonetheless been customized for your computer.

In the course of your system administration, you may alter the confi guration fi les for a
package. If you do this and fi nd that you’ve made a mess of things, you may want to revert
to the initial standard confi guration. To do so, you can use the dpkg-reconfigure program,
which runs the initial confi guration script for the package you specify:

dpkg-reconfigure samba

This command reconfi gures the samba package, asking the package’s initial installation
questions and restarting the Samba daemons. Once this is done, the package should be in
something closer to its initial state.

Debian Packages Compared to Other Package Formats
The overall functionality of Debian packages is similar to that of RPMs, although there are
differences. Debian source packages aren’t single fi les; they’re groups of fi les—the original
source tarball, a patch fi le that’s used to modify the source code (including a fi le that con-
trols the building of a Debian package), and a .dsc fi le that contains a digital “signature”

http://technet24.ir/

74 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 74

to help verify the authenticity of the collection. The Debian package tools can combine
these and compile the package to create a Debian binary package. This structure makes
Debian source packages slightly less convenient to transport because you must move at least
two fi les (the tarball and patch fi le; the .dsc fi le is optional) rather than just one. Debian
source packages also support just one patch fi le, whereas RPM source packages may con-
tain multiple patch fi les. Although you can certainly combine multiple patch fi les into one,
doing so makes it less clear where a patch comes from, thus making it harder to back out of
any given change.

These source package differences are mostly of interest to software developers. As a
system administrator or end user, you need not normally be concerned with them unless
you must recompile a package from a source form—and even then, the differences between
the formats need not be overwhelming. The exact commands and features used by each
system differ, but they accomplish similar overall goals.

Because all distributions that use Debian packages are derived from Debian, they tend
to be more compatible with one another (in terms of their packages) than are RPM-based
distributions. In particular, Debian has defi ned details of its system startup scripts and
many other features to help Debian packages install and run on any Debian-based system.
This helps Debian-based systems avoid the sorts of incompatibilities in startup scripts that
can cause problems using one distribution’s RPMs on another distribution. Of course, some
future distribution could violate Debian’s guidelines for these matters, so this advantage
isn’t guaranteed to hold over time.

As a practical matter, it can be harder to locate Debian packages than RPM packages for
some exotic programs. Debian maintains a good collection at www.debian.org/distrib/
packages, and some program authors make Debian packages available as well. If you can
fi nd an RPM but not a Debian package, you may be able to convert the RPM to Debian
format using a program called alien, as described shortly in “Converting between Package
Formats.” If all else fails, you can use a tarball, but you’ll lose the advantages of the Debian
package database.

Configuring Debian Package Tools
With the exception of the APT sources list mentioned earlier, Debian package tools don’t
usually require confi guration. Debian installs reasonable defaults (as do its derivative
 distributions). On rare occasions, though, you may want to adjust some of these defaults.
Doing so requires that you know where to look for them.

The main confi guration fi le for dpkg is /etc/dpkg/dpkg.cfg or ~/.dpkg.cfg. This fi le
contains dpkg options, as summarized in Table 2.5, but without the leading dashes. For
instance, to have dpkg always perform a test run rather than actually install a package,
you’d create a dpkg.cfg fi le that contains one line:

no-act

For APT, the main confi guration fi le you’re likely to modify is /etc/apt/sources.list,
which was described earlier in “Using apt-get.” Beyond this fi le is /etc/apt/apt.conf,

http://technet24.ir/

Converting between Package Formats 75

c02.indd 03/26/2015 Page 75

which controls APT and dselect options. As with dpkg.cfg, chances are you won’t need to
modify apt.conf. If you do need to make changes, the format is more complex and is mod-
eled after those of the Internet Software Consortium’s (ISC’s) Dynamic Host Confi guration
Protocol (DHCP) and Berkeley Internet Name Domain (BIND) servers’ confi guration fi les.
Options are grouped together by open and close curly braces ({}):

APT

{

 Get

 {

 Download-Only "true";

 };

};

These lines are equivalent to setting the --download-only option permanently, as
described in Table 2.7. You can, of course, set many more options. For details, consult
apt.conf’s man page. You may also want to review the sample confi guration fi le, /usr/
share/doc/apt/examples/apt.conf. (The working /etc/apt/apt.conf fi le is typically
extremely simple, or it may be missing entirely and therefore not be very helpful as an
example.)

You should be aware that Debian’s package tools rely on various fi les in the /var/lib/
dpkg directory tree. These fi les maintain lists of available packages, lists of installed pack-
ages, and so on. In other words, this directory tree is effectively the Debian installed fi le
database. As such, you should be sure to back up this directory when you perform system
backups and be careful about modifying its contents.

Converting between Package Formats

Sometimes you’re presented with a package fi le in one format, but you want to use another
format. This is particularly common when you use a Debian-based distribution and can
fi nd only tarballs or RPM fi les of a package. When this happens, you can keep looking for
a package fi le in the appropriate format, install the tools for the foreign format, create a
package from a source tarball using the standard RPM or Debian tools, or convert between
package formats with a utility like alien.

This section focuses on this last option. The alien program comes with Debian and a
few other distributions, but it may not be installed by default. If it’s not installed on your
system, install it by typing apt-get install alien on a system that uses APT, or use
the RPMFind or Debian package website to locate it. This program can convert between
RPM packages, Debian packages, Stampede packages (used by Stampede Linux), and
tarballs.

You need to be aware of some caveats. For one thing, alien requires that you have
appropriate package manager software installed—for instance, both RPM and Debian—to

http://technet24.ir/

76 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 76

convert between these formats. The alien utility doesn’t always convert all dependency
information completely and correctly. When converting from a tarball, alien copies the
fi les directly as they had been in the tarball, so alien works only if the original tarball has
fi les that should be installed off the root (/) directory of the system.

Although alien requires both RPM and Debian package systems to be
installed to convert between these formats, it doesn’t use the database
features of these packages unless you use the --install option. The
presence of a foreign package manager isn’t a problem as long as you
don’t use it to install software that might duplicate or conflict with
software installed with your primary package manager.

The basic syntax of alien is as follows:

alien [options] file[...]

The most important options are --to-deb, --to-rpm, --to-slp, and --to-tgz, which
convert to Debian, RPM, Stampede, and tarball format, respectively. (If you omit the des-
tination format, alien assumes that you want a Debian package.) The --install option
installs the converted package and removes the converted fi le. Consult the alien man page
for additional options.

For instance, suppose you have a Debian package called someprogram-1.2.3-4_i386.
deb, and you want to create an RPM from it. You can issue the following command to
create an RPM called someprogram-1.2.3-4.i386.rpm:

alien --to-rpm someprogram-1.2.3-4_i386.deb

If you use a Debian-based system and want to install a tarball but keep a record of
the fi les it contains in your Debian package database, you can do so with the following
command:

alien --install binary-tarball.tar.gz

It’s important to remember that converting a tarball converts the fi les in the directory
structure of the original tarball using the system’s root directory as the base. Therefore, you
may need to unpack the tarball, juggle fi les around, and repack it to get the desired results
prior to installing the tarball with alien. For instance, suppose you have a binary tarball
that creates a directory called program-files, with bin, man, and lib directories under
this. The intent may have been to unpack the tarball in /usr or /usr/local and create links
for critical fi les. To convert this tarball to an RPM, you can issue the following commands:

tar xvfz program.tar.gz

mv program-files usr

tar cvfz program.tgz usr

rm -r usr

alien --to-rpm program.tgz

http://technet24.ir/

Package Dependencies and Conflicts 77

c02.indd 03/26/2015 Page 77

By renaming the program-files directory to usr and creating a new tarball, you’ve
created a tarball that, when converted to RPM format, will have fi les in the locations you
want—/usr/bin, /usr/man, and /usr/lib. You might need to perform more extensive
modifi cations, depending on the contents of the original tarball.

Package Dependencies and Conflicts

Although package installation often proceeds smoothly, sometimes it doesn’t. The usual
sources of problems relate to unsatisfi ed dependencies or confl icts between packages. The
RPM and Debian package management systems are intended to help you locate and resolve
such problems. However, on occasion (particularly when mixing packages from different
vendors), they can actually cause problems. In either event, it pays to recognize these errors
and know how to resolve them.

If you use a meta-packager, such as Yum or APT, for all of your package
management, you’re much less likely to run into problems with package
dependencies and conflicts. These problems are most likely to arise when
you install lone packages, especially those from unusual sources.

Real and Imagined Package Dependency Problems
Package dependencies and confl icts can arise for a variety of reasons, including the
following:

Missing Libraries or Support Programs One of the most common dependency problems is
caused by a missing support package. For instance, all KDE programs rely on Qt, a widget
set that provides assorted GUI tools. If Qt isn’t installed, you won’t be able to install any
KDE packages using RPMs or Debian packages. Libraries—support code that can be used
by many different programs as if it were part of the program itself—are particularly com-
mon sources of problems in this respect.

Incompatible Libraries or Support Programs Even if a library or support program is
installed on your system, it may be the wrong version. For instance, if a program requires
Qt 4.8, the presence of Qt 3.3 won’t do much good. Fortunately, Linux library-naming
conventions enable you to install multiple versions of a library in case you have programs
with competing requirements.

Duplicate Files or Features Confl icts arise when one package includes fi les that are
already installed and that belong to another package. Occasionally, broad features can
 confl ict as well, as in two web server packages. Feature confl icts are usually accompanied
by name confl icts. Confl icts are most common when mixing packages intended for differ-
ent distributions, because distributions may split fi les across packages in different ways.

http://technet24.ir/

78 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 78

Mismatched Names RPM and Debian package management systems give names to their
packages. These names don’t always match across distributions. For this reason, if one package
checks for another package by name, the fi rst package may not install on another distribution,
even if the appropriate package is installed, because that target package has a different name.

Some of these problems are very real and serious. Missing libraries, for instance, must
be installed. (Sometimes, though, a missing library isn’t quite as missing as it seems, as
described in the upcoming section “Forcing the Installation.”) Others, like mismatched
package names, are artifacts of the packaging system. Unfortunately, it’s not always easy
to tell into which category a confl ict fi ts. When using a package management system, you
may be able to use the error message returned by the package system, along with your own
experience with and knowledge of specifi c packages, to make a judgment. For instance, if
RPM reports that you’re missing a slew of libraries with which you’re unfamiliar, you’ll
probably have to track down at least one package—unless you know you’ve installed the
libraries in some other way, in which case you may want to force the installation.

Workarounds for Package Dependency Problems
When you encounter an unmet package dependency or confl ict, what can you do about it?
There are several approaches to these problems. Some of these approaches work well in some
situations but not others, so you should review the possibilities carefully. The options include
forcing the installation, modifying your system to meet the dependency, rebuilding the prob-
lem package from source code, and fi nding another version of the problem package.

Forcing the Installation
One approach is to ignore the issue. Although this sounds risky, it’s appropriate in some
cases involving failed RPM or Debian dependencies. For instance, if the dependency is on
a package that you installed by compiling the source code yourself, you can safely ignore
the dependency. When using rpm, you can tell the program to ignore failed dependencies by
using the --nodeps parameter:

rpm -i apackage.rpm --nodeps

You can force installation over some other errors, such as confl icts with existing
 packages, by using the --force parameter:

rpm -i apackage.rpm --force

Do not use --nodeps or --force as a matter of course. Ignoring the depen-
dency checks can lead you into trouble, so you should use these options
only when you need to do so. In the case of conflicts, the error messages
you get when you first try to install without --force will tell you which
packages’ files you’ll be replacing, so be sure you back them up or that you
are prepared to reinstall the packages in case of trouble.

http://technet24.ir/

Package Dependencies and Conflicts 79

c02.indd 03/26/2015 Page 79

If you’re using dpkg, you can use the --ignore-depends=package, --force-depends, and
--force-conflicts parameters to overcome dependency and confl ict problems in Debian-
based systems. Because there’s less deviation in package names and requirements among
Debian-based systems, these options are less often needed on such systems.

Upgrading or Replacing the Depended-on Package
Offi cially, the proper way to overcome a package dependency problem is to install,
upgrade, or replace the depended-on package. If a program requires, say, Qt 4.8 or greater,
you should upgrade an older version (such as 4.4) to 4.8. To perform such an upgrade,
you’ll need to track down and install the appropriate package. This usually isn’t too
diffi cult if the new package you want comes from a Linux distribution, especially if you use
a meta-packager such as Yum or APT; the appropriate depended-on package should come
with the same distribution.

One problem with this approach is that packages intended for different distributions
sometimes have differing requirements. If you run Distribution A and install a package that
was built for Distribution B, the package will express dependencies in terms of Distribution
B’s fi les and versions. The appropriate versions may not be available in a form intended for
Distribution A, and by installing Distribution B’s versions, you can sometimes cause con-
fl icts with other Distribution A packages. Even if you install the upgraded package and it
works, you may run into problems in the future when it comes time to install some other
program or upgrade the distribution as a whole—the upgrade installer may not recognize
Distribution B’s package or may not be able to upgrade to its own newer version.

Rebuilding the Problem Package
Some dependencies result from the libraries and other support utilities installed on the
computer that compiled the package, not from requirements in the underlying source code.
If the software is recompiled on a system that has different packages, the dependencies
will change. Therefore, rebuilding a package from source code can overcome at least some
dependencies.

Most developer-oriented RPM-based systems, such as Fedora, include a command to
rebuild an RPM package: You call rpmbuild (or rpm with old versions of RPM) with the
name of the source package and use --rebuild, as follows:

rpmbuild --rebuild packagename-version.src.rpm

Of course, to do this you must have the source RPM for the package. This can usually
be obtained from the same location as the binary RPM. When you execute this command,
rpmbuild extracts the source code and executes whatever commands are required to build
a new package—or sometimes several new packages. (One source RPM can build multiple
binary RPMs.) The compilation process can take anywhere from a few seconds to several
hours, depending on the size of the package and the speed of your computer. The result
should be one or more new binary RPMs in /usr/src/distname/RPMS/arch, where dist-
name is a distribution-specifi c name (such as redhat on Red Hat or packages on SUSE) and
arch is your CPU architecture (such as i386 or i586 for x86 or ppc for PowerPC). You can
move these RPMs to any convenient location and install them just as you would any others.

http://technet24.ir/

80 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 80

Source packages are also available for Debian systems, but aside from
sites devoted to Debian and related distributions, Debian source pack-
ages are rare. The sites that do have these packages provide them in
forms that typically install easily on appropriate Debian or related
systems. For this reason, it’s less likely that you’ll rebuild a Debian
package from source.

Be aware that compiling a source package typically requires you to have appropriate
development tools installed on your system, such as the GNU Compiler Collection (GCC)
and assorted development libraries. Development libraries are the parts of a library that
enable programs to be written for the library. Many Linux installations lack development
libraries even when the matching binary libraries are installed. Thus, you may need to
install quite a few packages to recompile a source package. The error messages you receive
when you attempt but fail to build a source package can help you track down the necessary
software, but you may need to read several lines of error messages and use your package
system to search for appropriate tools and development libraries. (Development libraries
often include the string dev or devel in their names.)

Locating Another Version of the Problem Package
Frequently, the simplest way to fi x a dependency problem or package confl ict is to use a
 different version of the package that you want to install. This could be a newer or older
offi cial version (4.2.3 rather than 4.4.7, say), or it might be the same offi cial version but
built for your distribution rather than for another distribution. Sites like RPMFind
(www.rpmfind.net) and Debian’s package listing (www.debian.org/distrib/packages)
can be very useful in tracking down alternative versions of a package. Your own distribu-
tion’s website or FTP site can also be a good place to locate packages.

If the package you’re trying to install requires newer libraries than you
have, and you don’t want to upgrade those libraries, an older version of the
package may work with your existing libraries. Before installing such a
program, though, you should check to be sure that the newer version of
the program doesn’t fix security bugs. If it does, you should find another
way to install the package.

The main problem with locating another version of the package is that sometimes you
really need the version that’s not installing correctly. It may have features that you need, or
it may fi x important bugs. On occasion, other versions may not be available, or you may be
unable to locate another version of the package in your preferred package format.

Startup Script Problems
One particularly common problem when trying to install servers from one distribution
in another is getting startup scripts to work. In the past, most major Linux distributions

http://technet24.ir/

Managing Shared Libraries 81

c02.indd 03/26/2015 Page 81

used SysV startup scripts, but these scripts weren’t always transportable across distri-
butions. Today, alternatives to SysV are common, such as the systemd startup method,
which further complicates this problem. The result is that the server you installed may
not start up. Possible workarounds include modifying the startup script that came with
the server, building a new script based on another one from your distribution, and start-
ing the server through a local startup script like /etc/rc.d/rc.local or /etc/rc.d/
boot.local. Chapter 5, “Booting Linux and Editing Files,” describes startup scripts in
more detail.

Startup script problems affect only servers and other programs that are
started automatically when the computer boots; they don’t affect typical
user applications or libraries.

Managing Shared Libraries

Most Linux software relies heavily on shared libraries. The preceding sections have
described some of the problems that can arise in managing shared library packages—for
example, if a library isn’t installed or is the wrong version, you may have problems install-
ing a package. Library management goes beyond merely confi guring them, though. To
understand this, you must fi rst understand a few library principles. You can then move on
to setting the library path and using commands that manage libraries.

Library Principles
The idea behind a library is to simplify programmers’ lives by providing commonly used
program fragments. For instance, one of the most important libraries is the C library (libc),
which provides many of the higher-level features associated with the C programming lan-
guage. Another common type of library is associated with GUIs. These libraries are often
called widget sets because they provide the onscreen widgets used by programs—buttons,
scroll bars, menu bars, and so on. The GIMP Tool Kit (GTK+) and Qt are the most popular
Linux widget sets, and both ship largely as libraries. Programmers choose libraries, not
users; you usually can’t substitute one library for another. (The main exceptions are minor
version upgrades.)

Linux uses the GNU C library (glibc) version of the C library. Package-
manager dependencies and other library references are to glibc
 specifically. As of glibc 2.15, for historical reasons the main glibc file
is usually called /lib/libc.so.6 or /lib64/libc.so.6, but this file
is sometimes a symbolic link to a file of another name, such as /lib/
libc-2.15.so.

http://technet24.ir/

82 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 82

In principle, the routines in a library can be linked into a program’s main fi le, just like
all of the object code fi les created by the compiler. This approach, however, has certain
problems:

 ■ The resulting program file is huge. This means it takes up a lot of disk space, and it
consumes a lot of RAM when loaded.

 ■ If multiple programs use the library, as is common, the program-size issue is multiplied
several times; the library is effectively stored multiple times on disk and in RAM.

 ■ The program can’t take advantage of improvements in the library without being recom-
piled (or at least relinked).

For these reasons, most programs use their libraries as shared libraries (aka dynamic
libraries). In this form, the main program executable omits most of the library routines.
Instead, the executable includes references to shared library fi les, which can then be loaded
along with the main program fi le. This approach helps keep program fi le size down, enables
sharing of the memory consumed by libraries across programs, and enables programs to
take advantage of improvements in libraries by upgrading the library.

Linux shared libraries are similar to the dynamic link libraries (DLLs) of
Windows. Windows DLLs are usually identified by .dll filename extensions.
In Linux, however, shared libraries usually have a .so or .so.version
extension, where version is a version number. (.so stands for shared object.)
Linux static libraries (used by linkers for inclusion in programs when dynamic
libraries aren’t to be used) have .a filename extensions.

On the downside, shared libraries can degrade program load time slightly if the library
isn’t already in use by another program, and they can create software management
complications:

 ■ Shared library changes can be incompatible with some or all programs that use the
library. Linux uses library-numbering schemes to enable you to keep multiple versions
of a library installed at once. Upgrades that shouldn’t cause problems can overwrite
older versions, whereas major upgrades get installed side by side with their older coun-
terparts. This approach minimizes the chance of problems, but sometimes changes that
shouldn’t cause problems do cause them.

 ■ Programs must be able to locate shared libraries. This task requires adjusting configu-
ration files and environment variables. If it’s done wrong, or if a program overrides
the defaults and looks in the wrong place, the result is usually that the program won’t
run at all.

 ■ The number of libraries for Linux has risen dramatically over time. When they’re
used in shared form, the result can be a tangled mess of package dependencies,
particularly if you use programs that rely on many or obscure libraries. In most cases,
this issue boils down to a package problem that can be handled by your package
management tools.

http://technet24.ir/

Managing Shared Libraries 83

c02.indd 03/26/2015 Page 83

 ■ If an important shared library becomes inaccessible because it was accidentally over-
written due to a disk error or for any other reason, the result can be severe system
problems. In a worst-case scenario, the system might not even boot.

In most cases, these drawbacks are manageable and are much less important than the
problems associated with using static libraries. Thus, dynamic libraries are very popular.

Developers who create programs using particularly odd, outdated, or
otherwise exotic libraries sometimes use static libraries. This enables them
to distribute their binary packages without requiring users to obtain and
install their oddball libraries. Likewise, static libraries are sometimes used
on small emergency systems, which don’t have enough programs installed
to make the advantages of shared libraries worth pursuing.

Locating Library Files
The major administrative challenge of handling shared libraries involves enabling pro-
grams to locate those shared libraries. Binary program fi les can point to libraries either by
name alone (as in libc.so.6) or by providing a complete path (as in /lib/libc.so.6). In
the fi rst case, you must confi gure a library path—a set of directories in which programs
should search for libraries. This can be done both through a global confi guration fi le and
through an environment variable. If a static path to a library is wrong, you must fi nd a way
to correct the problem. In all of these cases, after making a change, you may need to use a
special command to get the system to recognize the change, as described later in “Library
Management Commands.”

Setting the Path System Wide
The fi rst way to set the library path is to edit the /etc/ld.so.conf fi le. This fi le consists
of a series of lines, each of which lists one directory in which shared library fi les may be
found. Typically, this fi le lists between half a dozen and a couple dozen directories. Some
distributions have an additional type of line in this fi le. These lines begin with the include
directive; they list fi les that are to be included as if they were part of the main fi le. For
instance, Ubuntu 12.04’s ld.so.conf begins with this line:

include /etc/ld.so.conf.d/*.conf

This line tells the system to load all of the fi les in /etc/ld.so.conf.d whose names end
in .conf as if they were part of the main /etc/ld.so.conf fi le. This mechanism enables
package maintainers to add their unique library directories to the search list by placing a
.conf fi le in the appropriate directory.

Some distributions, such as Gentoo, use a mechanism with a similar goal but different
details. With these distributions, the env-update utility reads fi les in /etc/env.d to
create the fi nal form of several /etc confi guration fi les, including /etc/ld.so.conf.

http://technet24.ir/

84 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 84

In particular, the LDPATH variables in these fi les are read, and their values make up the
lines in ld.so.conf. Thus, to change ld.so.conf in Gentoo or other distributions that
use this mechanism, you should add or edit fi les in /etc/env.d and then type env-update
to do the job.

Generally speaking, there’s seldom a need to change the library path system wide.
Library package fi les usually install themselves in directories that are already on the path
or add their paths automatically. The main reason to make such changes would be if you
installed a library package, or a program that creates its own libraries, in an unusual
 location via a mechanism other than your distribution’s main package utility. For instance,
you might compile a library from source code and then need to update your library path
in this way.

After you change your library path, you must use ldconfig to have your programs use
the new path, as described later in “Library Management Commands.”

In addition to the directories specified in /etc/ld.so.conf, Linux refers
to the trusted library directories, /lib and /usr/lib. These directories are
always on the library path, even if they aren’t listed in ld.so.conf.

Temporarily Changing the Path
Sometimes, changing the path permanently and globally is unnecessary and even inappro-
priate. For instance, you might want to test the effect of a new library before using it for
all of your programs. To do so, you could install the shared libraries in an unusual location
and then set the LD_LIBRARY_PATH environment variable. This environment variable speci-
fi es additional directories the system is to search for libraries.

Chapter 9, “Writing Scripts, Configuring Email, and Using Databases,”
describes environment variables in more detail.

To set the LD_LIBRARY_PATH environment variable using the bash shell, you can type a
command like this:

$ export LD_LIBRARY_PATH=/usr/local/testlib:/opt/newlib

This line adds two directories, /usr/local/testlib and /opt/newlib, to the search
path. You can specify as few or as many directories as you like, separated by colons. These
directories are added to the start of the search path, which means they take precedence over
other directories. This fact is handy when you’re testing replacement libraries, but it can
cause problems if users manage to set this environment variable inappropriately.

You can set this environment variable permanently in a user’s shell startup script fi les, as
described in Chapter 9. Doing so means the user will always use the specifi ed library paths

http://technet24.ir/

Managing Shared Libraries 85

c02.indd 03/26/2015 Page 85

in addition to the normal system paths. In principle, you could set the LD_LIBRARY_PATH
globally; however, using /etc/ld.so.conf is the preferred method of effecting global
changes to the library path.

Unlike other library path changes, this one doesn’t require that you run ldconfig for it
to take effect.

Correcting Problems
Library path problems usually manifest as a program’s inability to locate a library. If you
launch the program from a shell, you’ll see an error message like this:

$ gimp

gimp: error while loading shared libraries: libXinerama.so.1: cannot~CA

 open shared object file: No such file or directory

This message indicates that the system couldn’t fi nd the libXinerama.so.1 library fi le.
The usual cause of such problems is that the library isn’t installed, so you should look for
it using commands such as find (described in Chapter 4, “Managing Files”). If the fi le isn’t
installed, try to track down the package to which it should belong (a Web search can work
wonders for this task) and install it.

If, on the other hand, the library fi le is available, you may need to add its directory glob-
ally or to LD_LIBRARY_PATH. Sometimes, the library’s path is hard-coded in the program’s
binary fi le. (You can discover this using ldd, as described shortly in “Library Management
Commands.”) When this happens, you may need to create a symbolic link from the loca-
tion of the library on your system to the location the program expects. A similar problem
can occur when the program expects a library to have one name but the library has another
name on your system. For instance, the program may link to biglib.so.5, but your system
has biglib.so.5.2 installed. Minor version-number changes like this are usually inconse-
quential, so creating a symbolic link will correct the problem:

ln -s biglib.so.5.2 biglib.so.5

You must type this command as root in the directory in which the library resides. You
must then run ldconfig, as described in the next section.

Library Management Commands
Linux provides a pair of commands that you’re likely to use for library management. The
ldd program displays a program’s shared library dependencies—that is, the shared libraries
that a program uses. The ldconfig program updates caches and links used by the system
for locating libraries—that is, it reads /etc/ld.so.conf and implements any changes
in that fi le or in the directories to which it refers. Both of these tools are invaluable in
 managing libraries.

http://technet24.ir/

86 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 86

Displaying Shared Library Dependencies
If you run into programs that won’t launch because of missing libraries, the fi rst step is to
check which libraries the program fi le uses. You can do this with the ldd command:

$ ldd /bin/ls
 linux-vdso.so.1 => (0x00007fff77bfe000)

 libselinux.so.1=>/lib/x86_64/libselinux.so.1 (0x00007f878f48f000)

 libacl.so.1 => /lib/x86_64-linux-gnu/libacl.so.1 (0x00007f878f287000)

 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f878eec0000)

 libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f878ec82000)

 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f878ea7e000)

 /lib64/ld-linux-x86-64.so.2 (0x00007f878f6cb000)

 libattr.so.1 => /lib/x86_64-linux-gnu/libattr.so.1 (0x00007f878e878000)

$

Each line of output begins with a library name, such as librt.so.1 or libncurses.
so.5. If the library name doesn’t contain a complete path, ldd attempts to fi nd the true
library and displays the complete path following the => symbol, as in /lib/librt.so.1 or /
lib/libncurses.so.5. You needn’t be concerned about the long hexadecimal number
following the complete path to the library fi le. The preceding example shows one library
(/lib64/ld-linux-x86-64.so.2) that’s referred to with a complete path in the executable
fi le. It lacks the initial directory-less library name and => symbol.

The ldd command accepts a few options. The most notable of these is probably -v,
which displays a long list of version information following the main entry. This information
may be helpful in tracking down which version of a library a program is using, in case you
have multiple versions installed.

Keep in mind that libraries can themselves depend on other libraries, thus you can use
ldd to discover what libraries are used by a library. Because of this potential for a depen-
dency chain, it’s possible that a program will fail to run even though all of its libraries
are present. When using ldd to track down problems, be sure to check the needs of all the
libraries of the program, and all of the libraries used by the fi rst tier of libraries, and so on,
until you’ve exhausted the chain.

The ldd utility can be run by ordinary users as well as by root. You must run it as root
if you can’t read the program fi le as an ordinary user.

Rebuilding the Library Cache
Linux (or, more precisely, the ld.so and ld-linux.so programs, which manage the
 loading of libraries) doesn’t read /etc/ld.so.conf every time a program runs. Instead,
the system relies on a cached list of directories and the fi les they contain stored in binary
format in /etc/ld.so.cache. This list is maintained in a format that’s much more
 effi cient than a plain-text list of fi les and directories. The drawback is that you must
rebuild that cache every time you add or remove libraries. These additions and removals

http://technet24.ir/

Managing Processes 87

c02.indd 03/26/2015 Page 87

include both changing the contents of the library directories and adding or removing
library directories.

The tool to do this job is called ldconfig. Ordinarily, it’s called without any options:

ldconfig

This program does, though, take options to modify its behavior:

Display Verbose Information Ordinarily, ldconfig doesn’t display any information as it
works. The -v option causes the program to summarize the directories and fi les it’s regis-
tering as it goes about its business.

Don’t Rebuild the Cache The -N option causes ldconfig not to perform its primary duty
of updating the library cache. It will, though, update symbolic links to libraries, which is a
secondary duty of this program.

Process Only Specified Directories The -n option causes ldconfig to update the links
contained in the directories specifi ed on the command line. The system won’t examine the
directories specifi ed in /etc/ld.so.conf or the trusted directories (/lib and /usr/lib).

Don’t Update Links The -X option is the opposite of -N; it causes ldconfig to update the
cache but not manage links.

Use a New Configuration File You can change the confi guration fi le from /etc/ld.so.
conf by using the -f conffile option, where conffile is the fi le you want to use.

Use a New Cache File You can change the cache fi le that ldconfig creates by passing the
-C cachefile option, where cachefile is the fi le you want to use.

Use a New Root The -r dir option tells ldconfig to treat dir as if it were the root (/)
directory. This option is helpful when you’re recovering a badly corrupted system or install-
ing a new OS.

Display Current Information The -p option causes ldconfig to display the current
cache—all of the library directories and the libraries they contain.

Both RPM and Debian library packages typically run ldconfig automatically after
installing or removing the package. The same thing happens as part of the installation
process for many packages compiled from source. Thus, you may well be running ldconfig
more than you realize in the process of software management. You may need to run the
program yourself if you manually modify your library confi guration in any way.

Managing Processes

When you type a command name, that program is run and a process is created for it.
Knowing how to manage these processes is critical to using Linux. Key details in this task
include identifying processes, manipulating foreground and background processes, killing
processes, and adjusting process priorities.

http://technet24.ir/

88 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 88

Understanding the Kernel: The First Process
The Linux kernel is at the heart of every Linux system. Although you can’t manage the
kernel process in quite the way you can manage other processes, short of rebooting the
computer, you can learn about it. To do so, you can use the uname command, which takes
several options to display information:

Node Name The -n or --nodename option displays the system’s node name; that is, its
network hostname.

Kernel Name The -s or --kernel-name option displays the kernel name, which is Linux
on a Linux system.

Kernel Version You can fi nd the kernel version with the -v or --kernel-version option.
Ordinarily, this holds the kernel build date and time, not an actual version number.

Kernel Release The actual kernel version number can be found via the -r or --kernel-
release option.

Machine The -m or --machine option returns information about your machine. This is
likely to be a CPU code, such as i686 or x86_64.

Processor Using the -p or --processor option may return information about your CPU,
such as the manufacturer, model, and clock speed; in practice, it returns unknown on many
systems.

Hardware Platform Hardware platform information is theoretically returned by the -i or
--hardware-platform option, but this option often returns unknown.

OS Name The -o or --operating-system option returns the OS name—normally GNU/
Linux for a Linux system.

Print All Information The -a or --all option returns all available information.

In practice, you’re most likely to use uname -a at the command line to learn some of the
basics about your kernel and system. The other options are most useful in multiplatform
scripts, which can use these options to obtain critical information quickly in order to help
them adjust their actions for the system on which they’re running.

Examining Process Lists
One of the most important tools in process management is ps. This program displays
processes’ status (hence the name, ps). It sports many helpful options, and it’s useful in
monitoring what’s happening on a system. This can be particularly critical when
the computer isn’t working as it should be—for instance, if it’s unusually slow. The ps
program supports an unusual number of options, but just a few of them will take you a
long way. Likewise, interpreting ps output can be tricky because so many options modify
the program’s output. Some ps-like programs, most notably top, also deserve attention.

http://technet24.ir/

Managing Processes 89

c02.indd 03/26/2015 Page 89

Using Useful ps Options
The offi cial syntax for ps is fairly simple:

ps [options]

This simplicity of form hides considerable complexity because ps supports three
 different types of options as well as many options within each type. The three types of
options are as follows:

Unix98 Options These single-character options may be grouped together and are pre-
ceded by a single dash (-).

BSD Options These single-character options may be grouped together and must not be
preceded by a dash.

GNU Long Options These multi-character options are never grouped together. They’re
preceded by two dashes (--).

Options that may be grouped together may be clustered without spaces between them.
For instance, rather than typing ps -a -f, you can type ps -af. The reason for so much
complexity is that the ps utility has historically varied a lot from one Unix OS to another.
The version of ps that ships with major Linux distributions attempts to implement most
features from all these different ps versions, so it supports many different personalities.
In fact, you can change some of its default behaviors by setting the PS_PERSONALITY
environment variable to posix, old, linux, bsd, sun, digital, or various others. The rest
of this section describes the default ps behavior on most Linux systems.

Some of the more useful ps features include the following:

Display Help The --help option summarizes some of the more common ps options.

Display All Processes By default, ps displays only processes that were run from its own
terminal (xterm, text-mode login, or remote login). The -A and -e options cause it to
display all of the processes on the system, and x displays all processes owned by the user
who gives the command. The x option also increases the amount of information that’s
displayed about each process.

Display One User’s Processes You can display processes owned by a given user with the
-u user, U user, and --User options. The user variable may be a username or a user ID.

Display Extra Information The -f, -l, j, l, u, and v options all expand the information
provided in the ps output. Most ps output formats include one line per process, but ps
can display enough information that it’s impossible to fi t it all on one 80-character line.
Therefore, these options provide various mixes of information.

Display Process Hierarchy The -H, -f, and --forest options group processes and use
indentation to show the hierarchy of relationships between processes. These options are
useful if you’re trying to trace the parentage of a process.

http://technet24.ir/

90 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 90

Display Wide Output The ps command output can be more than 80 columns wide.
Normally, ps truncates its output so that it will fi t on your screen or xterm. The -w and
w options tell ps not to do this, which can be useful if you direct the output to a fi le,
as in ps w > ps.txt. You can then examine the output fi le in a text editor that supports
wide lines.

You can combine these ps options in many ways to produce the output you want. You’ll
probably need to experiment to learn which options produce the desired results because
each option modifi es the output in some way. Even those that would seem to infl uence just
the selection of processes to list sometimes modify the information that’s provided about
each process.

Interpreting ps Output
Listing 2.3 and Listing 2.4 show a couple of examples of ps in action. Listing 2.3 shows ps
-u rodsmith --forest, and Listing 2.4 shows ps u rodsmith.

Listing 2.3: Output of ps -u rodsmith --forest

$ ps -u rodsmith --forest

 PID TTY TIME CMD

 2451 pts/3 00:00:00 bash

 2551 pts/3 00:00:00 ps

 2496 ? 00:00:00 kvt

 2498 pts/1 00:00:00 bash

 2505 pts/1 00:00:00 _ nedit

 2506 ? 00:00:00 _ csh

 2544 ? 00:00:00 _ xeyes

19221 ? 00:00:01 dfm

Listing 2.4: Output of ps u rodsmith

$ ps u rodsmith

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

rodsmith 19221 0.0 1.5 4484 1984 ? S May07 0:01 dfm

rodsmith 2451 0.0 0.8 1856 1048 pts/3 S 16:13 0:00 -bash

rodsmith 2496 0.2 3.2 6232 4124 ? S 16:17 0:00 /opt/kd

rodsmith 2498 0.0 0.8 1860 1044 pts/1 S 16:17 0:00 bash

rodsmith 2505 0.1 2.6 4784 3332 pts/1 S 16:17 0:00 nedit

rodsmith 2506 0.0 0.7 2124 1012 ? S 16:17 0:00 /bin/cs

rodsmith 2544 0.0 1.0 2576 1360 ? S 16:17 0:00 xeyes

rodsmith 2556 0.0 0.7 2588 916 pts/3 R 16:18 0:00 ps u

http://technet24.ir/

Managing Processes 91

c02.indd 03/26/2015 Page 91

The output produced by ps normally begins with a heading line, which displays the
meaning of each column. Important information that may be displayed (and labeled)
includes the following:

Username This is the name of the user who runs the programs. Listing 2.3 and Listing
2.4 restricted this output to one user to limit the length of the listings.

Process ID The process ID (PID) is a number that’s associated with the process. This item
is particularly important because you need it to modify or kill the process, as described
later in this chapter.

Parent Process ID The parent process ID (PPID) identifi es the process’s parent. (Neither
Listing 2.3 nor Listing 2.4 shows the PPID.)

TTY The teletype (TTY) is a code used to identify a terminal. As illustrated by Listing
2.3 and Listing 2.4, not all processes have TTY numbers—X programs and daemons, for
instance, don’t. Text-mode programs do have these numbers, which point to a console,
xterm, or remote login session.

CPU Time The TIME and %CPU headings are two measures of CPU time used. The fi rst
indicates the total amount of CPU time consumed, and the second represents the percent-
age of CPU time the process is using when ps executes. Both can help you spot runaway
processes—those that are consuming too much CPU time. Unfortunately, what constitutes
“too much” varies from one program to another, so it’s impossible to give a simple rule to
help you spot a runaway process.

CPU Priority As described shortly, in “Managing Process Priorities,” it’s possible to give
different processes different priorities for CPU time. The NI column, if present (it’s not in
the preceding examples) lists these priority codes. The default value is 0. Positive values
represent reduced priority, whereas negative values represent increased priority.

Memory Use Various headings indicate memory use—for instance, RSS is resident set
size (the memory used by the program and its data), and %MEM is the percentage of memory
the program is using. Some output formats also include a SHARE column, which is memory
that’s shared with other processes (such as shared libraries). As with CPU-use measures,
these columns can help point you to the sources of diffi culties, but because legitimate
memory needs of programs vary so much, it’s impossible to give a simple criterion for when
a problem exists.

Command The fi nal column in most listings is the command used to launch the process.
This is truncated in Listing 2.4 because this format lists the complete command, but so
much other information appears that the complete command won’t usually fi t on one line.
(This is where the wide-column options can come in handy.)

As you can see, a lot of information can be gleaned from a ps listing—or perhaps that
should be the plural listings, because no single format includes all of the available informa-
tion. For the most part, the PID, username, and command are the most important pieces of

http://technet24.ir/

92 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 92

information. In some cases, though, you may need other specifi c components. If your
system’s memory or CPU use has skyrocketed, for instance, you’ll want to pay attention to
the memory or CPU use column.

It’s often necessary to find specific processes. You might want to find the
PID associated with a particular command in order to kill it, for instance.
This information can be gleaned by piping the ps output through grep, as
in ps ax | grep bash to find all of the instances of bash.

Although you may need a wide screen or xterm to view the output, you may fi nd ps
-A --forest to be a helpful command in learning about your system. Processes that aren’t
linked to others were either started directly by init or have had their parents killed, and
so they have been “adopted” by init. (Chapter 5 describes init and the boot procedure in
more detail.) Most of these processes are fairly important—they’re servers, login tools, and
so on. Processes that hang off several others in this tree view, such as xeyes and nedit in
Listing 2.3, are mostly user programs launched from shells.

top: A Dynamic ps Variant
If you want to know how much CPU time various processes are consuming relative to one
another, or if you want to discover quickly which processes are consuming the most CPU
time, a tool called top is the one for the job. The top tool is a text-mode program, but of
course it can be run in an xterm or similar window, as shown in Figure 2.2. There are also
GUI variants, like kpm and gnome-system-monitor. By default, top sorts its entries by CPU
use, and it updates its display every few seconds. This makes it a very good tool for spotting
runaway processes on an otherwise lightly loaded system—those processes almost always
appear in the fi rst position or two, and they consume an inordinate amount of CPU time.
Figure 2.2 shows a typical top output screen, displaying the different processes and their
CPU utilization. You’ll need to be familiar with the purposes and normal habits of
programs running on your system in order to make such determinations; the legitimate
needs of different programs vary so much that it’s impossible to give a simple rule for
judging when a process is consuming too much CPU time.

Like many Linux commands, top accepts several options. The most useful are listed
here:

-d delay This option specifi es the delay between updates, which is normally 5 seconds.

-p pid If you want to monitor specifi c processes, you can list them using this option.
You’ll need the PIDs, which you can obtain with ps, as described earlier. You can specify
up to 20 PIDs by using this option multiple times, once for each PID.

-n iter You can tell top to display a certain number of updates (iter) and then quit.
(Normally, top continues updating until you terminate the program.)

-b This option specifi es batch mode, in which top doesn’t use the normal screen-update
commands. You might use this to log CPU use of targeted programs to a fi le, for instance.

http://technet24.ir/

Managing Processes 93

c02.indd 03/26/2015 Page 93

F I GU R E 2 . 2 The top command shows system summary information and information
about the most CPU-intensive processes on a computer.

You can do more with top than watch it update its display. When it’s running, you can
enter any of several single-letter commands, some of which prompt you for additional
information. These commands include the following:

h and ? These keystrokes display help information.

k You can kill a process with this command. The top program will ask for a PID number,
and if it’s able to kill the process, it will do so. (The upcoming section “Killing Processes”
describes other ways to kill processes.)

q This option quits from top.

r You can change a process’s priority with this command. You’ll have to enter the PID
number and a new priority value—a positive value will decrease its priority, and a nega-
tive value will increase its priority, assuming it has the default 0 priority to begin with.
Only root may increase a process’s priority. The renice command (described shortly, in
“Managing Process Priorities”) is another way to accomplish this task.

s This command changes the display’s update rate, which you’ll be asked to enter (in seconds).

P This command sets the display to sort by CPU usage, which is the default.

M You can change the display to sort by memory usage with this command.

If you’re just looking for the memory usage on the system, try using the
free command. It provides a quick glance at how much physical and swap
memory is in use, and how much is available.

http://technet24.ir/

94 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 94

More commands are available in top (both command-line options and interactive
 commands) than can be summarized here; consult top’s man page for more information.

One of the pieces of information provided by top is the load average, which is a measure
of the demand for CPU time by applications. In Figure 2.2, you can see three load-average
estimates on the top line; these correspond to the current load average and two previous
measures. A system on which no programs are demanding CPU time has a load average
of 0.0. A system with one program running CPU-intensive tasks has a load average of 1.0.
Higher load averages refl ect programs competing for available CPU time. You can also fi nd
the current load average via the uptime command, which displays the load average along
with information on how long the computer has been running. The load average can be
 useful in detecting runaway processes. For instance, if a system normally has a load average of
0.5 but suddenly gets stuck at a load average of 2.5, a couple of CPU-hogging processes may
have hung—that is, become unresponsive. Hung processes sometimes needlessly consume a
lot of CPU time. You can use top to locate these processes and, if necessary, kill them.

Most computers today include multiple CPUs or CPU cores. On such
systems, the load average can equal the number of CPUs or cores before
competition for CPU time begins. For instance, on a quad-core CPU, the
load average can be as high as 4.0 without causing contention. Typically,
one program can create a load of just 1.0; however, multithreaded programs
can create higher load averages, particularly on multi-core systems.

jobs: Processes Associated with Your Session
The jobs command displays minimal information about the processes associated with the
current session. In practice, jobs is usually of limited value, but it does have a few uses.
One of these is to provide job ID numbers. These numbers are conceptually similar to PID
numbers, but they’re not the same. Jobs are numbered starting from 1 for each session and,
in most cases, a single shell has only a few associated jobs. The job ID numbers are used by
a handful of utilities in place of PIDs, so you may need this information.

A second use of jobs is to ensure that all of your programs have terminated prior to
logging out. Under some circumstances, logging out of a remote login session can cause the
client program to freeze up if you’ve left programs running. A quick check with jobs will
inform you of any forgotten processes and enable you to shut them down.

pgrep: Finding Processes
The pgrep command was introduced in the Solaris operating system, but it has been ported
to the open-source world and is becoming more popular in Linux. It allows you to perform
simple searches within the process list; similar to piping the ps command output to the
grep command.

The format of the pgrep command is as follows:

pgrep [-flvx] [-n | -o] [-d delim] [-P ppidlist] [-g pgrplist]

 [-s sidlist] [-u euidlist] [-U uidlist] [-G gidlist]

http://technet24.ir/

Managing Processes 95

c02.indd 03/26/2015 Page 95

 [-J projidlist] [-t termlist] [-T taskidlist] [-c ctidlist]

 [-z zoneidlist] [pattern]

You can search for processes based on the username, user ID, or group ID as well as any
type of regular expression pattern:

$ pgrep -u root cron

812

$

This example searches for a process named cron, run by the root user account. Notice that
the pgrep command only returns the process ID value of the processes that match the query.

Understanding Foreground and
Background Processes
One of the most basic process-management tasks is to control whether a process is
running in the foreground or the background; that is, whether it’s monopolizing the use
of the terminal from which it was launched. Normally, when you launch a program, it
takes over the terminal, preventing you from doing other work in that terminal. (Some
programs, though, release the terminal. This is most common for servers and some GUI
programs.)

If a program is running but you decide you want to use that terminal for something
else, pressing Ctrl+Z normally pauses the program and gives you control of the terminal.
(An important point is that this procedure suspends the program, so if it’s performing real
work, that work stops!) This can be handy if, say, you’re running a text editor in a text-
mode login and you want to check a fi lename so that you can mention it in the fi le you’re
editing. You press Ctrl+Z and type ls to get the fi le listing. To get back to the text
editor, you then type fg, which restores the text editor to the foreground of your terminal.
If you’ve suspended several processes, you add a job number, as in fg 2, to restore job 2.
You can obtain a list of jobs associated with a terminal by typing jobs, which displays the
jobs and their job numbers.

A variant on fg is bg. Whereas fg restores a job to the foreground, bg restores a job to
running status, but in the background. You can use this command if the process you’re
running is performing a CPU-intensive task that requires no human interaction but
you want to use the terminal in the meantime. Another use of bg is in a GUI environ-
ment—after launching a GUI program from an xterm or similar window, that shell is
tied up servicing the GUI program, which probably doesn’t really need the shell. Pressing
Ctrl+Z in the xterm window will enable you to type shell commands again, but the
GUI program will be frozen. To unfreeze the GUI program, type bg in the shell, which
enables the GUI program to run in the background while the shell continues to process
your commands.

As an alternative to launching a program, using Ctrl+Z, and typing bg to run a program
in the background, you can append an ampersand (&) to the command when launching

http://technet24.ir/

96 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 96

the program. For instance, rather than editing a fi le with the NEdit GUI editor by typing
nedit myfile.txt, you can type nedit myfile.txt &. This command launches the
nedit program in the background from the start, leaving you able to control your xterm
window for other tasks.

Managing Process Priorities
Sometimes, you may want to prioritize your programs’ CPU use. For instance, you may
be running a program that’s very CPU intensive but that will take a long time to fi nish its
work, and you don’t want that program to interfere with others that are of a more interac-
tive nature. Alternatively, on a heavily loaded computer, you may have a job that’s more
important than others that are running, so you may want to give it a priority boost. In
either case, the usual method of accomplishing this goal is through the nice and renice
commands. You can use nice to launch a program with a specifi ed priority or use renice
to alter the priority of a running program.

You can assign a priority to nice in any of three ways: by specifying the priority pre-
ceded by a dash (this works well for positive priorities but makes them look like negative
priorities), by specifying the priority after the -n parameter, or by specifying the priority
after the --adjustment= parameter. In all cases, these parameters are followed by the name
of the program you want to run:

nice [argument] [command [command-arguments]]

For instance, the following three commands are all equivalent:

$ nice -12 number-crunch data.txt

$ nice -n 12 number-crunch data.txt

$ nice --adjustment=12 number-crunch data.txt

All three of these commands run the number-crunch program at priority 12 and pass
it the data.txt fi le. If you omit the adjustment value, nice uses 10 as a default. The range
of possible values is –20 to 19, with negative values having the highest priority. Only root
may launch a program with increased priority (that is, give a negative priority value), but
any user may use nice to launch a program with low priority. The default priority for a
program run without nice is 0.

If you’ve found that a running process is consuming too much CPU time or it is being
swamped by other programs and so should be given more CPU time, you can use the
renice program to alter its priority without disrupting the program’s operation. The syntax
for renice is as follows:

renice priority [[-p] pids] [[-g] pgrps] [[-u] users]

You must specify priority, which takes the same values this variable takes with nice. In
addition, you must specify one or more PIDs (pids), one or more group IDs (pgrps), or one

http://technet24.ir/

Managing Processes 97

c02.indd 03/26/2015 Page 97

or more usernames (users). In the latter two cases, renice changes the priority of all
programs that match the specifi ed criterion—but only root may use renice in this way.
Also, only root may increase a process’s priority. If you give a numeric value without a
-p, -g, or -u option, renice assumes the value is a PID. You may mix and match these
methods of specifi cation. For instance, you might enter the following command:

renice 7 16580 -u pdavison tbaker

This command sets the priority to 7 for PID 16580 and for all processes owned by
pdavison and tbaker.

Killing Processes
Sometimes, reducing a process’s priority isn’t a strong enough action. A program may
have become totally unresponsive, or you may want to terminate a process that shouldn’t
be running. In these cases, the kill command is the tool to use. This program sends a
signal (a method that Linux uses to communicate with processes) to a process. The signal
is usually sent by the kernel, the user, or the program itself to terminate the process. Linux
supports many numbered signals, each of which is associated with a specifi c name. You can
see them all by typing kill -l. If you don’t use -l, the syntax for kill is as follows:

kill -s signal pid

Although Linux includes a kill program, many shells, including bash and
csh, include built-in kill equivalents that work in much the same way as
the external program. If you want to be sure you’re using the external
program, type its complete path, as in /bin/kill.

The -s signal parameter sends the specifi ed signal to the process. You can specify the
signal using either a number (such as 9) or a name (such as SIGKILL). The signals you’re
most likely to use are 1 (SIGHUP, which terminates interactive programs and causes many
daemons to reread their confi guration fi les), 9 (SIGKILL, which causes the process to exit
without performing routine shutdown tasks), and 15 (SIGTERM, which causes the process to
exit but allows it to close open fi les and so on). If you don’t specify a signal, the default is
15 (SIGTERM). You can also use the shortened form -signal. If you do this and use a signal
name, you should omit the SIG portion of the name—for instance, use KILL rather than
SIGKILL. The pid option is, of course, the PID for the process that you want to kill. You
can obtain this number from ps or top.

The kill program will kill only those processes owned by the user who
runs kill. The exception is if that user is root; the superuser may kill any
user’s processes.

http://technet24.ir/

98 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 98

Running Programs Persistently

The kernel can pass signals to programs, even if you don’t use the kill command. For

instance, when you log out of a session, the programs you started from that session are

sent the SIGHUP signal, which causes them to terminate. If you want to run a program that

will continue running even when you log out, you can launch it with the nohup program:

$ nohup program options

This command causes the program to ignore the SIGHUP signal. It can be handy if you

want to launch certain small servers that may legitimately be run as ordinary users.

A variant on kill is killall, which has the following form:

killall [options] [--] name [...]

This command kills a process based on its name rather than its PID number. For instance,
killall vi kills all of the running processes called vi. You may specify a signal in the short-
ened form (-signal) or by preceding the signal number with -s or --signal. As with kill, the
default is 15 (SIGTERM). One potentially important option to killall is -i, which causes it to
ask for confi rmation before sending the signal to each process. You might use it like this:

$ killall -i vi

Kill vi(13211) ? (y/n) y

Kill vi(13217) ? (y/n) n

In this example, two instances of the vi editor were running, but only one should have
been killed. As a general rule, if you run killall as root, you should use the -i parameter;
if you don’t, it’s all too likely that you’ll kill processes that you shouldn’t, particularly if
many people are using the computer at once.

Some versions of Unix provide a killall command that works very
differently from Linux’s killall. This alternate killall kills all of the
processes started by the user who runs the command. This is a potentially
much more destructive command, so if you ever find yourself on a
non-Linux system, do not use killall until you’ve discovered what that
system’s killall does (say, by reading the killall man page).

Another variant on kill is the pkill command, which has the following format:

pkill [-signal] [-fvx] [-n|-o] [-P ppidlist]

 [-g pgrplist] [-s sidlist] [-u euidlist] [-U uidlist]

http://technet24.ir/

Exam Essentials 99

c02.indd 03/26/2015 Page 99

 [-G gidlist] [-J projidlist] [-t termlist] [-T taskidlist]

 [-c ctidlist] [-z zoneidlist] [pattern]

The pkill command allows you to kill one or more processes based on usernames, user
IDs, group IDs, and other features as well as using a matching regular expression. The
pkill command was introduced in the Solaris operating system, but it has been ported to
the Linux environment and is gaining in popularity.

While the pkill command is extremely versatile, with that versatility
comes danger. Be extremely careful if you’re using regular expressions to
match process names—it’s very easy to match the wrong process names
inadvertently!

Summary

Linux provides numerous tools to help you manage software. Most distributions are built
around the RPM or Debian package systems, both of which enable installation, upgrade,
and removal of software using a centralized package database to avoid confl icts and other
problems that are common when no central package database exists. You can perform
basic operations on individual fi les or, with the help of extra tools such as Yum and APT,
keep your system synchronized with the outside world, automatically or semiautomatically
updating all of your software to the latest versions.

No matter how you install your software, you may need to manage shared libraries.
These software components are necessary building blocks of large modern programs, and,
in the best of all possible worlds, they operate entirely transparently. Sometimes, though,
shared libraries need to be upgraded or the system confi guration changed so that programs
can fi nd the libraries. When this happens, knowing about critical confi guration fi les and
commands can help you work around any diffi culties.

Beyond managing packages and libraries, Linux software management involves manip-
ulating processes. Knowing how to manipulate foreground and background processes,
adjust process priorities, and kill stray processes can help you keep your Linux system
working well.

Exam Essentials

Identify critical features of RPM and Debian package formats. RPM and Debian pack-
ages store all of the fi les for a given package in a single fi le that also includes information
about what other packages the software depends on. These systems maintain a database of
installed packages and their associated fi les and dependencies.

http://technet24.ir/

100 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 100

Describe the tools used for managing RPMs. The rpm program is the main tool for install-
ing, upgrading, and uninstalling RPMs. This program accepts operations and options that
tell it precisely what to do. The Yum utility, and particularly its yum command, enables
installation of a package and all its dependencies via the Internet rather than from local
package fi les.

Describe the tools used for managing Debian packages. The dpkg program installs or
uninstalls a single package or a group of packages that you specify. The apt-get utility
retrieves programs from installation media or from the Internet for installation, and it can
automatically upgrade your entire system. The dselect program serves as a menu-driven
interface to apt-get, enabling you to select programs that you want to install from a
text-mode menu.

Summarize tools for extracting files and converting between package formats. The
rpm2cpio program can convert an RPM fi le to a cpio archive, enabling users of non-RPM
systems to access fi les in an RPM. The alien utility can convert in any direction between
Debian packages, RPMs, Stampede packages, and tarballs. This enables the use of pack-
ages intended for one system on another.

Summarize the reasons for using shared libraries. Shared libraries keep disk space and
memory requirements manageable by placing code that’s needed by many programs in
separate fi les from the programs that use it, enabling one copy to be used multiple times.
More generally, libraries enable programmers to use basic “building blocks” that others
have written without having to reinvent code constantly.

Describe methods available to change the library path. The library path can be changed
system wide by editing the /etc/ld.so.conf fi le and then typing ldconfig. For temporary or
per-user changes, directories may be added to the path by placing them in the LD_LIBRARY_
PATH environment variable.

Explain the difference between foreground and background processes. Foreground
processes have control of the current terminal or text-mode window (such as an xterm).
Background processes don’t have exclusive control of a terminal or text-mode window but
are still running.

Describe how to limit the CPU time used by a process. You can launch a program with
nice or use renice to alter its priority in obtaining CPU time. If a process is truly out of
control, you can terminate it with the kill command.

http://technet24.ir/

Review Questions 101

c02.indd 03/26/2015 Page 101

Review Questions

1. Which of the following is not an advantage of a source package over a binary package?

A. A single source package can be used on multiple CPU architectures.

B. By recompiling a source package, you can sometimes work around library incompat-
ibilities.

C. You can modify the code in a source package, thus altering the behavior of a program.

D. Source packages can be installed more quickly than binary packages.

E. You may be able to recompile source code for a non-Linux Unix program on Linux.

2. Which is true of using both RPM and Debian package management systems on one
computer?

A. It’s generally inadvisable because the two systems don’t share installed-file database
information.

B. It’s impossible because their installed-file databases conflict with one another.

C. It causes no problems if you install important libraries once in each format.

D. It’s a common practice on Red Hat and Debian systems.

E. Using both systems simultaneously requires installing the alien program.

3. Which of the following statements is true about binary RPM packages that are built for a
particular distribution?

A. License requirements forbid using the package on any other distribution.

B. They may be used in another RPM-based distribution only when you set the
-- convert-distrib parameter to rpm.

C. They may be used in another RPM-based distribution only after you recompile the
package’s source RPM.

D. They can be recompiled for an RPM-based distribution running on another type of
CPU.

E. They can often be used on another RPM-based distribution for the same CPU
architecture, but this isn’t guaranteed.

4. An administrator types the following command on an RPM-based Linux distribution:

rpm -ivh megaprog.rpm

 What is the effect of this command?

A. If the megaprog package is installed on the computer, it is uninstalled.

B. If the megaprog.rpm package exists, is valid, and isn’t already installed on the
computer, it is installed.

C. The megaprog.rpm source RPM package is compiled into a binary RPM for the
computer.

http://technet24.ir/

102 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 102

D. Nothing; megaprog.rpm isn’t a valid RPM filename, so rpm will refuse to operate on
this file.

E. The megaprog.rpm package replaces any earlier version of the package that’s already
installed on the computer.

5. Which of the following commands will extract the contents of the myfonts.rpm file into
the current directory?

A. rpm2cpio myfonts.rpm | cpio -i --make-directories

B. rpm2cpio myfonts.rpm > make-directories

C. rpm -e myfonts.rpm

D. alien --to-extract myfonts.rpm

E. rpmbuild --rebuild myfonts.rpm

6. To use dpkg to remove a package called theprogram, including its configuration files,
which of the following commands would you issue?

A. dpkg -e theprogram

B. dpkg -p theprogram

C. dpkg -r theprogram

D. dpkg -r theprogram-1.2.3-4.deb

E. dpkg -P theprogram

7. Which of the following describes a difference between apt-get and dpkg?

A. apt-get provides a GUI interface to Debian package management; dpkg doesn’t.

B. apt-get can install tarballs in addition to Debian packages; dpkg can’t.

C. apt-get can automatically retrieve and update programs from Internet sites; dpkg can’t.

D. apt-get is provided only with the original Debian distribution, but dpkg comes with
Debian and its derivatives.

E. apt-get works only with Debian-based distributions, but dpkg can work with both
RPMs and Debian packages.

8. What command would you type to obtain a list of all of the installed packages on a Debian
system?

A. apt-get showall

B. apt-cache showpkg

C. dpkg -r allpkgs

D. dpkg –i

E. dpkg --get-selections

9. As root, you type apt-get update on a Debian system. What should be the effect of this
command?

A. None: update is an invalid option to apt-get.

B. The APT utilities deliver information about the latest updates you’ve made to the APT
Internet repositories, enabling you to share your changes with others.

http://technet24.ir/

Review Questions 103

c02.indd 03/26/2015 Page 103

C. The APT utilities download all available upgrades for your installed programs and
install them on your system.

D. The APT utilities retrieve information about the latest packages available so that you
may install them with subsequent apt-get commands.

E. The APT utilities update themselves, ensuring that you’re using the latest version
of APT.

10. Which of the following commands would you type to update the unzip program on a
Fedora system to the latest version? (Select all that apply.)

A. yum update unzip

B. yum upgrade unzip

C. yum -u unzip

D. yum -U unzip

E. yum check-update unzip

11. How should you configure a system that uses Yum to access an additional Yum software
repository?

A. Edit the /etc/apt/sources.list file to include the repository site’s URL, as detailed
on the repository’s website.

B. Download a package from the repository site, and install it with RPM, or place a
configuration file from the repository site in the /etc/yum.repos.d directory.

C. Use the add-repository subcommand to yum or the Add Repository option in the File
menu in yumex, passing it the URL of the repository.

D. Edit the /etc/yum.conf file, locate the [repos] section, and add the URL to the
repository after the existing repository URLs.

E. Edit the /etc/yum.conf file, locate the REPOSITORIES= line, and add the new
repository to the colon-delimited list on that line.

12. What is the preferred method of adding a directory to the library path for all users?

A. Modify the LD_LIBRARY_PATH environment variable in a global shell script.

B. Add the directory to the /etc/ld.so.conf file, and then type ldconfig.

C. Type ldconfig /new/dir, where /new/dir is the directory you want to add.

D. Create a symbolic link from that directory to one that’s already on the library path.

E. Type ldd /new/dir, where /new/dir is the directory you want to add.

13. You prefer the look of GTK+ widgets to Qt widgets, so you want to substitute the GTK+
libraries for the Qt libraries on your system. How would you do this?

A. You must type ldconfig --makesubs=qt,gtk. This command substitutes the
GTK+ libraries for the Qt libraries at load time.

B. You must uninstall the Qt library packages and reinstall the GTK+ packages with the
--substitute=qt option to rpm or the --replace=qt option to dpkg.

C. You must note the filenames of the Qt libraries, uninstall the packages, and create
symbolic links from the Qt libraries to the GTK+ libraries.

http://technet24.ir/

104 Chapter 2 ■ Managing Software

c02.indd 03/26/2015 Page 104

D. You can’t easily do this; libraries can’t be arbitrarily exchanged for one another. You
would need to rewrite all of the Qt-using programs to use GTK+.

E. You must reboot the computer and pass the subst=qt,gtk option to the kernel. This
causes the kernel to make the appropriate substitutions.

14. A user types kill -9 11287 at a bash prompt. What is the probable intent, assuming the
user typed the correct command?

A. To cut off a network connection using TCP port 11287

B. To display the number of processes that have been killed with signal 11287 in the last
nine days

C. To cause a server with process ID 11287 to reload its configuration file

D. To terminate a misbehaving or hung program with process ID 11287

E. To increase the priority of the program running with process ID 11287

15. What programs might you use to learn what your system’s load average is? (Select two.)

A. ld

B. load

C. top

D. uptime

E. la

16. Which of the following commands creates a display of processes, showing the parent-child
relationships through links between their names?

A. ps --forest

B. ps aux

C. ps -e

D. ps --tree

E. All of the above

17. You use top to examine the CPU time being consumed by various processes on your sys-
tem. You discover that one process, dfcomp, is consuming more than 90 percent of your
system’s CPU time. What can you conclude?

A. Very little: dfcomp could be legitimately consuming that much CPU time, or it could be
an unauthorized or malfunctioning program.

B. No program should consume 90 percent of available CPU time; dfcomp is clearly
malfunctioning and should be terminated.

C. This is normal; dfcomp is the kernel’s main scheduling process, and it consumes any
unused CPU time.

D. This behavior is normal if your CPU is less powerful than a 2.5 GHz EM64T Pentium.
However, on newer systems, no program should consume 90 percent of CPU time.

E. This behavior is normal if your CPU has at least four cores, but on systems with fewer
cores than this, no program should consume 90 percent of CPU time.

http://technet24.ir/

Review Questions 105

c02.indd 03/26/2015 Page 105

18. You type jobs at a bash command prompt and receive a new command prompt with no
intervening output. What can you conclude?

A. The total CPU time used by your processes is negligible (below 0.1).

B. No processes are running under your username except the shell that you’re using.

C. The jobs shell is installed and working correctly on the system.

D. The system has crashed; jobs normally returns a large number of running processes.

E. No background processes are running that were launched from the shell that you’re
using.

19. Which of the following commands are equivalent to one another? (Select two.)

A. nice --value 10 crunch

B. nice -n -10 crunch

C. nice -10 crunch

D. nice 10 crunch

E. nice crunch

20. Which of the following are restrictions on ordinary users’ abilities to run renic e?
(Select two.)

A. Users may not modify the priorities of processes that are already running.

B. Users may not modify the priority of their programs launched from anything but their
current shells.

C. Users may not decrease the priority (that is, increase the priority value) of their own
processes.

D. Users may not modify the priorities of other users’ processes.

E. Users may not increase the priority (that is, decrease the priority value) of their own
processes .

http://technet24.ir/

http://technet24.ir/

c03.indd 03/26/2015 Page 107

Chapter

3
Configuring Hardware

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 101.1 Determine and configure hardware settings

 ✓ 102.1 Design hard disk layout

 ✓ 104.1 Create partitions and filesystems

 ✓ 104.2 Maintain the integrity of filesystems

 ✓ 104.3 Control mounting and unmounting of filesystems

http://technet24.ir/

c03.indd 03/26/2015 Page 108

All OSs run atop hardware, and this hardware infl uences how
the OSs run. Obviously, hardware can be fast or slow, reliable
or unreliable. A somewhat more subtle detail is that OSs pro-

vide various means of confi guring and accessing the hardware—partitioning hard disks and
reading data from Universal Serial Bus (USB) devices, for instance. You must understand
at least the basics of how Linux interacts with its hardware environment in order to admin-
ister a Linux system effectively. This chapter presents that information.

This chapter begins with a look at fi rmware, which is the lowest-level software that runs
on a computer. A computer’s fi rmware begins the boot process and confi gures certain hard-
ware devices. This chapter then moves on to expansion cards and USB devices.

The chapter concludes with an examination of disk hardware and the fi lesystems it con-
tains—disk interface standards, disk partitioning, how to track disk usage, how to tune
fi lesystems for optimal performance, how to check fi lesystems’ internal consistency, and
how to repair simple fi lesystem defects. Assuming that a fi lesystem is in good shape, you
must be able to mount it to be able to use it, so that topic is also covered here. (One disk
topic, boot managers, is covered in Chapter 5, “Booting Linux and Editing Files.”)

Configuring the Firmware and
Core Hardware

All computers ship with a set of core hardware—most obviously, a central processing
unit (CPU), which does the bulk of the computational work, and random access memory
(RAM), which holds data. Many additional basic features help glue everything together,
and some of these can be confi gured both inside and outside of Linux. At the heart of
much of this hardware is the fi rmware, which provides confi guration tools and initiates the
OS booting process. You can use the fi rmware’s own user interface to enable and disable
key hardware components. However, once Linux is booted, you may need to manage this
hardware using Linux utilities. Key components managed by the fi rmware (and, once it’s
booted, Linux) include interrupts, I/O addresses, DMA addresses, the real-time clock, and
Advanced Technology Attachment (ATA) hard disk interfaces.

Understanding the Role of the Firmware
Many hardware devices include fi rmware, so any given computer can have many types
of fi rmware installed—for the motherboard, for a plug-in disk controller, for network

http://technet24.ir/

Configuring the Firmware and Core Hardware 109

c03.indd 03/26/2015 Page 109

interfaces, and so on. The most important fi rmware, though, is installed on the computer’s
motherboard. This fi rmware initializes the motherboard’s hardware and controls the boot
process. In the past, the vast majority of x86- and x86-64-based computers have used a
type of fi rmware known as the Basic Input/Output System (BIOS). Beginning in 2011,
though, a new type of fi rmware, known as the Extensible Firmware Interface (EFI) or the
Unifi ed EFI (UEFI), has become all but standard on new computers. Some older computers
also use EFI. Despite the fact that technically EFI isn’t a BIOS, most manufacturers refer
to it by that name in their documentation. The exam objectives refer to the BIOS, but not
to EFI. Nonetheless, in the real world, you’re likely to encounter EFI on newer computers.
The differences between BIOS and EFI are particularly important in booting the computer,
as described in Chapter 5. For many of the setup tasks described in this chapter, the two
types of fi rmware behave very similarly; although EFI implementations sometimes provide
fl ashier graphical user interfaces, most BIOSs, and some EFIs, provide only text-mode
user interfaces.

In this book, we use the term EFI to refer both to the original EFI and to the
newer UEFI, which is effectively EFI 2.x.

The motherboard’s fi rmware resides in electronically erasable programmable read-only
memory (EEPROM), aka fl ash memory. When you turn on a computer, the fi rmware
performs a power-on self-test (POST), initializes hardware to a known operational state,
loads the boot loader from the boot device (typically the fi rst hard disk), and passes control
to the boot loader, which in turn loads the OS.

Historically, an additional purpose of a BIOS was to provide fundamental input/
output (I/O) services to the operating system and application programs, insulating them
from hardware changes. Although the Linux kernel uses the BIOS to collect informa-
tion about the hardware, once Linux is running, it doesn’t use BIOS services for I/O. In
theory, the OS can use some EFI services, but as of the 3.5.0 kernel, Linux takes advan-
tage of few of these EFI features. Linux system administrators require a basic under-
standing of the BIOS or EFI because of the key role it plays in confi guring hardware
and in booting.

Most x86 and x86-64 computers use a BIOS or an EFI; however, some
computers use radically different software in place of these types of
firmware. Older PowerPC-based Apple computers, for instance, use
OpenFirmware. (Intel-based Macs use EFI.) Although OpenFirmware, EFI,
and other firmware programs differ from the traditional (some now say
“legacy”) x86 BIOS, these systems all perform similar tasks. If you must
administer a computer with an unusual firmware, you should take some
time to research the details of how its firmware operates; however, this
won’t greatly affect how Linux treats the hardware at the level of day-to-
day system administration.

http://technet24.ir/

110 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 110

Although fi rmware implementations vary from manufacturer to manufacturer, most
BIOSs and EFIs provide an interactive facility to confi gure them. Typically, you enter this
setup tool by pressing the Delete key or a function key early in the boot sequence. (Consult
your motherboard manual or look for onscreen prompts for details.) Figure 3.1 shows a
typical BIOS setup main screen. You can use the arrow keys, the Enter key, and so on to
move around the BIOS options and adjust them. Computers usually come delivered with
reasonable BIOS defaults, but you may need to adjust them if you add new hardware or if a
standard piece of hardware is causing problems.

F I GU R E 3 .1 A BIOS setup screen provides features related to low-level
hardware configuration.

PCs with EFIs may provide a setup utility similar to the one shown in Figure 3.1.
As noted earlier, though, some EFIs feature fl ashier GUIs rather than a text-based user
interface. Others are organized in a very different way, as shown in Figure 3.2. The
variability makes it impossible to provide simple instructions on how to locate specifi c
features; you may need to read your manual or explore the options your fi rmware
provides.

One key ability of the fi rmware is to enable or disable onboard hardware. Modern
 motherboards provide a wide range of hardware devices, including video hardware, disk
controllers, hard disk controllers, RS-232 serial ports, parallel ports, USB ports, Ethernet
ports, and audio hardware. Usually, having this hardware available is benefi cial, but
sometimes it’s not. The hardware may be inadequate, so you’ll want to replace it with a

http://technet24.ir/

Configuring the Firmware and Core Hardware 111

c03.indd 03/26/2015 Page 111

more capable plug-in card, or you may not need it. In such cases, you can disable
the device in the fi rmware. Doing so keeps the device from consuming the hardware
resources that are described shortly, reducing the odds of an unused device interfering
with the hardware you do use.

F I GU R E 3 . 2 EFI firmware user interfaces vary greatly from one to another; you may
need to spend some time exploring yours.

Precisely how to disable hardware in the fi rmware varies from one computer to
another. You should peruse the available menus to fi nd mention of the hardware you
want to disable. Menus labeled Integrated Peripherals or Advanced are particularly
likely to hold these features. Once you’ve spotted the options, follow the onscreen
prompts for hints about how to proceed; for instance, Figure 3.1 shows an Item Specifi c
Help area on the right side of the screen. Information about keys to press to perform
various actions appears here. (Although not identifi ed as a help area, the right side
of the screen in Figure 3.2 provides similar hints.) Once you’re fi nished, follow the
onscreen menus and prompts to save your changes and exit. When you do so, the com-
puter will reboot.

Once Linux boots, it uses its own drivers to access the computer’s hardware.
Understanding the hardware resources that Linux uses will help you determine when you
may want to shut down, boot into the fi rmware, and disable particular hardware devices at
such a low level.

http://technet24.ir/

112 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 112

Booting without a Keyboard

Most PCs have keyboards attached to them; however, many Linux computers function as

servers, which don’t require keyboards for day-to-day operation. In such cases, you may

want to detach the keyboard to reduce clutter and eliminate the risk of accidental key-

strokes causing problems.

Unfortunately, many computers complain and refuse to boot if you unplug the keyboard

and attempt to boot the computer. To disable this warning, look for a fi rmware option

called Halt On or something similar. This option tells the fi rmware under what circum-

stances it should refuse to boot. You should fi nd an option that would stop the computer

from checking for a keyboard. Once you select this option, you should be able to shut

down, detach the keyboard, and boot normally. Of course, you’ll need to be able to access

the computer via a network connection or in some other way to administer it, so be sure

this is confi gured before you remove the keyboard!

IRQs
An interrupt request (IRQ), or interrupt, is a signal sent to the CPU instructing it to suspend
its current activity and to handle some external event such as keyboard input. On the x86
platform, IRQs are numbered from 0 to 15. More modern computers, including x86-64
systems, provide more than these 16 interrupts. Some interrupts are reserved for specifi c
purposes, such as the keyboard and the real-time clock; others have common uses (and are
sometimes overused) but may be reassigned; and some are left available for extra devices
that may be added to the system. Table 3.1 lists the IRQs and their common purposes in the
x86 system. (On x86-64 systems, IRQs are typically assigned as in Table 3.1, but additional
hardware may be assigned to higher IRQs.)

TA B LE 3 .1 IRQs and their common uses

IRQ Typical use Notes

0 System timer Reserved for internal use.

1 Keyboard Reserved for keyboard use only.

2 Cascade for IRQs 8–15 The original x86 IRQ-handling circuit can
 manage just 8 IRQs; 2 are tied together to
 handle 16 IRQs, but IRQ 2 must be used to
handle IRQs 8–15.

http://technet24.ir/

Configuring the Firmware and Core Hardware 113

c03.indd 03/26/2015 Page 113

IRQ Typical use Notes

3 Second RS-232 serial port
(COM2: in Windows)

May also be shared by a fourth RS-232 serial
port.

4 First RS-232 serial port (COM1:
in Windows)

May also be shared by a third RS-232 serial port.

5 Sound card or second parallel
port (LPT2: in Windows)

6 Floppy disk controller Reserved for the first floppy disk controller.

7 First parallel port (LPT1: in
Windows)

8 Real-time clock Reserved for system clock use only.

9 ACPI system control interrupt Used by Intel chipsets for the Advanced Con-
figuration and Power Interface (ACPI) used for
power management.

10 Open interrupt

11 Open interrupt

12 PS/2 mouse

13 Math coprocessor Reserved for internal use.

14 Primary ATA controller The controller for ATA devices such as hard
drives; traditionally /dev/hda and /dev/hdb
under Linux.1

15 Secondary ATA controller The controller for more ATA devices; tradition-
ally /dev/hdc and /dev/hdd under Linux.1

1Most modern distributions treat Serial ATA disks as SCSI disks, which changes their device identifiers from /
dev/hdx to /dev/sdx.

IRQ 5 is a common source of interrupt conflicts on older computers
because it’s the default value for sound cards as well as for second parallel
ports. Modern computers often use a higher IRQ for sound cards and also
often lack parallel ports.

http://technet24.ir/

114 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 114

The original Industry Standard Architecture (ISA) bus design makes sharing an inter-
rupt between two devices tricky. Ideally, every ISA device should have its own IRQ. The
more recent Peripheral Component Interconnect (PCI) bus makes sharing interrupts a bit
easier, so PCI devices frequently end up sharing an IRQ. The ISA bus has become rare on
computers made since 2001 or so.

Once a Linux system is running, you can explore what IRQs are being used for various
purposes by examining the contents of the /proc/interrupts fi le. A common way to do
this is with the cat command:

$ cat /proc/interrupts

 CPU0

 0: 42 IO-APIC-edge timer

 1: 444882 IO-APIC-edge i8042

 4: 12 IO-APIC-edge

 6: 69 IO-APIC-edge floppy

 8: 0 IO-APIC-edge rtc

 9: 0 IO-APIC-fasteoi acpi

 14: 3010291 IO-APIC-edge ide0

 15: 11156960 IO-APIC-edge ide1

 16: 125264892 IO-APIC-fasteoi eth0

 17: 0 IO-APIC-fasteoi cx88[0], cx88[0]

 20: 3598946 IO-APIC-fasteoi sata_via

 21: 4566307 IO-APIC-fasteoi uhci_hcd:usb1, uhci_hcd:usb2, ehci_hcd:usb3

 22: 430444 IO-APIC-fasteoi VIA8237

NMI: 0 Non-maskable interrupts

LOC: 168759611 Local timer interrupts

TRM: 0 Thermal event interrupts

THR: 0 Threshold APIC interrupts

SPU: 0 Spurious interrupts

ERR: 0

The /proc filesystem is a virtual filesystem—it doesn’t refer to actual files
on a hard disk but to kernel data that’s convenient to represent using a
filesystem. The files in /proc provide information about the hardware,
running processes, and so on. Many Linux utilities use /proc behind the
scenes, or you can directly access these files using utilities like cat, which
copies the data to the screen when given just one argument.

This output shows the names of the drivers that are using each IRQ. Some of these
driver names are easy to interpret, such as eth0 for the Ethernet port. Others are more
 puzzling, such as cx88 (it’s a driver for a video capture card). If the purpose of a driver isn’t

http://technet24.ir/

Configuring the Firmware and Core Hardware 115

c03.indd 03/26/2015 Page 115

obvious, try doing a Web search on it; chances are you’ll fi nd a relevant hit fairly easily.
Note that the preceding output shows interrupts numbered up to 22; this system supports
more than the 16 base x86 interrupts.

The /proc/interrupts file lists IRQs that are in use by Linux, but Linux
doesn’t begin using an IRQ until the relevant driver is loaded. This may
not happen until you try to use the hardware. Thus, the /proc/interrupts
list may not show all of the interrupts that are configured on your system.
For instance, the preceding example shows nothing for IRQ 7, which is
reserved for the parallel port because the port hadn’t been used prior
to viewing the file. If the parallel port were used and /proc/interrupts
viewed again, an entry for IRQ 7 and the parport0 driver would appear.

Although IRQ confl icts are rare on modern hardware, they still do occasionally crop up.
When this happens, you must reconfi gure one or more devices to use different IRQs. This
topic is described shortly, in the section “Confi guring Expansion Cards.”

I/O Addresses
I/O addresses (also referred to as I/O ports) are unique locations in memory that are
reserved for communications between the CPU and specifi c physical hardware devices. Like
IRQs, I/O addresses are commonly associated with specifi c devices, and they should not
ordinarily be shared. Table 3.2 lists some Linux device fi lenames along with the equivalent
names in Windows, as well as the common IRQ and I/O address settings.

TA B LE 3 . 2 Common Linux devices

Linux device Windows name Typical IRQ I/O address

/dev/ttyS0 COM1 4 0x03f8

/dev/ttyS1 COM2 3 0x02f8

/dev/ttyS2 COM3 4 0x03e8

/dev/ttyS3 COM4 3 0x02e8

/dev/lp0 LPT1 7 0x0378-0x037f

/dev/lp1 LPT2 5 0x0278-0x027f

/dev/fd0 A: 6 0x03f0-0x03f7

/dev/fd1 B: 6 0x0370-0x0377

http://technet24.ir/

116 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 116

Although the use is deprecated, older systems sometimes use /dev/cuax
(where x is a number 0 or greater) to indicate an RS-232 serial device.
Thus, /dev/ttyS0 and /dev/cua0 refer to the same physical device.

Once a Linux system is running, you can explore what I/O addresses the computer is
using by examining the contents of the /proc/ioports fi le. A common way to do this is
with the cat command:

$ cat /proc/ioports

0000-001f : dma1

0020-0021 : pic1

0040-0043 : timer0

0050-0053 : timer1

0060-006f : keyboard

0070-0077 : rtc

0080-008f : dma page reg

00a0-00a1 : pic2

00c0-00df : dma2

00f0-00ff : fpu

This example truncates the output, which goes on for quite a while on the test system.
As with IRQs, if your system suffers from I/O port confl icts, you must reconfi gure one or
more devices, as described in “Confi guring Expansion Cards.” In practice, such confl icts
are more rare than IRQ confl icts.

DMA Addresses
Direct memory addressing (DMA) is an alternative method of communication to I/O
ports. Rather than have the CPU mediate the transfer of data between a device and
 memory, DMA permits the device to transfer data directly, without the CPU’s attention.
The result can be lower CPU requirements for I/O activity, which can improve overall
 system performance.

To support DMA, the x86 architecture implements several DMA channels, each of
which can be used by a particular device. To learn what DMA channels your system uses,
examine the /proc/dma fi le:

$ cat /proc/dma

 4: cascade

This output indicates that DMA channel 4 is in use. As with IRQs and I/O ports, DMA
addresses should not normally be shared. In practice, DMA address confl icts are more
rare than IRQ confl icts, so chances are you won’t run into problems. If you do, consult the
upcoming section “Confi guring Expansion Cards.”

http://technet24.ir/

Configuring the Firmware and Core Hardware 117

c03.indd 03/26/2015 Page 117

Boot Disks and Geometry Settings
Most fi rmware implementations let you choose the order in which devices are booted. This
is an area in which BIOS and EFI differ, and there are substantial implementation-to-imple-
mentation differences too. Generally speaking, though, the rules are as follows:

BIOS The BIOS boot process begins with the computer reading a boot sector (typically the
fi rst sector) from a disk and then executing that code. Thus, boot options for BIOS-based
computers are limited; you can only select the order in which various boot devices (hard disks,
optical disks, USB devices, network boot, and so on) are examined to fi nd a boot sector.

EFI Under EFI, the boot process involves the computer reading a boot loader fi le from a
fi lesystem on a special partition, known as the EFI System Partition (ESP). This fi le either
can take a special default name or can be registered in the computer’s NVRAM. Therefore,
EFI computers often present an extended range of boot options, involving both default boot
loader fi les from various devices (to enable granting precedence to a bootable USB fl ash
drive, for example) and multiple boot loaders on the computer’s hard disks. Some primitive
EFI implementations, though, present simple BIOS-like boot options.

Many EFI implementations support a BIOS compatibility mode, and so they
can boot media intended for BIOS-based computers. This feature, intended
to help in the transition from BIOS to EFI, can complicate firmware setup
and OS installation because it creates extra boot options that users often
don’t understand.

Although boot sequences involving removable disks are common, they have their prob-
lems. For instance, if somebody accidentally leaves a CD or DVD in the drive, this can
 prevent the system from booting. Worse, some viruses are transmitted by BIOS boot sectors,
so this method can result in viral infection. Using removable disks as the default boot
media also opens the door to intruders who have physical access to the computer; they need
only reboot with a bootable CD or DVD to gain complete control of your system. For these
reasons, it’s better to make the fi rst hard disk (or a boot loader on a hard disk’s ESP, in the
case of EFI) the only boot device. (You must change this confi guration when installing
Linux or using an emergency boot disk for maintenance.) Most modern computers make
temporary changes easier by providing a special key to allow a one-time change to the
boot sequence. On older computers, to change the boot sequence, you must locate the
appropriate fi rmware option, change it, and reboot the computer. It’s usually located in an
Advanced menu, so look there.

Another disk option is the one for detecting disk devices. Figure 3.1 shows three disk
devices: the A: fl oppy disk (/dev/fd0 under Linux), a 1048 MB primary master hard disk,
and a CD/DVD drive as the secondary master. In most cases, the fi rmware detects and
confi gures hard disks and CD/DVD drives correctly. In rare circumstances, you must tell a
BIOS-based computer about the hard disk’s cylinder/head/sector (CHS) geometry.

http://technet24.ir/

118 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 118

The CHS geometry is a holdover from the early days of the x86 architecture. Figure 3.3
shows the traditional hard disk layout, which consists of a fi xed number of read/write
heads that can move across the disk surfaces (or platters). As the disk spins, each head
marks out a circular track on its platter. These tracks collectively make up a cylinder.
Each track is broken down into a series of sectors. Thus, any sector on a hard disk can be
uniquely identifi ed by three numbers: a cylinder number, a head number, and a sector
number. The x86 BIOS was designed to use this three-number CHS identifi cation code.
One consequence of this confi guration is that the BIOS must know how many cylinders,
heads, and sectors the disk has. Modern hard disks relay this information to the BIOS
 automatically, but for compatibility with the earliest hard disks, BIOSs still enable you to
set these values manually.

F I GU R E 3 . 3 Hard disks are built from platters, each of which is broken into tracks,
which are further broken into sectors.

Pivoting arms with
read/write heads

Track
Sector

Platters

The BIOS will detect only certain types of disks. Of particular importance,
SCSI disks and (on some older computers) serial ATA (SATA) disks won’t
appear in the main BIOS disk-detection screen. These disks are handled
by supplementary firmware associated with the controllers for these
devices. Some BIOSs do provide explicit options to add SCSI devices into
the boot sequence, so you can give priority either to ATA or SCSI devices.
For those without these options, SCSI disks generally take second seat to
ATA disks.

CHS geometry, unfortunately, has its problems. For one thing, all but the earliest hard
disks use variable numbers of sectors per cylinder—modern disks squeeze more sectors
onto outer tracks than inner ones, fi tting more data on each disk. Thus the CHS geometry
presented to the BIOS by the hard disk is a convenient lie. Worse, because of limits on the
numbers in the BIOS and in the ATA hard disk interface, plain CHS geometry tops out
at 504 MiB, which is puny by today’s standards. (Hard drive sizes use the more accurate
mebibyte (MiB) size instead of the standard megabyte (MB). One mebibyte is 1,048,576
bytes.) Various patches, such as CHS geometry translation, can be used to expand the limit
to about 8 GiB. Today though, the preference is to use logical block addressing (LBA) mode.

http://technet24.ir/

Configuring the Firmware and Core Hardware 119

c03.indd 03/26/2015 Page 119

(Some sources use the expansion linear block addressing for this acronym.) In this mode,
a single unique number is assigned to each sector on the disk, and the disk’s fi rmware is
smart enough to read from the correct head and cylinder when given this sector number.
Modern BIOSs typically provide an option to use LBA mode, CHS translation mode, or
possibly some other modes with large disks. EFI doesn’t use CHS addressing at all, except
in its BIOS compatibility mode; instead, EFI uses LBA mode exclusively. In most cases,
LBA mode is the best choice. If you must retrieve data from very old disks, though, you
may need to change this option.

Because of variability in how different BIOSs handle CHS translation,
moving disks between computers can result in problems because of
mismatched CHS geometries claimed in disk structures and by the BIOS.
Linux is usually smart enough to work around such problems, but you
may see some odd error messages in disk utilities like fdisk. If you see
messages about inconsistent CHS geometries, proceed with caution when
using low-level disk utilities lest you create an inconsistent partition table
that could cause problems, particularly in OSs that are less robust than
Linux on this score.

Coldplug and Hotplug Devices
Whenever you deal with hardware, you should keep in mind a distinction between two
device types: coldplug and hotplug. These device types differ depending on whether they
can be physically attached and detached when the computer is turned on (that is, “hot”),
versus only when it’s turned off (“cold”).

Coldplug devices are designed to be connected physically and
disconnected only when the computer is turned off. Attempting to attach
or detach such devices when the computer is running can damage the
device or the computer, so do not attempt to do so.

Traditionally, components that are internal to the computer, such as the CPU, memory,
PCI cards, and hard disks, have been coldplug devices. A hotplug variant of PCI, however,
has been developed and is used on some computers—mainly on servers and other systems
that can’t afford the downtime required to install or remove a device. Hot-plug SATA
devices are also available.

Modern external devices, such as Ethernet, USB, and IEEE-1394 devices, are hotplug;
you can attach and detach such devices as you see fi t. These devices rely on specialized
Linux software to detect the changes to the system as they’re attached and detached.
Several utilities help in managing hotplug devices:

Sysfs The sysfs virtual fi lesystem, mounted at /sys, exports information about devices so
that user-space utilities can access the information.

http://technet24.ir/

120 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 120

A user space program is one that runs as an ordinary program, whether
it runs as an ordinary user or as root. This contrasts with kernel space
code, which runs as part of the kernel. Typically, only the kernel (and hence
kernel-space code) can communicate directly with hardware. User-space
programs are the ultimate users of hardware, though. Traditionally, the /dev
filesystem has provided the main means of interface between user-space
programs and hardware; however, the tools described here help expand on
this access, particularly in ways that are useful for hotplug devices.

HAL Daemon The Hardware Abstraction Layer (HAL) Daemon, or hald, is a user-space
program that runs at all times (that is, as a daemon) and provides other user-space pro-
grams with information about available hardware.

D-Bus The Desktop Bus (D-Bus) provides a further abstraction of hardware information
access. Like hald, D-Bus runs as a daemon. D-Bus enables processes to communicate with
each other as well as to register to be notifi ed of events, both by other processes and by
hardware (such as the availability of a new USB device).

udev Traditionally, Linux has created device nodes as conventional fi les in the /dev direc-
tory tree. The existence of hotplug devices and various other issues, however, have moti-
vated the creation of udev: a virtual fi lesystem, mounted at /dev, which creates dynamic
device fi les as drivers are loaded and unloaded. You can confi gure udev through fi les in /
etc/udev, but the standard confi guration is usually suffi cient for common hardware.

These tools all help programs work seamlessly in a world of hotplug devices by enabling
the programs to learn about hardware, including receiving notifi cation when the hardware
confi guration changes.

Older external devices, such as parallel and RS-232 ports, are offi cially coldplug in
nature. In practice, many people treat these devices as if they were hotplug, and they can usu-
ally get away with it; but there is a risk of damage, so it’s safest to power down a computer
before connecting or disconnecting such a device. When RS-232 or parallel port devices are
hotplugged, they typically aren’t registered by tools such as udev and hald. The OS handles
the ports to which these devices connect; it’s up to user-space programs, such as terminal
programs or the printing system, to know how to communicate with the external devices.

Configuring Expansion Cards

Many hardware devices require confi guration—you must set the IRQ, I/O port, and DMA
addresses used by the device. (Not all devices use all three resources.) Through the mid-
1990s, this process involved tedious changes to jumpers on the hardware. Today, though,
you can confi gure most options through software.

Even devices that are built into the motherboard are configured through
the same means used to configure PCI cards.

http://technet24.ir/

Configuring Expansion Cards 121

c03.indd 03/26/2015 Page 121

Configuring PCI Cards
The PCI bus, which is the standard expansion bus for most internal devices, was designed
with Plug-and-Play (PnP) style confi guration in mind, thus automatic confi guration of PCI
devices is the rule rather than the exception. For the most part, PCI devices confi gure them-
selves automatically, and there’s no need to make any changes. You can, however, tweak
how PCI devices are detected in several ways:

 ■ The Linux kernel has several options that affect how it detects PCI devices. You can
find these in the kernel configuration screens under Bus Options. Most users can rely
on the options in their distributions’ default kernels to work properly; but if you recom-
pile your kernel yourself and you are having problems with device detection, you may
want to study these options.

 ■ Most firmware implementations have PCI options that change the way PCI resources
are allocated. Adjusting these options may help if you run into strange hardware prob-
lems with PCI devices.

 ■ Some Linux drivers support options that cause them to configure the relevant hardware
to use particular resources. You should consult the drivers’ documentation files for
the details of the options they support. You must then pass these options to the kernel
using a boot loader (as described in Chapter 5) or as kernel module options.

 ■ You can use the setpci utility to query and adjust PCI devices’ configurations directly.
This tool is most likely to be useful if you know enough about the hardware to fine-
tune its low-level configuration; it’s not often used to tweak the hardware’s basic IRQ,
I/O port, or DMA options.

In addition to the confi guration options, you may want to check how PCI devices are
currently confi gured. You can use the lspci command for this purpose; it displays all of
the information about the PCI busses on your system and all of the devices connected to
those busses. This command takes several options that fi ne-tune its behavior. Table 3.3 lists
the most common of these options.

TA B LE 3 . 3 Options for lspci

Option Effect

-v Increases verbosity of output. This option may be doubled (-vv) or
tripled (-vvv) to produce yet more output.

-n Displays information in numeric codes rather than translating the
codes to manufacturer and device names.

-nn Displays both the manufacturer and device names and their associ-
ated numeric codes.

http://technet24.ir/

122 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 122

Option Effect

-x Displays the PCI configuration space for each device as a hexadeci-
mal dump. This is an extremely advanced option. Tripling (-xxx) or
quadrupling (-xxxx) this option displays information about more
devices.

-b Shows IRQ numbers and other data as seen by devices rather than as
seen by the kernel.

-t Displays a tree view depicting the relationship between devices.

-s [[[[domain]:]
bus]:][slot]
[.[func]]

Displays only devices that match the listed specification. This can be
used to trim the results of the output.

-d
[vendor]:[device]

Shows data on the specified device.

-i file Uses the specified file to map vendor and device IDs to names. (The
default is /usr/share/misc/pci.ids.)

-m Dumps data in a machine-readable form intended for use by scripts.
A single -m uses a backward-compatible format, whereas doubling
(-mm) uses a newer format.

-D Displays PCI domain numbers. These numbers normally aren’t
 displayed.

-M Performs a scan in bus-mapping mode, which can reveal devices
 hidden behind a misconfigured PCI bridge. This is an advanced
option that can be used only by root.

--version Displays version information.

Learning about Kernel Modules
Kernel drivers, many of which come in the form of kernel modules, handle hardware in
Linux. These are stand-alone driver fi les, typically stored in the /lib/modules directory
tree, that can be loaded to provide access to hardware and unloaded to disable such access.
Typically, Linux loads the modules it needs when it boots, but you may need to load addi-
tional modules yourself.

TA B LE 3 . 3 Options for lspci (continued)

http://technet24.ir/

Configuring Expansion Cards 123

c03.indd 03/26/2015 Page 123

You can learn about the modules that are currently loaded on your system by using
lsmod, which takes no options and produces output like this:

$ lsmod

Module Size Used by

isofs 35820 0

zlib_inflate 21888 1 isofs

bluetooth 433970 5 bnep

nls_iso8859_1 5568 1

nls_cp437 7296 1

vfat 15680 1

fat 49536 1 vfat

sr_mod 19236 0

ide_cd 42848 0

This output has been edited for brevity. Although outputs this short are
possible with certain configurations, they’re rare.

The most important column in this output is the fi rst one, labeled Module. This column
specifi es the names of all of the modules that are currently loaded. You can learn more about
these modules with modinfo, as described shortly, but sometimes their purpose is fairly
obvious. For instance, the bluetooth module provides access to external wireless devices.

The Used by column of the lsmod output describes what’s using the module. All of the
entries have a number, which indicates the number of other modules or processes that
are using the module. For instance, in the preceding example, the isofs module (used to
access CD/DVD fi lesystems) isn’t currently in use, as revealed by its 0 value, but the vfat
module (used to read VFAT Windows hard disk and USB stick partitions) is being used, as
shown by its value of 1. If one of the modules is being used by another module, the using
module’s name appears in the Used by column. For instance, the isofs module relies on
the zlib_inflate module, so the latter module’s Used by column includes the isofs mod-
ule name. This information can be useful when you’re managing modules. For instance, if
your system produced the preceding output, you couldn’t directly remove the zlib_inflate
module because the isofs module is using it, but you could remove the isofs module, and
after doing so, you could remove the zlib_inflate module. (Both modules would need to
be added back to read most CD/DVDs, though.)

The lsmod command displays information only about kernel modules,
not about drivers that are compiled directly into the Linux kernel. For this
reason, a module may need to be loaded on one system but not on another
to use the same hardware because the second system may compile the
relevant driver directly into the kernel.

http://technet24.ir/

124 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 124

Loading Kernel Modules
Linux enables you to load kernel modules with two programs: insmod and modprobe. The
insmod program inserts a single module into the kernel. This process requires you to have
already loaded any modules on which the module you’re loading relies. The modprobe
 program, by contrast, automatically loads any depended-on modules, and so it is generally
the preferred way to do the job.

In practice, you may not need to use insmod or modprobe to load modules
because Linux can load them automatically. This ability relies on the
kernel’s module autoloader feature, which must be compiled into the
kernel, and on various configuration files, which are also required for
modprobe and some other tools. Using insmod and modprobe can be useful
for testing new modules or for working around problems with the auto-
loader, though.

In practice, insmod is a fairly straightforward program to use; you type its name
 followed by the module fi lename:

insmod /lib/modules/3.16.6/kernel/drivers/bluetooth/bluetooth.ko

This command loads the btusb.ko module, which you must specify by fi lename.
Modules have module names too, which are usually the same as the fi lename but without
the extension, as in bluetooth for the bluetooth.ko fi le. Unfortunately, insmod requires
the full module name.

You can pass additional module options to the module by adding them to the command
line. Module options are highly module specifi c, so you must consult the documentation
for the module to learn what to pass. Examples include options to tell an RS-232 serial
port driver what interrupt to use to access the hardware or to tell a video card framebuffer
driver what screen resolution to use.

Some modules depend on other modules. In these cases, if you attempt to load a module
that depends on others and those other modules aren’t loaded, insmod will fail. When this
happens, you must either track down and manually load the depended-on modules or use
modprobe. In the simplest case, you can use modprobe much as you use insmod, by passing it
a module name:

modprobe bluetooth

As with insmod, you can add kernel options to the end of the command line. Unlike with
insmod, you specify a module by its module name rather than its module fi lename when you
use modprobe. Generally speaking, this helps make modprobe easier to use, as does the fact
that modprobe automatically loads dependencies. This greater convenience means that mod-
probe relies on confi guration fi les. It also means that you can use options (placed between
the command name and the module name) to modify modprobe’s behavior:

Be Verbose The -v or --verbose option tells modprobe to display extra information about
its operations. Typically, this includes a summary of every insmod operation it performs.

http://technet24.ir/

Configuring Expansion Cards 125

c03.indd 03/26/2015 Page 125

Change Configuration Files The modprobe program uses a confi guration fi le called /etc/
modprobe.conf (or multiple fi les in /etc/modprobe.d). You can change the confi guration
fi le or directory by passing a new fi le with the -C filename option, as in modprobe -C /
etc/mymodprobe.conf bluetooth.

Perform a Dry Run The -n or --dry-run option causes modprobe to perform checks and
all other operations except the actual module insertions. You might use this option in con-
junction with -v to see what modprobe would do without loading the module. This may be
helpful in debugging, particularly if inserting the module is having some detrimental effect,
such as disabling disk access.

Remove Modules The -r or --remove option reverses modprobe’s usual effect; it causes
the program to remove the specifi ed module and any on which it depends. (Depended-on
modules are not removed if they’re in use.)

Force Loading The -f or --force option tells modprobe to force the module loading even
if the kernel version doesn’t match what the module expects. This action is potentially dan-
gerous, but it’s occasionally required when using third-party binary-only modules.

Show Dependencies The --show-depends option shows all of the modules on which the
specifi ed module depends. This option doesn’t install any of the modules; it’s purely infor-
mative in nature.

Show Available Modues The -l or --list option displays a list of available options whose
names match the wildcard you specify. For instance, typing modprobe -l v* displays all
modules whose names begin with v. If you provide no wildcard, modprobe displays all avail-
able modules. Like --show-depends, this option doesn’t cause any modules to be loaded.

This list of options is incomplete. The others are relatively obscure, so
you’re not likely to need them often. Consult the modprobe man page for
more information.

Removing Kernel Modules
In most cases, you can leave modules loaded indefi nitely; the only harm that a module
does when it’s loaded but not used is to consume a small amount of memory. (The lsmod
program shows how much memory each module consumes.) Sometimes, though, you may
want to remove a loaded module. Reasons include reclaiming that tiny amount of memory,
unloading an old module so that you can load an updated replacement module, and
 removing a module that you suspect is unreliable.

The work of unloading a kernel module is done by the rmmod command, which is basi-
cally the opposite of insmod. The rmmod command takes a module name as an option,
though, rather than a module fi lename:

rmmod bluetooth

This example command unloads the bluetooth module. You can modify the behavior of
rmmod in various ways:

http://technet24.ir/

126 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 126

Be Verbose Passing the -v or --verbose option causes rmmod to display some extra infor-
mation about what it’s doing. This may be helpful if you’re troubleshooting a problem.

Force Removal The -f or --force option forces module removal even if the module is
marked as being in use. Naturally, this is a very dangerous option, but it’s sometimes help-
ful if a module is misbehaving in some way that’s even more dangerous. This option has no
effect unless the CONFIG_MODULE_FORCE_UNLOAD kernel option is enabled.

Wait Until Unused The -w or --wait option causes rmmod to wait for the module to
become unused rather than return an error message if the module is in use. Once the mod-
ule is no longer being used (say, after a bluetooth device is disconnected), rmmod unloads
the module and returns. Until then, rmmod doesn’t return, making it look like it’s not doing
anything.

A few more rmmod options exist; consult the rmmod man page for details.
Like insmod, rmmod operates on a single module. If you try to unload a module that’s

depended on by other modules or is in use, rmmod will return an error message. (The -w
option modifi es this behavior, as just described.) If other modules depend on the module,
rmmod lists those modules so you can decide whether to unload them. If you want to unload
an entire module stack—that is, a module and all those upon which it depends—you can use
the modprobe command and its -r option, as described earlier in “Loading Kernel Modules.”

Configuring USB Devices

USB is an extremely popular (perhaps the most popular) external interface form. This fact
means that you must understand something about USB, including USB itself, Linux’s USB
drivers, and Linux’s USB management tools.

USB Basics
USB is a protocol and hardware port for transferring data to and from devices. It allows
for many more (and varied) devices per interface port than either ATA or SCSI, and it gives
better speed than RS-232 serial and parallel ports. The USB 1.0 and 1.1 specifi cations
allow for up to 127 devices and 12Mbps of data transfer. USB 2.0 allows for much higher
transfer rates—480Mbps, to be precise. USB 3.0, introduced in 2010, supports a theoreti-
cal maximum speed of 4.8Gbps, although 3.2Gbps is a more likely top speed in practice.
USB 3.0 devices require a different physical connector than 1.0, 1.1, and 2.0 connectors.

Data transfer speeds may be expressed in bits per second (bps) or
multiples thereof, such as megabits per second (Mbps) or gigabits per
second (Gbps). Or they can be expressed in bytes per second (Bps) or
multiples thereof, such as megabytes per second (MBps). In most cases,
there are 8 bits per byte, so multiplying or dividing by 8 may be necessary
if you’re trying to compare speeds of devices that use different measures.

http://technet24.ir/

Configuring USB Devices 127

c03.indd 03/26/2015 Page 127

USB is the preferred interface method for many external devices, including printers,
scanners, mice, digital cameras, fl ash drives, and music players. USB keyboards, Ethernet
adapters, modems, speakers, hard drives, and other devices are also available, although
USB has yet to dominate these areas as it has some others.

Most desktop computers ship with four to eight USB ports (though laptops tend to
include just two or three USB ports). Each port can handle one device by itself, but you can
use a USB hub to connect several devices to each port. Thus you can theoretically connect
huge numbers of USB devices to a computer. In practice, you may run into speed problems,
particularly if you’re using USB 1.x for devices that tend to transfer a lot of data, such as
scanners, printers, or hard drives.

If you have an older computer that lacks USB 3.0 support and you want
to connect a high-speed USB 3.0 device, you can buy a separate USB
3.0 board. You can continue to use the computer’s built-in USB ports for
slower devices.

Linux USB Drivers
Several different USB controllers are available, with names such as UHCI, OHCI, EHCI,
and R8A66597. Modern Linux distributions ship with the drivers for the common USB
controllers enabled, so your USB port should be activated automatically when you boot
the computer. The UHCI and OHCI controllers handle USB 1.x devices, but most other
controllers can handle USB 2.0 devices. You need a 2.6.31 or newer kernel to use USB 3.0
hardware. Note that these basics merely provide a means to access the actual USB hard-
ware and address the devices in a low-level manner. You’ll need additional software—either
drivers or specialized software packages—to make practical use of the devices.

You can learn a great deal about your devices by using the lsusb utility. A simple use of
this program with no options reveals basic information about your USB devices:

$ lsusb

Bus 003 Device 008: ID 0686:400e Minolta Co., Ltd

Bus 003 Device 001: ID 0000:0000

Bus 002 Device 002: ID 046d:c401 Logitech, Inc. TrackMan Marble Wheel

Bus 002 Device 001: ID 0000:0000

Bus 001 Device 001: ID 0000:0000

In this example, three USB busses are detected (001, 002, and 003). The fi rst bus has
no devices attached, but the second and third each have one device—a Logitech TrackMan
Marble Wheel trackball and a Minolta DiMAGE Scan Elite 5400 scanner, respectively.
(The scanner’s name isn’t fully identifi ed by this output, except insofar as the ID number
encodes this information.) You can gather additional information by using various options
to lsusb:

Be Verbose The -v option produces extended information about each product.

http://technet24.ir/

128 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 128

Restrict Bus and Device Number Using the -s [[bus]:][devnum] option restricts output
to the specifi ed bus and device number.

Restrict Vendor and Product You can limit output to a particular vendor and product by
using the -d [vendor]:[product] option. vendor and product are the codes just after ID
on each line of the basic lsusb output.

Display Device by Filename Using -D filename displays information about the device
that’s accessible via filename, which should be a fi le in the /proc/bus/usb directory tree.
This directory provides a low-level interface to USB devices, as described shortly.

Tree View The -t option displays the device list as a tree so that you can see what devices
are connected to specifi c controllers more easily.

Version The -V or --version option displays the version of the lsusb utility and exits.

Early Linux USB implementations required a separate driver for every USB device. Many
of these drivers remain in the kernel, and some software relies on them. For instance, USB
disk storage devices use USB storage drivers that interface with Linux’s SCSI support,
 making USB hard disks, removable disks, and so on look like SCSI devices.

Linux provides a USB fi lesystem that in turn provides access to USB devices in a generic
manner. This fi lesystem appears as part of the /proc virtual fi lesystem. In particular, USB
device information is accessible from /proc/bus/usb. Subdirectories of /proc/bus/usb
are given numbered names based on the USB controllers installed on the computer, as in /
proc/bus/usb/001 for the fi rst USB controller. Software can access fi les in these directories
to control USB devices rather than use device fi les in /dev as with most hardware devices.
Tools such as scanner software and the Linux printing system can automatically locate
compatible USB devices and use these fi les.

USB Manager Applications
USB can be challenging for OSs because it was designed as a hot-pluggable technology.
The Linux kernel wasn’t originally designed with this sort of activity in mind, so the kernel
relies on external utilities to help manage matters. Two tools in particular are used for
managing USB devices: usbmgr and hotplug. While these tools are not commonly installed
by default in Linux distributions, they can come in handy when working with USB devices.

The usbmgr package (located at http://freecode.com/projects/usbmgr) is a program
that runs in the background to detect changes on the USB bus. When it detects changes, it
loads or unloads the kernel modules that are required to handle the devices. For instance,
if you plug in a USB Zip drive, usbmgr will load the necessary USB and SCSI disk modules.
This package uses confi guration fi les in /etc/usbmgr to handle specifi c devices and uses /
etc/usbmgr/usbmgr.conf to control the overall confi guration.

With the shift from in-kernel device-specifi c USB drivers to the USB device fi lesystem (/
proc/bus/usb), usbmgr has been declining in importance. In fact, it may not be installed
on your system. Instead, most distributions rely on the Hotplug package (http://linux-
hotplug.sourceforge.net), which relies on kernel support added with the 2.4.x kernel
series. This system uses fi les stored in /etc/hotplug to control the confi guration of specifi c

http://technet24.ir/

Configuring Hard Disks 129

c03.indd 03/26/2015 Page 129

USB devices. In particular, /etc/hotplug/usb.usermap contains a database of USB device
IDs and pointers to scripts in /etc/hotplug/usb that are run when devices are plugged in
or unplugged. These scripts might change permissions on USB device fi les so that ordinary
users can access USB hardware, run commands to detect new USB disk devices, or other-
wise prepare the system for a new (or newly removed) USB device.

Configuring Hard Disks

Hard disks are among the most important components in your system. Three different
hard disk interfaces are common on modern computers: Parallel Advanced Technology
Attachment (PATA), aka ATA; Serial Advanced Technology Attachment (SATA); and
Small Computer System Interface (SCSI). In addition, external USB and IEEE-1394 drives
are available, as are external variants of SATA and SCSI drives. Each has its own method
of low-level confi guration.

Configuring PATA Disks
PATA disks once ruled the roost in the x86 PC world, but today SATA disks have largely
supplanted them. Thus, you’re most likely to encounter PATA disks on older computers—
say, from 2005 or earlier. PATA disks are still readily available, though.

As the full name implies, PATA disks use a parallel interface, meaning that several bits
of data are transferred over the cable at once. Therefore, PATA cables are wide, supporting
a total of either 40 or 80 lines, depending on the variety of PATA. You can connect up to
two devices to each PATA connector on a motherboard or plug-in PATA controller, mean-
ing that PATA cables typically have three connectors—one for the motherboard and two
for disks.

PATA disks must be confi gured as masters or as slaves. This can be done via jumpers on
the disks themselves. Typically, the master device sits at the end of the cable, and the slave
device resides on the middle connector. All modern PATA disks also support an option
called cable select. When set to this option, the drive attempts to confi gure itself automati-
cally based on its position on the PATA cable. Thus, your easiest confi guration usually is to
set all PATA devices to use the cable-select option; you can then attach them to whatever
position is convenient, and the drives should confi gure themselves.

For best performance, disks should be placed on separate controllers rather than confi g-
ured as master and slave on a single controller because each PATA controller has a limited
throughput that may be exceeded by two drives. Until recently, most motherboards have
included at least two controllers, so putting each drive on its own controller isn’t a problem
until you install more than two drives in a single computer.

All but the most ancient BIOSs auto-detect PATA devices and provide information about
their capacities and model numbers in the BIOS setup utilities. In the past, most mother-
boards would boot PATA drives in preference to other drives, but modern fi rmware usually
provides more options to control your boot preferences.

http://technet24.ir/

130 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 130

In Linux, PATA disks have traditionally been identifi ed as /dev/hda, /dev/hdb, and so
on, with /dev/hda being the master drive on the fi rst controller, /dev/hdb being the slave
drive on the fi rst controller, and so on. This means that gaps can occur in the numbering
scheme—if you have master disks on the fi rst and second controllers but no slave disks,
your system will contain /dev/hda and /dev/hdc but no /dev/hdb. Partitions are identifi ed
by numbers after the main device name, as in /dev/hda1, /dev/hda2, and so on.

The naming rules for disks also apply to optical media, except that these media typically
aren’t partitioned. Most Linux distributions also create a link to your optical drive under
the name /dev/cdrom or /dev/dvd.

Most modern Linux distributions favor newer PATA drivers that treat PATA disks as if
they were SCSI disks. Thus, you may fi nd that your device fi lenames follow the SCSI rules
rather than the PATA rules even if you have PATA disks.

Configuring SATA Disks
SATA is a newer interface than PATA, and SATA has largely displaced PATA as the inter-
face of choice. New motherboards typically host four or more SATA interfaces and frequently
lack PATA interfaces.

SATA disks connect to their motherboards or controllers on a one-to-one basis—unlike
with PATA, you can’t connect more than one disk to a single cable. This fact simplifi es
confi guration; there typically aren’t jumpers to set, and you needn’t be concerned with the
position of the disk on the cable.

As the word serial in the expansion of SATA implies, SATA is a serial bus—only one
bit of data can be transferred at a time. SATA transfers more bits per unit of time on its
data line, though, so SATA is faster than PATA (1.5–6.0Gbps for SATA vs. 128–1,064Mbps
for PATA, but these are theoretical maximums that are unlikely to be achieved in real-
world situations). Because of SATA’s serial nature, SATA cables are much thinner than
PATA cables.

Modern fi rmware detects SATA disks and provides information about them just as for
PATA disks. The fi rmware may provide boot order options too. Older BIOSs are likely to
be more limited. This is particularly true if your motherboard doesn’t provide SATA sup-
port but you use a separate SATA controller card. You may be able to boot from a SATA
disk in such cases if your controller card supports this option, or you may need to use a
PATA boot disk.

Most Linux SATA drivers treat SATA disks as if they were SCSI disks, so you should
read the next section, “Confi guring SCSI Disks,” for information about device naming.
Some older drivers treat SATA disks like PATA disks, so you may need to use PATA names
in some rare circumstances.

Configuring SCSI Disks
There are many types of SCSI defi nitions, which use a variety of different cables and
operate at various speeds. SCSI is traditionally a parallel bus, like PATA, although the latest
variant, Serial Attached SCSI (SAS), is a serial bus like SATA. SCSI has traditionally been

http://technet24.ir/

Configuring Hard Disks 131

c03.indd 03/26/2015 Page 131

considered a superior bus to PATA; however, the cost difference has risen dramatically over
the past decade or two, so few people today use SCSI. You may fi nd it on older systems or
on very high-end systems.

SCSI supports up to 8 or 16 devices per bus, depending on the variety. One of these
devices is the SCSI host adapter, which either is built into the motherboard or comes as a
plug-in card. In practice, the number of devices that you can attach to a SCSI bus is more
restricted because of cable-length limits, which vary from one SCSI variety to another. Each
device has its own ID number, typically assigned via a jumper on the device. You must
ensure that each device’s ID is unique. Consult its documentation to learn how to set the ID.

If your motherboard lacks built-in SCSI ports, chances are it won’t detect SCSI devices.
You can still boot from a SCSI hard disk if your SCSI host adapter has its own fi rmware
that supports booting. Most high-end SCSI host adapters have this support, but low-end
SCSI host adapters don’t have built-in fi rmware. If you use such a host adapter, you can still
attach SCSI hard disks to the adapter and Linux can use them, but you’ll need to boot from
a PATA or SATA hard disk.

SCSI IDs aren’t used to identify the corresponding device fi le on a Linux system. Hard
drives follow the naming system /dev/sdx (where x is a letter from a up), SCSI tapes are
named /dev/stx and /dev/nstx (where x is a number from 0 up), and SCSI CD-ROMs and
DVD-ROMs are named /dev/scdx or /dev/srx (where x is a number from 0 up).

SCSI device numbering (or lettering) is usually assigned in increasing order based on the
SCSI ID. If you have one hard disk with a SCSI ID of 2 and another hard disk with a SCSI
ID of 4, they will be assigned to /dev/sda and /dev/sdb, respectively. The real danger is if
you add a third SCSI drive and give it an ID of 0, 1, or 3. This new disk will become /dev/
sda (for an ID of 0 or 1) or /dev/sdb (for ID 3), bumping up one or both of the existing
disks’ Linux device identifi ers. For this reason, it’s usually best to give hard disks the lowest
possible SCSI IDs so that you can add future disks using higher IDs.

The mapping of Linux device identifiers to SCSI devices depends in part
on the design of the SCSI host adapter. Some host adapters result in
assignments starting from SCSI ID 7 and working down to 0 rather than the
reverse, with Wide SCSI device numbering continuing on from there to IDs
14 through 8.

Another complication is when you have multiple SCSI host adapters. In this case, Linux
assigns device fi lenames to all of the disks on the fi rst adapter, followed by all of those on
the second adapter. Depending on where the drivers for the SCSI host adapters are found
(compiled directly into the kernel or loaded as modules) and how they’re loaded (for modu-
lar drivers), you may not be able to control which adapter takes precedence.

Remember that some non-SCSI devices, such as USB disk devices and
SATA disks, are mapped onto the Linux SCSI subsystem. This can cause a
true SCSI hard disk to be assigned a higher device ID than you’d expect if
you use such “pseudo-SCSI” devices.

http://technet24.ir/

132 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 132

The SCSI bus is logically one-dimensional—that is, every device on the bus falls along
a single line. This bus must not fork or branch in any way. Each end of the SCSI bus must
be terminated. This refers to the presence of a special resistor pack that prevents signals
from bouncing back and forth along the SCSI chain. Consult your SCSI host adapter and
SCSI devices’ manuals to learn how to terminate them. Remember that both ends of the
SCSI chain must be terminated, but devices mid-chain must not be terminated. The SCSI
host adapter qualifi es as a device, so if it’s at the end of the chain, it must be terminated.
Termination is a true hardware requirement; it doesn’t apply to SATA or USB disk devices,
even though they use Linux SCSI drivers.

Incorrect termination often results in bizarre SCSI problems, such as an inability to
detect SCSI devices, poor performance, or unreliable operation. Similar symptoms can
result from the use of poor-quality SCSI cables or cables that are too long.

Configuring External Disks
External disks come in several varieties, the most common of which are USB, IEEE-1394,
and SCSI. SCSI has long supported external disks directly, and many SCSI host adapters
have both internal and external connectors. You confi gure external SCSI disks just like
internal disks, although the physical details of setting the SCSI ID number and termination
may differ; consult your devices’ manuals for details.

Linux treats external USB and IEEE-1394 disks just like SCSI devices, from a software
point of view. Typically, you can plug in the device, see a /dev/sdx device node appear,
and use it as you would a SCSI disk. This is the case for both true external hard disks and
media such as solid-state USB fl ash drives.

External drives are easily removed, and this can be a great convenience;
however, you should never unplug an external drive until you’ve
unmounted the disk in Linux using the umount command, as described
later in “Temporarily Mounting and Unmounting Filesystems.” Failure to
unmount a disk is likely to result in damage to the filesystem, including lost
files. In addition, although USB and IEEE-1394 busses are hot pluggable,
most SCSI busses aren’t, so connecting or disconnecting a SCSI device
while the computer is running is dangerous.

Designing a Hard Disk Layout

Whether your system uses PATA, SATA, or SCSI disks, you must design a disk layout for
Linux. If you’re using a system with Linux preinstalled, you may not need to deal with this
task immediately; however, sooner or later you’ll have to install Linux on a new computer
or one with an existing OS or upgrade your hard disk. The next few pages describe the x86
partitioning schemes, Linux mount points, and common choices for a Linux partitioning
scheme. The upcoming section “Creating Partitions and Filesystems” covers the mechanics
of creating partitions.

http://technet24.ir/

Designing a Hard Disk Layout 133

c03.indd 03/26/2015 Page 133

Why Partition?
The fi rst issue with partitioning is the question of why you should do it. The answer is that
partitioning provides a variety of advantages, including the following:

Multiple-OS Support Partitioning enables you to keep the data for different OSs separate.
In fact, many OSs can’t easily coexist on the same partition because they don’t support
each other’s primary fi lesystems. This feature is obviously important mainly if you want
the computer to boot multiple OSs. It can also be handy to help maintain an emergency
system—you can install a single OS twice, using the second installation as an emergency
maintenance tool for the fi rst in case problems develop.

Filesystem Choice By partitioning your disk, you can use different fi lesystems—data
structures designed to hold all of the fi les on a partition—on each partition. Perhaps
one fi lesystem is faster than another and so it is important for time-critical or frequently
accessed fi les, but another may provide accounting or backup features you want to use for
users’ data fi les.

Disk Space Management By partitioning your disk, you can lock certain sets of fi les into a
fi xed space. For instance, if you restrict users to storing fi les on one or two partitions, they
can fi ll those partitions without causing problems on other partitions, such as system parti-
tions. This feature can help keep your system from crashing if space runs out. On the other
hand, if you get the partition sizes wrong, you can run out of disk space on just one parti-
tion much sooner than would be the case if you’d used fewer partitions.

Disk Error Protection Disks sometimes develop problems. These problems can be the
result of bad hardware or errors that creep into the fi lesystems. In either case, splitting a
disk into partitions provides some protection against such problems. If data structures on
one partition become corrupted, the errors affect only the fi les on that partition. This sepa-
ration can therefore protect data on other partitions and simplify data recovery.

Security You can use different security-related mount options on different partitions. For
instance, you might mount a partition that holds critical system fi les in read-only mode,
preventing users from writing to that partition. Linux’s fi le security options should provide
similar protection, but taking advantage of Linux fi lesystem mount options provides redun-
dancy that can be helpful in case of an error in setting up fi le or directory permissions.

Backup Some backup tools work best on whole partitions. By keeping partitions small,
you may be able to back up more easily than you could if your partitions were large.

In practice, most Linux computers use several partitions, although precisely how
the system is partitioned varies from one computer to another. (The upcoming section
“Common Partitions and Filesystem Layouts” describes some possibilities.)

Understanding Partitioning Systems
Partitions are defi ned by data structures that are written to specifi ed parts of the hard disk.
Several competing systems for defi ning these partitions exist. On x86 and x86-64 hard-
ware, the most common method up until 2010 had been the Master Boot Record (MBR)

http://technet24.ir/

134 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 134

partitioning system, so called because it stores its data in the fi rst sector of the disk, which
is also known as the MBR. The MBR system, however, is limited to partitions and parti-
tion placement of 2 tebibytes (TiB; 1TiB is 240 bytes), at least when using the nearly uni-
versal sector size of 512 bytes. The successor to MBR is the GUID Partition Table (GPT)
partitioning system, which has much higher limits and certain other advantages. The tools
and methods for manipulating MBR and GPT disks differ from each other, although there’s
substantial overlap.

Still more partitioning systems exist, and you may run into them from
time to time. For instance, Macintoshes that use PowerPC CPUs generally
employ the Apple Partition Map (APM), and many Unix variants employ
Berkeley Standard Distribution (BSD) disk labels. You’re most likely to
encounter MBR and GPT disks, so those are the partitioning systems
covered in this book. Details for other systems differ, but the basic
principles are the same.

MBR Partitions
The original x86 partitioning scheme allowed for only four partitions. As hard disks
increased in size and the need for more partitions became apparent, the original scheme
was extended in a way that retained backward compatibility. The new scheme uses three
partition types:

 ■ Primary partitions, which are the same as the original partition types

 ■ Extended partitions, which are a special type of primary partition that serve as place-
holders for the next type

 ■ Logical partitions, which reside within an extended partition

Figure 3.4 illustrates how these partition types relate. Because logical partitions reside
within a single extended partition, all logical partitions must be contiguous.

F I GU R E 3 . 4 The MBR partitioning system uses up to four primary partitions, one of
which can be a placeholder extended partition that contains logical partitions.

Second primary partition/extended partition

First primary
partition

Third primary
partition

First logical
partition

Second logical
partition

For any one disk, you’re limited to four primary partitions, or three primary partitions
and one extended partition. Many OSs, such as Windows, and FreeBSD, must boot from
primary partitions, and because of this, most hard disks include at least one primary parti-
tion. Linux, however, is not so limited, so you could boot Linux from a disk that contains
no primary partitions, although in practice few people do this.

http://technet24.ir/

Designing a Hard Disk Layout 135

c03.indd 03/26/2015 Page 135

The primary partitions have numbers in the range of 1–4, whereas logical partitions are
numbered 5 and up. Gaps can appear in the numbering of MBR primary partitions; how-
ever, such gaps cannot exist in the numbering of logical partitions. That is, you can have a
disk with partitions numbered 1, 3, 5, 6, and 7 but not 1, 3, 5, and 7—if partition 7 exists,
there must be a 5 and a 6.

In addition to holding the partition table, the MBR data structure holds the primary
BIOS boot loader—the fi rst disk-loaded code that the CPU executes when a BIOS-based
computer boots. Thus the MBR is extremely important and sensitive. Because the MBR
exists only in the fi rst sector of the disk, it’s vulnerable to damage; accidental erasure will
make your disk unusable unless you have a backup.

You can back up your MBR partitions by typing sfdisk -d /dev/sda >
sda-backup.txt (or similar commands to specify another disk device
or backup file). You can then copy the backup file (sda-backup.txt in
this example) to a removable disk or another computer for safekeeping.
You can restore the backup by typing sfdisk -f /dev/sda < sda-
backup.txt. Be sure that you’re using the correct backup file, though; a
mistake can generate incorrect or even impossible partition definitions!

MBR partitions have type codes, which are 1-byte (two-digit hexadecimal) numbers,
to help identify their purpose. Common type codes you may run into include 0x0c (FAT),
0x05 (an old type of extended partition), 0x07 (NTFS), 0x0f (a newer type of extended
partition), 0x82 (Linux swap), and 0x83 (Linux fi lesystem).

Although the MBR data structure has survived for three decades, its days are numbered
because it’s not easily extensible beyond 2TiB disks. Thus, a new system is needed.

GPT Partitions
GPT is part of Intel’s EFI specifi cation, but GPT can be used on computers that don’t use
EFI, and GPT is the preferred partitioning system for disks bigger than 2TiB. Most EFI-
based computers use GPT even on disks smaller than 2TiB.

GPT employs a protective MBR, which is a legal MBR defi nition that makes GPT-
unaware utilities think that the disk holds a single MBR partition that spans the entire
disk. Additional data structures defi ne the true GPT partitions. These data structures are
duplicated, with one copy at the start of the disk and another at its end. This provides
redundancy that can help in data recovery should an accident damage one of the two sets of
data structures.

GPT does away with the primary/extended/logical distinction of MBR. You can defi ne
up to 128 partitions by default (and that limit may be raised, if necessary). Gaps can occur
in partition numbering, so you can have a disk with three partitions numbered 3, 7, and
104, to name just one possibility. In practice, though, GPT partitions are usually numbered
consecutively starting with 1.

GPT’s main drawback is that support for it is relatively immature. The fdisk utility
(described shortly in “Partitioning a Disk”) doesn’t work with GPT disks, although alter-
natives to fdisk are available. Some versions of the GRUB boot loader also don’t support it.

http://technet24.ir/

136 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 136

The situation is worse in some OSs—particularly older ones. Nonetheless, you should be
at least somewhat familiar with GPT because of MBR’s inability to handle disks larger
than 2TiB.

Like MBR, GPT supports partition type codes; however, GPT type codes are 16-byte
GUID values. Disk partitioning tools typically translate these codes into short descriptions,
such as “Linux swap.” Confusingly, most Linux installations use the same type code for
their fi lesystems that Windows uses for its fi lesystems, although a Linux-only code is avail-
able and is gaining in popularity among Linux distributions.

An Alternative to Partitions: LVM
An alternative to partitions for some functions is logical volume management (LVM). To
use LVM, you set aside one or more partitions and assign them MBR partition type codes
of 0x8e (or an equivalent on GPT disks). You then use a series of utilities, such as pvcreate,
vgcreate, lvcreate, and lvscan, to manage the partitions (known as physical volumes in
this scheme), to merge them into volume groups, and to create and manage logical volumes
within the volume groups. Ultimately, you then access the logical volumes using names you
assigned to them in the /dev/mapper directory, such as /dev/mapper/myvol-home.

LVM sounds complicated, and it is. Why would you want to use it? The biggest advan-
tage to LVM is that it enables you to resize your logical volumes easily without worrying
about the positions or sizes of surrounding partitions. In a sense, the logical volumes are
like fi les in a regular fi lesystem; the fi lesystem (or volume group, in the case of LVM) man-
ages the allocation of space when you resize fi les (or logical volumes). This can be a great
boon if you’re not sure of the optimum starting sizes of your partitions. You can also
easily add disk space, in the form of a new physical disk, to expand the size of an existing
volume group.

On the downside, LVM adds complexity, and not all Linux distributions support it out
of the box. LVM can complicate disaster recovery, and if your LVM confi guration spans
multiple disks, a failure of one disk will put all fi les in your volume group at risk. It’s easiest
to confi gure a system with at least one fi lesystem (dedicated to /boot, or perhaps the root
fi lesystem containing /boot) in its own conventional partition, reserving LVM for /home, /
usr, and other fi lesystems.

Despite these drawbacks, you might consider investigating LVM further in some situa-
tions. It’s most likely to be useful if you want to create an installation with many special-
ized fi lesystems and you want to retain the option of resizing those fi lesystems in the future.
A second situation where LVM is handy is if you need to create very large fi lesystems that
are too large for a single physical disk to handle.

Mount Points
Once a disk is partitioned, an OS must have some way to access the data on the parti-
tions. In Windows, assigning a drive letter, such as C: or D:, to each partition does this.
(Windows uses partition type codes to decide which partitions get drive letters and which

http://technet24.ir/

Designing a Hard Disk Layout 137

c03.indd 03/26/2015 Page 137

to ignore.) Linux, though, doesn’t use drive letters; instead, Linux uses a unifi ed directory
tree. Each partition is mounted at a mount point in that tree. A mount point is a directory
that’s used as a way to access the fi lesystem on the partition, and mounting the fi lesystem is
the process of linking the fi lesystem to the mount point.

For instance, suppose that a Linux system has three partitions: the root (/) partition, /
home, and /usr. The root partition holds the basic system fi les, and all other partitions are
accessed via directories on that fi lesystem. If /home contains users’ home directories, such
as sally and sam, those directories will be accessible as /home/sally and /home/sam once
this partition is mounted at /home. If this partition were unmounted and remounted at /
users, the same directories would become accessible as /users/sally and /users/sam.

Partitions can be mounted just about anywhere in the Linux directory tree, including in
directories on the root partition as well as directories on mounted partitions. For instance,
if /home is a separate partition, you can have a /home/morehomes directory that serves as a
mount point for another partition.

The upcoming section “Mounting and Unmounting Filesystems” describes the com-
mands and confi guration fi les that are used for mounting partitions. For now, you should
be concerned only with what constitutes a good fi lesystem layout (that is, what directories
you should split off into their own partitions) and how to create these partitions.

Common Partitions and Filesystem Layouts
So, what directories are commonly split off into separate partitions? Table 3.4 summarizes
some popular choices. Note that typical sizes for many of these partitions vary greatly
depending on how the system is used. Therefore, it’s impossible to make recommendations
on partition size that will be universally acceptable.

TA B LE 3 . 4 Common partitions and their uses

Partition (mount
point) Typical size Use

Swap (not mounted) One to two times
the system RAM
size

Serves as an adjunct to system RAM. It is slow
but enables the computer to run more or larger
programs.

/home 200MiB–3TiB (or
more)

Holds users’ data files. Isolating it on a separate
partition preserves user data during a system
upgrade. Size depends on the number of users
and their data storage needs.

/boot 100–500MiB Holds critical boot files. Creating it as a separate
partition lets you circumvent limitations of older
BIOSs and boot loaders, which often can’t boot
a kernel from a point above a value between
504MiB and 2TiB.

http://technet24.ir/

138 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 138

Partition (mount
point) Typical size Use

/usr 500MiB–25GiB Holds most Linux program and data files; this is
sometimes the largest partition, although /home
is larger on systems with many users or if users
store large data files. Changes implemented in
2012 are making it harder to create a separate /
usr partition in many distributions.

/usr/local 100MiB–3GiB Holds Linux program and data files that are
unique to this installation, particularly those that
you compile yourself.

/opt 100MiB–5GiB Holds Linux program and data files that are asso-
ciated with third-party packages, especially com-
mercial ones.

/var 100MiB–3TiB (or
more)

Holds miscellaneous files associated with the
day-to-day functioning of a computer. These files
are often transient in nature. Most often split off
as a separate partition when the system func-
tions as a server that uses the /var directory for
server-related files like mail queues.

/tmp 100MiB–20GiB Holds temporary files created by ordinary users.

/mnt N/A Not a separate partition; rather, it or its subdirec-
tories are used as mount points for removable
media like CDs and DVDs.

/media N/A Holds subdirectories that may be used as mount
points for removable media, much like /mnt or its
subdirectories.

Some directories—/etc, /bin, /sbin, /lib, and /dev—should never be placed on sepa-
rate partitions. These directories host critical system confi guration fi les or fi les without
which a Linux system can’t function. For instance, /etc contains /etc/fstab, the fi le that
specifi es what partitions correspond to what directories, and /bin contains the mount utility
that’s used to mount partitions on directories. Changes to system utilities are making it
harder, but not impossible, to split off /usr as a separate partition.

The 2.4.x and newer kernels include support for a dedicated /dev
filesystem, which obviates the need for files in a disk-based /dev directory;
so, in some sense, /dev can reside on a separate filesystem, although not
a separate partition. The udev utility controls the /dev filesystem in recent
versions of Linux.

TA B LE 3 . 4 Common partitions and their uses (continued)

http://technet24.ir/

Creating Partitions and Filesystems 139

c03.indd 03/26/2015 Page 139

Creating Partitions and Filesystems

If you’re installing Linux on a computer, chances are that it will present you with a tool
to help guide you through the partitioning process. These installation tools will create the
partitions that you tell them to create or create partitions sized as the distribution’s main-
tainers believe appropriate. If you need to partition a new disk that you’re adding, though,
or if you want to create partitions using standard Linux tools rather than rely on your
distribution’s installation tools, you must know something about the Linux programs that
accomplish this task. Partitioning involves two tasks: creating the partitions and preparing
the partitions to be used. In Linux, these two tasks are usually accomplished using separate
tools, although some tools can handle both tasks simultaneously.

When to Create Multiple Partitions

One problem with splitting off lots of separate partitions, particularly for new administra-

tors, is that it can be diffi cult to settle on appropriate partition sizes. As noted in Table 3.4,

the appropriate size of various partitions can vary substantially from one system to

another. For instance, a workstation is likely to need a fairly small /var partition (say,

100MiB), but a mail or news server may need a /var partition that’s gigabytes in size.

Guessing wrong isn’t fatal, but it is annoying. You’ll need to resize your partitions (which

is tedious and dangerous) or set up symbolic links between partitions so that subdirecto-

ries on one partition can be stored on other partitions. LVM can simplify such after-the-

fact changes, but as noted earlier, LVM adds its own complexity.

For this reason, we generally recommend that new Linux administrators try simple parti-

tion layouts fi rst. The root (/) partition is required, and swap is a very good idea. Beyond

this, /boot can be helpful on hard disks of more than 8GiB with older distributions or

BIOSs, but it is seldom needed with computers or distributions sold since 2000. Aside

from user data (in /home or elsewhere), most Linux installations require 5 to 25GiB, so

setting root (/) to a value in this range makes sense. An appropriate size for /home is often

relatively easy for new administrators to guess, or you can devote all of your disk space

after creating root (/) and swap to /home. Beyond these partitions, we recommend that

new administrators proceed with caution.

As you gain more experience with Linux, you may want to break off other directories

into their own partitions on subsequent installations or when upgrading disk hard-

ware. You can use the du command to learn how much space is used by fi les within

any given directory.

http://technet24.ir/

140 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 140

Partitioning a Disk
The traditional Linux tool for MBR disk partitioning is called fdisk. This tool’s name is
short for fi xed disk, and the name is the same as a Windows tool that accomplishes the
same task. (When we mean to refer to the Windows tool, we capitalize its name, as in
FDISK. The Linux tool’s name is always entirely lowercase.) Both Window’s FDISK and
Linux’s fdisk are text-mode tools used to accomplish similar goals, but the two are very
different in operational details.

Although fdisk is the traditional tool, several others exist. One of these is GNU Parted,
which can handle several different partition table types, not just the MBR that fdisk can
handle. If you prefer fdisk to GNU Parted but must use GPT, you can use GPT fdisk
(http://www.rodsbooks.com/gdisk/); this package’s gdisk program works much like
fdisk but on GPT disks.

Using fdisk
To use Linux’s fdisk, type the command name followed by the name of the disk device
that you want to partition. For example, type the command fdisk /dev/hda to partition
the primary PATA disk. The result is an fdisk prompt:

fdisk /dev/hda

Command (m for help):

At the Command (m for help): prompt, you can type commands to accomplish various goals:

Display the Current Partition Table You may want to begin by displaying the current parti-
tion table. To do so, type p. If you only want to display the current partition table, you can
type fdisk -l /dev/hda (or whatever the device identifi er is) at a command prompt rather
than enter fdisk’s interactive mode. This command displays the partition table and then exits.

Create a Partition To create a partition, type n. The result is a series of prompts asking
for information about the partition—whether it should be a primary, extended, or logical
partition; the partition’s starting cylinder; the partition’s ending cylinder or size; and so on.
The details of what you’re asked depend in part on what’s already defi ned. For instance,
fdisk won’t ask you if you want to create an extended partition if one already exists. Older
versions of fdisk measure partition start and end points in cylinders, not megabytes. This
is a holdover from the CHS measurements used by the x86 partition table. Recent versions
of fdisk use sectors as the default unit of measure, although you can specify a partition’s
size by using a plus sign, number, and suffi x, as in +20G to create a 20GiB partition.

In the past, partitions were aligned on CHS cylinders. This was beneficial
given the hardware of the 1980s, but today it’s detrimental. Many modern
disks require partition alignment on 8-sector or larger boundaries for optimum
performance. Recent partitioning programs begin partitions on 1MiB
(2048-sector) boundaries for this reason. Failure to align partitions properly
can result in severe performance degradation. For more on this topic see

www.ibm.com/developerworks/library/l-linux-4kb-sector-disks/
index.html

http://technet24.ir/

Creating Partitions and Filesystems 141

c03.indd 03/26/2015 Page 141

Delete a Partition To delete a partition, type d. If more than one partition exists, the pro-
gram will ask for the partition number, which you must enter.

Change a Partition’s Type When you create a partition, fdisk assigns it a type code of
0x83, which corresponds to a Linux fi lesystem. If you want to create a Linux swap parti-
tion or a partition for another OS, you can type t to change a partition type code. The pro-
gram then prompts you for a partition number and a type code.

List Partition Types Several dozen partition type codes exist, so it’s easy to forget what
they are. Type l (that’s a lowercase L) at the main fdisk prompt to see a list of the most
common ones. You can also get this list by typing L when you’re prompted for the partition
type when you change a partition’s type code.

Mark a Partition Bootable Some OSs, such as Windows, rely on their partitions having
special bootable fl ags in order to boot. You can set this fl ag by typing a, whereupon fdisk
asks for the partition number.

Get Help Type m or ? to see a summary of the main fdisk commands.

Exit Linux’s fdisk supports two exit modes. First, you can type q to exit the program
without saving any changes; anything you do with the program is lost. This option is par-
ticularly helpful if you’ve made a mistake. Second, typing w writes your changes to the disk
and exits the program.

As an example, consider deleting a primary, an extended, and a logical partition on a
USB fl ash drive and creating a single new one in their place:

fdisk /dev/sdc

Command (m for help): p

Disk /dev/sdc: 2038 MB, 2038431744 bytes

63 heads, 62 sectors/track, 1019 cylinders, total 3981312 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x88a46f2c

 Device Boot Start End Blocks Id System

/dev/sdc1 2048 2099199 1048576 83 Linux

/dev/sdc2 2099200 3981311 941056 5 Extended

/dev/sdc5 2101248 3981311 940032 83 Linux

Command (m for help): d

Partition number (1-5): 5

Command (m for help): d

Partition number (1-5): 2

Command (m for help): d

Selected partition 1

Command (m for help): n

http://technet24.ir/

142 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 142

Partition type:

 p primary (0 primary, 0 extended, 4 free)

 e extended

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-3981311, default 2048): 2048

Last sector, +sectors or +size{K,M,G} (2048-3981311, default 3981311):

Using default value 3981311

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

This process begins with a p command to verify that the program is operating on the
correct disk. With this information in hand, the three existing partitions are deleted. Note
that the fi rst two deletions ask for a partition number, but the third doesn’t because only
one partition is left. Once this is done, n is used to create a new primary partition. Once the
task is complete, the w command is used to write the changes to disk and exit the program.
The result of this sequence is a disk with a single primary partition (/dev/sdc1) marked as
holding a Linux fi lesystem.

Using gdisk
If you’re working with a GPT-formatted hard drive, you’ll need to use the gdisk utility. On
the surface, it works exactly like the fdisk utility, including using the same command letters:

$ gdisk /dev/sda

GPT fdisk (gdisk) version 0.8.8

Partition table scan:

 MBR: protective

 BSD: not present

 APM: not present

 GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help):

To display the existing partitions, just use the print command:

Command (? for help): print

Disk /dev/sda: 23311984 sectors, 11.1 GiB

Logical sector size: 512 bytes

Disk identifier (GUID): 69816054-1280-4B53-BA4B-6829B0D4FD6D

Partition table holds up to 128 entries

http://technet24.ir/

Creating Partitions and Filesystems 143

c03.indd 03/26/2015 Page 143

First usable sector is 34, last usable sector is 23311950

Partitions will be aligned on 2048-sector boundaries

Total free space is 3629 sectors (1.8 MiB)

Number Start (sector) End (sector) Size Code Name

 1 2048 382975 186.0 MiB EF00 EFI System Partition

 2 382976 1406975 500.0 MiB 0700

 3 1406976 3737599 1.1 GiB 8200

 4 3737600 23310335 9.3 GiB 0700

Command (? for help):

Remember that the GPT format doesn’t use primary, extended, or logical partitions—all
of the partitions are the same. The Code column shows the 16-byte GUID value for the
GPT partition, indicating the type of partition. However, this particular Linux distribution
(Fedora 20) uses the proper 8200 code for the Linux swap area but uses the 0700 Windows
partition code instead of the 8300 code commonly used for Linux partitions.

From the gdisk prompt, you can delete existing partitions, create new partitions, and
write the changes to the hard drive, just as with the fdisk utility.

Using GNU Parted
GNU Parted (www.gnu.org/software/parted/) is a partitioning tool that works with
MBR, GPT, APM, and BSD disk labels, and other disk types. It also supports more
 features than fdisk and is easier to use in some ways. On the other hand, GNU Parted uses
its own way of referring to partitions, which can be confusing. It’s also more fi nicky about
minor disk partitioning quirks and errors than fdisk. Although GNU Parted isn’t covered
on the exam, knowing a bit about it can be handy.

You start GNU Parted much as you start fdisk; that is, by typing its name followed by the
device you want to modify, as in parted /dev/sda to partition the /dev/sda hard drive:

$ parted /dev/sda

GNU Parted 3.1

Using /dev/sda

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted)

The result is some brief introductory text followed by a (parted) prompt at which you
type commands. Type ? to see a list of commands, which are multicharacter commands
similar to Linux shell commands. For instance, print displays the current partition table:

(parted) print

Model: ATA VBOX HARDDISK (scsi)

Disk /dev/sda: 11.9GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

http://technet24.ir/

144 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 144

Disk Flags:

Number Start End Size File system Name Flags

 1 1049kB 196MB 195MB fat16 EFI System Partition boot

 2 196MB 720MB 524MB ext4

 3 720MB 1914MB 1193MB linux-swap(v1)

 4 1914MB 11.9GB 10.0GB ext4

(parted)

To use parted to create a GPT disk, use the mklabel command:

(parted) mklabel gpt

Then to create a new partition, use the mkpart command:

(parted) mkpart primary ext4 1024kb 2tb

Some still more advanced partitioning capabilities appear only in fl ashy GUI tools, such
as the GNOME Partition Editor, aka GParted (http://gparted.sourceforge.net), which
is shown in Figure 3.5. Aside from its novice-friendly user interface, GParted’s main claim
to fame is that it enables you to move or resize partitions easily. You may need to run the
program from an emergency disk to use these features, though; you can’t move or resize
any partition that’s currently in use. Such partitions are marked with a key icon, as shown
next to all the paritions in Figure 3.5.

F I GU R E 3 .5 GParted enables point-and-click partition management, including partition
moving and resizing.

http://technet24.ir/

Creating Partitions and Filesystems 145

c03.indd 03/26/2015 Page 145

Resizing or moving a filesystem can be dangerous. If the resizing code
contains a bug, or if there’s a power failure during the operation, data can
be lost. We strongly recommend that you back up any important data
before resizing or moving a partition. Also, resizing or moving your boot
partition on a BIOS-based computer can render the system unbootable
until you reinstall your boot loader.

Preparing a Partition for Use
Once a partition is created, you must prepare it for use. This process is often called “making
a fi lesystem” or “formatting a partition.” It involves writing low-level data structures to
disk. Linux can then read and modify these data structures to access and store fi les in the
partition. You should know something about the common Linux fi lesystems and know how
to use fi lesystem creation tools to create them.

The word formatting is somewhat ambiguous. It can refer either to low-
level formatting, which creates a structure of sectors and tracks on the disk
media, or high-level formatting, which creates a filesystem. Hard disks are
low-level formatted at the factory and should never need to be low-level
formatted again.

Common Filesystem Types
Linux supports quite a few different fi lesystems, both Linux-native fi lesystems and those
intended for other OSs. Some of the latter barely work under Linux, and even when they do
work reliably, they usually don’t support all of the features that Linux expects in its native
fi lesystems. Thus when preparing a Linux system, you’ll use one or more of its native fi le-
systems for most or all partitions:

Ext2fs The Second Extended File System (ext2fs or ext2) is the traditional Linux-native
fi lesystem. It was created for Linux and was the dominant Linux fi lesystem throughout
the late 1990s. Ext2fs has a reputation as a reliable fi lesystem. It has since been eclipsed
by other fi lesystems, but it still has its uses. In particular, ext2fs can be a good choice for
a small /boot partition, if you choose to use one, and for small (sub-gigabyte) removable
disks. On such small partitions, the size of the journal used by more advanced fi lesys-
tems can be a real problem, so the non-journaling ext2fs is a better choice. (Journaling is
described in more detail shortly.) The ext2 fi lesystem type code is ext2.

On an EFI-based computer, using ext2fs, ext3fs, or ReiserFS on a separate
/boot partition enables the firmware to read this partition with the
help of suitable drivers. This can expand your options for boot loader
configuration.

http://technet24.ir/

146 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 146

Ext3fs The Third Extended File System (ext3fs or ext3) is basically ext2fs with a journal
added. The result is a fi lesystem that’s as reliable as ext2fs but that recovers from power
outages and system crashes much more quickly. The ext3 fi lesystem type code is ext3.

Ext4fs The Fourth Extended File System (ext4fs or ext4) is the next-generation version
of this fi lesystem family. It adds the ability to work with very large disks (those over 16TiB,
the limit for ext2fs and ext3fs) or very large fi les (those over 2TiB) as well as extensions
intended to improve performance. Its fi lesystem type code is ext4.

ReiserFS This fi lesystem was designed from scratch as a journaling fi lesystem for Linux.
It’s particularly good at handling large numbers of small fi les (say, smaller than about
32KB) because ReiserFS uses various tricks to squeeze the ends of fi les into each other’s
unused spaces. These small savings can add up when fi les are small. You can use reiserfs
as the type code for this fi lesystem.

As of Linux kernel version 3.6.0, ReiserFS version 3.x is current. A from-
scratch rewrite of ReiserFS, known as Reiser4, is under development,
although this development has slowed to the point that it’s uncertain if
Reiser4 will ever be included in the mainstream kernel.

JFS IBM developed the Journaled File System (JFS) for its AIX OS on mainframe systems
and later reimplemented it on its attempt at a workstation OS, called OS/2. After the demise
of OS/2, the OS/2 version of JFS was subsequently donated to Linux. JFS is a technically
sophisticated journaling fi lesystem that may be of particular interest if you’re familiar with
AIX or OS/2 or want an advanced fi lesystem to use on a dual-boot system with one of these
OSs. As you might expect, this fi lesystem’s type code is jfs.

XFS Silicon Graphics (SGI) created its Extents File System (XFS) for its IRIX OS and,
like IBM, later donated the code to Linux. Like JFS, XFS is a very technically sophisticated
fi lesystem. XFS has gained a reputation for robustness, speed, and fl exibility on IRIX,
but some of the XFS features that make it so fl exible on IRIX aren’t supported well under
Linux. Use xfs as the type code for this fi lesystem.

Btrfs This fi lesystem (pronounced “butter eff ess” or “bee tree eff ess”) is an advanced
fi lesystem with features inspired by those of Sun’s Zettabyte File System (ZFS). Like ext4fs,
JFS, and XFS, Btrfs is a fast performer, and it is able to handle very large disks and fi les. As
of the 3.6.0 kernel, Btrfs is considered experimental; however, its advanced features make it
a likely successor to the current popular fi lesystems.

In practice, most administrators choose ext3fs, ext4fs, or ReiserFS as their primary
 fi lesystems; however, JFS and XFS also work well, and some administrators prefer them,
particularly on large disks that store large fi les. (Ext4fs also handles large fi les.) Hard data
on the merits and problems with each fi lesystem is diffi cult to come by, and even when it does
exist, it’s suspect because fi lesystem performance interacts with so many other factors. For
instance, as just noted, ReiserFS can cram more small fi les into a small space than can other
fi lesystems, but this advantage isn’t very important if you’ll be storing mostly larger fi les.

http://technet24.ir/

Creating Partitions and Filesystems 147

c03.indd 03/26/2015 Page 147

If you’re using a non-x86 or non-x86-64 platform, be sure to check
filesystem development on that platform. A filesystem may be speedy and
reliable on one CPU but sluggish and unreliable on another.

In addition to these Linux-native fi lesystems, you may need to deal with some others
from time to time, including the following:

FAT The File Allocation Table (FAT) fi lesystem is old and primitive—but ubiquitous. It’s
the only hard disk fi lesystem supported by DOS and early versions of Windows (such as the
Windows 9x series and the short-lived Windows Me). For this reason, every major OS under-
stands FAT, making it an excellent fi lesystem for exchanging data on removable disks. Two
major orthogonal variants of FAT exist: they vary in the size of the FAT data structure, after
which the fi lesystem is named (12-, 16-, or 32-bit pointers), and have variants that support
long fi lenames. Linux automatically detects the FAT size, so you shouldn’t need to worry about
this. To use the original FAT fi lenames, which are limited to eight characters with an optional
three-character extension (the so-called 8.3 fi lenames), use the Linux fi lesystem type code of
msdos. To use Windows-style long fi lenames, use the fi lesystem type code of vfat. A Linux-
only long fi lename system, known as umsdos, supports additional Linux features—enough that
you can install Linux on a FAT partition, although this practice isn’t recommended except for
certain types of emergency disks or to try Linux on a Windows system.

NTFS The New Technology File System (NTFS) is the preferred fi lesystem for Windows
NT and beyond. Unfortunately, Linux’s NTFS support is rather rudimentary. As of the
2.6.x kernel series, Linux can reliably read NTFS and can overwrite existing fi les, but the
Linux kernel can’t write new fi les to an NTFS partition. There are separate drivers outside of
the kernel that you can use in Linux to create new fi les on an NTFS fi lesystem. Of these, the
NTFS-3G driver is the most popular, and it is included by default in most Linux distributions.

HFS and HFS+ Apple has long used the Hierarchical File System (HFS) with its Mac OS,
and Linux provides full read/write HFS support. This support isn’t as reliable as Linux’s
read/write FAT support, though, so you may want to use FAT when exchanging fi les with
Mac users. Apple has extended HFS to better support large hard disks and many Unix-like
features with its HFS+ (aka Extended HFS). Linux 2.6.x and newer provide limited HFS+
support, but write support works only with the HFS+ journal disabled.

ISO-9660 The standard fi lesystem for CD-ROMs has long been ISO-9660. This fi lesys-
tem comes in several levels. Level 1 is similar to the original FAT in that it supports only
8.3 fi lenames. Levels 2 and 3 add support for longer 32-character fi lenames. Linux sup-
ports ISO-9660 using its iso9660 fi lesystem type code. Linux’s ISO-9660 support also
works with the Rock Ridge extensions, which are a series of extensions to ISO-9660 to
enable it to support Unix-style long fi lenames, permissions, symbolic links, and so on.
Similarly, Joliet provides support for long fi lenames as implemented for Windows. If a disc
includes Rock Ridge or Joliet extensions, Linux will automatically detect and use them.

UDF The Universal Disc Format (UDF) is the next-generation fi lesystem for optical
discs. It’s commonly used on DVD-ROMs and recordable optical discs. Linux supports it,
but read/write UDF support is still in its infancy.

http://technet24.ir/

148 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 148

As a practical matter, if you’re preparing a hard disk for use with Linux, you should
probably use Linux fi lesystems only. If you’re preparing a disk that will be used for a dual-
boot confi guration, you may want to set aside some partitions for other fi lesystem types.
For removable disks, you’ll have to be the judge of what’s most appropriate. You might
use ext2fs for a Linux-only removable disk, FAT for a cross-platform disk, or ISO-9660
 (perhaps with Rock Ridge and Joliet) for a CD-R or recordable DVD.

ISO-9660 and other optical disc filesystems are created with special tools
intended for this purpose. Specifically, mkisofs creates an ISO-9660
filesystem (optionally with Rock Ridge, Joliet, HFS, and UDF components
added), while cdrecord writes this image to a blank CD-R. The growisofs
program combines both functions but works only on recordable DVD media.

Creating a Filesystem
Linux tools exist that can create most fi lesystems on a partition, including all Linux-native
fi lesystems. Typically, these tools have fi lenames in the form of mkfs.fstype, where fstype
is the fi lesystem type code. These tools can also be called from a front-end tool called mkfs;
you pass the fi lesystem type code to mkfs using its -t option:

mkfs -t ext3 /dev/sda6

For ext2 and ext3 filesystems, the mke2fs program is often used instead of
mkfs. The mke2fs program is just another name for mkfs.ext2.

This command creates an ext3 fi lesystem on /dev/sda6. Depending on the fi lesystem,
the speed of the disk, and the size of the partition, this process can take anywhere from
a fraction of a second to a few seconds. Most fi lesystem-build tools support additional
options, some of which can greatly increase the time required to build a fi lesystem. In
 particular, the -c option is supported by several fi lesystems. This option causes the tool
to perform a bad-block check—every sector in the partition is checked to be sure it can
 reliably hold data. If it can’t, the sector is marked as bad and isn’t used.

If you perform a bad-block check and find that some sectors are bad,
chances are the entire hard disk doesn’t have long to live. Sometimes this
sort of problem can result from other issues, though, such as bad cables or
SCSI termination problems.

Of the common Linux fi lesystems, ext2fs, ext3fs, and ext4fs provide the most options
in their mkfs tools. (In fact, these tools are one and the same; the program simply cre-
ates a fi lesystem with the appropriate features for the name that’s used to call it.) You can
type man mkfs.ext2 to learn about these options, most of which deal with obscure and

http://technet24.ir/

Creating Partitions and Filesystems 149

c03.indd 03/26/2015 Page 149

unimportant features. One obscure option that does deserve mention is -m percent, which
sets the reserved-space percentage. The idea is that you don’t want the disk to fi ll up com-
pletely with user fi les; if the disk starts getting close to full, Linux should report that the
disk is full before it really is, at least for ordinary users. This gives the root user the ability
to log in and create new fi les, if necessary, to help recover the system.

The ext2fs/ext3fs/ext4fs reserved-space percentage defaults to 5 percent, which translates
to quite a lot of space on large disks. You may want to reduce this value (say, by passing -m
2 to reduce it to 2 percent) on your root (/) fi lesystem and perhaps even lower (1 percent
or 0 percent) on some, such as /home. Setting -m 0 also makes sense on removable disks,
which aren’t likely to be critical for system recovery and may be a bit cramped to begin
with.

In addition to providing fi lesystem creation tools for Linux-native fi lesystems, Linux
distributions usually provide such tools for various non-Linux fi lesystems. The most impor-
tant of these may be for FAT. The main tool for this task is called mkdosfs, but it’s often
linked to the mkfs.msdos and mkfs.vfat names as well. This program can automatically
adjust the size of the FAT data structure to 12, 16, or 32 bits depending on the device size.
You can override this option with the -F fat-size option, where fat-size is the FAT size
in bits—12, 16, or 32. No special options are required to create a FAT fi lesystem that can
handle Windows-style (VFAT) long fi lenames; the OS creates these.

In Exercise 3.1, you’ll practice creating fi lesystems using mkfs and related utilities.

E X E R C I S E 3 .1

Creating Filesystems

Try creating some fi lesystems on a spare partition or a removable disk. Even a fl oppy disk

will do, although you won’t be able to create journaling fi lesystems on a fl oppy disk. The

following steps assume that you’re using a USB fl ash drive, /dev/sdc1; change the device

specifi cation as necessary.

WARNING: Be sure to use an empty partition! Accidentally entering the wrong device fi lename

could wipe out your entire system!

This exercise uses a few commands that are described in more detail later in this chapter.

To create some fi lesystems, follow these steps:

1. Log in as root.

2. Use fdisk to verify the partitions on your target disk by typing fdisk -l /dev/

sdc. You should see a list of partitions, including the one you’ll use for your tests. (If

fdisk reports a single partition with ee under the Id column, the disk is a GPT disk,

and you should verify the disk’s partitions with gdisk rather than fdisk.)

3. Verify that your test partition is not currently mounted. Type df to see the currently

mounted partitions and verify that /dev/sdc1 is not among them.

4. Type mkfs -t ext2 /dev/sdc1. You should see several lines of status information

appear.

http://technet24.ir/

150 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 150

E X E R C I S E 3 .1 (c ont inue d)

5. Type mount /dev/sdc1 /mnt to mount the new fi lesystem to /mnt. (You may use

another mount point if you like.)

6. Type df /mnt to see basic accounting information for the fi lesystem. On our test

system with a /dev/sdc1 that’s precisely 1000MiB in size, 1,007,896 blocks are

 present; 1,264 are used, and 955,432 blocks are available. Most of the difference

between the present and available blocks is caused by the 5 percent reserved space.

7. Type umount /mnt to unmount the fi lesystem.

8. Type mkfs -t ext2 -m 0 /dev/sdc1 to create a new ext2 fi lesystem on the

device, but without any reserved space.

9. Repeat steps 5–7. Note that the available space has increased (to 1,006,632 blocks on our

test disk). The available space plus the used space should now equal the total blocks.

10. Repeat steps 4–7, but use a fi lesystem type code of ext3 to create a journaling fi le-

system. (This won’t be possible if you use a fl oppy disk.) Note how much space is

consumed by the journal.

11. Repeat steps 4–7, but use another fi lesystem, such as JFS or ReiserFS. Note how the

fi lesystem creation tools differ in the information that they present and in their stated

amounts of available space.

Be aware that, because of differences in how fi lesystems store fi les and allocate space, a

greater amount of available space when a fi lesystem is created may not translate into a

greater capacity to store fi les.

Creating Swap Space
Some partitions don’t hold fi les. Most notably, Linux can use a swap partition, which is
a partition that Linux treats as an extension of memory. (Linux can also use a swap fi le,
which is a fi le that works in the same way. Both are examples of swap space.) Linux uses
the MBR partition type code of 0x82 to identify swap space, but as with other partitions,
this code is mostly a convenience to keep other OSs from trying to access Linux swap parti-
tions; Linux uses /etc/fstab to defi ne which partitions to use as swap space, as described
in “Permanently Mounting Filesystems” later in this chapter.

Solaris for x86 also uses an MBR partition type code of 0x82. However,
in Solaris, this code refers to a Solaris partition. If you dual-boot between
Solaris and Linux, this double meaning of the 0x82 partition type code can
cause confusion. This is particularly true when installing the OSs. You may
need to use Linux’s fdisk to change the partition type codes temporarily
to keep Linux from trying to use a Solaris partition as swap space or to
keep Solaris from trying to interpret Linux swap space as a data partition.

http://technet24.ir/

Maintaining Filesystem Health 151

c03.indd 03/26/2015 Page 151

Although swap space doesn’t hold a fi lesystem per se, and it isn’t mounted in the way
that fi lesystem partitions are mounted, swap space does require preparation similar to that
for creation of a fi lesystem. This task is accomplished with the mkswap command, which
you can generally use by passing it nothing but the device identifi er:

mkswap /dev/sda7

This example turns /dev/sda7 into swap space. To use the swap space, you must activate
it with the swapon command:

swapon /dev/sda7

To activate swap space permanently, you must create an entry for it in /etc/fstab, as
described in “Permanently Mounting Filesystems,” later in this chapter.

Maintaining Filesystem Health

Filesystems can become “sick” in a variety of ways. They can become overloaded with too
much data, they can be tuned inappropriately for your system, or they can become cor-
rupted because of buggy drivers, buggy utilities, or hardware errors. Fortunately, Linux
provides a variety of utilities that can help you keep an eye on the status of your fi lesystems,
tune their performance, and fi x them.

Many of Linux’s filesystem maintenance tools should be run when the
filesystem is not mounted. Changes made by maintenance utilities while
the filesystem is mounted can confuse the kernel’s filesystem drivers,
resulting in data corruption. In the following pages, we mention when
utilities can and can’t be used with mounted filesystems.

Tuning Filesystems
Filesystems are basically just big data structures—they’re a means of storing data on disk
in an indexed method that makes it easy to locate the data at a later time. Like all data
structures, fi lesystems include design compromises. For instance, a design feature may
enable you to store more small fi les on disk, but it might chew up disk space, thus reduc-
ing the total capacity available for storage of larger fi les. In many cases, you have no choice
concerning these compromises, but some fi lesystems include tools that enable you to set fi le-
system options that affect performance. This is particularly true of ext2fs and the related
ext3fs and ext4fs. Three tools are particularly important for tuning these fi lesystems: dump-
e2fs, tune2fs, and debugfs. The fi rst of these tools provides information about the fi lesys-
tem, and the other two enable you to change tuning options.

http://technet24.ir/

152 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 152

Obtaining Filesystem Information
You can learn a lot about your ext2 or ext3 fi lesystem with the dumpe2fs command. This
command’s syntax is fairly straightforward:

dumpe2fs [options] device

device is the fi lesystem device fi le, such as /dev/sdb7. This command accepts several
options (signifi ed by options), most of which are rather obscure. The most important
option is probably -h, which causes the utility to omit information about group descriptors.
(This information is helpful in very advanced fi lesystem debugging but not for basic fi lesys-
tem tuning.) For information about additional options, consult the man page for dumpe2fs.

Unless you’re a fi lesystem expert and need to debug a corrupted fi lesystem, you’ll most
likely to want to use dumpe2fs with the -h option. The result is about three-dozen lines of
output, each specifying a particular fi lesystem option, like these:

Last mounted on: <not available>

Filesystem features: has_journal filetype sparse_super

Filesystem state: clean

Inode count: 657312

Block count: 1313305

Last checked: Wed Sep 03 14:23:23 2014

Check interval: 15552000 (6 months)

Some of these options’ meanings are fairly self-explanatory; for instance, the fi lesystem
was last checked (with fsck, described in “Checking Filesystems” later in this chapter) on
September 3, 2014. Other options aren’t so obvious; for instance, the Inode count line may
be puzzling. (It’s a count of the number of inodes supported by the fi lesystem. Each inode
contains information for one fi le, so the number of inodes effectively limits the number of
fi les you can store.)

The next two sections describe some of the options that you may want to change. For
now, you should know that you could retrieve information about how your fi lesystems are
currently confi gured using dumpe2fs. You can then use this information when modifying
the confi guration; if your current settings seem reasonable, you can leave them alone, but if
they seem ill adapted to your confi guration, you can change them.

Unlike many low-level disk utilities, dumpe2fs can be safely run on a fi lesystem that’s
currently mounted. This can be handy when you’re studying your confi guration to decide
what to modify.

Most other fi lesystems lack an equivalent to dumpe2fs, but XFS provides something with
at least some surface similarities: xfs_info. To invoke it, pass the command the name of
the partition that holds the fi lesystem that you want to check:

xfs_info /dev/sda7

meta-data=/dev/sda7 isize=256 agcount=88, agsize=1032192 blks

 = sectsz=512 attr=0

data = bsize=4096 blocks=89915392, imaxpct=25

http://technet24.ir/

Maintaining Filesystem Health 153

c03.indd 03/26/2015 Page 153

 = sunit=0 swidth=0 blks, unwritten=1

naming =version 2 bsize=4096

log =internal bsize=4096 blocks=8064, version=1

 = sectsz=512 sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

Instead of the partition name, you can pass the mount point, such as /home or /usr/
local. Unlike most fi lesystem tools, xfs_info requires that the fi lesystem be mounted. The
information returned by xfs_info is fairly technical, mostly related to block sizes, sector
sizes, and so on.

Another XFS tool is xfs_metadump. This program copies the fi lesystem’s metadata (fi le-
names, fi le sizes, and so on) to a fi le. For instance, xfs_metadump /dev/sda7 ~/dump-
file copies the metadata to ~/dump-file. This command doesn’t copy actual fi le contents
and so isn’t useful as a backup tool. Instead, it’s intended as a debugging tool; if the fi le-
system is behaving strangely, you can use this command and send the resulting fi le to XFS
developers for study.

Adjusting Tunable Filesystem Parameters
The tune2fs program enables you to change many of the fi lesystem parameters that are
reported by dumpe2fs. This program’s syntax is fairly simple, but it hides a great deal of
complexity:

tune2fs [options] device

The complexity arises because of the large number of options that the program accepts.
Each feature that tune2fs enables you to adjust requires its own option:

Adjust the Maximum Mount Count Ext2fs, ext3fs, and ext4fs require a periodic disk
check with fsck. This check is designed to prevent errors from creeping onto the disk unde-
tected. You can adjust the maximum number of times the disk may be mounted without a
check with the -c mounts option, where mounts is the number of mounts. You can trick the
system into thinking the fi lesystem has been mounted a certain number of times with the -C
mounts option; this sets the mount counter to mounts.

Adjust the Time between Checks Periodic disk checks are required based on time as
well as the number of mounts. You can set the time between checks with the -i inter-
val option, where interval is the maximum time between checks. Normally, interval
is a number with the character d, w, or m appended, to specify days, weeks, or months,
respectively.

Add a Journal The -j option adds a journal to the fi lesystem, effectively converting an
ext2 fi lesystem into an ext3 fi lesystem. Journal management is described in more detail in
“Maintaining a Journal.”

Set the Reserved Blocks The -m percent option sets the percentage of disk space that’s
reserved for use by root. The default value is 5, but this is excessive on multi-gigabyte
hard disks, so you may want to reduce it. You may want to set it to 0 on removable disks

http://technet24.ir/

154 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 154

intended to store user fi les. You can also set the reserved space in blocks, rather than as a
percentage of disk space, with the -r blocks option.

The options described here are the ones that are most likely to be useful. Several other
options are available; consult tune2fs’s man page for details.

As with most low-level disk utilities, you shouldn’t use tune2fs to adjust a mounted fi le-
system. If you want to adjust a key mounted fi lesystem, such as your root (/) fi lesystem, you
may need to boot up an emergency disk system, such as the CD-based Parted Magic (http://
partedmagic.com). Many distributions’ install discs can be used in this capacity as well.

In XFS, the xfs_admin command is the rough equivalent of tune2fs. Some options that
you may want to adjust include the following:

Use Version 2 Journal Format The -j option enables version 2 log (journal) format, which
can improve performance in some situations.

Obtain the Filesystem Label and UUID You can use the -l and -u options to obtain the
fi lesystem’s label (name) and universally unique identifi er (UUID), respectively. The name
is seldom used in Linux but can be used in some cases. The UUID is a long code that is
increasingly used by distributions to specify a fi lesystem to be mounted, as described in
“Permanently Mounting Filesystems” later in this chapter.

The blkid command can display the label and UUID of any partition’s
filesystem, not just an XFS partition.

Set the Filesystem Label and UUID You can change the fi lesystem’s label or UUID by
using the -L label or -U uuid option, respectively. The label is at most 12 characters in
length. You’ll normally use the -U option to set the UUID to a known value (such as the
UUID the partition used prior to it being reformatted), or you can use generate as the uuid
value to have xfs_admin create a new UUID. You should not set the UUID to a value that’s
in use on another partition!

In use, xfs_admin might look something like this:

xfs_admin -L av_data /dev/sda7

writing all SBs

new label = "av_data"

This example sets the name of the fi lesystem on /dev/sda7 to av_data. As with tune2fs,
xfs_admin should be used only on unmounted fi lesystems.

Interactively Debugging a Filesystem
In addition to reviewing and changing fi lesystem fl ags with dumpe2fs and tune2fs, you
can interactively modify a fi lesystem’s features using debugfs. This program provides
the abilities of dumpe2fs, tune2fs, and many of Linux’s normal fi le-manipulation tools
all rolled into one. To use the program, type its name followed by the device fi lename

http://technet24.ir/

Maintaining Filesystem Health 155

c03.indd 03/26/2015 Page 155

corresponding to the fi lesystem that you want to manipulate. You’ll then see the
debugfs prompt:

debugfs /dev/sda11

debugfs:

You can type commands at this prompt to achieve specifi c goals:

Display Filesystem Superblock Information The show_super_stats or stats command
produces superblock information, similar to what dumpe2fs displays.

Display Inode Information You can display the inode data on a fi le or directory by typing
stat filename, where filename is the name of the fi le.

Undelete a File You can use debugfs to undelete a fi le by typing undelete inode name,
where inode is the inode number of the deleted fi le and name is the fi lename you want to
give to it. (You can use undel in place of undelete if you like.) This facility is of limited
utility because you must know the inode number associated with the deleted fi le. You can
obtain a list of deleted inodes by typing lsdel or list_deleted_inodes, but the list may
not provide enough clues to let you zero in on the fi le you want to recover.

Extract a File You can extract a fi le from the fi lesystem by typing write internal-
file external-file, where internal-file is the name of a fi le in the fi lesystem that
you’re manipulating and external-file is a fi lename on your main Linux system. This
facility can be handy if a fi lesystem is badly damaged and you want to extract a critical fi le
without mounting the fi lesystem.

Manipulate Files Most of the commands described in Chapter 4 work within debugfs. You
can change your directory with cd, create links with ln, remove a fi le with rm, and so on.

Obtain Help Typing list_requests, lr, help, or ? produces a summary of available
commands.

Exit Typing quit exits from the program.

This summary just scratches the surface of debugfs’s capabilities. In the hands of an
expert, this program can help rescue a badly damaged fi lesystem or at least extract critical
data from it. To learn more, consult the program’s man page.

Although debugfs is a useful tool, it’s potentially dangerous. Don’t use
it on a mounted filesystem, don’t use it unless you have to, and be very
careful when using it. If in doubt, leave the adjustments to the experts. Be
aware that the exam does cover debugfs, though.

The closest XFS equivalent to debugfs is called xfs_db. Like debugfs, xfs_db
 provides an interactive tool to access and manipulate a fi lesystem, but xfs_db provides
fewer tools that are amenable to novice or intermediate use. Instead, xfs_db is a tool for
XFS experts.

http://technet24.ir/

156 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 156

Maintaining a Journal
Ext2fs is a traditional fi lesystem. Although it’s a good performer, it suffers from a major
limitation: after a power failure, a system crash, or another uncontrolled shutdown, the
 fi lesystem could be in an inconsistent state. The only way to mount the fi lesystem safely
so that you’re sure its data structures are valid is to perform a full disk check on it, as
described in the next section, “Checking Filesystems.” This task is usually handled auto-
matically when the system boots, but it takes time—probably several minutes, or perhaps
more than an hour on a large fi lesystem or if the computer has many smaller fi lesystems.

The solution to this problem is to change to a journaling fi lesystem. Such a fi lesystem
maintains a journal, which is a data structure that describes pending operations. Prior to
writing data to the disk’s main data structures, Linux describes what it’s about to do in
the journal. When the operations are complete, their entries are removed from the journal.
Thus, at any given moment, the journal should contain a list of disk structures that might
be undergoing modifi cation. The result is that, in the event of a crash or power failure, the
system can examine the journal and check only those data structures described within it.
If inconsistencies are found, the system can roll back or complete the changes, returning
the disk to a consistent state without checking every data structure in the fi lesystem. This
greatly speeds the disk-check process after power failures and system crashes. Today, jour-
naling fi lesystems are the standard for most Linux disk partitions. Very small partitions
(such as a separate /boot partition, if you use one) and small removable disks (such as USB
sticks) often lack journals, though.

Five journaling fi lesystems are common on Linux: ext3fs, ext4fs, ReiserFS, XFS, and
JFS. Of these, the last three require little in the way of journal confi guration. Ext3fs is a bit
different; it’s basically just ext2fs with a journal added. This fact means you can add a jour-
nal to an ext2 fi lesystem, converting it into an ext3 fi lesystem. This is what the -j option to
tune2fs does, as described earlier in “Adjusting Tunable Filesystem Parameters.” Ext4fs is
a further enhancement of this fi lesystem family.

Although using tune2fs on a mounted filesystem is generally inadvisable,
it’s safe to use its -j option on a mounted filesystem. The result is a
file called .journal that holds the journal. If you add a journal to an
unmounted filesystem, the journal file will be invisible.

Adding a journal alone won’t do much good, though. To use a journal, you must mount
the fi lesystem with the correct fi lesystem type code—ext3 rather than ext2 for ext3fs or
ext4 for ext4fs. (The upcoming section “Mounting and Unmounting Filesystems” describes
how to do this.)

The journal, like other fi lesystem features, has its own set of parameters. You can
set these with the -J option to tune2fs. In particular, the size=journal-size and
device=external-journal suboptions enable you to set the journal’s size and the device on
which it’s stored. By default, the system creates a journal that’s the right size for the fi lesys-
tem and stores it on the fi lesystem itself.

http://technet24.ir/

Maintaining Filesystem Health 157

c03.indd 03/26/2015 Page 157

Checking Filesystems
Tuning a fi lesystem is a task that you’re likely to perform every once in a while—say, when
making major changes to an installation. Another task is much more common: checking a
fi lesystem for errors. Bugs, power failures, and mechanical problems can all cause the data
structures on a fi lesystem to become corrupted. The results are sometimes subtle, but if left
unchecked, they can cause severe data loss. For this reason, Linux includes tools for verify-
ing a fi lesystem’s integrity and for correcting any problems that may exist. The main tool
that you’ll use for this purpose is called fsck. This program is actually a front end to other
tools, such as e2fsck (aka fsck.ext2, fsck.ext3, and fsck.ext4) or XFS’s xfs_check and
xfs_repair. The syntax for fsck is as follows:

fsck [-sACVRTNP] [-t fstype] [--] [fsck-options] filesystems

The exam objectives include both e2fsck and fsck, but because fsck
is the more general tool that’s useful on more filesystems, it’s the form
described in more detail in this book.

The more common parameters to fsck enable you to perform useful actions:

Check All Files The -A option causes fsck to check all of the fi lesystems marked to be
checked in /etc/fstab. This option is normally used in system startup scripts.

Indicate Progress The -C option displays a text-mode progress indicator of the check
 process. Most fi lesystem check programs don’t support this feature, but e2fsck does.

Show Verbose Output The -V option produces verbose output of the check process.

No Action The -N option tells fsck to display what it would normally do without actually
doing it.

Set the Filesystem Type Normally, fsck determines the fi lesystem type automatically.
You can force the type with the -t fstype fl ag, though. Used in conjunction with -A, this
causes the program to check only the specifi ed fi lesystem types, even if others are marked
to be checked. If fstype is prefi xed with no, then all fi lesystems except the specifi ed type
are checked.

Filesystem-Specific Options Filesystem check programs for specifi c fi lesystems often have
their own options. The fsck command passes options it doesn’t understand, or those that
follow a double dash (--), to the underlying check program. Common options include -a
or -p (perform an automatic check), -r (perform an interactive check), and -f (force a full
fi lesystem check even if the fi lesystem initially appears to be clean).

Filesystem List The fi nal parameter is usually the name of the fi lesystem or fi lesystems
being checked, such as /dev/sda6.

Normally, you run fsck with only the fi lesystem device name, as in fsck /dev/sda6.
You can add options as needed, however. Check fsck’s man page for less common options.

http://technet24.ir/

158 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 158

Run fsck only on filesystems that are not currently mounted or that are
mounted in read-only mode. Changes written to disk during normal read/
write operations can confuse fsck and result in filesystem corruption.

Linux runs fsck automatically at startup on partitions that are marked for this in /etc/
fstab, as described later in “Permanently Mounting Filesystems.” The normal behavior
of e2fsck causes it to perform just a quick cursory examination of a partition if it’s been
unmounted cleanly. The result is that the Linux boot process isn’t delayed because of a
fi lesystem check unless the system wasn’t shut down properly. This rule has a couple of
exceptions, though: e2fsck forces a check if the disk has gone longer than a certain amount
of time without checks (normally six months) or if the fi lesystem has been mounted more
than a certain number of times since the last check (normally 20). You can change these
options using tune2fs, as described earlier in “Adjusting Tunable Filesystem Parameters.”
Therefore, you’ll occasionally see automatic fi lesystem checks of ext2, ext3, and ext4 fi le-
systems, even if the system was shut down correctly.

Journaling fi lesystems do away with full fi lesystem checks at system startup even if
the system wasn’t shut down correctly. Nonetheless, these fi lesystems still require check
 programs to correct problems introduced by undetected write failures, bugs, hardware
 problems, and the like. If you encounter odd behavior with a journaling fi lesystem, you might
consider unmounting it and performing a fi lesystem check—but be sure to read the documen-
tation fi rst. Some Linux distributions do odd things with some journaling fi lesystem check
 programs. For instance, Mandriva uses a symbolic link from /sbin/fsck. reiserfs to /bin/
true. This confi guration speeds system boot times should ReiserFS partitions be marked for
automatic checks, but it can be confusing if you need to check the fi lesystem manually. If this
is the case, run /sbin/reiserfsck to do the job. Similarly, /sbin/fsck.xfs is usually noth-
ing but a script that advises the user to run xfs_check or xfs_repair.

Monitoring Disk Use
One common problem with disks is that they can fi ll up. To avoid this problem, you need
tools to tell you how much space your fi les are consuming. This is the task of the df and du
programs, which summarize disk use on a partition-by-partition and directory-by-directory
basis, respectively.

Monitoring Disk Use by Partition
The df command’s syntax is as follows:

df [options] [files]

In the simplest case, you can type the command name to see a summary of disk space
used on all of a system’s partitions:

$ df

http://technet24.ir/

Maintaining Filesystem Health 159

c03.indd 03/26/2015 Page 159

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb10 5859784 4449900 1409884 76% /

/dev/sdb12 2086264 991468 1094796 48% /opt

/dev/hda13 2541468 320928 2220540 13% /usr/local

/dev/hda9 15361340 10174596 5186744 67% /home

/dev/hda10 22699288 13663408 7882820 64% /other/emu

/dev/hda6 101089 22613 74301 24% /boot

/dev/sdb5 1953216 1018752 934464 53% /other/shared

none 256528 0 256528 0% /dev/shm

speaker:/home 6297248 3845900 2451348 62% /speaker/home

//win/music 17156608 8100864 9055744 48% /win/mp3s

This output shows the device fi le associated with the fi lesystem, the total amount of
space on the fi lesystem, the used space on the fi lesystem, the free space on the fi lesystem,
the percentage of space that’s used, and the mount point. Typically, when used space climbs
above about 80 percent, you should consider cleaning up the partition. The appropriate
ceiling varies from one computer and partition to another, though. The risk is greatest on
partitions that hold fi les that change frequently—particularly if large fi les are likely to be
created on a partition, even if only temporarily.

You can fi ne-tune the effects of df by passing it several options. Each option modifi es
the df output in a specifi c way:

Include All Filesystems The -a or --all option includes pseudo-fi lesystems with a size of
0 in the output. These fi lesystems may include /proc, /sys, /proc/bus/usb, and others.

Use Scaled Units The -h or --human-readable option causes df to scale and label its
units; for instance, instead of reporting a partition as having 5859784 blocks, it reports the
size as 5.6G (for 5.6GiB). The -H and --si options have a similar effect, but they use power
of 10 (1,000, 1,000,000, and so on) units rather than power of 2 (1,024, 1,048,576, and so
on) units. The -k (--kilobytes) and -m (--megabytes) options force output in their respec-
tive units.

Summarize Inodes By default, df summarizes available and used disk space. You can
instead receive a report on available and used inodes by passing the -i or --inodes option.
This information can be helpful if a partition has very many small fi les, which can deplete
available inodes sooner than they deplete available disk space.

The -i option works well for ext2, ext3, ext4, XFS, and some other
filesystems that create a fixed number of inodes when the filesystem
is created. Other filesystems, such as ReiserFS and Btrfs, create inodes
dynamically, rendering the -i option meaningless.

Local Filesystems Only The -l or --local option causes df to omit network fi lesystems.
This can speed up operation.

http://technet24.ir/

160 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 160

Display Filesystem Type The -T or --print-type option adds the fi lesystem type to the
information df displays.

Limit by Filesystem Type The -t fstype or --type=fstype option displays only infor-
mation about fi lesystems of the specifi ed type. The -x fstype or --exclude-type=fstype
option has the opposite effect; it excludes fi lesystems of the specifi ed type from the report.

This list is incomplete. Consult df’s man page for details about more options. In addition
to these options, you can specify one or more fi les (using files) to df. When you do this,
the program restricts its report to the fi lesystem on which the specifi ed fi le or directory
exists. For instance, to learn about the disk space used on the /home partition, you could
type df /home. Alternatively, you can give a device fi lename, as in df /dev/hda9.

Monitoring Disk Use by Directory
The df command is helpful for fi nding out which partitions are in danger of becoming
overloaded. Once you’ve obtained this information, however, you may need to fi ne-tune the
diagnosis and track down the directories and fi les that are chewing up disk space. The tool
for this task is du, which has a syntax similar to that of df:

du [options] [directories]

This command searches directories that you specify and reports how much disk space
each is consuming. This search is recursive, so you can learn how much space the directory
and all its subdirectories consume. The result can be a very long listing if you specify direc-
tories with many fi les, but several options can reduce the size of this output. Others can
perform helpful tasks as well:

Summarize Files and Directories Ordinarily, du reports on the space used by the fi les in
directories but not the space used by individual fi les. Passing the -a or --all option causes
du to report on individual fi les as well.

Compute a Grand Total Adding the -c or --total option causes du to add a grand total
to the end of its output.

Use Scaled Units The -h or --human-readable option causes du to scale and label its
units; for instance, instead of reporting the total disk space used as 5859784 blocks, it
reports the size as 5.6G (for 5.6GiB). The -H and --si options have a similar effect, but
they use power of 10 (1,000, 1,000,000, and so on) units rather than power of 2 (1,024,
1,048,576, and so on) units. The -k (--kilobytes) and -m (--megabytes) options force out-
put in their respective units.

Count Hard Links Ordinarily, du counts fi les that appear multiple times as hard links
only once. This refl ects true disk space used, but sometimes you may want to count each
link independently—for instance, if you’re creating a CD-R and the fi le will be stored once
for each link. To do so, include the -l (that’s a lowercase L) or --count-links option.
(Links are described in more detail in Chapter 4.)

Limit Depth The --max-depth=n option limits the report to n levels. (The subdirectories’
contents are counted even if they aren’t reported.)

http://technet24.ir/

Mounting and Unmounting Filesystems 161

c03.indd 03/26/2015 Page 161

Summarize If you don’t want a line of output for each subdirectory in the tree, pass the
-s or --summarize option, which limits the report to those fi les and directories that you
specify on the command line. This option is equivalent to --max=depth=0.

Limit to One Filesystem The -x or --one-file-system option limits the report to the cur-
rent fi lesystem. If another fi lesystem is mounted within the tree that you want summarized,
its contents aren’t included in the report.

This list is incomplete; you should consult du’s man page for information about addi-
tional options.

As an example of du in action, consider using it to discover which of your users is con-
suming the most disk space in /home. Chances are you’re not concerned with the details of
which subdirectories within each home directory are using the space, so you’ll pass the -s
option to the program:

du -s /home/*

12 /home/ellen

35304 /home/freddie

1760 /home/jennie

12078 /home/jjones

0 /home/lost+found

10110324 /home/mspiggy

In this example, the wildcard character (*) stands for all of the fi les and directories in /
home, thus producing summaries for all of these subdirectories. (For more on this topic,
consult Chapter 4.) Clearly, mspiggy (or whoever owns the /home/mspiggy directory) is the
biggest disk space user—or at least that directory’s contents are consuming the most space.
You could investigate further, say by typing du -s /home/mspiggy/* to learn where the
disk space is being used within the /home/mspiggy directory. In the case of user fi les, if this
space consumption is a problem, you may want to contact this user instead of trying to
clean it up yourself.

Many types of files shouldn’t simply be deleted. For instance, most
program files should be removed via the system’s package management
system, if you decide to remove them. (This topic is covered in Chapter
2, “Managing Software.”) If you’re not sure what a file is or how it should
be removed, don’t delete it—try a Web search, type man filename, or
otherwise research it to figure out what it is.

Mounting and Unmounting Filesystems

Maintaining fi lesystems is necessary, but the whole reason fi lesystems exist is to store
fi les—in other words, to be useful. Under Linux, fi lesystems are most often used by
being mounted—that is, associated with a directory. This task can be accomplished on a

http://technet24.ir/

162 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 162

one-time basis by using tools such as mount (and then unmounted with umount) or persis-
tently across reboots by editing the /etc/fstab fi le.

Temporarily Mounting or Unmounting Filesystems
Linux provides the mount command to mount a fi lesystem to a mount point. The umount
command reverses this process. (Yes, umount is spelled correctly; it’s missing the fi rst n.) In
practice, these commands usually aren’t too diffi cult to use, but they support a large num-
ber of options.

Syntax and Parameters for mount
The syntax for mount is as follows:

mount [-alrsvw] [-t fstype] [-o options] [device] [mountpoint]

Common parameters for mount support a number of features:

Mount All Filesystems The -a parameter causes mount to mount all of the fi lesystems
listed in the /etc/fstab fi le, which specifi es the most-used partitions and devices. The
upcoming section “Permanently Mounting Filesystems” describes this fi le’s format.

Mount Read-Only The -r parameter causes Linux to mount the fi lesystem read-only,
even if it’s normally a read/write fi lesystem.

Show Verbose Output As with many commands, -v produces verbose output—the
 program provides comments on operations as they occur.

Mount Read/Write The -w parameter causes Linux to attempt to mount the fi lesystem for
both read and write operations. This is the default for most fi lesystems, but some experi-
mental drivers default to read-only operation. The -o rw option has the same effect.

Specify the Filesystem Type Use the -t fstype parameter to specify the fi lesystem type.
Common fi lesystem types are ext2 (for ext2fs), ext3 (for ext3fs), ext4 (for ext4fs), rei-
serfs (for ReiserFS), jfs (for JFS), xfs (for XFS), vfat (for FAT with VFAT long fi lenames),
msdos (for FAT using only short DOS fi lenames, the old 8.3 naming standard), iso9660 (for
CD fi lesystems), udf (for DVD and some CD fi lesystems), nfs (for NFS network mounts),
and cifs (for SMB/CIFS network shares). Linux supports many others. If this parameter is
omitted, Linux will attempt to auto-detect the fi lesystem type.

Linux requires support in the kernel or as a kernel module to mount a
filesystem of a given type. If this support is missing, Linux will refuse to
mount the filesystem in question.

Mount by Label or UUID Instead of the device name, you can use the -L label or -U uuid
options to tell mount to mount the fi lesystem with the specifi ed label or UUID, respectively.

http://technet24.ir/

Mounting and Unmounting Filesystems 163

c03.indd 03/26/2015 Page 163

Additional Options You can add many options using the -o parameter. Many of these are
fi lesystem specifi c.

Device The device parameter is the device fi lename associated with the partition or disk
device, such as /dev/hda4, /dev/fd0, or /dev/cdrom. This parameter is usually required,
but it may be omitted under some circumstances, as described shortly.

Mount Point The mountpoint parameter is the directory to which the device’s contents
should be attached. As with device, it’s usually required, but it may be omitted under some
circumstances.

The preceding list of mount parameters isn’t comprehensive; consult the mount man page
for some of the more obscure options. The most common applications of mount use few
parameters because Linux generally does a good job of detecting the fi lesystem type, and
the default parameters work reasonably well. For instance, consider this example:

mount /dev/sdb7 /mnt/shared

This command mounts the contents of /dev/sdb7 on /mnt/shared, auto-detecting the
fi lesystem type and using the default options. Ordinarily, only root may issue a mount com-
mand; however, if /etc/fstab specifi es the user, users, or owner option, an ordinary user
may mount a fi lesystem using a simplifi ed syntax in which only the device or mount point
is specifi ed, but not both. For instance, a user may type mount /mnt/cdrom to mount a
CD-ROM if /etc/fstab specifi es /mnt/cdrom as its mount point and uses the user, users,
or owner option.

Most Linux distributions ship with auto-mounter support, which causes
the OS to mount removable media automatically when they’re inserted.
In GUI environments, a file browser may also open on the inserted disk.
To eject the disk, the user will need to unmount the filesystem by using
umount, as described shortly, or by selecting an option in the desktop
environment.

When Linux mounts a fi lesystem, it ordinarily records this fact in /etc/mtab. This fi le
has a format similar to that of /etc/fstab and is stored in /etc, but it’s not a confi gura-
tion fi le that you should edit. You might examine this fi le to determine what fi lesystems are
mounted, though. (The df command, described in more detail earlier in “Monitoring Disk
Use by Partition,” is another way to learn what fi lesystems are mounted.)

Options for mount
When you do need to use special parameters (via -o or in /etc/fstab), it’s usually to add
fi lesystem-specifi c options. Table 3.5 summarizes the most important fi lesystem options.
Some of these are meaningful only in the /etc/fstab fi le.

http://technet24.ir/

164 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 164

TA B LE 3 .5 Important filesystem options for the mount command

Option Supported filesystems Description

defaults All Causes the default options for this filesystem to
be used. It’s used primarily in the /etc/fstab
file to ensure that the file includes an options
column.

loop All Causes the loopback device for this mount to be
used. Allows you to mount a file as if it were a disk
partition. For instance, mount -t vfat -o loop
image.img /mnt/image mounts the file image.
img as if it were a disk.

auto or
noauto

All Mounts or doesn’t mount the filesystem at boot
time or when root issues the mount -a com-
mand. The default is auto, but noauto is appropri-
ate for removable media. Used in /etc/fstab.

user or
nouser

All Allows or disallows ordinary users to mount
the filesystem. The default is nouser, but user
is often appropriate for removable media. Used
in /etc/fstab. When included in this file, user
allows users to type mount /mountpoint (where
/mountpoint is the assigned mount point) to
mount a disk. Only the user who mounted the file-
system may unmount it.

users All Similar to user, except that any user may
unmount a filesystem once it’s been mounted.

owner All Similar to user, except that the user must own the
device file. Some distributions, such as Red Hat,
assign ownership of some device files (such as /
dev/fd0 for the floppy disk) to the console user,
so this can be a helpful option.

remount All Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an
already-mounted filesystem but with remount
along with any options that you want to change.
This feature can be used to enable or disable write
access to a partition, for example.

ro All Specifies a read-only mount of the filesystem.
This is the default for filesystems that include no
write access and for some with particularly unreli-
able write support.

rw All read/write
filesystems

Specifies a read/write mount of the filesystem.
This is the default for most read/write filesystems.

http://technet24.ir/

Mounting and Unmounting Filesystems 165

c03.indd 03/26/2015 Page 165

Option Supported filesystems Description

uid=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and hfs

Sets the owner of all files. For instance, uid=1000
sets the owner to whomever has Linux user ID
1000. (Check Linux user IDs in the /etc/passwd
file.)

gid=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and
hfs

Works like uid=value, but sets the group of all
files on the filesystem. You can find group IDs in
the /etc/group file.

umask=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and
hfs

Sets the umask for the permissions on files.
value is interpreted in binary as bits to be
removed from permissions on files. For
instance, umask=027 yields permissions of
750, or –rwxr-x---. Used in conjunction with
uid=value and gid=value, this option lets you
control who can access files on FAT, HPFS, and
many other foreign filesystems.

dmask=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and
hfs

Similar to umask, but sets the umask for directo-
ries only, not for files.

fmask=value Most filesystems that
don’t support Unix-style
permissions, such as
vfat, hpfs, ntfs, and hfs

Similar to umask, but sets the umask for files only,
not for directories.

conv=code Most filesystems used
on Microsoft and Apple
OSs: msdos, umsdos,
vfat, hpfs, and hfs

If code is b or binary, Linux doesn’t modify the
files’ contents. If code is t or text, Linux auto-
converts files between Linux-style and Windows-
or Macintosh-style end-of-line characters. If code
is a or auto, Linux applies the conversion unless
the file is a known binary file format. It’s usually
best to leave this at its default value of binary
because file conversions can cause serious prob-
lems for some applications and file types.

norock iso9660 Disables Rock Ridge extensions for ISO-9660 CD-
ROMs.

nojoliet iso9660 Disables Joliet extensions for ISO-9660 CD-ROMs.

Some fi lesystems support additional options that aren’t described here. The man page for
mount covers some of these, but you may need to look at the fi lesystem’s documentation for
some options. This documentation may appear in /usr/src/linux/Documentation/file-
systems or /usr/src/linux/fs/fsname, where fsname is the name of the fi lesystem.

http://technet24.ir/

166 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 166

Using umount
The umount command is simpler than mount. The basic umount syntax is as follows:

umount [-afnrv] [-t fstype] [device | mountpoint]

Most of these parameters have meanings similar to their meanings in mount, but some
differences deserve mention:

Unmount All Rather than unmount the partitions listed in /etc/fstab, the -a option
causes the system to attempt to unmount all of the partitions listed in /etc/mtab, the fi le
that holds information about mounted fi lesystems. On a system running normally, this
operation is likely to succeed only partly because it won’t be able to unmount some key fi le-
systems, such as the root partition.

Force Unmount You can use the -f option to tell Linux to force an unmount operation
that might otherwise fail. This feature is sometimes helpful when unmounting NFS mounts
shared by servers that have become unreachable.

Fall Back to Read-Only The -r option tells umount that if it can’t unmount a fi lesystem, it
should attempt to remount it in read-only mode.

Unmount Partitions of a Specific Filesystem Type The -t fstype option tells the system
to unmount only partitions of the specifi ed type. You can list multiple fi lesystem types by
separating them with commas.

The Device and Mount Point You need to specify only the device (with device) or only
the mount point (with mountpoint), not both.

As with mount, normal users can’t ordinarily use umount. The exception is if the parti-
tion or device is listed in /etc/fstab and specifi es the user, users, or owner option, in
which case normal users can unmount the device. (In the case of user, only the user who
mounted the partition may unmount it; in the case of owner, the user issuing the command
must also own the device fi le, as with mount.) These options are most useful for removable-
media devices.

Be cautious when unplugging USB disk-like devices (USB flash drives or
external hard disks). Linux caches accesses to most filesystems, which
means that data may not be written to the disk until some time after a
write command. Because of this, it’s possible to corrupt a disk by ejecting
or unplugging it, even when the drive isn’t active. You must always issue
a umount command before ejecting a mounted disk. (GUI unmount tools
do this behind the scenes, so using a desktop’s unmount or eject option
is equivalent to using umount.) After issuing the umount command, wait
for the command to return, and if the disk has activity indicators, wait for
them to stop blinking to be sure that Linux has finished using the device.
Another way to write the cache to disk is to use the sync command, but
because this command does not fully unmount a filesystem, it’s not a
substitute for umount.

http://technet24.ir/

Mounting and Unmounting Filesystems 167

c03.indd 03/26/2015 Page 167

Permanently Mounting Filesystems
The /etc/fstab fi le controls how Linux provides access to disk partitions and removable
media devices. Linux supports a unifi ed directory structure in which every disk device
(partition or removable disk) is mounted at a particular point in the directory tree. For
instance, you might access a USB fl ash drive at /media/usb. The root of this tree is accessed
from /. Directories off this root may be other partitions or disks, or they may be ordinary
directories. For instance, /etc should be on the same partition as /, but many other directo-
ries, such as /home, may correspond to separate partitions. The /etc/fstab fi le describes how
these fi lesystems are laid out. (The fi lename fstab is an abbreviation for fi lesystem table.)

The /etc/fstab fi le consists of a series of lines that contain six fi elds each; the fi elds are
separated by one or more spaces or tabs. A line that begins with a hash mark (#) is a com-
ment and is ignored. Listing 3.1 shows a sample /etc/fstab fi le.

Listing 3.1: Sample /etc/fstab file

#device mount point filesystem options dump fsck

/dev/hda1 / ext4 defaults 1 1

UUID=3631a288-673e-40f5-9e96-6539fec468e9 \

 /usr reiserfs defaults 0 0

LABEL=/home /home reiserfs defaults 0 0

/dev/hdb5 /windows vfat uid=500,umask=0 0 0

/dev/hdc /media/cdrom iso9660 users,noauto 0 0

/dev/sda1 /media/usb auto users,noauto 0 0

server:/home /other/home nfs users,exec 0 0

//winsrv/shr /other/win cifs users,credentials=/etc/creds 0 0

/dev/hda4 swap swap defaults 0 0

The meaning of each fi eld in this fi le is as follows:

Device The fi rst column specifi es the mount device. These are usually device fi lenames
that reference hard disks, USB drives, and so on. Most distributions now specify parti-
tions by their labels or UUIDs, as in the LABEL=/home and UUID=3631a288-673e-40f5-
9e96-6539fec468e9 entries in Listing 3.1. When Linux encounters such an entry, it tries
to fi nd the partition whose fi lesystem has the specifi ed name or UUID and mount it. This
practice can help reduce problems if partition numbers change, but some fi lesystems lack
these labels. It’s also possible to list a network drive, as in server:/home, which is the /
home export on the computer called server, or //winsrv/shr, which is the shr share on the
Windows or Samba server called winsrv.

Mount Point The second column specifi es the mount point. This is where the partition
or disk will be mounted in the unifi ed Linux fi lesystem. This should usually be an empty
directory in another fi lesystem. The root (/) fi lesystem is an exception. So is swap space,
which is indicated by an entry of swap.

http://technet24.ir/

168 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 168

Filesystem Type The fi lesystem type code is the same as the type code used to mount a
fi lesystem with the mount command. You can use any fi lesystem type code you can use
directly with the mount command. A fi lesystem type code of auto lets the kernel auto-detect
the fi lesystem type, which can be a convenient option for removable media devices. Auto-
detection doesn’t work with all fi lesystems, though.

Mount Options Most fi lesystems support several mount options, which modify how the
kernel treats the fi lesystem. You may specify multiple mount options, separated by commas.
For instance, uid=500,umask=0 for /windows in Listing 3.1 sets the user ID (owner) of all
fi les to 500 and sets the umask to 0. (User IDs and umasks are covered in more detail in
Chapter 4.) Table 3.5 summarizes the most common mount options.

Backup Operation The next-to-last fi eld contains a 1 if the dump utility should back up
a partition or a 0 if it shouldn’t. If you never use the dump backup program, this option
is essentially meaningless. (The dump program was once a common backup tool, but it is
much less popular today.)

Filesystem Check Order At boot time, Linux uses the fsck program to check fi lesystem
integrity. The fi nal column specifi es the order in which this check occurs. A 0 means that
fsck should not check a fi lesystem. Higher numbers represent the check order. The root
partition should have a value of 1, and all others that should be checked should have a
value of 2. Some fi lesystems, such as ReiserFS, shouldn’t be automatically checked and so
should have values of 0.

If you add a new hard disk or have to repartition the one you have, you’ll probably
need to modify /etc/fstab. You may also need to edit it to alter some of its options. For
instance, setting the user ID or umask on Windows partitions mounted in Linux may be
necessary to let ordinary users write to the partition.

Managing User-Mountable Media

You may want to give ordinary users the ability to mount certain partitions or remov-

able media, such as CDs, DVDs, and USB drives. To do so, create an ordinary /etc/fstab

entry for the fi lesystem, but be sure to add the user, users, or owner option to the options

column. Table 3.5 describes the differences between these three options. Listing 3.1

shows some examples of user-mountable media: /media/cdrom, /media/usb, /other/

home, and /other/win. The fi rst two of these are designed for removable media and

include the noauto option, which prevents Linux from wasting time trying to mount them

when the OS fi rst boots. The second pair of mount points are network fi le shares that are

mounted automatically at boot time; the users option on these lines enables ordinary

users to unmount and then remount the fi lesystem, which might be handy if, say, ordi-

nary users have the ability to shut down the server.

http://technet24.ir/

Summary 169

c03.indd 03/26/2015 Page 169

As with any fi lesystems that you want to mount, you must provide mount points—that

is, create empty directories—for user-mountable media. Removable media are usually

mounted in subdirectories of /mnt or /media.

Many modern distributions include auto-mount facilities that automatically mount remov-

able media when they’re inserted. These tools typically create mount points in /media

and create icons on users’ desktops to enable easy access to the media. This confi gura-

tion produces effects that are familiar to users of Windows and Mac OS.

The credentials option for the /other/win mount point in Listing 3.1 deserves greater
elaboration. Ordinarily, most SMB/CIFS shares require a username and password as a
means of access control. Although you can use the username=name and password=pass
options to smbfs or cifs, these options are undesirable, particularly in /etc/fstab, because
they leave the password vulnerable to discovery—anybody who can read /etc/fstab can
read the password. The credentials=file option provides an alternative—you can use it to
point Linux at a fi le that holds the username and password. This fi le has labeled lines:

username=hschmidt

password=yiW7t9Td

Of course, the fi le you specify (/etc/creds in Listing 3.1) must be well protected—it
must be readable only to root and perhaps to the user whose share it describes.

Summary

Most Linux tools and procedures provide a layer around the hardware, insulating you
from the need to know too many details. Nonetheless, sometimes you have to dig in and
confi gure hardware directly. Firmware settings can control onboard devices such as hard
disk controllers and USB ports. USB and SCSI devices have their own quirks, and USB in
particular is quickly evolving.

Hard disks are one class of hardware that’s likely to require more attention than most.
Specifi cally, you must know how to create partitions and prepare fi lesystems on those
partitions. These tasks are necessary when you install Linux (although most distributions
provide GUI tools to help guide you through this task during installation), when you add
a hard disk, or when you reconfi gure an existing system. You should also know something
about boot managers. These programs help get Linux up and running when you turn on a
computer’s power, so they’re unusually critical to Linux operation.

Filesystem management is basic to being able to administer or use a Linux system. The
most basic of these basic tasks are fi lesystem tasks—the ability to mount fi lesystems, check
their health, and repair ailing fi lesystems. Once a fi lesystem is mounted, you may want to
check it periodically to see how full it is, lest you run out of disk space.

http://technet24.ir/

170 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 170

Exam Essentials

Summarize BIOS and EFI essentials. The BIOS and EFI provide two important func-
tions: First, they confi gure hardware—both hardware that’s built into the motherboard and
hardware on many types of plug-in cards. Second, they begin the computer’s boot process,
passing control on to the boot loader in the MBR or EFI partition in GPT-formatted disks.
The BIOS is currently being retired in favor of EFI, which performs these tasks on modern
computers.

Describe what files contain important hardware information. There are many fi les under
the /proc fi lesystem. Many of these fi les have been mentioned throughout this chapter.
Familiarize yourself with these fi les, such as /proc/ioports, /proc/interrupts, /proc/
dma, /proc/bus/usb, and others.

Explain Linux’s model for managing USB hardware. Linux uses drivers for USB control-
lers. These drivers in turn are used by some device-specifi c drivers (for USB disk devices,
for instance) and by programs that access USB hardware via entries in the /proc/bus/usb
directory tree.

Summarize how to obtain information about PCI and USB devices. The lspci and lsusb
programs return information about PCI and USB devices, respectively. You can learn man-
ufacturers’ names and various confi guration options by using these commands.

Identify common disk types and their features. PATA disks were the most common type
on PCs until about 2005. Since then, SATA disks, which are more easily confi gured, have
gained substantially in popularity. SCSI disks have long been considered the top-tier disks,
but their high price has kept them out of inexpensive commodity PCs.

Describe the purpose of disk partitions. Disk partitions break the disk into a handful of
distinct parts. Each partition can be used by a different OS, can contain a different fi lesys-
tem, and is isolated from other partitions. These features improve security and safety and
can greatly simplify running a multi-OS system.

Summarize important Linux disk partitions. The most important Linux disk partition is
the root (/) partition, which is at the base of the Linux directory tree. Other possible parti-
tions include a swap partition, /home for home directories, /usr for program fi les, /var for
transient system fi les, /tmp for temporary user fi les, /boot for the kernel and other critical
boot fi les, and more.

Describe commands that help you monitor disk use. The df command provides a one-line
summary of each mounted fi lesystem’s size, available space, free space, and percentage of
space used. The du command adds up the disk space used by all of the fi les in a specifi ed
directory tree and presents a summary by directory and subdirectory.

http://technet24.ir/

Exam Essentials 171

c03.indd 03/26/2015 Page 171

Summarize the tools that can help keep a filesystem healthy. The fsck program is a front
end to fi lesystem-specifi c tools such as e2fsck and fsck.jfs. By whatever name, these pro-
grams examine a fi lesystem’s major data structures for internal consistency and can correct
minor errors.

Explain how filesystems are mounted in Linux. The mount command ties a fi lesystem
to a Linux directory; once the fi lesystem is mounted, its fi les can be accessed as part of
the mount directory. The /etc/fstab fi le describes permanent mappings of fi lesystems to
mount points; when the system boots, it automatically mounts the described fi lesystems
unless they use the noauto option (which is common for removable disks).

http://technet24.ir/

172 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 172

Review Questions

1. What are common IRQs for RS-232 serial ports? (Select two.)

A. 1

B. 3

C. 4

D. 8

E. 16

2. What tool would you use to disable a motherboard’s sound hardware if you don’t want to
use it?

A. The firmware.

B. The alsactl utility.

C. The lsmod command.

D. The lspci program.

E. None of the above; onboard sound devices can’t be disabled.

3. What is the purpose of udev?

A. To aid in the development of software

B. To unload Linux device drivers

C. To load Linux device drivers

D. To store devices’ BIOS configurations in files

E. To manage the /dev directory tree

4. You’ve just installed Linux on a new computer with a single SATA hard disk. What device
identifier will refer to the disk?

A. /dev/sda

B. /dev/mapper/disk1

C. /dev/hda

D. C:

E. /dev/sda or /dev/hda

5. Which files contain essential system information such as IRQs, direct-memory access chan-
nels, and I/O addresses? (Select three.)

A. /proc/ioports

B. /proc/ioaddresses

C. /proc/dma

D. /proc/interrupts

E. /proc/hardware

http://technet24.ir/

Review Questions 173

c03.indd 03/26/2015 Page 173

6. Typing fdisk -l /dev/sda on a Linux computer with an MBR disk produces a listing
of four partitions: /dev/sda1, /dev/sda2, /dev/sda5, and /dev/sda6. Which of the fol-
lowing is true?

A. The disk contains two primary partitions and two extended partitions.

B. Either /dev/sda1 or /dev/sda2 is an extended partition.

C. The partition table is corrupted; there should be a /dev/sda3 and a /dev/sda4 before
/dev/sda5.

D. If you add a /dev/sda3 with fdisk, /dev/sda5 will become /dev/sda6, and /dev/
sda6 will become /dev/sda7.

E. Both /dev/sda1 and /dev/sda2 are logical partitions.

7. A new Linux administrator plans to create a system with separate /home, /usr/local, and
/etc partitions, in addition to the root (/) partition. Which of the following best describes
this configuration?

A. The system won’t boot because critical boot-time files reside in /home.

B. The system will boot, but /usr/local won’t be available because mounted partitions
must be mounted directly off their parent partition, not in a subdirectory.

C. The system will boot only if the /home partition is on a separate physical disk from the
/usr/local partition.

D. The system will boot and operate correctly, provided each partition is large enough for
its intended use.

E. The system won’t boot because /etc contains configuration files necessary to mount
non-root partitions.

8. Which of the following directories is most likely to be placed on its own hard disk
 partition?

A. /bin

B. /sbin

C. /mnt

D. /home

E. /dev

9. You discover that an MBR hard disk has partitions with type codes of 0x0f, 0x82, and
0x83. Assuming these type codes are accurate, what can you conclude about the disk?

A. The disk holds a partial or complete Linux system.

B. The disk holds a Windows installation.

C. The disk holds a FreeBSD installation.

D. The disk is corrupt; those partition type codes are incompatible.

E. The disk holds a Mac OS X installation.

http://technet24.ir/

174 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 174

10. You run Linux’s fdisk and modify your partition layout. Before exiting the program, you
realize that you’ve been working on the wrong disk. What can you do to correct this problem?

A. Nothing; the damage is done, so you’ll have to recover data from a backup.

B. Type w to exit fdisk without saving changes to disk.

C. Type q to exit fdisk without saving changes to disk.

D. Type u repeatedly to undo the operations you’ve made in error.

E. Type t to undo all of the changes and return to the original disk state.

11. What does the following command accomplish?
mkfs -t ext2 /dev/sda4

A. It sets the partition table type code for /dev/sda4 to ext2.

B. It converts a FAT partition into an ext2fs partition without damaging the partition’s
existing files.

C. Nothing; the -t option isn’t valid, and so it causes mkfs to abort its operation.

D. It converts an ext2 filesystem to an ext4 filesystem.

E. It creates a new ext2 filesystem on /dev/sda4, overwriting any existing filesystem
and data.

12. Which of the following best summarizes the differences between Windows’s FDISK and
Linux’s fdisk?

A. Linux’s fdisk is a simple clone of Windows’s FDISK but written to work from Linux
rather than from Windows.

B. The two are completely independent programs that accomplish similar goals, although
Linux’s fdisk is more flexible.

C. Windows’s FDISK uses GUI controls, whereas Linux’s fdisk uses a command-line
interface, but they have similar functionality.

D. Despite their similar names, they’re completely different tools—the Windows FDISK
command handles disk partitioning, whereas Linux’s fdisk formats floppy disks.

E. The Windows FDISK command manages GPT disks, whereas Linux’s fdisk manages
MBR disks.

13. What mount point should you associate with swap partitions?

A. /

B. /swap

C. /boot

D. /mem

E. None of the above

14. Which of the following options is used with fsck to force it to use a particular filesystem
type?

A. -A

B. -N

C. -t

http://technet24.ir/

Review Questions 175

c03.indd 03/26/2015 Page 175

D. -C

E. -f

15. Which of the following pieces of information can df not report?

A. How long the filesystem has been mounted

B. The number of inodes used on an ext3fs partition

C. The filesystem type of a partition

D. The percentage of available disk space used on a partition

E. The mount point associated with a filesystem

16. What is an advantage of a journaling filesystem over a conventional (non-journaling) file-
system?

A. Journaling filesystems are older and better tested than non-journaling filesystems.

B. Journaling filesystems never need to be checked with fsck.

C. Journaling filesystems support Linux ownership and permissions; non-journaling file-
systems don’t.

D. Journaling filesystems require shorter disk checks after a power failure or system crash.

E. Journaling filesystems record all transactions, enabling them to be undone.

17. To access files on a USB flash drive, you type mount /dev/sdc1 /media/flash as
root. Which types of filesystems will this command mount?

A. Ext2fs

B. FAT

C. HFS

D. ReiserFS

E. All of the above

18. Which of the following /etc/fstab entries will mount /dev/sdb2 as the /home directory
at boot time?

A. /dev/sdb2 reiserfs /home defaults 0 0

B. /dev/sdb2 /home reiserfs defaults 0 0

C. /home reiserfs /dev/sdb2 noauto 0 0

D. /home /dev/sdb2 reiserfs noauto 0 0

E. reiserfs /dev/sdb2 /home noauto 0 0

19. What filesystem options might you specify in /etc/fstab to make a removable disk (such
as a USB flash drive) mountable by an ordinary user with a UID of 1000? (Select three.)

A. user

B. users

C. owner

D. owners

E. uid=1000

http://technet24.ir/

176 Chapter 3 ■ Configuring Hardware

c03.indd 03/26/2015 Page 176

20. What is the minimum safe procedure for removing a USB flash drive, mounted from /dev/
sdb1 at /media/usb, from a Linux computer?

A. Type umount /media/usb, wait for the command to return and disk-activity lights
to stop, and then unplug the drive.

B. Unplug the drive, and then type umount /media/usb to ensure that Linux registers
the drive’s removal from the system.

C. Unplug the drive, and then type sync /dev/sdb1 to flush the caches to ensure that
problems don’t develop.

D. Type usbdrive-remove, and then quickly remove the disk before its activity light
stops blinking.

E. Type fsck /dev/sdb1 , wait for the command to return and disk-activity lights to
stop, and then unplug the drive.

http://technet24.ir/

c04.indd 03/26/2015 Page 177

Chapter

4
Managing Files

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 103.3 Perform basic file management

 ✓ 104.4 Manage disk quotas

 ✓ 104.5 Manage file permissions and ownership

 ✓ 104.6 Create and change hard and symbolic links

 ✓ 104.7 Find system files and place files in the correct
location

http://technet24.ir/

c04.indd 03/26/2015 Page 178

Ultimately, Linux is a collection of fi les stored on your
hard disk. Thus, being able to manage the fi lesystems’ fi les
is an important skill for any Linux system administrator.

Chapter 3, “Confi guring Hardware,” described creating disk partitions, preparing fi lesys-
tems on them, maintaining those fi lesystems, and mounting them. This chapter continues
that topic by looking more closely at fi le management.

Beginning with an examination of the commands used to access and manipulate fi les,
this chapter moves through these important basic utilities. As a multiuser OS, Linux
provides tools that enable you to restrict who may access your fi les. The chapter looks at
the Linux ownership model and the commands that are built on this model to control fi le
access. Furthermore, Linux provides a system that enables you to restrict how much disk
space individual users may consume. Thus, this feature is described within this chapter.
Finally, the chapter looks at locating fi les—we cover both the formal description of where
certain fi le types should reside and the commands you can use to locate specifi c fi les.

Using File Management Commands

Basic fi le management is critical to the use of any computer. This is particularly true on
Unix-like systems, like Linux, because these systems treat almost everything as a fi le,
including most hardware devices and various specialized interfaces. Therefore, being able
to create, delete, move, rename, archive, and otherwise manipulate fi les is a necessary skill
for any Linux user or system administrator.

To begin, you should understand the rules that govern fi lenames as well as the shortcuts
you can use to refer to fi les. With this information in hand, you can move on to learn how
to manipulate fi les and directories, how to archive fi les, and how to manage links.

Naming Files
Linux fi lenames are similar to the fi lenames on any other OS. However, every OS,
including Linux, has its fi lename quirks. These differences can be problematic to those who
move between systems and to those who want to move fi les between systems.

Linux fi lenames can contain uppercase or lowercase letters, numbers, and even most
punctuation and control characters. To avoid confusion, it is recommended that you restrict
any non-alphanumeric symbols in your Linux fi lenames to the dot (.), the dash (-), and the
underscore (_). However, some programs create backup fi les that end in the tilde (~) as well.

http://technet24.ir/

Using File Management Commands 179

c04.indd 03/26/2015 Page 179

Although Linux filenames can contain spaces, they must be escaped on
the Linux command line. This is accomplished by preceding the space
with a backslash (\) or by enclosing the entire filename in quotes ("). This
requirement makes spaces a bit awkward in Linux, so most Linux users
substitute dashes or underscores.

A few characters have special meaning and should never be used in fi lenames:

asterisk (*)

question mark (?)

forward slash (/)

backslash (\)

quotation mark (")

Although you can create fi les that contain all of the above characters except for the for-
ward slash (which serves to separate directory elements) by escaping them, it’s not a good
idea. These characters are likely to cause confusion when used in a fi lename.

Linux fi lename length depends on the fi lesystem in use. On ext2fs, ext3fs, ext4fs,
XFS, Btrfs, and many others, the limit is 255 characters. A character requires 1 byte of
storage. Therefore, you will often see the limit listed in bytes instead of characters. Thus,
the 255-character fi le limit is often stated as 255 bytes.

One- to four-character fi lename extensions are common in Linux. As with other OSs,
the fi lename extension typically follows a single dot. However, Linux fi lenames can contain
an arbitrary number of dots. In fact, fi lenames can begin with a dot. These so-called dot
fi les are hidden from view by most utilities that display fi les, so they’re popular for storing
confi guration fi les in your home directory.

If you access a File Allocation Table (FAT) filesystem on a removable disk
or partition used by DOS, you can do so using either of two filesystem
type codes: msdos, which limits you to 8.3 filenames; or vfat, which sup-
ports Windows-style long filenames. In addition, the umsdos filesystem
type code was a Linux-only extension that supported Linux-style long file-
names. UMSDOS support was discontinued after the 2.6.11 kernel.

Two fi lenames are particularly special. A fi lename that consists of a single dot (.) refers
to the current directory, whereas a fi lename that consists of a double dot (..) refers to the
parent directory. For instance, if your current directory is /home/jerry, then . refers to
/home/jerry and .. refers to /home.

Be aware the Linux fi lenames are case sensitive. For example, Filename.txt is different
from filename.txt or FILENAME.TXT. All three fi les can exist in a single Linux directory,
and they are treated as completely different fi les. Under Windows, all three fi lenames refer
to the same fi le. This difference isn’t a major problem for most people who migrate from
Windows to Linux, but you should be aware of it.

http://technet24.ir/

180 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 180

Exploring Wildcard Expansion Rules
You can use wildcards with many commands. A wildcard is a symbol or set of symbols that
stands in for other characters. Three classes of wildcards are common in Linux:

? A question mark (?) stands in for a single character. For instance, b??k matches book,
balk, buck, or any other four-character fi lename that begins with a b and ends with a k.

* An asterisk (*) matches any character or set of characters, including no character.
For instance, b*k matches book, balk, and buck as well as bk, bbk, and backtrack. Any
character and any number of characters can be in the fi lename as long as it begins with a b
and ends with a k.

Bracketed Values Characters enclosed in square brackets ([]) normally match any charac-
ter in the set. For instance, b[ae]ok matches baok and beok. Each bracket group is used for
single character matches. As in the example above, the second character in the name could
be either an a or an e. You can use multiple brackets in the same name. For example,
b[ae]o[ks] searches for character sets in both the second and fourth character position. The
names that would match this wildcard setting would include baok, beok, baos, and beos.

It’s also possible to specify a range of values using brackets. For instance, b[a-z]ck matches
back, buck, and other four-letter fi lenames of this form whose second character is a lower-
case letter. This differs from b?ck—because Linux treats fi lenames in a case-sensitive way
and because ? matches any character (not just any lowercase letter).

Wildcards are implemented in the shell and passed to the command you call. For
instance, if you type ls b??k and that wildcard matches the three fi les balk, book, and
buck, the result is precisely as if you’d typed ls balk book buck. This process of wild-
card expansion is known as fi le globbing or fi lename expansion or simply globbing.

Understanding the File Commands
A few fi le-manipulation commands are extremely important to everyday fi le operations.
These commands enable you to list, copy, move, rename, and delete fi les.

Using the ls Command
To manipulate fi les, it’s helpful to know information about them. This is the job of the ls
command, whose name is short for list. The ls command displays the names of fi les in a
directory. Its syntax is simple:

ls [options] [files]

Both of the options list and the files list are optional. If you omit the files list, ls
displays the contents of the current directory:

$ pwd

/home/Christine/my-work

$

http://technet24.ir/

Using File Management Commands 181

c04.indd 03/26/2015 Page 181

$ ls

project_a354 project_c923 project_m1321 punch_list.txt

$

To display contents that are not in your current directory, the directory name must be
included:

$ ls -F /home/Christine/

afile.txt file.dat my-work/ newfile.dat

bfile.txt hlink_afile NewDir/ script.sh*

bigprogram.sh* important/ new_file.dat slink_bfile@

$

This outputs the contents of the /home/Christine directory, including the various fi le
types via the -F option. The upcoming list entry “Display File Type” describes what these
symbols, such as @, indicate.

You may provide one or more fi le or directory names in the ls command. In addition,
you can use fi le globbing:

$ ls *.txt /home/Christine/my-work/

afile.txt bfile.txt

/home/Christine/my-work:

project_a354 project_c923 project_m1321 punch_list.txt

$

In this case, the ls command displays information about all of the fi les and directories
specifi ed. This output shows both the *.txt fi les in the current working directory and the
contents of the /home/Christine/my-work/ directory.

By default, ls creates a listing that’s sorted by fi lename, as shown in this example. In the
past, uppercase letters appeared before lowercase letters. However, recent versions of the ls
command sort in a case-insensitive manner.

One of the most common ls options is -l, which creates a long listing. This output
includes the permission strings, ownership, fi le sizes, fi le creation dates, and so on, in addi-
tion to the fi lenames:

$ ls -l *.txt

-rw-rw-r--. 2 Christine Users 1679 Sep 25 15:39 afile.txt

-rw-rw-r--. 1 Christine Users 1691 Sep 26 16:39 bfile.txt

$

The command supports a huge number of options. For details, consult the ls com-
mand’s man page. The following options are the most useful:

Display All Files Normally, ls omits fi les whose names begin with a dot (.). These dot
fi les are often confi guration fi les that aren’t usually of interest. Adding the -a or --all
parameter displays dot fi les.

http://technet24.ir/

182 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 182

Long Listing The ls command normally displays fi lenames only. The -l parameter (a
lowercase L) produces a long listing that includes information such as the fi le’s permission
string (described in “Understanding Permissions”), owner, group, size, and creation date.

Display File Type The -F or --classify option appends an indicator code to the end of
the fi lename so that you know what type of fi le it is. The meanings are as follows:

/ Directory

* Executable

| Named pipe

= Socket

@ Symbolic link

Color Listing The --color option produces a color-coded listing that differentiates direc-
tories, symbolic links, and so on by displaying them in different colors. This works at the
Linux console, in some terminal emulator windows in the GUI, and from some types of
remote logins. However, some remote-login programs don’t support color displays. Several
Linux distributions confi gure their shells to use this option by default.

Depending on color-coded listings can get you in trouble because color-
coded displays are not always available. Color codes are not standardized
and differ between Linux distributions. It is a better idea to use the file type
option (-F) and memorize the symbols that represent each type. The file
type symbols will be consistent no matter how you log into your
Linux system.

Display Directory Names Normally, if you type a directory name as a files option, ls
displays that directory’s contents. The same thing happens if a directory name matches a
wildcard. Adding the -d or --directory parameter changes this behavior to list only the
directory name, which is sometimes preferable.

Recursive Listing The -R or --recursive option causes ls to display directory contents
recursively. That is, if the target directory contains subdirectories, ls displays both the
target directory’s fi les and all of its subdirectories’ fi les. The result can be a huge listing if a
directory has many subdirectories.

You can combine multiple options by merging them with a single
preceding dash, as in ls -lF, to get a long listing that also includes file
type codes. This can save a bit of typing compared to the alternative of
ls -l -F.

http://technet24.ir/

Using File Management Commands 183

c04.indd 03/26/2015 Page 183

Using the cp Command
The cp command copies a fi le. Its basic syntax is as follows:

cp [options] source destination

The source option can be one or more fi les. It is the original fi le or fi les that you wish to
copy. The destination option may be a single fi le when the source is a single fi le:

$ ls

file.dat

$

$ cp file.dat new_file.dat

$

$ ls

file.dat new_file.dat

$

The destination option may be a directory when the source is one or more fi les. When
copying to a directory, cp preserves the original fi lename. Otherwise, it gives the new fi le
the fi lename indicated by destination:

$ ls -F

file.dat new_file.dat TempDir/

$

$ cp file.dat TempDir/

$

$ cp file.dat TempDir/file2.dat

$

$ ls TempDir/

file2.dat file.dat

$

This example uses a trailing forward slash (/) on the destination directory.
This practice can help avoid problems caused by typos. For example, if
the destination directory were mistyped as TempDi (missing the final r), cp
would copy file.dat to the filename TempDi instead of into the TempDir
directory. Adding the trailing slash makes it explicit that you intend to copy
the file into a subdirectory. If the directory doesn’t exist, cp complains so
that you’re not left with mysterious misnamed files.

http://technet24.ir/

184 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 184

In addition, the source and destination options may be entire directories
containing fi les:
$ ls -F

file.dat new_file.dat TempDir/

$

$ ls TempDir/

file2.dat file.dat

$

$ cp -R TempDir NewDir

$

$ ls NewDir/

file2.dat file.dat

$

Notice that an option was used on the cp command, -R, in order to copy the directory
and its contents. The cp command supports a large number of options. Here are a few use-
ful options that enable you to modify the command’s operation:

Force Overwrite The -f or --force option forces the system to overwrite any existing
fi les without prompting.

Use Interactive Mode The -i or --interactive option causes cp to ask you before over-
writing any existing fi les.

Preserve Ownership and Permissions Normally, the user who issues the cp command
owns the copied fi le and uses that account’s default permissions. The -p or --preserve
option preserves ownership and permissions, if possible.

Perform a Recursive Copy If you use the -R or --recursive option and specify a direc-
tory as the source option, the entire directory, including its subdirectories, is copied.
Although -r also performs a recursive copy, its behavior with fi les other than ordinary fi les
and directories is unspecifi ed. Most cp implementations use -r as a synonym for -R, but
this behavior isn’t guaranteed.

Perform an Archive Copy The -a or --archive option is similar to -R, but it also
preserves ownership and copies links as is. The -R option copies the fi les to which symbolic
links point rather than the symbolic links themselves. (Links are described in more detail
later in this chapter in “Managing Links.”)

Perform an Update Copy The -u or --update option tells cp to copy the fi le only if the
original is newer than the target or if the target doesn’t exist.

This list of cp options is incomplete, but it covers the most useful options.
Consult cp’s man page for information about additional cp options.

http://technet24.ir/

Using File Management Commands 185

c04.indd 03/26/2015 Page 185

As an example, the following command copies the /etc/fstab confi guration fi le to
a backup location in /root, but only if the original /etc/fstab is newer than the
existing backup:

cp -u /etc/fstab /root/fstab-backup

Using the mv Command
The mv command (short for move) is commonly used both to move fi les and directories
from one location to another and to rename them. Linux doesn’t distinguish between these
two types of operations, although many users do. The syntax of mv is similar to that of cp:

mv [options] source destination

The command takes many of the same options values as cp does. From the earlier list,
--preserve, --recursive, and --archive don’t apply to mv, but the others do.

To move one or more fi les or directories, specify the fi les as the source option and specify
a directory or (optionally, for a single-fi le move) a fi lename for the destination option:

$ ls document.odt

document.odt

$

$ mv document.odt important/purchases/

$

$ ls document.odt

ls: cannot access document.odt: No such file or directory

$

$ ls important/purchases

document.odt

$

The preceding command moves the document.odt fi le into the important/purchases
subdirectory. You can see that, unlike with the cp command, the original fi le is moved to
the new directory location and a copy is not left in the original directory.

If the move occurs on one low-level filesystem, Linux does the job by
rewriting directory entries; the file’s data need not be read and rewritten.
This makes mv fast. When the target directory is on another partition or
disk, though, Linux must read the original file, rewrite it to the new loca-
tion, and delete the original. This slows down mv.

Renaming a fi le with mv works much like moving a fi le, except that the source and des-
tination fi lenames are in the same directory. This mv command renames document.odt to
washer-order.odt in the same directory:

$ ls *.odt

document.odt

http://technet24.ir/

186 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 186

$

$ mv document.odt washer-order.odt

$

$ ls *.odt

washer-order.odt

$

You can combine the moving and renaming actions. This command simultaneously
moves and renames a fi le:

$ mv document.odt important/purchases/washer-order.odt

$

$ ls important/purchases/washer-order.odt

important/purchases/washer-order.odt

$

You can move or rename entire directories using mv, too; just specify one or more
directories as the source option in the command. For instance, consider the following
commands:

$ mv important critical

$

$ mv critical /tmp/

The fi rst command renames the important subdirectory as critical in the current
directory. The second command moves the renamed subdirectory to the /tmp directory.
(You could combine these two commands to mv important /tmp/critical.) The form
of these commands is identical to the mv command form when used with fi les. Optionally,
when renaming entire directories, you may add a trailing slash (/) to directory names.

Using the rm Command
To delete a fi le, use the rm command. The command name is short for remove, and its syn-
tax is simple:

rm [options] files

The rm command accepts many of the same specfi ed options values as cp or mv. Of
those described with cp, --preserve, --archive, and --update don’t apply to rm, but all of
the others do apply. With rm, -r is synonymous with -R.

By default, Linux doesn’t provide any sort of “trash-can” functionality for
its rm command at the command line. Once you’ve deleted a file with rm,
it’s gone. It cannot be recovered without retrieving the file from a backup
or performing low-level disk maintenance (such as with debugfs). There-
fore, you should be cautious when using rm, particularly when you’re
logged on as root. This is especially true when you’re using the -R option,
which can destroy a large part of your Linux installation!

http://technet24.ir/

Using File Management Commands 187

c04.indd 03/26/2015 Page 187

Using the touch Command
Linux-native fi lesystems maintain three time stamps for every fi le:

 ■ Last file-modification time

 ■ Last inode change time

 ■ Last access time

Various programs rely on these time stamps. For instance, the make utility (which helps
compile a program from source code) uses the time stamps to determine which source-code
fi les must be recompiled if an object fi le already exists. Thus, sometimes you may need to
modify the time stamps. This is the job of the touch command, which has the following
syntax:

touch [options] files

By default, touch sets the modifi cation and access times to the current time. You might
use this if, for instance, you wanted make to recompile a particular source code fi le even
though a newer object fi le existed. If the fi les specifi ed by files don’t already exist, touch
creates them as empty fi les. This can be handy if you want to create dummy fi les—say, to
experiment with other fi le-manipulation commands.

You can pass various values specifi ed by options to touch to have it change its behavior:

Change Only the Access Time The -a or --time=atime option causes touch to change the
access time alone, not the modifi cation time.

Change Only the Modification Time The -m or --time=mtime option causes touch to
change the modifi cation time alone, not the access time.

Do Not Create File If you don’t want touch to create any fi les that don’t already exist,
pass it the -c or --no-create option.

Set the Time as Specified The -t timestamp option sets the time to the value specifi ed by
timestamp. This value is given in the form MMDDhhmm[[CC]YY][.ss], where MM is the month,
DD is the day, hh is the hour (on a 24-hour clock), mm is the minute, [CC]YY is the year (such
as 2012 or 12, which are equivalent), and ss is the second. Another way to set a particular
time is with the -r reffile or --reference=reffile option, where reffile is a fi le whose
time stamp you want to replicate.

Archiving File Commands
A fi le-archiving tool collects a group of fi les into a single package fi le, called an archive. An
archive is more easily moved around than a group of fi les for applications such as transfer-
ring across a network or moving to backup media.

Linux supports several archiving commands, the most prominent being tar and cpio.
The dd command, although not technically an archiving command, is similar in some ways
because it can copy an entire partition or disk into a fi le and vice versa.

http://technet24.ir/

188 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 188

The zip format, which is common on Windows, is supported by the Linux
zip and unzip commands. Other archive formats, such as the Roshal
Archive (RAR) and StuffIt, can also be manipulated using Linux utilities.

Using the tar Utility
The tar program’s name stands for “tape archiver.” Despite this fact, you can use tar to
archive data to other media. In fact, tarballs are often used for transferring multiple fi les
between computers in one step, such as when distributing source code. A tarball is an
archive fi le created by tar and typically compressed with gzip, xz, or bzip2.

The tar program is a complex package with many options. However, most of what
you’ll do with this utility can be covered with a few common commands. Table 4.1 lists
the primary tar commands, and Table 4.2 lists the qualifi ers that modify what the com-
mands do. Whenever you run tar, you use only one command with one or more qualifi ers.
Collectively, the commands and qualifi ers are called options.

TA B LE 4 .1 tar commands

Command Abbreviation Description

--create c Creates an archive

--concatenate A Appends tar files to an archive

--append r Appends non-tar files to an archive

--update u Appends files that are newer than those in an
archive

--diff or --compare d Compares an archive to files on disk

--list t Lists an archive’s contents

--extract or --get x Extracts files from an archive

TA B LE 4 . 2 tar qualifiers

Qualifier Abbreviation Description

--directory dir C Changes to directory dir before performing
operations

--file [host:]file f Uses the file called file on the computer called
host as the archive file

http://technet24.ir/

Using File Management Commands 189

c04.indd 03/26/2015 Page 189

Qualifier Abbreviation Description

--listed-incre-
mental file

g Performs an incremental backup or restore, using
file as a list of previously archived files

--multi-volume M Creates or extracts a multi-volume archive

--preserve-per-
missions

p Preserves all protection information

--absolute-paths P Retains the leading / on filenames

--verbose v Lists all files read or extracted; when used with
--list, displays file sizes, ownership, and time
stamps

--verify W Verifies the archive after writing it

--gzip or --ungzip z Compresses an archive with gzip

--bzip2 j (some older
versions used
I or y)

Compresses an archive with bzip2

--xz J Compresses an archive with xz

Of the commands listed in Table 4.1, the following are most commonly used abbreviated
commands:

c Create archive

x Extract archive

t List archive

The most useful qualifi ers from Table 4.2 are as follows:

g Perform incremental backup

p Keep permissions

z Use gzip compression

j Use bzip2 compression

J Use xz compression

v Be verbose

If you fail to specify a fi lename with the --file qualifi er, tar will attempt to use a
default device, which is often (but not always) a tape device fi le. Thus, it is always best to
specify a fi lename.

Three compression tools—gzip, bzip2, and xz—are often used with the tar command.
They apply compression to the archive fi le as a whole rather than to the individual fi les.

http://technet24.ir/

190 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 190

This compression method reduces the tarball’s size compared to compressing individual
fi les and then adding them to the archive. However, this compression method makes the
archive more susceptible to damage.

Of the three compression tools, gzip is the oldest and provides the least compression,
bzip2 provides improved compression, and xz is the newest and provides the best compres-
sion. Typically, fi les compressed with these utilities have .gz, .bz2, or .xz fi lename exten-
sions, respectively. Compressed archives sometimes use their own special extensions, such
as .tgz for a gzip-compressed tarball or .tbz for one compressed with bzip2.

The xz compression tool has gained so much popularity, the Linux kernel
is now compressed with it.

The tar utility is easy to use but very powerful. The basic syntax for the tar command
is as follows:

tar [options] destination/tar_file_name files-to-archive

For example, a compressed archive can be made up of a subdirectory within your home
directory. In the same tar command, the archive can be sent to a USB fl ash drive mounted
at /media/pen. Also, the tar command’s abbreviated commands and qualifi ers (options)
can be grouped together for simplicity:

$ tar cvfz /media/pen/my-work.tgz ~/my-work

tar: Removing leading '/' from member names

/home/Christine/my-work/

/home/Christine/my-work/punch_list.txt

/home/Christine/my-work/project_a354

/home/Christine/my-work/project_m1321

/home/Christine/my-work/project_c923

$

$ ls -l /media/pen/my-work.tgz

-rw-rw-r--. 1 Christine Users 780 Sep 25 10:44 my-work.tgz

$

$ ls -l ~/my-work

total 24

-rw-rw-r--. 1 Christine Users 9972 Sep 25 10:30 project_a354

-rw-rw-r--. 1 Christine Users 3324 Sep 25 10:30 project_c923

-rw-rw-r--. 1 Christine Users 2216 Sep 25 10:30 project_m1321

-rw-rw-r--. 1 Christine Users 218 Sep 25 10:27 punch_list.txt

$

The tar command takes all of the ~/my-work fi les, packs them into the /media/pen/my-
work.tgz archive fi le, and compresses the fi le with the gzip utility. Notice how small the
tarball archive fi le my-work.tgz is compared to the original fi les’ sizes—pretty powerful for
such a small command!

http://technet24.ir/

Using File Management Commands 191

c04.indd 03/26/2015 Page 191

Historically a dash (-) would be put in front of tar options. However,
the dash is no longer needed and on some Linux distributions generates
an error.

The fl ash drive with the tarball archive can be moved to another system. If it is mounted
at /media/usb, the tar command to extract it is as follows:

$ tar xvfz /media/usb/my-work.tgz

home/Christine/my-work/

home/Christine/my-work/punch_list.txt

home/Christine/my-work/project_a354

home/Christine/my-work/project_m1321

home/Christine/my-work/project_c923

$

$ ls -l home/Christine/my-work

total 24

-rw-rw-r--. 1 Christine Users 9972 Sep 25 10:30 project_a354

-rw-rw-r--. 1 Christine Users 3324 Sep 25 10:30 project_c923

-rw-rw-r--. 1 Christine Users 2216 Sep 25 10:30 project_m1321

-rw-rw-r--. 1 Christine Users 218 Sep 25 10:27 punch_list.txt

$

The preceding command creates a subdirectory called home/Christine/my-work in the
current working directory. This new subdirectory was created because the tarball fi les’
original subdirectory was /home/Christine/my-work. The original subdirectory was
preserved by tar without the leading forward slash. After the subdirectory is created, the
tar command populates it with the fi les from the archive.

If you don’t know what’s in an archive, it’s a good practice to examine it with the
--list command before extracting its contents. Although tarball archives usually contain
a single subdirectory, sometimes they contain many fi les without a “carrier” subdirectory.
Extracting such tarballs drops these fi les in your current directory, which can make it
diffi cult to determine which fi les come from the tarball and which were already present.

Using the cpio Utility
The cpio program is similar in principle to tar, but the details of its operation differ. As
with tar, you can direct its output straight to a media device or to a regular archive fi le.
Backing up to a media device can be a convenient way to back up the computer because it
requires no intermediate storage. To restore data, you use cpio to read directly from the
media device fi le or from a regular archive fi le.

The cpio utility has three operating modes:

Copy-Out Mode This mode, activated by use of the -o or --create option, creates an
archive and copies fi les into it.

http://technet24.ir/

192 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 192

Copy-In Mode You activate copy-in mode by using the -i or --extract option. This
mode extracts data from an existing archive. If you provide a fi lename or a pattern to
match, cpio extracts only those fi les whose names match the pattern you provide.

Copy-Pass Mode This mode is activated by the -p or --pass-through option. It combines
the copy-out and copy-in modes, enabling you to copy a directory tree from one location to
another.

The copy-out and copy-in modes are named confusingly. To help keep the
modes clear, focus on the directory instead of the archive file. Think of
them as copying “out of” or “in to” the computer’s directory tree.

In addition to the options used to select the mode, cpio accepts many other options, the
most important of which are summarized in Table 4.3. To create an archive, you combine
the --create (or -o) option with one or more of the options in Table 4.3. To restore data,
you do the same, but you use --extract (or -i). In either case, cpio acts on fi lenames that
you type at the terminal. In practice, you’ll probably use the redirection operator (<) to pass
a fi lename list to the program.

TA B LE 4 . 3 Options for use with cpio

Option Abbreviation Description

--reset-access-time -a Resets the access time after reading a file so that
it doesn’t appear to have been read.

--append -A Appends data to an existing archive.

--pattern-
file=filename

-E filename Uses the contents of filename as a list of files to
be extracted in copy-in mode.

--file=filename -F filename Uses filename as the cpio archive file; if this
parameter is omitted, cpio uses standard input
or output.

--format=format -H format Uses a specified format for the archive file.
Common values for format include bin (the
default, an old binary format), crc (a newer
binary format with a checksum), and tar (the
format used by tar).

N/A -I filename Uses the filename specified by filename instead
of standard input. (Unlike -F, this option does not
redirect output data.)

http://technet24.ir/

Using File Management Commands 193

c04.indd 03/26/2015 Page 193

Option Abbreviation Description

--no-absolute-file-
names

N/A In copy-in mode, extracts files relative to the
current directory, even if filenames in the archive
contain full directory paths.

N/A -O filename Uses the filename specified by filename instead
of standard output. (Unlike -F, this option does
not redirect input data.)

--list -t Displays a table of contents for the input.

--unconditional -u Replaces all files without first asking for
verification.

--verbose -v Displays filenames as they’re added to or
extracted from the archive. When used with -t,
displays additional listing information (similar to
ls -l).

To use cpio to archive a directory, you must pass a list of fi les to the utility using stan-
dard input. You can do this by piping the STDOUT of the find utility (described in more
detail later in “The find Command”) into the cpio command:

$ find ./my-work

./my-work

./my-work/my-work.tgz

./my-work/punch_list.txt

./my-work/project_a354

./my-work/project_m1321

./my-work/project_c923

$

$ find ./my-work | cpio -o > /media/usb/my-work.cpio

33 blocks

$

$ ls -l /media/usb/my-work.cpio

-rw-rw-r--. 1 Christine Users 16896 Sep 25 14:36 my-work.cpio

$

The resulting archive fi le is uncompressed. To compress the data, you must include a
compression utility, such as gzip, in the pipe:

$ find ./my-work | cpio -o | gzip > /media/usb/my-work.cpio.gz

Extracting data from a cpio archive (say, on another computer with the media mounted
at /media/usb) entails using the -i option, but no pipe is required:

http://technet24.ir/

194 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 194

$ gunzip /media/usb/my-work.cpio.gz

$ cpio -i < /media/usb/my-work.cpio

33 blocks

$

You can uncompress your compressed cpio archive and extract the data in one step by
using the -c option with gunzip and passing its output to cpio in a pipe:

$ gunzip -c /media/usb/my-work.cpio.gz | cpio -i

33 blocks

$

To uncompress an archive compressed with bzip2, you would use bunzip2 -c in the
pipe rather than gunzip -c. If the archive is compressed with xz, you would use unxz -b in
the pipe.

Using the dd Utility
Sometimes you want to archive a fi lesystem at a very low level. For instance, you may want
to create a representation of a DVD that you can store on your hard disk or back up a fi le-
system that Linux can’t understand. To do so, you can use the dd program.

The dd utility is a low-level copying program. When you give it a partition device fi le as
input, it copies that partition’s contents to the output fi le you specify. This output fi le can
be another partition identifi er, a media device, or a regular fi le, to name three possibilities.
The input and output fi les are passed with the if=file and of=file options:

dd if=/dev/sda3 of=/dev/dvd

This command backs up the /dev/sda3 disk partition to /dev/dvd (a DVD drive). The
result is a very low-level backup of the partition that can be restored by swapping the if=
and of= options:

dd if=/dev/dvd of=/dev/sda3

The dd utility can be a way to create exact backups of entire partitions. However, as a
general backup tool, it has serious problems. It backs up the entire partition, including any
empty space. Restoring individual fi les is also impossible unless the backup device is a ran-
dom access device that can be mounted. Finally, you can’t easily restore data to a partition
that’s smaller than the original partition, and when restoring to a larger partition, you’ll
end up wasting some of the space available on that partition.

Despite these problems, dd can be handy in some situations. Computer forensics experts
often use it to get an exact partition copy. It can be a good way to make a duplicate of a
removable disk. You can use dd to copy a disk for which Linux lacks fi lesystem drivers. If
you need to create multiple identical Linux installations, you can do so by using dd to copy a
working installation to multiple computers, as long as they have hard disks of the same size.

http://technet24.ir/

Using File Management Commands 195

c04.indd 03/26/2015 Page 195

You can also use dd in some other capacities. For instance, if you need an empty fi le of a
particular size, you can copy from the /dev/zero device (a Linux device that returns noth-
ing but zeroes) to a target fi le:

$ dd if=/dev/zero of=empty-file.img bs=1024 count=720

The bs=size and count=length options are needed to set the block size and length of the
fi le. The example above creates an (1024 × 720 bytes) empty fi le.

Backing Up Using Optical Media

Optical media requires special backup procedures. Normally, cdrecord accepts input

from a program like mkisofs, which creates an ISO-9660 or UDF fi lesystem—the type of

fi lesystem that’s most often found on CD-ROMs and DVDs.

One option for backing up to optical discs is to use mkisofs and then cdrecord to copy

fi les to the disc. If you copy fi les “raw” this way, though, you’ll lose some information,

such as write permission bits. You’ll have better luck if you create a tar or cpio archive

on a hard drive disk. You can then use mkisofs to place that archive in an ISO-9660 or

UDF fi lesystem and then burn the image fi le to the optical disc. The result will be a disc

that you can mount and that will contain an archive that you can read with tar or cpio.

A somewhat more direct option is to create an archive fi le and burn it directly to the opti-

cal disc using cdrecord, bypassing mkisofs. Such a disc won’t be mountable in the usual

way, but you can access the archive directly by using the CD-ROM device fi le.

Managing Links
In Linux, a link is a way to give a fi le multiple identities, similar to shortcuts in Windows
and aliases in Mac OS. There are a few reasons Linux employs links:

 ■ To help make files more accessible

 ■ To give commands multiple names

 ■ To enable programs that look for the same files in different locations to access the
same files

Two types of links exist: hard links and symbolic links (aka soft links). Hard links are
produced by creating two directory entries that point to the same fi le (more precisely, the
same inode). Both fi lenames are equally valid and prominent; neither is a “truer” fi lename

http://technet24.ir/

196 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 196

than the other, except that one was created fi rst (when creating the fi le) and the other was
created second. To delete the fi le, you must delete both hard links to the fi le. The underly-
ing fi lesystem must support hard links. All Linux-native fi lesystems support this feature,
but some non-Linux fi lesystems don’t. Because of the way hard links are created, they must
exist on a single low-level fi lesystem. For example, you can’t create a hard link from your
root (/) fi lesystem to a separate fi lesystem you’ve mounted on it.

Symbolic links, by contrast, are special fi le types. The symbolic link is a separate fi le
whose contents point to the linked-to fi le. Linux knows to access the linked-to fi le when-
ever you try to access the symbolic link. Therefore, in most respects, accessing a symbolic
link works just like accessing the original fi le. Because symbolic links are basically fi les that
contain fi lenames, they can point across low-level fi lesystems—you can point from the root
(/) fi lesystem to a separate fi lesystem that you’ve mounted on it, for instance.

In practice, symbolic links are more common than hard links. Their disadvantages
are minor and the ability to link across fi lesystems and to directories can be important.
Linux employs links in certain critical system administration tasks. For instance, System V
(SysV) startup scripts use symbolic links in runlevel directories, as described in Chapter 5,
“Booting Linux and Editing Files.”

The lookup process for accessing the original fi le from the link consumes a tiny bit of
time, so symbolic link access is slower than hard link access—but not by enough that you’d
notice in any but very bizarre conditions or artifi cial tests.

The ln command creates these links. Its syntax is similar to that of the cp command:

ln [options] source link

The original fi le is source, and link is the name of the link you want to create. This
command supports options that have several effects:

Remove Target Files The -f or --force option causes ln to remove any existing links or
fi les that have the target link name. The -i or --interactive option has a similar effect,
but it queries you before replacing existing fi les and links.

Create Directory Hard Links Ordinarily, you can’t create hard links to directories. The
root user can attempt to do so, though, by passing the -d, -F, or --directory option to ln.
(Symbolic links to directories aren’t a problem.) In practice, this feature is unlikely to work
because most fi lesystems don’t support it.

Create a Symbolic Link The ln command creates hard links by default. To create a sym-
bolic link, pass the -s or --symbolic option to the command.

A few other options exist to perform more obscure tasks. You can consult the ln com-
mand’s man page for more details.

Without any options, the ln command creates a hard link. The source fi le must exist
before a hard link is created. The link fi le must not exist before the hard link is created:

$ ls -l afile.txt

-rw-rw-r--. 1 Christine Users 1679 Sep 25 15:39 afile.txt

http://technet24.ir/

Using File Management Commands 197

c04.indd 03/26/2015 Page 197

$

$ ls -l hlink_afile

ls: cannot access hlink_afile: No such file or directory

$

$ ln afile.txt hlink_afile

$

$ ls -l *afile*

-rw-rw-r--. 2 Christine Users 1679 Sep 25 15:39 afile.txt

-rw-rw-r--. 2 Christine Users 1679 Sep 25 15:39 hlink_afile

$

Once the hard link is created, the link fi le, hlink_afile, is created. A long directory
listing’s second column shows the link count. When a fi le is not hard-linked to another fi le,
the link count is set to one (1). Once a fi le becomes hard-linked to another fi le, the link
count increases. Therefore, the long directory listing shows that both afile.txt
and hlink_afile have a link count of two (2), and they are therefore hard-linked to
another fi le.

Using the -i option, the ls command can also be used to show fi les’ inode numbers.
Below the inode numbers for the two hard-linked fi les are displayed. Notice that the inode
numbers are the exact same number, because the fi les are hard-linked:

$ ls -i *afile*

527201 afile.txt 527201 hlink_afile

$

With the -s option, the ln command creates a symbolic link. Similar to the creation of a
hard link, the source fi le must exist before a symbolic link is created and the link fi le must
not exist:

$ ls -l bfile.txt

-rw-rw-r--. 1 Christine Users 1679 Sep 25 16:03 bfile.txt

$

$ ls -l slink_bfile

ls: cannot access slink_bfile: No such file or directory

$

$ ln -s bfile.txt slink_bfile

$

$ ls -l *bfile*

-rw-rw-r--. 1 Christine Users 1679 Sep 25 16:03 bfile.txt

lrwxrwxrwx. 1 Christine Users 9 Sep 25 16:04 slink_bfile -> bfile.txt

$

Unlike a hard link, the symbolically linked fi les’ link counts do not increase. Also, a long
listing conveniently shows the symbolically linked fi les with an arrow (->).

http://technet24.ir/

198 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 198

Understanding the Directory Commands
Most of the commands that apply to fi les also apply to directories. In particular, ls, mv,
touch, and ln all work with directories, with the limitations mentioned earlier. The cp
command also works with directories, but only when you use a recursion option, such as
-r. A couple of additional commands, mkdir and rmdir, enable you to create and delete
directories, respectively.

Using the mkdir Command
The mkdir command creates a directory. This command’s offi cial syntax is as follows:

mkdir [options] directory-name(s)

In most cases, mkdir is used without options, but a few options are supported:

Set Mode The -m mode or --mode=mode option causes the new directory to have
the specifi ed permission mode, expressed as an octal number. (The upcoming section
“Understanding Permissions” describes permission modes.)

Create Parent Directories Normally, if you specify the creation of a directory within a
directory that doesn’t exist, mkdir responds with a No such file or directory error and
doesn’t create the directory. If you include the -p or --parents option, though, mkdir
creates the necessary parent directory.

Using the rmdir Command
The rmdir command is the opposite of mkdir; it destroys a directory. Its syntax is similar:

rmdir [options] directory-name(s)

Like mkdir, rmdir supports few options, the most important of which handle these
tasks:

Ignore Failures on Non-empty Directories Normally, if a directory contains fi les or other
directories, rmdir doesn’t delete it and returns an error message. With the --ignore-fail-
on-non-empty option, rmdir still doesn’t delete the directory, but it doesn’t return an error
message.

Delete Tree The -p or --parents option causes rmdir to delete an entire directory tree.
For instance, typing rmdir -p one/two/three causes rmdir to delete one/two/three,
then one/two, and fi nally one, provided no other fi les or directories are present.

When you’re deleting an entire directory tree filled with files, you should
use rm -R or rm -r rather than rmdir. This is because the rmdir command
can delete only an empty directory.

http://technet24.ir/

Managing File Ownership 199

c04.indd 03/26/2015 Page 199

Managing File Ownership

Security is an important topic that cuts across many types of commands and Linux subsys-
tems. In the case of fi les, security is built on fi le ownership and fi le permissions. These two
topics are closely intertwined: ownership is meaningless without permissions that use it,
and permissions rely on the existence of ownership.

Ownership is two tiered: Each fi le has an individual owner and a group with which
it’s associated (sometimes called the group owner or simply the fi le’s group). Each group
can contain an arbitrary number of users, as described in Chapter 7, “Administering the
System.” The two types of ownership enable you to provide three tiers of permissions to
control access to fi les: by the fi le’s owner, by the fi le’s group, and to all other users. The
commands to manage these two types of ownership are similar, but they aren’t identical.

Assessing File Ownership
You can learn who owns a fi le with the ls command, which was described earlier. In par-
ticular, that command’s -l option produces a long listing, which includes both ownership
and permission information:

$ ls -l

total 28

-rw-rw-r--. 1 Christine Users 826 Sep 25 11:09 my-work.tgz

-rw-rw-r--. 1 Christine Users 9972 Sep 25 10:30 project_a354

-rw-rw-r--. 1 Christine Users 3324 Sep 25 10:30 project_c923

-rw-rw-r--. 1 Christine Users 2216 Sep 25 10:30 project_m1321

-rw-rw-r--. 1 Christine Users 218 Sep 25 10:27 punch_list.txt

This long listing includes the owner’s username, Christine, in column three and the
fi les’ group name, Users, in column four. The permission string, -rw-rw-r--, in column
one, is also important for fi le security, as described later in “Controlling Access to Files.”

If you delete an account, as described in Chapter 7, the account’s files don’t
vanish, but the account name does. Internally, Linux uses numbers rather
than names, so you’ll see numbers in place of the username and group
name in the ls output.

A new user account could be assigned those numbers. This would allow

the new user account access to those deleted account’s fi les! Depend-

ing on the fi les, you may want to archive them, reassign ownership to

an existing user, or delete them.

http://technet24.ir/

200 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 200

In most cases, the usernames associated with fi les are the same as login usernames. Files
can, however, be owned by accounts that aren’t ordinary login accounts. For instance, some
servers have accounts of their own, and server-specifi c fi les may be owned by these accounts.

Changing a File’s Owner
Whenever a fi le is created, it’s assigned an owner. The superuser can change a fi le’s owner
using the chown command. It can also be used to change the fi le’s group. The chown com-
mand has the following syntax:

chown [options] [newowner][:newgroup] filenames

As you might expect, the newowner and newgroup variables are the new owner and
group for the fi le. You can provide both or omit one, but you can’t omit both. For instance,
suppose you want to give ownership of a fi le to sally and the skyhook group:

chown sally:skyhook forward.odt

Linux’s chown command accepts a dot (.) in place of a colon (:) to delimit
the owner and group, at least as of the core file utilities version 8.14. The
use of a dot has been deprecated, though, meaning that the developers
favor the colon and may eventually eliminate the use of a dot as a feature.

You can use several options with chown, most of which are fairly obscure. One that’s
most likely to be useful is -R or --recursive, which implements the ownership change
on an entire directory tree. Consult the man page for chown for information about addi-
tional options.

Only root may use the chown command to change the ownership of fi les. If an ordinary
user tries to use it, the result is an Operation not permitted error message. Ordinary users
may, however, use chown to change the group of fi les that they own, provided that the users
belong to the target group.

Changing a File’s Group
Both root and ordinary users may run the chgrp command, which changes a fi le’s group.
(Ordinary users may only change a fi le’s group to a group to which they belong.) This com-
mand’s syntax is similar to, but simpler than, that of chown:

chgrp [options] newgroup filenames

The chgrp command accepts many of the same options as chown, including -R or
--recursive. In practice, chgrp provides a subset of the chown functionality.

Controlling Access to Files

The bulk of the complexity in fi le ownership and permissions is on the permissions end
of things. The Linux permissions scheme is moderately complex, so understanding how it

http://technet24.ir/

Controlling Access to Files 201

c04.indd 03/26/2015 Page 201

works is critical to any permission manipulation. With the basic information in hand, you
can tackle the commands used to change fi le permissions.

Understanding Permissions
At the core of Linux permissions are permission bits, which provide access control for
fi les. In addition, a few special permission bits exist. These special bits provide some
unusual features.

Digging into the Meanings of Permission Bits
Consider the following fi le access control string that’s displayed with the -l option to ls:

$ ls -l test

-rwxr-xr-x. 1 Christine Users 843 Sep 27 09:10 test

$

This string (-rwxr-xr-x in this example) is 10 characters long. The fi rst character has
special meaning—it’s the fi le type code. The type code determines how Linux will interpret
the fi le—as ordinary data, a directory, or a special fi le type. Table 4.4 summarizes Linux
type codes.

TA B LE 4 . 4 Linux file type codes

Code Meaning

- Normal data file: This may be text, an executable program, graphics, compressed
data, or just about any other type of data.

d Directory: Disk directories are files just like any others, but they contain filenames
and pointers to disk inodes.

l Symbolic link: The file contains the name of another file or directory. When Linux
accesses the symbolic link, it tries to read the linked-to file.

p Named pipe: A pipe enables two running Linux programs to communicate with
each other. One opens the pipe for reading, and the other opens it for writing,
enabling data to be transferred between the programs.

s Socket: A socket is similar to a named pipe, but it permits network and bidirec-
tional links.

b Block device: This is a file that corresponds to a hardware device to and from which
data is transferred in blocks of more than 1 byte. Disk devices (hard disks, USB
flash drives, CD-ROMs, and so on) are common block devices.

c Character device: A file that corresponds to a hardware device to and from which
data is transferred in units of 1 byte. Examples include parallel port, RS-232 serial
port, and audio devices.

http://technet24.ir/

202 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 202

The remaining permission string’s nine characters (rwxr-xr-x in the example) are broken
up into three groups of three characters each, as illustrated in Figure 4.1. The fi rst group con-
trols the fi le owner’s access to the fi le, the second controls the group’s access to the fi le, and
the third controls all other users’ access to the fi le (often referred to as world permissions).

F I GU R E 4 .1 The main Linux permission options are encoded in 10 bits, the last 9 of
which are grouped into three groups of 3 bits each.

File Type
Code

Owner
Permissions

–– r w x r x – xr

read write execute read write execute write executeread

Group
Permissions

World
Permissions

In each of these three cases, the permission string determines the presence or absence of
the three access types: read, write, and execute. Read and write permissions are fairly self-
explanatory, at least for ordinary fi les.

If the execute permission is present, it means that the fi le may be run as a program. Of
course, this doesn’t turn a non-program fi le into a program; it only means that a user may
run a fi le if it is a program. Setting the execute bit on a non-program fi le will probably
cause no real harm, but it could be confusing.

The absence of the permission is denoted by a dash (-) in the permission string. The
presence of the permission is indicated by a letter—r for read, w for write, or x for execute.

Thus, the example permission string rwxr-xr-x means that the fi le’s permissions are set
as follows:

Owner: read, write, and execute permission

Group members: read and execute permission

Other users: read and execute permission

Individual permissions, such as execute access for the fi le’s owner, are often referred to
as permission bits. This is because Linux encodes this information in binary form. Because
it’s binary, the permission information can be expressed as a single 9-bit number. This
number is usually expressed in octal (base 8) form because a base-8 number is 3 bits in
length, which means that the base-8 representation of a permission string is three charac-
ters long; one character for each of the owner, group, and world permissions.

The result is that you can determine owner, group, or other permissions using this infor-
mation. The read, write, and execute permissions correspond to these bits as follows:

1: execute permission

2: write permission

4: read permission

http://technet24.ir/

Controlling Access to Files 203

c04.indd 03/26/2015 Page 203

Permissions bits for a particular permission type are added together, thus permissions
are expressed for each permission type (owner, group, other) as a single digit. To under-
stand how this works, consider the following long listing:

$ ls -l script.sh

-rwxrw-r--. 1 Christine Users 821 Sep 25 17:49 script.sh

$

The owner permissions set on the script.sh fi le are read, write, and execute. To deter-
mine the owner permission digit, the corresponding permission bit numbers are added up
— read (4) + write (2) + execute (1), which adds up to seven (7). Thus, the digit representing
the owner permissions on this fi le is seven (7).

Each permission type is added up separately. For the script.sh fi le, the group permis-
sion digit would be read (4) + write (2), which equals six (6). Other permission had only the
read permission bit set, and therefore its digit would be four (4).

The three permission digits are placed together to make a three-digit number (octal
code) representing the fi le’s permissions. The placement order is owner (7), group (6), and
other (4). Therefore, the three digit octal code for the script.sh fi le is 764.

It helps to have additional permission examples to understand this concept. Table 4.5
shows some common permission examples and their meanings.

TA B LE 4 .5 Example permissions and their likely uses

Permission
string Octal code Meaning

rwxrwxrwx 777 Read, write, and execute permissions for all users.

rwxr-xr-x 755 Read and execute permission for all users. The file’s owner
also has write permission.

rwx------ 700 Read, write, and execute permissions for the file’s owner only;
all others have no access.

rw-rw-rw- 666 Read and write permissions for all users. No execute permis-
sions for anybody.

rw-r--r-- 644 Read and write permissions for the owner. Read-only permis-
sion for all others.

rw-r----- 640 Read and write permissions for the owner, and read-only per-
mission for the group. No permission for others.

rw------- 600 Read and write permissions for the owner. No permission for
anybody else.

r-------- 400 Read permission for the owner. No permission for anybody
else.

http://technet24.ir/

204 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 204

Execute permission makes sense for program fi les, but it’s meaningless for most other
fi le types, such as device fi les. Directories, though, use the execute bit another way. When a
directory’s execute bit is set, that means that the directory’s contents may be searched. This
is a highly desirable characteristic for directories, so you’ll almost never fi nd a directory on
which the execute bit is not set in conjunction with the read bit.

Directories can be confusing with respect to the write permission. Recall that directories
are fi les that are interpreted in a special way. As such, if a user can write to a directory, that
user can create, delete, or rename fi les in the directory as well. This is true even if the user
isn’t the owner of those fi les and does not have permission to write to those fi les. You can
use the sticky bit (described shortly, in “Understanding Special Permission Bits”) to alter
this behavior.

Symbolic links are unusual with respect to permissions. This file type always
has 777 (rwxrwxrwx) permissions, thus granting all users full access to the
file. This access applies only to the link file itself and not to the linked-to
file. In other words, all users can read the contents of the link to discover
the name of the file to which it points. The permissions on the linked-to file
determine its file access. If you attempt to change the permissions on a sym-
bolic link file, the linked-to file’s permissions are changed instead.

Many of the permission rules don’t apply to root. The superuser can read or write any
fi le on the computer—even fi les that grant access to nobody (that is, those that have 000
permissions). The superuser still needs an execute bit to be set to run a program fi le, but
the superuser has the power to change the permissions on any fi le, so this limitation isn’t
very substantial. Some fi les may be inaccessible to root, but only because of an underly-
ing restriction. For instance, even root can’t access a hard disk that’s not installed in the
computer.

Understanding Special Permission Bits
A few special permission options are also supported, and they may be indicated by changes
to the permission string:

Set User ID (SUID) The set user ID (SUID) option is used in conjunction with executable
fi les. It tells Linux to run the program with the permissions of whoever owns the fi le rather
than with the permissions of the user who runs the program. For instance, if a fi le is owned
by root and has its SUID bit set, the program runs with root privileges and can therefore
read any fi le on the computer. Some servers and other system programs run this way, which
is often called SUID root. SUID programs are indicated by an s in the owner’s execute bit
position in the permission string, as in rwsr-xr-x.

If the SUID bit is set on a fi le without execution permission set, the permission string
appears with a capital S, as in rwSr-xr-x. However, in this case, SUID will not function
and the setting is called benign.

Set Group ID (SGID) The set group ID (SGID) option is similar to the SUID option, but
it sets the running program’s group to the fi le’s group. It’s indicated by an s in the group
execute bit position in the permission string, as in rwxr-sr-x.

http://technet24.ir/

Controlling Access to Files 205

c04.indd 03/26/2015 Page 205

Similar to SUID, if the SGID bit is set on a fi le without execution permission set, the per-
mission string appears with a capital S, as in rwsr-Sr-x. Also in this case the setting is
benign.

SGID is also useful on directories. When the SGID bit is set on a directory, new fi les or
subdirectories created in the original directory will inherit the group ownership of the
directory rather than be based on the user’s current default group.

Sticky Bit The sticky bit is used to protect fi les from being deleted by those who don’t
own the fi les. When this bit is present on a directory, the directory’s fi les can be deleted
only by their owners, the directory’s owner, or root. The sticky bit is indicated by a t in the
world execute bit position, as in rwxr-xr-t.

These special permission bits all have security implications. SUID and
SGID programs (and particularly SUID root programs) are potential secu-
rity risks. Although some programs must have their SUID bits set to func-
tion properly, most don’t, and you shouldn’t set these bits unless you’re
certain that doing so is necessary. The sticky bit isn’t dangerous this way,
but because it affects who may delete files in a directory, you should con-
sider its effect—or the effect of not having it—on directories to which many
users should have write access, such as /tmp. Typically, such directories
have their sticky bits set.

DAC, ACLs and SELinux

The permissions covered so far in this chapter have served Linux well since its creation.

They fall under the umbrella of the discretionary access control (DAC) model, which is

considered in the security world to be ineffi cient for properly securing a Linux system.

An improved permission system called an access control list (ACL) is a list of users or

groups and the permissions they’re given. Linux ACLs, like Linux owner, group, and world

permissions, consist of three permission bits, one each for read, write, and execute per-

missions. To be set and viewed, ACLs require their own commands. The setfacl com-

mand sets an ACL, and the getfacl command displays the ACLs for a fi le. Consult these

commands’ man pages for more information.

An even better security approach is a model called mandatory access control (MAC) and

its subcategory, role-based access control (RBAC). These models are implemented by the

SELinux utility available on many Linux distributions. SELinux is a very complex utility. It

implements RBAC security using the Bell-LaPadula model and either type enforcement or

multi-level security. SELinux is far too complex to learn about via the man pages. For more

information, invest in a Linux security book and/or review SELinux information stored on

the Web.

http://technet24.ir/

206 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 206

Changing a File’s Mode
You can modify a fi le’s permissions using the chmod command. This command may be
issued in many different ways to achieve the same effect. Its basic syntax is as follows:

chmod [options] [mode[,mode...]] filename...

The chmod options are similar to those of chown and chgrp. In particular, --recursive
(or -R) changes all of the fi les in a directory tree.

Most of the chmod command’s complexity comes in the fi le’s mode specifi cation. You can
specify the mode in two basic forms: as a three-digit octal number (covered earlier) or as a
symbolic mode. A symbolic mode is a set of codes related to the string representation of the
permissions.

The mode’s octal representation is the same as that described earlier and summarized
in Table 4.5. For instance, to view and change permissions on file.dat to rw-r--r--, you
can issue the following commands:

$ ls -l file.dat

-rw-rw-r--. 1 Christine Users 199 Sep 15 14:36 file.dat

$

$ chmod 644 file.dat

$

$ ls -l file.dat

-rw-r--r--. 1 Christine Users 199 Sep 15 14:36 file.dat

$

In addition, you can precede the three octal mode digits for the owner, group, and other
permissions with another digit that sets special permissions. The SUID, SGID, and sticky
bit permissions correspond to these bits as follows:

1 Sticky bit permission

2 SGID permission

4 SUID permission
If you omit the fi rst digit (as in the preceding example), Linux clears all three special per-

mission bits. Thus, in the previous example, 644 is treated as 0644. Using four digits causes
the fi rst digit to be interpreted as the special permissions’ code.

To set the special permissions using octal code, you add up the special permissions bits,
just as you do for the other permission types. For instance, suppose you’ve acquired a script
called bigprogram. You want to set the following:

 ■ Both SUID and SGID special permission bits (6)

 ■ Owner bits to make the program readable, writeable, and executable (7)

 ■ Group bits to make the program readable and executable (5)

 ■ Other bits to make the program completely inaccessible to all others (0)

Because SGID is a group permission, superuser privileges are required. The following
commands illustrate how to do this; note the difference in the mode string before and after
executing the chmod command:

http://technet24.ir/

Controlling Access to Files 207

c04.indd 03/26/2015 Page 207

ls -l bigprogram.sh

-rw-r--r--. 1 Christine Users 8395 Sep 26 07:40 bigprogram.sh

#

chmod 6750 bigprogram.sh

#

ls -l bigprogram.sh

-rwsr-s---. 1 Christine Users 8395 Sep 26 07:40 bigprogram.sh

A mode’s symbolic representation, by contrast, consists of three components:

 ■ A code indicating the permission set to modify (the owner, the group, other, and
so on)

 ■ A symbol indicating whether you want to add, delete, or set the mode equal to a
stated value

 ■ A code specifying what the permission should be

Table 4.6 summarizes all of these codes. Note that these codes are all case-sensitive.

TA B LE 4 .6 Codes used in symbolic modes

Permission
set code Meaning

Change type
code Meaning

Permission
to modify
code Meaning

u Owner + Add r Read

g Group - Remove w Write

o Other = Set equal
to

x Execute

a All X Execute only if the file is
a directory or already has
execute permission

s SUID or SGID

t Sticky bit

u Existing owner’s permis-
sions

g Existing group permissions

o Existing other permissions

http://technet24.ir/

208 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 208

To use symbolic permission settings, you combine one or more of the codes from the
fi rst column of Table 4.6 with one symbol from the third column and one or more codes
from the fi fth column. You can combine multiple settings by separating them with commas.
Table 4.7 provides some examples of chmod using symbolic permission settings.

TA B LE 4 .7 Examples of symbolic permissions with chmod

Command
Initial
permissions End permissions

chmod a+x bigprogram rw-r--r-- rwxr-xr-x

chmod ug=rw report.tex r-------- rw-rw----

chmod o-rwx bigprogram rwxrwxr-x rwxrwx---

chmod g=u report.tex rw-r--r-- rw-rw-r--

chmod g-w,o-rw report.tex rw-rw-rw- rw-r-----

As a general rule, symbolic permissions are most useful when you want to make a simple
change (such as adding execute or write permissions to one or more classes of users) or
when you want to make similar changes to many fi les without affecting their other permis-
sions (for instance, adding write permissions without affecting execute permissions). Octal
permissions are most useful when you want to set a specifi c absolute permission, such as
rw-r--r-- (644). In any event, a system administrator should be familiar with both setting
permission methods.

A fi le’s owner and root are the only users who may adjust a fi le’s permissions. Even if
other users have write access to a directory in which a fi le resides and write access to the
fi le itself, they may not change the fi le’s permissions. However, they may modify or even
delete the fi le. To understand why this is so, you need to know that the fi le permissions are
stored as part of the fi le’s inode, which isn’t part of the directory entry. Read/write access
to the directory entry, or even the fi le itself, doesn’t give a user the right to change the inode
structures (except indirectly—for instance, if a write changes the fi le’s size or a fi le deletion
eliminates the need for the inode).

In Exercise 4.1, you’ll experiment with the effect of Linux ownership and permissions on
fi le accessibility.

E X E R C I S E 4 .1

Modifying Ownership and Permissions

During this exercise, you’ll need to use three accounts: root and two user accounts, each

in a different group. To study these effects, follow these steps:

http://technet24.ir/

Controlling Access to Files 209

c04.indd 03/26/2015 Page 209

1. Log in three times using three virtual terminals: once as root, once as user1, and

once as user2. (Use usernames appropriate for your system, though. Be sure that

user1 and user2 are in different groups.) If you prefer, instead of using virtual termi-

nals, you can open three terminal emulator windows in an GUI session; use su user1

and su user2 to acquire their privileges and su - to acquire root’s privileges.

2. As root, create a scratch directory—say, /tmp/scratch. Type mkdir /tmp/

scratch.

3. As root, give all users read and write access to the scratch directory by typing chmod

0777 /tmp/scratch.

4. In the user1 and user2 login sessions, change to the scratch directory by typing cd

/tmp/scratch.

5. As user1, copy a short text fi le to the scratch directory using cp, as in cp /etc/

fstab ./testfile.

6. As user1, set 0644 (-rw-r--r--) permissions on the fi le by typing chmod 0644

testfile. Type ls -l, and verify that the permission string in the fi rst column

matches this value (-rw-r--r--).

7. As user2, try to access the fi le by typing cat testfile. The fi le should appear on

the screen.

8. As user2, try to change the name of the fi le by typing mv testfile changedfile.

The system won’t produce any feedback, but if you type ls, you’ll see that the fi le’s

name has changed. Note that user2 doesn’t own the fi le but can rename it because

user2 can write to the directory in which the fi le resides.

9. As user2, try to change the mode of the fi le by typing chmod 0600 changedfile.

The system should respond with an Operation not permitted error because only

the fi le’s owner may change its permissions.

10. As user2, try to delete the fi le by typing rm changedfile. Depending on your con-

fi guration, the system may or may not ask for verifi cation, but it should permit the

deletion. This is true despite the fact that user2 doesn’t own the fi le because user2

can write to the directory in which the fi le resides.

11. As user1, repeat step 5 to re-create the test fi le.

12. As user1, give the fi le more restrictive permissions by typing chmod 0640. Typing

ls -l should reveal permissions of -rw-r-----, meaning that the fi le’s owner can

read and write the fi le, members of the fi le’s group can read it, and other users are

given no access.

13. As user2, repeat steps 7–10. The cat operation should fail with a Permission denied

error, but steps 8–10 should produce the same results as they did the fi rst time

around. (If the cat operation succeeded, then either user2 belongs to the fi le’s group

or the fi le’s mode is set incorrectly.)

http://technet24.ir/

210 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 210

E X E R C I S E 4 .1 (c ont inue d)

14. Log out of the user1 and user2 accounts.

15. As root, type rm -r /tmp/scratch to delete the scratch directory and its contents.

If you like, you can perform tests with more fi le permission modes and other fi le-manipu-

lation commands before step 14.

Setting the Default Mode and Group
When a user creates a fi le, that fi le has default ownership and permissions. The default
owner is, understandably, the user who created the fi le. The default group is the user’s
primary group.

The default permissions are confi gurable. These are defi ned by the user mask, which is
set by the umask command. This command takes as input an octal value that represents the
bits to be removed from 777 permissions for directories, or from 666 permissions for fi les,
when a new fi le or directory is created. Table 4.8 summarizes the effect of several possible
umask values.

TA B LE 4 . 8 Sample umask values and their effects

umask Created files Created directories

000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

002 664 (rw-rw-r--) 775 (rwxrwxr-x)

022 644 (rw-r--r--) 755 (rwxr-xr-x)

027 640 (rw-r-----) 750 (rwxr-x---)

077 600 (rw-------) 700 (rwx------)

277 400 (r--------) 500 (r-x------)

Note that the umask isn’t a simple subtraction from the values of 777 or 666; it’s a
bit-wise removal. Any bit that’s set in the umask is removed from the fi nal permission for
new fi les, but if a bit isn’t set (as in the execute bit in ordinary fi les), its specifi cation in the
umask doesn’t do any harm.

http://technet24.ir/

Controlling Access to Files 211

c04.indd 03/26/2015 Page 211

Another way to view and understand umask is not in octal code and bit-wise removal
but in symbolic representation. Ignoring umask for a moment, a fi le is created using the
default 666 (octal code), which corresponds to rw-rw-rw- (symbolic representation). In
Table 4.8, the umask value 022 (octal code) corresponds to ----w--w- (symbolic representa-
tion). Using this umask setting as an example, the write permission is subtracted from the
fi le’s group permission setting. Also, the write permission is subtracted from the fi le’s other
permission setting. Thus, when this umask value is applied, the created fi le permission ends
up being 644 (octal code) or rw-r--r-- (symbolic representation). The group and other
write permissions were subtracted by the umask setting.

Ordinary users can enter the umask command to change the permissions on new fi les
they create. The superuser can also modify the default setting for all users by modifying
a system confi guration fi le. Typically, /etc/profile contains one or more umask com-
mands. Setting the umask in /etc/profile may or may not have an effect because it can
be overridden at other points, such as a user’s own confi guration fi les. Nonetheless, setting
the umask in /etc/profile or other system fi les can be a useful procedure if you want to
change the default system policy. Most Linux distributions use a default umask of 002
or 022.

To fi nd out the current umask setting, type umask alone without any parameters. When
umask is displayed, the number is shown in four digits. The fi rst digit represents the octal
code for SUID, SGID, and the sticky bit. A umask setting example follows:

$ umask

0022

$

To change umask, use the four-digit octal code. Remember to verify that these are the
permissions you want removed from the default fi le and directory settings. The umask
command is entered followed by the desired code on the same line:

$ umask 0002

$

$ umask

0002

$

Typing umask -S produces the umask expressed symbolically rather than in octal form.
However, the special permissions are not included in the display because the octal code is
currently set to zero (0):

$ umask -S

u=rwx,g=rwx,o=rx

$

http://technet24.ir/

212 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 212

You may also specify a umask in this way when you want to change it. However, in this
case, you specify the bits that you do want set. For instance, for changing umask, typing
umask u=rwx,g=rx,o=rx is equivalent to typing umask 022. However, if a permission
bit is not set in the default fi le or directory permissions, the specifi ed permission will not be
set. For example, the preceding umask confi guration will not set group and other execute
privileges for a fi le.

When umask is changed, the effect is immediate. Any newly created fi les or directories
will show the modifi cation:

$ umask

0022

$

$ touch newfile.dat

$

$ ls -l newfile.dat

-rw-r--r--. 1 Christine Users 0 Sep 26 08:24 newfile.dat

$

$ umask 0002

$

$ umask

0002

$

$ touch secondfile.dat

$

$ ls -l *file.dat

-rw-r--r--. 1 Christine Users 0 Sep 26 08:24 newfile.dat

-rw-rw-r--. 1 Christine Users 0 Sep 26 08:24 secondfile.dat

$

In addition to setting the default mask with umask, users can change their default group
with newgrp, as in newgrp skyhook to create new fi les with the group set to the skyhook
group. To use this command, the user must be a member of the specifi ed group. The newgrp
command also accepts the -l parameter, as in newgrp -l skyhook, which reinitializes
the environment as if the user had just logged in.

Changing File Attributes
Some fi lesystems support additional attributes (other than those described in the preceding
sections). In particular, some Linux-native fi lesystems support several attributes that you
can adjust with the chattr command:

No Access Time Updates If you set the A attribute, Linux won’t update the access time
stamp when you access a fi le. This can reduce disk input/output, which is particularly help-
ful for saving battery life on laptops.

http://technet24.ir/

Managing Disk Quotas 213

c04.indd 03/26/2015 Page 213

Append Only The a attribute sets append mode, which disables write access to the fi le
except for appending data. This can be a security feature to prevent accidental or malicious
changes to fi les that record data, such as log fi les.

Compressed The c attribute causes the kernel to compress data written to the fi le auto-
matically and uncompress it when it’s read back.

Immutable The i fl ag makes a fi le immutable, which goes a step beyond simply disabling
write access to the fi le. The fi le can’t be deleted, links to it can’t be created, and the fi le
can’t be renamed.

Data Journaling The j fl ag tells the kernel to journal all data written to the fi le. This
improves recoverability of data written to the fi le after a system crash but can slow perfor-
mance. This fl ag has no effect on ext2 fi lesystems.

Secure Deletion Ordinarily, when you delete a fi le, its directory entry is removed and its
inode is marked as being available for recycling. The data blocks that make up the bulk of
the fi le aren’t erased. Setting the s fl ag changes this behavior; when the fi le is deleted, the
kernel zeros its data blocks, which may be desirable for fi les that contain sensitive data.

No Tail-Merging Tail-merging is a process in which small data pieces at a fi le’s end that
don’t fi ll a complete block are merged with similar pieces of data from other fi les. The
result is reduced disk space consumption, particularly when you store many small fi les
rather than a few big ones. Setting the t fl ag disables this behavior, which is desirable if
certain non-kernel drivers will read the fi lesystem, such as those that are part of the Grand
Unifi ed Boot Loader (GRUB).

This list of attributes is incomplete, but it includes the most useful options. You can con-
sult the chattr command’s man page to read about more fl ags.

You set the options that you want using the minus (-), plus (+), or equal (=) symbol to
remove an option from an existing set, add an option to an existing set, or set a precise set
of options (overwriting any that already exist), respectively. For instance, to add the immu-
table fl ag to the important.txt fi le, you enter the following command:

chattr +i important.txt

The result is that you’ll be unable to delete the fi le, even as root. To delete the fi le, you
must fi rst remove the immutable fl ag:

chattr -i important.txt

Managing Disk Quotas

Just one user of a multiuser system can cause serious problems by consuming too much
disk space. If a single user creates huge fi les (say, multimedia recordings), those fi les can use
enough disk space to prevent other users from creating their own fi les. To help manage this
situation, Linux supports disk quotas; that is, limits enforced by the OS on how many fi les

http://technet24.ir/

214 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 214

or how much disk space a single user may consume. The Linux quota system supports
quotas both for individual users and for Linux groups.

Enabling Quota Support
Quotas require support in both the kernel for the fi lesystem being used and various user-
space utilities. The ext2fs, ext3fs, ext4fs, ReiserFS, JFS, and XFS fi lesystems support quo-
tas, but this support is missing for some fi lesystems in early 2.6.x kernels. Try using the
latest kernel if you have problems with your preferred fi lesystem. You must explicitly enable
support via the Quota Support kernel option in the fi lesystem area when recompiling your
kernel. Most distributions ship with this support enabled, so recompiling your kernel may
not be necessary, but you should be aware of this option if you recompile your kernel.

Two general quota support systems are available for Linux. The fi rst was used through
the 2.4.x kernels and is referred to as the quota v1 support system. The second was added
with the 2.6.x kernel series and is referred to as the quota v2 support system. This descrip-
tion applies to the latter system, but the former works in a similar way.

Outside of the kernel, you need support tools to use quotas. For the quota v2 system,
this package is usually called quota and it installs a number of utilities, confi guration fi les,
system startup scripts, and so on.

You must modify your /etc/fstab entries for any partitions on which you want to use
quota support. In particular, you must add the usrquota fi lesystem mount option to employ
user quotas and the grpquota option to use group quotas. Entries that are so confi gured
resemble the following:

/dev/sdc5 /home ext4 usrquota,grpquota 1 1

This line activates both user and group quota support for the /dev/sdc5 partition,
which is mounted at /home. Of course, you can add other options if you like.

Depending on your distribution, you may need to confi gure the quota package’s system
startup scripts to run when the system boots. Chapter 5 describes startup script manage-
ment in detail. Typically, you’ll type a command such as chkconfig quota on, but you
should check on the SysV scripts installed by your distribution’s quota package. Some
distributions require the use of commands other than chkconfig to do this task, as
described in Chapter 5. Whatever its details, this startup script runs the quotaon command,
which activates quota support.

The superuser can turn quotas on at any time by using the quotaon com-
mand. Likewise, the superuser can turn quotas off at any time by using the
quotaoff command. See the various options for these commands in their
man pages.

After making the necessary confi guration fi le changes, you must activate the confi gura-
tions. The simplest way to do this is to reboot the computer. However, you should be able
to get by with less disruptive measures, such as running the startup script for the quota
tools and remounting the fi lesystems on which you intend to use quotas.

http://technet24.ir/

Managing Disk Quotas 215

c04.indd 03/26/2015 Page 215

Once the system is booted and the fi lesystems needing quotas are mounted, then the
quotacheck command should be executed. The quotacheck command surveys the fi lesys-
tem needing quotas and builds current disk usage data records.

There are two fi les the quotacheck command builds that are needed to enable quotas:
aquota.user and aquota.group. To create these fi les (c) and check both user (u) and group
(g) quotas, the quotacheck options -cug are used.

The quotacheck command can also verify and update quota information
on quota-enabled partitions. This command is normally run as part of the
quota package’s startup script, but you may want to run it periodically
as a cron job. (Chapter 7 describes cron jobs.) Although theoretically not
necessary if everything works correctly, quotacheck ensures that quota
accounting doesn’t become inaccurate.

For example, if quotas were only set for users in the /home directory, the following com-
mand would be needed. This would perform the necessary checks and create the needed
quota fi le in the /home directory:

quotacheck -cu /home

At this point, quota support should be fully active on your computer. However, the
quotas themselves are not yet set.

Setting Quotas for Users
You can set the quotas by using the edquota command. This command uses a text editor,
such as the vi editor. However, the editor of your choice is selected by setting or changing
the EDITOR environment variable.

The editor opens a temporary confi guration fi le, /etc/quotatab, which controls the
specifi ed user’s quotas. When you exit the utility, edquota uses the temporary confi guration
fi le to write the quota information to low-level disk data structures. These structures con-
trol the kernel’s quota mechanisms.

For instance, you might type edquota sally to edit sally’s quotas. The contents of
the editor show the current quota information:

Disk quotas for user sally (uid 21810):

Filesystem blocks soft hard inodes soft hard

/dev/sdc4 97104 1048576 1048576 1242 0 0

The temporary confi guration fi le provides information about both the number of disk
blocks in use and the number of inodes in use. Each fi le or symbolic link consumes a single
inode, so the inode limits are effectively limits on the number of fi les a user may own. Disk
blocks vary in size depending on the fi lesystem and fi lesystem creation options.

Changing the use information located under the blocks and inodes columns has
no effect. These columns report only how many blocks or inodes the user is actually
consuming.

http://technet24.ir/

216 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 216

You can alter the soft and hard limits for both blocks and inodes. The hard limit is the
maximum number of blocks or inodes that the user may consume. The kernel won’t permit
a user to surpass hard limits.

Soft limits are somewhat less stringent. Users may temporarily exceed soft limit values,
but when they do so, the system issues warnings. Soft limits also interact with a grace
period. If the soft quota limit is exceeded for longer than the grace period, the kernel begins
treating it like a hard limit and refuses to allow the user to create more fi les.

You can set the soft limit grace period by using edquota with its -t option, as in
edquota -t. Grace periods are set on a per-fi lesystem basis rather than a per-user basis.
Setting a limit to 0 (as in the inode limits in the preceding example) eliminates the use of
quotas for that value. This allows users to consume as much disk space or create as many
fi les as they like, up to the available space on the fi lesystem.

When using edquota, you can adjust quotas independently for every fi lesystem for which
quotas are enabled and separately for every user or group. To edit quotas for a group, use
the -g option, as in edquota -g users to adjust quotas for the users group.

A useful auxiliary quota command is repquota, which summarizes the quota informa-
tion about the fi lesystem you specify or on all fi lesystems if you pass it the -a option. This
tool can be very helpful in keeping track of disk usage.

The quota command has a similar effect. The quota tool takes a number of options
to have them modify their outputs. For instance, -g displays group quotas, -l omits NFS
mounts, and -q limits output to fi lesystems on which usage is over the limit. Consult the
quota command’s man page for still more obscure options.

Locating Files

Maintaining your fi lesystems in perfect health, setting permissions, and so on is pointless if
you can’t fi nd your fi les. For this reason, Linux provides several tools to help you locate the
fi les that you need to use.

The fi rst of these tools is actually a standard for where fi les are located; with the right
knowledge, you may be able to fi nd fi les without the use of any specialized programs. The
second class of tools includes specialized programs, which search a directory tree or a data-
base for fi les that meet whatever criteria you specify.

Getting to Know the FHS
Linux’s placement of fi les is derived from more than 40 years of Unix history. Given that
fact, the structure is remarkably simple and coherent, but it’s easy for a new administrator to
become confused. Some directories seem, on the surface, to fulfi ll similar or even identical
roles, but in fact there are subtle but important differences. The following sections describe
the Linux directory layout standards and presents an overview of what goes where.

http://technet24.ir/

Locating Files 217

c04.indd 03/26/2015 Page 217

Comparing FSSTND and FHS
Although Linux draws heavily on Unix, Unix’s long history has led to numerous splits and
variants, starting with the Berkeley Standard Distribution (BSD). BSD was initially a set of
patches and extensions to AT&T’s original Unix code. As a result of these schisms within
the Unix community, early Linux distributions didn’t always follow identical patterns. The
result was a great deal of confusion. This problem was quite severe early in Linux’s history,
and it threatened to split the Linux community into factions. Various measures were taken
to combat this problem, one of which was the development of the Filesystem Standard
(FSSTND), which was fi rst released in early 1994. The FSSTND standardized several
specifi c features, such as the following:

 ■ Standardized the programs that reside in /bin and /usr/bin. Differences on this score
caused problems when scripts referred to files in one location or the other.

 ■ Specified that executable files shouldn’t reside in /etc, as had previously been
common.

 ■ Removed changeable files from the /usr directory tree, enabling it to be mounted
read-only (a useful security measure).

There have been three major versions of FSSTND: 1.0, 1.1, and 1.2. FSSTND began
to rein in some of the chaos in the Linux world in 1994. By 1995, however, FSSTND’s
limitations were becoming apparent; thus a new standard was developed: the Filesystem
Hierarchy Standard (FHS). This new standard is based on FSSTND but extends it substan-
tially. The FHS is more than a Linux standard; it may be used to defi ne the layout of fi les
on other Unix-like OSs.

The FHS comes in numbered versions, such as v2.3. Though it’s not
updated often, it is wise to check for FHS modifications. The URL for FHS’s
official web page is www.pathname.com/fhs/. You can find FHS modifica-
tion workgroups at the Linux Foundation URL, www.linuxfoundation
.org/.

One important distinction made by the FHS is that between shareable fi les and unshare-
able fi les. Shareable fi les may be reasonably shared between computers, such as user data
fi les and program binary fi les. (Of course, you don’t need to share such fi les, but you may
do so.) If fi les are shared, they’re normally shared through an NFS server. Unshareable fi les
contain system-specifi c information, such as confi guration fi les. For instance, you’re not
likely to want to share a server’s confi guration fi le between computers.

A second important distinction used in the FHS is that between static fi les and variable
fi les. The former don’t normally change except through direct intervention by the system
administrator. Most program executables are examples of static fi les. Users, automated
scripts, servers, or the like may change variable fi les. For instance, users’ home directories
and mail queues are composed of variable fi les. The FHS tries to isolate each directory into

http://technet24.ir/

218 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 218

one cell of this 2 × 2 (shareable/unshareable × static/variable) matrix. Figure 4.2 illustrates
these relationships. Some directories are mixed, but in these cases, the FHS tries to specify
the status of particular subdirectories. For instance, /var is variable and it contains some
shareable and some unshareable subdirectories, as shown in Figure 4.2.

F I GU R E 4 . 2 The FHS attempts to fit each important directory in one cell of a 2 × 2
matrix.

Shareable Unshareable

/usr
/opt

/etc
/boot

/home
/var/mail

/var/run
/var/lock

Static

Variable

Studying Important Directories and Their Contents
The FHS defi nes some directories very precisely, but details for others are left unresolved.
For instance, users’ fi les normally go in the /home directory, but you may have reason to
call this directory something else or to use two or more separate directories for users’ fi les.
Overall, the most common directories defi ned by the FHS or used by convention are the
following:

/ Every Linux fi lesystem traces its roots to a single directory, known as / (pronounced,
and often referred to, as the root fi lesystem or root directory). All other directories branch
off this one. Linux doesn’t use drive letters. Instead, every fi lesystem is mounted at a mount
point within another partition (/ or something else). Certain critical subdirectories, such as
/etc and /sbin, must reside on the root partition, but others can optionally be on separate
partitions. Don’t confuse the root directory with the /root directory, described shortly.

/boot The /boot directory contains static and unshareable fi les related to the computer’s
initial booting. Higher-level startup and confi guration fi les reside in another directory,
/etc. In this directory, you will fi nd GRUB or LILO confi guration fi les along with the
other fi les necessary for the initial boot. Typically, it is recommended that you store /boot
on its own partition.

/etc The /etc directory contains unshareable and static system confi guration fi les.
These higher-level startup and confi guration fi les control the various programs and ser-
vices offered on a system. For example, if the Linux distribution uses systemd system ini-
tialization, some systemd confi guration fi les are stored in /etc/systemd directories. If the
Linux distribution uses SysV system initialization, its confi guration fi les are stored in /etc
directories.

http://technet24.ir/

Locating Files 219

c04.indd 03/26/2015 Page 219

/bin This directory contains certain critical executable fi les, such as ls, cp, and mount.
These commands are accessible to all users and constitute the most important commands
that ordinary users might issue. You won’t normally fi nd commands for big application
programs in /bin. The /bin directory contains static fi les. The directory is almost never
shared—any potential clients must have their own local /bin directories.

/sbin This directory is similar to /bin, but it contains programs that are normally run
only by the system administrator—tools like fdisk and e2fsck. It’s static and theoretically
shareable, but in practice it makes no sense to share it.

/lib This directory is similar to /bin and /sbin, but it contains program libraries.
Program libraries consist of code that’s shared across many programs and stored in sepa-
rate fi les to save disk space and RAM. The /lib/modules subdirectory contains kernel
modules—drivers that can be loaded and unloaded as required. Like /bin and /sbin, /lib
is static and theoretically shareable, although it’s not shared in practice.

/usr This directory hosts the bulk of a Linux computer’s programs. Its contents are
shareable and static, so it can be mounted read-only and may be shared with other Linux
systems. For these reasons, many administrators split /usr off into a separate partition,
although doing so isn’t required. Some subdirectories of /usr are similar to their name-
sakes in the root directory (such as /usr/bin and /usr/lib), but they contain programs
and libraries that aren’t absolutely critical to the computer’s basic functioning.

/usr/local This directory contains subdirectories that mirror the organization of /usr,
such as /usr/local/bin and /usr/local/lib. The /usr/local directory hosts fi les that
a system administrator installs locally—for instance, packages that are compiled on the
target computer. The idea is to have an area that’s safe from automatic software upgrades
when the OS as a whole is upgraded. Immediately after Linux is installed, /usr/local
should be empty except for some stub subdirectories. Some system administrators split this
off into its own partition to protect it from OS reinstallation procedures that might erase
the parent partition.

/usr/share/man This directory stores the manual pages used by the man command.
Alternatively, any local manual pages are stored in the /usr/local/share/man directory.
The various subdirectories store specifi c manual page sections. For example, /usr/share/
man/man1 and /usr/local/share/man/man1 directories contain the user program (section 1)
manual pages.

/usr/X11R6 This directory houses fi les related to the X Window System (X for short),
Linux’s GUI environment. Like /usr/local, this directory contains subdirectories similar
to those in /usr, such as /usr/X11R6/bin and /usr/X11R6/lib. Although commonly used
several years ago, most modern distributions have moved the contents of this directory to
others, such as /usr/bin.

/opt This directory is similar to /usr/local in many ways, but it’s intended for ready-
made packages that don’t ship with the OS, such as commercial word processors or games.

http://technet24.ir/

220 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 220

Typically, these programs reside in subdirectories in /opt named after themselves, such as
/opt/applix. The /opt directory is static and shareable. Some system administrators break
it into a separate partition or make it a symbolic link to a subdirectory of /usr/local and
make that a separate partition.

/home This directory contains users’ data, and it’s shareable and variable. Although the
/home directory is considered optional in FHS, in practice it’s a matter of the name being
optional. For instance, if you add a new disk to support additional users, you might leave
the existing /home directory intact and create a new /home2 directory to house the new
users. The /home directory often resides on its own partition.

/root This is the home directory for the root user. Because the root account is so critical
and system specifi c, this variable directory isn’t really shareable.

/var This directory contains transient fi les of various types—system log fi les, print spool
fi les, mail and news fi les, and so on. Therefore, the directory’s contents are variable. Some
subdirectories are shareable, but others are not. Many system administrators put /var in its
own partition, particularly on systems that see a lot of activity in /var, like major Usenet
news or mail servers.

/tmp Many programs need to create temporary (hence variable) fi les, and the usual place
to do so is in /tmp. Most distributions include routines that clean out this directory peri-
odically and sometimes wipe the directory clean at bootup. The /tmp directory is seldom
shared. Some administrators create a separate /tmp partition to prevent runaway processes
from causing problems on the root fi lesystem when processes create too-large temporary
fi les. A similar directory exists as part of the /var directory tree (/var/tmp).

/mnt Linux mounts removable-media devices within its normal directory structure, and
/mnt is provided for this purpose. Some (mostly older) distributions create subdirectories
within /mnt, such as /mnt/cdrom, to function as mount points. Others use /mnt directly
or even use separate mount points off /, such as /cdrom. The FHS mentions only /mnt; it
doesn’t specify how it’s to be used. Specifi c media mounted in /mnt may be either static or
variable. As a general rule, these directories are shareable.

/media This directory is an optional part of the FHS. It’s like /mnt, but it should contain
subdirectories for specifi c media types, such as /media/dvd. Many modern distributions use
/media subdirectories as the default mount points for common removable disk types, often
creating subdirectories on the fl y.

/dev Because Linux treats most hardware devices as if they were fi les, the OS must have
a location in its fi lesystem where these device fi les reside. The /dev directory is that place.
It contains a large number of fi les that function as hardware interfaces. If a user has suf-
fi cient privileges, that user may access the device hardware by reading from and writing to
the associated device fi le. The Linux kernel supports a device fi lesystem that enables /dev
to be an automatically created virtual fi lesystem—the kernel and support tools create /dev

http://technet24.ir/

Locating Files 221

c04.indd 03/26/2015 Page 221

entries on the fl y to accommodate the needs of specifi c drivers. Most distributions now use
this facility.

/proc This is an unusual directory because it doesn’t correspond to a regular directory
or partition. Instead, it’s a virtual fi lesystem that’s created dynamically by Linux to pro-
vide access to certain types of hardware information that aren’t accessible via /dev. For
instance, if you type cat /proc/cpuinfo, the system responds by displaying information
about your CPU—its model name, speed, and so on.

Knowledge of these directories and their purposes is invaluable in properly administer-
ing a Linux system. For instance, understanding the purpose of directories like /bin,
/sbin, /usr/bin, /usr/local/bin, and others will help you when it comes time to install a
new program. Placing a program in the wrong location can cause problems at a later date.
For example, if you put a binary fi le in /bin when it should go in /usr/local/bin, that
program may later be overwritten or deleted during a system upgrade when leaving it intact
would have been more appropriate.

It is also useful to know what directories should be on their own partition. The recom-
mended list of directories is as follows:

/boot

/home

/opt

/tmp

/usr

/usr/local

/var

In addition, it is vital to know what directories should not be on their own partitions.
These directories could cause a system to hang, or worse, if kept on a partition separate
from the root fi lesystem:

/bin

/dev

/etc

/lib

/sbin

Some Linux distributions deviate from the FHS. These deviations may be
major or minor. For example, a distribution may place all of the binaries in
/usr/bin and /usr/sbin and set the /bin directory to be a symbolic link to
/usr/bin and /sbin to be a symbolic link to /usr/sbin.

http://technet24.ir/

222 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 222

Employing Tools to Locate Files
You use fi le-location commands to locate a fi le on your computer. Most frequently, these
commands help you locate a fi le by name, but sometimes you can use other criteria, such
as modifi cation date. These commands can search a directory tree (including root, which
scans the entire system) for a fi le matching the specifi ed criteria in any subdirectory.

Using the find Command
The find utility implements a brute-force approach to fi nding fi les. This program fi nds fi les
by searching through the specifi ed directory tree, checking fi lenames, fi le creation dates,
and so on to locate the fi les that match the specifi ed criteria. Because of this method of
operation, find tends to be slow; but it’s very fl exible and is very likely to succeed, assum-
ing the fi le for which you’re searching exists. The find syntax is as follows:

find [path...] [expression...]

You can specify one or more paths in which find should operate. The program will
restrict its operations to these paths. The expression option is a way of specifying what
you want to fi nd. The man page for find includes a great deal of information about various
expressions. Some expressions that enable you to search by assorted common criteria are
listed here:

Search by Filename You can search for a fi lename using the -name pattern expression.
Doing so fi nds fi les that match the pattern specifi ed by pattern. If pattern is an ordinary
fi lename, find matches that name exactly. You can use wildcards if you enclose pattern in
quotes, and find will locate fi les that match the wildcard fi lename.

Search by Permission Mode If you need to fi nd fi les that have certain permissions, you
can do so by using the -perm mode expression. The mode option may be expressed either
symbolically or in octal form. If you precede mode with a +, find locates fi les in which any
of the specifi ed permission bits are set. If you precede mode with a -, find locates fi les in
which all of the specifi ed permission bits are set.

Search by File Size You can search for a fi le of a given size with the -size n expression.
Normally, n is specifi ed in 512-byte blocks, but you can modify this by trailing the value
with a letter code, such as c for bytes or k for kilobytes.

Search by Group The -gid GID expression searches for fi les whose group ID (GID) is set
to GID. The -group name option locates fi les whose group name is name. The former can be
handy if the GID has been orphaned and has no name, but the latter is generally easier
to use.

Search by User ID The -uid UID expression searches for fi les owned by the user whose
user ID (UID) is UID. The -user name option searches for fi les owned by name. Searching
by UID is useful if the UID has been orphaned and has no name, but searching by user-
name is generally easier.

http://technet24.ir/

Locating Files 223

c04.indd 03/26/2015 Page 223

Restrict Search Depth If you want to search a directory and, perhaps, some limited num-
ber of subdirectories, you can use the -maxdepth levels expression to limit the search.

There are many variants and additional options; find is a very powerful command. As
an example of its use, consider the task of fi nding all C source code fi les, which normally
have names that end in the .c fi lename extension. To search all of the system’s directories
(/), you might issue the following command:

find / -name *.c

/usr/share/gettext/intl/finddomain.c

/usr/share/gettext/intl/log.c

/usr/share/gettext/intl/tsearch.c

/usr/share/gettext/intl/langprefs.c

[…]

/usr/share/doc/libpng-1.2.49/example.c

/usr/share/doc/obex-data-server-0.4.3/ods-dbus-test.c

/usr/share/doc/rtkit-0.5/rtkit.c

#

The result will be a listing of all the fi les that match the search criteria. So many fi les
were found in this search that the listing had to be snipped!

Ordinary users may use find, but it doesn’t overcome Linux’s file permis-
sion features. If you lack permission to list a directory’s contents, find will
return that directory name and the error message Permission denied.

Using the locate Command
The locate utility works much like find if you want to fi nd a fi le by name, but it differs in
two important ways:

 ■ The locate tool is far less sophisticated in its search options. You normally use it to
search only for filenames. The program returns all files that contain the specified
string. For instance, when searching for rpm, locate will return other programs, like
gnorpm and rpm2cpio.

 ■ The locate program works from a database that it maintains. Most distributions
include a cron job that calls utilities to update the locate database. This job runs
periodically, such as once a night or once a week. For this reason, locate may not find
recent files, or it may return the names of files that no longer exist. However, you can
use the updatedb command, which is configured via the /etc/updatedb.conf file, to
do this task at any time. Keep in mind, if the database-update utilities omit certain
directories, files in those directories won’t be returned by a locate query.

http://technet24.ir/

224 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 224

Because locate works from a database, it’s typically much faster than find, particu-
larly on system-wide searches. It’s likely to return many false alarms, though, especially if
you want to fi nd a fi le with a short name. To use it, type locate search-string, where
search-string is the string that appears in the fi lename.

Some Linux distributions use slocate rather than locate. The slocate
program includes security features to prevent users from seeing the
names of files in directories they shouldn’t be able to access. On most
systems that use slocate, the locate command is a link to slocate, so
locate implements slocate’s security features. A few distributions don’t
install either locate or slocate by default.

Using the whereis Command
The whereis program searches for fi les in a restricted set of locations, such as standard
binary fi le directories, library directories, and man page directories. This tool does not
search user directories or many other locations that are easily searched by find or locate.
The whereis utility is a quick way to fi nd program executables and related fi les like docu-
mentation or confi guration fi les.

The whereis program returns fi lenames that begin with whatever you type as a search
criterion, even if those fi lenames contain extensions. This feature often turns up confi gura-
tion fi les in /etc, man pages, and similar fi les. To use the program, type the name of the
program you want to locate. For instance, the following command locates ls fi les:

$ whereis ls

ls: /bin/ls /usr/share/man/man1p/ls.1p.gz /usr/share/man/man1/ls.1.gz

$

The result shows both the ls executable (/bin/ls) and ls’s man pages. The whereis
program accepts several parameters that modify its behavior in various ways. These are
detailed in the program’s man page.

Using the which Command
Considered a search command, which is very weak; it merely searches your path for the
command that you type and lists the complete path to the fi rst match it fi nds. It’s useful
if you need to know the complete path for some reason. For instance, you might want to
know where the xterm program is located:

$ which xterm

/usr/bin/xterm

You can search for all matches by adding the -a option. The which command is typically
used in scripts to ensure the correct complete path name of a called program.

http://technet24.ir/

Locating Files 225

c04.indd 03/26/2015 Page 225

Using the type Command
This command isn’t really a search command; instead, it tells you how a command you
enter will be interpreted—as a built-in command, an external command, an alias, and so
on. For instance, you can use it to identify several common commands:

$ type type

type is a shell builtin

$

$ type cat

cat is /bin/cat

$

$ type ls

ls is aliased to 'ls --color'

This example identifi es type itself as a built-in shell command, cat as a separate
program stored in /bin, and ls as an alias for ls --color. You can add several options to
modify the command’s behavior. For instance, -t shortens the output to builtin, file,
alias, or other short identifi ers. The -a option provides a complete list; for instance, it
provides both the alias expansion and the location of the ultimate executable when pro-
vided with an alias name.

In Exercise 4.2, you’ll use several methods of locating fi les.

E X E R C I S E 4 . 2

Locating Files

This exercise demonstrates several methods of locating fi les. You’ll locate the startx

program. (If your system doesn’t have X installed, you can try searching for another

program or fi le, such as pwd or fstab. You may need to change the path passed to find in

step 5.) To fi nd a fi le, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system if you used a GUI

login method.

3. Type locate startx. The system should display several fi lenames that include the

string startx. This search should take very little time. (A few distributions lack the

locate command, so this step won’t work on some systems.)

4. Type whereis startx. The system responds with the names of a few fi les that

contain the string startx. Note that this list may be slightly different from the list

returned by step 3 but that the search proceeds quickly.

http://technet24.ir/

226 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 226

E X E R C I S E 4 . 2 (c ont inue d)

5. Type find /usr -name startx. This search takes longer and, when run as an

ordinary user, most likely returns several Permission denied error messages. It

should also return a single line listing the /usr/bin/startx or /usr/X11R6/bin/

startx program fi le. Note that this command searches only /usr. If you searched

/usr/X11R6, the command would take less time; if you searched /, the command

would take more time.

6. Type which startx. This search completes almost instantaneously, returning the

complete fi lename of the fi rst instance of startx the system fi nds on its path.

7. Type type startx. Again, the search completes very quickly. It should identify

startx as an external command stored at /usr/bin/startx, /usr/X11R6/bin/

startx, or possibly some other location.

Summary

File management is basic to being able to administer or use a Linux system. Various com-
mands are useful to both users and administrators for copying, moving, renaming, and
otherwise manipulating fi les and directories. You may also want to set up access controls,
both to limit the amount of disk space users may consume and to limit who may access
specifi c fi les and directories. Finally, Linux provides standards and tools to help you locate
fi les using various criteria.

Exam Essentials

Describe commands used to copy, move, and rename files in Linux. The cp command
copies fi les, as in cp first second to create a copy of first called second. The mv com-
mand does double duty as a fi le-moving and fi le-renaming command. It works much like
cp, but mv moves or renames the fi le rather than copying it.

Summarize Linux’s directory-manipulation commands. The mkdir command creates a
new directory, and rmdir deletes a directory. You can also use many fi le-manipulation com-
mands, such as mv and rm (with its -r option), on directories.

Explain the difference between hard and symbolic links. Hard links are duplicate direc-
tory entries that both point to the same inode and hence to the same fi le. Symbolic links
are special fi les that point to another fi le or directory by name. Hard links must reside on a
single fi lesystem, but symbolic links may point across fi lesystems.

http://technet24.ir/

Exam Essentials 227

c04.indd 03/26/2015 Page 227

Summarize the common Linux archiving programs. The tar and cpio programs are both
fi le-based archiving tools that create archives of fi les using ordinary fi le access commands.
The dd program is a fi le-copy program; however, when it’s fed a partition device fi le, it cop-
ies the entire partition on a very low-level basis, which is useful for creating low-level image
backups of Linux or non-Linux fi lesystems.

Explain the differences between compression utilities. The gzip, bzip2, and xz utilities
are compression tools, which reduce a fi le’s size via compression algorithms. They are often
used in conjunction with the tar command. The gzip utility is the oldest compression
tool and provides the least compression. The bzip2 utility provides slightly improved fi le
compression. The xz utility is the newest tool, provides the best compression, and is very
popular.

Describe Linux’s file ownership system. Every fi le has an owner and a group, identifi ed by
number. File permissions can be assigned independently to the fi le’s owner, the fi le’s group,
and to all other users.

Explain Linux’s file permissions system. Linux provides independent read, write, and
execute permissions for the fi le’s owner, the fi le’s group, and all other users, resulting in
nine main permission bits. Special permission bits are also available, enabling you to launch
program fi les with modifi ed account features or alter the rules Linux uses to control who
may delete fi les.

Summarize the commands Linux uses to modify permissions. The chmod command is
Linux’s main tool for setting permissions. You can specify permissions using either an
octal (base 8) mode or a symbolic notation. The chown and chgrp commands enable you to
change the fi le’s owner and group, respectively. (The chown command can do both but can
be run only by root.)

Describe the prerequisites of using Linux’s disk quota system. Linux’s disk quota system
requires support in the Linux kernel for the fi lesystem on which quotas are to be used. You
must also run the quotaon command, typically from a startup script, to enable this feature.

Explain how quotas are set. You can edit quotas for an individual user via the edquota
command, as in edquota larry to edit larry’s quotas. This command opens an editor
on a text fi le that describes the user’s quotas. You can change this description, save the fi le,
and exit from the editor to change the user’s quotas.

Summarize how Linux’s standard directories are structured. Linux’s directory tree begins
with the root (/) directory, which holds mostly other directories. Specifi c directories may
hold specifi c types of information, such as user fi les in /home and confi guration fi les in
/etc. Some of these directories and their subdirectories may be separate partitions, which
helps isolate data in the event of fi lesystem corruption.

Describe the major file-location commands in Linux. The find command locates fi les by
brute force, searching through the directory tree for fi les that match the criteria you specify.
The locate (or slocate) command searches a database of fi les in publicly accessible direc-
tories. The whereis command searches a handful of important directories, and which
searches the path. The type command identifi es another command as a built-in shell com-
mand, a shell alias, or an external command (including the path to that command).

http://technet24.ir/

228 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 228

Review Questions

1. Why might you type touch filename?

A. To move filename to the current directory

B. To ensure that filename’s time stamp holds the current time

C. To convert filename from DOS-style to Unix-style end-of-line characters

D. To test the validity of filename’s disk structures

E. To write cached data relating to filename to the disk

2. What parameter can you pass to ln to create a soft link? (Select two.)

A. -s

B. --soft

C. --slink

D. --symbolic

E. --sl

3. You want to discover the sizes of several dot files in a directory. Which of the following
commands might you use to do this?

A. ls -la

B. ls -p

C. ls -R

D. ls –d

E. ls -F

4. You want to move a file from your hard disk to a USB flash drive. Which of the following
is true?

A. You’ll have to use the --preserve option to mv to keep ownership and permissions set
correctly.

B. The mv command will adjust filesystem pointers without physically rewriting data if
the flash drive uses the same filesystem type as the hard disk partition.

C. You must use the same filesystem type on both media to preserve ownership and per-
missions.

D. The mv command will delete the file on the hard disk after copying it to the flash drive.

E. You must use the FAT filesystem on the USB flash drive; Linux-native filesystems won’t
work on removable disks.

5. You type mkdir one/two/three and receive an error message that reads, in part, No
such file or directory. What can you do to overcome this problem? (Select two.)

A. Add the --parents parameter to the mkdir command.

B. Issue three separate mkdir commands: mkdir one, then mkdir one/two, and then
mkdir one/two/three.

http://technet24.ir/

Review Questions 229

c04.indd 03/26/2015 Page 229

C. Type touch /bin/mkdir to be sure the mkdir program file exists.

D. Type rmdir one to clear away the interfering base of the desired new directory tree.

E. Type mktree one/two/three instead of mkdir one/two/three.

6. Which of the following commands are commonly used to create archive files? (Select two.)

A. restore

B. vi

C. tape

D. cpio

E. tar

7. You’ve received a tar archive called data79.tar from a colleague, but you want to check
the names of the files it contains before extracting them. Which of the following commands
would you use to do this?

A. tar uvf data79.tar

B. tar cvf data79.tar

C. tar xvf data79.tar

D. tar rvf data79.tar

E. tar tvf data79.tar

8. You want to create a link from your home directory on your hard disk to a directory on a
DVD drive. Which of the following link types might you use?

A. Only a symbolic link

B. Only a hard link

C. Either a symbolic or a hard link

D. Only a hard link, and then only if both directories use the same low-level filesystem

E. None of the above; such links aren’t possible under Linux

9. What command would you type (as root) to change the ownership of somefile.txt from
ralph to tony?

A. chown ralph:tony somefile.txt

B. chmod somefile.txt tony

C. chown somefile.txt tony

D. chmod tony:ralph somefile.txt

E. chown tony somefile.txt

10. Typing ls -ld wonderjaye reveals a symbolic file mode of drwxr-xr-x. Which of the
following are true? (Select two.)

A. wonderjaye is a symbolic link.

B. wonderjaye is an executable program.

http://technet24.ir/

230 Chapter 4 ■ Managing Files

c04.indd 03/26/2015 Page 230

C. wonderjaye is a directory.

D. wonderjaye has its SUID bit set.

E. wonderjaye may be read by all users of the system.

11. When should programs be configured SUID root?

A. At all times. This permission is required for executable programs.

B. Whenever a program should be able to access a device file.

C. Only when they require root privileges to do their job.

D. Never. This permission is a severe security risk

E. Whenever the program file is owned by the root user.

12. Which of the following commands would you type to enable world read access to the file
myfile.txt? (Assume that you’re the owner of myfile.txt.)

A. chmod 741 myfile.txt

B. chmod 0640 myfile.txt

C. chmod u+r myfile.txt

D. chmod a-r myfile.txt

E. chmod o+r myfile.txt

13. Which of the following umask values will result in files with rw-r----- permissions?

A. 640

B. 210

C. 022

D. 027

E. 138

14. You see the usrquota and grpquota options in the /etc/fstab entry for a filesystem.
What is the consequence of these entries?

A. Quota support will be available if it’s compiled into the kernel; it will be automatically
activated when you mount the filesystem.

B. User quotas will be available, but the grpquota option is invalid and will be ignored.

C. Quota support will be disabled on the filesystem in question.

D. Nothing. These options are malformed and so will have no effect.

E. Quota support will be available if it’s compiled into your kernel, but you must activate
it with the quotaon command.

15. Which of the following commands can be used to summarize the quota information about
all filesystems?

A. repquota

B. repquota -a

C. quotacheck

D. quotacheck –a

E. edquota -a

http://technet24.ir/

Review Questions 231

c04.indd 03/26/2015 Page 231

16. You’ve installed a commercial spreadsheet program called WonderCalc on a workstation.
In which of the following directories are you most likely to find the program executable
file?

A. /usr/sbin

B. /etc/X11

C. /boot

D. /opt/wcalc/bin

E. /sbin/wcalc

17. Which of the following file-location commands is likely to take the most time to find a file
that may be located anywhere on the computer (assuming the operation succeeds)?

A. The find command.

B. The locate command.

C. The whereis command.

D. The type command.

E. They’re all equal in speed.

18. What can the type command do that whereis can’t?

A. Identify the command as being for x86 or x86-64 CPUs

B. Locate commands based on their intended purpose, not just by name

C. Identify a command as an alias, internal command, or external command

D. Assist in typing a command by finishing typing it for you

E. Identify a command as being a binary or a script

19. You want to track down all of the files in /home that are owned by karen. Which of the
following commands will do the job?

A. find /home -uid karen

B. find /home -user karen

C. locate /home -username karen

D. locate /home Karen

E. find /home -name Karen

20. What can you conclude from the following interaction?
$ which man

/usr/bin/man

A. The only file called man on the computer is in /usr/bin.

B. The /usr/bin/man program was installed by system package tools.

C. The /usr/bin/man program will be run by any user who types man.

D. The first instance of the man program, in path search order, is in /usr/bin.

E. The user man owns the /usr/bin/man program file.

http://technet24.ir/

http://technet24.ir/

c05.indd 03/26/2015 Page 233

Chapter

5
Booting Linux and
Editing Files

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 101.2: Boot the system.

 ✓ 101.3: Change runlevels and shutdown or reboot system.

 ✓ 102.2: Install a boot manager.

 ✓ 103.8: Perform basic file editing operations using vi.

http://technet24.ir/

c05.indd 03/26/2015 Page 234

So far, this book has dealt largely with a running Linux
system, but from time to time you’ll need to boot Linux.
Ordinarily, this process is a painless one: you press the power

button, wait a couple of minutes, and see a Linux login prompt. Sometimes, though, you’ll
have to intervene in this process in one way or another.

The Linux boot process can be confi gured to boot Linux with particular options and
even to boot other operating systems, so knowing how to confi gure the boot process can
help you accomplish your boot-related goals. Once the system is booted, you should know
how to study log fi les related to the boot process. This can help you diagnose problems or
verify that the system is operating the way that it should.

Finally, this chapter looks at editing fi les with vi. While vi isn’t particularly boot related,
knowing how to edit fi les is vital to many administrative tasks, including editing the boot
loader confi guration fi les.

Installing Boot Loaders

The computer’s boot process begins with a program called a boot loader. This program
runs before any OS has loaded, although you normally install and confi gure it from within
Linux (or some other OS). Boot loaders work in particular ways that depend on both the
fi rmware you use and the OS you’re booting. Understanding your boot loader’s principles is
necessary in order to confi gure them properly, so before delving into the details of specifi c
boot loaders, we describe these boot loader principles.

In Linux, the most-used boot loader is the Grand Unifi ed Boot Loader (GRUB),
which is available in two versions: GRUB Legacy (with version numbers up to 0.97) and
GRUB 2 (with version numbers from 1.9x to 2.x, with 2.00 being the latest version as we
write). There is also an older Linux boot loader, the Linux Loader (LILO), which you may
run into in older Linux systems. An assortment of alternative boot loaders is also available,
though, and in some cases you may need to use one of them, so we provide a brief rundown
of these less common boot loaders.

This chapter describes boot loaders for x86 and x86-64 computers.
Other platforms have their own boot loaders. Some of these are similar
to certain x86/x86-64 boot loaders, but they aren’t quite identical. You
should consult platform-specific documentation if you need to reconfig-
ure a non-x86 boot loader.

http://technet24.ir/

Installing Boot Loaders 235

c05.indd 03/26/2015 Page 235

Boot Loader Principles
In one way or another, your computer’s fi rmware reads the boot loader into memory from
the hard disk and executes it. The boot loader, in turn, is responsible for loading the Linux
kernel into memory and starting it. Therefore, confi guring a hard disk (or at least your boot
hard disk) isn’t complete until the boot loader is confi gured. Although Linux distributions
provide semiautomated methods of confi guring a boot loader during system installation,
you may need to know more, particularly if you recompile your kernel or need to set up an
advanced confi guration—say, one to select between several OSs.

Although the exam objectives mention only the Basic Input/Output System (BIOS)
fi rmware, beginning in 2011, the Extensible Firmware Interface (EFI) and its Unifi ed EFI
(UEFI) variant have become increasingly important. Thus, we describe the principles upon
which both BIOS and EFI computers’ boot loaders are based.

BIOS Boot Loader Principles
The BIOS boot process can be a bit convoluted, in part because so many options are
available. Figure 5.1 depicts a typical confi guration, showing a couple of possible boot
paths. In both cases, the boot process begins with the BIOS. As described in Chapter 3,
“Confi guring Hardware,” you tell the BIOS which boot device to use—a hard disk, a
USB stick, a CD/DVD drive, or something else. Assuming that you pick a hard disk as the
primary boot device (or if higher-priority devices aren’t bootable), the BIOS loads code
from the Master Boot Record (MBR), which is the fi rst sector on the hard disk. This
code is the primary boot loader code. In theory, it could be just about anything, even a
 complete (if tiny) OS.

F I GU R E 5 .1 The x86 boot system provides several options for redirecting the boot
process, but ultimately an OS kernel is loaded.

BIOS MBR

B

Boot
sector

Kernel Non-boot partition

A

In practice, the primary boot loader does one of two things:

 ■ It examines the partition table and locates the partition that’s marked as bootable.
The primary boot loader then loads the boot sector from that partition and executes
it. This boot sector contains a secondary boot loader, which continues the process by
locating an OS kernel, loading it, and executing it. This option is depicted by the A
arrows in Figure 5.1.

 ■ It locates an OS kernel, loads it, and executes it directly. This approach bypasses the
secondary boot loader entirely, as depicted by the B arrow in Figure 5.1.

http://technet24.ir/

236 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 236

Traditionally, x86 systems running DOS or Windows follow path A. Windows systems
ship with very simple boot loaders that provide little in the way of options. Later versions
of Windows ship with a boot loader that can provide limited redirection in the second stage
of the A path.

Linux’s most popular BIOS boot loaders, LILO and GRUB, are both much more
fl exible. They support installation in either the MBR or the boot sector of a boot parti-
tion. Thus, you can either keep a Windows-style primary boot loader and direct the system
to boot a kernel from a boot sector installation (path A) or bypass this step and load the
kernel straight from the MBR (path B). The fi rst option has the advantage that another
OS is unlikely to wipe out LILO or GRUB, because it’s stored safely in a Linux partition.
Windows has a tendency to write its standard MBR boot loader when it’s installed, so if
you need to reinstall Windows on a dual-boot system, this action will wipe out an MBR-
based boot loader. If the boot loader is stored in a Linux partition’s boot sector, it will
remain intact, although Windows might confi gure the system to bypass it. To reactivate the
Linux boot loader, you must use a tool such as the Windows FDISK to mark the Linux
partition as the boot partition.

A drawback of placing LILO or GRUB in a partition’s boot sector is that this partition
must normally be a primary partition, at least with disks that use the MBR partitioning
system. (An exception is if you’re using some other boot loader in the MBR or in another
partition. If this third-party boot loader can redirect the boot process to a logical partition,
this restriction goes away.) For this reason, many people prefer to put LILO or GRUB in
the hard disk’s MBR.

In the end, both approaches work, and for a Linux-only installation, the advantages
and disadvantages of both approaches are very minor. Some distributions don’t give you
an option at install time. For them, you should review your boot loader confi guration and,
when you must add a kernel or otherwise change the boot loader, modify the existing con-
fi guration rather than try to create a new one.

On disks that use the GUID Partition Table (GPT) partitioning system, GRUB stores
part of itself in a special partition, known as the BIOS boot partition. On MBR disks, the
equivalent code resides in the sectors immediately following the MBR, which are offi cially
unallocated in the MBR scheme.

A Linux boot loader can be installed to a USB flash drive as well as to a
hard disk. Even if you don’t want to use a flash drive as part of your regular
boot process, you may want to create an emergency disk with your regular
boot loader. You can then use it to boot Linux if something goes wrong
with your regular boot loader installation.

This description provides a somewhat simplifi ed view of boot loaders. Most Linux boot
loaders are much more complicated than this. They can redirect the boot process to non-
Linux boot sectors and present menus that enable you to boot multiple OSs or multiple
Linux kernels. You can chain several boot loaders, including third-party boot loaders such
as System Commander or BootMagic. Chaining boot loaders in this way enables you to
take advantage of unique features of multiple boot loaders, such as the ability of System
Commander to boot several versions of DOS or Windows on a single partition.

http://technet24.ir/

Installing Boot Loaders 237

c05.indd 03/26/2015 Page 237

Sometimes when discussing BIOS boot loaders you’ll hear a reference to
the superblock. The superblock isn’t really a boot loader concept; rather it’s
part of the filesystem. The superblock describes basic filesystem features,
such as the filesystem’s size and status. On BIOS-based computers, the
superblock can hold a portion of the boot loader, so damage to it can
cause boot problems. The debugfs and dump2efs commands, described in
Chapter 3, provide some basic superblock information.

EFI Boot Loader Principles
The BIOS boot process, as just described, was designed in the 1980s, when the space avail-
able for a BIOS in the computer’s fi rmware was tiny by today’s standards. Thus, the boot
process had to be very simple, and a great deal of the complexity had to be pushed into
software stored on the hard disk.

The newer EFI fi rmware is much more complex than the older BIOS, so its boot process
can be more sophisticated. Instead of relying on code stored in boot sectors on the hard
disk, EFI relies on boot loaders stored as fi les in a disk partition known as the EFI System
Partition (ESP), which uses the File Allocation Table (FAT) fi lesystem. Under Linux, the
ESP is typically mounted at /boot/efi. Boot loaders reside in fi les with .efi fi lename
extensions stored in subdirectories named after the OS or boot loader name under the EFI
subdirectory of the ESP. Thus you might have a boot loader called /boot/efi/EFI/ubuntu/
grub.efi or /boot/efi/EFI/suse/elilo.efi.

This confi guration lets you store a separate boot loader for each OS that you install
on the computer. The EFI fi rmware includes its own program, a boot manager, to help
you select which boot loader to launch. The resulting boot path resembles Figure 5.2. In
this fi gure, two boot loaders (loader1.efi and loader2.efi) are available, each of which
launches its own OS kernel, located on its own partition.

F I GU R E 5 . 2 The EFI boot process begins the boot redirection from the firmware level
and employs files in filesystems rather than boot code hidden in boot sectors.

EFI
Kernel1 Kernel2loader1.efi loader2.efi

ESP

The exam objectives use the terms boot loader and boot manager inter-
changeably, but this book doesn’t. A boot loader loads a kernel into mem-
ory and transfers control to it, whereas a boot manager presents a menu of
boot options. Many programs, including the popular GRUB, combine both
functions, which is the reason for the lack of clarity in many sources.

http://technet24.ir/

238 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 238

In order to work, the EFI must know about the boot loaders installed on the hard disk’s
ESP. This is normally done by registering the boot loaders with the fi rmware, either using a
utility built into the fi rmware’s own user interface or using a tool such as Linux’s efibootmgr
program. Alternatively, most x86-64 EFI implementations will use a boot loader called
EFI/boot/bootx64.efi on the ESP as a default if no others are registered. This is the way
you boot most removable disks; you store your boot loader using this name on the remov-
able disk’s ESP.

The most popular EFI boot loaders for Linux are based on BIOS boot loaders, so
they provide functionality not required by EFI boot loaders generally, such as their own
boot manager features that provide the ability to chainload to another EFI boot loader.
Therefore, the boot process on a multi-OS computer might run a single EFI boot loader,
which then chainloads other EFI boot loaders. In fact, this is sometimes a practical neces-
sity because many EFI implementations provide such primitive boot managers that selecting
an OS must be done by a separate boot program.

Using GRUB Legacy as the Boot Loader
GRUB is the default boot loader for most Linux distributions; however, GRUB is really two
boot loaders: GRUB Legacy and GRUB 2. Although these two boot loaders are similar in
many ways, they differ in many important details. GRUB Legacy is, as you might expect,
the older of the two boot loaders. It used to be the dominant boot loader for Linux, but it
has been eclipsed by GRUB 2. Nonetheless, because the two boot loaders are so similar, we
describe GRUB Legacy fi rst and in more detail. The upcoming section “Using GRUB 2 as
the Boot Loader” focuses on its differences from GRUB Legacy. In the following pages, we
describe how to confi gure, install, and interact with GRUB Legacy.

Configuring GRUB Legacy
The usual location for GRUB Legacy’s confi guration fi le on a BIOS-based computer is
/boot/grub/menu.lst. Some distributions (such as Fedora, Red Hat, and Gentoo) use the
fi lename grub.conf rather than menu.lst. The GRUB confi guration fi le is broken into
global and per-image sections, each of which has its own options. Before getting into
section details, though, you should understand a few GRUB quirks.

GRUB Legacy officially supports BIOS but not EFI. A heavily patched ver-
sion, maintained by Fedora, provides support for EFI. If you’re using this
version of GRUB, its configuration file goes in the same directory on the
ESP that houses the GRUB Legacy binary, such as /boot/efi/EFI/redhat
for a standard Fedora or Red Hat installation.

GRUB Nomenclature and Quirks

Listing 5.1 shows a sample GRUB confi guration fi le. This fi le provides defi nitions to boot
 several OSs—Fedora on /dev/sda5, Debian on /dev/sda6, and Windows on /dev/sda2.
Fedora and Debian share a /boot partition (/dev/sda1), on which the GRUB confi gura-
tion resides.

http://technet24.ir/

Installing Boot Loaders 239

c05.indd 03/26/2015 Page 239

Listing 5.1: A sample GRUB configuration file

grub.conf/menu.lst

#

Global Options:

#

default=0

timeout=15

splashimage=/grub/bootimage.xpm.gz

#

Kernel Image Options:

#

title Fedora (3.4.1)

 root (hd0,0)

 kernel /vmlinuz-3.4.1 ro root=/dev/sda5 mem=4096M

 initrd /initrd-3.4.1

title Debian (3.4.2-experimental)

 root (hd0,0)

 kernel (hd0,0)/bzImage-3.4.2-experimental ro root=/dev/sda6

#

Other operating systems

#

title Windows

 rootnoverify (hd0,1)

 chainloader +1

GRUB doesn’t refer to disk drives by device fi lename the way that Linux does. GRUB
numbers drives, so instead of /dev/hda or /dev/sda, GRUB uses (hd0). Similarly, /dev/hdb
or /dev/sdb is likely to be (hd1). GRUB doesn’t distinguish between PATA, SATA, SCSI,
and USB drives, so on a SCSI-only system, the fi rst SCSI drive is (hd0). On a mixed system,
ATA drives normally receive the lower numbers, although this isn’t always the case. GRUB
Legacy’s drive mappings can be found in the /boot/grub/device.map fi le.

Additionally, GRUB Legacy numbers partitions on a drive starting at 0 instead of the 1
that is used by Linux. GRUB Legacy separates partition numbers from drive numbers with
a comma, as in (hd0,0) for the fi rst partition on the fi rst disk (normally Linux’s /dev/hda1
or /dev/sda1) or (hd0,4) for the fi rst logical partition on the fi rst disk (normally Linux’s
/dev/hda5 or /dev/sda5). GRUB Legacy treats USB fl ash drives just like hard disks,
although it relies on the fi rmware to access these drives, so GRUB Legacy won’t boot from
a USB fl ash drive if you’re using an older computer that doesn’t support this option.

GRUB Legacy defi nes its own root partition, which can be different from the Linux root
partition. GRUB’s root partition is the partition in which GRUB’s confi guration fi le

http://technet24.ir/

240 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 240

(menu.lst or grub.conf) resides. Because this fi le is normally in Linux’s /boot/grub/
directory, the GRUB root partition will be the same as Linux’s root partition if you do not
use a separate /boot or /boot/grub partition. If you split off /boot into its own partition,
as is fairly common, GRUB’s root partition will be the same as Linux’s /boot partition.
You must keep this difference in mind when referring to fi les in the GRUB confi guration
directory.

Essential Global GRUB Legacy Options

GRUB’s global section precedes its per-image confi gurations. Typically, you’ll fi nd just a
few options in this global section:

Default OS The default= option tells GRUB which OS to boot. Listing 5.1’s default=0
causes the first listed OS to be booted (remember, GRUB indexes from 0). If you want to
boot the second listed operating system, use default=1, and so on, through all your OSs.

Timeout The timeout= option defines how long, in seconds, to wait for user input before
booting the default operating system.

Background Graphic The splashimage= line points to a graphics file that’s displayed as
the background for the boot process. This line is optional, but most Linux distributions
point to an image to spruce up the boot menu. The filename reference is relative to the
GRUB root partition, so if /boot is on a separate partition, that portion of the path is
omitted. Alternatively, the path may begin with a GRUB device specification, such as
(hd0,5), to refer to a file on that partition.

Essential GRUB Legacy Per-Image Options

GRUB Legacy’s per-image options are often indented after the fi rst line, but this is a con-
vention, not a requirement, of the fi le format. The options begin with an identifi cation and
continue with options that tell GRUB how to handle the image:

Title The title line begins a per-image stanza, and it specifies the label to display when
the boot loader runs. The GRUB Legacy title option can accept spaces, and it is conven-
tionally moderately descriptive, as shown in Listing 5.1.

GRUB Root The root option specifies the location of GRUB Legacy’s root partition. This
is the /boot partition if a separate one exists; otherwise, it’s usually the Linux root (/) par-
tition. GRUB can reside on a FAT partition, on a USB flash drive, or on certain other OSs’
partitions, though, so GRUB’s root could conceivably be somewhere more exotic.

Kernel Specification The kernel setting describes the location of the Linux kernel as well
as any kernel options that are to be passed to it. Paths are relative to GRUB Legacy’s root
partition. As an alternative, you can specify devices using GRUB’s syntax, such as
 kernel (hd0,5)/vmlinuz ro root=/dev/sda5. Note that you pass most kernel options on
this line. Some other boot loaders split off kernel options on separate lines, but in GRUB, you
incorporate these options onto the kernel line. The ro option tells the kernel to mount its
root filesystem read-only (it’s later remounted read/write), and the root= option specifies the
Linux root filesystem. Because these options are being passed to the kernel, they use Linux-
style device identifiers, when necessary, unlike other options in the GRUB configuration file.

http://technet24.ir/

Installing Boot Loaders 241

c05.indd 03/26/2015 Page 241

Initial RAM Disk Use the initrd option to specify an initial RAM disk, which holds a
minimal set of drivers, utilities, and configuration files that the kernel uses to mount its
root filesystem before the kernel can fully access the hard disk. Most Linux distributions
rely heavily on the initial RAM disk as a way to keep the main kernel file small and to
provide tools to the kernel at a point in the boot process before they could be loaded from
the hard disk.

Non-Linux Root The rootnoverify option is similar to the root option except that
GRUB Legacy won’t try to access files on this partition. It’s used to specify a boot partition
for OSs for which GRUB Legacy can’t directly load a kernel, such as Windows.

Chainloading The chainloader option tells GRUB Legacy to pass control to another boot
loader. Typically, it’s passed a +1 option to load the first sector of the target OS’s root parti-
tion (usually specified with rootnoverify) and to hand over execution to this secondary
boot loader.

Chainloading as just described works on BIOS computers. If you’re using
an EFI-enabled version of GRUB Legacy, you can chainload, but you must
tell GRUB Legacy to use the ESP (typically by specifying root (hd0,0),
although the device identification may differ) and then pass the name of an
EFI boot loader file via the chainloader option, as in chainloader /EFI/
Microsoft/boot/bootmgfw.efi.

To add a kernel to GRUB, follow these steps:

1. As root, load the menu.lst or grub.conf file into a text editor.

2. Copy a working configuration for a Linux kernel.

3. Modify the title line to give your new configuration a unique name.

4. Modify the kernel line to point to the new kernel. If you need to change any kernel
options, do so.

5. If you’re adding, deleting, or changing an initramfs RAM disk, make appropriate
changes to the initrd line.

6. If desired, change the global default line to point to the new kernel.

7. Save your changes, and exit the text editor.

At this point, GRUB is confi gured to boot your new kernel. When you reboot, you
should see it appear in your menu and you should be able to boot it. If you have problems,
boot a working confi guration to debug the issue.

Don’t eliminate a working configuration for an old kernel until you’ve deter-
mined that your new kernel works correctly.

http://technet24.ir/

242 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 242

Installing GRUB Legacy
The command for installing GRUB Legacy on a BIOS-based computer is grub-install.
You must specify the boot sector by device name when you install the boot loader. The
basic command looks like:

grub-install /dev/sda

or
grub-install '(hd0)'

Either command will install GRUB Legacy into the fi rst sector (that is, the MBR) of
your fi rst hard drive. In the second example, you need single quotes around the device
name. If you want to install GRUB Legacy in the boot sector of a partition rather than in
the MBR, you include a partition identifi er, as in /dev/sda1 or (hd0,0).

If you’re installing Fedora’s EFI-enabled version of GRUB Legacy, you should not use
the grub-install command; instead, copy the grub.efi fi le to a suitable subdirectory on
your ESP, such as /boot/efi/EFI/redhat, and copy grub.conf to the same location. If you
install using Fedora’s grub-efi RPM fi le, the grub.efi fi le should be placed in this loca-
tion by default. After copying these fi les, you may need to use efibootmgr to add the boot
loader to the EFI’s list:

efibootmgr -c -l \\EFI\\redhat\\grub.efi -L GRUB

This command adds GRUB Legacy, stored in the ESP’s /EFI/redhat directory, to the
EFI’s boot loader list. You must use doubled-up backslashes (\\) rather than the Linux-style
forward slashes (/) as directory separators. Consult the efibootmgr utility’s man page for
more information.

You do not need to reinstall GRUB after making changes to its confi guration fi le. (Such a
reinstallation is required for some older boot loaders, though.) You need to install GRUB this
way only if you make certain changes to your disk confi guration, such as resizing or moving
the GRUB root partition, moving your entire installation to a new hard disk, or possibly rein-
stalling Windows (which tends to wipe out MBR-based boot loaders). In some of these cases,
you may need to boot Linux via a backup boot loader, such as GRUB installed to a USB disk.

Interacting with GRUB Legacy
The fi rst screen that the GRUB Legacy boot loader shows you is a list of all of the operating
systems that you specifi ed with the title option in your GRUB confi guration fi le. You can
wait for the timeout to expire for the default operating system to boot. To select an alterna-
tive, use your arrow keys to highlight the operating system that you want to boot. Once
your choice is highlighted, press the Enter key to start booting.

Follow these steps when you want to change or pass additional options to your operating
system:

1. Use your arrow keys to highlight the operating system that most closely matches what
you want to boot.

2. Press the E key to edit this entry. You’ll see a new screen listing all of the options for
this entry.

3. Use your arrow keys to highlight the kernel option line.

http://technet24.ir/

Installing Boot Loaders 243

c05.indd 03/26/2015 Page 243

4. Press the E key to edit the kernel options.

5. Edit the kernel line to add any options, such as 1 to boot to single-user mode. GRUB
Legacy passes the extra option to the kernel.

6. Press the Enter key to complete the edits.

7. Press the B key to start booting.

You can make whatever changes you like in step 5, such as using a different init pro-
gram. You do this by appending init=/bin/bash (or whatever program you want to use)
to the end of the kernel line.

Using GRUB 2 as the Boot Loader
In principle, confi guring GRUB 2 is much like confi guring GRUB Legacy; however, some
important details differ. First, the GRUB 2 confi guration fi le is /boot/grub/grub.cfg.
(Some distributions place this fi le in /boot/grub2, enabling simultaneous installations of
GRUB Legacy and GRUB 2.) GRUB 2 adds a number of features, such as support for load-
able modules for specifi c fi lesystems and modes of operation, which aren’t present in GRUB
Legacy. (The insmod command in the GRUB 2 confi guration fi le loads modules.) GRUB 2
also supports conditional logic statements, enabling loading modules or displaying menu
entries only if particular conditions are met.

If you merely want to add or change a single OS entry, you’ll fi nd the most important
changes are to the per-image options. Listing 5.2 shows GRUB 2 equivalents to the image
options shown in Listing 5.1.

Listing 5.2: GRUB 2 image configuration examples

#

Kernel Image Options:

#

menuentry "Fedora (3.4.1)" {

 set root=(hd0,1)

 linux /vmlinuz-3.4.1 ro root=/dev/sda5 mem=4096M

 initrd /initrd-3.4.1

}

menuentry "Debian (3.4.2-experimental)" {

 set root=(hd0,1)

 linux (hd0,1)/bzImage-3.4.2-experimental ro root=/dev/sda6

}

#

Other operating systems

#

menuentry "Windows" {

 set root=(hd0,2)

 chainloader +1

}

http://technet24.ir/

244 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 244

Important changes compared to GRUB Legacy include the following:

 ■ The title keyword is replaced by menuentry.

 ■ The menu title is enclosed in quotation marks.

 ■ An opening curly brace ({) follows the menu title, and each entry ends with a closing
curly brace (}).

 ■ The set keyword precedes the root keyword, and an equal sign (=) separates the root
keyword from the partition specification.

 ■ The rootnoverify keyword has been eliminated; you use root instead.

 ■ Partitions are numbered starting from 1 rather than from 0. A similar change
in disk numbering is not implemented. This change can be very confusing if
you’re used to GRUB Legacy, but it makes partition-numbering mix-ups when
“translating” from Linux-style partition numbering less likely. The most recent
versions of GRUB 2 also support a more complex partition identification scheme
to specify the partition table type, as in (hd0,gpt2) to specify that the second GPT
partition should be used or (hd1,mbr3) to specify that the third MBR partition
should be used.

GRUB 2 makes further changes in that it employs a set of scripts and other tools that
help automatically maintain the /boot/grub/grub.cfg fi le. The intent is that system
administrators need never explicitly edit this fi le. Instead, you would edit fi les in /etc/
grub.d, and the /etc/default/grub fi le, to change your GRUB 2 confi guration. After
making such changes, you must explicitly rebuild the grub.cfg fi le, as described shortly.

Files in /etc/grub.d control particular GRUB OS probers. These scripts scan the system
for particular OSs and kernels and add GRUB entries to /boot/grub/grub.cfg to support
those OSs. You can add custom kernel entries, such as those shown in Listing 5.2, to the
40_custom fi le to support your own locally compiled kernels or unusual OSs that GRUB
doesn’t automatically detect.

The /etc/default/grub fi le controls the defaults created by the GRUB 2 confi guration
scripts. For instance, if you want to adjust the timeout, you might change the
following line:

GRUB_TIMEOUT=10

A distribution that’s designed to use GRUB 2, such as Ubuntu, will automatically run
the confi guration scripts after certain actions, such as installing a new kernel with the
distribution’s package manager.

If you need to make changes to the GRUB 2 confi guration fi le yourself, edit either the
/etc/default/grub fi le or the fi les in the /etc/grub.d folder, and then use the update-grub
or grub-mkconfig command (depending on your Linux distribution) to move the changes to
the /boot/grub/grub.cfg fi le.

When you run the update-grub or grub-mkconfig command, it outputs the new
grub.cfg fi le to the standard output. If you want to save the changes, you can type
update-grub or grub-mkconfig > /boot/grub/grub.cfg. This command rereads

http://technet24.ir/

Installing Boot Loaders 245

c05.indd 03/26/2015 Page 245

these confi guration fi les and writes a fresh /boot/grub/grub.cfg fi le. (Some installations
use 2 after grub in command names, as in grub2-mkconfig rather than grub-mkconfig.)

Don’t forget to redirect the output of the update-grub or grub-mkconfig
command to the grub.cfg file. By default, those commands send the
configuration to the standard output, which won’t change the GRUB
configuration.

Unlike GRUB Legacy, GRUB 2 is designed to work with both BIOS- and EFI-based
computers as well as with a few more-exotic fi rmware types. When you fi rst install Linux,
the installer should set up GRUB correctly, using grub-install in much the same way as
described for GRUB Legacy. On EFI-based computers, GRUB 2’s version of grub-install
should install the GRUB 2 EFI binary fi le where it belongs, but if you have problems, you
may need to use efibootmgr, as described earlier with reference to GRUB Legacy.

Using Alternative Boot Loaders
Although GRUB Legacy and GRUB 2 dominate the Linux boot loader arena today, and
are the only boot loaders covered on the exam, there are several other loaders that you may
encounter and that deserve mention:

Syslinux The Syslinux Project (www.syslinux.org) is actually a family of BIOS-based
boot loaders, each of which is much smaller and more specialized than GRUB Legacy or
GRUB 2. The most notable member of this family is ISOLINUX, which is a boot loader for
use on optical discs, which have unique boot requirements. The EXTLINUX boot loader is
another member of this family; it can boot Linux from an ext2, ext3, or ext4 filesystem.

LILO The Linux Loader was the most common Linux boot loader in the 1990s. It’s
primitive and limited by today’s standards, and it works only on BIOS-based computers. You
can tell if your Linux system uses LILO by the presence of the /etc/lilo.conf configuration
file. For more information on LILO go to http://freshmeat.net/projects/lilo/.

The Linux Kernel Since version 3.3.0, the Linux kernel has incorporated an EFI boot loader
for x86 and x86-64 systems. On an EFI-based computer, this feature enables the kernel to serve
as its own boot loader, eliminating the need for a separate tool such as GRUB 2 or ELILO.

rEFIt This program, hosted at http://refit.sourceforge.net, is technically a boot
manager, not a boot loader. It’s popular on Intel-based Macs, but some builds of the pro-
gram can be used on UEFI-based PCs too. It presents an attractive graphical interface,
enabling users to select their boot OS using icons rather than a text-based interface. rEFIt
appears to have been abandoned; as of this writing, the last update was in 2010.

rEFInd This program is derived from rEFIt, so as to make it more useful on UEFI-based
PCs and to extend its feature set. Like rEFIt, rEFInd is a boot manager, not a boot loader.
It’s intended to present a list of boot options to users. It’s most useful on computers with
EFI implementations that provide poor boot managers. It also provides features that are
designed to work with the Linux kernel’s built-in EFI boot loader in order to simplify the

http://technet24.ir/

246 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 246

passing of options required to get the kernel to boot. You can learn more at
www.rodsbooks.com/refind/.

gummiboot This is an open-source EFI boot manager that’s conceptually similar to rEFIt
or rEFInd, but it uses a text-mode interface and fewer options. You can learn more at
http://freedesktop.org/wiki/Software/gummiboot.

Although development of Linux boot loaders for BIOS-based computers has largely
stabilized, with GRUB 2 now dominating this fi eld, EFI boot loader development is quite
dynamic. This is likely to continue to be the case because EFI-based computers are becom-
ing common.

The fact that Microsoft is requiring use of a fi rmware feature known as Secure Boot is
having an impact on Linux boot loaders. With Secure Boot enabled, an EFI-based com-
puter will launch a boot loader only if it’s been cryptographically signed with a key whose
counterpart is stored in the computer’s fi rmware. The goal is to make it harder for malware
authors to take over a computer by inserting their programs early in the boot process. The
problem from a Linux perspective is that use of Secure Boot requires the signing of a Linux
boot loader with Microsoft’s key (since it’s the only one that’s guaranteed to be on most
computers), the addition of a distribution-specifi c or locally generated key to the computer’s
fi rmware, or the disabling of Secure Boot. To date, both Fedora and Ubuntu can use Secure
Boot. You may need to disable Secure Boot or generate your own key to boot an arbitrary
Linux distribution or a custom-built kernel.

Fixing a Damaged Boot Loader Installation

Linux systems sometimes become unbootable because the boot loader has been dam-

aged. You can reinstall GRUB if you can manage to boot your system, but of course this

is a catch-22. Most Linux distributions provide a way to resolve this problem by enabling

you to boot the computer even if the on-disk boot loader isn’t working. Try booting the

installation disc you used to install the OS, and look for an option to boot a kernel from

the hard disk. Once the system is booted, you can use grub-install to reinstall GRUB.

Alternatively, the installation disc may provide a recovery option that will help to restore

a broken system automatically or semiautomatically.

If your distribution’s install disc isn’t helpful, you can try Super GRUB Disk

(www.supergrubdisk.org), which is a bootable disc image with a variety of options to locate

and use the GRUB confi guration fi le on your hard disk. If Super GRUB Disk can fi nd your

GRUB confi guration fi le, you can boot using it and then reinstall GRUB to your hard disk.

If all else fails, you may be able to use GRUB’s interactive features to locate and boot a

kernel. Doing so, however, can be frustrating; a single typo can produce a failure to boot.

http://technet24.ir/

Understanding the Boot Process 247

c05.indd 03/26/2015 Page 247

Understanding the Boot Process

Any time you modify the way that your computer boots, the possibility exists that you
won’t get the results that you would expect. In these cases, it’s useful to know where you
can turn for more information about what is happening during startup. The reports that
you receive on a particular boot can better guide you, once you understand something
about what’s supposed to happen when a Linux system boots.

Extracting Information about the Boot Process
Certain Linux kernel and module log information is stored in what is called the kernel ring
buffer. By default, Linux displays messages destined for the kernel ring buffer during the
boot process—they’re those messages that scroll past too quickly to read. (Some distribu-
tions hide most or all of these messages unless you select a special option during the boot
process.) You can inspect this information with this command:

dmesg

This command generates a lot of output, so you may want to pipe it through the less
pager or redirect it to a fi le. Here are some examples of these commands:

dmesg | less

dmesg > boot.messages

Many Linux distributions store the kernel ring buffer to the /var/log/dmesg
log file soon after the system boots. Because new information is logged to
the kernel ring buffer as the system operates, and because the kernel ring
buffer’s size is finite, you may need to consult this log file to learn about
the boot process once the system has been operating for a while. Also,
because the kernel ring buffer is held in memory, its contents are cleared
and generated anew with every boot of the computer. The dmesg log file
will contain boot messages from several boot sessions.

Another source of logging information is the system logger (syslogd). The most useful
syslogd fi le to examine is usually /var/log/messages, but /var/log/syslog and other log
fi les in /var/log can also hold helpful information.

Some Linux distributions also log boot-time information to other files.
Debian uses a daemon called bootlogd that, by default, logs any messages
that go to /dev/console to the /var/log/boot file. Fedora and Red Hat use
syslogd services to log information to /var/log/boot.log.

http://technet24.ir/

248 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 248

Locating and Interpreting Boot Messages
Boot messages in the kernel ring buffer or /var/log fi les can be cryptic to the uninitiated.
Some tips can help you locate and interpret the information you fi nd in these sources:

Use less and Its Search Functions The less pager is a great tool for examining both the
kernel ring buffer and log files. The search function (accessed by pressing the slash key, /)
can help you look for particular strings.

Look for Hardware Type Names Many boot messages, particularly in the kernel ring buf-
fer, relate to hardware. Try searching for the name of the hardware type, such as SCSI or
USB, if you’re having problems with these subsystems. Remember that Linux treats many
disk devices as SCSI disks too!

Look for Hardware Chipset Names Linux drivers sometimes log messages along with
their driver names, which are usually based on the chipset in question. If you know your
hardware well enough to know the chipset name, search for it or for a subset of it. For
instance, searching for 8169 may turn up messages related to a RealTek 8169 Ethernet
interface. Similarly, you can search for higher-level kernel module names, such as reiserfs
for messages from the ReiserFS filesystem driver.

Study the Output from a Working System Familiarize yourself with the contents of the
kernel ring buffer and log files on a working system. If you know what to expect when a
system is functioning correctly, you’ll find it easier to identify problems when they occur.

Sometimes a system won’t boot at all. In this case, kernel boot messages (which
ordinarily go into the kernel ring buffer) are displayed on the screen, which can help you
identify the cause of a failure. Many modern Linux distributions hide these messages by
default, but you can sometimes reveal them by pressing the Esc key during the boot
process. Once the kernel boot process has completed, other systems take over, and the last
few messages displayed on the screen can also provide clues. For example, if the last mes-
sage displayed mentions starting a particular server, it’s possible that the server is hanging
and interrupting the boot process. You may be able to disable the server by using a single-
user boot mode and therefore bypass the problem.

The Boot Process
The process of taking an x86 computer from its initial state when the power is turned on to
having a working operating system running is complex because of the way modern personal
computers have evolved. The steps a computer goes through in order to boot an operating
system are as follows:

1. The system is given power, and a special hardware circuit causes the CPU to look at
a predetermined address and execute the code stored in that location. The firmware
(BIOS or EFI) resides at this location, so the CPU runs the firmware.

2. The firmware performs some tasks. These include checking for hardware, configuring
hardware, and looking for a boot loader.

http://technet24.ir/

The Initialization Process 249

c05.indd 03/26/2015 Page 249

3. When the boot loader takes over from the firmware, it loads a kernel or chainloads to
another boot loader, as described earlier in this chapter.

4. Once the Linux kernel takes over, it performs tasks such as initializing devices, mount-
ing the root partition, and finally loading and executing the initial program for your
system. By default, this is the program /sbin/init. It gets the process ID (PID) of 1,
because it’s the first program to run on the system.

The init program is the key to the Linux system. Just how it works is covered next, in
the section “The Initialization Process.”

The kernel step can get a bit complicated, especially if your system
has advanced hardware. The kernel needs to load drivers to handle the
hardware, but those drivers may not be accessible if the hard drive isn’t
mounted yet. To avoid this situation, most Linux distributions utilize an
initramfs file, which contains the necessary modules to access the hard-
ware. The boot loader mounts the initramfs file into memory as a virtual
root filesystem during the boot step for the kernel to use. Once the kernel
loads the necessary drivers, it unmounts the initramfs filesystem and
mounts the real root filesystem from the hard drive.

If you would like more details about the Linux boot process, read:

www.linuxdevcenter.com/pub/a/linux/excerpts/linux_kernel
/how_computer_boots.html.

This page describes the process from the computer being powered up to
the kernel being loaded and launching /sbin/init.

The Initialization Process

A Linux system comprises lots of programs running in the background to provide services
for the system. It’s the init program’s job to start all of those programs when the Linux
system starts up. This is called the initialization process.

You must confi gure the initialization process to start programs based on the desired
features that you want running in your Linux system. For example, a Linux server doesn’t
necessarily need to start a graphical desktop environment, or a Linux desktop doesn’t nec-
essarily need to start the Apache web server service.

There are currently three popular initialization process methods used in Linux
distributions:

 ■ Unix System V (also called SysV)

 ■ systemd

 ■ Upstart

http://technet24.ir/

250 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 250

The original Linux init program was based on the Unix System V init program, and it
became commonly called SysV. The SysV init program uses a series of shell scripts, divided
into separate runlevels, to determine what programs run at what times. Each program uses
a separate shell script to start and stop the program. The system administrator sets the
runlevel in which the Linux system starts, which in turn determines which set of programs
is running. The system administrator can also change the runlevel at any time while the
system is running.

The SysV init program had served the Linux community well for many years, but as
Linux systems became more complicated and required more services, the runlevel shell
scripts became more complicated. This has caused Linux developers to look for other
solutions.

The Upstart version of the init program was developed as part of the Ubuntu Linux
distribution. Its main goal was to handle the dynamic environment that hotplug devices
cause in Linux. The Upstart method uses separate confi guration fi les for each service, and
each service confi guration fi le sets the runlevel in which the service should start. That way,
you have just one service fi le that’s used for multiple runlevels.

The systemd program was developed by the Red Hat Linux distribution to handle
dynamic Linux environments as well. Similar to Upstart, it too uses separate confi guration
fi les to defi ne program behavior.

The following sections take a closer look at each of these initialization process methods
to help you get comfortable in any Linux environment.

Using the SysV Initialization Process

The key to the SysV initialization process is runlevels. The init program determines what
services to start based on the runlevel of the system. Runlevels are numbered from 0 to 6,
and each one is assigned a set of services that should be active for that runlevel. Upon boot-
ing, Linux enters a predetermined runlevel, which you can set. Knowing what these func-
tions are, and how to manage runlevels, is important if you’re to control the Linux boot
process and ongoing operations. To this end, you must understand the purpose of runlevels,
be able to identify the services that are active in a runlevel, be able to adjust those services,
be able to check your default and current runlevels, and be able to change the default and
current runlevels.

Runlevel Functions
Earlier in this chapter, we described single-user mode. To get to this mode when booting
Linux, you use 1, S or s, or single as an option passed to the kernel by the boot loader.
Single-user mode is simply an available runlevel for your system. The available runlevels on
most systems are the numbers 0 through 6. The S and s are synonymous with runlevel 1 as
far as many utilities are concerned.

http://technet24.ir/

Using the SysV Initialization Process 251

c05.indd 03/26/2015 Page 251

Runlevels 0, 1, and 6 are reserved for special purposes; the remaining runlevels are
available for whatever purposes you or your Linux distribution provider decide. Table 5.1
summarizes the conventional uses of the runlevels. Other assignments—and even runlevels
outside the range of 0 to 6—are possible with some systems, but such confi gurations are
rare. If you run into peculiar runlevel numbers, consult /etc/inittab—it defi nes them and
often contains comments explaining the various runlevels.

TA B LE 5 .1 Runlevels and their purposes

Runlevel Purpose

0 A transitional runlevel, meaning that it’s used to shift the computer from
one state to another. Specifically, it shuts down the system. On modern
hardware, the computer should completely power down. If not, you’re
expected to either reboot the computer manually or power it off.

1, s, or S Single-user mode. What services, if any, are started at this runlevel vary by
distribution. It’s typically used for low-level system maintenance that may
be impaired by normal system operation, such as resizing partitions.

2 On Debian and its derivatives, a full multi-user mode with X running and a
graphical login. Most other distributions leave this runlevel undefined.

3 On Fedora, Mandriva, Red Hat, and most other distributions, a full
multi-user mode with a console (nongraphical) login screen.

4 Usually undefined by default and therefore available for customization.

5 On Fedora, Mandriva, Red Hat, and most other distributions, the same
behavior as runlevel 3, with the addition of having X run with an XDM
(graphical) login.

6 Used to reboot the system. This runlevel is also a transitional runlevel.
Your system is completely shut down, and then the computer reboots
automatically.

Don’t configure your default runlevel to 0 or 6. If you do, your system will
immediately shut down or reboot once it finishes powering up. Runlevel 1
could conceivably be used as a default, but chances are you’ll want to use
2, 3, or 5 as your default runlevel, depending on your distribution and use
for the system.

As a general rule, distributions have been drifting toward Red Hat’s runlevel set; how-
ever, there are some exceptions and holdouts, such as Debian. Distributions that use newer
startup systems generally don’t use runlevels natively, but they provide compatibility tools

http://technet24.ir/

252 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 252

that make the computer appear to use runlevels for the benefi t of scripts and programs that
assume the use of runlevels.

Identifying the Services in a Runlevel
There are two main ways to affect what programs run when you enter a new SysV runlevel.
The fi rst is to add or delete entries in your /etc/inittab fi le. A typical /etc/inittab fi le
contains many entries, and except for a couple of special cases, inspecting or changing the
contents of this fi le is best left to experts. Once all of the entries in /etc/inittab for your
runlevel are executed, your boot process is complete and you can log in.

Basics of the /etc/inittab File
Entries in /etc/inittab follow a simple format. Each line consists of four colon-
delimited fi elds:

id:runlevels:action:process

Each of these fi elds has a specifi c meaning:

Identification Code The id field consists of a sequence of one to four characters that iden-
tifies its function.

Applicable Runlevels The runlevels field consists of a list of runlevels for which this
entry applies. For instance, 345 means the entry is applicable to runlevels 3, 4, and 5.

Action to Be Taken Specific codes in the action field tell init how to treat the process.
For instance, wait tells init to start the process once when entering a runlevel and to wait
for the process’s termination, and respawn tells init to restart the process whenever it ter-
minates (which is great for login processes). Several other actions are available; consult the
man page for inittab for details.

Process to Run The process field is the process to run for this entry, including any
options and arguments that are required.

The part of /etc/inittab that tells init how to handle each runlevel looks like this:

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

These lines start with codes that begin with an l (a lowercase letter L, not a number 1)
followed by the runlevel number—for instance, l0 for runlevel 0, l1 for runlevel 1, and so
on. These lines specify scripts or programs that are to be run when the specifi ed runlevel

http://technet24.ir/

Using the SysV Initialization Process 253

c05.indd 03/26/2015 Page 253

is entered. In the case of this example, all the scripts are the same (/etc/init.d/rc), but
the script is passed the runlevel number as an argument. Some distributions call specifi c
programs for certain runlevels, such as shutdown for runlevel 0.

The upcoming section “Checking and Changing Your Default Runlevel”
describes how to tell init what runlevel to enter when the system boots.

The SysV Startup Scripts
The /etc/init.d/rc or /etc/rc.d/rc script performs the crucial task of running all of the
scripts associated with the runlevel. The runlevel-specifi c scripts are stored in /etc/rc.d
/rc?.d, /etc/init.d/rc?.d, /etc/rc?.d, or a similar location. (The precise location var-
ies between distributions.) In all of these cases, ? is the runlevel number. When entering a
runlevel, rc passes the start parameter to all of the scripts with names that begin with a
capital S, and it passes the stop parameter to all of the scripts with names that begin with
a capital K. These SysV startup scripts start or stop services depending on the parameter
they’re passed, so the naming of the scripts controls whether they’re started or stopped
when a runlevel is entered. These scripts are also numbered, as in S10network and K35smb.

The rc program runs the scripts in numeric order. This feature enables distribution
designers to control the order in which scripts run by giving them appropriate numbers.
This control is important because some services depend on others. For instance, network
servers must normally be started after the network is brought up.

In reality, the fi les in the SysV runlevel directories are symbolic links to the main scripts,
which are typically stored in /etc/rc.d, /etc/init.d, or /etc/rc.d/init.d (again, the
exact location depends on the distribution). These original SysV startup scripts have names
that lack the leading S or K and number, as in smb instead of K35smb.

You can also start services by hand. Run them with the start option, as
in /etc/init.d/smb start to start the smb (Samba) server. Other useful
options are stop, restart, and status. Most scripts support all of these
options.

To determine which services are active in a runlevel, search the appropriate SysV startup
script directory for scripts with fi lenames that begin with an S. Alternatively, you can use a
runlevel management tool, as described next.

Managing Runlevel Services
The SysV startup scripts in the runlevel directories are symbolic links back to the original
script. This is done so that you don’t need to copy the same script into each runlevel direc-
tory. Instead, you can modify the original script without having to track down its copies
in all of the SysV runlevel directories. You can also modify which programs are active in a

http://technet24.ir/

254 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 254

runlevel by editing the link fi lenames. Numerous utility programs are available to help you
manage these links, such as chkconfig, update-rc.d, and rc-update. We describe the fi rst
of these tools because it’s supported on many distributions. If your distribution doesn’t sup-
port these tools, you should check the specifi c distribution documentation. These tools may
provide impaired functionality on systems that don’t use SysV natively; you may need to
locate Upstart- or systemd-specifi c tools instead.

To list the services and their applicable runlevels with chkconfig, use the --list option.
The output looks something like this, but it is likely to be much longer:

chkconfig --list

pcmcia 0:off 1:off 2:on 3:on 4:on 5:on 6:off

nfs-common 0:off 1:off 2:off 3:on 4:on 5:on 6:off

xprint 0:off 1:off 2:off 3:on 4:on 5:on 6:off

setserial 0:off 1:off 2:off 3:off 4:off 5:off 6:off

This output shows the status of the services in all seven runlevels. For instance, you can
see that nfs-common is inactive in runlevels 0–2, active in runlevels 3–5, and inactive in
runlevel 6.

If you’re interested in a specifi c service, you can specify its name:

chkconfig --list nfs-common

nfs-common 0:off 1:off 2:off 3:on 4:on 5:on 6:off

To modify the runlevels in which a service runs, use a command like this:

chkconfig --level 23 nfs-common on

The previous example is for Debian-based systems. On Red Hat and simi-
lar systems, you would probably want to target runlevels 3, 4, and 5 with
something like --level 345 rather than --level 23.

You can use on to activate the script, off to deactivate it, or reset to set it to its
default value.

If you’ve added a startup script to the main SysV startup script directory, you can have
chkconfig register it and add appropriate start and stop links in the runlevel directories.
When you do this, chkconfig inspects the script for special comments to indicate default
runlevels. If these comments are in the fi le and you’re happy with the suggested levels, you
can add it to these runlevels with a command like this:

chkconfig --add nfs-common

This command adds the nfs-common script to those managed by chkconfig. You would,
of course, change nfs-common to your script’s name. This approach may not work if the
script lacks the necessary comment lines with runlevel sequence numbers for chkconfig’s
benefi t.

http://technet24.ir/

Using the SysV Initialization Process 255

c05.indd 03/26/2015 Page 255

Checking Your Runlevel
Sometimes it’s necessary to check your current runlevel. Typically, you’ll do this prior to
changing the runlevel or to check the status if something isn’t working correctly. Two
different runlevel checks are possible: checking your default runlevel and checking your
current runlevel.

Checking and Changing Your Default Runlevel
On a SysV-based system, you can determine your default runlevel by inspecting the /etc
/inittab fi le with the less command or opening it in an editor. Alternatively, you may use
the grep command to look for the line specifying the initdefault action. On a Debian
system, you’ll see something like this:

grep :initdefault: /etc/inittab

id:2:initdefault:

If grep returns nothing, chances are that you’ve either mistyped the command or your
computer is using Upstart, systemd, or some other initialization tool. On some systems, the
second colon-delimited fi eld will contain a 3, 5, or some value other than the 2 shown here.

You may notice that the id line doesn’t defi ne a process to run. In the case of the
 initdefault action, the process fi eld is ignored.

If you want to change the default runlevel for the next time you boot your system, edit
the initdefault line in /etc/inittab and change the runlevel fi eld to the value you want.
If your system lacks an /etc/inittab fi le, create one that contains only an initdefault
line that specifi es the runlevel you want to enter by default.

Determining Your Current Runlevel
If your system is up and running, you can determine your runlevel information with the
runlevel command:

runlevel

N 2

The fi rst character is the previous runlevel. When the character is N, this means the
system hasn’t switched runlevels since booting. It’s possible to switch to different runlevels
on a running system with the init and telinit programs, as described next. The second
character in the runlevel output is your current runlevel.

Changing Runlevels on a Running System
Sometimes you may want to change runlevels on a running system. You might do this to get
more services, such as going from a console to a graphical login runlevel, or to shut down
or reboot your computer. This can be accomplished with the init (or telinit), shutdown,
halt, reboot, and poweroff commands.

http://technet24.ir/

256 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 256

Changing Runlevels with init or telinit
The init process is the fi rst process run by the Linux kernel, but you can also use it to
have the system reread the /etc/inittab fi le and implement the changes it fi nds there or to
change to a new runlevel. The simplest case is to have it change to the runlevel you specify.
For instance, to change to runlevel 1 (the runlevel reserved for single-user or maintenance
mode), you would type this command:

init 1

To reboot the system, you can use init to change to runlevel 6 (the runlevel reserved for
reboots) by entering:

init 6

A variant of init is telinit. Just like init, this program can take a runlevel number to
change to that runlevel, but it can also take the Q or q option to have the tool reread
/etc/inittab and implement any changes it fi nds there. Thus, if you’ve made a change
to the runlevel in /etc/inittab, you can immediately implement that change by typing
telinit q.

The man pages for these commands indicate slightly different syntaxes,
but telinit is sometimes a symbolic link to init and, in practice, init
responds just like telinit to the Q and q options.

Changing Runlevels with shutdown
Although you can shut down or reboot the computer with init, doing so has some prob-
lems. One issue is that it’s simply an unintuitive command for this action. Another is that
changing runlevels with init causes an immediate change to the new runlevel. This may
cause other users on your system some aggravation because they’ll be given no warning
about the shutdown. It’s therefore better to use the shutdown command in a multi-user
environment when you want to reboot, shut down, or switch to single-user mode. This
command supports extra options that make it friendlier in such environments.

The shutdown program sends a message to all users who are logged into your system and
prevents other users from logging in during the process of changing runlevels. The
shutdown command also lets you specify when to effect the runlevel change so that users
have time to exit editors and safely stop other processes that they may have running.

When the time to change runlevels is reached, shutdown signals the init process for you.
In the simplest form, shutdown is invoked with a time argument like this:

shutdown now

This changes the system to runlevel 1, the single-user or maintenance mode. The now
parameter causes the change to occur immediately. Other possible time formats include

http://technet24.ir/

Using the SysV Initialization Process 257

c05.indd 03/26/2015 Page 257

hh:mm, for a time in 24-hour clock format (such as 6:00 for 6:00 a.m. or 13:30 for 1:30
p.m.), and +m for a time m minutes in the future.

You can add extra parameters to specify that you want to reboot or halt (that is, power
off) the computer. Specifi cally, -r reboots the system, -H halts it (terminates operation but
doesn’t power it off), and -P powers it off. The -h option may halt or power off the com-
puter, but usually it powers it off. For instance, you can type shutdown -r +10 to reboot
the system in 10 minutes.

To give people some warning about the impending shutdown, you can add a message to
the end of the command:

shutdown -h +15 "system going down for maintenance"

If you schedule a shutdown but then change your mind, you can use the -c option to
cancel it:

shutdown -c "never mind"

Changing Runlevels with the halt, reboot, and poweroff
Commands
Three additional shortcut commands are halt, reboot, and poweroff. (In reality, reboot
and poweroff are usually symbolic links to halt. This command behaves differently
depending on the name by which it’s called.) As you might expect, these commands halt the
system (shut it down without powering it off), reboot it, or shut it down and (on hardware
that supports this feature) turn off the power, respectively. As with telinit and shutdown,
these commands are available in SysV, Upstart, and systemd.

In Exercise 5.1, you’ll experiment with some of the methods of changing the runlevels,
as just described.

E X E R C I S E 5 .1

Changing Runlevels

This exercise will demonstrate the effects of changing the runlevel in various ways on a

working system. Be aware that some of the effects will be different from one system to

another, depending on both the distribution and the system-specifi c confi guration of the

computer. Also, in the course of running this exercise, you’ll reboot the computer, so you

shouldn’t do it on a system that anybody else is using. To manage your runlevels, follow

these steps:

1. Log in as root, or acquire root privileges by using su or sudo with each of the follow-

ing commands. Use a text-mode or remote login; some of the exercise activities will

shut down X.

2. Type runlevel to learn your current runlevel. Recall that the fi rst character returned

refers to the previous runlevel (N denotes no previous runlevel; it hasn’t been

changed since the system booted). The second output character is the current run-

level. This is likely to be 2 on Debian or Debian-derived systems and 3 or 5 on Red

Hat or Red Hat–derived systems.

http://technet24.ir/

258 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 258

E X E R C I S E 5 .1 (c ont inue d)

3. If your system reports that it’s in runlevel 5, type telinit 3 to switch to runlevel 3.

Chances are that your X server will stop working. (Pressing Alt+F7 from a text-mode

console will show a blank text-mode screen rather than the X display this keystroke

would normally reveal.)

4. If your system initially reported a runlevel of 3, type telinit 5 to switch to runlevel

5. This will probably start X; however, if X is misconfi gured, the screen is likely to

blink two or three times and possibly display an error message. If X isn’t installed,

nothing much will happen, aside from a display about a few services being stopped

and started. If X starts, you can get back to your text-mode console by pressing

Ctrl+Alt+F1.

5. If your system reported that it was in runlevel 2, you can try other runlevels, such as

3, 4, or 5; however, this isn’t likely to have much effect. You can temporarily start or

stop X by typing /etc/init.d/gdm start or /etc/init.d/gdm stop. (You may

need to change gdm to xdm, mdm, or kdm.)

6. Return to your original runlevel using telinit, as in telinit 5.

7. If your distribution uses /etc/inittab and sets the default runlevel to 5, edit that

fi le and change the default runlevel by changing the number in the line that reads

id:n:initdefault:. The number, n, is likely to be either 3 or 5; change it to the

other value. (It’s wise to make a backup of /etc/inittab before editing it!) If your

distribution doesn’t use /etc/inittab or sets a default runlevel of 2, don’t make any

changes to this fi le and skip ahead to step 11.

8. Reboot the computer by typing reboot now or shutdown -r now.

9. Log in as root again, and type runlevel to verify that you’re running in the runlevel

you specifi ed in step 7.

10. Edit /etc/inittab to restore it to its original state, or restore it from its backup.

11. Type telinit 6. This enters runlevel 6, which reboots the system. The computer

should now be running as it was before you began this exercise.

Using the systemd Initialization Process

The systemd initialization process method is quickly gaining in popularity in the Linux
world. It’s currently the default initialization process used in the Fedora, CentOS, and Red
Hat Linux distributions.

http://technet24.ir/

Using the systemd Initialization Process 259

c05.indd 03/26/2015 Page 259

The systemd initialization process introduced a major paradigm shift in how Linux
systems handle services, which has also caused some controversy in the Linux world.
Instead of lots of small initialization shell scripts, the systemd method uses one monolithic
program that uses individual confi guration fi les for each service. This is somewhat of a
departure from earlier Linux philosophy.

The following sections walk through the basics of how the systemd initialization
process works.

Units and Targets
Instead of using shell scripts and runlevels, the systemd method uses units and targets. A
systemd unit defi nes a service or action on the system. It consists of a name, a type, and a
confi guration fi le. There are currently eight different types of systemd units:

 ■ automount

 ■ device

 ■ mount

 ■ path

 ■ service

 ■ snapshot

 ■ socket

 ■ target

The systemd program identifi es units by their name and type using the format name
.type. You use the systemctl command to list the units currently loaded in your Linux
system:

systemctl list-units

UNIT LOAD ACTIVE SUB DESCRIPTION

...

crond.service loaded active running Command Scheduler

cups.service loaded active running CUPS Printing Service

dbus.service loaded active running D-Bus System Message

...

multi-user.target loaded active active Multi-User System

network.target loaded active active Network

paths.target loaded active active Paths

remote-fs.target loaded active active Remote File Systems

slices.target loaded active active Slices

sockets.target loaded active active Sockets

...

#

http://technet24.ir/

260 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 260

Linux distributions can have hundreds of different units loaded and active; we just
selected a few from the output to show you what they look like. The systemd method uses
service-type units to manage the daemons on the Linux system. The target-type units are
important in that they group multiple units together so that they can be started at the same
time. For example, the network.target unit groups all of the units required to start the
network interfaces for the system.

The systemd initialization process uses targets similarly to the way SysV uses runlevels.
Each target represents a different group of services that should be running on the
system. Instead of changing runlevels to alter what’s running on the system, you just
change targets.

To make the transition from SysV to systemd smoother, there are targets that mimic the
standard 0 through 6 SysV runlevels, called runlevel0.target through runlevel6.target.

Configuring Units
Each unit requires a confi guration fi le that defi nes what program it starts and how it should
start the program. The systemd system stores unit confi guration fi les in the /lib/systemd
/system folder.

Here’s an example of the sshd.service unit confi guration fi le used in Fedora 20:

cat sshd.service

[Unit]

Description=OpenSSH server daemon

After=syslog.target network.target auditd.service

[Service]

EnvironmentFile=/etc/sysconfig/sshd

ExecStartPre=/usr/sbin/sshd-keygen

ExecStart=/usr/sbin/sshd -D $OPTIONS

ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure

RestartSec=42s

[Install]

WantedBy=multi-user.target

#

 The sshd.service confi guration fi le defi nes the program to start (/usr/sbin/sshd),
along with some other features, such as what services should run before the sshd service
starts (the After line), what target level the system should be in (the WantedBy line), and
how to reload the program (the Restart line).

http://technet24.ir/

Using the systemd Initialization Process 261

c05.indd 03/26/2015 Page 261

Target units also use confi guration fi les. They don’t defi ne programs but instead defi ne
which service units to start. Here’s an example of the graphical.target unit confi guration
fi le used in Fedora 20:

cat graphical.target

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Graphical Interface

Documentation=man:systemd.special(7)

Requires=multi-user.target

After=multi-user.target

Conflicts=rescue.target

Wants=display-manager.service

AllowIsolate=yes

[Install]

Alias=default.target

#

The target confi guration defi nes what targets should be loaded fi rst (the After line),
what targets are required for this target to start (the Requires line), what targets confl ict
with this target (the Conflicts line), and what targets or services the target requires to be
running (the Wants line).

Setting the Default Target
The default target used when the Linux system boots is defi ned in the /etc/systemd/system
folder as the fi le default.target. This is the fi le the systemd program looks for when it
starts up. This fi le is normally set as a link to a standard target fi le in the /lib/systemd
/system folder:

ls -al default.target

lrwxrwxrwx. 1 root root 36 Oct 1 09:14 default.target ->

 /lib/systemd/system/graphical.target

#

On this Fedora 20 system, the default target is set to the graphical.target unit.

http://technet24.ir/

262 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 262

The systemctl Program
In the systemd method, you use the systemctl program to control services and targets. The
systemctl program uses options to defi ne what action to take, as shown in Table 5.2.

TA B LE 5 . 2 systemctl commands

systemctl Command Name Explanation

list-units Displays the current status of all configured units.

default Changes to the default target unit.

isolate Starts the named unit and stops all others.

start name Starts the named unit.

stop name Stops the named unit.

reload name Causes the named unit to reload its configuration file.

restart name Causes the named unit to shut down and restart.

status name Displays the status of the named unit. (You can pass a PID
value, rather than a name, if you like.)

enable name Configures the unit to start when the computer next boots.

disable name Configures the unit not to start when the computer next
boots.

Instead of using shell scripts to start and stop services, you use the start and stop
commands:

systemctl stop sshd.service

systemctl status sshd.service

sshd.service - OpenSSH server daemon

Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled)

Active: inactive (dead)

Oct 02 10:33:33 localhost.localdomain systemd[1]: Stopped OpenSSH server

 daemon.

systemctl start sshd.service

systemctl status sshd.service

http://technet24.ir/

Using the Upstart Initialization Process 263

c05.indd 03/26/2015 Page 263

sshd.service - OpenSSH server daemon

Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled)

Active: active (running) since Thu 2014-10-02 10:34:08 EDT; 4s ago

Process: 3882

ExecStartPre=/usr/sbin/sshd-keygen (code=exited, status=0/SUCCESS)

Main PID: 3889 (sshd)

CGroup: /system.slice/sshd.service

 3889 /usr/sbin/sshd -D

Oct 02 10:34:08 localhost.localdomain sshd-keygen[3882]: Generating

SSH2 RSA host key: [OK]

Oct 02 10:34:08 localhost.localdomain systemd[1]: Started OpenSSH server daemon.

Oct 02 10:34:08 localhost.localdomain sshd[3889]: Server listening on

 0.0.0.0 port 22.

Oct 02 10:34:08 localhost.localdomain sshd[3889]: Server listening on ::

 port 22.

#

To change the target that is currently running, you must use the isolate command. For
example, to enter single-user mode you’d use:

systemctl isolate rescue.target

To go back to the default target for the system, you just use the default command.

One of the more controversial features of the systemd initialization process
is that it doesn’t use the standard Linux syslogd log filesystem. Instead, it
has its own log files, and those log files are not stored in text format. To
view the systemd log files you need to use the journalctl program.

Using the Upstart Initialization Process

Several modern Linux distributions, including recent versions of Ubuntu, now use an
init process called Upstart (http://upstart.ubuntu.com) rather than the venerable
SysV startup system. Broadly speaking, Upstart does the same job as the SysV scripts, but
Upstart is designed to better handle today’s dynamically changing hotplug hardware, which
can be connected to and disconnected from a computer while it’s still running. Upstart
provides SysV compatibility features, so you should be familiar with the SysV methods
described earlier; however, it also has its own unique scripts and differs in some important
ways. In particular, Upstart does away with /etc/inittab, instead providing an integrated
set of startup scripts that can, in principle, completely replace the SysV-style /etc/inittab

http://technet24.ir/

264 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 264

and runlevel-specifi c startup scripts. Upstart scripts also support starting or stopping
services based on a wider variety of actions than SysV startup scripts; for instance, Upstart
can launch a service whenever a particular hardware device is attached.

Using Upstart-Native Methods
A system that uses nothing but Upstart and its native scripts replaces both
/etc/inittab and the runlevel-specifi c SysV startup script directories with scripts in the
/etc/init directory. (This directory was called /etc/event.d on earlier versions of Upstart.)
You may want to check the contents of this directory on your own Upstart-based system.

Upstart is under heavy development, and its configuration file format is
subject to change. Thus, you may find differences from what is described
in these pages.

To change the runlevels in which a particular service runs, you’ll have to edit its confi gu-
ration fi le in a text editor. Locate the script (typically /etc/init/name.conf, where name is
the name of the service), and load it into a text editor. Look for lines that include the text
start on and stop on, as in the following example:

start on (filesystem

 and started hal

 and tty-device-added KERNEL=tty7

 and (graphics-device-added or stopped udevtrigger))

stop on runlevel [016]

Locate any runlevel specifi cation, and adjust it for your needs. For instance, you might
change the preceding example’s stop on runlevel specifi cation to read stop on runlevel
[0126] to include runlevel 2 in the list of runlevels on which the service is to be stopped.

After you make such a change, you can use the start or stop command to start or stop
the service immediately, as in stop gdm to shut down the gdm server. Before changing your
runlevel (as described earlier, in “Changing Runlevels on a Running System”), you should
type initctl reload to have Upstart reread its confi guration fi les.

If you upgrade the package that provides the Upstart configuration script,
you may need to reconfigure it.

Using SysV Compatibility Methods
Because the SysV startup script system has been so common for so long, a large number of
software packages include SysV startup scripts. To accommodate such packages, Upstart

http://technet24.ir/

Editing Files with vi 265

c05.indd 03/26/2015 Page 265

provides a compatibility mode: it runs SysV startup scripts in the usual locations (/etc
/rc.d/rc?.d, /etc/init.d/rc?.d, /etc/rc?.d, or a similar location). Thus, if you install a
package that doesn’t yet include an Upstart confi guration script, it should still launch in the
usual way. Furthermore, if you’ve installed utilities such as chkconfig, you should be able
to use them to manage your SysV-based services just as you would on a SysV-based system.

You may fi nd, however, that chkconfig and other SysV-based tools no longer work for
some services. As time goes on, this is likely to be true for more and more services because
the developers of distributions that favor Upstart may convert their packages’ startup
scripts to use Upstart-native methods.

Editing Files with vi

vi was the fi rst full-screen text editor written for Unix. It’s designed to be small and simple,
and it is often the only editor installed in emergency boot systems. For this reason alone,
vi is worth learning; you may need to use it in an emergency recovery situation. Vi is, how-
ever, a bit strange, particularly if you’re used to GUI text editors. To use vi, you should fi rst
understand the three modes in which it operates. Once you understand those modes, you
can begin learning about the text-editing procedures vi implements. You’ll also examine
how to save fi les and exit vi.

Most Linux distributions ship with a variant of vi known as Vim, or “Vi
IMproved.” As the name implies, Vim supports more features than the
original vi. The information presented here applies to both vi and Vim.
Most distributions that ship with Vim support launching it by typing vi, as
if it were the original vi.

Understanding vi Modes
At any given moment, vi is running in one of three modes:

Command Mode This mode accepts commands, which are usually entered as single
letters. For instance, i and a both enter insert mode, although in somewhat different ways,
as described shortly, and o opens a line below the current one.

Ex Mode To manipulate files (including saving your current file and running outside pro-
grams), you use ex mode. You enter ex mode from command mode by typing a colon (:),
typically directly followed by the name of the ex-mode command you want to use. After
you run the ex-mode command, vi returns automatically to command mode.

Insert Mode You enter text in insert mode. Most keystrokes result in text appearing on
the screen. One important exception is the Esc key, which exits insert mode and returns to
command mode.

http://technet24.ir/

266 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 266

If you’re not sure what mode vi is in, press the Esc key. Doing so returns
you to command mode, from which you can reenter insert mode, if
necessary.

Unfortunately, terminology surrounding vi modes is inconsistent at best. For instance,
command mode is sometimes referred to as normal mode, and insert mode is sometimes
called edit mode or entry mode. Ex mode often isn’t described as a mode at all but is
referred to as colon commands.

Exploring Basic Text-Editing Procedures
As a method of learning vi, consider the task of editing /etc/fstab to add a new disk
drive to the computer. Listing 5.3 shows the original fstab fi le used in this example. If you
want to follow along, enter it using a text editor with which you’re already familiar, and
save it to a fi le on your disk. Alternatively, copy your own computer’s /etc/fstab fi le to a
temporary location, and make analogous changes to it.

Listing 5.3 Sample /etc/fstab file

/dev/sda2 / ext4 defaults 1 1

/dev/sda1 /boot ext4 defaults 1 2

/dev/sda4 /home ext4 defaults 1 2

/dev/sda3 swap swap defaults 0 0

tmpfs /dev/shm tmpfs defaults 0 0

devpts /dev/pts devpts gid=5,mode=620 0 0

sysfs /sys sysfs defaults 0 0

proc /proc proc defaults 0 0

Don’t try editing your real /etc/fstab file as a learning exercise; a mistake
could render your system unbootable! You might put your test fstab file in
your home directory for this exercise.

The fi rst step to using vi is to launch it and have it load the fi le. In this example, type
vi fstab while in the directory containing the fi le. The result should resemble Figure 5.3,
which shows vi running in an Xfce Terminal window. The tildes (~) down the left side of the
display indicate the end of the fi le. (This feature is absent on some systems, though.)

http://technet24.ir/

Editing Files with vi 267

c05.indd 03/26/2015 Page 267

The bottom line shows the status of the last command—an implicit fi le-load command—
because you specifi ed a fi lename when launching the program.

F I GU R E 5 . 3 The last line of a vi display is a status line that shows messages from the
program.

You can add a new entry to fstab using vi either by typing it in its entirety or by
duplicating an existing line and then modifying one copy. To do it the fi rst way, follow
these steps:

1. Move the cursor to the beginning of the /dev/sda3 line using the arrow keys.

2. Press the o (lowercase letter o, not number 0) key. This opens a new line immediately
below the current line, moves the cursor to that line, and enters insert mode.

Although vi’s commands may seem arcane, many of them are mnemonic
in their own way; that is, they’re designed to be easily remembered, as in
the letter o standing for open line.

3. Type a new entry, such as the following:

/dev/sdb1 /home2 ext4 defaults 0 0

4. Press the Esc key to return to command mode.

To practice making changes by modifying an existing entry, follow these steps:

http://technet24.ir/

268 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 268

1. Move the cursor to the beginning of the /dev/sdb1 line you just created by using the
arrow keys, if necessary; you should see the cursor resting on the first / of /dev/sdb1.

You can use the h, j, k, and l keys to move left, down, up, and right, respec-
tively, if you prefer not to use the arrow keys.

2. You must now yank one line of text. This term is used much as copy is used in most
text editors—you copy the text to a buffer from which you can later paste it back into
the file. To yank text, you use the yy command preceded by the number of lines you
want to yank. Thus type 1yy (do not press the Enter key, though). The dd command
works much like yy, but it deletes the lines as well as copying them to a buffer. Both yy
and dd are special cases of the y and d commands, respectively, which yank or delete
text in amounts specified by the next character, as in dw to delete the next word.

3. Move the cursor to the line before the one where you want the new line to appear.

4. Type p (again, without pressing the Enter key). Vi pastes the contents of the buffer
starting on the line after the cursor. The file should now have two identical /dev/sdb1
lines. The cursor should be resting at the start of the second one. If you want to paste
the text into the document starting on the line before the cursor, use an uppercase P
command.

5. Move the cursor to the 1 in /dev/sdb1 on the line you’ve just pasted. You’re about to
begin customizing this line.

6. Until now, you’ve operated vi in command mode. You can use any of several com-
mands to enter insert mode. At this point, the most appropriate is R, which enters insert
mode so that it’s configured for text replacement rather than insertion. If you prefer to
insert text rather than overwrite it, you can use i or a (the latter advances the cursor
one space, which is sometimes useful at the end of a line). For the purposes of these
instructions, type R to enter insert mode. You should see -- REPLACE -- appear in the
status line.

7. Type 2 to change /dev/sdb1 to /dev/sdb2.

8. Use the arrow keys to move the cursor to the 2 in /home2. You must modify this mount
point name.

9. Type 3 to change /home2 to /home3.

You can make more extensive changes to the fstab file, if you like, but be
sure to work from a copy of the file!

10. Exit insert mode by pressing the Esc key.

11. Save the file and quit by typing :wq. This is an ex-mode command, as described
shortly. (The ZZ command is equivalent to :wq.)

http://technet24.ir/

Editing Files with vi 269

c05.indd 03/26/2015 Page 269

Many additional commands are available that you may want to use in some situations.
Here are some of the highlights:

Change Case Suppose you need to change the case of a word in a file. Instead of enter-
ing insert mode and retyping the word, you can use the tilde (~) key in command mode to
change the case. Position the cursor on the first character you want to change, and press ~
repeatedly until the task is done.

Undo To undo any change, type u in command mode.

Open Text In command mode, typing o (a lowercase letter o) opens text—that is, it
inserts a new line immediately below the current one and enters insert mode on that line.

Search To search forward for text in a file, type / in command mode, followed immedi-
ately by the text you want to locate. Typing ? searches backward rather than forward.

Change Text The c command changes text from within command mode. You invoke
it much like the d or y command, as in cw to change the next word or cc to change an
entire line.

Go to a Line The G key brings you to a line that you specify. The H key “homes” the cur-
sor; that is, it moves the cursor to the top line of the screen. The L key brings the key to the
bottom line of the screen.

Replace Globally To replace all occurrences of one string with another, type
:%s/original/replacement/g, where original is the original string and replacement
is its replacement. Change % to a starting line number, comma, and ending line number to
perform this change on a small range of lines.

Vi offers a great deal more depth than is presented here; the editor is quite capable, and
some Linux users are very attached to it. Entire books have been written about vi. Consult
one of these, or a vi web page like www.vim.org, for more information.

Saving Changes
To save changes to a fi le, type :w from command mode. This enters ex mode and runs the
w ex-mode command, which writes the fi le using whatever fi lename you specifi ed when you
launched vi. Related commands enable other functions:

Edit a New File The :e command edits a new file. For instance, entering :e /etc/
inittab loads /etc/inittab for editing. Vi won’t load a new file unless the existing one
has been saved since its last change or unless you follow :e with an exclamation mark (!).

Include an Existing File The :r command includes the contents of an old file in an
existing one.

Execute an External Command The ex-mode command :! executes the external com-
mand that you specify. For instance, typing :!ls runs ls, enabling you to see what files are
present in the current directory.

http://technet24.ir/

270 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 270

Quit Use the :q command to quit the program. As with :e, this command won’t work
unless changes have been saved or you append an exclamation mark to the command (as
in :q!).

You can combine ex-mode commands such as these to perform multiple actions in
sequence. For instance, typing :wq writes changes and then quits from vi. (ZZ is the
 equivalent of :wq.)

Summary

Although Linux distributions are designed to boot painlessly and reliably once installed,
understanding the boot process will help you overcome problems and maintain your
system. Most Linux systems employ a boot loader known as GRUB (either GRUB Legacy
or GRUB 2). These programs both fi t themselves into the standard BIOS boot system,
enabling the computer to load the Linux kernel. GRUB 2, and some patched versions of
GRUB Legacy, also work on EFI-based computers. The kernel then runs the init program,
which in turn reads various confi guration fi les to boot all of the services that make a run-
ning Linux system.

Modifying your GRUB confi guration enables you to boot different Linux kernels or
non-Linux OSs. You can also pass new boot options to Linux. Once the system is booted,
you can use the dmesg command or log fi les to study the boot process in order to verify that
it went correctly or to fi nd clues as to why it didn’t.

You can use the vi editor to edit your GRUB confi guration fi le, your system initializa-
tion scripts and confi guration fi les, or any other plain-text fi le on your computer. Although
vi is old-fashioned in many ways, it’s small and is used for emergency boot systems. Every
administrator should be familiar with vi, even if it’s not their editor of choice for day-to-
day operations.

Exam Essentials

Describe how GRUB Legacy is configured and used. GRUB Legacy uses the menu.lst
or grub.conf configuration file in /boot/grub. This file contains global and per-image
options. Use the grub-install program to install the boot loader. When GRUB boots, it
presents a menu of OS options that you select using the keyboard arrow keys.

Describe how GRUB 2 is configured and used. GRUB 2 uses the /boot/grub/grub.cfg
configuration file; however, system administrators are discouraged from editing it directly.
Instead, they should rely on automatic configuration scripts and set system-specific defaults
in /etc/defaults/grub and the files in /etc/grub.d. As with GRUB Legacy, you can
install GRUB 2 using the grub-install program.

http://technet24.ir/

Exam Essentials 271

c05.indd 03/26/2015 Page 271

Describe the boot process. The CPU runs the firmware, the firmware loads and runs a
boot loader, the boot loader loads and runs secondary boot loaders (if needed) and the
Linux kernel, the Linux kernel loads and runs the initial system program (init), and init
starts the rest of the system services via startup scripts that are specific to the startup sys-
tem (SysV, Upstart, systemd, or something more exotic). BIOS-based computers look for
boot loaders in various boot sectors, including the MBR of a hard drive or the boot sector
of a disk partition or USB flash drive. EFI-based computers look for boot loaders in files on
the ESP.

Summarize where to look for boot-time log information. The dmesg command prints out
logs from the kernel ring buffer, which holds boot-time and other kernel messages. Other
useful log information can be found in /var/log/messages and other files in /var/log.

Summarize the role of /sbin/init. The init program is responsible for starting many
programs and services on your Linux operating system.

Explain the SysV init system. The SysV init system uses a default runlevel specified with a
line like id:2:initdefault: in the /etc/inittab file. Use commands such as chkconfig,
update-rc.d, ntsysv, and systemctl to change which services are started when switching
to specific runlevels. Runlevels 0, 1, and 6 are reserved for shutdown, single-user mode, and
rebooting, respectively. Runlevels 3, 4, and 5 are the common user runlevels on Red Hat
and most other distributions, and runlevel 2 is the usual user runlevel on Debian systems.

Describe how to change SysV init runlevels. The programs init and telinit can be used
to change to other runlevels. The shutdown, halt, poweroff, and reboot programs are also
useful when shutting down, rebooting, or switching to single-user mode.

Explain the systemd init system. The systemd init system uses units and targets to control
services. The default target is specified by the file /etc/systemd/system/default.target
and is a link to a target file in the /lib/systemd/system folder.

Describe how to change systemd init targets. You use the systemctl program to start and
stop services as well as to change the target level of the system.

Describe vi’s three editing modes. You enter text using insert mode, which supports text
entry and deletion. The command and ex modes are used to perform more complex com-
mands or to run outside programs to operate on the text entered or changed in insert mode.

http://technet24.ir/

272 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 272

Review Questions

1. Where might the BIOS find a boot loader?

A. RAM

B. /dev/boot

C. MBR

D. /dev/kmem

E. The swap partition

2. You want to boot a Linux system into single-user mode. What option might you add to a
Linux kernel’s options list in a boot loader to accomplish this task?

A. one

B. single-user

C. 1

D. telinit 6

E. telinit 1

3. After the system boots, one of your hard disks doesn’t respond. What might you do to find
out what’s gone wrong?

A. Check the /var/log/diskerror log file to see what’s wrong.

B. Verify that the disk is listed in /mnt/disks.

C. Check the contents of /etc/inittab to be sure it’s mounting the disk.

D. Type dmesg | less, and peruse the output for disk-related messages.

E. Check the menu.lst, grub.conf, or grub.cfg configuration file.

4. What is the first program that the Linux kernel runs once it’s booted in a normal
boot process?

A. dmesg

B. init

C. startup

D. rc

E. lilo

5. Which of the following is the GRUB 2 boot loader configuration file?

A. /dev/grub

B. The MBR

C. /boot/grub/grub.conf

D. /boot/grub/grub.cfg

E. /boot/grub/menu.lst

http://technet24.ir/

Review Questions 273

c05.indd 03/26/2015 Page 273

6. How might you identify an initial RAM disk file in GRUB 2?

A. initrd /boot/initrd-3.4.2

B. initrd=/boot/initrd-3.4.2

C. initramfs /boot/initrd-3.4.2

D. initramfs=/boot/initrd-3.4.2

E. ramdisk=/boot/initrd-3.4.2

7. Which command is used to install GRUB Legacy into the MBR of your first SATA
hard drive?

A. grub (hd0,1)

B. grub-install /dev/sda1

C. lilo /dev/sda

D. grub-install /dev/sda

E. grub-legacy /dev/sda1

8. The string root (hd1,5) appears in your /boot/grub/menu.lst file. What does
this mean?

A. GRUB Legacy tells the kernel that the kernel’s root partition is the fifth partition of the
first disk.

B. GRUB Legacy looks for files on the sixth partition of the second disk.

C. GRUB Legacy looks for files on the fifth partition of the first disk.

D. GRUB Legacy installs itself in /dev/hd1,5.

E. GRUB Legacy installs itself in /dev/sdb5.

9. What line in /etc/inittab would indicate that your default runlevel is 5?

A. ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

B. id:5:initdefault:

C. si:5:sysinit:/etc/init.d/rcS

D. l5:5:wait:/etc/init.d/rc 5

E. 1:2345:respawn:/sbin/getty 38400 tty1

10. Which SysV runlevels are reserved by init for reboot, shutdown, and single-user mode
purposes? (Select three.)

A. 0

B. 1

C. 2

D. 5

E. 6

http://technet24.ir/

274 Chapter 5 ■ Booting Linux and Editing Files

c05.indd 03/26/2015 Page 274

11. You type the following command:
$ runlevel

5 3

What can you tell about your runlevel status? (Select two.)

A. The current runlevel is 5.

B. The current runlevel is 3.

C. The previous runlevel is 5.

D. The previous runlevel is 3.

E. The runlevel is in the process of changing.

12. A system administrator types the following command:
shutdown -c

What is the effect of this command?

A. A previously scheduled shutdown is cancelled.

B. The system shuts down and reboots immediately.

C. The system shuts down and halts immediately.

D. The system asks for confirmation and then shuts down.

E. The system closes all open windows in X without shutting down.

13. What program do you use to start or stop services when using the systemd initialization
process?

A. journalctl

B. systemctl

C. init

D. service

E. systemd

14. You want to change to single-user mode on a running SysV system. What command might
you use to do this?

A. runlevel 1

B. telinit 1

C. shutdown -1

D. single-user

E. halt to 1

15. What command would you use to change to single-user mode on a running systemd
system?

A. systemctl isolate rescue.target

B. systemctl default

C. journalctl default

http://technet24.ir/

Review Questions 275

c05.indd 03/26/2015 Page 275

D. systemd single

E. systemctl start sshd.service

16. How would you remove two lines of text from a file using vi?

A. In command mode, position the cursor on the first line and type 2dd.

B. In command mode, position the cursor on the last line and type 2yy.

C. In insert mode, position the cursor at the start of the first line, hold down the Shift key
while pressing the Down arrow key twice, and press the Delete key on the keyboard.

D. In insert mode, position the cursor at the start of the first line, and press Ctrl+K twice.

E. Using your mouse, select both lines and then press the Delete or Backspace key.

17. In vi’s command mode, you type :q!. What is the effect?

A. Nothing. This isn’t a valid vi command.

B. The text :q! is inserted into the file you’re editing.

C. The program terminates and saves any existing files that are in memory.

D. The program terminates without saving your work.

E. An exclamation point (!) overwrites the character under the cursor in the text.

18. What is an advantage of vi over graphical text editors?

A. vi is X based, so it is easier to use than other graphical text editors.

B. vi encodes text in EBCDIC, which is more flexible than Emacs’s ASCII.

C. vi’s mode-based operations permit it to handle non-English languages.

D. vi includes a built-in web browser and email client; Emacs doesn’t.

E. vi is smaller, so it can fit on compact emergency USB flash drive systems and embedded
devices.

19. You want to enter insert mode from vi’s command mode. How might you do this? (Select
three.)

A. Type R.

B. Type i.

C. Type a.

D. Type :.

E. Press Esc.

20. How do you exit vi’s insert mode to type command-mode commands?

A. Press the ~ key.

B. Press the Esc key.

C. Press Ctrl+X followed by Ctrl+C.

D. Press the F10 key.

E. Press the Shift+Insert key combination.

http://technet24.ir/

http://technet24.ir/

c06.indd 03/26/2015 Page 277

PART

II
Exam 102-400

http://technet24.ir/

http://technet24.ir/

c06.indd 03/26/2015 Page 279

Chapter

6
Configuring the X
Window System,
Localization, and
Printing

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 106.1 Install and configure X11

 ✓ 106.2 Set up a display manager

 ✓ 106.3 Accessibility

 ✓ 107.3 Localization and internationalization

 ✓ 108.4 Manage printers and printing

http://technet24.ir/

c06.indd 03/26/2015 Page 280

Major modern desktop OSs all provide some form of graphical
user interface (GUI) that provides the windows, menus, dialog
boxes, fl exible fonts, and so on with which you’re familiar. In

Linux, the main GUI is known as the X Window System (or X for short). X confi guration
is either very easy or moderately hard. Most distributions today provide auto-detection and
easy confi guration options during installation, and these usually work correctly. When they
don’t, or when you want to tweak the confi guration, you must delve into the X confi gura-
tion fi le or use a GUI X confi guration tool. Doing either requires that you know how X
treats the video hardware, among other things.

Beyond basic X confi guration are a few extra topics. These include fonts, GUI login
tools, user desktop environments, using X for remote access, and localization. Each of these
topics is closely associated with basic X confi guration, but they all go beyond it in one way
or another, extending X’s capabilities or providing more features for users, as described in
this chapter.

The X display can be considered one form of output. Another is printing, and this
chapter covers that topic as well. With a properly confi gured printer, you can obtain hard
copies of the documents you create and edit using both X and text-based applications.

Configuring Basic X Features

Basic X confi guration specifi es features such as the mouse used, the keyboard layout, the
screen resolution, the video refresh rate, the display color depth, and the video card you’re
using. Some of these options require telling X about what hardware you have installed,
whereas others enable you to adjust settings on your hardware. In any event, before you
proceed with actual confi guration, you should know something about the X servers that
are available for Linux, because your selection will determine what additional tools are
available and what fi les you may need to adjust manually. GUI and text-mode confi gura-
tion utilities can help you confi gure X, but sometimes you must delve into the confi guration
fi les, so knowing their format is important. This requires that you know what the major
option groups do so that you can adjust them.

X Server Options for Linux
Although X is by far the dominant GUI for Linux, several implementations of X
are available:

http://technet24.ir/

Configuring Basic X Features 281

c06.indd 03/26/2015 Page 281

XFree86 The dominant X server in Linux until 2004 was XFree86 (www.xfree86.org).
This open-source server supports a wide array of video cards and input devices, and most
Linux software was originally designed with XFree86 in mind. As we write, the most
recent version is 4.8.0. Signifi cant changes occurred between version 3.3.6 and the 4.x
series, and some older utilities work only with 3.3.6 and earlier versions of XFree86.
Although a tiny number of elderly systems must run XFree86 3.3.6 or earlier for driver
support reasons, most systems today run XFree86 4.x or X.org-X11. The latter is more
common on distributions released since 2004.

X.org-X11 In 2004, most Linux distributions shifted from XFree86 to X.org-X11 because
of licensing changes to XFree86. X.org-X11 6.7.0 was based on XFree86 4.3.99, but it has
been developed independently up to the current version, 7.7. Because X.org-X11 is based
on XFree86, the two are virtually identical in most important respects. One signifi cant
difference is the name of the confi guration fi le and another is the default location for fonts.
Subsequent sections of this chapter point out these differences. You can learn more at
www.x.org/wiki/.

Accelerated-X The commercial Accelerated-X server from Xi Graphics (www.xig.
com) is an alternative to the open-source XFree86 and X.org-X11. In practice, running
Accelerated-X is seldom necessary, but if you have problems getting your video card
working, you may want to look into Accelerated-X; its driver base is independent of the
more popular open-source choices, so it’s possible that you’ll have better luck with it. The
Accelerated-X confi guration tools and fi les are completely different from those described
later in this chapter in “Methods of Confi guring X” and “X Confi guration Options,” so
you’ll need to consult its documentation for help. The rest of this chapter’s topics still apply
to Accelerated-X.

In practice, it’s usually easiest to stick with whatever X server your distribution provides.
For modern distributions, this is most often X.org-X11.

Using Manufacturer-Provided Video Drivers

One of X’s functions is to provide drivers that control the video card. XFree86, X.org-X11,

and Accelerated-X all ship with a wide variety of drivers that support most video cards.

Some cards, though, have weak support in the stock packages. The standard drivers

support other cards, but those drivers may not support all of a video device’s features.

XFree86 4.x and X.org-X11 both support a modular driver architecture, which means that

you can drop in a driver module for your card and use it with minimal changes to your

X confi guration. Both AMD (formerly ATI) and nVidia provide Linux video card drivers

designed to work with XFree86 and X.org-X11. (Both X servers can use the same drivers.)

Thus, if you have problems with the standard X video drivers, you may want to check with

your video card manufacturer and the video card chipset manufacturers for Linux drivers.

http://technet24.ir/

282 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 282

Installing and using the manufacturer-provided video drivers is usually a matter of

extracting fi les from a tarball and running an installation script. Consult the documenta-

tion that comes with the driver for details. Many of these drivers are particularly helpful

for enabling the 3D acceleration features of modern cards. These features were fi rst used

by games; however, the desktop environments and other non-game software increas-

ingly use them as well.

One problem with manufacturer-supplied drivers is that they’re often proprietary. You

might not have source code, which means that the drivers might not work on more exotic

CPUs, and the drivers could cease working with a future upgrade to your X server. The

AMD and nVidia drivers also both include Linux kernel drivers as a necessary component,

so you’ll need to reinstall the drivers if you upgrade your kernel.

Methods of Configuring X
Confi guring X has traditionally been a diffi cult process because the X confi guration fi le
includes many arcane options. The task is made simpler if you can use a confi guration
utility, and most Linux distributions now run such a utility as part of the installation
process. If the confi guration utility doesn’t do everything that you want it to do, though,
you may need to delve into the X confi guration fi le to set options manually. Thus, knowing
something about its format will help a lot. You must also know how to go about restarting
X in order to test your changes.

The upcoming section “X Configuration Options” describes the major X
features and how to control them in more detail.

X Configuration Utilities
Several confi guration tools for XFree86 4.x and X.org-X11 are available:

The X Server Itself The X server itself includes the capacity to query the hardware and
produce a confi guration fi le. To do this, type XFree86 -configure (for XFree86) or Xorg
-configure (for X.org-X11) as root when no X server is running. The result should be a fi le
called /root/XF86Config.new (for XFree86) or /root/xorg.conf.new (for X.org-X11). This
fi le may not produce optimal results, but it’s at least a starting point for manual modifi cations.

Distribution-Specific Tools Many modern distributions ship with their own custom X
confi guration tools. These include Red Hat’s (and Fedora’s) Display Settings tool (accessible
from the default desktop menu or by typing system-config-display in an xterm) and
SUSE’s YaST and YaST2. These tools frequently resemble the distribution’s install-time X
confi guration tools, which can vary substantially.

 (continued)

http://technet24.ir/

Configuring Basic X Features 283

c06.indd 03/26/2015 Page 283

xf86cfg or xorgcfg This utility is named differently for XFree86 vs. X.org-X11. It’s depre-
cated, meaning that it’s no longer supported; however, if it’s present on your system, it can
help you tweak settings once X is at least partially running.

All of these utilities gather the same type of information needed to confi gure X manually.
Your best bet for understanding these tools and what they want is to understand the under-
lying X confi guration fi le’s format and contents.

If you’re using the old XFree86 3.3.6, the tools just described don’t work.
Instead, you’ll need to use a tool such as xf86config, Xconfigurator,
or XF86Setup, or you can configure X manually. Because so few systems
today use anything as old as XFree86 3.3.6, we don’t describe these tools
in this book.

The X Configuration File Format
The X confi guration fi le’s name and location vary with the version of X being run:

X.org-X11 This server’s confi guration fi le is called xorg.conf, and it’s usually stored in /
etc/X11, although /etc and several other locations are also acceptable to the server.

Many modern X.org-X11 configurations omit the X configuration file
entirely, instead relying on runtime auto-detection of hardware. This
often works fine, but if X doesn’t work or if some of its features are set
incorrectly, you may need to generate an xorg.conf file by typing Xorg
-configure when X is not running and edit the file manually, as described
in subsequent sections.

XFree86 4.x The XFree86 4.x confi guration fi le is called XF86Config-4 or XF86Config,
and is found in /etc/X11 or sometimes in /etc. This fi le’s format is the same as for the
X.org-X11 confi guration fi le.

XFree86 3.3.6 and earlier The X confi guration fi le’s name is XF86Config, and the fi le is
most commonly located in /etc/X11 or /etc. Although the fi lename can be the same as for
XFree86 4.x, the fi le format is slightly different. This book, like the exam, covers the newer
format used by X.org-X11 and XFree86 4.x.

All three of these classes of X server use confi guration fi les that are broken down into
multiline sections, one section for each major feature. These sections begin with a line
consisting of the keyword Section and the section name in quotes and end with the
keyword EndSection:

http://technet24.ir/

284 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 284

Section "InputDevice"

 Identifier "Keyboard0"

 Driver "kbd"

 Option "XkbModel" "pc105"

 Option "XkbLayout" "us"

 Option "AutoRepeat" "500 200"

EndSection

This section tells X about the keyboard—its model, layout, and so on. Details for the
sections you’re most likely to need to adjust are described shortly in “X Confi guration
Options.”

For the most part, the different X servers support the same sections and most of the
same option names. A few exceptions to this rule do exist, however:

 ■ The Option keyword isn’t used in XFree86 3.3.6 and earlier. Instead, the option name
(such as XkbLayout or AutoRepeat in the preceding example) appears without quotes as
the first word on the line.

 ■ XFree86 3.3.6 and earlier don’t use the ServerLayout section, described later in
“Putting It All Together.”

 ■ XFree86 3.3.6 and earlier lack the Identifier and Driver lines, which are common in
the XFree86 4.x and X.org-X11 configuration files.

 ■ Some section-specific features vary between versions. We describe the most important
of these in the coming pages.

The X Configure-and-Test Cycle
If your X confi guration isn’t working correctly, you need to be able to modify that confi gu-
ration and then test it. Many Linux distributions confi gure the system to start X automati-
cally, but starting X automatically can make it diffi cult to test the X confi guration. To a
new Linux administrator, the only obvious way to test a new confi guration is to reboot the
computer.

A better solution is to kick the system into a mode in which X is not started automati-
cally. On Red Hat, Fedora, and similar distributions, this goal can be achieved by typing
telinit 3. This action sets the computer to use runlevel 3, in which X normally doesn’t
run. Chapter 5, “Booting Linux and Editing Files,” covers runlevels in more detail.

Some distributions, such as Debian, Ubuntu, and Gentoo, don’t use runlevels as a signal
for whether to start X. With such distributions, you must shut down the GUI login server
by typing /etc/init.d/xdm stop. (You may need to change xdm to gdm, kdm, mdm, or
lightdm, depending on your confi guration.)

Once the X session is shut down, you can log in using a text-mode login prompt and
tweak your X settings manually, or you can use text-based X confi guration programs. You
can then type startx to start the X server again. If you get the desired results, quit from X
(typically by selecting a “log out” option in your desktop environment) and type telinit
5 (/etc/init.d/xdm start in Debian and other distributions that don’t use runlevels to

http://technet24.ir/

Configuring Basic X Features 285

c06.indd 03/26/2015 Page 285

start the GUI login prompt) to restore the system to its normal X login screen. If after
typing startx you don’t get the results you want, you can end your X session and try
modifying the system further.

If X is working minimally but you want to modify it using X-based confi guration tools,
you can do so after typing startx to get a normal X session running. Alternatively, you
can reconfi gure the system before taking it out of the X-enabled runlevel.

Another approach to restarting X is to leave the system in its X-enabled runlevel and
then kill the X server. The Ctrl+Alt+Backspace keystroke does this on many systems, or you
can do it manually with the kill command after fi nding the appropriate process ID with
the ps command, as shown here:

ps ax | grep X

1375 ? S 6:32 /usr/bin/X -auth /var/gdm/:0.Xauth

kill 1375

This approach works better on systems that don’t map the running of X to specifi c run-
levels, such as Debian and its derivatives.

X Configuration Options
When editing the X confi guration fi le, the best approach is usually to identify the feature
that’s not working and zero in on the section that controls this feature. You can then
edit that section, save your changes, and test the new confi guration. In XFree86 4.x and
X.org-X11, the major sections described here are called Module, InputDevice, Monitor,
Device, Screen, and ServerLayout. You’re likely to have two InputDevice sections, one
for the keyboard and one for the mouse. (In XFree86 3.3.6 and earlier, a separate Pointer
section handles the mouse.) The section order doesn’t matter.

Fonts are a complex enough topic that they’re described in more detail
later in “Configuring X Fonts.” Part of this configuration is handled in the
Files section.

Loading Modules
The Module section controls the loading of X server modules—drivers for specifi c features
or hardware. A typical example looks like this:

Section "Module"

 Load "dbe"

 Load "extmod"

 Load "fbdevhw"

 Load "glx"

 Load "record"

 Load "freetype"

http://technet24.ir/

286 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 286

 Load "type1"

 Load "dri"

EndSection

Each module is named (dbe, extmod, and so on), and it is loaded by name using the
Load option. Most of these module names can be deciphered with a bit of knowledge
about the features they control. For instance, freetype and type1 handle TrueType and
Adobe Type 1 font rendering, respectively. If you’re perusing your Module section and see
modules that you don’t understand, you shouldn’t worry about it; generally speaking,
modules that are confi gured automatically are necessary for normal operation, or at least
they do no harm.

For the most part, if an X confi guration works, you shouldn’t try to adjust the Module
section, even if you want to tweak the X confi guration. Sometimes, though, you’ll need to
add lines to or remove lines from this section. This is particularly likely to be necessary if
you’re activating 3D acceleration support or some sort of exotic feature. In such cases, you
should consult the documentation for the feature that you want to activate.

Many desktop environments and other user-level utilities provide tools
to set the keyboard repeat rate. Thus, the options that you set in the X
configuration file are used as defaults only and may be overridden by
users’ settings.

Setting the Keyboard
The keyboard is one of two common input devices confi gured via an InputDevice section:

Section "InputDevice"

 Identifier "Keyboard0"

 Driver "kbd"

 Option "XkbModel" "pc105"

 Option "XkbLayout" "us"

 Option "AutoRepeat" "500 200"

EndSection

The Identifier line provides a label that’s used by another section (ServerLayout,
described in “Putting It All Together”). The string given on this line is arbitrary, but for a
keyboard, a descriptive name such as this example’s Keyboard0 will help you understand
the fi le.

The Driver line tells X what driver to use to access the keyboard. This should be kbd,
Keyboard, or evdev, depending on your X server. The kbd and Keyboard drivers are, as you
might expect, keyboard-specifi c drivers. The evdev driver, by contrast, is a generic input
device driver that works with many types of input devices. Unless your keyboard isn’t
working at all, you shouldn’t adjust this line.

http://technet24.ir/

Configuring Basic X Features 287

c06.indd 03/26/2015 Page 287

The Option lines set various options that adjust keyboard features, such as the model,
the layout, and the repeat rate. For the most part, the defaults work well; however, you may
want to change the AutoRepeat option or add it if it’s not present. This option tells X when
to begin repeating characters when you hold down a key and how often to repeat them. It
takes two numbers as values, enclosed in quotes: the time until the fi rst repeat and the time
between subsequent repeats, both expressed in milliseconds (ms). In the preceding example,
the system waits 500ms (half a second) for the fi rst repeat and then 200ms for each subse-
quent repeat (that is, fi ve repeats per second).

Setting the Mouse
A second InputDevice section controls how X treats the mouse:

Section "InputDevice"

 Identifier "Mouse0"

 Driver "mouse"

 Option "Protocol" "IMPS/2"

 Option "Device" "/dev/input/mice"

 Option "Emulate3Buttons" "no"

 Option "ZAxisMapping" "4 5"

EndSection

As with the keyboard, the Identifier line is used in the ServerLayout section to tell
X which input device to use. The Driver line identifi es the driver to use: mouse. (Many
modern systems use evdev for the mouse.) The Option lines set mouse control options.
The most important of these are Device and Protocol.

The Device line tells X what Linux device fi le to read to access the mouse. In this
example, it’s /dev/input/mice, but other possibilities include /dev/mouse (a pointer to
the real mouse device, whatever its name), /dev/input/mouse1 (for a Bluetooth mouse
device), /dev/usb/usbmouse (an old identifi er for USB mice), /dev/ttyS0 (the fi rst RS-232
serial port mouse), and /dev/ttyS1 (the second RS-232 serial port mouse). If your mouse
is working at all (even if its motions are erratic), don’t change this line. If your mouse isn’t
working, you may need to experiment.

The Protocol option tells X what signals to expect from the mouse for various move-
ments and button presses. The Auto protocol causes X to try to guess the mouse’s protocol,
which usually works correctly. If it doesn’t work, you can try more specifi c protocols, such
as IMPS/2 and ExplorerPS/2, which are very similar in practice. (Note that PS/2 is both a
hardware interface and a software protocol; many USB mice use the PS/2 mouse protocol
even though they don’t use the PS/2 mouse port.) If your mouse has a scroll wheel, chances
are that you should use one of these protocols. If your mouse is older, you may need to try
an older protocol, such as PS/2, Microsoft, or Logitech.

Additional options are usually less critical than the Device and Protocol options. The
Emulate3Buttons option tells X whether to treat a chord (that is, a simultaneous press)
of both buttons on a two-button mouse as if it were a middle-button press. This option is

http://technet24.ir/

288 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 288

usually disabled on three-button mice and scroll mice (the scroll wheel does double duty
as a middle mouse button). The ZAxisMapping option in the preceding example maps the
scroll wheel actions to the fourth and fi fth buttons, because X must treat scroll wheels as
if they were buttons. When you scroll up or down, these “button” presses are generated.
Software can detect this and take appropriate actions.

Setting the Monitor
Some of the trickiest aspects of X confi guration relate to the monitor options. You set these
in the Monitor section, which can sometimes be quite large. A modest Monitor section
looks like this:

Section "Monitor"

 Identifier "Monitor0"

 ModelName "AOC e2343Fk"

 HorizSync 30.0 - 83.0

 VertRefresh 55.0 - 75.0

 # My custom 1920x1080 mode

 Modeline "1920x1080" 138.50 1920 1968 2000 2080 1080 1083 1088 1111

EndSection

As in the keyboard and mouse confi gurations, the Identifier option is a free-form
string that contains information that’s used to identify a monitor. The Identifier option
can be just about anything you like. Likewise, the ModelName option can be anything you
like; it’s used mainly for your own edifi cation when reviewing the confi guration fi le.

As you continue down the section, you’ll see the HorizSync and VertRefresh lines,
which are extremely critical. They defi ne the range of horizontal and vertical refresh rates
that the monitor can accept, in kilohertz (kHz) and hertz (Hz), respectively. Together, these
values determine the monitor’s maximum resolution and refresh rate. Despite the name, the
HorizSync item alone doesn’t determine the maximum horizontal refresh rate. Rather, this
value, the VertRefresh value, and the resolution determine the monitor’s maximum refresh
rate. X selects the maximum refresh rate that the monitor will support given the resolution
you specify in other sections. Some X confi guration utilities show a list of monitor mod-
els or resolution and refresh rate combinations (such as 1024 × 768 at 72Hz). You select
an option, and the utility then computes the correct values based on that selection. This
approach is often simpler to handle, but it’s less precise than entering the exact horizontal
and vertical sync values. You should enter these values from your monitor’s manual.

Don’t set random horizontal and vertical refresh rates; on older hardware,
setting these values too high can damage a monitor. (Modern monitors
ignore signals presented at too high a refresh rate.)

To settle on a resolution, X looks through a series of mode lines, which are specifi ed via
the Modeline option. Computing mode lines is tricky, so we don’t recommend that you try

http://technet24.ir/

Configuring Basic X Features 289

c06.indd 03/26/2015 Page 289

it unless you’re skilled in such matters. The mode lines defi ne combinations of horizontal
and vertical timing that can produce a given resolution and refresh rate. For instance, a
particular mode line might defi ne a 1024 × 768 display at a 90Hz refresh rate, and another
might represent 1024 × 768 at 72Hz.

Some mode lines represent video modes that are outside the horizontal or vertical
sync ranges of a monitor. X can compute these cases and discard the video modes that a
monitor can’t support. If asked to produce a given resolution, X searches all of the mode
lines that accomplish the job, discards those that the monitor can’t handle, and uses the
remaining mode line that creates the highest refresh rate at that resolution. (If no mode
line supports the requested resolution, X drops down to another specifi ed resolution, as
described shortly, and tries again.)

Although you can include an arbitrary number of Modeline entries in your Monitor
section, most such fi les lack these entries. The reason is that XFree86 4.x and X.org-X11
support a feature known as Data Display Channel (DDC). This is a protocol that enables
monitors to communicate their maximum horizontal and vertical refresh rates and appro-
priate mode lines to the computer. You may need to create a Modeline option if this feature
fails, though. Try performing a Web search on the keywords modeline (or mode line)
and your desired video resolution, or try the XFree86 Modeline Generator website
(http://xtiming.sourceforge.net/cgi-bin/xtiming.pl), which can generate a Modeline
option for any resolution and refresh rate you specify.

Setting the Video Card
Your monitor is usually the most important factor in determining your maximum refresh rate
at any given resolution, but X sends data to the monitor only indirectly, through the video
card. Because of this, it’s important that you be able to confi gure this component correctly.
An incorrect confi guration of the video card is likely to result in an inability to start X.

In the past, video hardware was almost always implemented as a plug-in
card. Most modern computers include video hardware on the mother-
board, though. Despite this fact, it’s common to refer to a video card, even
if the computer lacks a separate plug-in card.

Choosing the Driver

Sometimes X, and particularly modern versions of X.org-X11, can pick the optimum
video driver automatically. Other times, though, you must provide that information in the
XF86Config or xorg.conf fi le. In particular, a line in the Device section, which resembles
the following, sets the driver module:

Driver "nv"

This line sets the name of the driver. The drivers reside in the /usr/X11R6/lib/
modules/drivers/ or /usr/lib/xorg/modules/drivers/ directory. (On some systems,

http://technet24.ir/

290 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 290

lib becomes lib64.) Most of the drivers’ fi lenames end in _drv.o, and if you remove this
portion, you’re left with the driver name. For instance, nv_drv.o corresponds to the nv driver.

Some X configuration utilities provide a large list of chipsets and specific
video card models, so you can select the chipset or board from this list to
have the utility configure this detail.

If you type Xorg -configure to create an initial confi guration, the resulting fi le is
likely to include multiple Device sections, each for a different driver. Some of these, such
as fbdev and vesa, are generic drivers that work—but not optimally—on a wide variety of
video cards. Today, you’re most likely to use the nv or nouveau drivers (both of which work
on nVidia cards), the radeon driver (which works on ATI/AMD cards), or the intel driver
(which works on Intel cards). You’ll need to know something about your video hardware
to pick the best one. If you’re in doubt, you can try using each one in turn by specifying
each Device section in the Screen section, as described later, in “Setting the Resolution and
Color Depth.”

Setting Card-Specific Options

The Device section of the xorg.conf fi le sets various options related to specifi c X servers.
A typical Device section resembles the following:

Section "Device"

 Identifier "Videocard0"

 Driver "nv"

 VendorName "nVidia"

 BoardName "GeForce 6100"

 VideoRam 131072

EndSection

The Identifier line provides a name that’s used in the subsequent Screen section
to identify this particular Device section. The VendorName and BoardName lines provide
information that’s useful mainly to people reading the fi le.

The VideoRam line is unnecessary with most boards because the driver can detect
the amount of RAM installed in the card. With some devices, however, you may need
to specify the amount of RAM installed in the card in kilobytes. For instance, the
preceding example indicates a card with 128MB of RAM installed (the 131072 value is
128 times 1024).

Many drivers support additional driver-specifi c options. They may enable support for
features such as hardware cursors (special hardware that enables the card to handle mouse
pointers more easily) or caches (using spare memory to speed up various operations).
Consult the XF86Config or xorg.conf man page or other driver-specifi c documentation
for details.

http://technet24.ir/

Configuring Basic X Features 291

c06.indd 03/26/2015 Page 291

Setting the Resolution and Color Depth
The Screen section tells X about the combination of monitors and video cards that you’re
using. XFree86 4.x and X.org-X11 support multiple video cards and monitors on one
system. This can be handy if you’re testing a new monitor or video card driver. In any
event, the Screen section looks something like this:

Section "Screen"

 Identifier "Screen0"

 Device "Videocard0"

 Monitor "Monitor0"

 DefaultDepth 24

 SubSection "Display"

 Depth 24

 Modes "1920x1080" "1280x1024" "1024x768"

 EndSubSection

 SubSection "Display"

 Depth 8

 Modes "1024x768" "800x600" "640x480"

 EndSubSection

EndSection

The Device and Monitor lines refer to the Identifier lines in your Device and Monitor
sections, respectively. The Screen section includes one or more Display subsections, which
defi ne the video modes that X may use. This example creates two such displays. The fi rst
uses a color depth of 24 bits (Depth 24) and possible video mode settings of 1920×1080,
1280×1024, and 1024×768. (These video modes are actually names that refer to the mode
lines defi ned in the Monitor section or to standard mode lines.) The second possible
display uses an 8-bit color depth (Depth 8) and supports 1024×768, 800×600, and 640×480
video modes.

To choose between the Display subsections, you include a DefaultDepth line. In this
example, X uses the 24-bit display if possible, unless it’s overridden by other options when
starting X.

Graphical video modes require a certain amount of RAM on the video card. (On some
laptop computers and computers with video hardware integrated into the motherboard, a
portion of system RAM is reserved for this use by the BIOS.) The total amount of RAM
required is determined by an equation:

R = xres × yres × bpp ÷ 8,388,608

In this equation, R is the RAM in megabytes, xres is the x resolution in pixels, yres is
the y resolution in pixels, and bpp is the bit depth. For instance, consider a 1280 × 1024
display at 24-bit color depth:

R = 1280 × 1024 × 24 ÷ 8,388,608 = 3.75MB

http://technet24.ir/

292 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 292

All modern video cards have at least 32MB of RAM—usually much more. This is more
than enough to handle even very high resolutions at 32-bit color depth (the greatest depth
possible). Thus, video RAM shouldn’t be a limiting factor in terms of video mode selec-
tion—at least not with modern video hardware. Very old video cards can impose limits, so
you should be aware of them.

Modern video cards ship with large amounts of RAM to support 3D accel-
eration features. X supports such features indirectly through special 3D
acceleration packages, but 3D acceleration support is limited compared to
basic video card support. If 3D acceleration is important to you, you should
research the availability of this support.

Putting It All Together
XFree86 4.x and X.org-X11 require a section that’s not present in the XFree86 3.3.6
confi guration fi le: ServerLayout. This section links together all of the other components of
the X confi guration:

Section "ServerLayout"

 Identifier "single head configuration"

 Screen "Screen0" 0 0

 InputDevice "Mouse0" "CorePointer"

 InputDevice "Keyboard0" "CoreKeyboard"

EndSection

Typically, this section identifi es one Screen section and two InputDevice sections
(for the keyboard and the mouse). Other confi gurations are possible, though. For instance,
XFree86 4.x and X.org-X11 support multi-head displays, in which multiple monitors are
combined to form a larger desktop than either one alone would support. In these confi gura-
tions, the ServerLayout section includes multiple Screen sections.

If All Goes Well....

In practice, you may not need to edit the X confi guration fi le. As already noted, most

Linux distributions confi gure X automatically at installation. Indeed, most distributions

now rely on launch-time auto-confi guration of X along with user settings for features

such as resolution, keyboard repeat rate, and so on.

Desktop environments typically provide a dialog box, such as the one shown in the

following screen shot, which enables you to set the resolution, refresh rate, and some-

times other display options. Look for such options in the desktop environment’s main

settings tool, typically under a title such as Display or Monitor.

http://technet24.ir/

Configuring Basic X Features 293

c06.indd 03/26/2015 Page 293

Obtaining X Display Information
Sometimes, it’s helpful to know about the capabilities of your display as X manages it.
The tool for this job is xdpyinfo. When you type xdpyinfo, it produces copious infor-
mation about the current display, such as the X version number, the resolution and color
depth of all the current displays, and so on. Much of this information is highly technical
in nature, so you may not understand it all. That’s OK. We recommend that you run this
program and peruse the output to see what you can learn from it. If you should want
to obtain similar information on another computer’s display later, you’ll know how to
obtain it.

For still more technical information, you can use the -ext extension option to
xpdyinfo. extension is the name of an X extension, which is a software module that
provides extended capabilities to X. (The basic xpdyinfo command, without any options,
lists all of the available extensions.)

You can obtain detailed technical information about a specifi c window with the
xwininfo command. In basic use, you type xwininfo, move the mouse cursor over a
window, and click. The result is a list of assorted data about the window you clicked, such
as the following:

 Absolute upper-left X: 1171

 Absolute upper-left Y: 611

 Relative upper-left X: 6

 Relative upper-left Y: 25

 Width: 657

 Height: 414

 Depth: 32

 Visual Class: TrueColor

 Border width: 0

http://technet24.ir/

294 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 294

 Class: InputOutput

 Colormap: 0x2800003 (not installed)

 Bit Gravity State: NorthWestGravity

 Window Gravity State: NorthWestGravity

 Backing Store State: NotUseful

 Save Under State: no

 Map State: IsViewable

 Override Redirect State: no

 Corners: +1171+611 -92+611 -92-55 +1171-55

 -geometry 80x24-86-49

Some of this information, such as the window’s position and size, is easy to interpret.
Other information, such as the color map and gravity state, is highly technical, and we
don’t describe it further here. You can pass various options to xwininfo to modify the
information that it displays or how you select a window, including the following:

Alternate Window Selection Methods The -id and -name options enable you to identify
a window by an ID number or by its name (normally displayed in the window’s border),
respectively. The -root option selects the root window—that is, the entire display.

Window Relationships Like processes, windows can have parents and children. You can
identify these relationships with the -children option. The -tree option works in a similar
way, but it works recursively; that is, it displays information on the children of a window’s
children, and so on.

Basic Information The -stats option is used by default. You can restrict the output by
using the -bits option, which limits output to information on the window’s bit states.

Additional Information The -events option produces information on the events that
the window processes; -size displays information on sizing hints; -wm displays win-
dow manager data; -shape is much like –stats, but it adds information on the window
and border shapes; -frame modifi es the display to include information on the window
manager’s frame; -metric adds measures in millimeters (mm) to the regular pixel-based
measures; -english adds measures in feet and inches; and -all displays all available
information.

Windows in X are created and managed by several programs. One of
these, the window manager, handles the window’s borders and enables
you to drag the window around the screen and resize it. Some xwininfo
statistics relate to the window excluding the window manager’s elements,
but others include these elements. Options such as -frame and -wm can
modify this output or display information on the window manager’s fea-
tures specifically.

http://technet24.ir/

Configuring X Fonts 295

c06.indd 03/26/2015 Page 295

Wayland: The Future?

An entirely new method of managing displays, known as Wayland (http://wayland.

freedesktop.org), has started gaining popularity. Wayland is intended to address many

of the problems with X, which suffers from a design dating back to the 1980s, before

many modern video features became available. Thus X is hobbled by legacy features

such as a font model that’s been largely replaced by add-on font libraries.

Wayland-native applications won’t use X at all, which will theoretically result in simpler

application design, better speed, and fewer video problems, particularly for certain

graphics-intensive applications. Existing X applications will continue to work via an X

server to be included with Wayland. Essentially, X will run as a process within Wayland,

although ideally this will be a stopgap measure.

Both the KDE and GNOME desktop teams have indicated support for Wayland, and the

developers of several major Linux distributions, including Fedora and Ubuntu, have

expressed an intention to support Wayland, either as an option or as the default graphics

system.

Configuring X Fonts

Fonts have long been a trouble spot for Linux (or more precisely, for X). X was created at
a time when available font technologies were primitive by today’s standards, and although
X has been updated in various ways to take advantage of newer technologies, these
updates have been lacking compared to the font subsystems in most competing OSs. X’s
core font system can be set up from the X confi guration fi le. Alternatively, you can confi g-
ure a font server—a program that delivers fonts to one or many computers using network
protocols—to handle the fonts. The latest Linux font technology sets up fonts in a way
that’s more independent of X and that produces more pleasing results, at least to most
people’s eyes.

Some applications don’t rely on either X or any other standard library to
handle fonts; they manage their own fonts themselves. This practice is
particularly common in word processors. If you configure your fonts as
described here but find that an important program doesn’t see the changes
you’ve made, consult its documentation; you may need to tell the program
where to look to use the fonts you’ve added.

http://technet24.ir/

296 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 296

Font Technologies and Formats
Font technologies can be classifi ed as falling into one of two broad categories:

Bitmap Fonts The simplest type of font format is the bitmap font, which represents fonts
much like bitmap graphics in which individual pixels in an array are either active or
inactive. Bitmap fonts are fairly easy to manipulate and display from a programming
perspective, which makes them good for low-powered computers. The problem is that each
font must be optimized for display at a particular resolution. For instance, a font that’s 20
pixels high will appear one size on the screen (typically 72 to 100 dots per inch, or dpi)
but will be much smaller when printed (typically at 300 to 1200 dpi). Similarly, you need
multiple fi les to display a single font at multiple sizes (such as 9 point versus 12 point). This
means that a single font, such as Times, requires potentially dozens of individual fi les for
display at different sizes and on different display devices. If you lack the correct font fi le,
the result will be an ugly scaled display.

Outline Fonts Most modern fonts are distributed as outline fonts (aka scalable fonts). This
type of format represents each character as a series of lines and curves in a high-resolution
matrix. The computer can scale this representation to any font size or for any display resolu-
tion, enabling a single font fi le to handle every possible use of the font. The main problem
with outline fonts is that this scaling operation is imperfect; scalable fonts often look slightly
worse than bitmap fonts, particularly at small sizes. Scaling and displaying the fonts also
takes more CPU time than displaying a bitmap font. This factor used to be important, but
on modern CPUs it’s not much of an issue.

Both bitmap and outline fonts come in several different formats. X ships with a number
of basic bitmap and outline fonts, and you’re unlikely to need to deal explicitly with bitmap
fonts or their formats, so we don’t describe them in any detail. Outline fonts are another
matter, though. The two main formats are Adobe’s PostScript Type 1 (Type 1 for short)
and the TrueType font standard, developed by both Apple and Microsoft. Fonts available
on the Internet and on commercial font CDs come in one or both of these formats.

XFree86 3.3.6 and earlier supported Type 1 fonts but not TrueType fonts. XFree86 4.x
and X.org-X11 support both Type 1 and TrueType fonts.

Configuring X Core Fonts
X core fonts are those that are handled directly by X. To confi gure these fonts, you must do
two things: prepare a font directory that holds the fonts, and add the font directory to X’s
font path.

Preparing a Font Directory
The fi rst step to installing fonts is to prepare a directory in which to store them. XFree86
has traditionally stored its fonts in subdirectories of /usr/X11R6/lib/X11/fonts/, but
X.org-X11 changes this to /usr/share/fonts or /usr/share/X11/fonts. In either case, if
you’re adding fonts that you’ve downloaded from the Internet or obtained from a commer-
cial font CD-ROM, you may want to store these additional fonts elsewhere, such as /opt/

http://technet24.ir/

Configuring X Fonts 297

c06.indd 03/26/2015 Page 297

fonts or /usr/local/fonts. (Chapter 4, “Managing Files,” includes information about the
logic behind Linux’s directory system.) You may want to create separate subdirectories for
fonts in different formats or from different sources.

When you’re installing Type 1 fonts, Linux needs the font fi les with names that end in
.pfa or .pfb; these fi les contain the actual font data. (The PFA and PFB fi les store the data
in slightly different formats, but the two fi le types are equivalent.) Additional fi les distrib-
uted with Type 1 fonts aren’t necessary for Linux. TrueType fonts come as TTF fi les, and
that’s all you need for Linux.

Linux uses fonts in the same format that Mac OS X, Windows, and most
other OSs use. Earlier versions of the Mac OS used font files in special
Macintosh-only “suitcases,” which Linux can’t use directly. If you want to
use such fonts in Linux, you must convert them. The FontForge program
(http://fontforge.sourceforge.net) can do this conversion, among
other things.

Once you’ve copied fonts to a directory, you must prepare a summary fi le that describes
the fonts. This fi le is called fonts.dir, and it begins with a line that specifi es the number
of fonts that are described. Subsequent lines provide a font fi lename and an X logical font
description (XLFD), which is a tedious-looking description of the font. A complete fonts.
dir line can be rather intimidating:

courb.pfa -ibm-Courier-bold-r-normal--0-0-0-0-m-0-iso8859-1

Fortunately, you needn’t create this fi le manually; programs exist to do so automatically.
In XFree86 4.3 and later and in X.org-X11, the simplest way to do the job is to use
mkfontscale and mkfontdir:

mkfontscale

mkfontdir

The mkfontscale program reads all of the fonts in the current directory and creates a
fonts.scale fi le, which is just like a fonts.dir fi le but describes only outline fonts. The
mkfontdir program combines the fonts.scale fi le with the fonts.dir fi le, creating it if it
doesn’t already exist.

Other programs designed to perform this task also exist. Most notably, ttmkfdir creates
a fonts.dir fi le that describes TrueType fonts, and type1inst does the job for Type 1 fonts.
The mkfontscale program is preferable because it handles both font types, but if you’re
using an older distribution that lacks this program, or if it’s not doing a satisfactory job,
you can try one of these alternative programs.

Adding Fonts to X’s Font Path
Once you’ve set up fonts in a directory and created a fonts.dir fi le describing them, you
must add the fonts to the X font path. You do this by editing the Files section of the
XF86Config or xorg.conf fi le:

http://technet24.ir/

298 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 298

Section "Files"

 FontPath "/usr/share/fonts/100dpi:unscaled"

 FontPath "/usr/share/fonts/Type1"

 FontPath "/usr/share/fonts/truetype"

 FontPath "/usr/share/fonts/URW"

 FontPath "/usr/share/fonts/Speedo"

 FontPath "/usr/share/fonts/100dpi"

EndSection

If your Files section contains FontPath lines that refer to unix:/7100 or
unix:/-1 but that don’t list conventional directories, read the upcoming
section “Configuring a Font Server”; your system is configured to rely on
an X font server for its core fonts. In this case, you may want to modify
your font server configuration rather than change the X core fonts directly,
although you can add font directories to have X both use the font server
and directly handle your new fonts. If your X server configuration lacks a
Files section, it uses a hard-coded default font path. You can add your
own complete Files section to add new font paths.

To add your new font directory to the font path, duplicate one of the existing FontPath
lines and change the directory specifi cation to point to your new directory. The order of
these directories is signifi cant; when matching font names, X tries each directory in turn, so
if two directories hold fonts of the same name, the fi rst one takes precedence. Thus, if you
want your new fonts to override any existing fonts, place the new directory at the top of the
list; if you want existing fonts to take precedence, add your directory to the end of the list.

The :unscaled string in the first entry in the preceding example tells X
to use bitmap fonts from this directory only if they exactly match the
requested font size. Without this string, X will attempt to scale bitmap
fonts from a font directory (with poor results). Typically, bitmap directo-
ries are listed twice: once near the top of the font path with the :unscaled
specification and again near the bottom of the list without it. This produces
quick display of matching bitmapped fonts, followed by any matching
scalable fonts, followed by scaled bitmap fonts.

Once you’ve added your font directory to X’s font path, you should test the confi guration.
The most reliable way to do this is to shut down X and restart it. (If your system boots
directly into X, consult “Running an XDMCP Server” for information on doing this.)
A quicker approach, but one that presents some opportunity for error, is to add the font path
to a running system by using the xset program:

$ xset fp+ /your/font/directory

$ xset fp rehash

http://technet24.ir/

Configuring X Fonts 299

c06.indd 03/26/2015 Page 299

The fi rst of these commands adds /your/font/directory to the end of the font path.
(Substitute +fp for fp+ to add the directory to the start of the existing font path.) The sec-
ond command tells X to reexamine all of the font directories to rebuild the list of available
fonts. The result is that you should now be able to access the new fonts. (You’ll need to
restart any programs that should use the new fonts.) One program to test the matter quickly
is xfontsel. This program enables you to select an X core font for display so that you can
check to be sure that the fonts you’ve added are available and appear as you’d expect.

Configuring a Font Server
Prior to the release of XFree86 4.0, several Linux distributions began using TrueType-
enabled font servers to provide TrueType font support. Most distributions have now aban-
doned this practice, but some haven’t, and font servers can be useful in some environments.

A font server is a handy way to deliver fonts to many computers from a central location.
This can be a great time-saver if you want to add fonts to many computers—set them up
to use a font server and then tweak that server’s font confi guration. To use a font server, X
must list that server in its font path:

Section "Files"

 FontPath "unix:/7100"

 FontPath "tcp/fount.pangaea.edu:7100"

EndSection

The fi rst line in this example specifi es a local font server. (Using unix:/-1 rather than
unix:/7100 also works in some cases.) The second line specifi es that the font server on the
remote system fount.pangaea.edu is to be used. If your computer is already confi gured to
use a font server, you needn’t change the X confi guration to add or delete fonts; instead, you
can modify the font server’s confi guration. (You can still modify the X font confi guration
directly, but it may be cleaner to manage all of the local fonts from one confi guration fi le.)

To add fonts to a font server, you should fi rst install the fonts on the system, as described
earlier in “Preparing a Font Directory.” You should then modify the font server’s confi gu-
ration fi le, /etc/X11/fs/config. Rather than a series of FontPath lines, as in the main X
confi guration fi le, the font server’s confi guration lists the font path using the catalogue
keyword as a comma-delimited list:

catalogue = /usr/share/fonts/100dpi:unscaled,

 /usr/share/fonts/Type1,

 /usr/share/fonts/truetype,

 /usr/share/fonts/URW,

 /usr/share/fonts/Speedo,

 /usr/share/fonts/100dpi

The catalogue list may span several lines or just one. In either event, all of the entries
are separated by commas, but the fi nal entry ends without a comma. You can add your new
font directory anywhere in this list.

http://technet24.ir/

300 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 300

Once you’ve saved your changes, you must restart the font server. Typically, this is done
via SysV startup scripts or the systemd systemctl command (described in more detail in
Chapter 5):

/etc/init.d/xfs restart

At this point, you should restart X or type xset fp rehash to have X reexamine its
font path, including the fonts delivered via the font server.

Although X core fonts and font servers were once very important, most modern X
applications now emphasize an entirely different font system: Xft. You can add the same
fonts as both X core fonts and Xft fonts, but the Xft confi guration requires doing things
in a new way.

Configuring Xft Fonts
X core fonts (including fonts delivered via a font server) have several signifi cant drawbacks:

 ■ They aren’t easy to integrate between the screen display and printed output. This
makes them awkward from the point of view of word processing or other applications
that produce printed output.

 ■ They’re server based. This means that applications may not be able to access the font
files directly because the fonts may be stored on a different computer than the applica-
tion. This can exacerbate the printing integration problem.

 ■ They provide limited or no support for kerning and other advanced typographic
features. Again, this is a problem for word processing programs and other programs
that must generate printed output.

 ■ They don’t support font smoothing (aka anti-aliasing). This technology employs gray
pixels (rather than black or white pixels) along curves to create the illusion of greater
resolution than the display can produce.

These problems are deeply embedded in the X core font system, so developers have
decided to bypass that system. The result is the Xft font system, which is based in part on
the FreeType library (www.freetype.org), an open-source library for rendering TrueType
and Type 1 fonts. Xft is a client-based system, meaning that applications access font fi les
on the computer on which they’re running. Xft also supports font smoothing and other
advanced font features. Overall, the result is greatly improved font support. The cost,
though, is that Linux now has two font systems: X core fonts and Xft fonts.

Fortunately, you can share the same font directories through both systems. If you’ve
prepared a font directory as described earlier in “Preparing a Font Directory,” you can add
it to Xft. Load the /etc/fonts/local.conf fi le into a text editor. Look for any lines in this
fi le that take the following form:

<dir>/font/directory</dir>

If such lines are present, duplicate one of them and change the duplicate to
point to your new font directory. If such lines don’t exist, create one just before the

http://technet24.ir/

Managing GUI Logins 301

c06.indd 03/26/2015 Page 301

</fontconfig> line. Be sure not to embed your new font directory specifi cation within a
comment block though. Comments begin with a line that reads <!-- and end with a line
that reads -->.

If you create a font directory that holds several subdirectories, you can
add just the main directory to local.conf. For instance, if you created /
opt/fonts/tt and /opt/fonts/type1, adding /opt/fonts to local.
conf will be sufficient to access all of the fonts that you installed on
the system.

Once you’ve made these changes, type fc-cache as root. This command causes Xft to
run through its font directories and create index fi les. These fi les are similar to the fonts.
dir fi le in principle, but the details differ. If you fail to take this step, you’ll still be able
to access these fonts, but each user’s private Xft cache fi le will contain the lists of fonts.
Generating these fi les can take some time, thus degrading performance.

To test your Xft fonts, use any Xft-enabled program. Most modern X-based Linux
programs are so enabled, so loading a GUI text editor, word processor, web browser, or
other tool that enables you to adjust fonts should do the trick.

Managing GUI Logins

Linux can boot into a purely text-based mode in which the console supports text-based
logins and text-mode commands. This confi guration is suitable for a system that runs as a
server or for a desktop system for a user who dislikes GUIs. Most desktop users, though,
expect their computers to boot into a friendly GUI. For such users, Linux supports a login
system that starts X automatically and provides a GUI login screen. Confi guring and man-
aging this system requires you to understand a bit of how the system works, how to run it,
and how to change the confi guration.

The X GUI Login System
As described later in this chapter in “Using X for Remote Access,” X is a network-enabled
GUI. This fact has many important consequences, and one of these relates to Linux’s
GUI login system. This system employs a network login protocol, the X Display Manager
Control Protocol (XDMCP). To handle remote logins, an XDMCP server runs on a
computer and listens for connections from remote computers’ X servers. To handle local
logins, an XDMCP server runs on a computer and starts the local computer’s X server.
The XDMCP server then manages the local X server’s display—that is, it puts up a login
prompt like the one shown in Figure 6.1.

http://technet24.ir/

302 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 302

F I GU R E 6 .1 An XDMCP server manages local GUI logins to a Linux system.

Five XDMCP servers are common on Linux: the X Display Manager (XDM), the
KDE Display Manager (KDM), the GNOME Display Manager (GDM), the Light Display
Manager (LightDM), and the MDM Display Manager (MDM; a recursive acronym). A few
more exotic XDMCP servers are also available, but these fi ve are the most important. Of
these, the exam objectives explicitly cover the fi rst four, so they’re the ones described here.

As you may guess by their names, KDM and GDM are associated with the KDE and
GNOME projects, respectively. MDM is a derivative of GDM. XDM is the oldest and
least feature-heavy of these display managers. LightDM aims to be compact and compat-
ible with multiple desktop environments, and it has become the default for the Ubuntu
distribution. You can change which desktop manager your system uses if you don’t like
the default.

Although KDM and GDM are associated with KDE and GNOME, respec-
tively, neither limits your choice of desktop environment. In fact, it’s pos-
sible, and often necessary, to run programs associated with one desktop
environment inside another one. This works fine, although it increases the
memory load.

Running an XDMCP Server
Several methods exist to start an XDMCP server. The two most common are to launch it
more or less directly from init via an entry in /etc/inittab or its ancillary confi gura-
tion fi les or to launch it as part of a runlevel’s startup script set via a system startup script.

http://technet24.ir/

Managing GUI Logins 303

c06.indd 03/26/2015 Page 303

Chapter 5 describes both init and system startup scripts in general, so consult it for
information about these processes.

Whichever method is used, many distributions confi gure themselves to run their chosen
XDMCP server when they start in runlevel 5 but not when they start in runlevel 3. This
is the only difference between these two runlevels in most cases. Thus, changing from
runlevel 3 to runlevel 5 starts X and the XDMCP server on many distributions, and
switching back to runlevel 3 stops X and the XDMCP server. As described in more detail in
Chapter 5, you can change runlevels as root with the telinit command:

telinit 5

Permanently changing the runlevel on a SysV-based system requires editing the /etc/
inittab fi le and, in particular, its id line:

id:5:initdefault:

Change the number (5 in this case) to the runlevel you want to use as the default. Most
distributions that use Upstart or systemd start the XDMCP server via methods more akin
to the methods traditionally used by Debian, as described next.

A few distributions—most notably Gentoo, Debian, and Debian’s derivatives (including
the popular Ubuntu)—attempt to start an XDMCP server in all runlevels (or don’t do so at
all). This is done through the use of a SysV startup script called xdm, kdm, or gdm. You can
temporarily start or stop the XDMCP server by running this script and passing it the start
or stop option. To enable or disable the XDMCP server permanently, you should adjust
your SysV startup scripts, as described in Chapter 5.

In addition to the question of whether to run an XDMCP server is the question of which
XDMCP server to run. Most distributions set a default XDMCP server in one way or
another. Two common methods exist:

Selection via Configuration File Some distributions hide the XDMCP server choice in
a confi guration fi le, often in the /etc/sysconfig directory. In Fedora, the /etc/sys-
config/desktop fi le sets the DISPLAYMANAGER variable to the path to the executable, as
in DISPLAYMANAGER=/bin/xdm. In openSUSE, /etc/sysconfig/displaymanager sets
the DISPLAYMANAGER variable to the display manager’s name in lowercase letters, as in
DISPLAYMANAGER="xdm".

Selection via Startup Script In Debian and derivative distributions, such as Ubuntu, the
display manager is set via a SysV, Upstart, or systemd startup script—use the gdm script to
use GDM, kdm to use KDM, and so on. By default, only one XDMCP server (and associ-
ated startup script) is installed, so if you want to change your XDMCP server, you may
need to install your desired server. Chapter 5 describes how to confi gure specifi c startup
scripts to run automatically.

Unfortunately, distribution maintainers have had a habit of changing the details of how
XDMCP servers are launched from time to time, and the settings are often buried in poorly
documented confi guration fi les. Therefore, you may need to go digging through the fi les in your
/etc directory to fi nd the correct setting. If you can’t fi nd the setting, try using grep to search
for strings such as DISPLAYMANAGER or the name of the XDMCP server that’s currently running.

http://technet24.ir/

304 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 304

Configuring an XDMCP Server
XDMCP servers, like most programs, can be confi gured. Unfortunately, this confi guration
varies from one server to another, although there are some commonalities. In the following
pages, we provide some details for confi guring XDM, KDM, and GDM.

Configuring XDM
XDM is the simplest of the major XDMCP servers. It accepts usernames and passwords,
but it doesn’t enable users to perform other actions, such as choosing which desktop envi-
ronment to run. (This must be confi gured through user login fi les.)

XDM’s main confi guration fi le is /etc/X11/xdm/xdm-config. Most distributions ship
with a basic xdm-config fi le that should work fi ne for a local workstation. If you want
to enable the computer to respond to remote login requests from other X servers on the
network, or if you want to verify that the system is not confi gured accordingly, you should
pay attention to this line:

DisplayManager.requestPort: 0

This line tells XDM not to access a conventional server port. To activate XDM as a
remote login server, you should change 0 to 177, the traditional XDMCP port. You must
then restart XDM. When the fi le is so confi gured, users on other computers can initiate
remote X-based logins to your computer via XDMCP. This can be handy on local
networks, but it’s also a security risk, which is why the default is not to enable such access.

The /etc/X11/xdm/Xaccess fi le is another important XDM confi guration fi le. If XDM is
confi gured to permit remote access, this fi le controls who may access the XDM server and
in what ways. A wide-open system contains lines that use an asterisk (*) to denote that any-
body may access the system:

*

* CHOOSER BROADCAST

The fi rst line tells XDM that anybody may connect, and the second line tells XDM that
anybody may request a chooser—a display of local systems that accept XDMCP connec-
tions. To limit the choices, you should list individual computers or groups of computers
instead of using the asterisk wildcard:

*.pangaea.edu

tux.example.com

*.pangaea.edu CHOOSER BROADCAST

This example lets any computer in the pangaea.edu domain connect to or receive a
chooser, and it also lets tux.example.com connect to but not receive a chooser.

Many additional options are set in the /etc/X11/xdm/Xresources fi le; it hosts X
resources, which are similar to environment variables but apply only to X-based programs.
For instance, you can change the text displayed by XDM by altering the xlogin*greeting
resource in this fi le.

http://technet24.ir/

Managing GUI Logins 305

c06.indd 03/26/2015 Page 305

Configuring KDM
KDM is based partly on XDM, and so it shares many of its confi guration options. Unfortunately,
the location of the KDM confi guration fi les is unpredictable; sometimes KDM uses the XDM
confi guration fi les, at other times they’re stored in /etc/X11/kdm or /etc/kde/kdm, and occasion-
ally they’re stored in a truly strange location, such as /usr/lib/kde4/libexec/.

If you can’t find the KDM configuration files, try using your package
management tools, described in Chapter 2, “Managing Software.” Try
obtaining lists of files in the kdm or kdebase package or some other likely
candidate, and look for the KDM configuration files.

KDM expands on XDM by enabling users to select a session type when they log in,
to shut down the computer from the main KDM prompt, and so on. Most of these extra
options are set in the kdmrc fi le, which appears in the same directory as the other KDM
confi guration fi les. Some of these options override the more common XDM confi guration
options for the same features. In particular, the [Xdmcp] section provides options relating
to network operation. The Enable option in that section should be set to true if you want
to support network logins.

Configuring GDM
GDM is more of a break from XDM than is KDM. GDM doesn’t use the conventional
XDM confi guration fi les or similar fi les. Instead, it uses confi guration fi les that are usually
stored in /etc/X11/gdm or /etc/gdm. In the past, the most important of these fi les was gdm.
conf, and it had a format similar to the kdmrc fi le. More recent versions of GDM, however,
place this fi le elsewhere and give it a new format. With these versions, you can set local
options in the custom.conf fi le in the GDM confi guration directory. This fi le typically
starts with no options, but the ones you set override the defaults. As with KDM, you should
set the enable option to yes in the [xdmcp] section if you want to enable remote logins.

A GUI control tool for GDM exists on some systems, but it is missing from
others. Type gdmconfig or gdmsetup as root to launch this program,
which enables you to set GDM options using a point-and-click interface.

Like KDM, GDM provides extra options over those of XDM. These options include
the ability to choose your login environment and shut down the computer. GDM is a bit
unusual in that it prompts for the username and only then presents a prompt for the pass-
word. XDM and KDM both present fi elds for the username and password simultaneously.

Configuring LightDM
LightDM is intended to be a common XDMCP server that can be used in any desktop
environment, independent of the graphical library used. Since the Ubuntu developers

http://technet24.ir/

306 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 306

switched to the Unity desktop, they also decided to incorporate LightDM to provide the
graphical login environment.

The system-generated LightDM confi guration fi les are stored in the /usr/share/
lightdm/lightdm.conf.d folder:

$ ls -l

total 20

-rw-r--r-- 1 root root 72 Apr 8 00:30 50-greeter-wrapper.conf

-rw-r--r-- 1 root root 68 Apr 8 00:30 50-guest-wrapper.conf

-rw-r--r-- 1 root root 35 Mar 13 2014 50-ubuntu.conf

-rw-r--r-- 1 root root 45 Apr 8 00:36 50-unity-greeter.conf

-rw-r--r-- 1 root root 51 Apr 8 00:30 50-xserver-command.conf

$

You can override the system-generated defaults by either making changes in the /etc/
lightdm/lightdm.conf fi le or creating fi les in the /etc/lightdm/lightdm.conf.d folder.

For example, if you want to disable the Guest login feature in the Ubuntu login window,
set by default in LightDM, you can change the /etc/lightdm/lightdm.conf fi le (or create
it if it doesn’t exist) to add the lines:

[SeatDefaults]

allow-guest=false

When you reboot your Ubuntu system, the option to log in as the Guest account will not
be present in the login window.

Using X for Remote Access

As noted earlier, in “The X GUI Login System,” X is a network-enabled GUI. This fact lets
you run Linux programs remotely—you can set up a Linux system with X programs and
run them from other Linux (or even non-Linux) computers. Similarly, you can use a Linux
computer as an access terminal for X programs that run on a non-Linux Unix computer,
such as one running Oracle Solaris. To do this, you should fi rst understand something of
X’s network model, including where the client and server systems are located, how X
controls access to itself, and so on. You can then proceed to perform the remote accesses.

X Client-Server Principles
Most people think of servers as powerful computers hidden away in machine rooms and
of clients as the desktop systems that ordinary people use. Although this characteriza-
tion is often correct, it’s very wrong when it comes to X. X is a server, meaning that the X
server runs on the computer at which the user sits. X clients are the programs that users

http://technet24.ir/

Using X for Remote Access 307

c06.indd 03/26/2015 Page 307

run—xterm, xfontsel, KMail, LibreOffi ce, and so on. In most cases, the X server and its
clients reside on the same computer, so this peculiar terminology doesn’t matter, but when
you use X for remote access, you must remember that the X server runs on the user’s com-
puter, while the X clients run on the remote system.

To make sense of this peculiarity, think of it from the program’s point of view. For
instance, consider a web browser such as Firefox. This program accesses web pages
stored on a web server computer. The web server responds to requests from Firefox to
load fi les. Firefox not only loads fi les, it also displays them on the screen and accepts
input from its user. From the program’s point of view, this activity is much like retrieving
web pages, but an X server handles it rather than a web server. This relationship is illus-
trated in Figure 6.2.

F I GU R E 6 . 2 From a program’s point of view, the X server works much like a
conventional network server such as a web server.

Web Server X Server
X Client and

Web Browser (Client)

Stores
web pages

Runs user
programs

Provides display
and user input services

Ordinarily, Linux is confi gured in such a way that its X server responds only to local
access requests as a security measure. Thus, if you want to run programs remotely, you
must make some changes to have Linux lower its defenses—but not too far, lest you let
anybody access the X server, which could result in security breaches.

Using Remote X Clients
Suppose your local network contains two machines. The computer called zeus is a power-
ful machine that hosts important programs like word processors and data analysis utilities.
The computer called apollo is a much less powerful system, but it has an adequate monitor
and keyboard. Therefore, you want to sit at apollo and run programs that are located on
zeus. Both systems run Linux. To accomplish this task, follow these steps:

1. Log into apollo, and if it’s not already running X, start it.

2. Open a terminal (such as an xterm) on apollo.

3. Type xhost +zeus in apollo’s terminal. This command tells apollo to accept for
display in its X server data that originates on zeus.

4. Log into zeus from apollo. You might use Telnet or Secure Shell (SSH), for instance.
The result should be the ability to type commands in a shell on zeus.

http://technet24.ir/

308 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 308

5. On zeus, type export DISPLAY=apollo:0.0. (This assumes that you’re using bash;
if you’re using tcsh, the command is setenv DISPLAY apollo:0.0.) This command
tells zeus to use apollo for the display of X programs. (Chapter 9, “Writing Scripts,
Configuring Email, and Using Databases,” describes environment variables, such as
DISPLAY, in greater detail.)

6. Type whatever you need to type to run programs at the zeus command prompt. For
instance, you could type loffice to launch LibreOffice. You should see the programs
open on apollo’s display, but they’re running on zeus—their computations use zeus’s
CPU, they can read files accessible on zeus, and so on.

7. After you’re done, close the programs you’ve launched, log off zeus, and type xhost
-zeus on apollo. This tightens security so that an intruder on zeus won’t be able to
modify your display on apollo.

Sometimes, you can skip some of these steps. For instance, depending on how it’s confi g-
ured, SSH can forward X connections, meaning that SSH intercepts attempts to display X
information and passes those requests on to the system that initiated the connection. When
this happens, you can skip steps 3 and 5, as well as the xhost command in step 7. (See the
Real World Scenario sidebar “Encrypting X Connections with SSH.”)

Encrypting X Connections with SSH

The SSH protocol is a useful remote-access tool. Although it’s often considered a text-

mode protocol, SSH also has the ability to tunnel network connections—that is, to carry

another protocol through its own encrypted connection. This feature is most useful for

handling remote X access. You can perform the steps described in “Using Remote X

Clients” but omit steps 3 and 5 and the xhost command in step 7. This greatly simplifi es

the login process and adds the benefi ts of SSH’s encryption, which X doesn’t provide. On

the other hand, SSH’s encryption is likely to slow down X access, although if you enable

SSH’s compression features, this problem may be reduced in severity. Overall, tunneling

X through SSH is the preferred method of remote X access, particularly when any net-

work in the process isn’t totally secure.

SSH tunneling does require that certain options be set. In particular, you must either use

the -X or -Y option to the ssh client program or set the ForwardX11 or ForwardX11Trusted

option to yes in /etc/ssh_config on the client system. You must also set the X11Forward-

ing option to yes in the /etc/sshd_config fi le on the SSH server system. These options

enable SSH’s X forwarding feature; without these options, SSH’s X forwarding won’t work.

As an added security measure, many Linux distributions today confi gure X to ignore true
network connections. If your distribution is thus confi gured, the preceding steps won’t work;

http://technet24.ir/

Using X for Remote Access 309

c06.indd 03/26/2015 Page 309

when you try to launch an X program from the remote system, you’ll get an error message.
To work around this problem, you must make an additional change, depending on how X
is launched:

GDM On older versions of GDM, check the GDM confi guration fi le (typically /
etc/X11/gdm/gdm.conf), look for the line DisallowTCP=true, and change it to read
DisallowTCP=false. On newer versions of GDM, edit /etc/gdm/custom.conf and add a line
that reads DisallowTCP=false to the [security] section (adding the section if required).

KDM or XDM These two XDMCP servers both rely on settings in the Xservers fi le (in
/etc/X11/xdm for XDM, and in this location or some other highly variable location for
KDM). Look for the line that begins with :0. This line contains the command that KDM
or XDM uses to launch the X server. If this line contains the string -nolisten tcp, remove
that string from the line. Doing so eliminates the option that causes X to ignore conven-
tional network connections.

Special openSUSE Configuration In openSUSE, you must edit /etc/sysconfig/display-
manager and set the DISPLAYMANAGER_XSERVER_TCP_PORT_6000_OPEN option to yes.

X Launched from a Text-Mode Login If you log in using text mode and type startx
to launch X, you may need to modify the startx script itself, which is usually stored in /
usr/bin. Search this script for the string -nolisten tcp. Chances are that this string will
appear in a variable assignment (such as to defaultserverargs) or possibly in a direct call
to the X server program. Remove the -nolisten tcp option from this variable assignment
or program call.

Once you’ve made these changes, you’ll need to restart X as described earlier in
“Running an XDMCP Server.” Thereafter, X should respond to remote access requests.

If X responds to remote network requests, the risk of an intruder using a
bug or misconfiguration to trick users by displaying bogus messages on
the screen is greatly increased. You should therefore disable this protec-
tion only if you’re sure that doing so is necessary. You may be able to use
an SSH link without disabling this protection.

Another option for running X programs remotely is to use the Virtual Network
Computing (VNC) system (www.realvnc.com). VNC runs a special X server on the com-
puter that is designed to be used from a distance, and a special VNC client runs on the
computer at which you sit. You use the client to contact the server directly. This reversal of
client and server roles over the normal state of affairs with conventional X remote access
is benefi cial in some situations, such as when you’re trying to access a distant system from
behind certain types of fi rewalls. VNC is also a cross-platform protocol; it’s possible to
control a Windows or Mac OS system from Linux using VNC, but this isn’t possible with
X. (X servers for Windows and Mac OS are available, enabling you to control a Linux
system from these non-Linux OSs.)

http://technet24.ir/

310 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 310

X Accessibility

Historically, most computers have been designed for individuals with ordinary physical
capabilities. As computers have become everyday tools, though, the need for people with
various disabilities to be able to use computers has risen. Linux provides tools to help with
this task.

Some basic X settings (controlled in xorg.conf or XF86Config) can help in this respect—
for instance, you can adjust the keyboard repeat rate to prevent spurious key repeats for
individuals who may keep keys pressed longer than average. Other settings are unusual and
may require the use of unique accessibility tools to set. Some options must be set in specifi c
desktop environments (KDE or GNOME, for example).

Keyboard and Mouse Accessibility Issues
You can set many keyboard and mouse options using ordinary desktop environment tools
for personalizing keyboard and mouse responses. Other options are more exotic, such as
onscreen keyboards.

Standard Keyboard and Mouse Options
Most Linux desktop environments include keyboard and mouse control panel options. For
instance, in a standard Fedora 17 GNOME installation, you can fi nd the keyboard options
in the Keyboard item of the System Settings control panel, and you can fi nd the mouse
options in the Mouse and Touchpad item. The AccessX utility is an older program that
works in any desktop environment to provide similar features. Figure 6.3 shows AccessX in
operation. Because the locations of such options can be customized from one distribution
to another, and can even change from one release to another, you may need to hunt for the
options in your menus.

The exam objectives mention AccessX; however, this package is not avail-
able in most distributions and appears to be abandoned. Its functionality
has been folded into desktop environment control panels. Thus, although
we describe AccessX’s features, chances are you’ll need to look for equiva-
lents in your desktop environment’s control panel.

You can set the following keyboard and mouse accessibility features with AccessX or
similar tools in desktop environments (sometimes under slightly different names):

Sticky Keys When enabled, this option causes keyboard modifi er keys (Ctrl, Alt, and
Shift) to “stick” when pressed, affecting the next regular key to be pressed even after
release of the sticky key. This can be useful for users who have diffi culty pressing multiple
keys simultaneously. Some tools, including AccessX, provide additional options that affect
the details of how sticky keys work.

http://technet24.ir/

X Accessibility 311

c06.indd 03/26/2015 Page 311

F I GU R E 6 . 3 AccessX and desktop environment control panels provide accessibility
options.

Toggle Keys When enabled plays a sound cue when the locking keys (Caps lock, Num
lock, or Scroll lock) are pressed. A high-pitched sound plays when the features are acti-
vated, and a low-pitched sound plays when the features are deactivated.

Mouse Keys This option enables you to use the cursor keypad on your keyboard to
emulate a mouse.

Bounce (or Debounce) Keys If a user tends to press a single key accidentally multiple
times, the bounce keys option may be able to compensate for this tendency. (Aging
keyboards also sometimes produce keybounce.)

Slow Keys When activated, this option requires a key to be pressed for longer than a
specifi ed period of time before it registers as a keypress. This feature is useful for individuals
who tend to press keys accidentally.

Keyboard Repeat Rate The repeat delay and rate can be set using sliders. These settings
override those set in the X confi guration fi le, but if you use a bare window manager, you
may need to set these options in the X confi guration fi le. Disabling keyboard repeat or
setting a very long delay may be necessary for some users.

Time Out In AccessX, the TimeOut option sets a time after which its accessibility options
will be disabled.

http://technet24.ir/

312 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 312

Mouse Tracking and Click Options The ordinary mouse tracking and click options can
be adjusted to unusual values for those who have special needs. (This and the next two
options are not provided by AccessX but are provided by many desktop environments.)

Simulated Mouse Clicks Some environments let you confi gure the mouse to simulate a
click whenever the mouse pointer stops moving or to simulate a double click whenever the
mouse button is pressed for an extended period.

Mouse Gestures Gestures are similar to keyboard shortcuts but are designed for mice.
They permit you to activate program options by moving your mouse in particular ways.

Using Onscreen Keyboards
If a user has diffi culty using a regular keyboard but can use a mouse, that user can employ
an onscreen keyboard. This is an application that displays an image of a keyboard. Using
the mouse to press the keys on the keyboard image works much like using a real keyboard.
Some other keyboards require the user to enter text into their own buffers and then cut and
paste the text from the keyboard application into the target program.

Browse the menus for your desktop environment to locate the onscreen keyboards avail-
able on your system. If you can’t fi nd one, or if you don’t like it, use your package manager to
search for such programs—searching on keyboard should turn up some options.

The GNOME desktop development team created the GNOME On-Screen Keyboard
(GOK), which not only provides an onscreen keyboard, it also delivers tools that provide
shortcuts for the various mouse, menu, and toolbar features of other programs as well
as tools to help users navigate the GNOME desktop. Newer versions of the GNOME
desktop have replaced GOK with Caribou, the successor to the GOK project. You can
learn more at the main Caribou web page, http://wiki.gnome.org/action/show/
Projects/Caribou.

Screen Display Settings
Users with poor eyesight can benefi t from adjustments to screen settings and applications.
These include font options, contrast settings, and screen magnifi cation tools.

Adjusting Default Fonts
Most desktop environments provide options to set the default fonts used on the screen.
Figure 6.4 shows the System Settings dialog box provided with KDE. You can access this
by typing systemsettings in a terminal window or by selecting Confi gure Desktop from
the main menu and then selecting Application Appearance from the options in the window
that appears. A similar tool is available in Xfce, accessible from the Appearance item in its
System Settings panel.

To adjust the fonts, click the Choose button to the right of the font for each of the main
categories, such as General and Menu in Figure 6.4. The result is a font selection dialog
box in which you can select the font family (Sans, Times, and so on), the font style (normal,
bold, and so forth), and the font size in points. Adjust these options until you fi nd a setting
that works well. You’ll have to adjust the font for each of the categories, or at least for those
that are most important.

http://technet24.ir/

X Accessibility 313

c06.indd 03/26/2015 Page 313

F I GU R E 6 . 4 Linux desktop environments usually provide control panels with font
options.

Dyslexic users often benefit from a special font that weights the bottoms
of the characters more heavily than the tops. One such font is available
from http://dyslexicfonts.com.

Unfortunately, although many applications take their cues on fonts from the desktop
environment’s settings, others don’t. Thus, you may need to adjust options in at least some
individual applications as well as in the desktop environment as a whole.

Adjusting Contrast
Desktop environments provide various themes—settings for colors, window manager
decorations, and so on. Some themes are better than others in terms of legibility. For
instance, some themes are very low in contrast, and others are high in contrast.

Monitors have their own contrast controls. You can adjust these for best
legibility, of course, but the contrast adjustments afforded by desktop
environment settings are independent of a monitor’s contrast settings.

In KDE, you can set themes in the same System Settings preferences dialog box in which
you set the fonts (see Figure 6.4); you click the Colors icon in the left pane and select the

http://technet24.ir/

314 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 314

theme you want to use. The Workspace Appearance item (accessible by clicking Overview
from the screen shown in Figure 6.4) provides additional options. Xfce provides similar
options in its Appearance control panel.

Using Magnifier Tools
A screen magnifi er application enlarges part of the screen—typically the area immediately
surrounding the mouse. One common screen magnifi er is KMag, which is part of the KDE
suite. (You can use KMag even in GNOME, Xfce, or other desktop environments though.)
To use it, type kmag or select it from your desktop menus. The result is the KMag window
on the screen, which enlarges the area around the cursor by default.

Using Additional Assistive Technologies
In addition to keyboard, mouse, and conventional display tools, some programs can help
those with special needs. Most notably, screen readers and Braille displays can help those
who can’t read conventional displays.

Configuring Linux to Speak
Computer speech synthesis has existed for decades. Today, several speech synthesis
products are available for Linux, including these:

Orca This program, which is based at http://live.gnome.org/Orca, is a screen reader
that’s been integrated into GNOME 2.16 and later.

Emacspeak Similar to Orca in many respects, this program aims to enable those with
visual impairments to use a Linux computer. You can learn more at http://emacspeak.
sourceforge.net.

Using Braille Displays
A Braille display is a special type of computer monitor. Rather than display data visually,
it creates a tactile display of textual information in Braille. As such, a Braille display is an
effi cient way for those with visual impairments to access text-mode information, such as
that displayed at a Linux text-mode console. Many Linux text-mode programs can manage
a Braille display with no changes.

To use a Braille display, special Linux software is required. The BRLTTY project
(www.mielke.cc/brltty/) provides a Linux daemon that redirects text-mode console
output to a Braille display. It includes features that support scrollback, multiple virtual
terminals, and even speech synthesis.

Linux kernels since 2.6.26 include direct support for Braille displays. If you’re familiar
with Linux kernel compilation, you should check the Accessibility Support options in the
Device Drivers area of the kernel confi guration.

http://technet24.ir/

Configuring Localization and Internationalization 315

c06.indd 03/26/2015 Page 315

Configuring Localization and
Internationalization

Linux is an international OS. Its developers and users reside in many countries around the
world. Therefore, Linux supports a wide variety of character sets, keyboards, date/time
display formats, and other features that can vary from one region to another. Many of
these features are set up when you answer questions during installation, but knowing about
them—and how to change them—can help you manage your system, particularly if you
need to change these options for any reason.

Setting Your Time Zone
When you communicate with other computers (by sending email, transferring fi les, and
so on), those computers may reside in the same city or on the other side of the world. For
this reason, it’s helpful for your computer to know something about its time zone. This can
help keep fi les’ time stamps set sensibly and avoid weird temporal problems when data is
exchanged. For the most part, you need to be concerned with just one time zone setting
for a Linux computer. but sometimes you may want to set the time zone one way for one
account or login and another way for another account or login. Thus, we describe both
methods of setting a time zone.

Setting a Linux Computer’s Time Zone
Linux uses Coordinated Universal Time (UTC) internally. This is the time in Greenwich,
England, uncorrected for daylight savings time. When you write a fi le to disk on a Linux-
native fi lesystem, the time stamp is stored in UTC. When you use tools such as cron
(described in Chapter 7, “Administering the System”), they “think” in UTC. Chances are,
though, that you use local time. Thus a Linux computer must be able to translate between
local time and UTC.

To perform this translation, Linux needs to know your time zone. Linux looks to
the /etc/localtime fi le for information about its local time zone. This fi le is one of the
rare confi guration fi les that’s not a plain-text fi le, so you shouldn’t try editing it with a text
editor. This fi le could be a fi le of its own, or it could be a symbolic or hard link to another
fi le. If it’s a symbolic link, you should be able to determine your time zone by performing a
long fi le listing to see the name of the fi le to which localtime links:

$ ls -l /etc/localtime

lrwxrwxrwx 1 root root 36 May 14 2008 /etc/localtime -> ~CA

/usr/share/zoneinfo/America/New_York

http://technet24.ir/

316 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 316

If /etc/localtime is a regular fi le and not a symbolic link, or if you want further
confi rmation of your time zone, try using the date command by itself:

$ date

Mon Sep 3 12:50:58 EDT 2012

The result includes a standard three-letter time zone code (EDT in this example). Of
course, you’ll need to know these codes, or at least the code for your area. For a list of time
zone abbreviations, consult

www.timeanddate.com/library/abbreviations/timezones/

Note that the time zone codes vary depending on whether daylight saving time is active,
but the Linux time zone fi les don’t change with this detail. Part of what these fi les do is to
describe when to change the clock for daylight savings time. If you need to change your
time zone, you should copy or link a sample fi le from a standard directory location to
the /etc/localtime fi le:

1. Log in as root or acquire root privileges.

2. Change to the /etc directory.

3. View the contents of the /usr/share/zoneinfo directory. This directory contains files
for certain time zones named after the zones or the regions to which they apply, such as
GMT, Poland, and Japan. Most users will need to look in subdirectories, such as /usr/
share/zoneinfo/US for the United States or /usr/share/zoneinfo/America for North
and South America. These subdirectories contain zone files named after the regions or
cities to which they apply, such as Eastern or Los_Angeles. (The US subdirectory con-
tains files named after time zones or states, whereas the America subdirectory holds files
named after cities.) Identify the file for your time zone. Note that you might use
a zone file named after a city other than the one in which you reside but that’s in the
same time zone as you. For instance, the New_York file works fine if you’re in Boston,
Philadelphia, Cincinnati, or any other city in the same (Eastern) time zone as New York.

4. If a localtime file exists in /etc, delete it or rename it. (For instance, type rm
localtime.)

5. Create a symbolic link from your chosen time zone file to the /etc/localtime file. For
instance, you can type ln -s /usr/share/zoneinfo/US/Eastern localtime to
set up a computer in the US Eastern time zone. Alternatively, you can copy a file (cp)
rather than create a symbolic link (ln -s). If /etc and your target file are on the same
filesystem, you can create a hard link rather than a symbolic link if you like.

At this point, your system should be confi gured to use the time zone you’ve selected.
If you change time zones, you should be able to see the difference by typing date, as
described earlier. The time zone code on your system should be different, compared to
when you issued this command before you changed the /etc/localtime fi le or link. The
time should also change by the number of hours between the time zones you’ve selected
(give or take a bit for the time it took you to change the time zone fi les).

http://technet24.ir/

Configuring Localization and Internationalization 317

c06.indd 03/26/2015 Page 317

In addition to /etc/localtime, some distributions use a secondary fi le with text-mode
time zone data. This fi le is called /etc/timezone on Debian and its derivatives. On Fedora
and related distributions, it’s /etc/sysconfig/clock. This fi le contains a line or two with
the name of the time zone, sometimes in the form of a variable assignment. For instance,
for the Eastern time zone in the US, the /etc/timezone fi le should look like this:

America/New_York

This fi le provides a quick way to check your time zone. It should also be updated when
you change your time zone, lest higher-level confi guration tools become confused.

Some distributions provide text-mode or GUI tools to help make time zone
changes. Look for a program called tzsetup, tzselect, tzconfig, or something similar.
Typically, these programs ask you for your location in several steps (starting with your
continent, then your nation, and perhaps then your state or city) and create an appropri-
ate symbolic link.

Setting an Individual Login’s Time Zone
One fi nal wrinkle on time zone issues is the TZ environment variable. (Chapter 9 covers
environment variables in more detail.) This environment variable holds time zone informa-
tion in any of three formats:

 ■ The most common format on Linux is :filename, as in :/usr/share/zoneinfo/
Europe/London. This tells the system that the time zone is the one described in the
specified file.

 ■ A second format, common on non-Linux systems, is std offset, where std is a three-
character or longer time zone name (such as EST) and offset is a time relative to UTC,
with positive values representing offsets west of the prime meridian and negative val-
ues being east of it. For instance, EST+5 specifies US Eastern time. This format is used
when daylight savings time is not in effect.

 ■ If daylight savings time is in effect, a variant on the preceding method is possible: std
offset dst[offset],start[/time],end[time]. This specification adds the daylight
savings time code as well as encoded start and end dates (and optionally times). For
instance, EST+5EDT,M3.10.0/2,M11.3.0/2 specifies US Eastern time with daylight
savings time encoded with dates for 2013.

In the vast majority of cases, you won’t need to use the TZ environment variable. It can
be useful, though, in the event that you’re using a computer remotely—say, if you’re logging
into a work computer that’s physically located in San Francisco while you’re traveling to
London. Using TZ will enable programs that use this variable to display the correct local date
and time in London, despite the fact that the computer’s global time zone is (presumably)
set for San Francisco.

In practice, the easiest way to use TZ for a single login is to issue a command such as the
following:

$ export TZ=:/usr/share/zoneinfo/Europe/London

http://technet24.ir/

318 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 318

This example sets the time zone to London for a single session, but only from the shell
at which you type this command. You can add this command to a user startup script if you
want to use it regularly. You should not use this method if all of a computer’s programs
should use the target time zone; instead, set it by adjusting the /etc/localtime fi le, as
described earlier in “Setting a Linux Computer’s Time Zone.”

Querying and Setting Your Locale
To localize your computer, you must fi rst understand what a locale is in Linux parlance.
Once you understand the basics, you can identify your current locale and other locales
available to you. If necessary, you may need to install another locale’s data. You can then
set your computer to use that locale.

What Is a Locale?
In Linux, a locale is a way of specifying the computer’s (or user’s) language, country,
and related information for the purpose of customizing displays. A single locale takes the
following form:

[language[_territory][.codeset][@modifier]]

Each part of this string has a set of specifi c acceptable forms. For instance, language can
be en (English), fr (French), ja (Japanese), and so on. These are two- or three-letter codes
for languages.

The territory code can be US (United States), FR (France), JP (Japan), and so on. These
are codes for specifi c regions—generally nations.

The codeset code can be ASCII, UTF-8, or other encoding names. The American
Standard Code for Information Interchange (ASCII) is the oldest and most primitive
encoding method; it supports 7-bit encodings (generally stored in 8-bit bytes) that can
handle English, including common punctuation and symbols. ASCII can’t handle charac-
ters used in many non-English languages, though, so it’s awkward at best for international
use. ISO-8859 was an early attempt to extend ASCII; it employs an eighth bit to extend
ASCII by 128 characters, giving room for the characters needed by a small number of
non-Roman alphabets. ISO-8859 is broken down into many substandards, each of which
handles one language or small group of languages. ISO-8859-1 covers Western European
languages and ISO-8859-5 provides Cyrillic support, for instance.

The latest language codeset is the 8-bit Unicode Transformation Format (UTF-8).
Like ISO-8859, UTF-8 starts with ASCII, but it extends it by supporting variable-byte
extensions so that a single character can take anywhere from 1 to 4 bytes to be encoded.
This provides the ability to encode text in any language supported by Unicode, which is
a character set designed to support as many languages as possible. The big advantage of
UTF-8 over ISO-8859 is that there’s no need to specify a substandard, such as ISO-8859-1
or ISO-8859-5; UTF-8 handles all of its writing systems automatically.

The modifi er is a locale-specifi c code that modifi es how it works. For instance, it may
affect the sort order in a language-specifi c manner.

http://technet24.ir/

Configuring Localization and Internationalization 319

c06.indd 03/26/2015 Page 319

What Is Your Locale?
A locale code can be assigned to one or more of several environment variables. To learn
how these are set on your system, issue the locale command without any arguments:

$ /usr/bin/locale

LANG=en_US.UTF-8

LC_CTYPE="en_US.UTF-8"

LC_NUMERIC="en_US.UTF-8"

LC_TIME="en_US.UTF-8"

LC_COLLATE="en_US.UTF-8"

LC_MONETARY="en_US.UTF-8"

LC_MESSAGES="en_US.UTF-8"

LC_PAPER="en_US.UTF-8"

LC_NAME="en_US.UTF-8"

LC_ADDRESS="en_US.UTF-8"

LC_TELEPHONE="en_US.UTF-8"

LC_MEASUREMENT="en_US.UTF-8"

LC_IDENTIFICATION="en_US.UTF-8"

LC_ALL=

As you can see, quite a few locale variables exist. When programs pay attention to these
variables, they adjust themselves appropriately for your locale. For instance, a word processor
may default to using common US paper sizes (such as 8.5 × 11 inches) when the territory
code in LC_PAPER is set to US, but European paper sizes (such as A4, 210 × 297 mm) when
territory is set to a code for a country where these paper sizes are more common.

Most of the locale variables set specifi c and obvious features, such as LC_PAPER (paper
size), LC_MEASUREMENT (measurement units), and so on. The LC_ALL variable is a sort of
master override—if it’s set, it overrides all of the other LC_* variables.

A related environment variable is LANG. It takes the same type of locale specifi cation as
the LC_* variables. It sets the locale in case the LC_* variables aren’t set.

While you’re using the locale command, you should try it with the -a option, which
identifi es all of the locales that are available to you:

$ locale -a

C

en_US.utf8

POSIX

In this example (from an Ubuntu system), very few locales are installed. Some systems
may have many more; one of our computers has hundreds of locales available, for example.

Changing Your Locale
If you want to change your locale, you should fi rst verify that an appropriate one is avail-
able to you by using locale -a, as just described. If you don’t see appropriate codes, you

http://technet24.ir/

320 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 320

may need to install additional packages. Unfortunately, names for these packages aren’t
standardized. Your best bet is to use a GUI package manager such as yumex or Synaptic
(described in Chapter 2) to search on package names and descriptions that include locale
or language. In the case of an Ubuntu system that provides just a few locales, many more
can be installed from packages called language-support-??, where ?? is a two-character
language code.

To change your locale temporarily, the simplest method is to set the LC_ALL environ-
ment variable. For safety, you should also set LANG. For instance, to use the locale for Great
Britain rather than the United States, you can type

$ export LANG=en_GB.UTF-8

$ export LC_ALL=en_GB.UTF-8

The result should be that all of the locale variables change for that session. There will
also be changes in the output of programs that honor locales. Note that this change
affects only the current shell and the programs launched from it; you won’t see changes
in programs that are already running or that you launch from another shell.

To change your locale permanently, you can adjust your bash startup script fi les, such as
~/.bashrc or /etc/profile, as described in Chapter 1, “Exploring Linux Command-Line
Tools.” (Shell scripting is described in more detail in Chapter 9, but setting or adjusting the
LANG and LC_ALL environment variables is fairly straightforward.)

X’s confi guration fi le (xorg.conf or XF86Config) includes an option called XkbLayout in
the keyboard’s InputDevice section. This option takes a partial or complete locale specifi -
cation but converted to lowercase—for instance, us or en_us.utf-8. Adjusting this option
can provide you with access to language- or country-specifi c keys. After changing this
option, you’ll have to restart X for the changes to take effect.

Some programs and sets of programs may require you to set the language independent
of the overall system locale. Thus, you may need to adjust the language for certain specifi c
programs. If a program doesn’t seem to respond to the overall locale setting, check its
documentation, or browse through its menus, to fi nd a way to adjust its defaults.

One setting requires special mention: LANG=C. When you set LANG to C, programs
that see this environment variable display output without passing it through locale
translations. This can be helpful in some cases if a program’s output is being corrupted
by the locale—say by having conversions to UTF-8 change characters that need to be
preserved as 8-bit entities. Thus, setting LANG=C can help avoid some types of problems,
particularly in pipelines and scripts that pass one program’s data to another program in
binary form.

Localization support is, to some extent or another, the responsibility
of each program’s author. It’s entirely possible to write a program that
supports just one language or a small subset of languages. Thus, you
won’t be able to get every program to support your desired language,
particularly if it’s an uncommon one.

http://technet24.ir/

Configuring Printing 321

c06.indd 03/26/2015 Page 321

Modifying Text-File Locales
Sometimes it’s necessary to access textual data that originated on a system that used one
encoding but processed the data with a program that doesn’t support that encoding.
For instance, your preferred text editor might support UTF-8 but not ISO-8859. If you
deal exclusively with English text fi les in ASCII, this isn’t a problem; but if you receive an
ISO-8859-1 text fi le with a few non-Roman characters, such as characters with umlauts,
your editor might display those characters strangely.

To overcome this problem, the iconv utility converts between character sets. Its syntax
is as follows:

iconv -f encoding [-t encoding] [inputfile]...

The -f and -t options specify the source and destination encodings. (You can obtain
a list of encodings by typing iconv --list.) If you omit the target encoding, iconv uses
your current locale for guidance. The program sends output to standard output, so if you
want to store the data in a fi le, you must redirect it:

$ iconv -f iso-8859-1 -t UTF-8 umlautfile.txt > umlautfile-utf8.txt

Configuring Printing

Most Linux desktop users work with X, but many also work with another output medium:
printed pages. Printing in Linux is a cooperative effort involving several tools. Applications
submit print jobs as PostScript documents. Because most Linux systems aren’t connected
directly to true PostScript printers, a program called Ghostscript converts the print job into
a form that the system’s printer can actually handle. The print queue, which is managed
by software known as the Common Unix Printing System (CUPS), then sends the job to
the printer. At various stages, administrators and users can examine the contents of a print
queue and modify the queue. Understanding the tools used to create and manage print
queues will help you to manage Linux printing.

Conceptualizing the Linux Printing Architecture
Linux printing is built around the concept of a print queue. This is a sort of holding area
where fi les wait to be printed. A single computer can support many distinct print queues.
These frequently correspond to different physical printers, but it’s also possible to confi gure
several queues to print in different ways to the same printer. For instance, you might use
one queue to print single-sided and another queue for double-sided printing on a printer
that supports duplexing.

Users submit print jobs by using a program called lpr. Users can call this program
directly, or they may let another program call it. In either case, lpr sends the print job
into a specifi ed queue. This queue corresponds to a directory on the hard disk, typically

http://technet24.ir/

322 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 322

in a subdirectory of the /var/spool/cups directory. The CUPS daemon runs in the back-
ground, watching for print jobs to be submitted. The printing system accepts print jobs
from lpr or from remote computers, monitors print queues, and serves as a sort of “traffi c
cop,” directing print jobs in an orderly fashion from print queues to printers.

The exam emphasizes the CUPS printing system, which is the most com-
mon printing system on modern Linux systems. Older systems used the
BSD Line Printer Daemon (LPD) or the similar LPRng printing system. Many
of the CUPS tools are workalikes of the LPD tools. If you ever use a system
that runs LPD or LPRng, you’ll find that user commands such as lpr work
in the way you would expect, but configuring the printer must be done in a
very different way.

One important and unusual characteristic of Linux printing is that it’s highly
network oriented. As just noted, Linux printing tools can accept print jobs that originate
from remote systems as well as from local ones. Even local print jobs are submitted via
network protocols, although they don’t normally use network hardware, so even a
computer with no network connections can print. In addition to being a server for print
jobs, CUPS can function as a client, passing print jobs to other computers that run the
same protocols.

Applications can query CUPS about a printer’s capabilities—its paper sizes, whether it
supports color, and so on. The older LPD and LPRng printing systems didn’t support such
bidirectional communication. Thus, support for these features still isn’t universal; some
programs make assumptions about a printer’s capabilities or must be told things that other
programs can fi gure out by themselves.

Understanding PostScript and Ghostscript
If you’ve confi gured printers under Windows, Mac OS, or certain other OSs, you’re
probably familiar with the concept of a printer driver. In these OSs, the printer driver
stands between the application and the printer queue. In Linux, the printer driver is part of
Ghostscript (www.cs.wisc.edu/~ghost/), which exists as part of the printer queue, albeit a
late part. This relationship can be confusing at times, particularly because not all applica-
tions or printers need Ghostscript. Ghostscript serves as a way to translate PostScript, a
common printer language, into forms that can be understood by many different printers.
Understanding Ghostscript’s capabilities, and how it fi ts into a printer queue, can be
important for confi guring printers.

PostScript: The De Facto Linux Printer Language
PostScript printers became popular as accessories for Unix systems in the 1980s. Unix print
queues weren’t designed with Windows-style printer drivers in mind, so Unix programs
that took advantage of laser printer features were typically written to produce PostScript

http://technet24.ir/

Configuring Printing 323

c06.indd 03/26/2015 Page 323

output directly. As a result, PostScript developed into the de facto printing standard for
Unix and, by inheritance, Linux. Where programs on Windows systems were built to
interface with the Windows printer driver, similar programs on Linux generate PostScript
and send the result to the Linux printer queue.

Some programs violate this standard. Most commonly, many programs can produce
raw text output. Such output seldom poses a major problem for modern printers, although
some PostScript-only models choke on raw text. Some other programs can produce either
PostScript or Printer Control Language (PCL) output for Hewlett-Packard laser printers or
their many imitators. A very few programs can generate output that’s directly accepted by
other types of printers.

The problem with PostScript as a standard is that it’s uncommon on the low- and
mid-priced printers with which Linux is often paired. Therefore, to print to such printers
using traditional Unix programs that generate PostScript output, you need a translator and a
way to fi t that translator into the print queue. This is where Ghostscript fi ts into the picture.

Ghostscript: A PostScript Translator
When it uses a traditional PostScript printer, a computer sends a PostScript fi le directly to
the printer. PostScript is a programming language, albeit one that’s oriented toward the
goal of producing a printed page as output. Ghostscript is a PostScript interpreter that runs
on a computer. It takes PostScript input, parses it, and produces output in any of dozens of
different bitmap formats, including formats that can be accepted by many non-PostScript
printers. This makes Ghostscript a way to turn many inexpensive printers into Linux-
compatible PostScript printers at very low cost.

One of Ghostscript’s drawbacks is that it produces large output fi les. A PostScript fi le
that produces a page fi lled with text may be just a few kilobytes in size. If this page is to
be printed on a 600 dots per inch (dpi) printer using Ghostscript, the resulting output fi le
could be as large as 4MB—assuming it’s black and white. If the page includes color, the
size could be much larger. In some sense, this is unimportant because these big fi les will
be stored on your hard disk only briefl y. They still do have to get from the computer to the
printer, though, and this process can be slow. Also, some printers (particularly older laser
printers) may require memory expansion to operate reliably under Linux.

For information about what printers are supported by Ghostscript, check
the Ghostscript web page or the OpenPrinting database web page (www.
openprinting.org/printers).

Squeezing Ghostscript into the Queue
Printing to a non-PostScript printer in Linux requires fi tting Ghostscript into the print
queue. This is generally done through the use of a smart fi lter. This is a program that’s
called as part of the printing process. The smart fi lter examines the fi le that’s being
printed, determines its type, and passes the fi le through one or more additional programs

http://technet24.ir/

324 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 324

before the printing software sends it on to the printer. The smart fi lter can be confi gured
to call Ghostscript with whatever parameters are appropriate to produce output for the
queue’s printer.

CUPS ships with its own set of smart fi lters, which it calls automatically when you tell
the system what model printer you’re using. CUPS provides a Web-based confi guration
tool, as described in the upcoming section “Using the Web-Based CUPS Utilities.” This
system, or distribution-specifi c GUI printer confi guration tools, can make setting up a
printer for CUPS fairly straightforward.

The end result of a typical Linux printer queue confi guration is the ability to treat
any supported printer as if it were a PostScript printer. Applications that produce
PostScript output can print directly to the queue. The smart fi lter detects that the output
is PostScript and runs it through Ghostscript. The smart fi lter can also detect other fi le
types, such as plain-text and various graphics fi les, and it can send them through
appropriate programs instead of or in addition to Ghostscript in order to create a
reasonable printout.

If you have a printer that can process PostScript, the smart fi lter is usually still involved,
but it doesn’t pass PostScript through Ghostscript. In this case, the smart fi lter passes
PostScript directly to the printer, but it still sends other fi le types through whatever process-
ing is necessary to turn them into PostScript.

Running a Printing System
Because Linux printing systems run as daemons, they must be started before they’re useful.
This task is normally handled automatically via startup scripts in /etc/rc.d, /etc/init.d,
or /etc/rc?.d (where ? is a runlevel number). Look for startup scripts that contain the
string cups (or lpd or lprng for older systems) in their names to learn what your system is
running. If you’re unsure if a printing system is currently active, use the ps utility to search
for running processes by these names, as in

$ ps ax | grep cups

 1896 ? Ss 0:01 cupsd

This example shows that cupsd, the CUPS daemon, is running, so the system is using
CUPS for printing. If you can’t fi nd any running printing system, consult your distribu-
tion’s documentation to learn what is available and check that the appropriate package is
installed. All major distributions include startup scripts that should start the appropriate
printing daemon when the computer boots.

Configuring CUPS
CUPS uses various confi guration fi les in the /etc/cups directory and its subdirectories to
manage its operation. You can edit these fi les directly, and you may need to do so if you
want to share printers or use printers shared by other CUPS systems. The simplest way to
add printers to CUPS, though, is to use the tool’s Web-based confi guration utility.

http://technet24.ir/

Configuring Printing 325

c06.indd 03/26/2015 Page 325

Editing the CUPS Configuration Files
You can add or delete printers by editing the /etc/cups/printers.conf fi le, which
consists of printer defi nitions. Each defi nition begins with the name of a printer, identifi ed
by the string DefaultPrinter (for the default printer) or Printer (for a nondefault printer)
in angle brackets (<>), as in the following:

<DefaultPrinter okidata>

This line marks the beginning of a defi nition for a printer queue called okidata. The
end of this defi nition is a line that reads </Printer>. Intervening lines set assorted printer
options, such as identifying strings, the printer’s location (its local hardware port or network
location), its current status, and so on. Additional options are stored in a PostScript Printer
Defi nition (PPD) fi le that’s named after the queue and stored in the /etc/cups/ppd subdirec-
tory. PPD fi les follow an industry-standard format. For PostScript printers, you can obtain a
PPD fi le from the printer manufacturer, typically from a driver CD-ROM or from the manu-
facturer’s website. CUPS and its add-on driver packs also ship with a large number of PPD
fi les that are installed automatically when you use the Web-based confi guration utilities.

As a general rule, you’re better off using the CUPS Web-based confi guration tools to add
printers rather than adding printers by directly editing the confi guration fi les. If you like,
though, you can study the underlying fi les and tweak the confi gurations using a text editor
to avoid having to go through the full Web-based tool to make a minor change.

One exception to this rule relates to confi guring the CUPS Web-based interface tool
itself and CUPS’s ability to interface with other CUPS systems. One of the great advantages
of CUPS is that it uses a new network printing protocol, known as the Internet Printing
Protocol (IPP), in addition to the older LPD protocol used by BSD LPD and LPRng. IPP
supports a feature it calls browsing, which enables computers on a network to exchange
printer lists automatically. This feature can greatly simplify confi guring network printing.
You may need to change some settings in the main CUPS confi guration fi le, /etc/cups/
cupsd.conf, to enable this support.

The /etc/cups/cupsd.conf fi le, which is structurally similar to the Apache web server
confi guration fi le, contains a number of confi guration blocks that specify which other
systems should be able to access it. Each block controls access to a particular location on
the server. These blocks look like this:

<Location /printers>

Order Deny,Allow

Deny from All

BrowseAllow from 127.0.0.1

BrowseAllow from 192.168.1.0/24

BrowseAllow from @LOCAL

Allow from 127.0.0.1

Allow from 192.168.1.0/24

Allow from @LOCAL

</Location>

http://technet24.ir/

326 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 326

If you’re configuring a workstation with a local printer that you don’t want
to share, or if you want to configure a workstation to use printers shared
via LPD or some other non-IPP printing protocol, you shouldn’t need to
adjust /etc/cups/cupsd.conf. If you want to access remote IPP printers,
however, you should at least activate browsing by setting the directive
Browsing On, as described shortly. You shouldn’t have to modify your
location definitions unless you want to share your local printers.

The /printers location section of the confi guration fi le controls access to the printers
themselves. The following list includes features of this example:

Directive Order The Order Deny,Allow line tells CUPS in which order it should apply
allow and deny directives—in this case, allow directives modify deny directives.

Default Policy The Deny from All line tells the system to refuse all connections except
those that are explicitly permitted.

Browsing Control Lines The BrowseAllow lines tell CUPS from which other systems it
should accept browsing requests. In this case, it accepts connections from itself (127.0.0.1),
from systems on the 192.168.1.0/24 network, and from systems connected to local subnets
(@LOCAL).

Access Control Lines The Allow lines give the specifi ed systems non-browse access to
printers—that is, those systems can print to local printers. In most cases, the Allow lines
are the same as the BrowseAllow lines.

You can also create a defi nition that uses Allow from All and then creates BrowseDeny
and Deny lines to limit access. As a general rule, though, the approach shown in this
example is safer. Locations other than the /printers location can also be important. For
instance, there’s a root (/) location that specifi es default access permissions to all other
locations and an /admin location that controls access to CUPS administrative functions.

Before the location defi nitions in cupsd.conf are a few parameters that enable or disable
browsing and other network operations. You should look for the following options specifi cally:

Enabling Browsing The Browsing directive accepts On and Off values. The CUPS default
is to enable browsing (Browsing On), but some Linux distributions disable it by default.

Browsing Access Control The BrowseAddress directive specifi es the broadcast address to
which browsing information should be sent. For instance, to broadcast data on your printers
to the 192.168.1.0/24 subnet, you’d specify BrowseAddress 192.168.1.255.

Once you’ve confi gured a CUPS server to give other systems access to its printers via
appropriate location directions, and once you’ve confi gured the client systems to use browsing
via Browsing On, all of the systems on the network should auto-detect all of the printers on
the network. You don’t need to confi gure the printer on any computer except the one to which
it’s directly connected. CUPS propagates all printer characteristics, including their network
locations and PPD fi les, automatically. This feature is most important in confi guring large
networks with many printers or networks on which printers are frequently added and deleted.

http://technet24.ir/

Configuring Printing 327

c06.indd 03/26/2015 Page 327

Obtaining CUPS Printer Definitions
Most Linux distributions ship with CUPS smart fi lter support for a variety of printers.
If you can’t fi nd support for your printer, you can look for additional printer defi nitions.
These defi nitions may consist of PPD fi les, appropriate behind-the-scenes “glue” to tell
CUPS how to use them, and possibly Ghostscript driver fi les. You can obtain these printer
defi nitions from several sources:

Your Linux Distribution Many distributions ship extra printer defi nitions under various
names, so check your distribution for such a package. Many distributions include some of
the driver packages described next.

Foomatic The Linux Printing website hosts a set of utilities and printer defi nitions
known collectively as Foomatic. These provide many additional printer defi nitions
for CUPS (as well as for other printing systems). The Linux Printing website is at the
following location:

www.linuxfoundation.org/en/OpenPrinting/Database/Foomatic

Gutenprint The Gutenprint drivers, originally known as GIMP Print, after the
GNU Image Manipulation Program (GIMP), support a wide variety of printers. Check
http://gimp-print.sourceforge.net for more information.

CUPS DDK The CUPS Driver Development Kit (DDK) is a set of tools designed to
simplify CUPS driver development. It ships with a handful of drivers for Hewlett-Packard
and Epson printers, and it is included with the CUPS source code.

Printer Manufacturers Some printer manufacturers offer CUPS drivers for their printers.
These may be nothing more than Foomatic, Gutenprint, or other open-source drivers, but a
few provide proprietary drivers, some of which support advanced printer features that the
open-source drivers don’t support.

Chances are good that you’ll fi nd support for your printer in your standard installation,
particularly if your distribution has installed the Foomatic or Gutenprint package. If you
start confi guring printers and can’t fi nd your model, though, you should look for an
additional printer defi nition set from one of the preceding sources.

Using the Web-Based CUPS Utilities
The CUPS IPP printing system is closely related to the Hypertext Transfer Protocol
(HTTP) used on the Web. The protocol is so similar, in fact, that you can access a CUPS
daemon by using a web browser. You need only specify that you want to access the server
on port 631—the normal printer port. To do so, enter http://localhost:631 in a web
browser on the computer running CUPS. (You may be able to substitute the hostname
or access CUPS from another computer by using the server’s hostname, depending on
your cupsd.conf settings.) This action brings up a list of administrative tasks you can
perform. Click Printers or Manage Printers to open the printer management page, shown
in Figure 6.5.

http://technet24.ir/

328 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 328

F I GU R E 6 .5 CUPS provides its own Web-based configuration tool.

If you’re configuring a stand-alone computer or the only one on a network to
use CUPS, the printer list may be empty, unlike the one shown in Figure 6.5.
If other computers on your network use CUPS, you may see their printers in
the printer list, depending on their security settings. Many modern distribu-
tions auto-configure USB printers when you plug them in or turn them on,
so they may not need to be added either.

You can add, delete, or modify printer queues using the CUPS Web control system. To
add a printer, follow these steps:

1. From the Administration tab, click Add Printer.

CUPS is likely to ask for a username and password at this point. If you’re
using a system that utilizes the sudo command to gain root privileges
(such as Ubuntu), you’ll need to enter your user account and password.
Otherwise, type root as the username and your root password as the
password. The need to pass your root password unencrypted is one
reason you should be cautious about configuring printers from a
remote computer.

2. The system displays a page that shows options for printers to add in each of three categories:
local printers, discovered network printers, and other network printers. One or more of
these categories may be empty. If you’re trying to add a local printer and the local printers

http://technet24.ir/

Configuring Printing 329

c06.indd 03/26/2015 Page 329

category is empty, either it was auto-detected or CUPS can’t detect any likely printer inter-
face hardware. Check your cables and drivers, and then restart CUPS and reload its web
page. If you see an option for the printer you want to add, select it and click Continue.

3. If you entered a network printer, the result is a page in which you enter the complete
path to the device. Type the path, such as lpd://printserv/brother, to print to the
brother queue on the printserv computer. Click Continue when you’re done.

4. CUPS displays a page in which you enter the printer’s name, description, and location.
You’ll use the name to specify the printer in both command-line and GUI tools, so a
short one-word name is best. The description and location fields are both descriptive
expansions to help users positively identify the printer. You can also click the Share
This Printer check box if you want to share the printer definition with other CUPS-
using computers on the network.

5. You’ll now see a list of manufacturers. Select one, and click Continue. Alternatively, you can
point directly to a PPD file if you have one handy. If you do this, you’ll skip the next step.

6. CUPS now displays a complete list of printer models in the class you selected in step 5.
Select an appropriate model, and click Add Printer. Alternatively, you can provide a
PPD file if you have one.

7. You should now see a page on which you can set default options, such as the paper size
and print resolution. The details of what options are available depend on the printer
model you selected. Change any options you like and click Set Default Options. Your
printer is now defined.

If you click the Printers item at the top of the page, you should be returned to the printers
list (Figure 6.5), but your new printer should be listed among the existing queues. You can
print a test page by clicking the link to the printer and then selecting Print Test Page from
the button selector that reads Maintenance by default. If all goes well, a test page will
emerge from your printer. If it doesn’t, go back and review your confi guration by selecting
Modify Printer from the button selector that reads Administration by default. This action
takes you through the steps for adding a printer but with your previous selections already
entered as the defaults. Try changing some settings until you get the printer to work.

Printing to Network Printers
If your network hosts many Windows computers, you may use the Server Message Block/
Common Internet File System (SMB/CIFS) for fi le and printer sharing among Windows
systems. Linux’s Samba server also implements this protocol, and so it can be used for
sharing printers from Linux.

On the fl ip side, you can print to an SMB/CIFS printer queue from a Linux system.
To do so, you select an SMB/CIFS queue in the printer confi guration tool. Under CUPS, it’s
called Windows Printer via SAMBA in step 2 in the preceding procedure. You must then
provide your username, password, server name, and share name, but the format isn’t
obvious from the Web-based confi guration tool:

smb://username:password@SERVER/SHARE

http://technet24.ir/

330 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 330

This is a URI for an SMB/CIFS share. You must substitute appropriate values for
username, password, SERVER, and SHARE, of course. Once this is done and you’ve fi nished
the confi guration, you should be able to submit print jobs to the SMB/CIFS share.

SMB/CIFS printers hosted by Windows systems are usually non-PostScript
models, so you must select a local Linux smart filter and Ghostscript driver,
just as you would for a local printer. Printers hosted by Linux systems run-
ning Samba, by contrast, are frequently configured to act like PostScript
printers, so you should select a PostScript driver when connecting to them.

If you want to print to a Unix or Linux server that uses the old LPD protocol, the URI
format is similar but omits a username and password:

lpd://hostname/queue

You can use the same format, but substitute ipp:// for lpd://, to print to a CUPS
server if browsing is disabled on your network.

In practice, you may be faced with a decision: Should you use LPD, IPP, or SMB/CIFS for
submitting print jobs? To be sure, not all print servers support all three protocols, but a Linux
server might support them all. As a general rule, IPP is the simplest to confi gure because it
supports browsing, which means that CUPS clients shouldn’t need explicit confi guration to
handle specifi c printers. This makes IPP the best choice for Linux-to-Linux printing,
assuming both systems run CUPS. When CUPS isn’t in use, LPD is generally easier to
confi gure than SMB/CIFS, and it has the advantage of not requiring the use of a username or
password to control access. Because SMB/CIFS security is password oriented, clients typically
store passwords in an unencrypted form on the hard disk. This fact can become a security
liability, particularly if you use the same account for printing as for other tasks. On the other
hand, sometimes using a password on the server provides a security benefi t that outweighs
the risk of storing that password on the client. Generally speaking, if clients are few and well
protected but the server is exposed to the Internet at large, using passwords can be benefi cial.
If clients are numerous and exposed to the Internet but the print server is well protected, a
password-free security system that relies on IP addresses may be preferable.

Monitoring and Controlling the Print Queue
You can use several utilities to submit print jobs and to examine and manipulate a Linux
print queue. These utilities are lpr, lpq, lprm, and lpc. All of these commands can take the
-P parameter to specify that they operate on a specifi c print queue.

Printing Files with lpr
Once you’ve confi gured the system to print, you probably want to start printing.
As mentioned earlier, Linux uses the lpr program to submit print jobs. This program
accepts many options that you can use to modify the program’s action:

http://technet24.ir/

Configuring Printing 331

c06.indd 03/26/2015 Page 331

Specify a Queue Name The -Pqueuename option enables you to specify a print queue.
This is useful if you have several printers, or if you’ve defi ned several queues for one printer.
If you omit this option, the default printer is used.

In the original BSD version of lpr, there should be no space between the
-P and the queuename value. LPRng and CUPS are more flexible in this
respect; you can insert a space or omit it as you see fit.

Delete the Original File Normally, lpr sends a copy of the fi le you print into the queue,
leaving the original unharmed. Specifying the -r option causes lpr to delete the original
fi le after printing it.

Suppress the Banner The -h option suppresses the banner for a single print job. Early
versions of CUPS didn’t support this option, but recent versions do.

Specify a Job Name Print jobs have names to help identify them, both while they’re in the
queue and once they’re printed (if the queue is confi gured to print banner pages). The name
is normally the name of the fi rst fi le in the print job, but you can change it by including the
-J jobname option. The -C and -T options are synonymous with -J.

Notify a User by Email The -m username option causes lpd to send email to username
when the print job is complete. This option was unavailable in early versions of CUPS, but
it is available in more recent versions.

Specify the Number of Copies You can specify the number of copies of a print job by
using the -# number option, as in -# 3, to print three copies of a job.

Suppose that you have a fi le called report.txt that you want to print to the printer
attached to the lexmark queue. This queue is often busy, so you want the system to send
an email to your account, ljones, when it’s fi nished so that you know when to pick up the
printout. You can use the following command to accomplish this task:

$ lpr -Plexmark -m ljones report.txt

The lpr command is accessible to ordinary users as well as to root, so anybody may
print using this command. It’s also called from many programs that need to print directly,
such as graphics programs and word processors. These programs typically give you some
way to adjust the print command so that you can enter parameters such as the printer
name. For instance, Figure 6.6 shows Firefox’s Print dialog box, which features a list of
available print queues, Range options to enable you to print a subset of the document’s
pages, and a Copies fi eld so that you can print multiple copies. Additional tabs enable you
to set more options. Some programs provide a text entry fi eld in which you type some or all
of an lpr command instead of selecting from a list of available queues and options. Consult
the program’s documentation if you’re not sure how it works.

http://technet24.ir/

332 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 332

F I GU R E 6 .6 Most Linux programs that can print do so by using lpr, but many hide the
details of the lpr command behind a dialog box.

Sometimes you want to process a fi le in some way prior to sending it to the printer.
Chapter 1 covers some commands that can do this, such as fmt and pr. Another handy
program is mpage, which reads plain-text or PostScript fi les and reformats them so that
each printed sheet contains several reduced-size pages from the original document. This
can be a good way to save paper if you don’t mind a reduction in the document’s text or
image size. In the simplest case, you can use mpage much as you’d use lpr:

$ mpage -Plexmark report.ps

This command prints the report.ps fi le reduced to fi t four pages per sheet. You can
change the number of source pages to fi t on each printed page with the -1, -2, -4, and -8
options, which specify one, two, four, or eight input pages per output page, respectively.
Additional mpage options exist to control features such as the paper size, the font to be used
for plain-text input fi les, and the range of input fi le pages to be printed. Consult the man
page for mpage for more details.

Displaying Print Queue Information with lpq
The lpq utility displays information about the print queue—how many fi les it contains,
how large they are, who their owners are, and so on. By entering the user’s name as an
argument, you can also use this command to check on any print jobs owned by a particular
user. To use lpq to examine a queue, you can issue a command such as the following:

$ lpq -Php4000

hp4000 is ready and printing

Rank Owner Job File(s) Total Size

active rodsmit 1630 file:/// 90112 bytes

http://technet24.ir/

Configuring Printing 333

c06.indd 03/26/2015 Page 333

Of particular interest is the job number—1630 in this example. You can use this number
to delete a job from the queue or reorder it so that it prints before other jobs. Any user may
use the lpq command.

Removing Print Jobs with lprm
The lprm command removes one or more jobs from the print queue. You can issue this
command in a couple of ways:

 ■ If lprm is used with a number, that number is understood to be the job ID (as shown in
lpq’s output) of the job that’s to be deleted.

 ■ If a user runs the BSD or CUPS lprm and passes a dash (-) to the program, it removes
all of the jobs belonging to the user.

This program may be run by root or by an ordinary user, but as just noted, its capabili-
ties vary depending on who runs it. Ordinary users may remove only their own jobs from
the queue, but root may remove anybody’s print jobs.

Controlling the Print Queue
In the original BSD LPD system, the lpc utility starts, stops, and reorders jobs within print
queues. Although CUPS provides an lpc command, it has few features. Instead of using
lpc, you should use the CUPS Web interface, which provides point-and-click print queue
management:

 ■ You can disable a queue by clicking the Stop Printer link for the printer on the CUPS
Web interface. When you do so, this link changes to read Start Printer, which reverses
the effect when clicked. The Jobs link also provides a way to cancel and otherwise
manage specific jobs.

 ■ You can use a series of commands, such as cupsenable, cupsdisable, and lpmove, to
control the queue. These commands enable a queue, disable a queue, or move a job
from one queue to another. Moving a job can be handy if you must shut down a queue
for maintenance and want to redirect the queue’s existing jobs to another printer.

The CUPS Web interface also provides an easy way to troubleshoot gen-
eral printing problems. You can easily stop the print queue and monitor
jobs as applications submit them to the printer. Then you can release the
print queue and watch if the printer attempts to process waiting jobs.

In Exercise 6.1, you’ll practice using Linux’s printing capabilities.

E X E R C I S E 6 .1

Printing with Linux

To perform this exercise, you must have a printer connected to your Linux computer—

either a local printer or a network model. To perform some of the steps, you must also

have root access to your computer so that you can manage the queue. To begin, follow

these steps:

http://technet24.ir/

334 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 334

E X E R C I S E 6 .1 (c ont inue d)

1. Launch a web browser, enter http://localhost:631 as the URI, and then click

the Printers tab. This should produce a list of printers, as in Figure 6.5. If the list is

empty, you’ll need to defi ne at least one printer queue, as described earlier, before

proceeding. If printers are defi ned, take note of their names. For this exercise,

assume that a queue named hp4000 exists; change this name as necessary in the

following steps.

2. Type lpr -Php4000 /etc/fstab to obtain a printout of this system confi guration

fi le. Verify that it printed correctly.

3. Type lpq -Php4000 to view the contents of the hp4000 queue. If you’re using a

single-user computer, chances are that the queue will be empty at this point.

4. Type lpr -Php4000 /etc/fstab; lpq -Php4000. This command prints another

copy of /etc/fstab and immediately displays the contents of the print queue. It

should not be empty this time because the job will have been submitted but won’t

have had time to clear the queue by the time lpq executes.

5. In another shell, type su to obtain root access.

6. In your root shell, type cupsdisable hp4000. This action disables the queue; it will

still accept jobs, but they won’t print.

7. Type lpr -Php4000 /etc/fstab to obtain yet another printout of /etc/fstab.

Because the queue is disabled, it won’t print.

8. Type lpq -Php4000 to view the contents of the printer queue. Note that, instead of

hp4000 is ready, lpq reports hp4000 is not ready; however, the job you submit-

ted should appear in the queue. Suppose it has a job number of 497.

9. Type lprm -Php4000 497 (changing the job number for your system).

10. Type lpq -Php4000 again to verify that the job has been removed from the queue.

11. Type cupsenable hp4000 in your root shell. This should reenable the queue.

12. Type lpr -Php4000 /etc/fstab to print another copy of this fi le and verify that

the printer is actually working again.

Using cupsdisable and cupsenable in this exercise has two purposes: to give you

experience using these commands and to give you a chance to delete a job from the

queue. A short fi le such as /etc/fstab can be printed so quickly that you might not

have time to remove it from the queue before it disappears because it’s sitting in the

printer’s out tray!

http://technet24.ir/

Exam Essentials 335

c06.indd 03/26/2015 Page 335

Summary

X is Linux’s GUI system. In part because of Linux’s modular nature, X isn’t a single program;
you have your choice of X servers to run on Linux. Fortunately, most Linux distributions
use the same X server as all others (X.org-X11). Both X.org-X11 and its main competitor,
XFree86, are confi gured in much the same way, using the xorg.conf (for X.org-X11) or
XF86Config confi guration fi le. Whatever its name, this fi le consists of several sections, each of
which controls one X subsystem, such as the mouse, the keyboard, or the video card. This fi le
also controls X’s core fonts system, but you can use a font server in addition to this system,
and most modern programs are now emphasizing an entirely new font system, Xft, instead of
X core fonts. For this reason, Linux font confi guration can be complex.

X’s GUI login system uses an XDMCP server, which starts X and manages the X
display. Several XDMCP servers are in common use in Linux, the most important being
XDM, KDM, GDM, and LightDM. They all perform the same basic tasks, but con-
fi guration details differ. (XDM is also less sophisticated than KDM and GDM.) X is a
network-enabled GUI, which means that you can use an X server to access programs
running on another computer. Doing so requires performing a few steps for each login
session. You can also tunnel X accesses through SSH, which greatly improves the security
of the connection.

An assortment of tools can help make Linux more accessible to users with visual or
motor impairments. You can adjust font size, screen contrast, and other display features to
improve legibility; use screen magnifi ers to help users read part of a larger screen; or even
bypass a visual display entirely and use a screen reader for auditory output or a Braille
display for tactile output. On the input side, you can adjust keyboard repeat rates, use
sticky keys, or modify the mouse tracking speed and click sensitivity to improve users’
ability to input data accurately. You can even have a mouse stand in for a keyboard or vice
versa by using the appropriate software.

The second main visual output tool on computers is a printer, and Linux provides
sophisticated printer support. The CUPS package manages printers in Linux by accepting
local or remote print jobs, passing them through a smart fi lter for processing, and queuing
the jobs so that they print in a reasonable order. Most CUPS confi guration is best handled
via its own Web interface, but some options (particularly security features) can be set via
text confi guration fi les.

Exam Essentials

Name the major X servers for Linux. XFree86 has been the traditional standard Linux X
server, but in 2004 X.org-X11 (which was based on XFree86) rapidly gained prominence as
the new standard Linux X server. Accelerated-X is a commercial X server that sometimes
supports video cards that aren’t supported by XFree86 or X.org-X11.

http://technet24.ir/

336 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 336

Describe the X configuration file format. The XFree86 and X.org-X11 confi guration fi le
is broken into multiple sections, each of which begins with the keyword Section and ends
with EndSection. Each section sets options related to a single X feature, such as loading
modules, specifying the mouse type, or describing the screen resolution and color depth.

Summarize the differences between X core fonts, a font server, and Xft fonts. X core
fonts are managed directly by X, and they lack modern font features such as font smooth-
ing. Font servers integrate with the X core fonts but run as separate programs and may
optionally deliver fonts to multiple computers on a network. Xft fonts bypass the X core
font system to provide client-side fonts in a way that supports modern features such as font
smoothing.

Explain the role of an XDMCP server. An XDMCP server, such as XDM, KDM, or
GDM, launches X and controls access to X via a login prompt—that is, it serves as Linux’s
GUI login system. XDMCP servers are also network enabled, providing a way to log in
remotely from another X server.

Describe X’s client-server model. An X server runs on the user’s computer to control the
display and accept input from the keyboard and mouse. Client programs run on the same
computer or on a remote computer to do the bulk of the computational work. These client
programs treat the X server much as they treat other servers, requesting input from and
sending output to them.

Explain the benefits of using SSH for remote X access. SSH can simplify remote X-based
network access by reducing the number of steps required to run X programs from a remote
computer. More important, SSH encrypts data, which keeps information sent between the
X client and X server secure from prying eyes.

Summarize X accessibility features. You can adjust keyboard and mouse options to help
those with motor impairments to use keyboards and mice or to substitute one device for the
other. Font size, contrast, and magnifi cation tools can help those with visual impairments.
Finally, text readers and Braille displays can enable blind individuals to use a Linux system.

Describe how to set a time zone in Linux. Linux uses a binary fi le, /etc/localtime, to
describe the features of the time zone. This fi le is copied or linked from a repository of such
fi les at system installation, but you can replace the fi le at any time.

Explain the role of Ghostscript in Linux printing. PostScript is the standard Linux print-
ing language, and Ghostscript converts PostScript into bitmap formats that are acceptable
to non-PostScript printers. Thus, Ghostscript is a critical translation step in many Linux
print queues, although it’s not required for PostScript printers.

Summarize how print jobs are submitted and managed under Linux. You use lpr to
submit a print job for printing, or an application program may call lpr itself or implement
its functionality directly. The lpq utility summarizes jobs in a queue, and lprm can remove
print jobs from a queue.

http://technet24.ir/

Review Questions 337

c06.indd 03/26/2015 Page 337

Review Questions

1. When you configure an X server, you need to make changes to configuration files and then
start or restart the X server. Which of the following can help streamline this process?

A. Shut down X by switching to a runlevel in which X doesn’t run automatically, and then
reconfigure it and use startx to test X startup.

B. Shut down X by booting into single-user mode, and then reconfigure X and use
telinit to start X running again.

C. Reconfigure X, and then unplug the computer to avoid the lengthy shutdown process
before restarting the system and X along with it.

D. Use the startx utility to check the X configuration file for errors before restarting the
X server.

E. Connect the Linux computer’s network port directly to the X server, without using any
intervening routers, in order to reduce network latency.

2. Which of the following summarizes the organization of the X configuration file?

A. The file contains multiple sections, one for each screen. Each section includes subsec-
tions for individual components (keyboard, video card, and so on).

B. Configuration options are entered in any order desired. Options relating to specific
components (keyboard, video card, and so on) may be interspersed.

C. The file begins with a summary of individual screens. Configuration options are pre-
ceded by a code word indicating the screen to which they apply.

D. The file is broken into sections, one or more for each component (keyboard, video
card, and so on). The file also has one or more sections that define how to combine the
main sections.

E. The file is a rare binary configuration file that must be accessed using SQL
database tools.

3. A monitor’s manual lists its range of acceptable synchronization values as 27kHz–96kHz
horizontal and 50Hz–160Hz vertical. What implications does this have for the resolutions
and refresh rates the monitor can handle?

A. The monitor can run at up to 160Hz vertical refresh rate in all resolutions.

B. The monitor can handle up to 160Hz vertical refresh rate depending on the
color depth.

C. The monitor can handle up to 160Hz vertical refresh rate depending on the resolution.

D. The monitor can handle vertical resolutions of up to 600 lines (96,000 ÷ 160), but
no more.

E. The monitor can handle horizontal resolutions of up to 600 columns (96,000 ÷ 160),
but no more.

http://technet24.ir/

338 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 338

4. In what section of XF86Config or xorg.conf do you specify the resolution that you want
to run?

A. In the ServerLayout section, using the Screen option

B. In the Monitor section, using the Modeline option

C. In the Device section, using the Modeline option

D. In the DefaultResolution section, using the Define option

E. In the Screen section, subsection Display, using the Modes option

5. What is an advantage of a font server?

A. It provides faster font displays than are otherwise possible.

B. It can simplify font maintenance on a network with many X servers.

C. It’s the only means of providing TrueType support for XFree86 4.x.

D. It enables the computer to turn a bitmapped display into an ASCII text file.

E. It enables X to use font smoothing, which isn’t possible with core fonts.

6. What methods do Linux distributions use to start X automatically when the system boots?
(Select two.)

A. Start an XDMCP server from the Start folder.

B. Start an XDMCP server from an ~/.xinitrc script.

C. Start an XDMCP server via a system startup script.

D. Start an XDMCP server via a boot manager.

E. Start an XDMCP server from init.

7. How would you change the text displayed by XDM as a greeting?

A. Click Configure ➣ Greeting from the XDM main menu, and edit the text in the result-
ing dialog box.

B. Pass greeting="text" as a kernel option in the boot loader, changing text to the new
greeting.

C. Edit the /etc/X11/xorg.conf file, and change the Greeting option in the xdm area.

D. Run xdmconfig, and change the greeting on the Login tab.

E. Edit the /etc/X11/xdm/Xresources file, and change the text in the xlogin*greeting line.

8. Which of the following features do KDM and GDM provide that XDM doesn’t?

A. An encrypted remote X-based access ability, improving network security

B. The ability to accept logins from remote computers, once properly configured

C. The ability to select the login environment from a menu on the main login screen

D. A login screen that shows the username and password simultaneously rather than
sequentially

E. An option to log into text mode if X should fail to start

http://technet24.ir/

Review Questions 339

c06.indd 03/26/2015 Page 339

9. Which of the following commands tells the X server to accept connections from penguin.
example.com?

A. xhost +penguin.example.com

B. export DISPLAY=penguin.example.com:0

C. telnet penguin.example.com

D. xaccess penguin.example.com

E. ssh penguin.example.com

10. To assist an employee who has trouble with keyboard repeat features, you’ve disabled this
function in /etc/X11/xorg.conf. Why might this step not be sufficient for the goal of
disabling keyboard repeat?

A. GNOME, KDE, or other desktop environment settings for keyboard repeat may
override those set in xorg.conf.

B. The xorg.conf file has been deprecated; you should instead adjust the /etc/X11/
XF86Config file.

C. Keyboard settings in xorg.conf apply only to Bluetooth keyboards; you must use
usbkbrate to adjust keyboard repeat for USB keyboards.

D. You must also locate and reset the DIP switch on the keyboard to disable keyboard
repeat.

E. The keyboard repeat options in xorg.conf work only if the keyboard’s nationality is
set incorrectly, which is not often.

11. Which of the following programs may be used to provide computer-generated speech for
users who have trouble reading computer displays? (Select two.)

A. SoX

B. Braille

C. Orca

D. talk

E. Emacspeak

12. You manage a computer that’s located in Los Angeles, California, but the time zone is
misconfigured as being in Tokyo, Japan. What procedure can you follow to fix this
problem? (Select two.)

A. Run hwclock --systohc to update the clock to the correct time zone.

B. Delete /etc/localtime, and replace it with an appropriate file from /usr/share/
zoneinfo.

C. Edit the /etc/tzconfig file so that it specifies North_America/Los_Angeles as the
time zone.

D. Edit /etc/localtime, and change the three-letter time zone code on the TZ line.

E. Use the tzselect program to select a new (Los Angeles) time zone.

http://technet24.ir/

340 Chapter 6 ■ Configuring the X Window System, Localization, and Printing

c06.indd 03/26/2015 Page 340

13. You’re configuring a Linux system that doesn’t boot any other OS. What is the recom-
mended time to which the computer’s hardware clock should be set?

A. Helsinki time

B. Local time

C. US Pacific time

D. UTC

E. Internet time

14. You’ve developed a script that uses several Linux commands and edits their output.
You want to be sure that the script runs correctly on a computer in Great Britain, although
you’re located elsewhere, since the output includes features such as currency symbols and
decimal numbers that are different from one nation to another. What might you do to
test this?

A. Enter the BIOS, locate and change the location code, reboot into Linux, and run
the script.

B. Edit /etc/locale.conf, change all the LC_* variables to en_GB.UTF-8, and then
reboot and run the script.

C. Type export LC_ALL=en_GB.UTF-8, and run the script from the same shell you
used to type this command.

D. Type locale_set Great_Britain, and run the script from the same shell you used
to type this command.

E. Type export TZ=:/usr/share/zoneinfo/Europe/London, and run the script
from the same shell you used to type this command.

15. Which character set encoding is the preferred method on modern Linux systems?

A. UTF-8

B. ASCII

C. ISO-8859-1

D. ISO-8859-8

E. ATASCII

16. Which of the following describes the function of a smart filter?

A. It improves the legibility of a print job by adding font smoothing to the text.

B. It detects information in print jobs that may be confidential as a measure against
industrial espionage.

C. It sends email to the person who submitted the print job, obviating the need to wait
around the printer for a printout.

D. It detects and deletes prank print jobs that are likely to have been created by trouble-
makers trying to waste your paper and ink.

E. It detects the type of a file and passes it through programs to make it printable on a
given model of printer.

http://technet24.ir/

Review Questions 341

c06.indd 03/26/2015 Page 341

17. What information about print jobs does the lpq command display? (Select two.)

A. The name of the application that submitted the job

B. A numerical job ID that can be used to manipulate the job

C. The amount of ink or toner left in the printer

D. The username of the person who submitted the job

E. The estimated time to finish printing the job

18. You’ve submitted several print jobs, but you’ve just realized that you mistakenly submitted
a huge document that you didn’t want to print. Assuming that you can identify the specific
job, that it’s not yet printing, and that its job ID number is 749, what command would you
type to delete it from the okidata print queue?

A. The answer depends on whether you’re using BSD, LPD, LPRng, or CUPS.

B. Type lpdel -Pokidata 749.

C. Type lprm -Pokidata 749.

D. Type cupsdisable -Pokidata 749.

E. None of the above; the task is impossible.

19. Which of the following is generally true of Linux programs that print?

A. They send data directly to the printer port.

B. They produce PostScript output for printing.

C. They include extensive collections of printer drivers.

D. They can print only with the help of add-on commercial programs.

E. They specify use of the Verdana font.

20. What tool might you use to print a four-page PostScript file on a single sheet of paper?

A. PAM

B. mpage

C. 4Front

D. route

E. 411t o ppm

http://technet24.ir/

http://technet24.ir/

c07.indd 03/26/2015 Page 343

Chapter

7
Administering the
System

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 107.1 Manage user and group accounts and related
system files

 ✓ 107.2 Automate system administration tasks by
scheduling jobs

 ✓ 108.1 Maintain system time

 ✓ 108.2 System logging

http://technet24.ir/

c07.indd 03/26/2015 Page 344

Much of Linux system administration deals with handling
mundane day-to-day tasks. Many of these tasks relate to users
and groups: adding them, deleting them, confi guring their

environments, and so on. On a small system, you might perform such tasks occasionally,
but on a busy system you might adjust accounts frequently.

Another class of day-to-day tasks involves managing and reviewing log fi les. These are
fi les that record the details of system operations, such as remote logins. Log fi les can be
invaluable debugging resources, but even if you aren’t experiencing a problem, you should
review them periodically to be sure everything is working correctly.

Many Linux tasks relate to time, and so understanding how Linux treats time is impor-
tant. So are the skills needed to set the time on a Linux server. You can also tell Linux
to run particular jobs at specifi c times in the future. This can be handy to help automate
repetitive tasks, such as synchronizing data with other systems on a regular basis.

Managing Users and Groups

Linux is a multiuser system that relies on accounts—data structures and procedures used
to identify individual users of a computer. Managing these accounts is a basic but impor-
tant system administration skill. Before delving into the details, you need to understand a
few basic concepts about user and group administration, which are covered in the following
sections. In addition, the tools and confi guration fi les that you need to manage users and
groups are covered.

Understanding Users and Groups
Chances are that you have a good basic understanding of accounts already. Fundamentally,
Linux accounts are like accounts on Windows, Mac OS, and other OSs. Some websites use
accounts too. Nonetheless, a few details deserve explanation. These include the various Linux
users, the nature of Linux groups, and the way Linux maps the numbers it uses internally
to the usernames and group names that people generally use.

Learning about Linux User Accounts
Typical Linux accounts are individual user accounts identifi ed via the account’s username.
These accounts are for people who need access to the system.

Linux accounts can also be accounts for system services called daemons. A daemon is
typically a program that provides a particular service, such as the CUPS daemon described

http://technet24.ir/

Managing Users and Groups 345

c07.indd 03/26/2015 Page 345

in Chapter 6, “Confi guring the X Window System, Localization, and Printing.” This
daemon program runs continuously in the background waiting for an event to trigger it
to perform some service. While a daemon does not log into a Linux system, it still needs
an account.

There can also be specialty accounts that are created for unique purposes. For example,
you may want a user account to receive email but not be able to access the local system.

Linux is fairly flexible about its usernames, although details vary from one
distribution to another as well as from one utility to another. Some utilities
are flexible while others impose rather restrictive rules. The traditional
practice is to use entirely lowercase letters in Linux usernames, such as
sally, sam, ellen, and george, with no symbols or numbers. However,
the best practice is to create an account-naming standard after all of the
various access and account management utilities’ rules are reviewed.

Each account requires a unique username. If you can create accounts on your system
with mixed-case usernames, Linux treats usernames in a case-sensitive way. Therefore, a
single computer can support both ellen and Ellen as separate users. This practice can lead
to a great deal of confusion, so it’s best to avoid creating accounts whose usernames differ
only in case.

Linking Users Together via Groups
Linux uses groups as a means of organizing users. In many ways, groups parallel users. In
particular, they’re defi ned in similar confi guration fi les, have names similar to usernames,
and are represented internally by numbers (as are accounts).

Groups are not accounts, however. Rather, groups help organize collections of accounts,
largely as a security measure. Every fi le on a Linux system is associated with a specifi c
user and a specifi c group. Various permissions can be assigned to members of a group. For
instance, group members (such as faculty at a university) may be allowed to read a fi le, but
others (such as students) may be disallowed such access. Because Linux provides access to
most hardware devices (such as scanners) through fi les, you can also use this same mecha-
nism to control access to hardware.

Every group has anywhere from no members to as many members as there are users
on the computer. Group membership is controlled through the /etc/group fi le. This fi le
contains a list of groups and the members belonging to each group. The details of this fi le’s
contents are described later in this chapter in the section “Confi guring Groups.”

In addition to membership defi ned in the /etc/group, each user has a default or primary
group. The user’s primary group is set in the user’s confi guration /etc/passwd record. The
/etc/passwd fi le defi nes each system account via individual account confi guration records.
When users log onto a computer, their group membership is set to their primary group.
When users create fi les or launch programs, those fi les and running programs are associ-
ated with a single group—the current group membership.

A user can access fi les belonging to other groups as long as the user belongs to that
group and the group access permissions allow such access. To run programs or create fi les

http://technet24.ir/

346 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 346

with a group other than the primary group, the user must run the newgrp command to
switch current group membership. For instance, to change to the project2 group as your
current group, you might type the following:

$ newgrp project2

If the user typing this command is listed as a project2 group member in the /etc/group
fi le, the user’s current group membership changes. Thereafter, fi les created by that user will
be associated with the project2 group. Alternatively, users can change the group associated
with an existing fi le by using the chgrp or chown command, as described in Chapter 4,
“Managing Files.”

This group structure enables you to design a security system that permits different
collections of users to work on the same fi les effortlessly. Simultaneously, this structure
keeps other users of the same computer from prying into fi les that they should not be
able to access. In a simple case, you may create groups for different projects, with each
user restricted to one of these groups. A user who needs access to multiple groups can
be a member of each of these groups. For instance, a student who takes two classes can
belong to the groups associated with each class, or a supervisor may belong to all of the
supervised groups.

Mapping UIDs and GIDs to Users and Groups
As mentioned earlier, Linux defi nes users and groups by numbers, referred to as user IDs
(UIDs) and group IDs (GIDs), respectively. Internally, Linux tracks users and groups by
these numbers, not by their name. For instance, the user sam may be tied to UID 536, and
ellen may be UID 609. Similarly, the group project1 may be GID 512, and project2 may
be GID 523.

For the most part, these details take care of themselves—you use names, and Linux
uses /etc/passwd or /etc/group to locate the number associated with the name. You may
occasionally need to know how Linux assigns numbers when you tell it to do something,
though. This is particularly true when you’re troubleshooting.

Linux distributions reserve at least the fi rst 100 user and group IDs (0–99) for system
use. The most important of these is 0, which corresponds to root (both the user and the
group). Accounts and groups that are associated with specifi c Linux utilities and functions
use succeeding low numbers. For instance, UID 2 and GID 2 may be the daemon account
and group, respectively, which are used by various servers; and UID 8 and GID 12 might
be the mail account and group, which can be used by mail-related servers and utilities. You
can check your /etc/passwd and /etc/group fi les to determine which user and group IDs
are so used.

Aside from UID 0 and GID 0, UID and GID numbers aren’t fully
standardized. Different distributions may use different UIDs for standard
user accounts and different GIDs for standard groups. If you need to refer
to a particular user or group, use the name rather than the number.

http://technet24.ir/

Managing Users and Groups 347

c07.indd 03/26/2015 Page 347

The fi rst normal user account is usually assigned a UID of 500 or 1000. When you
 create additional accounts, the system typically locates the next-highest unused UID
 number. Therefore, the second user account you create is UID 1001, the third is 1002,
and so on.

How many user accounts can be created on a Linux system? The limit is
more than 4.2 billion with the 2.4.x and later kernels. However, the limit can
be set lower in configuration files. Also, support program restrictions can
lower the limit.

When you remove an account, that account’s ID number may be reused. However, if
subsequent numbers are in use, the automatic account-creation tools typically don’t do so.
This leaves a gap in the numbering sequence. This gap causes no harm unless you have so
many user accounts that you run out of ID numbers. In fact, reusing an ID number can
cause problems if you don’t clear away the old user’s fi les. In this case, the new user, with
the reused ID number, will become the old user’s fi les’ owner, which can lead to confusion
and security issues.

Account numbering limits are set in the /etc/login.defs file. In particular,
UID_MIN and UID_MAX define the minimum and maximum UID values for
ordinary user accounts. In current distributions, these values are generally
1000 and 60000, respectively.

On any but a very small system with few users, you’ll probably want to create your
own groups. Because different distributions have different default ways of assigning users
to groups, it’s best that you familiarize yourself with your distribution’s way of doing this
and plan your own group-creation policies. For instance, you may want to create your own
groups within certain ranges of IDs to avoid confl icts with the distribution’s default user-
and group-creation processes.

It’s possible to create multiple usernames that use the same UID or multiple group names
that use the same GID. In some sense, these are different accounts or groups. They have
different entries in /etc/passwd or /etc/group, so they can have different home directo-
ries, different passwords, and so on. Because these users or groups share IDs with other
users or groups, though, they’re treated identically in terms of fi le permissions. Unless you
have a compelling reason to do so, you should avoid creating multiple users or groups that
share an ID.

Intruders sometimes create accounts with UID 0 to give themselves root
privileges on the systems they invade. Any account with a UID of 0 is
effectively the root account, with all the power of a superuser. If you spot
a suspicious account in your /etc/passwd file with a UID of 0, your system
has probably been compromised.

http://technet24.ir/

348 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 348

Configuring User Accounts
How frequently you perform user maintenance depends on the nature of the system you
administer. Some systems, such as small personal workstations, rarely require changes.
Others, such as multiuser servers, may require daily maintenance. The latter situation
would seem to require more knowledge of user account confi guration tools. Yet, even in a
seldom-changing system, it’s useful to know how to add, modify, or delete accounts so that
you can do so quickly and correctly when needed.

This chapter describes the traditional text-based tools for account creation and main-
tenance. Most modern Linux distributions ship with GUI tools that accomplish the same
goals. These tools vary from one distribution or environment to another, so they’re hard to
summarize for Linux as a whole. The exam also emphasizes the text-based tools. Overall,
the text-based tools provide the greatest fl exibility and are most broadly applicable.

Adding Users
Adding users can be accomplished through the useradd utility. (This program is called
adduser on some distributions.) Its basic syntax is as follows:

useradd [-c comment] [-d home-dir] [-e expire-date] [-f inactive-days] ↵
 [-g default-group] [-G group[,...]] [-m [-k skeleton-dir] | -M] ↵
 [-p password] [-s shell] [-u UID [-o]] [-r] [-N] username

Some of these parameters modify settings that are valid only when the
system stores its passwords in the shadow file, /etc/shadow. This is the
standard configuration for most distributions today.

In its simplest form, you may type just useradd username, where username is the
account name that you want to create. The rest of the parameters are used to modify the
default values for the system, which are stored in the fi le /etc/login.defs.

The parameters for the useradd command modify the program’s operation in various ways:

Comment The -c comment parameter passes the comment fi eld for the user. Some admin-
istrators store public information, such as a user’s offi ce or telephone number, in this fi eld.
Others store just the user’s real name or no information at all.

Home Directory You specify the account’s home directory with the -d home-dir param-
eter. This defaults to /home/username on most systems.

Account Expiration Date You set the date on which the account will be disabled,
expressed in the form YYYY-MM-DD, with the -e expire-date option. (Many systems accept
alternative forms, such as MM-DD-YYYY, as well.) By default, no expiration date is set.

Inactive Days An account becomes completely disabled a certain number of days after a
password expires. The -f inactive-days parameter sets the number of days. A value of -1
disables this feature, and it is the default.

http://technet24.ir/

Managing Users and Groups 349

c07.indd 03/26/2015 Page 349

Default Group You set the name or GID of the user’s default group with the -g default-
group option. The default for this value varies from one distribution to another.

Additional Groups The -G group[,...] parameter sets the names or GIDs of one or
more groups to which the user belongs. These groups need not be the default group, and
you can specify more than one by separating them with commas.

Home Directory Options The /etc/login.defs fi le specifi es whether or not to create a
user’s home directory when the account is created via the CREATE_HOME setting. If set to yes,
the -m option has no effect. If set to no, the -m option toggles this specifi cation and a user’s
home directory is created.
 Normally, default confi guration fi les (including subdirectories) are copied from the
/etc/skel directory. You may specify another template directory with the -k skeleton-
dir option.

No Home Directory Creation The -M option forces the system not to create a home direc-
tory, even if /etc/login.defs specifi es that this action is the default. You might use this
option, often in conjunction with -u (described shortly) and -d (described earlier), if a new
account is for a user who’s taking over the home directory of an existing user—say, because
a new employee is replacing one who is leaving.

Hashed Password Specification The -p password parameter passes the pre-hashed
 password for the user to the system. The password value is added, unchanged, to the /etc/
passwd or /etc/shadow fi le. This means that if you type an unhashed password, it won’t
work as you would probably expect. In practice, this parameter is most useful in scripts,
which can hash a password (using crypt) and then send the hashed result through
useradd. The default value disables the account, so you must run passwd to change the
user’s password.

The terms encrypted and hashed are often confused. A hashed password
is created using a one-way mathematical (cryptographic) process. The
original password’s characters cannot be re-created from the hashed
password. If a password were encrypted, you could decrypt it and obtain
the original password characters. Passwords on Linux are hashed.
However, often in Linux documentation you will see the word encrypted
used mistakenly instead.

Default Shell Set the name of the user’s default login shell with the -s shell option. On
most systems, this defaults to /bin/bash, but you can specify another shell or even a program
that’s not traditionally a shell.

UID The -u UID parameter creates an account with the specifi ed user ID value (UID). This
value must be a positive integer, and it’s normally greater than 1000 for user accounts.
(Some distributions permit user account UIDs as low as 500, though.) System accounts
typically have numbers less than 200, and often less than 100. The -o option allows the
number to be reused so that two usernames are associated with a single UID.

http://technet24.ir/

350 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 350

System Account Creation The -r parameter specifi es the creation of a system account—an
account with a value less than UID_MIN, as defi ned in /etc/login.defs. The useradd com-
mand doesn’t create a home directory for system accounts.

No User Group In some distributions, such as Red Hat, the system creates a group with
the same name as the specifi ed username. The -N parameter disables this behavior.

Suppose you’ve added a hard disk and mounted it as /home2. You want to create an
account for a user named Sally in this directory and place her home directory on the new
disk. You want to make the new user a member of the project1 and project4 groups,
with default membership in project4. The following useradd command accomplishes
this goal:

useradd -m -d /home2/sally -g project4 -G project1,project4 sally

#

Modifying User Accounts
User accounts may be modifi ed in many ways: You can directly edit critical fi les such
as /etc/passwd (though not recommended), modify user-specifi c confi guration fi les in
the account’s home directory, or use system utilities like those used to create accounts
(the preferred method).

You usually modify an existing user’s account at the user’s request or to implement some
new policy or system change, such as moving home directories to a new hard disk.

Setting a Password

Although useradd provides the -p parameter to set a password, this tool isn’t very useful
when directly adding a user because it requires a pre-hashed password. Therefore, it’s usu-
ally easiest to create an account in disabled form (by not using -p with useradd) and set the
password after creating the account. You can do this with the passwd command, which has
the following syntax:

passwd [-k] [-l] [-u [-f]] [-d] [-S] [username]

Consider the previously created user account for Sally. In order for Sally to use her
account, she must have the password set. It was not set using the useradd command. You
can use the passwd command on her account as follows:

passwd sally

Changing password for user sally

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

#

http://technet24.ir/

Managing Users and Groups 351

c07.indd 03/26/2015 Page 351

The passwd command asks for the password twice, but it does not echo
what you type. This prevents somebody who sees your screen from
reading the password.

The parameters to the passwd command enable you to modify its behavior:

Update Expired Accounts The -k parameter indicates that the system should update an
expired account.

Lock Accounts The -l parameter locks an account by prefi xing the hashed password with
an exclamation mark (!). The result is that the user can no longer log into the account but
the fi les are still available. This lock is easily undone. The lock parameter is particularly
handy if you want to suspend user access to an account temporarily, such as, for example,
when you’ve spotted some suspicious activity involving the account.

Unlock Accounts The -u parameter unlocks an account by removing a leading exclama-
tion mark. Be aware that the useradd command creates accounts that are locked (dis-
abled) and have no password, unless its -p parameter is specifi ed. Therefore, using this
passwd -u parameter on a fresh account, which is disabled, not only removes the lock
but also results in an account with no password! Normally, passwd doesn’t allow this—it
returns an error if you attempt it. Adding -f forces passwd to turn the account into one
with no password.

Remove an Account’s Password The -d parameter removes the password from an account,
rendering it password-less. No warning messages are given.

Display Account Information The -S option displays information about the password for
an account. Information displayed includes whether it’s set and what type of algorithm was
used to hash the password.

Ordinary users may use passwd to change their passwords, but many passwd param-
eters may be used only by root. Specifi cally, -l, -u, -f, and -d are all off-limits to ordinary
users. Similarly, only root may specify a username to passwd.

When ordinary users run the program, they should omit their usernames. The passwd
utility will change the password for the user who ran the program. As a security measure,
passwd asks for a user’s old password before changing the password. This precaution is
not taken when root runs the program so that the superuser may change a user’s password
without knowing the original password. This is necessary because the administrator nor-
mally doesn’t know the user’s password. It also provides a way for the system administrator
to help a user who’s forgotten a password. The administrator can type passwd username
and then enter a new password for the user.

Linux passwords may consist of letters, numbers, and punctuation. Linux distinguishes
between upper- and lowercase letters in passwords, which means that you can use mixed-
case passwords, numbers, and punctuation to improve security. Chapter 10, “Securing
Your System,” provides information about selecting secure passwords.

Exercise 7.1 provides you with practice in creating accounts on a Linux system.

http://technet24.ir/

352 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 352

E X E R C I S E 7.1

Creating User Accounts

This exercise explores the process of creating user accounts. After performing this exer-

cise, you should be familiar with the command-line Linux account-creation tools and be

able to create new accounts, including preparing new users’ home directories. To add

and test a new account, follow these steps:

1. Log into the Linux system as a normal user.

2. Press Ctrl+Alt+F3 to go to a virtual text-mode login screen.

3. Acquire root privileges by logging in as root and entering the root password. Alter-

natively, you can log in as a regular user and use sudo (if it’s confi gured) to run the

commands in the following steps.

4. Type useradd -m username, where username is the name you want to be associ-

ated with the account. This command creates an account. The -m parameter tells

Linux to create a home directory for the user and fi ll it with default account confi gu-

ration fi les.

5. Type passwd username. You’ll be asked to enter a password for the user and to

type it a second time. Enter a random string or select a password as described in

“Setting a Password.”

6. Press Ctrl+Alt+F2 to go to a fresh text-mode login screen.

7. Try logging in as the new user to verify that the account works properly.

In practice, creating accounts on a production system may require variations on this pro-

cedure. You may need to use additional options in step 4, for instance; consult the section

“Adding Users” or the useradd man page for details on these options.

Furthermore, setting the password may require changes. On a small system with few

users, you may be able to create accounts in the presence of their future users, in which

case the user can type the password in step 5. On other systems, you may need to gener-

ate passwords yourself and then give them to users in some way.

Using usermod

The usermod program closely parallels useradd in its features and parameters. This utility
changes an existing account instead of creating a new one, though. The major differences
between useradd and usermod are as follows:

 ■ usermod allows the addition of an -m parameter when used with -d. The -d parameter
alone changes the user’s home directory, but it doesn’t move any files. Adding -m causes
usermod to move the user’s files to the new location.

http://technet24.ir/

Managing Users and Groups 353

c07.indd 03/26/2015 Page 353

 ■ usermod supports an -l parameter, which changes the user’s login name to the speci-
fied value. For instance, typing usermod -l sjones sally changes the username
from sally to sjones.

 ■ You may lock and unlock a user’s password with the -L and -U options, respectively.
These options duplicate functionality provided by passwd if the /etc/shadow file is
used to store the passwords.

The usermod program changes the contents of /etc/passwd or /etc/shadow, depending
on the option used. If -m is used, usermod also moves the user’s fi les, as already noted.

Changing an account’s characteristics while the owner is logged in can
have undesirable consequences. This is particularly true of the -d -m
combination, which can cause the files on which a user is working to move.
Most other changes, such as changes to the account’s default shell, don’t
take effect until the user has logged out and back in again.

If you change the account’s UID, this action does not change the UIDs associated with a
user’s existing fi les. Because of this, the user may lose access to these fi les. You can manu-
ally update the UIDs on all fi les by using the chown command (see Chapter 4).

When using the -G option to add a user to new groups, be aware that any groups not
listed will be removed. Therefore, it’s a good idea to use the -a option as well. Using the -a
-G parameter options together allows you to add a user to a new group without having to
list any old groups in the command. For instance, to add sally to the group Production,
issue the following commands:

groups sally

sally : sally users project1

#

usermod -a -G Production sally

#

groups sally

sally : sally users project1 Production

#

The preceding example uses the command groups to display the user (sally) account’s
current group memberships. (The groups command is covered shortly in the section
“Confi guring Groups”). The current groups are sally and users. To add an additional
group membership, Production, to the sally account, the usermod command is used with
both the -a and -G options. This allows the original group memberships to be preserved.

If you only use the usermod -G option without the -a option, you must
list all of the user’s current groups along with any additional new groups.
Omitting any of the user’s current groups will remove the user from those
groups! It’s best to use the -a option to avoid this hassle.

http://technet24.ir/

354 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 354

Using chage
The chage command allows you to modify account settings relating to account expiration.
It’s possible to confi gure Linux accounts so that they automatically expire if either of two
conditions is true:

1. The password hasn’t been changed in a specified time period.

2. The system date is past a predetermined time.

These settings are controlled through the chage utility, which has the following syntax:

chage [-l] [-m mindays] [-M maxdays] [-d lastday] [-I inactivedays] ↵
 [-E expiredate] [-W warndays] username

The program’s parameters modify the command’s actions:

Display Information The -l option causes chage to display account expiration and
password aging information for a particular user.

Setting Minimum Time between Password Changes The -m mindays parameter sets the
minimum number of days between password changes. 0 indicates that a user can change a
password multiple times in a day, 1 means that a user can change a password once a day,
2 means that a user may change a password once every two days, and so on.

It is best to set this field to at least 5 days. Leaving it at 0 will allow a
user to change their password right back to the original password after a
required password change.

Setting Maximum Time between Password Changes The -M maxdays parameter sets
the maximum number of days that may pass between password changes. For instance, 30
requires a password change approximately once a month.

Setting the Last Password Change Date The -d lastday parameter sets the last day a
password was changed. Linux normally maintains this value automatically, but you can use
this parameter to alter the password change count artifi cially. lastday is expressed in the
format YYYY/MM/DD or as the number of days since January 1, 1970.

Setting the Maximum Inactive Days The -I inactivedays parameter sets the number
of days between password expiration and account disablement. An expired account may
not be used or may force the user to change the password immediately upon logging in,
depending on the distribution. A disabled account is completely inoperative.

Setting the Expiration Date You can set an absolute expiration date with the
-E expiredate option. For instance, you might use -E 2016/05/21 to have an account
expire on May 21, 2016. The date may also be expressed as the number of days since
January 1, 1970. A value of -1 represents no expiration date.

Setting the Number of Warning Days The -W warndays option sets the number of days
before account expiration that the system will send impending expiration warnings to the

http://technet24.ir/

Managing Users and Groups 355

c07.indd 03/26/2015 Page 355

user. It’s generally a good idea to use this feature to alert users of their situation, particu-
larly if you make heavy use of password-change expirations. Note that these warnings are
usually shown only to text-mode login users. GUI login users, fi le-share users, and so on
usually don’t see these messages.

If the user changes a password before the deadline, the counter is reset
from the password-change date.

The chage command can normally be used only by root. The one exception to this
rule is if the -l option is used. This feature allows ordinary users to check their account-
expiration information.

Understanding Account Configuration Files

You can directly modify user confi guration fi les. The /etc/passwd and /etc/shadow fi les
control most aspects of an account’s basic features.

Manually editing the /etc/passwd and /etc/shadow files is a dangerous
activity and not normally recommended. It is too easy to damage a file
record, which in turn may block users from the system or worse. Use the
provided utilities instead. If you absolutely must manually edit these files,
then run the pwck utility to verify the files and make sure that they are in
sync with each other.

Both fi les consist of a set of records, one line per account record. Each record begins
with a username and continues with a set of fi elds, delimited by colons (:). Many of these
items may be modifi ed with usermod or passwd. A typical /etc/passwd record entry resem-
bles the following:

sally:x:1029:503:Sally Jones:/home/sally:/bin/bash

Each record’s fi eld has a specifi c meaning, as follows:

Username The fi rst fi eld in each /etc/passwd line is the username (sally in this example).

Password The second fi eld has traditionally been reserved for the password. Most Linux
systems, however, use a shadow password system in which the password is stored in /etc/
shadow. The x in the example’s password fi eld is an indication that shadow passwords are in
use. In a system that doesn’t use shadow passwords, a hashed password appears here instead.

UID Following the password is the account’s user ID (1029 in this example).

Primary GID The default login group ID is next in the /etc/passwd line for an account.
The example uses a primary GID of 503.

Comment The comment fi eld may have different contents on different systems. In the
preceding example, it’s the user’s full name. Some systems place additional information

http://technet24.ir/

356 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 356

here, in a comma-separated list. Such information may include the user’s telephone number,
offi ce number, title, and so on.

Home Directory The user’s home directory, /home/sally, is the next record data fi eld.

Default Shell The default shell is the fi nal data item in each /etc/passwd record. This is
normally /bin/bash, /bin/tcsh, or some other common command shell.

It’s possible to use something unusual here. For instance, some systems include a shutdown
account with /bin/shutdown as the default shell. If you log into this account, the computer
immediately shuts down. You can create user accounts with a default shell of /bin/false,
which prevents users from logging in as ordinary users but leaves other utilities intact.
Users can still receive mail and retrieve it via a remote mail retrieval protocol like POP or
IMAP, for instance. A variant on this scheme uses /bin/passwd as the default shell, so that
users may change their passwords remotely but can’t log in using a command shell.

A typical /etc/shadow record entry resembles the following:

sally:6EmoFkLZPkHkpczVN2XRcMdyj8/ZeeT5UnTQ:15505:0:-1:7:-1:-1:

Most fi elds correspond to options set with the chage utility, although some are set with
passwd, useradd, or usermod. The meaning of each colon-delimited fi eld in this record is as
follows:

Username Each line begins with the username. Note that the UID is not used in the /etc/
shadow fi le. The username links entries in this fi le to those in /etc/passwd.

Password The password is stored in hashed form, so it bears no obvious resemblance to
the actual password. An asterisk (*) in the password fi eld indicates an account that does not
accept logins. However, the account will still be able to run cron and at jobs in most cases
(see the section “Running Jobs in the Future” later in this chapter for more information on
cron and at).

An exclamation mark (!) in front of the password hash denotes that the account is locked.
When you lock a user account via the usermod -L command, an exclamation mark (!) is
added to the front of the password fi eld’s data. This keeps the account from logging into the
system but preserves the original password. The usermod -U command removes the excla-
mation mark, unlocks the account, and restores the original password.

When a password has not been set for an account, there will be two exclamation marks (!!)
in the password fi eld. This particular setting means either the account’s password has not
yet been set or the account does not accept logins. This setting is common for non-login
accounts used by the system itself.

Last Password Change The next fi eld (15505 in this example) is the date of the last password
change. This date is stored as the number of days since January 1, 1970.

Days until a Change Is Allowed The next fi eld (0 in this example) is the number of days
before a password change is allowed.

Days before a Change Is Required This fi eld is the number of days after the last password
change before another password change is required.

http://technet24.ir/

Managing Users and Groups 357

c07.indd 03/26/2015 Page 357

Days of Warning before Password Expiration If your system is confi gured to expire pass-
words, you may set it to warn the user when an expiration date is approaching. A value of
7, as in the preceding example, is typical.

Days between Expiration and Deactivation Linux allows for a gap between the expira-
tion of an account and its complete deactivation. An expired account either can’t be used or
requires that the user change the password immediately after logging in. In either case, its
password remains intact. A deactivated account’s password is erased, and the account can’t
be used until the system administrator reactivates it.

Expiration Date This fi eld shows the date on which the account will expire. As with the
last password change date, the date is expressed as the number of days since January 1,
1970. This option is helpful in the case of students, interns, auditors, contract staff, sea-
sonal workers, and similar temporary users.

Special Flag This fi eld is reserved for future use and normally isn’t used or contains a
meaningless value. This fi eld is empty in the preceding example.

For fi elds relating to day counts, a value of -1 or 99999 indicates that the relevant fea-
ture has been disabled. The /etc/shadow values are generally best left to modifi cation
through the usermod and chage commands because they can be tricky to set manually—for
instance, it’s easy to forget a leap year or the like when computing a date as the number of
days since January 1, 1970.

Similarly, because of its hashed nature, the password fi eld can’t be edited effectively except
through passwd or similar utilities. You can cut and paste a value from a compatible fi le or use
crypt, but it’s generally easier to use passwd. Copying hashed passwords from other systems
is also somewhat risky because it means that the users will have the same passwords on both
systems, and this fact will be obvious to anybody who’s acquired both hashed password lists.

Network Account Databases

Many networks employ network account databases, such as the Lightweight Directory

Access Protocol (LDAP), Kerberos realms, and Active Directory (AD) domains. These sys-

tems move account database management onto a single centralized computer (often with

one or more backup systems). This approach’s advantage is that users and administrators

need not deal with maintaining accounts independently on multiple computers. A single

account database can handle accounts on dozens (or even hundreds or thousands) of dif-

ferent computers, greatly simplifying day-to-day administrative tasks and users’ lives.

Linux can participate in these systems. In fact, some distributions provide options to

enable such support at OS installation time. Typically, you must know the name or IP

address of the server that hosts the network account database, and you must know what

protocol that server uses. You may also need a password or some other protocol-specifi c

http://technet24.ir/

358 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 358

information, and the server may need to be confi gured to accept accesses from the Linux

system you’re confi guring.

Using such a system with Linux means that most user accounts won’t appear in /etc/

passwd and /etc/shadow. Groups may not appear in /etc/group. However, these fi les

will still hold information on local system accounts and groups.

Activating use of such network account databases after installing Linux is a complex

topic. It involves installing appropriate software and modifying various confi guration

fi les. Such systems often alter the behavior of tools such as passwd and usermod in subtle

or not-so-subtle ways. If you want to use such a system, you’ll have to consult documen-

tation specifi c to the service you intend to use.

Deleting Accounts
On the surface, deleting user accounts is easy. You may use the userdel command to do
the job of removing a user’s entries from /etc/passwd and, if the system uses shadow pass-
words, /etc/shadow. The userdel command takes just three parameters:

Remove User Files The -r or --remove parameter causes the system to remove the user’s
mail spool, all fi les in the user’s home directory, and the user’s home directory itself.

Force Deletion You can force deletion of the account while a user is logged in by using the
-f or --force option in conjunction with -r. This option also forces removal of the mail
spool even if it’s owned by another user and forces the removal of the home directory even
if another user uses the same home directory.

Get Help The -h or --help option summarizes userdel options.

As an example, removing the sally account is easily accomplished with the following
command:

userdel -r sally

You may omit the -r parameter if you want to preserve the user’s fi les. Be aware of one
potential complication: Users may create fi les outside of their home directories. For instance,
many programs use the /tmp directory as “scratch space,” so user fi les often wind up there.
These fi les are deleted automatically after a certain period, but you may have other directo-
ries in which users may store fi les. To locate all such fi les, you can use the find command
with its -uid parameter (or -user, if you use find before deleting the account). For instance,
if sally was UID 1029, you can use the following command to locate all of her fi les:

find / -uid 1029

The result is a list of fi les owned by UID 1029 (formerly sally). You can then go
through this list and decide what to do with the fi les—change their ownership to someone
else, delete them, back them up, and so on.

 (continued)

http://technet24.ir/

Managing Users and Groups 359

c07.indd 03/26/2015 Page 359

It’s wise to do something with a deleted user’s files. If you leave them on
the system without changing the file’s ownership, they may be assigned
ownership to a new user if the deleted user account’s UID is reused.
If these files contain information that the new user should not have,
the new user and you may be accused of violating company policy or
even crimes.

A few servers—most notably Samba—keep their own list of users. If you run such a
server, it’s best to remove the user’s entry from that server’s user list when you remove the
user’s main account. In the case of Samba, this is normally done by using the smbpasswd
command and its -x option, as in smbpasswd -x sally to delete the sally account from
Samba’s database.

Configuring Groups
Linux provides group confi guration tools that parallel those for user accounts in many
ways. Groups are not accounts so many features of these tools vary. Their layout is similar
to that for account control fi les, but the details differ.

Adding Groups
Linux provides the groupadd command to add a new group. This utility is similar to
useradd but has fewer options. The groupadd syntax is as follows:

groupadd [-g GID [-o]] [-r] [-f] groupname

The parameters for this command let you adjust its operation:

Specify a GID You can provide a specifi c GID with the -g GID parameter. If you omit this
parameter, groupadd uses the next available GID.

Create a System Group The -r parameter instructs groupadd to create a group with a
GID of less than SYS_GID_MIN, as defi ned in /etc/login.defs. Groups with GIDs in this
range are considered system groups, which are similar to system accounts. System groups
are normally used by system tools or to help control access to system resources, such as
hardware device fi les. Not all distributions support this option.

Force Creation Normally, if you try to create a group that already exists, groupadd
returns an error message. The -f parameter suppresses that error message. Not all versions
of groupadd support this parameter.

In most cases, you’ll create groups without specifying any parameters except for the
group name itself:

groupadd Production

This command creates the Production group, giving it whatever GID the system fi nds
convenient—usually the highest existing GID plus 1. Once you’ve done this, you can add

http://technet24.ir/

360 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 360

users to the group, as described in the next section. When you add new users, you can add
them directly to the new group using the useradd command described earlier.

Remember, to add current users to a new group, the usermod command is
used. This utility was discussed earlier in the section “Using usermod.”

Modifying Group Information
Group information, like user account information, may be modifi ed either by using utility
programs or by directly editing the underlying confi guration fi le, /etc/group. There are
fewer options for modifying groups than for modifying accounts, and the utilities and con-
fi guration fi les are similar.

Using groupmod
The groupmod command modifi es an existing group’s settings. Its syntax is as follows:

groupmod [-g GID [-o]] [-n newgroupname] oldgroupname

The options to this command modify its operation:

Specify a GID Specify the new group ID using the -g GID option. The groupmod returns
an error if you specify a new group ID that’s already in use.

Specify a Group Name Specify a new group name with the -n newgroupname option.

Using gpasswd
The gpasswd command is the group equivalent to passwd. The gpasswd command also
enables you to modify other group features and to assign group administrators—users
who may perform some group-related administrative functions for their groups. The basic
syntax for this command is as follows:

gpasswd [-a user] [-d user] [-R] [-r] [-A user[,...]] [-M user[,...]] group

The options for this command modify its actions:

Add a User The -a user option adds the specifi ed user to the specifi ed group.

Delete a User The -d user option deletes the specifi ed user from the specifi ed group.

Disallow newgrp Additions The -R option confi gures the group not to allow anybody to
become a member through newgrp.

Remove Password The -r option removes the password from a group.

Add Group Administrators The root user may use the -A user[,...] parameter to spec-
ify group administrators. Group administrators may add members to and remove members
from a group and change the group password. Using this parameter completely overwrites
the list of administrators, so if you want to add an administrator to an existing set of group
administrators, you must specify all of their usernames.

http://technet24.ir/

Managing Users and Groups 361

c07.indd 03/26/2015 Page 361

Add Users The -M user[,...] option works like -A, but it also adds the specifi ed user(s)
to the list of group members.

If entered without any parameters except a group name, gpasswd changes the password
for the group.

Group passwords are rarely used anymore and are considered a security risk.
The primary purpose behind group passwords was to allow a user to change
their primary group temporarily to a group to which they did not belong.

For example, a user may need group access for a particular project. If the
user is not a group member, the user can still type the newgrp group
command. The user is prompted for a password. If the user knows the
password, the newgrp command allows the indicated group to be set as the
user’s current group. This is termed “logging into the group” because the
newgrp command requests a password in this case. This password is the
group password. If the correct password is not entered, the switch to the
new current group is denied.

Proper system security demands that passwords are never shared among
users. A group password violates this security principle. It is better for the
system administrator to add users to needed groups. See Chapter 10 for
more information on system security.

Understanding the Group Configuration Files

Group information is stored primarily in the /etc/group fi le. Like account confi guration
fi les, the /etc/group fi le is organized as a set of lines, one line per group. A typical line in
this fi le resembles the following:

project1:x:504:sally,sam,ellen,george

Each fi eld is separated from the others by a colon. The meanings of the four fi elds are as
follows:

Group Name The fi rst fi eld (project1 in the preceding example) is the name of the group.

Password The second fi eld (x in the preceding example) is the group password.
Distributions that use shadow passwords typically place an x in this fi eld; others place the
hashed password directly in this fi eld.

GID The group ID number (in this example, 504) goes in this fi eld.

User List The fi nal fi eld is a comma-delimited list of group members.

Users may also be members of a group based on their own /etc/passwd fi le primary
group specifi cation. For instance, if user george has project1 listed as his primary group,
he need not be listed in the project1 line in /etc/group. If user george uses newgrp to
change to another group, though, he won’t be able to change back to project1 unless he’s
listed in the project1 line in /etc/group.

http://technet24.ir/

362 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 362

Systems with shadow passwords also use another fi le, /etc/gshadow, to store shadow
password information about groups. This fi le stores the shadow password and information
for group administrators, as described earlier in “Using gpasswd.”

If you configure Linux to use a network account database, the /etc/group
file is present and may define groups important for the system’s basic
operation. As with /etc/passwd and /etc/shadow, though, important user
groups are likely to be defined only on the network account server, not in
/etc/group.

Deleting Groups
Deleting groups is done via the groupdel command, which takes a single parameter: a
group name. For instance, groupdel project3 removes the project3 group. You can
also delete a group by editing the /etc/group fi le (and /etc/gshadow, if present) and
removing the relevant line for the group. It’s better to use groupdel, because groupdel
checks to see whether the group is any user’s primary group. If it is, groupdel refuses
to remove the group; you must change the user’s primary group or delete the user
account fi rst.

As with deleting users, deleting groups can leave fi les that no longer belong to a
group. They only have a GID. You can locate these fi les with the find command, which
is described in more detail in Chapter 4. For instance, if a deleted group used a GID of
1003, you can fi nd all of the fi les on the computer with that GID by using the following
command:

find / -gid 1003

Once you’ve found any fi les with the deleted group’s ownership, you must decide what to
do with them. If the GID is ever reused, it can lead to confusion and even security breaches.
Therefore, it’s usually best to delete the fi les or assign them other group ownership using
the chown or chgrp command.

Viewing Individual Account Records
When you’re managing user accounts, groups, and passwords, individual account informa-
tion often needs to be reviewed. However, it can be tedious to locate particular records in
the various account management fi les.

Often, system administrators will use the grep command to search through these fi les
for particular records:

$ grep Christine /etc/passwd

Christine:x:501:501::/home/Christine:/bin/bash

$

http://technet24.ir/

Managing Users and Groups 363

c07.indd 03/26/2015 Page 363

Another method for record retrieval uses the get entry command, getent. The getent
command allows you to access records stored in one of the system databases. Only databases
confi gured in the Name Service Switch (NSS) fi le, /etc/nsswitch.conf, can be accessed.

The general syntax for this command is as follows:

getent database key

The database parameter can be any of the NSS confi gured system databases. For our
purposes here, database can be one of the following fi les:

passwd (the /etc/passwd fi le)

shadow (the /etc/shadow fi le)

group (the /etc/group fi le)

The key parameter is the item whose database record you wish to view. For our purposes
here, it is a user account name. For example, suppose you want to search the /etc/passwd
fi le for the Christine user account:

$ getent passwd Christine

Christine:x:501:501::/home/Christine:/bin/bash

$

You may search only one database at a time, and only those with superuser privileges
can successfully search the /etc/shadow fi le with the getent command. Everyone else will
receive no response from such a query:

$ getent shadow Christine

$

The getent command is useful for viewing which users have membership in a particular
group. In this case, the key parameter in the getent group command is the group’s name:

$ getent group Production

Production:x:504:sally,Christine

$

Be aware that in the /etc/group fi le, an individual user’s record does not contain all of a
user’s group memberships. Thus, when you use the user account name for key in the getent
group command, only the user’s primary group and GID is displayed:

$ getent group sally

sally:x:503:

$

To search for all a user’s group memberships, use the groups command instead:

$ groups sally

sally : sally users Production project1

$

http://technet24.ir/

364 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 364

The get entry, getent, command is a handy utility that can search many
more databases than those shown here. For further information, enter man
getent to read the utility’s man pages.

If the key parameter is left off of the getent command, the entire designated database is
displayed:

$ getent passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

[…]

$

Tuning User and System Environments

Text-mode user environments are controlled through shell confi guration fi les. For bash,
these may include the following fi les:

/etc/profile

Files in the /etc/profile.d directory

/etc/bash.bashrc

/etc/bashrc

~/.bashrc

~/.bash_profile

~/.bash_login

~/.profile

The fi les in /etc are global confi guration fi les, which affect all users. The confi guration
fi les located in users’ home directories affect individual users’ accounts and can be custom-
ized by individual users.

All of these fi les control the various bash options, including environment variables—
named variables that hold data for the benefi t of many programs. For instance, you might
set the $EDITOR environment variable to the name of your favorite text editor. Some (but
not all) programs that launch editors pay attention to this environment variable and launch
the editor you specify.

As a system administrator, you can change the global bash confi guration fi les to add,
remove, or change the environment variables that all users receive. Generally speaking,
you should do so because the documentation for a specifi c program indicates that it uses

http://technet24.ir/

Using Log and Journal Files 365

c07.indd 03/26/2015 Page 365

particular environment variables. You can also see all of your current environment variables
by using the env, printenv, or set command. The list is rather long, so you may want to
pipe it through less, as in env | less.

A user environment can also be tuned by adjusting the default set of fi les created by
useradd. As described earlier in “Adding Users,” useradd copies fi les from the skeleton
directory (/etc/skel by default) into a newly created home directory.

Typically, the skeleton directory contains a handful of user confi guration fi les, such as
.bashrc. You can add fi les (and even directories) to this directory, including user confi gura-
tion fi les, a starting directory tree, a README fi le for new users, and anything else you like.

Because skeleton directory files are copied into users’ home directories
and users are given ownership of them, the users can read, change, and
even delete their file copies. Thus, you shouldn’t place any options in the
files that are sensitive from a security point of view or that users should
not be able to change. Keep in mind that entries you place into global bash
configuration files can easily be overridden by individual users via manual
bash commands or other configuration files too.

Changes you make to the skeleton directory fi les won’t automatically be moved into
existing users’ directories. The fi le changes will affect only new users. This fact makes the
global fi les (such as /etc/profile) preferable to /etc/skel fi les for any changes to system
defaults that you want to implement system-wide. This is particularly true if you expect
that you’ll ever want to modify your changes.

Various programs set environment variables themselves, and some are
maintained automatically by bash. For instance, bash maintains the PWD
environment variable, so you shouldn’t try to set it in a configuration
script. Also, be aware that adjusting the bash configuration files affects
only bash. If a user’s default shell is something else or if a user doesn’t use
a text-mode shell (say, if the user logs into a graphical environment and
launches programs from a GUI menu), setting environment variables in the
bash configuration files will do no good.

Using Log and Journal Files

Linux maintains log fi les that record various key details about system operation. These log
fi les are typically stored in the /var/log directory. The /var directory is part of the File
Hierarchy Standard (FHS) covered in Chapter 4. You can begin reviewing /var/log fi les
immediately. However, it is important to know how to change the log fi le confi guration.
You do this by confi guring the syslogd daemon.

There are several issues to consider when confi guring and reviewing log fi les. Some serv-
ers and other programs perform their own logging and must be confi gured independently

http://technet24.ir/

366 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 366

of syslogd. You may want to confi gure one computer to send its log fi les to another system
as a security measure. You should be aware of issues surrounding log fi le rotation. If your
computer doesn’t properly manage existing log fi les, they can grow to consume all of your
available disk space, at least on the partition on which they’re stored.

Many distributions are switching to the systemd utilities, including using the journal
fi le. Journal fi les present a very different way of recording and reporting on a system’s
operation details. The daemon for journaling is systemd-journald, and understanding how
to confi gure it is important for proper journal fi le management.

Understanding syslogd
Most Linux systems employ a special daemon to handle log maintenance in a unifi ed way.
The traditional Linux daemon log manager is syslogd, which is often installed from a
package called sysklogd. The syslogd daemon handles messages from servers and other
user-mode programs. It’s usually paired with a daemon called klogd, which is generally
installed from the same software package as syslogd. The klogd daemon manages logging
of kernel messages.

Other choices for system loggers exist. For instance, syslog-ng is a
replacement that supports advanced options. Many distributions use
rsyslogd, which provides improved filtering capabilities and higher
performance. It is nicknamed the “rocket-fast system for log processing.”
The focus here is on the traditional syslogd logger. Others are similar in
principle, and even in some specific features, but differ in many details.

The basic idea behind a system logger is to provide a unifi ed means of handling log fi les.
The daemon runs in the background and accepts data delivered from servers and other
programs that are confi gured to use the log daemon. The daemon can then use information
provided by the server to classify the messages and direct them to an appropriate log fi le.
This confi guration enables you to consolidate messages from various servers into a handful
of standard log fi les. The arrangement can be much easier to use and manage than poten-
tially dozens of log fi les from the various servers running on the system.

In order to work, of course, the log daemon must be confi gured. In the case of syslogd,
this is done through the /etc/syslog.conf fi le. (The rsyslogd confi guration fi le is /etc/
rsyslog.conf, and it is similar to syslog.conf.) The next section describes the syslog
.conf fi le’s format in more detail.

Setting Logging Options
The format of the /etc/syslog.conf fi le is conceptually simple, but it provides a great deal
of power. Comment lines, as in many Linux confi guration fi les, are denoted by a hash mark
(#). Non-comment lines take the following form:

facility.priority action

http://technet24.ir/

Using Log and Journal Files 367

c07.indd 03/26/2015 Page 367

In this line, the facility parameter is the type of program or tool that generated the
message to be logged. The priority is the parameter for the importance of this message.
The action is a fi le, remote computer, or other location that’s to accept the message. The
facility and priority are often referred to collectively as the selector.

Valid parameters for the facility are as follows:

authpriv Security and authorization messages

cron cron daemon messages

daemon Various system daemon messages

kern Kernel messages

lpr Printing system messages

mail Mail system messages

news News daemon messages

syslog Internally generated syslog messages

user User-level messages

uucp Unix-to-Unix copy program (uucp) daemon messages

local0 through local7 Locally defi ned application messages

Many of these names refer to specifi c servers or program classes. For instance, mail
servers and other mail-processing tools typically log messages using the mail facility. Most
servers that aren’t covered by more specifi c parameters use the daemon facility.

In older Linux distributions, you may find additional facility names.
The facilities security, auth, and mark should no longer be used. The
security facility was identical to the auth facility parameter. Both have
been replaced by the authpriv facility name.

The mark facility name is now used internally only. It originally was a
facility for adding messages (--MARK--) to log files to indicate syslogd
was still working.

For the facility parameter in the /etc/syslog.conf fi le, an asterisk (*) refers to all
facilities. You can specify multiple facilities in one selector by separating the facility names
with commas (,).

Valid parameters for priority are as follows:

debug Debugging level messages for application development (least important)

info Normal operation messages

notice Abnormal messages that are not a concern

warning Messages that indicate an error will occur if action is not taken

http://technet24.ir/

368 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 368

err Non-urgent failure and error messages

crit Urgent failure and error messages concerning secondary systems

alert Urgent failure and error messages concerning primary systems

emerg Panic messages indicating system is unusable (most important)

These priorities represent ascending levels of importance. The debug level logs, as the
name implies, messages for debugging programs that are misbehaving. The crit, alert, and
emerg priorities log the most important messages, which indicate very serious problems.

In older Linux distributions, you may find additional priority names. The
error, warn, and panic priority names should no longer be used. Instead,
replace warn with the warning priority, replace error with err, and replace
panic with the emerg priority.

When a program sends a message to the system logger, it includes a priority parameter;
the logger logs the message to a fi le if you’ve confi gured it to log messages of that level or
higher. Thus, if you specify a priority code of alert, the system will log messages that are
classifi ed as alert or emerg but not messages of crit or below.

An exception to this rule is if you precede the priority parameter by an equal sign (=), as
in =crit, which describes what to do with messages of crit priority only. An exclamation
mark (!) reverses the meaning of a match. For instance, !crit causes messages below crit
priority to be logged. A priority of * refers to all priorities.

You can specify multiple selectors for a single action by separating the selectors with
a semicolon (;). Note that commas are used to separate multiple facilities within a single
selector, whereas semicolons are used to separate multiple selectors as a whole. Examples of
complete selectors appear shortly.

Most commonly, the action parameter is a fi lename, typically in the /var/log direc-
tory tree. The messages, syslog, and secure fi les in this directory are three common and
important log fi les, although not all distributions use all of these fi les. Another possible log-
ging location includes a remote machine name preceded by an at sign (@) to log data to the
specifi ed system. You can also have a username list of individuals who should see the mes-
sage, if they’re logged in. For this last option, an asterisk (*) means all logged-in users.

Some examples should help clarify these rules. The fi rst is a fairly ordinary and
simple entry:

mail.* /var/log/mail

This line sends all log entries identifi ed by the originating program as related to mail to
the /var/log/mail fi le. Most of the entries in a default /etc/syslog.conf fi le resemble this
one. Together, they typically cover all of the facilities mentioned earlier.

Some messages may be handled by multiple rules. For instance, another rule might look
like this one:

*.emerg *

http://technet24.ir/

Using Log and Journal Files 369

c07.indd 03/26/2015 Page 369

This line sends all emerg-level messages to all users who are logged into the computer
using text-mode tools. If this line and the earlier mail.* selector are both present,
 emerg-level messages related to mail will be logged to /var/log/mail and displayed on
users’ terminals.

A more complex example logs kernel messages in various ways, depending on their priorities:

kern.* /var/log/kernel

kern.crit @logger.pangaea.edu

kern.info;kern.!err /var/log/kernel-info

The fi rst of these rules logs all kernel messages to /var/log/kernel. The second line
sends critical kernel messages to logger.pangaea.edu. (This computer must be confi gured
to accept remote logs, which is a topic not covered in this book.)

Finally, the last line sends kernel messages that are between info and err in priority to
/var/log/kernel-info. Because err is the priority immediately above crit, and because
info is the lowest priority, these four lines cause all kernel messages to be logged two or
three times: once to /var/log/kernel as well as either to the remote system and the console
or to /var/log/kernel-info.

Most distributions ship with reasonable system logger settings, but
you may want to examine these settings and perhaps adjust them. If
you change them, be aware that you may need to change some other
tools. For instance, all major distributions ship with tools that help rotate
log files.

In addition to the system logger’s options, you may be able to set logging options in
individual programs. For instance, you may tell programs to log routine information differ-
ently at varying priorities. Some programs also provide the means to log via the system log
daemon or via their own mechanisms. Details vary greatly from one program to another,
so you should consult the program’s documentation for details.

Manually Logging Data
For the most part, the system logger accepts log entries from system tools, such as servers.
Occasionally, though, you may want to create a log entry manually or have a script do so.
The tool for this job is known as logger, and it has the following syntax:

logger [-isd] [-f file] [-p pri] [-t tag] [-u socket] [message ...]

Options to logger permit changing its default function:

Record logger PID The -i option records the process ID (PID) of the logger process
along with other data.

Output to Standard Error You can echo data to standard error as well as to the log fi le by
using the -s option. An interactive script might use this feature to alert users to problems.

http://technet24.ir/

370 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 370

Log Using Datagrams The -d option causes logger to use datagrams rather than a stream
connection to the system logger socket. This is an advanced feature that you should use
only if you’re instructed to do so in documentation or if you understand the networking
issues involved.

Log a File You can log the contents of a fi le by using the -f file option. Be cautious with
this option; if file is big, your system log fi le can grow to a ridiculous size!

Identify a Priority The -p priority option specifi es a priority, as described earlier.

Log Tags You can add a tag with the -t tag option. This is useful if you want to identify
a script or other program that created the log entry.

Specify a Socket Ordinarily, logger calls the default system log tools to do its job. You
can log directly to a network socket using the -u socket option if you prefer.

Specify a Message If you don’t specify a fi le using -f file, logger will log whatever you
type after other options as the message to be logged. If you don’t provide a message on the
command line, logger accepts the input you type on subsequent lines as information to be
logged. You should terminate such input by pressing Ctrl+D.

As an example, suppose you want to log the message “shutting down for system mainte-
nance” to the system log. You can do so by typing the following command:

$ logger shutting down for system maintenance

The result will be an entry like the following, probably in /var/log/messages:

Jul 29 14:09:50 localhost root: shutting down for system maintenance

Adding parameters changes the details of what’s logged as just described. You can place
a call to logger in a script as a way of documenting the script’s activities. For instance, a
system backup script might use logger to record details such as its start and stop times and
the number and size of the fi les that it has backed up.

Rotating Log Files
Log fi les are intended to retain information about system activities for a reasonable period
of time, but system logging daemons provide no means to control the size of log fi les. Left
unchecked, log fi les can therefore grow to consume all of the available partition space on
which they reside. To avoid this problem, Linux employs log fi le rotation tools. These tools
rename and optionally compress the current log fi les, delete old log fi les, and force the log-
ging system to begin using new log fi les.

The most common log rotation tool is a package called logrotate. This program is typi-
cally called on a regular basis via a cron job. (The upcoming section “Running Jobs in the
Future” describes cron jobs in more detail.) The logrotate program consults a confi gura-
tion fi le called /etc/logrotate.conf, which includes several default settings and typically

http://technet24.ir/

Using Log and Journal Files 371

c07.indd 03/26/2015 Page 371

refers to fi les in /etc/logrotate.d to handle specifi c log fi les. A typical /etc/logrotate.
conf fi le includes several comment lines, denoted by hash marks (#), as well as lines to set
various options, as illustrated by Listing 7.1.

Listing 7.1: Sample /etc/logrotate.conf file

Rotate logs weekly

weekly

Keep 4 weeks of old logs

rotate 4

Create new log files after rotation

create

Compress old log files

compress

Refer to files for individual packages

include /etc/logrotate.d

Set miscellaneous options

notifempty

nomail

noolddir

Rotate wtmp, which isn't handled by a specific program

/var/log/wtmp {

 monthly

 create 0664 root utmp

 rotate 1

}

Most of the lines in Listing 7.1 set options that are fairly self-explanatory, or that are
well explained by the comments that immediately precede them. For instance, the weekly
line sets the default log rotation interval to once a week. If you see an option in your fi le
that you don’t understand, consult the man page for logrotate.

The last few lines of Listing 7.1 demonstrate the format for the defi nition of a specifi c
log fi le. These defi nitions begin with the fi lename for the fi le (multiple fi lenames may be
listed, separated by spaces), followed by an open curly brace ({). They end in a close curly
brace (}). Intervening lines set options that may override the defaults. For instance, the
/var/log/wtmp defi nition in Listing 7.1 sets the monthly option, which tells logrotate to
rotate this log fi le once a month, overriding the default weekly option. Such individual fi le
defi nitions are common.

The following are examples of features that are often set in these /etc/logrotate.d
defi nitions:

Rotated File Naming Ordinarily, rotated log fi les acquire numbers in their names, such as
messages.1 for the fi rst rotation of the messages log fi le. Using the dateext option causes

http://technet24.ir/

372 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 372

the rotated log fi le to obtain a date code instead, as in messages-20130210 for the rotation
performed on February 10, 2013.

Compression Options As already noted, compress causes logrotate to compress log fi les
to save space. This is done using gzip by default, but you can specify another program with
the compresscmd keyword, as in compresscmd bzip2 to use bzip2. The compress options
keyword enables you to pass options to the compression command (say, to improve the
compression ratio).

Creation of New Log Files The create option causes logrotate to create a new log fi le
for use by the system logger or program. This option takes a fi le mode, an owner, and a
group as additional options. Some programs don’t work well with this option, though.
Most of them use the copytruncate option instead, which tells logrotate to copy the old
log fi le to a new name and then clear all of the data out of the original fi le.

Time Options The daily, weekly, and monthly options tell the system to rotate the log
fi les at the specifi ed intervals. These options aren’t always used. Some confi gurations use a
size threshold rather than a time threshold for when to rotate log fi les.

Size Options The size keyword sets a maximum size for a log fi le. It takes a size in bytes
as an argument (adding k, M, or G to the size changes it to kilobytes, megabytes, or giga-
bytes, respectively). For instance, size 100k causes logrotate to rotate the fi le when it
reaches 100kB in size.

Rotation Options The rotate x option causes x copies of old log fi les to be maintained.
For instance, if you set rotate 2 for the /var/log/messages fi le, logrotate will maintain
/var/log/messages.1 and /var/log/messages.2 in addition to the active /var/log/
messages fi le. When that fi le is rotated, the following occurs in the /var/log/ directory:

messages.2 is deleted

messages.1 is renamed to messages.2

messages is renamed to messages.1

A new messages fi le is created

Mail Options If you use mail address, logrotate will email a log fi le to the specifi ed
address when it’s rotated out of existence. Using nomail causes the system not to send any
email; the log is quietly deleted.

Scripts The prerotate and postrotate keywords both begin a series of lines that are
treated as scripts to be run immediately before or after log fi le rotation, respectively. In
both cases, these scripts end with the endscript keyword. These commands are frequently
used to force syslogd or a server to begin using a new log fi le.

Typically, servers and other programs that log data either do so via the system logging
daemon or ship with a confi guration fi le that goes in /etc/logrotate.d to handle the serv-
er’s log fi les. These fi les do a reasonable job, but you may want to double-check them. For
instance, you might discover that your system is confi gured to keep too many or too few
old log fi les for your taste, in which case adjusting the rotate option is in order.

http://technet24.ir/

Using Log and Journal Files 373

c07.indd 03/26/2015 Page 373

You should check the /var/log directory and its subdirectories. If you see huge numbers
of fi les accumulating or if fi les are growing to an unacceptable size, you may want to check
the corresponding logrotate confi guration fi les. If an appropriate fi le record doesn’t exist
in /etc/logrotate.d, create one. Use a working fi le’s record as a template, modifying it for
the new fi le. Pay particular attention to the prerotate and postrotate scripts. You may
need to consult the documentation for the program that’s creating the log fi le to learn how
to force that program to begin using a new log fi le.

Reviewing Log File Contents
Log fi les do no good if they simply accumulate on the system. They are to be used as a
means of identifying problems or documenting normal activity. For example, when a server
isn’t responding as you expect, you should check your log fi les as part of your troubleshoot-
ing procedures.

Log fi les can be useful in less troublesome situations as well, such as helping you to iden-
tify a server’s load so as to plan upgrades. Several procedures, many of which involve tools
described elsewhere in this book, can help you access your log fi les:

Paging through Whole Log Files You can use a pager program, such as less (see Chapter 1),
to view the entire contents of a log fi le. A text editor can fi ll the same role.

Searching for Keywords You can use grep (see Chapter 1) to pull lines out of log fi les that
contain keywords. This can be particularly handy when you don’t know which log fi le is
likely to hold an entry. For instance, typing grep eth0 /var/log/* locates all lines in all
fi les in the /var/log directory that contain the string eth0.

Examining the Start or End of a File You can use the head or tail command (see
Chapter 1) to examine the fi rst or last lines of a log fi le. The tail command is particularly
handy; you can use it to look at the last few records right after you take some action that
you would expect to produce some diagnostic log fi le entries.

Monitoring Log Files In addition to checking the last few lines of a log fi le, tail can
monitor a fi le on an ongoing basis, echoing lines to the screen as they’re added to the fi le.
You do this with the -f option to tail, as in tail -f /var/log/messages.

Overall, you should probably examine your log fi les from time to time to become famil-
iar with their contents. This will help you spot abnormalities when the system begins mis-
behaving or when you want to use log fi les to help track down an unwelcome visitor.

Log file entries can be noticeable by their absence as well as by any
suspicious content within them. Intruders often try to cover their tracks
by editing syslogd log files to remove the entries that betray their
unauthorized accesses. Sometimes, though, they’re sloppy about this and
just delete all of the log entries from the time in question. If you notice
unusual gaps in your log files, such as a space of an hour with no entries
on a system that normally logs a couple dozen entries in that period, you
may want to investigate further.

http://technet24.ir/

374 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 374

Exploring the systemd Journal System
Many distributions are embracing systemd system services, including system initialization
(see Chapter 5). Another systemd service is the journal utility. The systemd journal service
provides backward compatibility for most syslogd functionality. However, with systemd
journal implementation there are changes to the way system message logging is handled.
Special confi guration fi les, different log fi le search utilities, and a vastly more secure log-
ging function are just a few of the modifi cations.

The three primary systemd journal service components are described here:

1. daemon: The systemd journaling service is handled by the systemd-journald daemon.

2. Configuration file: The journal service’s configuration is set in the /etc/systemd/
journald.conf file.

3. Search utility: The program used to search through the journal log files is journalctl.

Each of these systemd journal service pieces is covered in the following sections.

Understanding systemd-journald
The systemd-journald daemon is a system service that brings together and stores logging
data. What differentiates it from the rsyslogd and syslogd daemons is that it provides
structure and indexed log fi les (called journals) in a secure manner. Therefore, not only are
the journal fi les easier to search, it is harder for system intruders to cover their tracks.

Many distributions that have switched to systemd no longer install the
rsyslogd or syslogd services by default. However, backward compatibility
is maintained, should you decide to install those services.

Journal entries may come from several sources. The journal entries are created from
server messages, user-mode program messages, and kernel messages just like the messages
the syslogd daemon collects. In addition, however, journal entries are created from all
system service messages, such as generated error messages and boot time communications.
The systemd journal service can store journal entries regardless of their size, metadata,
or format.

Another advantage of using the systemd-journald service over traditional logging dae-
mons is that journal fi les are automatically rotated if they grow above certain limits. This
reduces log fi le maintenance issues and complexity.

There are two types of journal message data fi les: system and user. System journal mes-
sage data fi les are owned by a special group, systemd-journal. The systemd-journal
members can read the journal message data fi les but not write to them. Only the systemd-
journald daemon can write message data to the journals.

By default, each user who logs into the system has journal message data collected and
stored. Users do not own their journal message data fi les, nor can they manually write data
to them. They can, however, read their fi les.

http://technet24.ir/

Using Log and Journal Files 375

c07.indd 03/26/2015 Page 375

As with other daemons, the system initialization fi les should start the systemd-journald
daemon at system boot time. Once up and running, the service stores persistent journal
data in the /var/log/journal/ directory, if confi gured to do so.

Configuring systemd-journald
The systemd-journald service is confi gured using the /etc/systemd/journald.conf fi le.
Most options in this fi le are commented out by a hash (#) mark. Often, you do not need
to make any changes to this fi le, because the systemd-journald defaults are suffi cient.
However, if you want your system to use the nicer features of journald, you need to make
setting modifi cations.

Many settings already have values set and just need the hash mark removed. However,
there may be a few entries that either have no value set or need their value modifi ed. The
following settings are in the journald.conf fi le:

Setting the Journal Data Location The Storage option setting determines where to
store the journal data. The primary values for this option are auto, persistent, volatile,
and none.
 Most systems have the Storage option set to auto. The auto value will confi gure jour-
nald to store journal log data in the /var/log/journal/ directory. However, the directory
must already exist and have the proper permissions set. If it does not exist, then journal
data is stored in the volatile /run/log/journal/ directory, and the data is erased when the
system shuts down.

If you are using the default journald settings or have set Storage=auto in
your configuration, your journal files will not be persistent. To make your
journal files persistent, you will need to create the journal file directory.
Using superuser privileges, type mkdir -p /var/log/journal/ and
reboot your system.

 The persistent value is similar to auto; however, it automatically creates the /var/log/
journal/ directory if needed. The volatile value keeps the journal data only in the /run/
log/journal/ directory. The none value sets no data to be kept, and any data received by
the systemd-journald daemon is discarded.

Compressing the Journal Data You can reduce journal fi le space consumption via com-
pression. The Compress option set to yes will compress journal log data using xz compres-
sion (see Chapter 4 for more details on xz compression).

Controlling Journal Data Filesystem Space Usage There are six /etc/systemd/journald
.conf options that control fi lesystem space usage. Three options have the System prefi x in
their name and are used only for /var/log/journal/ data. The other three options have
the Runtime prefi x and are used only for /run/log/journal/ data.
 The SystemMaxUse and RuntimeMaxUse options determine the maximum fi lesystem space
amount that the journal data may consume. It is stated as a percentage and defaults to 10%.

http://technet24.ir/

376 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 376

The SystemKeepFree and RuntimeKeepFree options determine the minimum amount
of fi lesystem space that must be available for other applications or uses. It is stated
as a percentage and defaults to 15%. This setting may be modifi ed by the systemd-
journald daemon at system boot time if the current free fi lesystem space is below the
confi gured setting.

Rotating Journal Data Files The journald daemon rotates journal data fi les if you sim-
ply set an option in the /etc/systemd/journald.conf confi guration fi le. One option is
SystemMaxFileSize. Data fi le rotation is then triggered by journal data fi le size. By default,
the size of the SystemMaxFileSize is set to 1/8 of the SystemMaxUse size setting. You can
specify the size value in bytes or use size unit suffi xes such as K, M, G, T, and so on.

The other option, MaxFileSec, determines the rotation schedule via a time increment. The
MaxFileSec value is often set to 1month, indicating that fi le rotation will occur after the
data is one month old. The various time settings are suffi xed by time units, such as year,
month, week, and so on.

Sharing Journal Data For backward compatibility purposes, you can set the journald
daemon to share data with the syslogd, rsyslogd , or klogd daemons. This is accom-
plished via the ForwardToSyslog and ForwardToKMsg options.

When the ForwardToSyslog option is set to yes, messages received by the journald daemon
are forwarded to the syslogd or rsyslogd. When the ForwardToKMsg option is set to yes,
data received by journald is forwarded to the kernel log buffer.

For a full list of the various systemd-journald settings stored in the /etc/ systemd/
journald.conf fi le, along with a description, type man journald.conf at the command
prompt.

Viewing Journal Data
To view all of the systemd-journald collected data, the journalctl utility is used. This
command provides several means of fi ltering the data, and it is an extremely powerful utility.

To view the collected system journal data using journalctl, you can operate as a
superuser. An even better technique is to add users who need access to system journal
data to the systemd-journal group (see the section “Confi guring Groups” earlier in this
chapter). Remember, users do not need to belong to the special group to view their own
journal data.

If you just want to view all of the journal data entries starting with the oldest fi rst, sim-
ply use journalctl with no options as shown in Figure 7.1.

You can see from Figure 7.1 that there is a great deal of journal data that is collected.
The fi rst line displayed by the journalctl command denotes when this particular journal
fi le was started and when the message data was last collected.

Notice in Figure 7.1 that each journal entry is time-stamped. These time stamps use real
time adjusted for the system’s time zone. The system’s hostname (localhost.localdomain
in the previous example) is also included. The facility or client passing the message data to
journald is listed next. You may observe that kernel has issued a great deal of messages
in Figure 7.1. This is due to the journal data fi le being started at system boot time. The
journal entry record’s last fi eld item is the message itself.

http://technet24.ir/

Using Log and Journal Files 377

c07.indd 03/26/2015 Page 377

F I GU R E 7.1 Output from the journalctl command with no options set

The journalctl utility displays the collected journal data through a pager.
By default, it uses the pager set by the environment variable $SYSTEMD_
PAGER and not the $PAGER variable. You can display the collected journal
data without using a pager by typing journalctl --nopager at the
command prompt.

The journalctl command’s power lies in its ability to parse out data without much
effort. The basic journalctl command syntax is as follows:

journalctl [options...] [matches...]

The options specifi ed by options are as you would expect, pass parameters that
 modify the journalctl command’s behavior. For example, if you need some help on
using the command, you can type journalctl --h at the command line. Here are a
few helpful options:

-a Display all data fi elds, including long fi elds and unprintable characters.

-e Jump to the data fi le’s end inside the pager utility.

-l Display all printable data fi elds fully.

-n number Show the most recent journal data and limit it to number of lines. If number is
not specifi ed, it shows 10 recent data lines.

-r Reverse the output of the journal data so that the newest data shows fi rst.

Instead of wading through all of the journal data, the journalctl command uses
matches that allow you to fi lter out what you don’t need to view. This snipped example
shows the command to use if you only want to see kernel messages:

http://technet24.ir/

378 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 378

$ journalctl _TRANSPORT=kernel

-- Logs begin at Fri 2014-10-10 17:48:13 EDT, end at Thu 20[...]

Oct 10 17:48:13 localhost.localdomain kernel: Initializing [...]

Oct 10 17:48:13 localhost.localdomain kernel: Initializing [...]

Oct 10 17:48:13 localhost.localdomain kernel: Initializing [...]

[...]

Oct 16 14:50:32 localhost.localdomain kernel: NET: Register[...]

lines 2173-2195/2195 (END)

The matches option can specify any special journal fi elds or fi elds that are application
defi ned. All of the special journal fi elds can be found in the systemd.journal-fields man
pages and fall into four main categories:

User Fields passed directly from a client application and stored in the journal data.

Trusted Trusted fi elds added only by the systemd-journald daemon.

Kernel Kernel messages stored in the journal data.

Fields logged on a different program's behalf Its category name says it all.

The following useful fi elds can be used as matches options that fall within these
categories:

PRIORITY=value Compatible with the syslogd priority settings, the value parameter
is set between 0 for emerg and 7 for debug to fi nd journal data for these priority
messages types.

_UID=user_id user_id is set to a particular user’s UID to fi nd journal data concerning a
particular user.

_HOSTNAME=hostname Journal data messages are found that concern a particular
 originating host.

_TRANSPORT=transport Journal data received from the transport parameter is displayed.
The transport parameter is set to driver, syslog, journal, stdout, or kernel.

_UDEV_SYSNAME=device_name Displays journal data kernel messages for device_name.
Valid device_name settings show in the /sys/ directory.

OBJECT_PID=process_ID Journal message data related to a program with the PID of
process_ID.

You may notice that some matches options are prefixed with an underscore.
These fields are called trusted journal fields and they indicate that the data
was added by the systemd-journald daemon itself and was not altered by
malicious users or programs.

http://technet24.ir/

Maintaining the System Time 379

c07.indd 03/26/2015 Page 379

Combining various journalctl options parameters, along with the matches options,
allows you to parse out the journal message data you need. The following code snippet
looks only at the system journal fi le’s last six lines by using the -n 6 option. It also fi lters
out all message data except for that which is associated with the root user, who has a UID
of zero (0):

$ journalctl -n 6 _UID=0

-- Logs begin at Fri 2014-10-10 17:48:13 EDT, end at Thu 20[...]

Oct 16 15:57:16 localhost.localdomain login[1582]: FAILED L[...]

Oct 16 15:57:16 localhost.localdomain login[1582]: PAM 2 mo[...]

Oct 16 15:57:22 localhost.localdomain systemd[1]: getty@tty[...]

Oct 16 15:57:22 localhost.localdomain systemd[1]: Stopping [...]

Oct 16 15:57:22 localhost.localdomain systemd[1]: Starting [...]

Oct 16 15:57:22 localhost.localdomain systemd[1]: Started G[...]

$

There are more powerful fi ltering journalctl selections. To learn more about the vari-
ous fi lter choices available, type man journalctl at the command prompt.

The systemd-journald journal message data entries are all time-stamped using real time
adjusted for the system’s time zone. Thus, an important reason for maintaining system time
is to maintain accurate journals.

Maintaining the System Time

Linux depends on its system clock. Tools such as cron and at (described later in the section
“Running Jobs in the Future”) run programs at specifi ed times, the make development tool
uses fi les’ time stamps to determine which ones need attention, and so on. Therefore, you
should be familiar with how Linux deals with time, how to change the time zone, how to
set the time, and how to keep the clock accurate.

Understanding Linux Time Concepts
The x86 and x86-64 computers that most often run Linux, as well as most other comput-
ers of this general class, have two built-in clocks. The fi rst of these clocks, sometimes called
the hardware clock, maintains the time while the computer is turned off. When you boot
Linux, it reads the hardware clock and sets the software clock to the value it retrieves. The
software clock is what Linux uses for most purposes while it’s running.

Some OSs set their clocks to the local time. This approach is simple and convenient
for people who are used to dealing mainly with local time, but for purposes of network-
ing, it’s inadequate. When it’s 4:00 a.m. in New York, it’s 1:00 a.m. in Los Angeles, so
network protocols that rely even partly on time can become confused (or at the very least,
create confusing log entries) when they operate across time zones. Linux sets its clock to

http://technet24.ir/

380 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 380

Coordinated Universal Time (UTC). For most purposes, UTC is identical to Greenwich
mean time (GMT). GMT is the time in Greenwich, England, unadjusted for daylight sav-
ings time, and is maintained by a series of atomic clocks stationed around the world.
This approach means that Linux systems in New York and Los Angeles (and London and
Moscow and Tokyo) should have identical UTC times, assuming all are set correctly.

For communicating with users, though, these systems need to know their time zones.
For instance, when you type ls -l to see a fi le listing complete with time stamps, Linux
reads the time stamp in UTC. It then adds or subtracts the appropriate amount of time so
that the time stamp displays using your local time. Local time is occasionally called “wall
clock” time.

All of this means that you must be able to set the computer’s time zone. On most
 systems, this is done at system installation. The distribution’s installer asks you for your
time zone and sets things up correctly. If you erred during installation, or if you need to
change the time zone for any reason, refer to Chapter 6, which describes how to set your
local time zone.

The certification exam’s objective 108.1 includes the files /usr/share/
zoneinfo, /etc/timezone, and /etc/localtime. These files are also
included under objective 107.3 and are described in Chapter 6, which
covers that objective.

Both the hardware clock and the software clock are notoriously unreliable on standard
x86 and x86-64 hardware. The hardware clock depends on battery power and tends to
drift. The software clock, after being updated to the hardware clock’s time at boot, is
maintained in software. Thus, your clock can easily end up being several minutes off the
correct time within a month or two of being set. To deal with this problem, Linux supports
various network protocols for setting the time. The most popular of these is the Network
Time Protocol (NTP), which is described in the upcoming section “Using Network
Time Protocol.”

Manually Setting the Time
You can manually set your system’s clocks. As stated earlier, Linux maintains two clocks:
the hardware clock and the software clock. The main tool to set the software clock is date,
which has the following syntax when setting the clock:

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Used without any options, this command displays the current date and time. If you pass
a time to the date command, it sets the software clock to that time. This format contains a
month, a day, an hour, and a minute at a minimum, all in two-digit codes (MMDDhhmm). You
can optionally add a two- or four-digit year and the seconds within a minute if you like.
You should specify the time in a 24-hour format. For instance, to set the time to 3:02 p.m.
on October 27, 2016, you’d type the following command:

http://technet24.ir/

Maintaining the System Time 381

c07.indd 03/26/2015 Page 381

date 102715022016

By default, date assumes that you’re specifying the time in local time. If you want to set
the clock in UTC, include the -u, --utc, or --universal option.

Because x86 and x86-64 hardware maintains both software and hardware clocks, Linux
provides tools to synchronize the two. Specifi cally, the hwclock utility lets you set the hard-
ware clock from the software clock, or vice versa, as well as to do a few other things. Its
syntax is fairly straightforward:

hwclock [options]

You can specify options to accomplish several goals:

Show the Hardware Clock To view the hardware clock, pass the -r or --show option. The
time is displayed in local time, even if the hardware clock is set to UTC.

Set the Hardware Clock Manually To set the hardware clock to a date you specify, you
need two options: --set and --date=newdate. The newdate option is in the date format
that the date program accepts.

Set the Hardware Clock Based on the Software Clock If you’ve set the software clock,
you can synchronize the hardware clock to the same value with the --systohc option.

Set the Software Clock Based on the Hardware Clock If your hardware clock is accurate
but your software clock is not, you can use the --hctosys option to set the software clock
to the hardware clock’s value. This option is often used in a SysV startup script to set the
system clock when the computer fi rst boots.

Specify UTC or Local Time You can tell Linux to treat the hardware clock as storing
UTC by using the --utc option or to treat it as holding local time by using the --localtime
option. The default is whichever was last used when the hardware clock was set.

Ordinarily, you won’t use hwclock directly very often. You may need to use it after a
daylight savings time shift if you maintain your hardware clock in local time, but most dis-
tributions include scripts that manage this task automatically. You may also want to use it
once in a while to keep the hardware clock from drifting too far from an accurate time; but
again, many distributions do this automatically as part of the system shutdown procedure.

Using Network Time Protocol
Sometimes maintaining truly accurate system time is important. This is true for a few sci-
entifi c, business, and industrial applications (such as astronomical measurements or deter-
mining the start and stop times for television broadcasts). In a networked environment,
maintaining the correct time can be more important. Time stamps on fi les may become
confused if a fi le server and its clients have different times, for instance.

For these reasons, several protocols exist to synchronize the clocks of multiple systems.
Of these, Network Time Protocol (NTP) is the most popular and fl exible. You should fi rst
understand the basic principles of NTP operation. You can then go on to confi guring an
NTP server for your network and setting up other systems as NTP clients.

http://technet24.ir/

382 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 382

Understanding NTP Basics
One of the most popular, fl exible, and accurate network time tools is NTP. This protocol
creates a tiered hierarchy of time sources, as illustrated in Figure 7.2. At the top of the
structure are one or more highly accurate time sources. These time sources include atomic
clocks or radio receivers that pull their times from broadcast time signals based on atomic
clocks. These are referred to as stratum 0 time servers, but they aren’t directly accessible
to any but the stratum 1 time servers to which they’re connected. These stratum 1 comput-
ers run NTP servers that deliver the time to stratum 2 servers, which deliver the time to
 stratum 3 servers, and so on, for an arbitrary number of strata.

F I GU R E 7. 2 NTP enables an expanding pyramid of computers to set their clocks to a
highly accurate source signal.

Stratum 0

Stratum 1

Stratum 2

Stratum 3

Stratum 4

The key to NTP is the fact that each server can deliver time to an expanding number
of clients. For instance, a stratum 1 server may have 1,000 clients, each of which may also
have 1,000 clients, and so on. Each increase in the stratum number slightly decreases the
accuracy of the time signal, but not by much. A stratum 4 system’s clock should be accurate

http://technet24.ir/

Maintaining the System Time 383

c07.indd 03/26/2015 Page 383

to well under a second, which is accurate enough for almost all purposes. More important,
if you run a network, you can set aside one computer to act as an NTP server. Your other
computers’ clocks (NTP clients) can obtain time from that one server.

NTP works by measuring the round-trip time for network packets between the
server and the client. The two systems exchange packets with embedded time stamps.
The client then adjusts its time so that it is synchronized with the server. This time
adjustment is based upon both the source’s time stamp and the packet’s estimated travel
time. For this reason, when you select an NTP source (as described next, in “Locating
a Time Source”), you should pick one with the shortest possible network time delay, all
other things being equal.

The main Linux NTP server program functions as both a server and a client. It sets its
clock based on the server time to which it’s pointed, and it enables other systems to set their
clocks based on its own clock. Even the end points in the NTP hierarchy (the stratum 4 and
some stratum 3 servers in Figure 7.2) often run the full NTP server package.

The NTP daemon, ntpd, monitors for and adjusts the clock drift that’s common in com-
puters’ clocks. These actions result in more accurate timekeeping than is possible with a
program that simply sets the clock and then ignores it until the next time the program is
run. In part, this is done through the ntp.drift fi le, which is usually buried in /var/lib/
ntp but is sometimes stored in /etc. This fi le holds information about the software clock’s
inaccuracies, and so it can be used to correct for them. A full NTP server periodically
 operates as an NTP client by checking with its source time systems to keep the system time
set correctly and to update the ntp.drift fi le.

Locating a Time Source
You may think that just picking an NTP server with a low stratum number (such as
 stratum 1) to use is ideal. Most likely you will be blocked from using a low stratum–
numbered time server. Blocking direct access to low stratum servers helps to lighten the
load on those servers. This improves the NTP network’s overall performance.

To locate an NTP server, you should consult one or more of several sources:

Your ISP Many Internet service providers (ISPs), including business networks and
 universities, operate NTP servers for the benefi t of their users. These servers are usually
very close to your own in a network sense, making them good choices for NTP. You should
consult your ISP or the networking department at your organization to learn if such a
 system is available.

Your Distribution’s NTP Server Some Linux distributions operate NTP servers for
their users. If you happen to be close to these servers in a network sense, they can be
good choices.

Public NTP Server Lists Lists of public NTP servers are maintained at http://support
.ntp.org/bin/view/Servers/WebHome. These servers can be good choices, but you’ll need
to locate the one closest to you in a network sense and perhaps contact the site you choose
to obtain permission to use it.

http://technet24.ir/

384 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 384

The closest server in a network sense may not be the closest computer
in a geographic sense. For instance, a national ISP may route all traffic
through just one or two hub sites. The result can be that traffic from, say,
Atlanta, Georgia, to Tampa, Florida, may go through Chicago, Illinois. Such
a detour is likely to increase round-trip time and decrease the accuracy
of NTP. In such a situation, a user in Atlanta may be better off using a
Chicago NTP server than one in Tampa, even though Tampa is much closer
geographically.

Public NTP Server Pool The pool.ntp.org subdomain is dedicated to servers that have
volunteered to function as public NTP servers. These servers are accessed in a round-robin
fashion by hostname, so you can end up using different servers each time you launch NTP.
Thus, using the public NTP server pool can be a bit of a gamble, but the results are usually
good enough for casual users or if you don’t want to spend time checking and maintaining
your NTP confi guration.

To use the pool, you can confi gure your NTP server to use either the pool.ntp.org
 subdomain name or a numbered host within that domain, such as 0.pool.ntp.org. You
can narrow the list geographically by adding a geographic name to the domain name, as in
north-america.pool.ntp.org for servers located in North America. For details, consult
http://support.ntp.org/bin/view/Servers/NTPPoolServers.

Once you’ve located a few possible time servers, try using ping to determine the round-
trip time for packets to this system. If any systems have very high ping times, you may
want to remove them from consideration. This example shows the times associated with
using the ping command on a set of North America NTP pool servers:

$ ping -c 3 0.north-america.pool.ntp.org

PING 0.north-america.pool.ntp.org (50.22.155.163) 56(84) bytes of data.

[...]

--- 0.north-america.pool.ntp.org ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2068ms

rtt min/avg/max/mdev = 61.110/62.387/64.111/1.265 ms

$

Here, when a smaller NTP pool subset is used with the ping command, you can see that
the average round trip time (rtt) is slightly lower. Thus, this might be a better time source
to use for this system:

$ ping -c 3 0.us.pool.ntp.org

[...]

--- 0.us.pool.ntp.org ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2047ms

rtt min/avg/max/mdev = 39.159/40.180/40.701/0.740 ms

http://technet24.ir/

Maintaining the System Time 385

c07.indd 03/26/2015 Page 385

Configuring NTP Servers
When you’re setting up a network to use NTP, select one system (or perhaps two for a net-
work with several dozen or more computers) to function as the primary NTP server. This
computer needn’t be very powerful, but it must have high availability and access to the
Internet. You can then install the NTP server and confi gure it.

Most Linux distributions ship the NTP software in a package called ntp or ntpd. Look
for this package (see Chapter 2) and, if it’s not already installed, install it. If you can’t fi nd
this package, check www.ntp.org/downloads.html. This site hosts NTP source code, which
you can compile and install. If you don’t install your distribution’s own NTP package,
you’ll need to create your own system initialization startup script or start the NTP daemon
in some other way.

Once NTP is installed, look for its confi guration fi le, /etc/ntp.conf. This fi le contains
various NTP options, but the most important are the server lines:

server 0.us.pool.ntp.org

server 1.us.pool.ntp.org

server 0.north-america.pool.ntp.org

Each of these lines points to an NTP server pool. When your local NTP daemon starts
up, it contacts all of the servers specifi ed in /etc/ntp.conf, measures their accuracy against
each other, and settles on one as its primary time source. Typically, you list about three
NTP servers in your primary NTP server system’s /etc/ntp.conf fi le. This practice enables
your time server to weed out any source servers that deliver a bad time signal. It also gives
automatic fallback in case a source server becomes temporarily or permanently unavailable.

Before you can start up your NTP primary server, there is one more step. You must elim-
inate insane time. If any NTP client has a system time that varies 17 minutes or more from
the NTP server’s time, all NTP requests will be ignored. This is called insane time. When it
requests NTP services from the primary time source, the NTP primary server that you are
setting up is considered an NTP client. Therefore, you must eliminate the chances of insane
time before you start.

To eliminate the chances of insane time, you can do a manual time synchronization.
Some distributions have the ntpdate command for this function, while others use the
netdate utility. Unfortunately, the ntpdate utility is deprecated, and thus it could disap-
pear from the NTP package at any time.

The recommended method for manual time synchronization is to use the ntpd -gq com-
mand. The NTP daemon will let you perform manual time synchronization in an insane
time situation if you use the -g option. Also needed is the -q option, which allows this
one-time operation to occur and returns you to the command prompt. Therefore, in the
example here, the ntpd -gq command is used:

date

Sat Oct 11 13:16:02 EDT 2015

#

http://technet24.ir/

386 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 386

sudo ntpd -gq

ntpd: time set -3593.675537s

#

date

Sat Oct 11 12:16:23 EDT 2015

#

Using the date command along with ntpd in the previous example, it shows that the
original system time was off by more than 17 minutes. (Actually it was an hour off!) Thus,
insane time was occurring in this situation. Using the ntpd -gq command to manually time
sync allowed insane time to be eliminated. The time was synchronized using a server listed
in the /etc/ntp.conf fi le shown earlier. Now automated NTP time synchronization using
the NTP daemon will work.

The NTP daemon cannot be running when you issue the ntpd -gq
command. If it is, you will get no warning message or error message,
just a prompt back with no time synchronization completed. If you are
having additional odd issues trying to synchronize time manually, add the
-d option for debugging to the command. Type ntpd -dgq to attempt
manual synchronization in debugging mode.

If you have an older distribution, though not recommended, you can still manually syn-
chronize the system’s time using the ntpdate utility or netdate utility. For both commands,
you must append a timer server’s URL to the command. In the ntpdate example here, the
server URL is taken from a previous /etc/ntp.conf fi le example:

date

Sat Oct 11 13:39:02 EDT 2015

#

ntpdate 0.us.pool.ntp.org

11 Oct 12:39:39 ntpdate[2915]:

step time server 204.9.54.119 offset -3583.019385 sec

#

date

Sat Oct 11 12:39:43 EDT 2015

#

Once you set your NTP confi guration fi le and eliminate insane time, you can start your
NTP daemon, ntpd. Typically, this is done via a system startup script or manually using
the appropriate system initialization command (see Chapter 5). Here the NTP daemon is
started using a SysV service command:

service ntpd start

http://technet24.ir/

Maintaining the System Time 387

c07.indd 03/26/2015 Page 387

Not only do system initializations and their commands vary among
distributions, but so do the service names. To start the NTP daemon on
some distributions, you use the service name ntpd, as shown in the
previous example. With other distributions, the NTP service is started
using the service name ntp.

To help verify that NTP is working, you can use the ntpq command utility. This utility
either operates in an interactive mode or accepts command-line arguments. To operate it in
interactive mode, simply type ntpq, as shown in the example here:

$ ntpq

ntpq>

Once you are in interactive mode, you can type help to see all of the available com-
mands. To check on your NTP server, type the peers command at the prompt. When you
wish to leave the interactive mode, type exit and you are returned to the command line.

It is simpler to use ntpq from the command line, without entering into interactive mode.
For example, to check on your NTP server, type ntpq -p and immediately the statistics
are shown. The -p option for ntpq is equivalent to the --peers option. Figure 7.3 shows the
results of using this command.

F I GU R E 7. 3 The ntpq program enables you to verify that an NTP server is functioning
correctly.

The ntpq -p command displays the servers to which your NTP server is connected.
In Figure 7.3, four external servers are listed. The refid column shows the server to
which each system is synchronized, the st column shows the stratum of the server, and
additional columns show more technical information. The server to which your system is

http://technet24.ir/

388 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 388

synchronized is denoted by an asterisk (*). Other servers with good times are indicated by
plus signs (+), and most other symbols (such as x and -) denote servers that have been dis-
carded from consideration for various reasons.

Be aware that if your NTP daemon is not running, you will get an odd error message
from the ntpq command:

$ ntpq -p

ntpq: read: Connection refused

$

You won’t see a server selected as the source until a few minutes after you
restart the NTP daemon. The reason is that your local NTP process takes a
while to determine which of the sources is providing the best signal.

Configuring NTP Clients
Once you’ve confi gured one or more NTP primary servers, you can confi gure the rest of
your computers to point to them. Their confi guration is done just like the NTP server con-
fi guration, with a couple of exceptions:

 ■ You set your NTP clients to refer to the NTP server (or servers) you’ve just config-
ured rather than to an outside NTP source. This way, your local systems won’t put an
unnecessary burden on the outside NTP server you’ve selected.

 ■ You may want to ensure that your NTP clients can’t be accessed as servers. This is a
security measure. You can do this by using the restrict default ignore line in the
ntp.conf file. This line tells the computer to ignore all incoming NTP requests.

Once you’ve confi gured a client, restart its NTP daemon. You can then use ntpq to
check its status. You should see that it refers only to your network’s own NTP server or
servers. These systems should be listed as belonging to a stratum with a number that is one
higher than the servers to which they refer.

Tracking Employee Time

Keeping accurate time on a Linux system is important for network applications and vari-

ous system utilities. However, it may also be an important task for business management

purposes. Many companies need to maintain accurate system time in order to run time

clock applications.

Time clock applications allow employers to track and record employee time. These time

records are used to produce payroll or project tracking reports accordingly. To record

http://technet24.ir/

Running Jobs in the Future 389

c07.indd 03/26/2015 Page 389

their start time, employees may physically punch into a time clock, virtually punch in, log

into the system, and so on. The application uses the Linux system’s accurate time to track

correctly how much time an employee spent at work or spent on a particular project or

even on a particular task.

You can locate Free and Open Source Software (FOSS) time applications on such sites as

http://sourceforge.net. Search for time punch clock software on the site for applica-

tions that may meet your company’s needs. You can also search for these applications

using your favorite Internet search engine. Use search terms such as Linux punch clock

application, Linux time clock application, or Linux time tracking application.

Running Jobs in the Future

Some system maintenance tasks should be performed at regular intervals and are highly
automated. For instance, creating backups (archives) is often an automated task, which is
repeated at least daily. Linux provides a means of scheduling tasks to run at specifi ed times.
This tool is the cron program, which runs what are known as cron jobs. A related tool is
at, which enables you to run a command on a one-time basis at a specifi ed point in the
future, as opposed to doing so on a regular basis as cron does.

Understanding the Role of cron
The cron program is a daemon, so it runs continuously, looking for events that cause it
to spring into action. Unlike most daemons, which are network servers, cron responds to
temporal events. Specifi cally, it “wakes up” once a minute, examines confi guration fi les
in the /var/spool/cron/ and /etc/cron.d/ directories and the /etc/crontab fi le, and
executes commands specifi ed by these confi guration fi les if the time matches the time listed
in the fi les.

There are two types of cron jobs: system cron jobs and user cron jobs. System cron jobs
are run as root and perform system-wide maintenance tasks. By default, most Linux distri-
butions include system cron jobs that clean out old fi les from /tmp, perform log rotation (as
described earlier, in “Rotating Log Files”), and so on.

Ordinary users can create user cron jobs, which might run some user programs on a
regular basis. You can also create a user cron job as root. This might be handy if you need
to perform some task at a different time than is supported by the system cron jobs, which
are rigidly scheduled.

One critical point to remember about cron jobs is that they run
unsupervised. Therefore, you shouldn’t call any program in a cron job if
that program requires user input. For instance, you wouldn’t run a text
editor in a cron job.

http://technet24.ir/

390 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 390

Creating System cron Jobs
The /etc/crontab fi le controls system cron jobs. This fi le normally begins with several
lines that set environment variables, such as $PATH (sets the path) and $MAILTO (sets the
address to which programs’ output is mailed). The fi le then contains several lines that
resemble the following:

02 4 * * * root run-parts /etc/cron.daily

This system crontab record begins with fi ve fi elds that specify the time to run the indi-
cated job:

The minute of the hour (0–59)

The hour of the day (0–23)

The day of the month (1–31)

The month of the year (1–12)

The day of the week (0–7)

For the day of the week, both 0 and 7 correspond to Sunday. For both the month of the
year and the day of the week values, you can use the fi rst three letters of the name rather
than a number if you prefer. The hour of the day is listed in military time. For example, to
indicate that a job is to run at 1:00 p.m., you would list 13 for that fi eld.

In all cases, you can specify multiple fi eld values in several ways:

 ■ An asterisk (*) matches all possible values.

 ■ A list separated by commas (such as 0,6,12,18) matches any of the specified values.

 ■ Two values separated by a dash (-) indicate a range, inclusive of the end points. For
instance, 9-17 in the hour field specifies a time of from 9:00 a.m. to 5:00 p.m.

 ■ A slash, when used in conjunction with some other multi-value option, specifies
stepped values. A stepped value is a range in which some members are skipped. For
instance, */10 in the minute field indicates a job that’s run every 10 minutes.

After the fi rst fi ve fi elds, /etc/crontab entries continue with the account name to be
used when executing the program (root in the preceding example) in the sixth fi eld. In the
record’s seventh fi eld, the command to be run, and any included options or parameters, is
listed (run-parts /etc/cron.daily in this example).

The run-parts command runs all executable programs, with certain
restrictions, contained in a designated directory. Thus, in the preceding
example, all of the executable programs in the /etc/cron.daily/ directory
would be run. Type man run-parts to learn more about this command.

The default /etc/crontab entries generally use run-parts, cronloop, or a similar utility
that runs any executable scripts within a directory. The preceding example runs all of the
scripts in /etc/cron.daily/ at 4:02 a.m. every day.

http://technet24.ir/

Running Jobs in the Future 391

c07.indd 03/26/2015 Page 391

Most distributions include monthly, daily, weekly, and hourly system cron jobs.
These cron jobs each correspond to a script in a directory called /etc/cron.interval/,
where interval is a word associated with the run frequency. Other distributions place
these scripts in a location named slightly differently, the /etc/cron.d/interval/
directories.

The exact times chosen for system cron jobs to execute vary from one
distribution to another. Normally, though, daily and longer-interval cron
jobs run early in the morning—between midnight and 6:00 a.m. Check your
/etc/crontab file to determine when your system cron jobs run.

To create a new system cron job, you may create a script to perform the task that
you want performed (as described in Chapter 9, “Writing Scripts, Confi guring Email,
and Using Databases”). Copy that script to the appropriate /etc/cron.interval or
/etc/cron.d/interval directory. When the runtime next rolls around, cron will run
the new script.

Before submitting a script as a cron job, test it thoroughly. This is
particularly important if the cron job will run when you’re not around. You
don’t want a bug in your cron job script to cause problems by filling the
hard disk with useless files or producing thousands of email messages
when you’re not present to correct the problem quickly.

If you need to run a cron job at a time or interval that’s not supported by the standard
/etc/crontab, you can either modify that fi le to change or add the cron job runtime or
create a user cron job, as described shortly. If you choose to modify the system cron job
facility, model your changes after an existing entry, changing the times and script storage
directory as required.

System cron job storage directories should be owned by root, and
only root should be able to write to them. If ordinary users can write to
a system cron directory, unscrupulous users can write scripts to give
themselves superuser privileges and place them in the system cron
directory. The next time cron runs those scripts, the users will gain full
administrative access to the system.

Creating User cron Jobs
To create a user cron job, you use the crontab utility, not to be confused with the /etc/
crontab confi guration fi le. The syntax for crontab is as follows:

crontab [-u user] [-l | -e | -r] [file]

http://technet24.ir/

392 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 392

If given without the -u user parameter, crontab modifi es the cron job fi le (sometimes
called the user crontab) associated with the current user.

The crontab utility can become confused by the use of su to change the
current user identity, so if you use this command, it’s safest to also use
-u user, even when you’re modifying your own user crontab file.

If you want to work directly on a user crontab fi le, use the following crontab utility options:

-l causes the crontab utility to display the current user crontab fi le.

-r removes the current user crontab fi le.

-e opens an editor so that you can edit the current user crontab fi le.

The vi editor is the default editor when you use the crontab -e
command. However, you can change this by setting the VISUAL or EDITOR
environment variable.

Alternatively, you can create a cron job confi guration fi le and pass the fi lename to
crontab using the file parameter. For instance, crontab -u tbaker my-cron causes
the crontab program to use my-cron for tbaker’s cron jobs. In other words, it copies tbak-
er’s my-cron fi le into the directory in which it stores user cron jobs, making a few minor
changes along the way.

Whether you create a user crontab fi le and submit it via the file parameter or edit it
via -e, the format of the user crontab fi le is similar to that described earlier. You can set
environment variables by using the form VARIABLE=value. You also can specify a command
preceded by fi ve numbers or wildcards to indicate when the job is to run. In a user crontab,
you do not specify the username used to execute the job, as you do with system cron jobs.
That information is derived from the crontab fi le’s owner.

The word crontab has three related but distinct meanings: It can refer to
the crontab program, to the /etc/crontab file, or to the file that holds
user cron jobs.

Listing 7.2 shows a sample user crontab fi le. This fi le runs two programs at different inter-
vals. The fetchmail program runs every 30 minutes (on the hour and half hour), and clean-
adouble runs on Mondays at 2:00 a.m. Both programs are specifi ed via complete paths, but
you can include a PATH environment variable and omit the complete path specifi cations.

Listing 7.2: A sample user crontab file

SHELL=/bin/bash

MAILTO=tbaker

HOME=/home/tbaker

http://technet24.ir/

Running Jobs in the Future 393

c07.indd 03/26/2015 Page 393

0,30 * * * * /usr/bin/fetchmail -s

0 2 * * mon /usr/local/bin/clean-adouble $HOME

Ultimately, user crontab fi les are stored in one of the following directories:

/var/spool/cron/

/var/spool/cron/tabs/

/var/spool/cron/crontabs/

Each fi le in this directory is named after the user under whose name it runs. For
example, tbaker’s crontab fi le might be called /var/spool/cron/tabs/tbaker. You
shouldn’t directly edit the fi les in this directory; instead, use the crontab utility to
make changes.

Access to the cron facility may be restricted in several ways:

Executable Permissions The permissions on the cron and crontab programs may be
restricted using standard Linux permissions mechanisms, as described in Chapter 4. Not all
distributions confi gure themselves in this way. For those that do, users who need to sched-
ule jobs using cron should be added to the appropriate group. This group is often called
cron. However, you should check the group owner and permissions on the /usr/sbin/cron
and /usr/bin/crontab program fi les to be sure.

Allowed Users List The /etc/cron.allow fi le contains a list of users who should be
permitted access to cron. If this fi le is present, only users whose names appear in the fi le
may use cron. All other users are denied access. If this fi le isn’t present, anybody may
use cron, assuming access isn’t restricted by executable permissions or a disallowed-
users list.

Disallowed-Users List The /etc/cron.deny fi le contains a list of users who should be
denied access to cron. If this fi le is present, any user whose name appears in the fi le is
denied access to cron. Users not listed may use cron, assuming executable permissions and
the allowed-users list don’t restrict access.

Exercise 7.2 guides you through the process of creating user cron jobs.

E X E R C I S E 7. 2

Creating User cron Jobs

Implementing cron jobs can be a useful way to run programs at regular times. In this

exercise, you’ll create a simple user cron job that will mail you the output of an ip -s

link command on a daily basis. This exercise assumes that you’re authorized to use cron

as an ordinary user. To confi gure your cron job, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch a terminal emulator from the desktop environment’s menu system if you

used a GUI login method.

http://technet24.ir/

394 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 394

3. Create and edit a fi le called cronjob in your home directory. Use your favorite text

editor for this purpose. The fi le should contain the following lines:

SHELL=/bin/bash

MAILTO=yourusername

00 12 * * * /sbin/ip -s link

Substitute your email address on the Linux system or elsewhere for yourusername.

The cron facility uses the MAILTO environment variable to determine to whom to

email the output of cron jobs.

4. Type crontab cronjob to install the cronjob fi le as a cron job. Note that this com-

mand replaces any user crontab fi les that may exist. If you’ve already defi ned a user

crontab fi le for your account, you should edit your existing user cronjob fi le to add

the line calling ip -s link rather than create a new fi le.

5. Wait for noon (00 12 in the cron time format). When this time rolls around, you

should have a new email waiting for you with the contents of the ip -s link output.

Instead of waiting for noon, you can substitute a time that’s a couple of minutes in the

future. Remember that cron specifi es minutes fi rst, followed by the hour in a 24-hour for-

mat. For instance, if you create the fi le at 3:52 p.m., you might enter 54 15 as the fi rst two

numbers on the fi nal line of the fi le. This will cause the cron job to execute at 15:54 on a

24-hour clock, or 3:54 p.m.

Using anacron
The cron utility is a great tool for performing certain tasks (such as rotating log fi les) on
systems that are up most or all of the time. It’s a much less useful tool on systems that are
regularly shut down, such as laptop or tablet computers. Frequently, late-night cron jobs
are never executed on such systems, which can lead to bloated log fi les, cluttered /tmp
directories, and other problems.

If your system is down the exact time that a cron job is scheduled to run,
the job will not be run when the system boots back up. In fact, the cron
job will not run until its next scheduled time. This is due to the fact that the
cron daemon will not check for jobs that should have run during a system
downtime. This means a script that should run every day could be skipped
for one whole day!

One solution to such problems is the anacron utility. This program is designed as a supple-
ment to cron to ensure that regular maintenance jobs are executed at reasonable intervals.

The anacron utility works by keeping a record of programs that it should execute and
how frequently it should do so. The frequency is set by number of days. Whenever anacron

http://technet24.ir/

Running Jobs in the Future 395

c07.indd 03/26/2015 Page 395

runs, it checks to see when it last executed each program that it’s confi gured to manage. If a
period greater than the program’s execution interval has passed, anacron runs the program.

Typically, anacron itself is run from a system startup script, and perhaps from a cron
job. You can then reconfi gure your regular system cron jobs as anacron jobs and be sure
they’ll execute even on systems that are regularly shut down for long stretches of time.

No matter how you run anacron, you should be sure to disable any cron
jobs that anacron now handles. If you don’t do so, those tasks will be
performed twice, which may needlessly burden your system.

Like cron, the anacron utility is controlled through a confi guration fi le named after
itself: /etc/anacrontab. This fi le consists of three main line types:

1. Comment lines denoted by a leading hash mark (#)

2. Environment variable assignments

3. Job definition records

The job defi nition record contains four fi elds:

period delay identifier command

The fi rst fi eld, period, is how frequently, in days, the command should be run. For
example, a 1 (one) in this fi eld means run it every day. A 30 in the period fi eld means run
the command every 30 days.

The second fi eld, delay, is a delay period, in minutes, between the time anacron starts and
the time the command is run, if it should be run. The delay feature is intended to help keep
the system from being overloaded if anacron determines it needs to run several commands
when it starts up. You can specify different delay times to stagger the running of the jobs.

The third fi eld, identifier, is a string that identifi es the command. Its purpose is to
identify the job in messages, log fi les, and for special execution. For example, you can pass
the identifier to the anacron utility on the command line to have anacron check and, if
necessary, run only that one command.

Finally, the fourth fi eld, command, is the command to be run. This is a single command
or script name, optionally followed by any parameters that it may take.

Listing 7.3 shows a sample /etc/anacrontab fi le. This fi le sets a couple of environment
variables. The PATH environment variable is particularly important if any scripts call
 programs without specifying their complete paths.

Listing 7.3: Sample /etc/anacrontab file

SHELL=/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

format: period delay job-identifier command

1 5 cron.daily run-parts /etc/cron.daily

http://technet24.ir/

396 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 396

7 10 cron.weekly run-parts /etc/cron.weekly

30 15 cron.monthly run-parts /etc/cron.monthly

The three job defi nition records in Listing 7.3 tell anacron to run the run-parts
 command, passing it the name of a different directory for each line. This command is used
on some distributions to run cron jobs, so the effect of calling it from anacron is to take
over cron’s duties. The fi rst line, run once a day, causes anacron to run (via run-parts) the
scripts in /etc/cron.daily; the second line causes the scripts in /etc/cron.weekly
to be run once a week; and the third, run once every 30 days, runs the scripts in /etc/
cron.monthly.

Of course, to do any good, the anacron utility must be called itself. This is typically
done in one of two ways:

Via a Startup Script You can create a startup script to run anacron. For example, a
simple SysV startup script (see Chapter 5) that takes no options but runs anacron should
do the job.

Via a cron Job You can create a cron job to run anacron. Typically, this call will replace
your regular system cron job entries (in /etc/crontab), and you’ll probably want to call
anacron on a daily basis or more frequently.

The startup script approach is best employed on systems that are shut down and started
up frequently, such as laptops or desktop systems that are regularly shut down at the end of
the day. One drawback to this approach is that it can cause sluggish performance when the
system is booted if anacron needs to run a time-consuming task.

Because anacron measures its run intervals in days, it’s not a useful utility
for running hourly cron jobs. Thus, you shouldn’t eliminate any hourly
system cron jobs when you edit your cron configuration for anacron.

Calling anacron via a cron job can shift the burden to off-hours. This ensures that ana-
cron and the jobs it handles are run fairly frequently, if not on a completely regular basis.
Alternatively, you can call anacron more frequently than once a day. For instance, if it’s
called once every six hours, it will almost certainly be called during a typical eight-hour
workday.

If important jobs need to be run daily, be sure to call anacron several times
a day. This way, any unexpected system downtime will not allow daily
critical jobs, which must run every day, to skip an entire day.

Using at
Sometimes cron and anacron are overkill. You may simply want to run a single command
only once at a specifi c future time. For this task, Linux provides another command: at. In

http://technet24.ir/

Running Jobs in the Future 397

c07.indd 03/26/2015 Page 397

ordinary use, this command only needs a single option: a time to run. This time can take
any of several forms:

Time of Day You can specify the time of day as HH:MM, optionally followed by AM or PM if
you use a 12-hour format. If the specifi ed time has already passed, the operation is sched-
uled for the next occurrence of that time—that is, for the next day.

Time Keywords The keywords noon, midnight, or teatime stand for what you’d expect
(teatime is 4:00 p.m.).

Day Specification To schedule an at job more than 24 hours in advance, you must add
a date specifi cation after the time-of-day specifi cation. This can be done in numeric form,
using the format MMDDYY, MM/DD/YY, or DD.MM.YY. Alternatively, you can specify the date as
month-name day or month-name day year.

A Specified Period in the Future You can specify a time using the keyword now, a plus sign
(+), and a time period, as in now + 2 hours to run a job in two hours.

The at utility is not installed on all distributions. If your Linux system
doesn’t have it, install it using information from Chapter 2. Also, the at
command relies on a daemon, atd, to be running. If your system has the
at utility but doesn’t start atd automatically, you may need to configure a
startup script (see Chapter 5) to do so.

When you run at and give it a time specifi cation, the program responds with its own
prompt, at>, which you can treat much like your normal bash or other command shell
prompt. When you’re done typing commands, press Ctrl+D to terminate input. Here is an
example of entering a single command interactively into the at utility:

$ at now +1 hour

at> ip -s link

at> <EOT>

job 1 at 2015-10-14 11:28

$

In the preceding example, the at command is issued along with a time, now +1 hour,
which will cause any entered commands to start running in one hour. The command, ip -s
link, is entered at the at> prompt, and then the utility is exited by pressing Ctrl+D, which
shows as <EOT> at the command line. Notice that a job number and the exact time that the
command will run is displayed when the at utility is exited.

Instead of interactively entering commands, you can pass a fi le with commands by using
the -f parameter to at. For example, typing at -f commands.sh noon will use the
commands.sh fi le’s contents as the commands to run at noon.

The at utility’s support programs include atq, which lists pending at jobs. To use atq,
simply type its name. The program supports a couple of options, but chances are you won’t

http://technet24.ir/

398 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 398

need them. If you do, consult atq’s man page for details. An example of using atq when
there is a pending job is as follows:

$ atq

1 2015-10-14 11:28 a Christine

$

The atrm command removes an at job from the queue. To use atrm, type the program
name or the at job number, as returned by atq. For instance, to remove a job using its job
number:

$ atq

1 2015-10-14 11:28 a Christine

$

$ atrm 1

$ atq

$

Once the job is removed, it’s a good idea to double-check that it is really gone by using
the atq command again.

The batch command was another utility that worked much like the at
utility. It was unique because you could schedule a script to run when the
system load was at a lower usage level. It is often no longer included on
distributions but is sometimes maintained as a script, /usr/bin/batch.
This script simply calls the at utility and submits your job with a higher
nice level (see Chapter 2).

The at facility supports access restrictions similar to those of cron. Specifi cally, the
/etc/at.allow and /etc/at.deny fi les are used. However, there are a few different rules
with at access:

 ■ If neither at.allow nor at.deny exists, only root may use the at command.

 ■ If at.allow exists, the users it lists may use the at command.

 ■ If at.deny exists, everybody except those mentioned in this file may use the at
command.

These access rules differ from those for cron, in which everybody is granted access if
neither access-control fi le is present. This tighter default security on at means that the
 program is seldom installed with restrictive execute permissions. Of course, you can use
program fi le permissions to deny ordinary users the ability to run at if you want an extra
layer of security.

http://technet24.ir/

Exam Essentials 399

c07.indd 03/26/2015 Page 399

Summary

Routine system administration involves a variety of tasks, many of which center around
user management. Adding, deleting, and modifying user accounts and groups are critical
tasks that all system administrators must master. Because they are also related to users, you
should know where to go to modify the default user environment.

System log and journal fi les are critical troubleshooting tools that are maintained by the
system. You should be able to confi gure what data is logged to what fi les and know how to
use these log and journal fi les.

Time management is important in Linux. Setting the Linux clocks (both hardware and
software) and confi guring NTP to keep the software clock accurate are important tasks.
Tools that rely on the time include cron, anacron, and at, which enable the system to run
programs in the future. These tools are used for many common system tasks, including
rotating log fi les.

Exam Essentials

Summarize methods of creating and modifying user accounts. Accounts can be created
or modifi ed with the help of tools designed for the purpose, such as useradd and usermod.
Alternatively, you can directly edit the /etc/passwd and /etc/shadow fi les, which hold the
account information.

Describe the function of groups in Linux. Linux groups enable security features to be
applied to arbitrary groups of users. Each group holds an arbitrary collection of users, and
group permissions can be set on fi les, giving all group members the same access rights to
the fi les.

Explain the purpose of the skeleton files. Skeleton fi les provide a core set of confi guration
fi les that should be present in users’ home directories when those directories are created.
They provide a starting point for users to modify their important shell and other confi gura-
tion fi les.

Summarize how to configure system logging. System logging is controlled via the /etc/
syslog.conf fi le. Lines in this fi le describe what types of log data, generated by programs,
are sent to log fi les and to which log fi les the log messages should go.

Describe how log rotation is managed. Log rotation is controlled via the /etc/logro-
tate.conf fi le (which typically refers to fi les in /etc/logrotate.d/). Entries in these fi les
tell the system whether to rotate logs at fi xed intervals or when they reach particular sizes.
When a log rotates, it’s renamed (and possibly compressed), a new log fi le is created, and
the oldest archived log fi le may be deleted.

http://technet24.ir/

400 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 400

Summarize how to review journal data. The systemd-journald service is responsible
for journal message data. The daemon is controlled via the /etc/systemd/journal.conf
confi guration fi le. This journal message data can only be viewed using the journalctl util-
ity. To view system journal data, you must either use superuser privileges or be a member
of the systemd-journal group. Users can view their own user journal data fi les. To view
the entire current journal data fi le, simply use the journalctl command with no param-
eters. To parse out journal data, use the various fi lters available with the journalctl utility
via parameters.

Explain the two types of clocks in x86 and x86-64 hardware. The hardware clock keeps
time when the computer is powered down, but most programs don’t use it while the com-
puter is running. Such programs refer to the software clock, which is set from the hardware
clock when the computer boots.

Summarize the function of NTP. The Network Time Protocol (NTP) enables a computer
to set its clock based on the time maintained by an NTP server system. NTP can function
as a tiered protocol, enabling one system to function as a client to an NTP server and as a
server to additional NTP clients. This structure enables a single highly accurate time source
to be used by anywhere from a few to (theoretically) billions of computers via a tiered sys-
tem of links.

Explain the difference between system and user cron jobs. System cron jobs are con-
trolled from /etc/crontab, are created by root, and may be run as any user (but most
commonly as root). System cron jobs are typically run at certain fi xed times on an hourly,
daily, weekly, or monthly basis. User cron jobs may be created by any user (various security
measures permitting), are run under the authority of the account with which they’re associ-
ated, and may be run at just about any repeating interval desired.

Describe how to configure anacron jobs. The anacron jobs are controlled from the
/etc/anacrontab fi le. The fi le is checked to see when each listed job was last executed, and
it ensures that the designated time period between executions is followed. Time periods are
listed in number of days. No time period can be less than one day, and therefore jobs need-
ing to be run more than one time per day should not use anacron. Often, anacron itself is
run from a system startup script or from a cron job.

http://technet24.ir/

Review Questions 401

c07.indd 03/26/2015 Page 401

Review Questions

1. When a user account has been locked using the usermod -L command, you will see what in
the /etc/shadow file’s record for that user?

A. An x in the password field

B. An !! in the password field

C. A blank password field

D. A zero (0) at the front of the password field

E. An ! at the front of the password field

2. What commands can be used to add user accounts to a Linux system?

A. useradd username

B. adduser username

C. useradd -c "full name" username

D. usradd username

E. passwd username

3. An administrator types chage -M 7 time. What is the effect of this command?

A. The time account’s password must be changed at least once every seven days.

B. All users must change their passwords at least once every seven days.

C. All users are permitted to change their passwords at most seven times.

D. The time account’s age is set to seven months.

E. The account database’s time stamp is set to seven months ago.

4. What is wrong with the following /etc/passwd file entry?
sally:x:1029:Sally Jones:/home/myhome:/bin/passwd

A. The default shell is set to /bin/passwd, which is an invalid shell.

B. The username is invalid. Linux usernames can’t be all lowercase letters.

C. The home directory doesn’t match the username.

D. Either the UID or the GID field is missing.

E. The hashed password is missing.

5. You want sally, who is already a member of the Production group, also to be a member of
the Development group. What is the best way to accomplish this?

A. Use the groupadd Development sally command.

B. Use the groupadd Production sally command.

C. Manually edit the /etc/group file, and change the Development group’s record to
Development:501:sally.

D. Use the usermod -G Development sally command.

E. Use the usermod -a -G Development sally command.

http://technet24.ir/

402 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 402

6. What types of files might you expect to find in /etc/skel? (Select three.)

A. A copy of the /etc/shadow file

B. An empty set of directories to encourage good file management practices

C. A README or similar welcome file for new users

D. A starting .bashrc file

E. The RPM or Debian package management database

7. What would a Linux system administrator type to remove the nemo account and its home
directory?

A. userdel nemo

B. userdel -f nemo

C. userdel -r nemo

D. rm -r /home/nemo

E. usermod -D nemo

8. Which of the following system logging codes represents the highest priority?

A. info

B. warning

C. crit

D. debug

E. emerg

9. Which of the following configuration files does the logrotate program consult for its
 settings?

A. /etc/logrotate.conf

B. /usr/sbin/logrotate/logrotate.conf

C. /usr/src/logrotate/logrotate.conf

D. /etc/logrotate/.conf

E. ~/.logrotate

10. You want to create a log file entry noting that you’re manually shutting down the system
to add a new network card. How might you create this log entry, just prior to using
 shutdown?

A. dmesg -l "shutting down to add network card"

B. syslog shutting down to add network card

C. rsyslogd "shutting down to add network card"

D. logger shutting down to add network card

E. wall "shutting down to add network card"

http://technet24.ir/

Review Questions 403

c07.indd 03/26/2015 Page 403

11. Your manager has asked that you configure logrotate to run on a regular, unattended
basis. What utility/feature should you configure to make this possible?

A. at

B. logrotate.d

C. cron

D. inittab

E. ntpd

12. You’ve set your system (software) clock on a Linux computer to the correct time, and now
you want to set the hardware clock to match. What command might you type to accom-
plish this goal?

A. date --sethwclock

B. ntpdate

C. sysclock --tohc

D. time --set –hw

E. hwclock --systohc

13. As root, you type date 12110710. What will be the effect?

A. The software clock will be set to 7:10 a.m. on December 11 of the current year.

B. The software clock will be set to 12:11 p.m. on October 7 of the current year.

C. The software clock will be set to 7:10 a.m. on November 12 of the current year.

D. The software clock will be set to 12:11 p.m. on July 10 of the current year.

E. The software clock will be set to July 10 in the year 1211.

14. What will be the effect of a computer having the following two lines in /etc/ntp.conf?
server pool.ntp.org

server tardis.example.org

A. The local computer’s NTP server will poll a server in the public NTP server pool; the
first server option overrides subsequent server options.

B. The local computer’s NTP server will poll the tardis.example.org time server; the
last server option overrides earlier server options.

C. The local computer’s NTP server will poll both a server in the public NTP server pool
and the server at tardis.example.org and use whichever site provides the cleanest
time data.

D. The local computer’s NTP server will refuse to run because of a malformed server
specification in /etc/ntp.conf.

E. The local computer’s NTP server will poll a computer in the public NTP server
pool but will fall back on tardis.example.org if and only if the public pool server
is down.

http://technet24.ir/

404 Chapter 7 ■ Administering the System

c07.indd 03/26/2015 Page 404

15. You’ve configured one computer (gateway.pangaea.edu) on your five-computer network
as an NTP server that obtains its time signal from ntp.example.com. What computer(s)
should your network’s other computers use as their time source(s)?

A. You should consult a public NTP server list to locate the best server for you.

B. Both gateway.pangaea.edu and ntp.example.com

C. Only ntp.example.com

D. Only gateway.pangaea.edu

E. None. NTP should be used on the Internet, not on small local networks.

16. Which of the following tasks are most likely to be handled by a cron job? (Select two.)

A. Starting an important server when the computer boots

B. Finding and deleting old temporary files

C. Scripting supervised account creation

D. Monitoring disk partition space status and emailing a report

E. Sending files to a printer in an orderly manner

17. Which of the following lines, if used in a user cron job, will run /usr/local/bin/cleanup
twice a day?

A. 15 7,19 * * * tbaker /usr/local/bin/cleanup

B. 15 7,19 * * * /usr/local/bin/cleanup

C. 15 */2 * * * tbaker /usr/local/bin/cleanup

D. 15 */2 * * * /usr/local/bin/cleanup

E. 2 * * * * /usr/local/bin/cleanup

18. You’re installing Linux on a critical business system. Which of the following programs
might you want to add to ensure that a daily backup job is handled correctly?

A. tempus

B. anacron

C. crontab

D. ntpd

E. syslog-ng

19. What do the following commands accomplish? (The administrator presses Ctrl+D after
 typing the second command.)
at teatime

at> /usr/local/bin/system-maintenance

A. Nothing; these commands aren’t valid.

B. Nothing; teatime isn’t a valid option to at.

C. Nothing; you may only type valid bash built-in commands at the at> prompt.

D. Nothing; at requires you to pass it the name of a script, which teatime is not.

E. The /usr/local/bin/system-maintenance program or script is run at 4:00 p.m.

http://technet24.ir/

Review Questions 405

c07.indd 03/26/2015 Page 405

20. How might you schedule a script to run once a day on a Linux computer? (Select two.)

A. Place the script, or a link to it, in /etc/cron.daily.

B. Use the at command to schedule the specified script to run on a daily basis at a time of
your choosing.

C. Create a user cron job that calls the specified script once a day at a time of your choos-
ing, and install that cron job using crontab.

D. Use run-parts to schedule the specified script to run on a daily basis.

E. Type crontab -d scriptname, where scriptna me is the name of your scrip t.

http://technet24.ir/

http://technet24.ir/

c08.indd 03/26/2015 Page 407

Chapter

8
Configuring Basic
Networking

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 109.1 Fundamentals of Internet protocols

 ✓ 109.2 Basic network configuration

 ✓ 109.3 Basic network troubleshooting

 ✓ 109.4 Configure client-side DNS

http://technet24.ir/

c08.indd 03/26/2015 Page 408

Most Linux systems are connected to a network, either as
clients or as servers (and often as both). Even home computers
and dedicated appliances such as smartphones usually connect

to the Internet. For this reason, setting up Linux’s basic networking tools is necessary for
confi guring Linux completely. To begin this task, you must fi rst understand the basics of
modern networking, such as the nature of network addresses and the types of tools that are
commonly used on networks. From there, you can move on to Linux network confi gura-
tion, including tasks such as setting a computer’s address, routing, and name resolution.
Unfortunately, network confi guration sometimes goes wrong; understanding the tools and
techniques used to diagnose and fi x network problems is a necessary part of network con-
fi guration. Thus, this chapter covers the basics of network troubleshooting.

Understanding TCP/IP Networking

Networking involves quite a few components that are built atop one another. These
include network hardware, data packets, and protocols for data exchange. Together, these
components make up a network stack. The most common network stack today is the
Transmission Control Protocol/Internet Protocol (TCP/IP) stack, but this isn’t the only
stack available. Nonetheless, understanding the basics of TCP/IP theory will help you con-
fi gure and manage networks.

Knowing the Basic Functions of Network Hardware
Network hardware is designed to enable two or more computers to communicate with one
another. Modern computers have network interfaces built into their motherboards, but
internal (PCI, PCIe, or similar) network cards and external (USB, PC Card, and similar)
network interfaces are also available. Many networks rely on wires or cables to transmit
data between machines as electrical impulses, but network protocols that use radio waves
or even light to do the job are growing rapidly in popularity.

Sometimes the line between network hardware and peripheral interface ports can be
blurry. For instance, a parallel port normally isn’t considered a network port, but when it’s
used with the Parallel Line Interface Protocol (PLIP), http://tldp.org/HOWTO/PLIP
.html, the parallel port becomes a network device. In the past, a USB or RS-232 serial port

http://technet24.ir/

Understanding TCP/IP Networking 409

c08.indd 03/26/2015 Page 409

frequently became a network interface when used with the Point-to-Point Protocol (PPP),
typically in conjunction with a telephone modem. Such connections are rare today, but
they’re still possible. If you need to know how to confi gure a PPP connection, consult your
distribution’s documentation or the PPP HOWTO at http://tldp.org/HOWTO/PPP-HOWTO/.

At its core, network hardware facilitates the transfer of data between computers. The
hardware that’s most often used for networking includes features that help this transfer in
various ways. For instance, such hardware may include ways to address data intended for
specifi c remote computers, as described later in the section “Addressing Hardware.” When
basically non-network hardware is pressed into service as a network medium, the lack of
such features may limit the utility of the hardware or extra software may be required to
make up for the lack. If extra software is required, you’re unlikely to notice the defi ciencies
as a user or system administrator because the protocol drivers handle the work, but this
makes the hardware more diffi cult to confi gure and more prone to sluggishness or other
problems than dedicated network hardware.

Investigating Types of Network Hardware
Linux supports several types of common network hardware. The most common is
Ethernet, which comes in several varieties. Most Linux servers use twisted-pair cabling,
which consists of pairs of wires twisted around each other to minimize interference. Such
varieties of Ethernet are identifi ed by a T suffi x to the Ethernet variety name, as in 10BaseT
or 100BaseT. The numbers denote the speed of the protocol in megabits per second (Mbps).
In the late 1990s, 100BaseT took over from 10BaseT as the standard in offi ce and even
home networks. More recently, 1000BaseT and Ethernet variants that use either wired or
optical cabling and that are capable of 1000Mbps speeds (that is, Gigabit Ethernet) have
become the standard, with 10 Gigabit Ethernet now available in many server environments.

Other types of network hardware exist, but most are less common than Ethernet.
These include Token Ring, LocalTalk, Fiber Distributed Data Interface (FDDI), High-
Performance Parallel Interface (HIPPI), and Fiber Channel. Token Ring was common on
some IBM-dominated networks in the 1990s, but it has steadily been losing ground to
Ethernet for years. Likewise, LocalTalk was the favored medium for early Macintosh com-
puters, but modern Macs ship with Ethernet instead of LocalTalk. FDDI, HIPPI, and Fibre
Channel are all high-speed interfaces that are used in high-performance applications. Some
of these protocols support signifi cantly greater maximum cable lengths than does Ethernet,
which makes them suitable for linking buildings that are many yards, or even miles, apart.

In the Linux workstation world, wireless networking (aka Wi-Fi) is an exception to
Ethernet’s dominance. Common wireless protocols include 802.11a, 802.11b, 802.11g,
and 802.11n. These protocols support maximum speeds of 11Mbps (for 802.11b), 54Mbps
(for 802.11a and 802.11g), or 300 Mbps (for 802.11n). With the exception of the rarely
used 802.11a, Wi-Fi protocols are compatible with one another, albeit at the speed of the

http://technet24.ir/

410 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 410

slowest protocol in use. Wireless networking is particularly useful for laptop computers,
but it’s even handy for desktop computers in homes and small offi ces that don’t have ade-
quate wired network infrastructures in place.

If you use a wireless protocol, your data is transmitted via radio waves,
which are easily intercepted. Wireless protocols include optional encryp-
tion, but this feature is sometimes disabled by default, and some varieties
of wireless encryption are notoriously poor. If you use wireless network
products, be sure to enable Wi-Fi Protected Access (WPA) or, better, WPA2
encryption. The weaker Wired Equivalent Privacy (WEP) encryption is eas-
ily broken. For added protection, use a strong encryption protocol, such as
the Secure Shell (SSH) login tool or Secure Sockets Layer (SSL) encryption,
when transferring any data that’s even remotely sensitive, and be extra
cautious about security on networks that support wireless access. In a
typical configuration, an intruder who can break into your wireless access
point appears to the rest of your network the same as any other local user,
so protecting that access point is extremely important.

In addition to the network hardware in your computers, you need network hardware
outside the computers. With the exception of wireless networks, you need some form of
network cabling that’s unique to your hardware type. (For 100BaseT Ethernet, get cabling
that meets at least Category 5, or Cat-5, specifi cations. Gigabit Ethernet works best with
Cat-5e or optical cables.) Many network types, including twisted-pair Ethernet, require the
use of a central device known as a hub or switch. You plug every computer on a local
network into this central device, as shown in Figure 8.1. The hub or switch then passes
data between the computers.

F I GU R E 8 .1 Many networks link computers together via a central device known as a
hub or switch.

Hub or switch

As a general rule, switches are superior to hubs. Hubs mirror all traffi c to all comput-
ers, whereas switches are smart enough to send packets only to the intended destination.

http://technet24.ir/

Understanding TCP/IP Networking 411

c08.indd 03/26/2015 Page 411

Switches also allow full-duplex transmission, in which both parties can send data at the
same time (like two people talking on a telephone). Hubs permit only half-duplex transmis-
sion, in which the two computers must take turns (like two people using walkie-talkies).
The result is that switches let two computers engage in full-speed data transfers with each
other; with a hub, these two transfers would interfere with each other.

Computers with Wi-Fi adapters can be confi gured to communicate directly with one
another, but it’s more common to employ a wireless access point, which links together both
wireless and Ethernet devices. Most home network wireless access points also include a
router to help connect your home network to a broadband provider, such as cable or DSL,
for Internet access.

Understanding Network Packets
Modern networks operate on discrete chunks of data known as packets. Suppose you want
to send a 100KiB fi le from one computer to another. Rather than send the fi le in one burst
of data, your computer breaks it down into smaller chunks. The system might send 100
packets of 1KiB each, for instance. This way, if there’s an error sending one packet, the
computer can resend just that one packet rather than the entire fi le. (Many network proto-
cols include error-detection procedures.)

When the recipient system receives packets, it must hold onto them and reassemble them
in the correct order to re-create the complete data stream. It’s not uncommon for packets to
be delayed or even lost in transmission, so error-recovery procedures are critical for proto-
cols that handle large transfers. Some types of error recovery are handled transparently by
the networking hardware.

There are several types of packets, and they can be stored within each other. For
instance, Ethernet includes its own packet type (known as a frame), and the packets gener-
ated by networking protocols that run atop Ethernet, such as those described in the next
section, are stored within Ethernet frames. All told, a data transfer can involve several lay-
ers of wrapping and unwrapping data. With each layer, packets from the adjacent layer may
be merged or split up.

Understanding Network Protocol Stacks
It’s possible to think of network data at various levels of abstractness. For instance, at one
level, a network carries data packets for a specifi c network type (such as Ethernet); the data
packets are addressed to specifi c computers on a local network. Such a description, while
useful for understanding a local network, isn’t very useful for understanding higher-level
network protocols, such as those that handle email transfers. These high-level protocols
are typically described in terms of commands sent back and forth between computers,
frequently without reference to packets. The addresses used at different levels also vary, as
explained in the upcoming section “Using Network Addresses.”

A protocol stack is a set of software that converts and encapsulates data between layers
of abstraction. For instance, the stack can take the commands of email transfer protocols,
and the email messages that are transferred, and package them into packets. Another layer

http://technet24.ir/

412 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 412

of the stack can take these packets and repackage them into Ethernet frames. There are
several layers to any protocol stack, and they interact in highly specifi ed ways. It’s often
possible to swap out one component for another at any given layer. For instance, at the
top of each stack is a program that uses the stack, such as an email client. You can switch
from one email client to another without too much diffi culty; both rest atop the same stack.
Likewise, if you change a network card, you have to change the driver for that card,
which constitutes a layer very low in the stack. Applications above that driver can remain
the same.

Each computer in a transaction requires a compatible protocol stack. When they com-
municate, the computers pass data down their respective stacks and then send data to the
partner system, which passes the data up its stack. Each layer on the receiving system sees
the data as packaged by its counterpart on the sending computer.

Protocol stacks are frequently represented graphically in diagrams like Figure 8.2, which
shows the confi guration of the TCP/IP protocol stack that dominates the Internet today. As
shown in Figure 8.2, client programs at the application layer initiate data transfers. These
requests pass through the transport, Internet, and link layers on the client computer, where-
upon they leave the client system and pass to the server system. (This transfer can involve a
lot of complexity not depicted in Figure 8.2.) On the server, the process reverses itself, with
the server program running at the application layer replying to the client program. This
reply reverses the journey, traveling down the server computer’s stack, across the network,
and up the stack on the client. A full-fl edged network connection can involve many back-
and-forth data transfers.

F I GU R E 8 . 2 Information travels “down” and “up” protocol stacks, being checked and
repacked at each step of the way.

Application

Internet

Link

Reply

Request

Client Server

Transport

Application

Internet

Link

Transport

http://technet24.ir/

Understanding TCP/IP Networking 413

c08.indd 03/26/2015 Page 413

Each component layer of the sending system is equivalent to a layer on the receiving sys-
tem, but these layers need not be absolutely identical. For instance, you can have different
models of network cards at the link layer, or you can even use entirely different network
hardware types, such as Ethernet and Token Ring, if some intervening system translates
between them. The computers may run different OSs and hence use different—but
logically equivalent—protocol stacks. What’s important is that the stacks operate in
compatible ways.

Linux was designed with TCP/IP in mind, and the Internet is built atop TCP/IP.
Other protocol stacks are available, though, and you may occasionally run into them. In
particular, NetBEUI was the original Microsoft and IBM protocol stack for Windows,
AppleTalk was Apple’s initial protocol stack, and Internet Packet Exchange/Sequenced
Packet Exchange (IPX/SPX) was Novell’s favored protocol stack. All three are now fading
in importance, but you may still need to use them in some environments. Linux supports
AppleTalk and IPX/SPX but not NetBEUI.

Knowing TCP/IP Protocol Types
Within TCP/IP, several different protocols exist. Each of these protocols can be classi-
fi ed as falling on one of the four layers of the TCP/IP stack, as shown in Figure 8.2. The
most important of the Internet- and transport-layer protocols are the building blocks for
the application-layer protocols with which you interact more directly. These important
Internet- and transport-layer protocols include the following:

IP The Internet Protocol (IP) is the core protocol in TCP/IP networking. Referring to
Figure 8.2, IP is an Internet-layer (aka a network-layer or layer 2) protocol. IP provides
a “best effort” method for transferring packets between computers—that is, the packets
aren’t guaranteed to reach their destination. Packets may also arrive out of order or cor-
rupted. Other components of the TCP/IP stack must deal with these issues and have their
own ways of doing so. IP is also the portion of TCP/IP with which IP addresses
are associated.

IPv6 IP version 6, called IPv6, is the update to the original IP stack (often called IPv4).
It provides expanded features that help move IP into the next century. For example, IPv4
uses 32-bit addresses, but IPv6 uses 128-bit addresses, providing addresses for up to 3.4 ×
1038 devices! IPv6 includes a new feature known as stateless address auto-confi guration
(SLAAC), which simplifi es initial network setup. This feature is similar in some ways
to the Dynamic Host Confi guration Protocol (DHCP) that’s commonly used on IPv4. A
workstation can determine the network address structure and assign itself a unique address
automatically.

ICMP The Internet Control Message Protocol (ICMP) is a simple protocol for commu-
nicating data. ICMP is most often used to send error messages between computers—for
instance, to signal that a requested service isn’t available. This is often done by modifying

http://technet24.ir/

414 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 414

an IP packet and returning it to its sender, which means that ICMP is technically an
Internet-layer protocol, although it relies upon IP. In most cases, you won’t use programs
that generate ICMP packets on demand; they’re created behind the scenes as you use other
protocols. One exception is the ping program, which is described in more detail in “Testing
Basic Connectivity.”

UDP The User Datagram Protocol (UDP) is the simplest of the common transport-layer
(aka layer 3) TCP/IP protocols. It doesn’t provide sophisticated procedures to correct for
out-of-order packets, guarantee delivery, or otherwise improve the limitations of IP. This
fact can be a problem, but it also means that UDP can be faster than more sophisticated
tools that provide such improvements to IP. Common application-layer protocols that are
built atop UDP include the Domain Name System (DNS), the Network File System (NFS),
and many streaming-media protocols.

TCP The Transmission Control Protocol (TCP) may be the most widely used transport-
layer protocol in the TCP/IP stack. Unlike UDP, TCP creates full connections with error
checking and correction as well as other features. These features simplify the creation of
network protocols that must exchange large amounts of data, but the features come at a
cost: TCP imposes a small performance penalty. Most of the application-layer protocols
with which you may already be familiar, including the Simple Mail Transfer Protocol
(SMTP), the Hypertext Transfer Protocol (HTTP), and the File Transfer Protocol (FTP),
are built atop TCP.

You may notice that the name of the TCP/IP stack is built up of two of the stack’s
protocol names: TCP and IP. This is because these two protocols are so important for
TCP/IP networking generally. TCP/IP, though, is much more than just these two protocols;
it includes additional protocols, most of which (below the application layer) are rather
obscure. On the other hand, a TCP/IP exchange need not use both TCP and IP—it could be
a UDP or ICMP exchange, for instance.

Understanding Network Addressing

In order for one computer to communicate with another over a network, the computers
need to have some way to refer to each other. The basic mechanism for doing this is
provided by a network address, which can take several different forms, depending on the
type of network hardware, protocol stack, and so on. Large and routed networks pose
additional challenges to network addressing, and TCP/IP provides answers to these chal-
lenges. Finally, to address a specifi c program on a remote computer, TCP/IP uses a port
number, which identifi es a specifi c running program, something like the way a telephone
extension number identifi es an individual in a large company. The following sections
describe all of these methods of addressing.

Using Network Addresses
Consider an Ethernet network. When an Ethernet frame leaves one computer, it’s nor-
mally addressed to another Ethernet card. This addressing is done using low-level Ethernet

http://technet24.ir/

Understanding Network Addressing 415

c08.indd 03/26/2015 Page 415

features, independent of the protocol stack in question. Recall, however, that the Internet is
composed of many different networks that use many different low-level hardware compo-
nents. A user may have a dial-up telephone connection (through a serial port) but connect
to one server that uses Ethernet and another that uses Token Ring. Each of these devices
uses a different type of low-level network address. TCP/IP requires something more to
integrate across different types of network hardware. In total, three types of addresses
are important when you’re trying to understand network addressing: network hardware
addresses, numeric IP addresses, and text-based hostnames.

Addressing Hardware
One of the characteristics of dedicated network hardware, such as Ethernet or Token Ring
cards, is that they have unique hardware addresses, also known as Media Access Control
(MAC) addresses, programmed into them. In the case of Ethernet, these addresses are 6
bytes in length, and they’re generally expressed as hexadecimal (base 16) numbers sepa-
rated by colons. You can discover the hardware address for an Ethernet card by using the
ifconfig command. Type ifconfig ethn, where n is the number of the interface (0 for
the fi rst card, 1 for the second, and so on). You’ll see several lines of output, including one
like the following:

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

This line tells you that the device is an Ethernet card and that its hardware address is
00:A0:CC:24:BA:02. What use is this, though? Certain low-level network utilities and
hardware use the hardware address. For instance, network switches use it to direct data
packets. The switch detects that a particular address is connected to a particular wire, and
so it sends data directed at that address only over the associated wire. The Dynamic Host
Confi guration Protocol (DHCP), which is described in the upcoming section “Confi guring
with DHCP,” is a means of automating the confi guration of specifi c computers. It has an
option that uses the hardware address to assign the same IP address consistently to a given
computer. In addition, advanced network diagnostic tools are available that let you exam-
ine packets that come from or are directed to specifi c hardware addresses.

For the most part, though, you don’t need to be aware of a computer’s hardware address.
You don’t enter it in most utilities or programs. It’s important for what it does in general.

Linux identifies network hardware devices with type-specific codes. With
most distributions, Ethernet hardware is ethn, where n is a number from 0
up. The first Ethernet device is eth0, the second is eth1, and so on. (Fedora
uses a more complex Ethernet naming system, though.) Wireless devices
have names of the form wlann. Unlike most Linux hardware devices, net-
work devices don’t have entries in /dev; instead, low-level network utilities
take the device names and work with them directly.

Managing IP Addresses
Earlier, we said that TCP/IP, at least in its IPv4 incarnation, supports about 4 billion
addresses. This fi gure is based on the size of the IP address used in TCP/IP: 4 bytes

http://technet24.ir/

416 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 416

(32 bits). Specifi cally, 232 = 4,294,967,296. For IPv6, 16-byte (128-bit) addresses are used.
Not all of these addresses are usable; some are overhead associated with network defi ni-
tions, and some are reserved.

The 4-byte IPv4 address and 6-byte Ethernet address are mathematically unrelated.
This can be the case for IPv6, too, although the IPv6 standard allows the IPv6 address to
be built, in part, from the computer’s MAC address. In any event, the TCP/IP stack con-
verts between the MAC address and the IP address using the Address Resolution Protocol
(ARP) for IPv4 or the Neighbor Discovery Protocol (NDP) for IPv6. These protocols enable
a computer to send a broadcast query—a message that goes out to all the computers on
the local network. This query asks the computer with a given IP address to identify itself.
When a reply comes in, it includes the hardware address, so the TCP/IP stack can direct
traffi c for a given IP address to the target computer’s hardware address.

The procedure for computers that aren’t on the local network is
more complex. For such computers, a router must be involved. Local
computers send packets destined for distant addresses to routers, which
send the packets on to other routers or to their destination systems.

IPv4 addresses are usually expressed as four base-10 numbers (0–255) separated by peri-
ods, as in 172.30.9.102. If your Linux system’s protocol stack is already up and running,
you can discover its IP address by using ifconfig, as described earlier. The output includes
a line like the following, which identifi es the IP address (inet addr):

inet addr:172.30.9.102 Bcast:172.30.255.255 Mask:255.255.0.0

Although it isn’t obvious from the IP address alone, this address is broken into two com-
ponents: a network address and a computer address. The network address identifi es a block
of IP addresses that are used by one physical network, and the computer address identifi es
one computer within that network. The reason for this breakdown is to make the job of
routers easier—rather than record how to direct packets destined for each of the 4 billion
IP addresses, routers can be programmed to direct traffi c based on the packets’ network
addresses, which is a much simpler job.

IPv6 addresses work in a similar way, except that they’re larger. Specifi cally, IPv6
addresses consist of eight groups of four-digit hexadecimal numbers separated by colons,
as in fed1:0db8:85a3:08d3:1319:8a2e:0370:7334. If one or more groups of four digits is
0000, that group or those groups may be omitted, leaving two colons. Only one such group
of zeros can be compressed in this way, because if you removed two groups, there would be
no way of telling how many sets of zeros would have to be replaced in each group. You can
see the IPv6 address assigned to an interface with the inet6 entry in the ifconfig output:
inet6 addr: fe80::a00:27ff:fe23:4594/64 Scope:Link

IPv6 uses two types of network addresses—link-local and global. Most Linux distribu-
tions automatically assign a link-local IPv6 address to all network interfaces to communi-
cate on the local networks. The fe80:0000:0000:0000: link-local address has become the
de facto standard for IPv6 network interfaces.

http://technet24.ir/

Understanding Network Addressing 417

c08.indd 03/26/2015 Page 417

The Linux system creates a link-local IPv6 network address using this network address
along with a combination of the MAC address of the network interface. This ensures that
the system will have a unique IPv6 address on the local system, and it can instantly com-
municate with other IPv6 devices on the local network without any confi guration.

Link-local addresses are nonroutable; they can only be used for local network connec-
tivity. An IPv6 global address utilizes a network address advertised by a router on the local
network so that systems can communicate across network boundaries and out onto the
Internet. Either you can statically assign an IPv6 global address or you can use a DHCPv6
server to assign IPv6 global addresses automatically on a network.

Using Networks
The network mask (also known as the subnet mask or netmask) is a number that identi-
fi es the portion of the IP address that’s a network address and the part that’s a computer
address. It’s helpful to think of this in binary (base 2) because the netmask uses binary 1
values to represent the network portion of an address and binary 0 values to represent the
computer address. The network portion ordinarily leads the computer portion. Expressed
in base 10, these addresses usually consist of 255 or 0 values, 255 being a network byte and
0 being a computer byte. If a byte is part network and part computer address, it will have
some other value. Figure 8.3 illustrates this relationship, using the IP address 172.30.9.102
and the netmask 255.255.0.0.

F I GU R E 8 . 3 TCP/IP addresses are combined with a netmask to isolate the network
address.

IP Address 172.30.9.102 10101100 00011110 00001001 01100110

10101100 00011110 00000000 00000000

255.255.0.0

172.30.0.0

Netmask

Network Address

11111111 11111111 00000000 00000000

Another way of expressing a netmask is as a single number representing the number of
network bits in the address. This number usually follows the IP address and a slash. For
instance, 172.30.9.102/16 is equivalent to 172.30.9.102 with a netmask of 255.255.0.0—
the last number shows the network portion to be two solid 8-bit bytes and hence it’s 16
bits. This format is called the Classless Inter-Domain Routing (CIDR) form. The longer
notation showing all 4 bytes of the netmask is referred to as dotted quad notation. IPv6
netmasks work just like IPv4 netmasks, except that larger numbers are involved and IPv6
favors hexadecimal over decimal notation.

http://technet24.ir/

418 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 418

On modern IPv4 networks, netmasks are often described in CIDR form. Such network
masks can be broken at any bit boundary for any address. For instance, 192.168.1.7 could
have a netmask of 255.255.0.0, 255.255.255.0, 255.255.255.128, or various other val-
ues. (Keeping each byte at 0 or 255 reduces the odds of human error causing problems,
but it sometimes isn’t practical, depending on the required or desired sizes of subnets.)
Traditionally, though, IPv4 networks have been broken into one of several classes, as
summarized in Table 8.1. Classes A, B, and C are for general networking use. Class D
addresses are reserved for multicasting—sending data to multiple computers simultane-
ously. Class E addresses are reserved for future use. There are a few special cases within
most of these ranges. For instance, the 127.x.y.z addresses are reserved for use as loopback
(aka localhost) devices—these addresses refer to the computer on which the address is
entered. Addresses in which all of the machine bits are set to 1 refer to the network block
itself—they’re used for broadcasts. The ultimate broadcast address is 255.255.255.255,
which sends data to all computers on a network segment. (Routers normally block packets
directed to this address. If they didn’t, the Internet could easily be brought to its knees by a
few people fl ooding the network with broadcast packets.)

TA B LE 8 .1 IPv4 network classes and private network ranges

Class Address range Reserved private addresses

A 1.0.0.0–127.255.255.255 10.0.0.0–10.255.255.255

B 128.0.0.0–191.255.255.255 172.16.0.0–172.31.255.255

C 192.0.0.0–223.255.255.255 192.168.0.0–192.168.255.255

D 224.0.0.0–239.255.255.255 none

E 240.0.0.0–255.255.255.255 none

Within each of the three general-use network classes is a range of addresses reserved
for private use. Most IP addresses must be assigned to individual computers by a suit-
able authority, lest two systems on the Internet both try to use a single address. Anybody
can use the reserved private address spaces, though. (These address blocks are sometimes
referred to as RFC 1918 addresses, after the standards document—RFC 1918—in which
they’re defi ned.) The caveat is that routers normally drop packets sent to these addresses,
effectively isolating them from the Internet as a whole. The idea is that these addresses
may be safely used by small private networks. Today, they’re often used behind Network
Address Translation (NAT) routers, which enable arbitrary numbers of computers to
“hide” behind a single system. The NAT router substitutes its own IP address on outgoing

http://technet24.ir/

Understanding Network Addressing 419

c08.indd 03/26/2015 Page 419

packets and then directs the reply to the correct system. This is very handy if you want to
connect more computers to the Internet than you have IP addresses.

We generally use reserved private addresses for examples in this book.
Unless otherwise specified, these examples work equally well on conven-
tional assigned (non-private) IP addresses.

IPv6 has its equivalent to private addresses. Besides link-local address, IPv6 also uses
site-local addresses, which may be routed within a site but not off site. They begin with the
hexadecimal number fec, fed, fee, or fef.

IPv4 address classes were designed to simplify routing, but as the Internet evolved, they
became restrictive. Thus, today they serve mainly as a way to set default netmasks, such as
255.0.0.0 for Class A addresses or 255.255.255.0 for Class C addresses. Most confi gura-
tion tools set these netmasks automatically, but you can override the settings if necessary.

IP addresses and netmasks are extremely important for network confi guration. If your
network doesn’t use DHCP or a similar protocol to assign IP addresses automatically, you
must confi gure your system’s IP address manually. A mistake in this confi guration can
cause a complete failure of networking or more subtle errors, such as an inability to com-
municate with just some computers.

Non-TCP/IP stacks have their own addressing methods. NetBEUI uses
machine names; it has no separate numeric addressing method. AppleTalk
uses two 16-bit numbers. These addressing schemes are independent
from IP addresses.

Broadcasting Data
We mentioned broadcasts earlier. A broadcast is a type of network transmission that’s sent
to all the computers on a local network, or occasionally all of the computers on a remote
network. Under TCP/IP, a broadcast is done by specifying binary 1 values in all of the
machine bits of the IP address. The network portion of the IP address may be set to the
network’s regular value, and this is required for directed broadcasts, that is, those that are
sent to a remote network. (Many routers drop directed broadcasts, though.) In many cases,
broadcasts are specifi ed by the use of 255.255.255.255 as an IP address. Packets directed at
this address are sent to all of the machines on a local network.

Because the broadcast address for a network is determined by the IP address and net-
mask, you can convert between the broadcast address and netmask, given one of these and
a computer’s IP address. If the netmask happens to consist of whole-byte values (expressed
as 0 or 255 in dotted quad notation), the conversion is easy: Replace the IP address
components that have 0 values in the dotted quad netmask with 255 values to get the

http://technet24.ir/

420 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 420

broadcast address. For instance, consider a computer with an IP address of 172.30.9.102
and a netmask of 255.255.0.0. The fi nal two elements of the netmask have 0 values, so
you swap in 255 values for these fi nal two elements in the IP address to obtain a broadcast
address of 172.30.255.255.

In the case of a CIDR address that has non-255 and non-0 values in the netmask, the sit-
uation is more complex because you must resort to binary (base 2) numbers. For instance,
consider a computer with an IP address of 172.30.9.102 and a netmask of 255.255.128.0
(that is, 172.30.0.0/17). Expressed in binary, these numbers are

10101100 00011110 00001001 01100110

11111111 11111111 10000000 00000000

To create the broadcast address, you must set the top (network address) values to 1 when
the bottom (netmask) value is 0. In this case, the result is

10101100 00011110 01111111 11111111

Converted back into base 10 notation, the resulting broadcast address is 172.30.127.255.
Fortunately, you seldom need to perform such computations. When confi guring a computer,
you can enter the IP address and netmask and let the computer do the binary computations.

Understanding Hostnames
Computers work with numbers, so it’s not surprising that TCP/IP uses numbers as com-
puter addresses. People, though, work better with names. For this reason, TCP/IP includes
a way to link names for computers (known as hostnames) to IP addresses. In fact, there
are several ways to do this, some of which are described in the next section, “Resolving
Hostnames.”

As with IP addresses, hostnames are composed of two parts: machine names and
domain names. The former refers to a specifi c computer and the latter to a collection of
computers. Domain names are not equivalent to the network portion of an IP address,
though; they’re completely independent concepts. Domain names are registered for use
by an individual or organization, which may assign machine names within the domain
and link those machine names to any arbitrary IP address desired. Nonetheless, there is
frequently some correspondence between domains and network addresses because an indi-
vidual or organization that controls a domain is also likely to want a block of IP addresses
for the computers in that domain.

Internet domains are structured hierarchically. At the top of the hierarchy are the top-
level domains (TLDs), such as .com, .edu, and .uk. These TLD names appear at the end
of an Internet address. Some correspond to nations (such as .uk and .us, for the United
Kingdom and the United States, respectively), but others correspond to particular types of
entities (such as .com and .edu, which stand for commercial and educational organizations,
respectively). Within each TLD are various domains that identify specifi c organizations,
such as sybex.com for Sybex or loc.gov for the Library of Congress. These organizations

http://technet24.ir/

Understanding Network Addressing 421

c08.indd 03/26/2015 Page 421

may optionally break their domains into subdomains, such as cis.upenn.edu for the
Computer and Information Science department at the University of Pennsylvania. Even sub-
domains may be further subdivided into their own subdomains; this structure can continue
for many levels but usually doesn’t. Domains and subdomains include specifi c computers,
such as www.sybex.com, Sybex’s web server.

When you confi gure your Linux computer, you may need to know its hostname. This
will be assigned by your network administrator and will be a machine name within your
organization’s domain. If your computer isn’t part of an organizational network (say, if
it’s a system that doesn’t connect to the Internet at all or if it connects only via a dial-up
account), you’ll have to make up a hostname. Alternatively, you can register a domain
name, even if you don’t use it for running your own servers. Check

www.icann.org/registrar-reports/accredited-list.html

for pointers to accredited domain registrars. Most registrars charge between $10 and $15
per year for domain registration. If your network uses DHCP, it may or may not assign
your system a hostname automatically.

If you make up a hostname, choose an invalid domain name. This will guar-
antee that you don’t accidentally give your computer a name that legiti-
mately belongs to somebody else. Such a name conflict might prevent you
from contacting hosts that have the real domain name, and it could cause
other problems as well, such as misdirected email. Four TLDs—.example,
.invalid, .localhost, and .test—are reserved for fictitious domain
names. Three second-level domains—.example.com, .example.net, and
.example.org— are also reserved, and so they may be safely used.

Resolving Hostnames
The Domain Name System (DNS) is a distributed database of computers that converts
between IP addresses and hostnames. Every domain must maintain at least two DNS
servers that can either provide the names for every computer within the domain or redirect
a DNS query to another DNS server that can better handle the request. Therefore, looking
up a hostname involves querying a series of DNS servers, each of which redirects the search
until the server that’s responsible for the hostname is found. In practice, this process is
hidden from you because most organizations maintain DNS servers that do all of the
tedious work of chatting with other DNS servers. You need only point your computer to
your organization’s DNS servers. This detail may be handled through DHCP, or it may
be information that you need to confi gure manually, as described later in the section
“Confi guring Linux for a Local Network.”

Sometimes, you need to look up DNS information manually. You might do this if
you know the IP address of a server through non-DNS means and suspect your DNS

http://technet24.ir/

422 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 422

confi guration is delivering the wrong address or to check whether a DNS server is working.
Several programs can be helpful in performing such checks:

nslookup This program performs DNS lookups (on individual computers by default) and
returns the results. It also sports an interactive mode in which you can perform a series
of queries. This program is offi cially deprecated, meaning that it’s no longer being main-
tained and will eventually be dropped from its parent package (bind-utils or bind-tools
on most distributions). Thus, you should get in the habit of using host or dig instead of
nslookup.

host This program serves as a replacement for the simpler uses of nslookup, but it lacks
an interactive mode, and of course many details of its operation differ. In the simplest case,
you can type host target.name, where target.name is the hostname or IP address you
want to look up. You can add various options that tweak the program’s basic operation;
consult host’s man page for details.

dig This program performs more complex DNS lookups than host. Although you can use
it to fi nd the IP address for a single hostname (or a hostname for a single IP address), it’s
more fl exible than host.

whois You can look up information on a domain as a whole with this command. For
instance, typing whois sybex.com reveals who owns the sybex.com domain, who to
contact in case of problems, and so on. You may want to use this command with -H, which
omits the lengthy legal disclaimers that many domain registries insist on delivering along
with whois information. Check the man page for whois for information on additional
options.

Exercise 8.1 illustrates the use of the nslookup, host, and dig tools.

E X E R C I S E 8 .1

Practice Resolving Hostnames

The differences between nslookup, host, and dig are best illustrated by example. In this

exercise, you’ll practice using these three tools to perform both forward and reverse DNS

lookups. To do so, follow these steps:

1. Log into a Linux text-mode session or launch a terminal window in a GUI session.

2. Type nslookup www.google.com. You may substitute another hostname; however,

one key point of this hostname is that it resolves to multiple IP addresses, which

nslookup shows on multiple Name: and Address: lines. This practice is common on

extremely popular sites because the load can be balanced across multiple comput-

ers. Note also that nslookup reports the IP address of the DNS server it uses, on the

Server: and Address: lines. (The latter includes the port number, as described later

in the section“Network Ports.”)

3. Type host www.google.com. The output of this command is likely to be some-

what briefer than that of the nslookup command, but it should report the same IP

http://technet24.ir/

Understanding Network Addressing 423

c08.indd 03/26/2015 Page 423

addresses for the server. Although host doesn’t report the DNS server’s address, it is

IPv6 enabled, so it reports an IPv6 address as well as the site’s IPv4 addresses.

4. Type dig www.google.com. This output is signifi cantly longer than that of either

nslookup or host. In fact, it closely resembles the format of the confi guration fi les

used to defi ne a domain in a DNS server. In the case of www.google.com, that host-

name is defi ned as a CNAME record that points to www.l.google.com, which in turn

has several A-record entries that point to specifi c IP addresses. (This structure could

change by the time you read this, though, and of course it’s likely to be different if

you examine other hostnames.) You’ll also see several NS records that point to the

domain’s name servers, and you’ll see additional A records that point to the name

servers’ IP addresses.

5. Perform nslookup, host, and dig queries on IP addresses, such as one of those

returned by your lookups on www.google.com. (This is known as a reverse lookup.)

In each case, the tool should return a hostname. Note, however, that the hostname

might not match the one you used originally. This is because multiple hostnames can

point to the same IP address and the owner of that IP address decides which host-

name to link to the IP address for reverse lookup purposes. In some cases, the tool

will return an NXDOMAIN error, which means that the IP address’s owner hasn’t confi g-

ured reverse lookups.

6. Perform similar queries on other computers, such as ones associated with your

school, employer, or ISP. Most hostnames have just one IP address associated with

them, and you may see other differences too.

Sometimes DNS is overkill. For instance, you might just need to resolve a handful of
hostnames. This may be because you’re confi guring a small private network that’s not con-
nected to the Internet at large or because you want to set up a few names for local (or even
remote) computers that aren’t in the global DNS database. For such situations, /etc/hosts
may be just what you need. This fi le holds mappings of IP addresses to hostnames on a one-
line-per-mapping basis. Each mapping includes at least one name, and sometimes more:

127.0.0.1 localhost

192.168.7.23 apollo.luna.edu apollo

In this example, the name localhost is associated with the 127.0.0.1 address, and the
names apollo.luna.edu and apollo are tied to 192.168.7.23. The fi rst of these linkages is
standard; it should exist in any /etc/hosts fi le. The second linkage is an example that you
can modify as you see fi t. The fi rst name is a full hostname, including the domain portion;
subsequent names on the line are aliases—typically the hostname without its full domain
specifi cation.

Once you’ve set up an /etc/hosts fi le, you can refer to computers listed in the fi le by
name, whether or not those names are recognized by the DNS servers that the computer
uses. One major drawback to /etc/hosts is that it’s a purely local fi le; setting a mapping

http://technet24.ir/

424 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 424

in one computer’s /etc/hosts fi le affects name lookups performed by that computer alone.
Thus, to work on an entire network, you must modify the /etc/hosts fi les on all of the
computers on the network.

Linux normally performs lookups in /etc/hosts before it uses DNS. You can modify
this behavior by editing the /etc/nsswitch.conf fi le, which confi gures the Name Service
Switch (NSS) service. More specifi cally, you must adjust the hosts line. This line lists the
order of the files and dns options, which stand for /etc/hosts and DNS, respectively:

hosts: files dns

Reverse the order of the files and dns options to have the system consult DNS before it
consults /etc/hosts.

The /etc/nsswitch.conf file supports many more options. For instance,
you can perform name resolution using Windows NetBIOS calls or a Light-
weight Directory Access Protocol (LDAP) server by adding appropriate
options to the hosts line, along with the necessary support software. The
passwd, shadow, and group lines control how Linux authenticates users and
manages groups. You should not attempt to change these configurations
unless you understand the systems involved, but you should be aware of
the importance of /etc/nsswitch.conf generally.

In addition to /etc/hosts, Linux supports a fi le called /etc/networks. It works much
like /etc/hosts, but it applies to network addresses and it reverses the order of the names
and the IP address on each line:

loopback 127.0.0.0

mynet 192.168.7.0

This example sets up two linkages: the loopback name to the 127.0.0.0/8 network and
mynet for the 192.168.7.0/24 network. It’s seldom necessary to edit this fi le.

Network Ports
Contacting a specifi c computer is important, but one additional type of addressing is left:
The sender must have an address for a specifi c program on the remote system. For instance,
suppose you’re using a web browser. The web server computer may be running more servers
than just a web server—it may also be running an email server or an FTP server, to name
just two of many possibilities. Another number beyond the IP address enables you to direct
traffi c to a specifi c program. This number is a network port number, and programs that
access a TCP/IP network typically do so through one or more ports.

Port numbers are features of the UDP and TCP protocols. Some protocols,
such as ICMP, don’t use port numbers.

http://technet24.ir/

Understanding Network Addressing 425

c08.indd 03/26/2015 Page 425

When they start up, servers tie themselves to specifi c ports, which by convention are
associated with specifi c server programs. For instance, port 25 is associated with email
servers, and port 80 is used by web servers. Table 8.2 summarizes the purposes of several
important ports. A client can direct its request to a specifi c port and expect to contact
an appropriate server. The client’s own port number isn’t fi xed; it’s assigned by the OS.
Because the client initiates a transfer, it can include its own port number in the connection
request, so clients don’t need fi xed port numbers. Assigning client port numbers dynami-
cally also enables one computer to run several instances of a single client easily because
they won’t compete for access to a single port.

TA B LE 8 . 2 Port numbers, their purposes, and typical Linux servers

Port
number

TCP or
UDP Purpose Example Linux servers

20 TCP File Transfer Protocol (FTP) data ProFTPd, vsftpd

21 TCP FTP ProFTPd, vsftpd

22 TCP Secure Shell (SSH) OpenSSH, Dropbear

23 TCP Telnet in.telnetd

25 TCP Simple Mail Transfer Protocol
(SMTP)

Sendmail, Postfix, Exim, qmail

53 TCP and
UDP

Domain Name System (DNS) Berkeley Internet Name Domain
(BIND; aka named), dnsmasq, djbdns

67 UDP Dynamic Host Configuration Pro-
tocol (DHCP)

Internet Software Consortium (ISC)
DHCP (dhcpd), dnsmasq

80 TCP Hypertext Transfer Protocol
(HTTP)

Apache, Roxen, thttpd

110 TCP Post Office Protocol version 3
(POP3)

Dovecot, Qpopper, popa3d

111 TCP and
UDP

Portmapper NFS, NIS, other RPC-based services

113 TCP auth/ident identd

119 TCP Network News Transfer Protocol
(NNTP)

InterNetNews (INN), Diablo,
Leafnode

http://technet24.ir/

426 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 426

Port
number

TCP or
UDP Purpose Example Linux servers

123 UDP Network Time Protocol (NTP) ntpd

139 TCP NetBIOS Session (Windows file
sharing)

Samba

143 TCP Interactive Mail Access Protocol
(IMAP)1

Dovecot, Cyrus IMAP, UW-IMAP

161 UDP Simple Network Management
Protocol (SNMP)

Net-SNMP

162 UDP SNMP trap messages Net-SNMP

177 UDP XDMCP XDM, KDM, GDM

389 TCP LDAP OpenLDAP

443 TCP HTTP over SSL (HTTPS) Apache, Roxen

445 TCP Microsoft Directory Services (DS) Samba

465 TCP SMTP over SSL; or URL Rendez-
vous Directory (URD)2

Sendmail, Postfix, Exim, qmail; or
network routers

514 UDP Remote system logging rsyslogd

631 TCP Internet Printing Protocol (IPP) Common Unix Printing System
(CUPS)

636 TCP Lightweight Directory Access
Protocol (LDAP) over SSL

OpenLDAP

993 TCP IMAP over SSL Dovecot, Cyrus IMAP, UW-IMAP

995 TCP POP3 over SSL Dovecot, Qpopper, popa3d

5900+ TCP Remote Framebuffer (RFB) Virtual Network Computing (VNC):
OpenVNC, TightVNC, TigerVNC

6000–
6007

TCP The X Window System (X) X.org-X11, XFree86

1Some sources expand IMAP as Internet Message Access Protocol or Internet Mail Access Protocol.

2Port 465 is officially registered for URD; however, it’s also commonly used as a secure email delivery port,
although this isn’t the officially designated purpose of this port.

TA B LE 8 . 2 Port numbers, their purposes, and typical Linux servers (continued)

http://technet24.ir/

Configuring Linux for a Local Network 427

c08.indd 03/26/2015 Page 427

One key distinction in TCP/IP ports is that between privileged ports and unprivileged
ports. The former have numbers less than 1024. Unix and Linux systems restrict access to
privileged ports to root. The idea is that a client can connect to a privileged port and be
confi dent that the server running on that port was confi gured by the system administrator
and can therefore be trusted. Unfortunately, on today’s Internet, this trust would be unjus-
tifi ed based solely on the port number, so this distinction isn’t very useful. Port numbers
greater than 1024 may be accessed by ordinary users.

Clients and Servers

An important distinction is the one between clients and servers. A client is a program

that initiates a network connection to exchange data. A server listens for such connec-

tions and responds to them. For instance, a web browser, such as Firefox or Opera, is a

client program. You launch the program and direct it to a web page, which means that the

web browser sends a request to the web (HTTP) server at the specifi ed address. The web

server sends back data in reply to the request. Clients can also send data, like when you

enter information in a web form and click a Submit or Send button.

The terms client and server can also be applied to entire computers that operate mostly

in one or the other role. Thus, a phrase such as web server is somewhat ambiguous—it

can refer either to the web server program or to the computer that runs that program.

When this distinction is important and unclear from context, we clarify it (for instance, by

referring to “the web server program”).

Fortunately, for basic functioning, you need to do nothing to confi gure ports on a Linux
system. You may have to deal with this issue if you run unusual servers, though, because
you may need to confi gure the system to link the servers to the correct ports. This can
sometimes involve editing the /etc/services fi le, which maps port numbers to names,
enabling you to use names in server confi gurations and elsewhere. This fi le consists of lines
that begin with a name and end with a port number, including the type of protocol it uses
(TCP or UDP):

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp

Configuring Linux for a Local Network

Now that you know something about how networking functions, the question arises, how
do you implement networking in Linux? Most Linux distributions provide you with the
means to confi gure a network connection during system installation. Therefore, chances

http://technet24.ir/

428 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 428

are good that networking already functions on your system. In case it doesn’t, though, the
following sections summarize what you must do to get the job done. Actual confi guration
can be done using either the automatic DHCP tool or static IP addresses. Linux’s underly-
ing network confi guration mechanisms rely on startup scripts and their confi guration fi les,
but you may be able to use GUI tools to do the job instead.

Network Hardware Configuration
The most fundamental part of network confi guration is getting the network hardware up
and running. In most cases, this task is fairly automatic—most distributions ship with sys-
tem startup scripts that auto-detect the network card and load the correct driver module.
If you recompile your kernel, building the correct driver into the main kernel fi le will also
ensure that it’s loaded at system startup.

If your network hardware isn’t correctly detected, though, subsequent confi guration (as
described in the upcoming sections “Confi guring with DHCP” and “Confi guring with a
Static IP Address”) won’t work. To correct this problem, you must load your network hard-
ware driver. You can do this with the modprobe command:

modprobe tulip

You must know the name of your network hardware’s kernel module (tulip in this
example). Chapter 3, “Confi guring Hardware,” describes the task of hardware confi gura-
tion and activation in more detail.

Configuring with DHCP
One of the easiest ways to confi gure a computer to use a TCP/IP network is to use
DHCP, which enables one computer on a network to manage the settings for many other
computers. It works like this: When a computer running a DHCP client boots up, it sends
a broadcast in search of a DHCP server. The server replies (using nothing but the client’s
hardware address) with the confi guration information the client needs to enable it to com-
municate with other computers on the network—most important, the client’s IP address
and netmask and the network’s gateway and DNS server addresses. The DHCP server may
also give the client a hostname and provide various other details about the network. The
client then confi gures itself with these parameters. The IP address isn’t assigned perma-
nently; it’s referred to as a DHCP lease, and if it’s not renewed, the DHCP server may give
the lease to another computer. Therefore, from time to time the client checks back with the
DHCP server to renew its lease.

Three DHCP clients are in common use on Linux: pump, dhclient, and dhcpcd (not to
be confused with the DHCP server, dhcpd). Some Linux distributions ship with just one
of these, but others ship with two or even all three. All distributions have a default DHCP
client—the one that’s installed when you tell the system you want to use DHCP at system
installation time. Those that ship with multiple DHCP clients typically enable you to swap
out one for another simply by removing the old package and installing the new one.

http://technet24.ir/

Configuring Linux for a Local Network 429

c08.indd 03/26/2015 Page 429

Ideally, the DHCP client runs at system bootup. This is usually handled either by its own
startup script, as described in Chapter 5, “Booting Linux and Editing Files,” or as part of
the main network confi guration startup fi le (typically a startup script called network or
networking). The system often uses a line in a confi guration fi le to determine whether to
run a DHCP client. For instance, Red Hat and Fedora set this option in a fi le called /etc/
sysconfig/network-scripts/ifcfg-name, where name is the name of the network inter-
face, such as p2p1. The line in question looks like this:

BOOTPROTO="dhcp"

Recall that most distributions use eth0 to refer to the computer’s first
Ethernet port, eth1 for the second (if present), and so on. Fedora names
its interfaces differently, though, and does so in a way that’s inconsistent
from one computer to another.

If the BOOTPROTO variable is set to something else, changing it as shown here will confi g-
ure the system to use DHCP. It’s usually easier to use a GUI confi guration tool to set this
option, though.

Ubuntu uses the /etc/network/interfaces fi le for a similar purpose, but the details
differ. On a system that uses DHCP, a line like the following appears:

iface eth0 inet dhcp

Details may vary, of course; for instance, the interface name (eth0) may be something
else. You may prefer to use the GUI system confi guration tools to adjust these options.

Once a DHCP client is confi gured to run when the computer boots, the confi guration
task is done—at least, if everything works as it should. On very rare occasions, you may
need to tweak DHCP settings to work around client-server incompatibilities or to have the
DHCP client do something unusual. Consult the man page for your DHCP client if you need
to make changes. You’ll then have to modify its startup script or a fi le to which it refers in
order to change its operation.

If you need to run a DHCP client manually, you can usually do so by typing its
name (as root), optionally followed by a network identifi er, as in dhclient eth0, to have
the DHCP client attempt to confi gure eth0 with the help of any DHCP server it fi nds on
that network.

Configuring with a Static IP Address
If a network lacks a DHCP server, you must provide basic network confi guration options
manually. You can set these options using interactive commands, as described shortly,
but to set them in the long term, you adjust a confi guration fi le such as /etc/sysconfig/
network-scripts/ifcfg-name or /etc/network/interfaces. Listing 8.1 shows a typical
ifcfg-name fi le, confi gured to use a static IP address. (Note that this fi le’s exact location
and name may vary from one distribution to another.)

http://technet24.ir/

430 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 430

Listing 8.1: A sample network configuration file

DEVICE="p2p1"

BOOTPROTO="static"

IPADDR="192.168.29.39"

NETMASK="255.255.255.0"

NETWORK="192.168.29.0"

BROADCAST="192.168.29.255"

GATEWAY="192.168.29.1"

ONBOOT="yes"

Several specifi c items are required, or at least helpful, for static IP address confi guration:

IP Address You can set the IP address manually via the ifconfig command (described in
more detail shortly) or via the IPADDR item in the confi guration fi le.

Network Mask The netmask can be set manually via the ifconfig command or via the
NETMASK item in a confi guration fi le.

Gateway Address You can manually set the gateway via the route command. To set it
permanently, you need to adjust a confi guration fi le, which may be the same confi gura-
tion fi le that holds other options or another fi le, such as /etc/sysconfig/network/routes.
In either case, the option is likely to be called GATEWAY. The gateway isn’t necessary on a
computer that isn’t connected to a wider network—that is, if the computer works only on a
local network that contains no routers.

DNS Settings In order for Linux to use DNS to translate between IP addresses and host-
names, you must specify at least one DNS server in the /etc/resolv.conf fi le. Precede the
IP address of the DNS server by the keyword nameserver, as in nameserver 192.168.29.1.
You can include up to three nameserver lines in this fi le. Adjusting this fi le is all you need
to do to set the name server addresses; you don’t have to do anything else to make the set-
ting permanent. You can also set your computer’s local domain name in this fi le using the
domain option, as in domain luna.edu, to set the domain to luna.edu.

The network confi guration script may hold additional options, but most of these
are related to others. For instance, Listing 8.1 has an option specifying the interface
name (DEVICE="p2p1"), another that tells the computer to assign a static IP address
(BOOTPROTO="static"), and a third to bring up the interface when the computer boots
(ONBOOT="yes"). The NETWORK and BROADCAST items in Listing 8.1 are derived from the
IPADDR and NETMASK items, but you can change them if you understand the consequences.

Unfortunately, these confi guration details vary from one distribution to another. For
instance, if you use Ubuntu, you would edit /etc/network/interfaces rather than /etc/
sysconfig/network-scripts/ifcfg-eth0. The precise layout and formatting of infor-
mation in the two fi les differ, but the same basic information is present in both of them.
You may need to consult distribution-specifi c documentation to learn about these details.
Alternatively, GUI tools are usually fairly easy to fi gure out, so you can look for them.

http://technet24.ir/

Configuring Linux for a Local Network 431

c08.indd 03/26/2015 Page 431

If you aren’t sure what to enter for the basic networking values (the IP address, network
mask, gateway address, and DNS server addresses), you should consult your network
administrator. Do not enter random values or values that you make up that are similar to
those used by other systems on your network. Doing so is unlikely to work at all, and it
could conceivably cause a great deal of trouble—say, if you mistakenly use an IP address
that’s reserved for another computer.

As just mentioned, the ifconfig program is critically important for setting both the IP
address and netmask. This program can also display current settings. Basic use of ifconfig
to bring up a network interface resembles the following syntax:

ifconfig interface up addr netmask mask

For instance, the following command brings up eth0 (the fi rst Ethernet device on most
distributions) using the address 192.168.29.39 and the netmask 255.255.255.0:

ifconfig eth0 up 192.168.29.39 netmask 255.255.255.0

This command links the specifi ed IP address to the device so that the computer responds
to the address and claims to be that address when sending data. To link an IPv6 address to
the device, use the inet6 and add options:

ifconfig eth0 up inet6 add 4201:00e4::23db:1fda:002a/10

The ifconfig command doesn’t set up a route for traffi c beyond your current network.
For that, you need to use the route command:

route add default gw 192.168.29.1

Substitute your own gateway address for 192.168.29.1. (Routing and the route com-
mand are described in more detail shortly, in “Confi guring Routing.”) Both ifconfig and
route can display information on the current network confi guration. For ifconfig, omit up
and everything that follows; for route, omit add and everything that follows. For instance,
to view interface confi guration, you might issue the following command:

ifconfig eth0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.1.85 netmask 255.255.255.0 broadcast 192.168.1.255

 inet6 fe80::a00:27ff:fed6:d741 prefixlen 64 scopeid 0x20<link>

 ether 08:00:27:d6:d7:41 txqueuelen 1000 (Ethernet)

 RX packets 17075 bytes 25152002 (23.9 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 6863 bytes 480192 (468.9 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

When confi gured properly, ifconfig should show a hardware address (ether), an IP
address (inet), an IPv6 address if assigned (inet6), and additional statistics. There should
be few or no errors, dropped packets, or overruns for both received (RX) and transmitted
(TX) packets. Ideally, few (if any) collisions should occur, but some are unavoidable if your

http://technet24.ir/

432 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 432

network uses a hub rather than a switch. If collisions total more than a few percent of the
total transmitted and received packets, you may want to consider replacing a hub with a
switch. To use route for diagnostic purposes, you might try the following:

route –n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 192.168.1.254 0.0.0.0 UG 1024 0 0 eth0

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

The -n option to route causes it to not attempt to find the hostnames
associated with IP addresses. Although hostnames are often useful, this
lookup can be slow or fail altogether if your DNS configuration is broken,
so using -n with route is sometimes necessary.

This shows that data destined for 192.168.1.0 (that is, any computer with an IP address
between 192.168.1.1 and 192.168.1.254) goes directly over eth0. The fi rst line shows
the default route, which describes what to do with everything that doesn’t match any
other entry in the routing table. This line specifi es the default route’s gateway system as
192.168.1.254. If it’s missing or misconfi gured, some or all traffi c destined for external
networks, such as the Internet, won’t make it beyond your local network segment.

As with DHCP confi guration, it’s almost always easier to use a GUI confi guration tool
to set up static IP addresses, at least for new administrators. The exact locations of the con-
fi guration fi les differ from one distribution to another, so the examples listed earlier may
not apply to your system.

Configuring Routing
As explained earlier, routers pass traffi c from one network to another. You confi gure your
Linux system to contact systems on the local network directly. You also give the computer
a router’s address, which your system uses as a gateway to the Internet at large. Any traf-
fi c that’s not destined for the local network is directed at this router, which passes it on
to its destination. In practice, there are likely to be a dozen or more routers between you
and most Internet sites. Each router has at least two network interfaces and keeps a table
of rules concerning where to send data based on the destination IP address. Your own
Linux computer has such a table, but it’s probably very simple compared to those on major
Internet routers.

Linux can function as a router, which means it can link two or more networks together,
directing traffi c between them on the basis of its routing table. This task is handled, in
part, by the route command. This command can be used to do much more than specify a

http://technet24.ir/

Configuring Linux for a Local Network 433

c08.indd 03/26/2015 Page 433

single gateway system, though, as described earlier. A simplifi ed version of the route syn-
tax is as follows:

route {add | del} [-net | -host] target [netmask nm] [gw gw]

 [reject] [[dev] interface]

You specify add or del along with a target parameter (a computer or network address)
and optionally other parameters. The -net and -host options force route to interpret the
target as a network or computer address, respectively. The netmask option lets you set a
netmask as you desire, and gw lets you specify a router through which packets to the speci-
fi ed target parameter should go. (Some versions of route use gateway rather than gw.) The
reject keyword installs a blocking route, which refuses all traffi c destined for the specifi ed
network. (This is not a fi rewall, though.) Finally, although route can usually fi gure out the
interface device (for instance, eth0) on its own, you can force the issue with the dev option.

As an example, consider a network in which packets destined for the 172.20.0.0/16 sub-
net should be passed through the 172.21.1.1 router, which isn’t the default gateway system.
You can set up this route with the following command:

route add -net 172.20.0.0 netmask 255.255.0.0 gw 172.21.1.1

Incorrect routing tables can cause serious problems because some or all
computers won’t respond. You can examine your routing table by typing
route alone and compare the results to what your routing table should be.
(Consult a network administrator if you’re not sure what your routing table
should contain.) You can then delete incorrect routes and add new ones to
replace them, if necessary. Ultimately, of course, changing your configura-
tion files is the best solution, but typing a couple of route commands will
do the trick in the short term.

 One more thing you may need to do if you’re setting up a router is to enable routing.
Ordinarily, a Linux system won’t forward packets it receives from one system that are
directed to another system. If Linux is to act as a router, though, it must accept these pack-
ets and send them on to the destination network (or at least to an appropriate gateway). To
enable this feature, you must modify a key fi le in the /proc fi lesystem:

echo "1" > /proc/sys/net/ipv4/ip_forward

This command enables IP forwarding. Permanently setting this option requires
modifying a confi guration fi le. Some distributions set it in /etc/sysctl.conf:

net.ipv4.ip_forward = 1

Other distributions use other confi guration fi les and options, such as /etc/sysconfig/
sysctl and its IP_FORWARD line. If you can’t fi nd it, try using grep to search for ip_forward
or IP_FORWARD, or modify a local startup script to add the command to perform the change.

http://technet24.ir/

434 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 434

Using GUI Configuration Tools
Most distributions include their own GUI confi guration tools for network interfaces. For
instance, Fedora and Red Hat ship with a custom GUI tool called Network Confi guration
(system-config-network), and SUSE has a text-mode and GUI tool called YaST. The
details of operating these programs differ, but the GUI confi guration tool provides a means
to enter the information described earlier.

Although the exam doesn’t cover GUI network confi guration tools, they’re generally
easier to locate and use than the confi guration fi les in which settings are stored. Thus you
may want to look for your distribution’s tool and learn to use it. Once you understand the
principles of network confi guration (IP addresses, DHCP, and so on), you shouldn’t have
any trouble entering the necessary information in the GUI fi elds. Figure 8.4 shows the
Fedora Network Confi guration tool.

F I GU R E 8 . 4 Using the Fedora Network Configuration tool to configure the IP address
information.

The precise details of how to confi gure a Linux system using GUI tools differ from one
distribution to another. For instance, SUSE’s YaST doesn’t lay out its options in precisely
the same way as Fedora’s Network Confi guration tool. The basic principles are the same,
though; you must choose whether to use static IP address assignment or an automatic
system such as DHCP and enter a number of key options, depending on what confi guration
method you choose.

Using the ifup and ifdown Commands
Most Linux distributions today ship with two commands, ifup and ifdown, that combine
the functions of several other network commands, most notably ifconfig and route.

http://technet24.ir/

Configuring Linux for a Local Network 435

c08.indd 03/26/2015 Page 435

In their simplest forms, they bring interfaces up or shut them down based on information in
whatever fi les your distribution uses to store network confi guration data:

ifup eth0

Determining IP information for eth0... done.

After you issue this command, eth0 will be fully confi gured, including all routing infor-
mation, assuming you’ve properly confi gured it by using your distribution’s network confi g-
uration tools or by manually editing confi guration fi les such as /etc/network/interfaces
and /etc/sysconfig/network-scripts/ifcfg-name. You can bring the interface down
with equal ease by typing ifdown eth0.

The ifup and ifdown commands are useful for verifying that the network settings are
confi gured properly for the next time the computer boots. They’re also useful if you want
to take down the network or bring it back up again quickly, because you can type fewer
commands and you don’t need to remember all of the details of IP addresses, routes, and so
on. If you need to experiment or debug a problem, though, using ifconfig and route indi-
vidually is preferable, because they give you fi ner control over the process.

The ifup and ifdown commands are implemented as scripts that consult
the configuration files and run the relevant low-level commands behind
the scenes.

Configuring Hostnames
The hostnames described earlier (in the section “Resolving Hostnames”) are confi gured in
a couple of ways:

On DNS Your network administrator should be able to add an entry for your system to
your network’s DNS server. This entry should make your computer addressable by name
from other computers on your local network, and perhaps from the Internet at large.
Alternatively, remote systems’ /etc/hosts fi les can be modifi ed to include your system.

On Your Local Computer Various local programs should know your computer’s name.
For instance, you may want to have your hostname displayed as part of a command prompt
or entered automatically in email messages. For this task, you must set your hostname
locally. Note that this is entirely independent of your DNS hostname. In theory, you can set
the two to very different values, but this practice is likely to lead to confusion and perhaps
even failure of some programs to operate properly.

The most basic tool for setting your hostname locally is called, appropriately enough,
hostname. Type the command alone to see what your hostname is, or type it with a new
name to set the system’s hostname to that name:

hostname nessus.example.com

Similar commands, domainname and dnsdomainname, display or set the computer’s
domain name (such as example.com). The domainname command sets the domain name as

http://technet24.ir/

436 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 436

used by Network Information System (NIS), whereas dnsdomainname sets the domain name
as used by DNS. These commands don’t affect remote servers—just the name given to pro-
grams that use calls designed for these servers.

Many Linux distributions look in the /etc/hostname or /etc/HOSTNAME fi le for a host-
name to set at boot time. Thus, if you want to set your hostname permanently, you should
look for these fi les, and if one is present, you should edit it. Fedora uses /etc/sysconfig/
network for this purpose, among others. If you can’t fi nd one of these fi les, consult your
distribution’s documentation; it’s conceivable that your distribution stores its hostname in
some unusual location.

In Exercise 8.2, you’ll familiarize yourself with some of the tools used to confi gure
basic network settings. You’ll use these tools both to study and to change your network
confi guration.

E X E R C I S E 8 . 2

Configuring a Network Connection

In this exercise, the assumption is that the computer is correctly confi gured to use an IPv4

Ethernet network, including both the local network and a larger network (probably the

Internet) via a router.

Some of the procedures in this exercise can easily break your network connectivity if

something goes wrong. If this happens, typing ifdown followed by ifup is one way to

recover. If this fails, rebooting the computer is almost certain to work, although it’s a

radical solution.

To study and modify your system’s network confi guration, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI

login method.

3. Acquire root privileges. You can do this by typing su in an xterm or by using sudo (if

it’s confi gured) to run the commands in the following steps.

4. Type ifconfig. This command displays information about your local network set-

tings for all of your network interfaces. Most systems have both a loopback interface

(lo) and an Ethernet interface (eth0). Look for a line in the Ethernet section that

includes the string inet addr:. The following 4-byte number is your IP address.

Write it down, as well as the value of your netmask (Mask:). Study the other infor-

mation in this output too, such as the number of received (RX) and transmitted (TX)

packets, the number of errors, the number of collisions, and the Ethernet adapter’s

hardware address.

http://technet24.ir/

Configuring Linux for a Local Network 437

c08.indd 03/26/2015 Page 437

5. Type route -n. The output is your computer’s routing table information. This nor-

mally includes information about the loopback network address (127.0.0.0/24), the

local network address, and a default route (identifi ed as the route for 0.0.0.0). Some

systems may display fewer or additional lines, depending on local confi guration. The

default route includes an IP address under the Gateway column. Write down

that address.

6. Use ping to test connectivity to both local and remote computers. (This command

is described in more detail in the section “Testing Basic Connectivity.”) You need

the name or IP address of at least one local computer and at least one distant com-

puter (beyond your local router). Type ping address, where address is the name

or IP address of each test machine. Perform this test for localhost or 127.0.0.1,

your own machine (use the IP address you noted in step 4), your local router (use the

IP address you noted in step 5), and a distant computer (if you’re connected to the

Internet, you can use an Internet-accessible site, such as www.linux.org). All of these

ping tests should be successful. Note, however, that some computers are confi gured

to ignore packets sent by ping. Thus some of these tests may fail if you run into such

systems. You can learn the confi guration of local computers from their administra-

tors, but for Internet sites, you may want simply to try another site if the fi rst one you

test fails.

7. Bring down the local Ethernet connection by typing ifconfig eth0 down.

8. Repeat steps 4–6. Note that the eth0 interface is no longer shown when you type

ifconfig, all routes associated with it have been removed from the routing table,

and pinging systems accessible from the interface no longer work. (Linux retains

some information about its former Ethernet link, so you may still be able to ping the

computer itself via its former eth0 address.)

9. Bring the local Ethernet connection back up by typing ifconfig eth0 up

address netmask mask, where address is the original IP address and mask is the

original netmask, both as identifi ed in step 4.

10. Repeat steps 4–6. Note that the ifconfig command automatically added back

your local network to the routing table but that the default route is still missing.

As a result, you can’t contact any systems that are located off the local network. If

your DNS server is such a system, this means that your ability to contact even local

machines by name may be impaired as well.

11. Restore the default route by typing route add default gw gateway, where

gateway is the router address you identifi ed in step 5.

12. Repeat steps 4–6. If your network confi guration is typical, all connectivity should be

restored. (Some more exotic systems may still be lacking certain routes, or you may

have a network status icon on your desktop that may get confused and you’ll need to

restart your desktop.)

http://technet24.ir/

438 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 438

Using PPP with DSL

Broadband users, and particularly those with Digital Subscriber Line (DSL) connections,

sometimes have to use a variant of PPP to make their connections. PPP is a login-based

way to access the Internet—you use a PPP utility to initiate a connection to a remote

computer, which includes an exchange of a username and a password. A decade ago,

PPP was used in dial-up Internet access (and it’s still used in this capacity), but some DSL

providers have adapted PPP for their own purposes. In the case of DSL, this confi guration

method is called PPP over Ethernet (PPPoE).

In many cases, the simplest way to use a PPPoE confi guration is to purchase a broadband

router. This device attaches to the DSL modem and makes the PPPoE connection. The

broadband router then works just like an ordinary Ethernet or Wi-Fi router, as far as your

local computers are concerned, so you can confi gure Linux as you would on any other

local network.

If you must connect a Linux system directly to a DSL network that uses PPPoE, you must

use a Linux PPPoE client. Most Linux distributions ship with such clients, but confi gura-

tion details vary from one distribution to another. Your best bet is to look for your distri-

bution’s GUI network confi guration tool; chances are that you’ll be able to fi nd a set of

options that are clearly labeled as applying to DSL or PPPoE.

Diagnosing Network Connections

Network confi guration is a complex task, and unfortunately, things don’t always work as
planned. Happily, there are a few commands that you can use to help diagnose a problem.
Five of these are ping, traceroute, tracepath, netstat, and tcpdump. Each of these com-
mands exercises the network in a particular way and provides information that can help
you track down the source of a problem. You can also use some common network
programs that aren’t primarily debugging tools in your debugging efforts.

Testing Basic Connectivity
The most basic network test is the ping command, which sends a simple ICMP packet to
the system you name (via IP address or hostname) and waits for a reply. In Linux, ping
continues sending packets once every second or so until you interrupt it with a Ctrl+C key-
stroke. (You can instead specify a limited number of tests via the -c num option.) Here’s an
example of its output:

$ ping -c 4 speaker

PING speaker (192.168.1.1) 56(84) bytes of data.

http://technet24.ir/

Diagnosing Network Connections 439

c08.indd 03/26/2015 Page 439

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=1 ttl=64 time=0.194ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=2 ttl=64 time=0.203ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=3 ttl=64 time=0.229ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=4 ttl=64 time=0.217ms

--- speaker ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

rtt min/avg/max/mdev = 0.194/0.210/0.229/0.022 ms

This command sent four packets and waited for their return, which occurred quite
quickly (in an average of 0.210ms) because the target system was on the local network.

For IPv6 addresses, you’ll need to use the ping6 command. However, if you have multi-
ple interfaces on your Linux system, you must be careful if using a link-local IPv6 address:

$ ping6 –c 4 fe80::c418:2ed0:aead:cbce

connect: Invalid argument

The problem is that the system doesn’t know which interface to use to access the link-
local address. To solve this, you can add the interface name after the link-local address,
separated by a percent sign:

$ ping6 -c 4 fe80::c418:2ed0:aead:cbce%eth0

PING fe80::c418:2ed0:aead:cbce%eth0(fe80::c418:2ed0:aead:cbce) 56 data

bytes

64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=1 ttl=128 time=1.47 ms

64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=2 ttl=128 time=0.478 ms

64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=3 ttl=128 time=0.777 ms

64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=4 ttl=128 time=0.659 ms

--- fe80::c418:2ed0:aead:cbce%eth0 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3003ms

rtt min/avg/max/mdev = 0.478/0.847/1.475/0.378 ms

$

By pinging systems on both local and remote networks, you can isolate where a network
problem occurs. For instance, if you can ping local computers but not remote systems, the
problem is most probably in your router confi guration. If you can ping by IP address but
not by name, the problem is with your DNS confi guration.

Tracing a Route
A step up from ping is the traceroute command, which sends a series of three test
packets to each computer between your system and a specifi ed target system. The result
looks something like this:

$ traceroute -n 10.1.0.43

traceroute to 10.1.0.43 (10.1.0.43), 30 hops max, 52 byte packets

http://technet24.ir/

440 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 440

 1 192.168.1.1 1.021 ms 36.519 ms 0.971 ms

 2 10.10.88.1 17.250 ms 9.959 ms 9.637 ms

 3 10.9.8.173 8.799 ms 19.501 ms 10.884 ms

 4 10.9.8.133 21.059 ms 9.231 ms 103.068 ms

 5 10.9.14.9 8.554 ms 12.982 ms 10.029 ms

 6 10.1.0.44 10.273 ms 9.987 ms 11.215 ms

 7 10.1.0.43 16.360 ms * 8.102 ms

The -n option to this command tells it to display target computers’ IP addresses rather
than their hostnames. This can speed up the process a bit, particularly if you’re having
DNS problems, and it can sometimes make the output easier to read—but you may want to
know the hostnames of problem systems because that can help you pinpoint who’s respon-
sible for a problem.

This sample output shows a great deal of variability in response times. The fi rst hop,
to 192.168.1.1, is purely local; this router responded in 1.021, 36.519, and 0.971 millisec-
onds (ms) to its three probes. (Presumably, the second probe caught the system while it was
busy with something else.) Probes of most subsequent systems are in the 8 to 20ms range,
although one is at 103.068ms. The fi nal system has only two times; the middle probe never
returned, as the asterisk (*) on this line indicates.

For IPv6 addresses, use the traceroute6 command. It’s important to remember, though,
that you can only trace global addresses; link-local addresses are nonroutable.

Using traceroute and traceroute6, you can localize problems in network connectivity.
Highly variable times and missing times can indicate a router that’s overloaded or that has
an unreliable link to the previous system on the list. If you see a dramatic jump in times, it
typically means that the physical distance between two routers is great. This is common in
intercontinental links. Such jumps don’t necessarily signify a problem unless the two sys-
tems are close enough that a huge jump isn’t expected.

What can you do with the traceroute output? Most immediately, traceroute is helpful
in determining whether a problem in network connectivity exists in a network for which
you’re responsible. For instance, the variability in the fi rst hop of the preceding example
could indicate a problem on the local network, but the lost packet associated with the fi nal
destination most likely is not a local problem. If the trouble link is within your jurisdiction,
you can check the status of the problem system, nearby systems, and the network segment
in general.

Some routers are configured in such a way that traceroute isn’t a useful
tool; these routers block all traceroute data, either to themselves only or
for all packets that pass through them. If your traceroute output contains
one or two lines of all asterisks but everything else seems OK, chances are
that you’ve run into such a system. If you see nothing but asterisks after a
certain router but diagnostic tools such as ping still work, a router is prob-
ably blocking all traceroute operations.

http://technet24.ir/

Diagnosing Network Connections 441

c08.indd 03/26/2015 Page 441

The tracepath program (and the IPv6 tracepath6 program) is an alternative to
traceroute. In basic operation, it’s similar, although it produces one line of output for each
test packet and so yields longer outputs than traceroute. There are also fewer tracepath
options than there are traceroute options.

Checking Network Status
Another useful diagnostic tool is netstat. This is something of a Swiss Army knife of net-
work tools because it can be used in place of several others, depending on the parameters
it’s passed. It can also return information that’s not easily obtained in other ways. Here are
some examples:

Interface Information Pass netstat the --interface or -i parameter to obtain infor-
mation about your network interfaces similar to what ifconfig returns. (Some versions
of netstat return information in the same format, but others display the information
differently.)

Routing Information You can use the --route or -r parameter to obtain a routing table
listing similar to what the route command displays.

Masquerade Information Pass netstat the --masquerade or -M parameter to obtain
information about connections mediated by Linux’s NAT features, which often go by the
name IP masquerading. NAT enables a Linux router to “hide” a network behind a single IP
address. This can be a good way to stretch limited IPv4 addresses.

Program Use Some versions of netstat support the --program (or -p) parameter, which
attempts to provide information about the programs that are using network connections.
This attempt isn’t always successful, but it often is, so you can see what programs are
making outside connections.

Open Ports When used with various other parameters, or without any parameters at all,
netstat returns information about open ports and the systems to which they connect.

All Connections The --all or -a option is used in conjunction with others. It causes net-
stat to display information about the ports that server programs open to listen for network
connections, in addition to already-open connections. This use of netstat is described in
more detail in Chapter 10, “Securing Your System.”

Keep in mind that netstat is a very powerful tool and its options and output aren’t
entirely consistent from one distribution to another. You may want to peruse its man page
and experiment with it to learn what it can do.

Examining Raw Network Traffic
One advanced network troubleshooting tool is tcpdump. This utility is a packet sniffer,
which is a program that can intercept network packets and log them or display them on

http://technet24.ir/

442 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 442

the screen. Packet sniffers can be useful diagnostic tools because they enable you to verify
that a computer is actually receiving data from other computers. They also enable you to
examine the data in its raw form, which can be useful if you understand enough of the pro-
tocol’s implementation details to spot problems.

Although packet sniffers are useful diagnostic tools, they can also be
abused. For instance, unscrupulous individuals can run packet sniffers to
capture passwords that others send over the network. Depending on your
network configuration, this trick can work even if the packet sniffer isn’t
running on either the sending or the receiving computer. For this reason,
many organizations have policies forbidding the use of packet sniffers
except under limited circumstances. Thus, before running a packet sniffer,
you should obtain written permission to use it from an individual who is
authorized to grant such permission. Failure to do so can lead you into
serious trouble, possibly losing your job or even being sued.

In its most basic form, you can use tcpdump by typing its name:

tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

19:31:55.503759 IP speaker.example.com.631 > 192.168.1.255.631: UDP,

 length: 139

19:31:55.505400 IP nessus.example.com.33513 > speaker.example.com.domain:

 46276+ PTR? 255.1.168.192.in-addr.arpa. (44)

19:31:55.506086 IP speaker.example.com.domain > nessus.example.com.33513:

 46276 NXDomain* 0/1/0 (110)

The fi rst thing to note about this command is that you must run it as root; ordinary
users aren’t allowed to monitor network traffi c in this way. Once it’s run, tcpdump sum-
marizes what it’s doing and then begins printing lines, one for each packet that it monitors.
(Some of these lines can be quite long and so may take more than one line on your display.)
These lines include a time stamp, a stack identifi er (IP in all of these examples), the origin
system name or IP address and port, the destination system name or IP address and port,
and packet-specifi c information. Ordinarily, tcpdump keeps displaying packets indefi nitely,
so you must terminate it by pressing Ctrl+C. Alternatively, you can pass it the -c num
option to have it display num packets and then quit.

Even this basic output can be very helpful. For instance, consider the preceding example
of three packets, which was captured on nessus.example.com. This computer successfully
received one broadcast packet (addressed to 192.168.1.255) from speaker.example.com’s
UDP port 631, sent a packet to speaker.example.com, and received a packet from that
system directed at nessus.example.com rather than sent as a broadcast. This sequence veri-
fi es that at least minimal communication exists between these two computers. If you were

http://technet24.ir/

Diagnosing Network Connections 443

c08.indd 03/26/2015 Page 443

having problems establishing a connection, you could rule out a whole range of possibilities
based on this evidence, such as faulty cables or a fi rewall that was blocking traffi c.

If you need more information, tcpdump provides several options that enhance or modify
its output. These include -A to display packet contents in ASCII, -D to display a list of
interfaces to which tcpdump can listen, -n to display all addresses numerically, -v (and
additional -v options, up to -vvv) to display additional packet information, and -w file to
write the captured packets to the specifi ed fi le. Consult tcpdump’s man page for more details
on these options and for additional options.

Using Additional Tools
In addition to specialized network diagnostic programs, you can use some common user
programs as debugging tools. One of the most useful of these may be Telnet. This program
and protocol is mainly a remote login tool; type the program name followed by the name of
a remote system to receive a login prompt on that system:

$ telnet speaker

Trying 192.168.1.1...

Connected to speaker.

Escape character is '^]'.

speaker login: harry

Password:

Last login: Mon Apr 25 21:48:44 from nessus.example.com

Have a lot of fun...

harry@speaker:~>

Telnet is a poor choice as a remote login protocol because it’s entirely
unencrypted. As a general rule, you should remove the Telnet server from
your system and never use the telnet client program. It can be a useful
lowest-common-denominator protocol on sufficiently protected private
networks, though, and the telnet client can also be a handy tool for
debugging, as described next. Chapter 10 describes SSH, which is a much
safer alternative to Telnet.

You can use Telnet to debug network protocols; if you give it a port number after the
remote hostname, the telnet program connects to that port, enabling you to interact with
the server:

$ telnet speaker 25

Trying 192.168.1.1...

Connected to speaker.

Escape character is '^]'.

http://technet24.ir/

444 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 444

220 speaker.example.com ESMTP Postfix

HELO nessus.example.com

250 speaker.example.com

This example connects to port 25, which is used by email servers. After connecting,
enter a HELO command, which is used by SMTP to identify a client; the remote system
responded with a 250 code, which indicates an accepted command.

Of course, to use Telnet in this way, you must know a great deal about the protocol.
Even without this knowledge, though, you can use Telnet to test whether a server is run-
ning: If you try to connect but get a Connection refused error message, you know that
a remote server isn’t running or is inaccessible for some reason (say, because it’s being
blocked by a fi rewall). If you get in (to the Escape character message shown in the earlier
example or beyond), the server is running, although it may not be working correctly. This
test works only for protocols that use TCP. Some tools use UDP instead, and Telnet won’t
connect with them.

Sometimes the File Transfer Protocol (FTP) can be a useful diagnostic tool as well. This
program, as its name suggests, enables you to transfer fi les between systems. To use it, type
the program name followed by the FTP server’s name. You’ll then see a login prompt and
be able to issue FTP commands:

$ ftp speaker

Connected to speaker.

220 (vsFTPd 1.2.1)

Name (speaker:harry): harry

530 Please login with USER and PASS.

SSL not available

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> get zathras.wav

local: zathras.wav remote: zathras.wav

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for zathras.wav (109986 bytes).

226 File send OK.

109986 bytes received in 0.104 secs (1e+03 Kbytes/sec)

ftp> quit

221 Goodbye.

This example retrieves a single fi le, zathras.wav, from the remote computer. The basic
ftp client displays a fi le size, transfer time, and transfer rate (1e+03 Kbytes/sec—in other

http://technet24.ir/

Exam Essentials 445

c08.indd 03/26/2015 Page 445

words, 1 × 103KiB/s, or 1,000KiB/s). This can be a useful way to test your network transfer
speed, although you’ll get more reliable results with fi les that are several hundred kilo-
bytes or larger in size. In addition to get, which retrieves fi les, you can issue commands
such as put to upload a fi le, ls or dir to display the remote system’s directory contents, cd
to change directories on the remote system, delete to remove a fi le, and quit or exit to
exit from the program. You can use the help or ? command to see a list of available ftp
commands.

Like Telnet, FTP is a poor choice of protocol for security reasons. The same SSH proto-
col that can substitute for Telnet can also handle most FTP duties. One important excep-
tion exists to the rule to not use FTP, though: using anonymous FTP sites is a common
method of distributing public fi les on the Internet. You can download Linux itself from
anonymous FTP sites. These sites typically take a username of anonymous and any pass-
word (your email address is the conventional reply) and give you read access to their con-
tents. In most cases, you can’t upload fi les to anonymous FTP sites, and you can access only
a limited number of fi les.

You can access public FTP sites using a web browser. Enter a URL that
begins with ftp://, such as ftp://downloads.example.org, and the web
browser connects to the site using FTP rather than HTTP.

Summary

Linux is a network-enabled OS, and it relies on its networking features more than do most
OSs. This networking is built around TCP/IP, so you should understand the basics of this
protocol stack, including IP addresses, hostnames, and routing. Most Linux distributions
provide tools to confi gure networking during system installation, but if you want to change
your settings temporarily or permanently, you can do so. Tools such as ifconfig and route
can temporarily change your network confi guration, and editing critical fi les or running
distribution-specifi c utilities enables you to make your changes permanent.

Exam Essentials

Describe the information needed to configure a computer on a static IP network. Four
pieces of information are important: the IP address, the netmask (aka the network mask or
subnet mask), the network’s gateway address, and the address of at least one DNS server.
The fi rst two are required, but if you omit either or both of the latter two, basic networking
will function, but you won’t be able to connect to the Internet or use most DNS hostnames.

http://technet24.ir/

446 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 446

Determine when using /etc/hosts rather than DNS makes the most sense. The /etc/
hosts fi le provides a static mapping of hostnames to IP addresses on a single computer.
Therefore, maintaining this fi le on a handful of computers for a small local network is
fairly straightforward, but when the number of computers rises beyond a few or when IP
addresses change frequently, running a DNS server to handle local name resolution makes
more sense.

Summarize tools you can use to translate between hostnames and IP addresses. The
nslookup program can perform these translations in both directions using either command-
line or interactive modes, but this program has been deprecated. You’re better off using
host for simple lookups and dig for more complex tasks.

Describe the function of network ports. Network ports enable packets to be directed
to specifi c programs; each network-enabled program attaches itself to one or more ports,
sending data from that port and receiving data directed to the port. Certain ports are
assigned to be used by specifi c servers, enabling client programs to contact servers by
directing requests at specifi c port numbers on the server computers.

Explain when you should use static IP addresses or DHCP. Static IP address confi gura-
tion involves manually entering the IP address and other information and is used when a
network lacks a Dynamic Host Confi guration Protocol (DHCP) server or when a computer
shouldn’t be confi gured by that server (say, because the computer is the DHCP server).
DHCP confi guration is easier to set up on the client but works only if the network has a
DHCP server system.

Explain what the route command accomplishes. The route command displays or modi-
fi es the routing table, which tells Linux how to direct packets based on their destination IP
addresses.

Describe some basic network diagnostic tools. The ping program tests basic network
connectivity, and traceroute and tracepath perform similar but more complex tests that
can help you localize where on a route between two systems a problem exists. The netstat
utility is a general-purpose network status tool that can report a wide variety of informa-
tion about your network confi guration. Packet sniffers such as tcpdump provide detailed
information about the network packets “seen” by a computer, which can be a useful way to
verify that certain packet types are actually being sent or received.

http://technet24.ir/

Review Questions 447

c08.indd 03/26/2015 Page 447

Review Questions

1. Which types of network hardware does Linux support? (Select three.)

A. Token Ring

B. Ethernet

C. DHCP

D. NetBEUI

E. Fibre Channel

2. Which of the following is a valid IPv4 address for a single computer on a TCP/IP network?

A. 202.9.257.33

B. 63.63.63.63

C. 107.29.5.3.2

D. 98.7.104.0/24

E. 255.255.255.255

3. You want to set up a computer on a local network via a static TCP/IP configuration, but
you lack a gateway address. Which of the following is true?

A. Because the gateway address is necessary, no TCP/IP networking functions will work.

B. TCP/IP networking will function, but you’ll be unable to convert hostnames to IP
addresses or vice versa.

C. You’ll be able to communicate with machines on your local network segment but not
with other systems.

D. Since a gateway is needed only for IPv6, you’ll be able to use IPv4 but not IPv6
protocols.

E. Without a gateway address available, you’ll be unable to use DHCP to simplify
configuration.

4. Using a packet sniffer, you notice a lot of traffic directed at TCP port 22 on a local com-
puter. What protocol does this traffic use, assuming it’s using the standard port?

A. HTTP

B. SMTP

C. Telnet

D. SSH

E. NNTP

5. What network port would an IMAP server normally use for IMAP exchanges?

A. 21

B. 25

C. 110

http://technet24.ir/

448 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 448

D. 143

E. 443

6. Which of the following are not Linux DHCP clients? (Select two.)

A. pump

B. dhcpcd

C. dhcpd

D. dhclient

E. ifconfig

7. Which of the following types of information are returned by typing ifconfig eth0?
(Select two.)

A. The names of programs that are using eth0

B. The IP address assigned to eth0

C. The hardware address of eth0

D. The hostname associated with eth0

E. The kernel driver used by eth0

8. Which of the following programs is conventionally used to perform a DNS lookup?

A. host

B. dnslookup

C. pump

D. ifconfig

E. netstat

9. Which of the following commands should you type to add to host 192.168.0.10 a default
gateway of 192.168.0.1?

A. route add default gw 192.168.0.10 192.168.0.1

B. route add default gw 192.168.0.1

C. route add 192.168.0.10 default 192.168.0.1

D. route 192.168.0.10 gw 192.168.0.1

E. route host gw 192.168.0.1

10. Which of the following commands might bring up an interface on eth1? (Select two.)

A. dhclient eth1

B. ifup eth1

C. ifconfig eth1

D. network eth1

E. netstat -up eth1

http://technet24.ir/

Review Questions 449

c08.indd 03/26/2015 Page 449

11. What is the purpose of /etc/hostname, if it’s present on the system?

A. It holds the hostname of a package repository server.

B. It holds a list of servers that resolve hostnames.

C. It holds a list of IP addresses and associated hostnames.

D. It holds the hostname of the local gateway computer.

E. It holds the computer’s default hostname.

12. Network accesses to parts of the Internet work fine, but several common sites have stopped
responding (even when addressed via raw IP addresses). Which of the following tools will
be most helpful in diagnosing the source of this problem?

A. netstat

B. ping

C. traceroute

D. ifconfig

E. dig

13. What value identifies an IPv6 address as a link-local address?

A. The address uses the MAC address of the system.

B. The address starts with fe80.

C. The address starts with fee.

D. The address starts with 2001.

14. How can you learn what programs are currently accessing the network on a Linux system?

A. Type ifconfig -p eth0.

B. Examine /proc/network/programs.

C. Type netstat -p.

D. Examine /etc/xinetd.conf.

E. Type dmesg | less.

15. To diagnose a problem with an IMAP server (imap.example.com), you type telnet
imap.example.com 143 from a remote client. How can this procedure help you?
(Select two.)

A. You can verify basic connectivity between the client computer and the server program.

B. By examining the output, you can locate intermediate routers that are misbehaving.

C. By using an encrypted protocol, you ensure that a packet-sniffing intruder doesn’t
cause problems.

D. Once connected, you can type IMAP commands to test the server’s response to them.

E. Once you’ve logged into the remote system, you can examine its IMAP log files.

http://technet24.ir/

450 Chapter 8 ■ Configuring Basic Networking

c08.indd 03/26/2015 Page 450

16. You’re configuring a new system, and your network administrator scribbles its IP address
(172.25.78.89), netmask (255.255.255.0), gateway address (172.25.79.1), and DNS server
address (10.24.89.201) on a piece of paper. You enter this information into your configura-
tion files and type ifup eth0, but you find that you can’t access the Internet with this
computer. Which of the following is definitely true?

A. Because the DNS server is on a completely different network, it won’t function properly
for your system. You should ask for the local network’s DNS server’s IP address.

B. The netmask identifies the gateway as being on a different network segment than the
computer you’re configuring, so the two can’t communicate directly. You most likely
misread one address.

C. Because the IP addresses involved are private IP addresses, there’s no way for them to
access the Internet. You must ask for public IP addresses for this system or use only
your local private network.

D. The computer’s IP address is a Class B address, but the netmask is for a Class C
address. This combination can’t work together, so you must obtain a new IP address or
netmask.

E. The ifup utility works only for computers that use DHCP, so using a static IP address
as specified in the question won’t work correctly.

17. What is the purpose of the -n option to route?

A. It causes no operation to be performed; route reports what it would do if -n
were omitted.

B. It precedes the specification of a netmask when setting the route.

C. It limits route’s output to descriptions of non-Internet routes.

D. It forces interpretation of a provided address as a network address rather than a
host address.

E. It causes machines to be identified by IP address rather than hostname in output.

18. What is the purpose of /etc/resolv.conf?

A. It holds the names of network protocols and the port numbers with which they’re
associated.

B. It controls whether the computer’s network options are configured statically or via a
DHCP server.

C. It specifies the IP address of a DHCP server from which the computer attempts to
obtain an IP address.

D. It holds the routing table for the computer, determining the route that network packets
take to other computers.

E. It sets the computer’s default search domain and identifies (by IP address) the name
servers that the computer may use.

19. Which of the following entries are found in the /etc/hosts file?

A. A list of hosts allowed to access this one remotely

B. Mappings of IP addresses to hostnames

http://technet24.ir/

Review Questions 451

c08.indd 03/26/2015 Page 451

C. A list of users allowed to access this host remotely

D. Passwords for remote web administration

E. A list of port numbers and their associated protocols

20. How can you reconfigure Linux to use DNS queries prior to consulting /etc/hosts?

A. Edit the /etc/resolv.conf file, and be sure the nameserver dns line comes before
the nameserver files line.

B. As root, type nslookup dns.

C. Edit the /etc/named.conf file, and change the preferred-resolution option from
files to dns.

D. Edit /etc/nsswitch.conf, and change the order of the files and dns options on the
hosts: line.

E. As root, type dig local dns .

http://technet24.ir/

http://technet24.ir/

c09.indd 03/27/2015 Page 453

Chapter

9
Writing Scripts,
Configuring Email,
and Using Databases

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 105.1 Customize and use the shell environment

 ✓ 105.2 Customize or write simple scripts

 ✓ 105.3 SQL data management

 ✓ 108.3 Mail Transfer Agent (MTA) basics

http://technet24.ir/

c09.indd 03/27/2015 Page 454

This chapter covers a number of topics. The fi rst of these
relates to shell management. Linux shells (introduced in
Chapter 1, “Exploring Linux Command-Line Tools”) can be

customized in various ways. Knowing how to do this will help you to be productive when
using Linux. You may need to set various options to use particular programs. In addition,
similar changes may need to be made on a global level so that all of your users can work
effectively.

Shell scripting is another topic covered by this chapter. You can write scripts to help
automate tedious repetitive tasks or to perform new and complex tasks. Scripts perform
many of Linux’s startup functions (described in Chapter 5, “Booting Linux and Editing
Files”), so mastering scripting will also help you to manage the startup process.

The next major chapter topic is Structured Query Language (SQL) data management.
Many Linux installations rely on a SQL database to store information, and so you may
need at least a minimal grounding in how to interact with SQL databases.

Finally, this chapter describes the basics of email management under Linux. Several Linux
email packages exist, and you’re not expected to understand their confi guration details for the
exam. However, you should know a few basics, such as how to confi gure email forwarding,
examine mail queues, and otherwise interact with a Linux mail server that’s already working.

Managing the Shell Environment

Chapter 1 introduced Linux shell use, including topics such as command completion,
 history, redirection, and the basics of environment variables. Now it’s time to go further
with more details about environment variables, aliases, and confi guration fi les. Using this
information, you’ll be able to customize your shell environment to suit your personal tastes
or change the default environment for all of the users on your system.

Reviewing Environment Variables
As described in Chapter 1, environment variables provide the means to pass named data
(variables) to programs launched from a shell or a subshell. A subshell is a child process
that is created by either the shell or a shell script when a program is initiated.

Shells themselves also rely on environment variables. For instance, $HOSTNAME
 conventionally holds the computer’s name, such as carson.example.com. A program that
needs to know the computer’s name can refer to $HOSTNAME to obtain this information.

http://technet24.ir/

Managing the Shell Environment 455

c09.indd 03/27/2015 Page 455

You set an environment variable manually via an equal-sign assignment operator. To
make the variable available to subshells, you then use the export command:

$ HOSTNAME=carson.example.com

$ export HOSTNAME

Using the semicolon (;) list operator, you can combine these two commands into one
line as follows:

$ HOSTNAME=carson.example.com ; export HOSTNAME

You can further combine these two commands into one command for even more brevity:

$ export HOSTNAME=carson.example.com

On a bash command line, you can refer to an environment variable by using the
echo command to examine a single variable (as in echo $HOSTNAME). To see all of the
 environment variables, use one of these commands: env, set, or printenv.

The output variation of the commands env, set, and printenv are
rather subtle. The set command displays both environment variables
and user-defined variables in an alphabetically sorted list. The env and
printenv commands do not sort their output and do not show user-
defined variables. In addition, the env command has additional functional-
ity that the printenv command does not have.

Setting an environment variable as just described sets it for the shell or (when used with
export) for subshells you create. Keep in mind that these variable settings disappear when
you log out because they are not persistent. A variable (or other confi guration setting) is
persistent, if it keeps its defi nition—even if the process that set it is no longer around. If you
set an environment variable manually at the command line and then log out of the system
or shut down the computer, that variable loses the defi nition you gave it. How to make
these environment variable settings persistent is covered in the section “Modifying Shell
Confi guration Files” later in this chapter.

Understanding Common Environment Variables
You may encounter many common environment variables on your system. You can
fi nd out how environment variables are confi gured by typing env, set, or printenv
without any options. When typed without options, env returns all of the environment
variables that are currently set in a format similar to that of bash environment variable
assignments:

$ env | grep HOSTNAME

HOSTNAME=carson.example.com

http://technet24.ir/

456 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 456

Of course, the variables you see and their values will be unique to your system and even
your account—that’s the whole point of environment variables. Table 9.1 summarizes
 common variables that you may see in this output.

TA B LE 9 .1 Common environment variables and their meanings

Variable name Explanation

DISPLAY This variable identifies the display used by the X windows server. It’s
usually set to :0.0, which indicates the first display on the current com-
puter. You can run multiple X sessions on one computer, in which case
each one gets a different DISPLAY number—for instance, :0.0 for the
first session and :1.0 for the second session.

When you use X in a networked environment, this value may be
preceded by the name of the computer at which you’re sitting, as in
machine4.luna.edu:0.0. This value is set automatically when you log
in, but you may change it if necessary.

EDITOR Some programs launch the program pointed to by this environment
variable when they need to call a text editor for you to use. Thus,
changing this variable to your favorite editor can help you work in
Linux. It’s best to set this variable to a text-mode editor because GUI
editors may cause problems if they’re called from a program that was
launched from a text-mode login.

HISTSIZE This variable determines the number of commands that will be saved in
your history file.

HOME This variable points to your home directory. Some programs use it to
help them look for configuration files or as a default location in which
to store files.

HOSTNAME This is the current TCP/IP hostname of the computer.

LANG The system holds your current language, specified as a locale, using
this variable. Locales are described further in Chapter 6, “Configuring
the X Window System, Localization, and Printing.”

LD_LIBRARY_PATH A few programs use this environment variable to indicate directories in
which library files may be found. It works much like PATH.

LOGNAME This variable holds your username when you are logged into the system.

MAIL This variable holds the location of the user’s mail spool. It’s usually /
var/spool/mail/username.

PAGER If set, this variable determines the pager to use for output by programs,
such as man.

http://technet24.ir/

Managing the Shell Environment 457

c09.indd 03/27/2015 Page 457

Variable name Explanation

PATH This is an unusually important environment variable. It sets the path for
a session, which is a colon-delimited list of directories in which Linux
searches for executable programs when you type a program name. For
instance, if PATH is /bin:/usr/bin and you type ls, Linux looks for an
executable program called ls in /bin and then in /usr/bin. If the com-
mand you type isn’t on the path, Linux responds with a command not
found error. The PATH variable is typically built up in several configura-
tion files, such as /etc/profile and the .bashrc file in the user’s home
directory.

PS1 This is the default prompt in bash. It generally includes variables of its
own, such as \u (for the username), \h (for the hostname), and \W (for
the current working directory). This value is frequently set in /etc/
profile, but users often override it.

PWD This is the present working directory. This environment variable is
maintained by the system. Programs may use it to search for files when
you don’t provide a complete pathname.

SHELL This variable holds the path to the current command shell.

TERM This variable is the name of the current terminal type. To move a
 text-mode cursor and display text effects for programs like text-mode
editors, Linux has to know what commands the terminal supports.
The TERM environment variable specifies the terminal in use. This
 information is combined with data from additional files to provide
terminal-specific code information. TERM is normally set automatically
at login, but in some cases you may need to change it.

TZ You can set this environment variable to your own time zone, which
is most useful if that’s different than the computer’s time zone—for
instance, if you’re using a computer remotely. Chapter 6 describes the
formats you can use when setting the time zone in this way.

USER or USERNAME This is your current username. It’s a variable that’s maintained by the
system.

The PATH variable sometimes includes the current directory indicator (.)
so that you can easily run programs in the current directory. This practice
poses a security risk, though, because a troublemaker can create a program
with the same name as some other program (such as ls) and trick another
user into running it by simply leaving it in a directory the victim frequents.
Even the root user may be victimized this way. For this reason, it’s best to
omit the current directory from the PATH variable, especially for the super-
user. If it’s really needed for ordinary users, put it at the end of the path.

http://technet24.ir/

458 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 458

Any given system is likely to have several other environment variables set, but these
are fairly obscure or relate to specifi c programs. If a program’s documentation says that
it needs certain environment variables set, you can set them in the appropriate shell
 confi guration fi le. How to make these settings is covered in the section “Modifying Shell
Confi guration Files.”

Environment variable names are usually preceded by a dollar sign ($) in
scripts and on shell command lines, except when they’re assigned. Getting
this detail wrong can produce results that you weren’t expecting; for
instance, typing echo HOSTNAME produces the output HOSTNAME rather
than the computer’s hostname.

If you want to know the value of one variable, you can use the echo command, which
echoes what you type to the screen. If you pass to it a variable name preceded by a dollar
sign ($), echo returns the value of the variable. Here’s an example:

[christine@server01 etc]$ echo $PS1

[\u@\h \W]\$

This command reveals that the PS1 environment variable is set to [\u@\h \W]\$, which
in turn produces a bash prompt like [christine@server01 etc]$. Exercise 9.1 illustrates
how you can change your bash prompt.

E X E R C I S E 9 .1

Changing Your bash Prompt

This exercise describes how to change your bash prompt to show the current time and

number of jobs managed by the shell. To accomplish this task, follow these steps:

1. Press Ctrl+Alt+F2, and log into the Linux system as a normal user.

2. Type export PS1="\T; \j jobs> ". The backslash (\) is an escape character

that denotes special data to be inserted into the prompt when used in the PS1

 environment variable. \T is expanded into the current time in 12-hour format, and

\j is expanded into the number of jobs the shell manages. The man page for bash

has a complete list of expansions the PS1 variable accepts. The result of typing this

 command should be an immediate change in your prompt to resemble something like

04:42; 0 jobs>.

3. Wait for a minute, and then run a program in the background by typing its name and

appending an ampersand (&). For instance, you can type sleep 10 & to run the

sleep program in the background for 10 seconds. You should see the number of jobs

increase, and the time should change.

http://technet24.ir/

Managing the Shell Environment 459

c09.indd 03/27/2015 Page 459

4. To make this change permanent, edit the .bashrc fi le in your home directory. Load

this fi le into your favorite editor, and add a line to its end that reads export PS1="\T;

\j jobs> ". Save the fi le, and exit the editor. (Shell confi guration fi les are described

in more detail in the section “Modifying Shell Confi guration Files.”)

5. To test your change to .bashrc, log out and then log back in again. Instead of your

distribution’s default prompt, you should see the new one.

6. If you don’t like the new prompt, edit .bashrc again and delete the line you added

in step 5.

Using Aliases
Most Linux shells, including bash, support command aliases, which are new names that
you can give to regular commands. Typically, you’ll use aliases as follows:

 ■ To assign easier-to-remember names to obscure commands

 ■ To implement desirable command options as a command’s default

 ■ To create a shortened version of a command to minimize typing

You can defi ne aliases at any bash prompt, but that won’t make them persistent. To
make aliases persistent, you need to include them in your bash startup scripts, as described
in the section “Modifying Shell Confi guration Files.”

To implement an alias, you use the following syntax:

alias alias_name='command'

The alias_name parameter is what you want to type at the command prompt, and
the shell substitutes command for whatever you type. As an example, consider the ls com-
mand, which lists the contents of a directory. A popular option combination for this
command is -alF, which shows a long listing display of a directory’s contents along with
hidden fi les and fi le types. If you want to use this option as the default, you can use the
alias command:

$ alias ls='ls -alF'

In this example, ls becomes an alias for an extended version of itself. After you type this
alias command, typing ls will work as if you’d typed ls -alF.

If you want to see if a particular command has an alias set, you can also use the alias
command as follows:

$ alias ls

alias ls='ls -alF'

$

http://technet24.ir/

460 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 460

To remove an alias setting, use the unalias command:

$ unalias ls

$ alias ls

-bash: alias: ls: not found

$

Notice in the previous example that the alias was checked to ensure that the
 unalias command worked properly. Once an alias is removed, the shell will let you
know that a command alias is not found. Note that this does not remove the ls
 command, only its alias.

You can use an alias name that’s unrelated to the original command name. For instance,
suppose you want to type bye instead of logout to terminate a text-mode login session.
You can do so with alias:

$ alias bye='logout'

In practice, this particular alias isn’t likely to be useful if you type it manually at a
 command prompt. That is because you’ll log out of a session and the alias will no longer be
set. Remember, an alias set at the command prompt is not persistent. If you want to keep
this alias for every login session, include it in a bash startup script and it will be created
automatically whenever you log in.

Modifying Shell Configuration Files
Confi guring shells requires editing shell confi guration fi les. These fi les can be classifi ed
in a couple of ways. First, fi les may be global fi les that affect all users of a shell or local
fi les that affect just one user. Second, fi les may be login fi les that are launched only by
a login process (such as a text-mode console login) or non-login fi les that are launched
by other processes (such as when starting a terminal emulator window in the GUI). The
result is a 2 × 2 matrix of confi guration fi les, as shown in Table 9.2. (This table shows
only bash confi guration fi les; consult your shell’s documentation if you’re using
another shell.)

TA B LE 9 . 2 Common bash configuration files

Type of file Login file location Non-login file location

Global /etc/profile and files in
/etc/profile.d

/etc/bashrc or /etc/bash.bashrc

User ~/.bash_login, ~/.profile, or
~/.bash_profile

~/.bashrc

http://technet24.ir/

Managing the Shell Environment 461

c09.indd 03/27/2015 Page 461

Precisely which of these fi les are used differs from one distribution to another. No matter
the name, though, these fi les are shell scripts. Shell scripting is described in more detail in
the section “Writing Scripts,” but most bash startup scripts contain a series of commands.
These commands may include both built-in bash commands and external commands.

In a user directory, you may fi nd all three user login bash confi guration fi les listed in
Table 9.2, depending on your distribution. If you have two or more user bash confi guration
fi les, the fi rst fi le found in the following ordered list is run and the rest are ignored:

~/.bash_profile

~/.bash_login

~/.profile

Global confi guration fi les affect all users of a system. However, their settings may be
overridden by individual users, either in user confi guration fi les or in commands the users
type themselves. Thus, you shouldn’t rely on global confi guration fi les to set options that
shouldn’t be changed by users. For that, you should look to global security features, such as
permissions on executable fi les.

The /etc/skel directory holds fi les that are copied to individual users’ home directories
when their accounts are created. These fi les are sometimes called skeleton fi les. Typically,
this set of fi les includes local bash startup fi les. You can examine these fi les and, if
 necessary, alter them to suit your local needs. Changes to these fi les affect only new
accounts—not existing accounts. If you want to make a change that affects both existing
and new users, you should edit a global confi guration fi le instead.

Just as shells have startup scripts, they may also have logout scripts—scripts that run when
the user logs out. For bash, this script is ~/.bash_logout. Most distributions don’t create this
script as part of users’ default home directories, but individual users can do so. The logout
script might execute programs to clean up temporary directories, remove security keys from
memory, clear the screen, or perform other tasks that are appropriate when a user logs out.

One problem with logout scripts is that they may not work well when users
log in multiple times. If you regularly have multiple sessions open, such
as multiple Linux virtual terminal logins, be careful about what you do in a
logout script. You could wipe out important temporary files when you log
out of just one session.

Another global bash confi guration fi le is the /etc/inputrc fi le for keyboard
 customization and setting terminal behavior. Users can create or modify their own
 keyboard confi guration fi le, which is the ~/.inputrc fi le or the value of $INPUTRC if set.

When the system starts up or a user logs into the system, the confi guration fi les are read,
terminal behavior is confi gured, and the keyboard’s key bindings are set. A key binding
is a connection between a set of keys being pressed and a command being launched or
an action being taken. For example, when you press the Up arrow key at the command
prompt, the last command entered is displayed.

http://technet24.ir/

462 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 462

You can see your current key bindings by typing bind -p at a virtual
 console terminal prompt. This may not work in some distributions’ GUI
terminal emulators.

The fi les consist of lines that look like this:

M-Control-u: universal-argument

This line maps the Meta-Ctrl+U keystroke to the universal-argument action. The Meta
key is usually the Esc key on x86 or x86-64 systems, and the universal-argument action is
one of many possible actions defi ned by the readline software library. The readline library
is one of the basic text-mode input libraries used by Linux.

In most cases, there’s no need to adjust the /etc/inputrc and ~/.inputrc fi les because
the default readline key mappings work well for x86 systems with standard keyboards. If
you fi nd that certain keystrokes don’t work the way they should in text mode, though, you
may want to research these confi guration fi les further. You can fi nd out more by typing in
info rluserman at the command prompt.

The GUI uses its own keyboard input routines, so the /etc/inputrc and
~/.inputrc files don’t affect programs run in the GUI, This is true even if
text-mode programs run inside a terminal emulator window.

Writing Scripts

You’ll do much of your work on a Linux system by typing commands at a shell prompt. As
you use Linux, though, you’re likely to fi nd some of these tasks to be repetitive. If you need
to add 100 new users to the system, for instance, typing useradd 100 times can be tedious.
Fortunately, Linux includes a way to cut through the tedium: shell scripts. These are simple
programs written in an interpreted computer language that’s embedded in the Linux shell
you use to type commands.

Many Linux system startup scripts are in fact shell scripts. Therefore,
understanding shell scripting is necessary if you want to modify a Linux
startup script.

Most Linux systems use bash by default, so shell scripts are often written in the bash
shell scripting language, but dash and other shell scripting languages are similar. You’re not
restricted to running shell scripts written in your default shell. A shell script’s fi rst line iden-
tifi es the shell that should be used to run the script.

http://technet24.ir/

Writing Scripts 463

c09.indd 03/27/2015 Page 463

Like any programming task, shell scripting can be quite complex.
 Consequently, this chapter barely scratches the surface of what can be
accomplished through shell scripting. Consider reviewing online tutorials,
such as the Advanced Bash-Scripting Guide at http://tldp.org/LDP/
abs/html/. You can also consult a book on the topic, such as Blum and
 Bresnahan’s Linux Command Line and Shell Scripting Bible, 3rd Edition
(Wiley, 2015), for more information.

To create a shell script, you must fi rst know how to begin editing one. Once you do so,
you’ll fi nd that one of the easiest tasks to do is to call external commands. More advanced
tasks include using variables and conditional expressions.

Beginning a Shell Script
Shell scripts are plain-text fi les, so you can create them in text editors. A shell script begins
with a line that identifi es the shell that’s used to run it, such as the following:

#!/bin/bash

The fi rst two characters are a special code that tells the Linux kernel that this is a script.
The rest of the fi rst line indicates the program that’s to interpret the script. Notice that
the program’s absolute pathname is included. The /bin/bash shell will be interpreting the
script’s contents because it is listed in the fi rst line. This line is sometimes called the
shebang, hashbang, hashpling, or pound bang line.

On most systems, /bin/sh is a symbolic link that points to the /bin/bash
shell. However, it can point to some other shell, such as the /bin/dash
shell. It’s dangerous to use the /bin/sh in your shell scripts as part of
the first line. This is especially true if you run the scripts on various Linux
distributions and the scripts use a particular shell’s specific features. You
should specify the actual shell instead of the /bin/sh link.

After the fi rst line, shell scripting languages consider a hash mark (#) as a comment
character. This allows you to embed comments within your scripts because the script utility
ignores characters on a script line after the hash mark.

Using Commands in Shell Scripts
One of the most basic features of shell scripts is the ability to run commands to perform
various tasks for you. You may use both the shell’s internal and external commands by
including their names in the script. You can also specify command parameters in a script.
For example, suppose that you like to view the date and time in a format different than the

http://technet24.ir/

464 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 464

default format displayed by the date command. However, you have a diffi cult time remem-
bering all of the syntax required and don’t want to use an alias. A simple shell script can
remember the syntax for you as shown here:

$ date +%A', '%B' '%e' '%I':'%M%p

Thursday, October 23 01:50PM

$

$ cat mydate.sh

#!/bin/bash

#

Show the Day & Time

######################

#

date +%A', '%B' '%e' '%I':'%M%p

#

$

Notice the date command’s complicated syntax used on the command line to produce
a specially formatted display. The same command is listed in the mydate.sh script. There
is no need to commit this date command syntax to memory because the shell script will
 produce the desired results for you!

The fi rst script line identifi es it as a script. After the fi rst line, any hash (#) marks
denote comments. The rest of the script looks just like the commands you might type to
 accomplish the task manually.

Some script writers will include a command’s complete path. For example,
instead of just typing date in the script, they type /bin/date. Listing the
absolute path name ensures that the script will find the programs—even if
the PATH environment variable changes. However, if the command’s files
move for any reason, such as the result of a package upgrade, scripts that
use absolute path names will break.

A comprehensive script command list is impossible because you can run any installed
program as a command in a script. A few commands that are commonly used in scripts are
included in the following list:

 ■ File manipulation commands, such as ls, mv, cp, and rm. You can use these commands
to help automate repetitive file maintenance tasks.

 ■ The grep command locates files that contain specific strings. It is described in Chapter 1.

 ■ The find command searches for file and directory names based on filenames,
 ownership, and similar characteristics. It is described in Chapter 4.

 ■ The cut command extracts text from fields in a file. It is described in Chapter 1.

http://technet24.ir/

Writing Scripts 465

c09.indd 03/27/2015 Page 465

 ■ The sed program is also described in Chapter 1. It provides many of the capabilities of
a conventional text editor but via commands that can be typed at a command prompt
or entered in a script.

 ■ The echo command provides the ability to send a message to the script’s user. You can
pass various options to echo or just a string to be shown to the user. For instance, echo
"Done with Script" causes a script to display the specified string.

Many of these commands are extremely complex. You can consult the
descriptions located elsewhere in the book or their man pages for more
information.

Running a Shell Script
When you’re done writing the shell script, you can modify it so that it’s executable. You do
this with the chmod command, as described in Chapter 4, “Managing Files.” Specifi cally,
you use the +x option to add execute permissions, along with the indicator for who needs
access. For instance, to make a fi le called my-script.sh executable for your use only, you
issue the following command:

$ chmod u+x my-script.sh

It’s possible to set a script’s SUID or SGID bits. (See Chapter 4 for informa-
tion about the SUID and SGID bits.) Doing so is potentially dangerous,
particularly if the script is owned by root, for reasons described in Chap-
ter 4. You should therefore be very cautious about applying the SUID and
SGID bits to scripts.

You can run shell scripts by using several different methods. Some methods create sub-
shells, while others do not. Some methods require execute permission, while others do not
require it.

To demonstrate the differences between these techniques, the following script will be run
using the various methods:

$ cat my-script.sh

#!/bin/bash

#

Show process "forest"

ps -o pid -o ppid -o cmd --forest

#

Give status

http://technet24.ir/

466 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 466

echo Done with Script

#

$

$ ls -l my-script.sh

-rw-rw-r--. 1 Christine User 116 Oct 23 11:28 my-script.sh

$

The my-script.sh uses the ps command (see Chapter 2) with some special options.
The -o options will display the process ID (PID) number and the parent process ID (PPID)
 number, along with the commands (CMD) being executed. The --forest option shows
 parent processes graphically. Notice that the my-script.sh fi le has no execute permissions
set on it.

The following list describes the various script execution methods:

bash script-name Typing the script’s name, preceded by bash, tells Linux to run the
script in the current directory rather than searching the current path:

$ bash my-script.sh

 PID PPID CMD

 2821 2820 -bash

 2867 2821 _ bash my-script.sh

 2868 2867 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

This method does not require execution permission to run the script. However, it does
 create a subshell to run the script as indicated by the bash my-script.sh line in the output’s
third line.

./script-name Typing the script’s name, preceded by ./, tells Linux to run the script in
the current directory rather than searching the current path:

$./my-script.sh

-bash: ./my-script.sh: Permission denied

$

$ chmod u+x my-script.sh

$

$./my-script.sh

 PID PPID CMD

 2821 2820 -bash

 2883 2821 _ /bin/bash ./my-script.sh

 2884 2883 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

http://technet24.ir/

Writing Scripts 467

c09.indd 03/27/2015 Page 467

This method does require execution permission. As you can see in the preceding example,
the chmod u+x command is needed in order to use this execution method. It also creates a
subshell to run the script as indicated by the /to/bash ./my-script.sh example line.

/directory-location/script-name Just typing in the script’s full path and name is
needed when the script is not located in your current working directory:

$ chmod u-x my-script.sh

$

$ mv my-script.sh /home/Christine/NewDir/

$

$ /home/Christine/NewDir/my-script.sh

-bash: /home/Christine/NewDir/my-script.sh: Permission denied

$

$ chmod u+x /home/Christine/NewDir/my-script.sh

$

$ /home/Christine/NewDir/my-script.sh

 PID PPID CMD

 2821 2820 -bash

 2905 2821 _ /bin/bash /home/Christine/NewDir/my-script.sh

 2906 2905 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

This method also requires the execution permission to be set on the script. It creates a
 subshell to run the script as well.

script-name Just typing in the script’s name requires the shell script to be moved to a
directory on your path, such as /usr/local/bin. This is the preferred method for scripts
that will be used by others:

$ cd /home/Christine/NewDir

$

$ sudo mv my-script.sh /usr/local/bin/

[sudo] password for Christine:

$

$ chmod a+x /usr/local/bin/my-script.sh

$

$ echo $PATH

/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:

/usr/local/sbin:/usr/sbin:/sbin:/home/Christine/bin

$

$ my-script.sh

http://technet24.ir/

468 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 468

 PID PPID CMD

 2821 2820 -bash

 2928 2821 _ /bin/bash /usr/local/bin/my-script.sh

 2929 2928 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

This method requires the appropriate execution permission to be set. Since it will be
used by all system users, the chmod a+x command is used to grant execute permission to
 everyone. Note that the $PATH environment variable contains the directory /usr/local/
bin, where the my-script.sh fi le was moved. Also note that this method creates a subshell
when the script is run.

sh script-name Typing the script’s name, preceded by sh, is nearly identical to
 preceding it with the bash command. It tells Linux to run the script in the current directory
rather than searching the current path:

$ sudo mv /usr/local/bin/my-script.sh /home/Christine/

[sudo] password for Christine:

$

$ cd /home/Christine

$

$ chmod a-x my-script.sh

$

$ sh my-script.sh

 PID PPID CMD

 2821 2820 -bash

 2973 2821 _ sh my-script.sh

 2974 2973 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

This method does not require execution permission to run the script, and it creates a sub-
shell to run the script as indicated by the sh my-script.sh line in the output.

source script-name Typing the keyword source before the script name tells the bash
shell to use a method type called sourcing. When you source a script, a subshell is not
created to run the script.

$ source my-script.sh

 PID PPID CMD

 2821 2820 -bash

 3095 2821 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

http://technet24.ir/

Writing Scripts 469

c09.indd 03/27/2015 Page 469

Notice that no new process (subshell) was created to run the my-script.sh script. It ran in
the current bash shell (PID 2821). This method also does not require execute permission.

. script-name Typing a dot (.) and then a space before the script name also tells the
bash shell to use the sourcing method type. Be careful; don’t forget to include the space
between the dot and the script name:

$. my-script.sh

 PID PPID CMD

 2821 2820 -bash

 3157 2821 _ ps -o pid -o ppid -o cmd --forest

Done with Script

$

This method also does not create a subshell. The script ran in the current bash shell (PID
2821). In addition, this method does not need execute permission set on the fi le.

exec ./script-name The last method for executing script uses the exec com-
mand. This method does need execute permission set on the file. Be aware, if you are
following along with the book and executing scripts, you will need to add a pause to
the bottom of your script. Here the sleep 10 command was added to the my-script
.sh script so the script will pause for 10 seconds before completing. This is needed
because the exec command will exit the current bash shell when it is done running
the script:

$ cat my-script.sh

#!/bin/bash

[...]

sleep 10

echo Done with Script

#

$

$ chmod a+x my-script.sh

$

$ exec ./my-script.sh

 PID PPID CMD

 2821 2820 /bin/bash /home/Christine/my-script.sh

 3197 2821 _ ps -o pid -o ppid -o cmd --forest

Notice that the ./ execution method had to be placed before the script’s name. This is
because exec is not truly a script execution method. It does not create a subshell but instead
replaces the current shell with an executable image environment to run the script. A script
execution method must be included in the exec command line in order to run a script. You

http://technet24.ir/

470 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 470

cannot source a script using exec, however. Only execution methods that create a subshell
will work with the exec command:

$ exec source my-script.sh

-bash: exec: source: not found

$

$ exec . my-script.sh

-bash: exec: .: not found

$

$ exec bash my-script.sh

 PID PPID CMD

 3257 3256 bash my-script.sh

 3301 3257 _ ps -o pid -o ppid -o cmd --forest

$

The exec program’s primary value is not in running scripts. Instead, it is often used to run
a program from within a script.

There are only two methods listed previously that are considered sourcing methods: the
source command and the dot (.). Using a sourcing method that causes a script to run in
the current shell, as opposed to launching a new instance of the shell (subshell), has some
important implications:

 ■ When you source a script, it will have access to environment variables set in the calling
shell. This is true even if you haven’t exported them. Without sourcing, only environ-
ment variables that you explicitly export become available to scripts you run.

 ■ If you source a script and if that script sets an environment variable, that variable will
become available (or will be changed) in the calling shell’s environment. If you run the
script without using a sourcing method, any environment variables it sets will remain local
to it and to the programs that it calls. This is true even if the script exports the variables.

 ■ Running a script without sourcing imposes overhead costs associated with launching
the new shell instance (subshell). These costs are normally negligible, but if a script
calls itself recursively or calls many other scripts, sourcing those scripts within the first
script may improve performance.

 ■ Sourcing a script causes it to execute in the calling shell’s language, whereas running a
script normally causes it to use the shell language specified on the shebang line.

Many administrative tasks conducted via shell scripts require you to process data and
provide a means for temporary storage. For this reason, scripting languages include addi-
tional features to help you make your scripts useful.

Using Variables in Shell Scripts
Variables can help you expand the utility of scripts. A variable is a placeholder in a script for a
value that will be determined when the script runs. Variables’ values can be passed as param-
eters to scripts, generated internally to the scripts, or extracted from the script’s environment.

http://technet24.ir/

Writing Scripts 471

c09.indd 03/27/2015 Page 471

Understanding Positional Parameter Variables
Variables that are passed to the script are frequently called positional parameters. The
individual parameters are represented by a dollar sign ($) followed by a number from 0 to
9—$0 stands for the name of the script, $1 is the fi rst parameter to the script, $2 is the
second parameter, and so on.

To show parameter variables in action, a simple script for creating user accounts has
been written (see Chapter 7, “Administering the System,” for more information on creating
user accounts). Keep in mind that this script will not work for all distributions because it
uses the useradd command, whereas some distributions use the adduser command. If you
want to use it on your Linux system, some modifi cations may be required:

$ cat mkuser.sh

#!/bin/bash

#

Create user accounts & their passwords

###

#

Create user account

echo Account for $1 is being created...

#

useradd $1

#

Set user account password

#

echo Password for $1 is being set...

#

passwd $1

#

echo Account is ready for use.

#

##

$

Notice in the mkuser.sh script that the positional parameter, $1, is used in both the
useradd and the passwd commands as well as in a couple of echo commands. Also notice
that in the previous example, the script’s fi rst line, the shebang, shows that /bin/bash acts
as the script’s program interpreter. After that fi rst line, you see both hash marks (#) denot-
ing comments or actual bash shell commands.

Notice that some of the mkuser.sh script’s hash marks are on lines
by themselves. This provides spacing in the script, which adds to its
 readability. Shell scripts should be easy to read. This helps when script
modifications are needed.

http://technet24.ir/

472 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 472

The mkuser.sh script creates an account and changes the account’s password based
upon the account name being passed as positional parameter $1. Because the script needs
superuser privileges to accomplish its task, the sudo command is used when executing the
script, as shown here:

$ chmod u+x mkuser.sh

$

$ sudo ./mkuser.sh River

Account for River is being created...

Password for River is being set...

Changing password for user River.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Account is ready for use.

$

$ tail -1 /etc/passwd

River:x:506:510::/home/River:/bin/bash

$

Notice that the position parameter variable passed to the mkuser.sh script has the value
of River. Therefore, in every spot where the $1 variable was in the script, River is now
used instead. This script, though very simple, can be used effectively, for instance for creat-
ing multiple user accounts at one time.

With a little modifi cation to the mkuser.sh script, you can grab more positional param-
eters from the command line and create more than one account at a time! Here’s a snipped
example:

$ cat mkuser.sh

#!/bin/bash

#

[...]

#

passwd $1

#

echo Account is ready for use.

#

Create user account

echo Account for $2 is being created...

#

useradd $2

#

http://technet24.ir/

Writing Scripts 473

c09.indd 03/27/2015 Page 473

Set user account password

#

echo Password for $2 is being set...

#

passwd $2

#

echo Account is ready for use.

#

##

$

The script now has additional code to handle creating a second user account using the
name passed as the second positional parameter, $2. Here is the modifi ed script in action:

$ sudo ./mkuser.sh Malcolm Inara

[sudo] password for Christine:

Account for Malcolm is being created...

Password for Malcolm is being set...

Changing password for user Malcolm.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Account is ready for use.

Account for Inara is being created...

Password for Inara is being set...

Changing password for user Inara.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Account is ready for use.

$

$ tail -2 /etc/passwd

Malcolm:x:507:507::/home/Malcolm:/bin/bash

Inara:x:508:511::/home/Inara:/bin/bash

$

Two parameters are now passed to the script, Malcolm and Inara. The mkuser.sh script
handles them both via positional parameters. The script uses $1 as a variable to handle the
Malcolm parameter and $2 as a variable to handle the Inara parameter.

You may want to be able to send any number of user accounts to be created to the
mkuser.sh script. However, you’ll need either test constructs or a loop to handle this
requirement. These topics are covered shortly in this chapter.

http://technet24.ir/

474 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 474

Understanding User-Defined Variables
A user-defi ned variable is a variable defi ned by a user for various purposes, such as
temporarily storing data. It can be used within a script or at the command line. The
following example demonstrates defi ning a user-defi ned variable, called My_Var, at the
command line:

$ My_Var="Hello World"

$

$ echo $My_Var

Hello World

$

Once the variable has been set, various programs or other commands can use it, such as
the echo command. Notice that when setting the My_Var variable’s value, there is no dollar
sign ($) in the variable’s name. However, when used with the echo command, the dollar
sign must be included.

It is difficult to remember when to use and when not to use the dollar sign
($) with an environment or user-defined variable. Just remember that if
you are doing anything with the variable, use the dollar sign. If you are
doing anything to the variable, such as assigning a value to it, don’t use the
dollar sign.

You can remove both environment and user-defi ned variables. The unset command
accomplishes this task, as shown in the example here:

$ echo $My_Var

Hello World

$

$ unset My_Var

$

$ echo $My_Var

$

Notice that in the preceding example, once the variable was unset, the echo
$My_Var command just displays a blank line. This indicates that the variable has
been removed. Using the unset command can be very useful in scripts as well as the
 command line.

Variables are often assigned within scripts. They may hold data pertinent for a script’s
execution. Script variables can also be set from a command’s output, which is useful! You
can then use these variables’ values in conjunction with normal commands as if they were
command parameters.

http://technet24.ir/

Writing Scripts 475

c09.indd 03/27/2015 Page 475

Be careful when creating new variable names. It is best to use either all
lowercase names or mixed-case names. Remember that most environment
variable names are all uppercase letters. If you use all uppercase variable
names in your scripts, you may accidently reset an environment variable!
This could have serious consequences.

To demonstrate setting variables in a script, the mkuser.sh shell script shown earlier has
been modifi ed. The fi rst modifi cation was to remove the account creation commands for
the $2 positional parameter, since they are not needed here. A few additional echo com-
mands were added to make the displayed output easier to read. Another modifi cation was
to create a user-defi ned variable, Username, and set it to the $1 parameter’s value. Here is
the mkuser.sh after it was modifi ed:

$ cat mkuser.sh

#!/bin/bash

#

Create user accounts & their passwords

###

#

Set variables

#

Username=$1

#

Create user account

echo

echo Account for $Username is being created...

echo

#

useradd $Username

#

Set user account password

#

echo Password for $Username is being set...

echo

#

passwd $Username

#

Display account record

#

User_Record=$(grep $Username /etc/passwd)

#

http://technet24.ir/

476 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 476

echo

echo Here is $Username\'s record\:

echo $User_Record

echo

#

echo Account is ready for use.

#

##

$

There is another modifi cation that you may have noticed in the mkuser.sh script. This
modifi cation is rather interesting. A variable, User_Record, was set to the results of a grep
command. You can capture a command’s results by placing the command between two
parentheses and preceding it with a dollar sign. Thus when the grep $Username /etc
/password command executes, instead of its output going to the display (STDOUT), it is
redirected to the User_Record variable! This method of storing a command’s results in a
variable is sometimes called “command substitution.”

There is an older method for storing a command’s results in a vari-
able using back-tick (`) characters. Back-tick characters are not single
quotes ('). The back-tick key is typically shared with the tilde (~) char-
acter on your keyboard. To use them for storing a command’s results,
you replace the parentheses with back-ticks and remove the dollar
sign. Therefore, the line in the mkdir.sh script would look like this
instead:

User_Record=`grep $Username /etc/passwd`

Using back-ticks has fallen out of favor. They are hard to see and often con-
fused with single quotes. It’s preferable to use the $(command) for storing
command results in a variable.

To show you how these variables perform within the modifi ed mkuser.sh script, the
script is run here:

$ sudo ./mkuser.sh Jayne

Account for Jayne is being created...

Password for Jayne is being set...

Changing password for user Jayne.

New password:

Retype new password:

http://technet24.ir/

Writing Scripts 477

c09.indd 03/27/2015 Page 477

passwd: all authentication tokens updated successfully.

Here is Jayne's record:

Jayne:x:509:512::/home/Jayne:/bin/bash

Account is ready for use.

$

That works great! The script successfully used two methods of defi ning
variables.

In addition to assigning variables with the assignment operator (=), you can read
variables from standard input using the read command, as in read response_vari-
able, to read input. The script user’s response is stored in the response_variable for
later access as $response_variable. This method of variable assignment is useful for
scripts that must interact with users. For instance, instead of reading the username
from the command line, the mkuser.sh script may be modifi ed to prompt the user for
the username.

Here are the fi rst few lines of the modifi ed mkuser.sh script:

$ cat mkuser.sh

#!/bin/bash

Create user accounts & their passwords

###

#

Obtain variable value

#

echo

echo -e "Please enter username for account: \c"

read Username

#

Create user account

[...]

Instead of using Username=$1, the script employs the use of an echo statement to ask
the user for the username. The read command accepts the user’s input and stores it in the
 variable Username. The rest of the script is unchanged.

Notice that the echo command uses a few special options. The -e option
enables the interpretation of backslash escapes. In other words, it allows
the use of the \c option at the output’s end. The \c option will stop output
from echo. These two options allow the script user to type a response on
the same line as the question.

http://technet24.ir/

478 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 478

Here is the modifi ed mkuser.sh script in action. The only difference is that the script
asks for the username instead of having to pass the username as a parameter. Therefore,
the output has been snipped:

$ sudo ./mkuser.sh

[sudo] password for Christine:

Please enter username for account: Kaylee

Account for Kaylee is being created...

[...]

Here is Kaylee's record:

Kaylee:x:510:513::/home/Kaylee:/bin/bash

Account is ready for use.

$

This mkuser.sh script version works equally as well as the others. By using the various
user-defi ned variable options, you can create scripts to meet any requirements.

Using Environment Variables in Scripts
One special type of variable, the environment variable, was mentioned in the section
“Managing the Shell Environment,” earlier in this chapter. Environment variables are
assigned and accessed just like other shell script variables. The difference is that the script
or command that sets an environment variable uses the export command (in bash). This
makes the variable’s value accessible to subshells. For example, suppose you set an environ-
ment variable in Script_A and Script_A starts Script_B in a manner that creates a sub-
shell. Script_B can use the environment variable too!

Environment variables are often set in shell startup scripts, but the scripts you use can
access them. For instance, your script may call a program that checks for the $DISPLAY
environment variable and abort if it fi nds that this variable isn’t set. Remember, most envi-
ronment variable names are all uppercase, whereas non-environment shell script variables
should all be lowercase or mixed case.

Using variables in shell scripts is handy. However, if a script user forgets to enter data
for the variable, there can be serious consequences. Thankfully, shell-scripting languages
support several constructs that help to avoid these problems, as covered in the upcoming
chapter sections.

Using Conditional Expressions
Scripting languages support several types of conditional expressions. These expressions
enable a script to perform one of several actions contingent upon some condition—typically
the value of a variable.

http://technet24.ir/

Writing Scripts 479

c09.indd 03/27/2015 Page 479

One common command that uses conditional expressions is the if-then statement.
The simplest form of this statement tests only the success or failure of a command, and its
syntax is as follows:

if command

then

 commands

fi

Notice that the syntax keywords consist of if to designate the command (command) to
issue, then to appoint what happens if the command is successful, and fi to designate the
end of the statement. To test this statement out, the testit.sh script was created:

$ cat testit.sh

#!/bin/bash

#

Testing if statements

########################

#

if date

then

 echo "It worked"

fi

#

$

In the testit.sh script, the date command is issued. If it works correctly, the code in
the then section is run. Here is this script in action:

$ chmod u+x testit.sh

$

$./testit.sh

Sat Oct 25 16:36:43 EDT 2015

It worked

$

You can also add an else section to your if-then statement. This will allow commands
to be executed, if the command is not successful. The testit.sh script has been modifi ed
to include an else section as well as an incorrect date command:

$ cat testit.sh

#!/bin/bash

#

Testing if statements

########################

#

http://technet24.ir/

480 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 480

if dte

then

 echo "It worked"

else

 echo "It did not work"

fi

#

$

$

$./testit.sh

./testit.sh: line 6: dte: command not found

It did not work

$

When this version of testit.sh ran, the else section was triggered because there is no
dte command. If there were a dte command, the then section of the if-then-else state-
ment would have been triggered.

This very basic if-then-else statement syntax has limited use. Where it really becomes
valuable is when you can test a variable’s value. Before looking at testing a variable in an
if-then-else statement, you need to learn about the test command. The syntax for this
command is fairly simple:

test condition

If the condition (condition) listed in the test command evaluates to true, the test com-
mand exits with a zero status code. If the condition evaluates to false, the test command
exits with a nonzero status code. Here is the testit.sh script again, this time modifi ed to
try out the test command:

$ cat testit.sh

#!/bin/bash

#

Testing if statements

########################

#

Set variable's value

#

My_Variable="Hello World"

#

Test variable's value

#

if test "$My_Variable"

then

 echo $My_Variable

else

http://technet24.ir/

Writing Scripts 481

c09.indd 03/27/2015 Page 481

 echo "Nothing to show"

fi

#

$./testit.sh

Hello World

$

In the preceding script example, the test command determines if the variable My_
Variable has any content. Since it does, when the script is executed, the echo command in
the then section is executed.

Now if the My_Variable is set to null in the script, as you would expect, the test com-
mand results trigger the else section:

$ cat testit.sh

#!/bin/bash

#

Testing if statements

########################

#

Set variable's value

#

My_Variable=""

[...]

$

$./testit.sh

Nothing to show

$

There is an alternative way to defi ne the test condition without using the test command.
The syntax in an if-then-else statement is as follows:

if [condition]

then

 commands

else

 other commands

fi

The condition represented by [condition] is more commonly known as the test con-
dition, and it replaces the test command in comparison syntax. Both the test condition
and the test command can evaluate three condition types:

 ■ Numeric comparisons

 ■ String comparisons and tests

 ■ File comparisons and tests

http://technet24.ir/

482 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 482

Each comparison uses its own comparison syntax. For example, to test if two numbers
are equal, the number comparison uses the -eq comparison syntax. To test if two strings
are equivalent, the string comparison uses the = comparison syntax.

For variables that will be used to store integers, you should use the
declare command as follows: declare -i variable. If you do not include
a declaration in your shell script, when you do integer test comparisons,
the results may not be what you intended!

You can also test a variable’s contents without a comparison. For example, to test if a
string has a length of zero, use the -z syntax. To test if a fi le exits, use the -f syntax. To see
a complete listing of the various available comparisons, tests, and their syntaxes, type man
test at the command line.

By modifying the mkuser.sh script, you can test the user’s input. The useradd command
would throw an error if used without giving it a username. To avoid this error, the variable
Username is tested to ensure that it is not zero length. The if statement uses a test condition
–z, which tests for a variable of zero length. This ensures that the variable Username con-
tains a value before attempting the useradd command.

Here is a segment of the modifi ed script:

$ cat mkuser.sh

#!/bin/bash

#

[...]

Test variable for content

#

if [-z $Username]

then

 echo

 echo You did not provide a username

 echo Leaving script...

 exit

fi

#

Create user account

[...]

$

Now the modifi ed script can be tested. Instead of a username being entered at the
prompt, only the Enter key is pressed:

$ sudo ./mkuser.sh

[sudo] password for Christine:

http://technet24.ir/

Writing Scripts 483

c09.indd 03/27/2015 Page 483

Please enter username for account:

You did not provide a username

Leaving script...

$

In the script’s execution, a username was not entered and this meant that the Username
variable was zero length. Thus, the if-then test condition triggered the then section’s
 commands, and the script was exited. Zero-length variables can cause many problems in
your scripts! It is a good idea to check for them always.

The test condition syntax [condition] must have a space after the first
bracket ([) and before the closing bracket (]). If you leave out the space,
your if statements will generate an error.

Test conditions may be combined with the logical “and” (&&) or logical “or” (||) opera-
tors. When conditionals are combined with &&, both sides of the operator must be true for
the condition as a whole to be true. When || is used, if either side of the operator is true,
the condition as a whole is true. You will see an example of using these combined test con-
ditions in the next section, “Using Loops.”

If a variable can have two or more values, you can use nested if statements to test for
these conditions. The general syntax is as follows:

if [condition1]

then

commands

elif [condition2]

then

more commands

fi

Notice that instead of an else keyword, the elif keyword is used. This syntax is
useful should you need to check for a couple of values. However, this can get awkward very
quickly if you need to check for more than just a couple of values. A cleaner approach is to
use the case statement:

case word in

 pattern1)

command(s)

 ;;

pattern2)

command(s)

 ;;

http://technet24.ir/

484 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 484

pattern3)

command(s)

 ;;

…

esac

For a case statement, word is likely to be a variable and each instance of pattern is a
possible value of that variable. The patterns can be expanded much like fi lenames, using the
same wildcards and expansion rules (* to stand for any string, for instance). You can match
an arbitrary number of patterns in this way. Each set of commands must end with a double
semicolon (;;), and the case statement as a whole ends in the string esac (case backward).

The case statement can be made more compact if needed. For example,
the pattern, commands, and ending double semicolon can all be on the
same line, as follows:

pattern1) command(s) ;;

This reduces the script’s readability. However, this compacted syntax is
there if you need it.

The mkuser.sh can be modifi ed to include a simple case statement. Here are the
mkuser.sh script’s modifi ed sections:

$ cat mkuser.sh

#!/bin/bash

[...]

echo -e "Please enter username for account or type Exit: \c"

read Username

#

Test variable for content

#

if [-z $Username]

[...]

#

case $Username in

 Exit)

 echo Leaving script...

 exit

 ;;

 *)

 echo

 echo Account for $Username is being created...

http://technet24.ir/

Writing Scripts 485

c09.indd 03/27/2015 Page 485

 ;;

esac

#

Create user account

[...]

$

In this modifi cation, the user can enter either a username to be created or Exit to leave
the script. The case statement checks for Exit, and if it’s found, the commands in the Exit
section are executed. Anything else entered is assumed to be a username, and the script
continues.

Upon execution, bash executes the commands associated with the fi rst pattern to match
the variable’s contents. Execution then jumps to the line following the esac statement; any
intervening commands don’t execute. If no patterns match the word, no code within the
case statement executes.

To see how this works, the modifi ed mkuser.sh script is run. The script user enters Exit
instead of a username:

$ sudo ./mkuser.sh

[sudo] password for Christine:

Please enter username for account or type Exit: Exit

Leaving script...

$

This works as expected. A case statement is very handy for handling multiple variable
values—for example, if all of your system’s usernames needed to have mixed case and num-
bers at their end. In the mkuser.sh script, you could test for proper usernames and then run
the results through a case statement, letting the script user know what username problems
(if any) exist.

Using Loops
Conditional expressions are sometimes used in loops. Loops are structures that tell the
script to perform the same task repeatedly until some condition is met (or until some
condition is no longer met). The performed task is typically a command or series of
commands.

There are three primary loop types that you can use in a shell script. Two of the loop
types are based on a test condition, while the other loop type executes its task(s) for a cer-
tain number of list items. The loop types and their conditions are as follows:

 ■ while condition tests true

 ■ until condition tests true

 ■ for items in list

http://technet24.ir/

486 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 486

Each loop type is useful for various purposes. When designing a script that requires a
loop, you need to spend time thinking through which loop type will serve your require-
ments best.

Looking at while loops
The while loop’s commands execute while its test condition returns a true. The basic form
of this loop type goes like this:

while [condition]

do

 commands

done

To show an example of the while loop, the mkuser.sh script has been modifi ed. The
loop allows for the removal of several previously needed tests. Here is a snipped listing of
the modifi ed script:

$ cat mkuser.sh

#!/bin/bash

#

Create user accounts & their passwords

###

#

Obtain variable value

#

echo

echo -e "Please enter username for account or type Exit: \c"

read Username

#

while [$Username != "Exit"]

do

 # Create user account ###

 #

 useradd $Username

 #

 # Set user account password ###

[...]

 #

 echo Account is ready for use.

done

#

echo Leaving script...

http://technet24.ir/

Writing Scripts 487

c09.indd 03/27/2015 Page 487

exit

#

##

$

The commands within the while loop, listed between the do and done construct, will
execute as long as the Username variable is not set to Exit. This will allow multiple users to
be added while running the script. First the exit feature is tested:

$ sudo ./mkuser.sh

[sudo] password for Christine:

Please enter username for account or type Exit: Exit

Leaving script...

$

The script’s exit feature works perfectly. Once the Username variable was set to Exit,
the while loop returned a false. This test condition result caused none of the commands
between do and done to run. Remember that the while loop’s commands will execute only
if its test condition returns a true.

Now the modifi ed script is tested for when no username is entered:

$ sudo ./mkuser.sh

[sudo] password for Christine:

Please enter username for account or type Exit:

./mkuser.sh: line 12: [: !=: unary operator expected

Leaving script...

$

There’s a problem! This test condition threw an error: unary operator expected. This
is due to the Username variable now being set to nothing (null). When the shell interprets
this test condition, instead of seeing the "" != "Exit" condition, it sees the != "Exit" test
condition. It appears to the shell that the variable is missing.

There is an easy fi x for this problem. Just encase the variable name in double quotation
marks as follows:

while ["$Username" != "Exit"]

Now the shell will see "" != "Exit" if the variable Username is set to null. This fi x will
keep the test condition from generating an error.

There is another solution to the problem, if you know this script will run in
the bash shell. You can use double brackets to enclose a test condition
[[condition]] that might test an empty variable.

http://technet24.ir/

488 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 488

One issue still exists—your script should exit if it encounters a Username variable set to
null. This can be handled a couple of different ways. One way is use an if-then statement
as discussed earlier in the chapter. However, since while loops are now being discussed,
here is a solution using a modifi ed while loop test condition:

while ["$Username" != "Exit"] && ["$Username" != ""]

Using a compound test condition allows the shell to test both for the Username variable
not being equal to Exit and for the Username variable not being equal to null. If
both test conditions are true, then the commands in the while loop’s do and done sections
will execute.

Looking at until loops
An until loop takes a slightly different approach. An until loop’s commands execute until
its test condition returns a true. The basic form of this loop type is as follows:

until [condition]

do

 commands

done

It looks almost identical to the while loop. It takes only a few modifi cations to a single
script line to make the mkuser.sh script use an until loop instead of a while loop. The
while loop test condition currently looks like this:

while ["$Username" != "Exit"] && ["$Username" != ""]

To change this to an until loop, the script line is modifi ed to appear as follows:

until ["$Username" = "Exit"] || ["$Username" = ""]

Now the statement says to execute the commands in the do and done construct until the
variable Username equals Exit or the variable Username equals null.

As you can see, there are fairly subtle differences between a while loop and an until
loop. However, those differences can signifi cantly impact your script if test conditions are
not written correctly.

A handy tool to use with until or while loops is the shift command. Positional param-
eters in shell scripts were covered earlier in the chapter. One of the great ways to use these
parameters is by incorporating the use of the shift command.

With the shift command, you do not need to know the total number of positional
parameters passed to the script. The shift command removes the value of the $1 parameter,
moves the $2 parameter’s value into $1, moves the $3 parameter’s value into $2, and so on.

When shift has passed the last parameter, the $1 variable becomes null. Using a loop to
test for $1 being set to null and incorporating the shift command into the loop’s do/done
construct allows for clean handling of passed parameters.

http://technet24.ir/

Writing Scripts 489

c09.indd 03/27/2015 Page 489

The mkuser.sh script has been modifi ed to use shift within its until loop. Here is the
snipped script with the changes highlighted:

$ cat mkuser.sh

#!/bin/bash

#

Create user accounts & their passwords

###

#

Obtain variable value

#

Username=$1

#

until ["$Username" = ""]

do

[...]

 # Grab next Username

 #

 shift

 Username=$1

 #

done

#

echo Leaving script...

exit

#

##

$

The Username variable is initially set to the positional $1 parameter’s value before the
until loop. The until loop’s test condition checks to see if Username’s variable value is
null. If the test returns a false, the commands between do and done are run. Close to the
end of the do/done commands is the shift command. The shift command removes the
value of the $1 parameter and shifts the positional parameters’ values as described earlier.
Notice that the Username variable must be set again to $1’s value, after the shift com-
mand, because the $1 variable’s value has changed. The loop will continue until a null value
is shifted into the $1 parameter.

To help you understand a little better how this works, the modifi ed mkuser.sh script is
shown in action here. Notice that four parameters are passed to the script:

$ sudo ./mkuser.sh Wash Zoe Simon Shepherd

[sudo] password for Christine:

http://technet24.ir/

490 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 490

[...]

Here is Wash's record:

Wash:x:511:514::/home/Wash:/bin/bash

[...]

Here is Zoe's record:

Zoe:x:512:515::/home/Zoe:/bin/bash

[...]

Here is Simon's record:

Simon:x:513:516::/home/Simon:/bin/bash

[...]

Here is Shepherd's record:

Shepherd:x:514:517::/home/Shepherd:/bin/bash

Account is ready for use.

Leaving script...

$

That works great! Now you can simply pass the usernames who need accounts to the
script, which will greatly speed up the account creation process.

Looking at for loops
A for loop is rather different in its operation compared to while and until loops. The for
loop does not test any conditions, but instead executes its commands for a certain number
of list items. The basic syntax of the for loop is as follows:

for variable in list

do

 commands

done

When the for loop starts, variable (variable) is assigned the fi rst item in the list’s (list)
value. The commands in the do/done construct are executed one time. The variable is then
assigned the second list item’s value, and the commands in the do/done construct are exe-
cuted one time again. This continues until each list item’s value has been assigned to
the variable.

A simple example of a for loop is shown in the showforloop.sh script here:

$ cat showforloop.sh

#!/bin/bash

#

Demonstrate a for loop

http://technet24.ir/

Writing Scripts 491

c09.indd 03/27/2015 Page 491

########################

#

for Number in 1 2 3

do

 echo $Number

done

#

$

This script’s for loop will process the commands in the do/done construct section for each
list item. In this case, the list items are the numbers 1, 2, and 3. Here is the script in action:

$ chmod u+x showforloop.sh

$

$./showforloop.sh

1

2

3

$

You can see that the script assigns each item in the list to the variable Number. It then
executes the command in the do/done construct. Because the command is echo $Number,
the script’s output shows the variable’s value upon each iteration of the for loop.

Notice that all three loop types use the do/done construct to surround the
commands that are executed within the loop.

What is handy about the for loop is that you do not have to use numbers in your list.
You can also use words, as shown here:

$ cat showforloop.sh

#!/bin/bash

#

Demonstrate a for loop

########################

#

for Pet in Cat Dog Bird

do

 echo $Pet

done

#

$

http://technet24.ir/

492 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 492

$./showforloop.sh

Cat

Dog

Bird

$

The seq command is another handy command to use with the for loop. It’s great if you
need a large amount of numbers in your list. Instead of typing in all the numbers, you can
use the seq command. Its basic syntax is as follows:

seq BeginningNumber IncrementAmount EndingNumber

You don’t have to include all of the parameters in the command. By default,
BeginningNumber is assumed to be one (1), and the IncrementAmmount defaults to one (1).
For instance, if you type seq 10, a list of numbers 1 through 10 is generated. Here are a
few seq examples:

$ seq 3

1

2

3

$ seq 2 4

2

3

4

$ seq 2 2 4

2

4

$

Using the showforloop.sh script, the for loop is modifi ed to use a seq command as
shown here:

$ cat showforloop.sh

#!/bin/bash

#

Demonstrate a for loop

########################

#

for Number in $(seq 2 2 100)

do

 echo $Number

done

#

$

http://technet24.ir/

Writing Scripts 493

c09.indd 03/27/2015 Page 493

The seq command’s results must be used in the for loop’s list. Therefore, the seq com-
mand is encased in $(). Once the seq command’s results are captured in the list, the for
loop will iterate starting with the Number variable at 2. The Number variable will be incre-
mented by 2 each time the loop iterates. The for loop will stop after the Number variable
has been assigned 100, as a snipped output shows here:

$./showforloop.sh

2

4

6

[...]

98

100

$

Using loops and commands like seq allow a script’s size to be reduced. Another con-
struct that can reduce the number of shell script lines is a command list, which happens to
be covered in the next section.

Using Lists
You can chain together commands using various list operators. This is called a list or a list
of commands. You can use the following operators:

 ■ Semicolon (;)

 ■ Ampersand (&)

 ■ Double ampersand (&&)

 ■ Double vertical line or pipe (||)

You have already seen a few command list examples, such as this one used near the
chapter’s beginning:

$ HOSTNAME=carson.example.com ; export HOSTNAME

In the previous example, both the HOSTNAME variable setting and the export command
are executed, but sequentially. In other words, when the HOSTNAME variable setting com-
pletes, then the export command executes. Another example that has output better demon-
strates this order:

$ date ; pwd

Tue Oct 28 14:09:38 EDT 2015

/home/Christine

$

You can see that the date command executes fi rst and displays its STDOUT. When the
date command is complete, then the pwd command executes, also displaying its STDOUT.

http://technet24.ir/

494 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 494

Thus, the semicolon (;) operator allows you to list two or more commands on the same
command line.

You can have your commands run almost simultaneously by using the ampersand (&)
operator. As mentioned in Chapter 2, any command with an ampersand listed after it is sent
to the background to execute. Commands without ampersands are run in the foreground.
Using the previous example, here is what occurs when the ampersand operator is used, send-
ing the date command to the background to execute while pwd executes in the foreground:

$ date & pwd

[1] 3276

/home/Christine

$ Tue Oct 28 14:20:28 EDT 2014

[1]+ Done date

$

Even more powerful is the use of the double ampersand (&&) and double pipe (||)
symbols. With the double ampersand (&&), the second command is executed only if the fi rst
command completes successfully:

$ dte && pwd

-bash: dte: command not found

$

$ date && pwd

Tue Oct 28 14:23:00 EDT 2015

/home/Christine

$

In the fi rst command list shown in the previous example, an incorrect date command
was mistyped as dte. Thus, it failed and therefore the second command, pwd, was not
executed. However, in the second attempt, the correct command name, date, was entered.
It ran successfully and allowed pwd to execute.

With the double pipe (||) operator, the second command will be executed only if the fi rst
command does not execute successfully. Using the date and pwd command example again,
but with a double pipe operator, this time you can see that the pwd command executes only
when the fi rst command does not work properly:

$ dte || pwd

-bash: dte: command not found

/home/Christine

$

$ date || pwd

Tue Oct 28 14:28:00 EDT 2014

$

http://technet24.ir/

Writing Scripts 495

c09.indd 03/27/2015 Page 495

The value of lists within a script is that you can streamline functionality. Going back to
the mkuser.sh script, if a user did not have appropriate privileges to run the script, several
errors would display. This is sloppy, as shown here:

$./mkuser.sh Saffron

./mkuser.sh: line 14: /usr/sbin/useradd: Permission denied

Password for Saffron is being set...

passwd: Only root can specify a user name.

Here is Saffron's record:

Account is ready for use.

Leaving script...

$

You can fi x this by using a list with the useradd command. The required modifi cation
appears as follows:

useradd $Username || break

Besides useradd, there is an additional command added to the command list, break.
If the useradd command does not work successfully, then the double pipe operator will
trigger the break command, causing the while loop to terminate. This makes for a much
cleaner-looking script execution when problems occur, as shown here:

$./mkuser.sh Saffron

./mkuser.sh: line 14: /usr/sbin/useradd: Permission denied

Leaving script...

$

That’s much better! Now if an error occurs, the script displays the error message and
exits immediately.

Using Functions
A function is a part of a script that performs a specifi c subtask and can be called by name
from other parts of the script. Functions are defi ned by placing a set of parentheses ()
after the function name and enclosing the lines that make up the function within curly
braces {}:

function_name() {

 commands

}

http://technet24.ir/

496 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 496

The keyword function may optionally precede the function name. In either
event, the function is called by name as if it were an ordinary internal or
external command.

Functions are very useful in helping to create modular scripts. Going back to the
mkuser.sh script, we can put together a function that can be used throughout the
script:

Function Declarations

#

err_function() {

 echo "An error has occurred!"

 echo "Exiting script immediately..."

 exit

}

This new function will help with the useradd command list. The original list looked
like this:

useradd $Username || break

With the declared err_function function, the command list can look like the
following:

useradd $Username || err_function

If the useradd command does not complete successfully, the err_function will be
called. This allows for a great deal more fl exibility in a shell script.

Functions aren’t run directly and in the order in which they appear in the
script. They’re run only when called in the main body of the script.

To show the function in action, the mkuser.sh script will be run without enough
 privileges, as shown here:

$./mkuser.sh Saffron

./mkuser.sh: line 21: /usr/sbin/useradd: Permission denied

An error has occurred!

Exiting script immediately...

$

That works great. You can now add all kinds of additional features, such as sending
an email to the system administrator about this attempt and/or logging the attempt in the
journal or a log fi le.

Shell scripts are useful tools, and creating them requires practice. Exercise 9.2 begins
your exploration of shell scripts, but in the long run you’ll need to learn to design your own
shell scripts by doing more than copying examples from this book!

http://technet24.ir/

Managing Email 497

c09.indd 03/27/2015 Page 497

E X E R C I S E 9 . 2

Creating a Simple Script

This exercise presents a shell script that gives you the option of using less to read every

text fi le (with a name ending in .txt) in the current directory. To begin with this script,

follow these steps:

1. Log into the Linux system as a normal user.

2. Launch a terminal emulator from the desktop environment’s menu system if you

used a GUI login method.

3. Start an editor, and tell it to edit a fi le called testscript.sh.

4. Type the following lines into the editor:

#!/bin/bash

for file in $(ls *.txt)

do

 echo -n "Display $file? "

 read answer

 if [$answer == 'y']

 then

 less $file

 fi

done

Make sure you’ve typed every character correctly—any mistake may cause the script

to misbehave.

5. Save the fi le, and exit the editor.

6. Type chmod u+x testscript.sh to add the executable bit to the fi le’s permissions.

7. Type ./testscript.sh to run the script. If there are no text (*.txt) fi les in your current

directory, the script displays a no such file or directory error message, but if any

text fi les are present, the script gives you the option of viewing each one in turn via less.

This simple example script illustrates several important script features, such as variable

assignment and use, for loops, and if-then conditional expressions.

Managing Email

Email is an important network service. Linux relies on email even in a completely non-net-
worked environment. Certain Linux subsystems, such as cron (described in Chapter 7), may
use email to notify you of activities. For this reason, most Linux distributions ship with email

http://technet24.ir/

498 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 498

server software installed and confi gured for basic activities. You should understand the basics
of email and be able to identify the specifi c email server package your system is running.

Understanding Email
Several protocols exist to manage email. The most common of these is the Simple Mail Transfer
Protocol (SMTP), which is designed as a push mail protocol, meaning that the sending system
initiates the transfer. This design is good for sending data, so SMTP is used through most of a
mail delivery system. The fi nal stage, though, often employs a pull mail protocol, such as the Post
Offi ce Protocol (POP) or the Internet Message Access Protocol (IMAP). With these protocols,
the receiving system initiates the transfer. This is useful when the receiving system is an end user’s
workstation, which may not be powered on at all times or able to receive incoming connections.

SMTP was designed to enable a message to be relayed through an arbitrary number of
computers. For instance, an end user may compose a message, which is sent to the local
SMTP server. SMTP servers are also known as Mail Transfer Agents (MTAs). The MTA
looks up a recipient system and sends the message to that computer. This system may use
its own internal routing table to redirect the message to another local computer from which
the message may be read, either directly or via a POP or IMAP server. These servers are
also known as Mail User Agents (MUAs).

The basic steps for the creation, transfer, and delivery of email are as follows:

1. A user creates an email message using an email client, called a Mail User Agent (MUA).

2. The MUA gives the email to a Mail Submission Agent (MSA).

3. The MSA then hands off the email to a Mail Transfer Agent (MTA).

4. The MTA is responsible for transferring the email to the Mail Delivery Agent (MDA).

5. The Mail Delivery Agent handles delivering the email to the Mail User Agent (MUA).

6. The recipient user then reads the email message via the MUA.

This arrangement is illustrated in Figure 9.1. Bear in mind that the number of links in
this chain is variable and depends on how each system is confi gured. In the simplest case,
local email stays on just one system. In theory, an arbitrarily large number of computers
can be involved in an email exchange.

MTA can function as both a server (receiving mail from other systems) and a client
(sending mail to other systems). Therefore, you must deal with both sides of the confi gura-
tion equation. The primary focus in this chapter will be on email’s MTA.

Choosing Email Software
Linux supports quite a few email MTA servers. Most likely, one of the major servers will
be installed on your system by default. If not, and if you want to install one, you’ll have to
pick one. You may also want to change your email server if you need a more advanced
confi guration. Four email MTA servers are popular on Linux:

Sendmail The sendmail program (www.sendmail.org) was for many years the dominant
email server package on the Internet. It has lost some of its dominance to other servers.

http://technet24.ir/

Managing Email 499

c09.indd 03/27/2015 Page 499

Nonetheless, sendmail remains a popular server. It’s very powerful, but it can be hard to
confi gure because its confi guration fi le formats are rather diffi cult.

F I GU R E 9 .1 Basic email transfer

User creates email
using MUA

User sends email
using MSA

User reads email
using MUA

User receives email
using MDA

Email is transferred
using MTA

Postfix Postfi x (www.postfix.org) was designed as a modular replacement for sendmail.
While sendmail uses a single program that does everything, Postfi x uses multiple programs,
each of which handles its own specifi c small task. This design improves security—at least
in theory. Postfi x tends to be easier to confi gure than sendmail, and it’s become the default
email server on many Linux distributions.

Exim Although Exim (www.exim.org) is a huge server like sendmail, it has a much simpler
confi guration fi le format and so is easier to confi gure. A few Linux distributions use Exim
as the default email server.

Qmail The fourth major Linux email server, qmail (www.qmail.org), is a modular server
with security as a major design goal. Like Postfi x and Exim, qmail is easier to confi gure than
sendmail. It’s not often the standard email server in Linux distributions because its license is a
bit strange and complicates qmail distribution with Linux. However, many system administra-
tors like qmail enough that they replace their distributions’ standard email servers with qmail.

These email service packages may also provide additional services
besides MTA. For example, they may also provide MSA services.

You have several ways to learn which email MTA server your Linux distribution runs.
The two most reliable are to use ps (described in Chapter 2, “Managing Software”) to
look for running processes or to use your package management tools (also described in
Chapter 2) to see which package is installed. In either case, you may need to check for
each of the programs in turn. For example, you might see results like these:

$ ps ax | grep sendmail

31129 pts/2 R+ 0:00 grep sendmail

http://technet24.ir/

500 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 500

$ ps ax | grep postfix

 7778 ? Ss 0:45 /usr/lib/postfix/master

31132 pts/2 S+ 0:00 grep post

The search for a process containing the string sendmail failed, but the search for post-
fix returned a process called /usr/lib/postfix/master. Thus, it appears that Postfi x is
running on this system.

Keep in mind that your distribution may not have an email MTA server
installed by default. In that case, if you desire to work with one, you will
need to choose a server from the list presented earlier and install it using
your Linux distribution’s package management tools (see Chapter 2).

You can also look for executable fi les for each email MTA server in /usr/bin or /usr/
sbin. Be aware that many Linux email servers include a program called sendmail. This
program is not the sendmail program discussed earlier, but instead an interface to other
email servers. This is done for compatibility reasons, because the original sendmail pro-
gram was in many distributions. Also, it provided a compatible interface for scripts and
administrators’ helps for other email servers. This program is one of the sendmail emula-
tion layer commands.

Working with Email
Along with understanding which email MTA server your system has or which one you
desire to install, you also need to know how to complete a few common administrative
tasks. These tasks involve sending and receiving mail using the mail utility, email queue
management, confi guring aliases, and forwarding email.

Sending and Receiving Email
Linux supports a wide variety of email clients, some of which were mentioned earlier in
“Choosing Email Software.” Chances are that you’ll use a full-fl edged email client for your
personal email. However, you should also know how to use the command-line—based mail
program. This tool is a very basic command-line email utility. It has the advantage of being
usable from a script. Therefore, you can write a script to handle some email tasks automati-
cally, and perhaps even run that script automatically.

The mail program is intended to be used on the command-line to send or receive
messages. The basic syntax for mail, including its most useful options for sending email, is
as follows:

mail [-v] [-s subject] [-c cc-address] [-b bcc-address] to-address

The basic syntax for receiving email is as follows:

mail [-v] [-f [name] | -u user]

http://technet24.ir/

Managing Email 501

c09.indd 03/27/2015 Page 501

Unlike most email readers, the mail command supports reading only the
local email queue, not email stored on remote servers and read via the
POP or IMAP protocols.

You can achieve various goals with the options to mail:

Use Verbose Operation As with many commands, the -v option produces more verbose
output. This may be helpful if you need to debug problems.

Specify a Subject Line The -s subject option enables you to specify a subject line.

Set a Carbon Copy Address You can send a message to multiple people by using the -c
cc-address and -b bcc-address options. These options vary in that the -b option produces
a “blind” copy, meaning the recipient’s address doesn’t appear in the address list. This is
useful if you want to send a copy of an email discreetly to somebody, but some spam fi lters
may delete such emails.

Set the Recipient’s Address The main recipient’s email address is required and terminates
the mail command’s line for an outgoing email.

Read Email To read your email, optionally pass the -f option to the program followed by
the name of the mail spool fi le. Alternatively, you can use the -u user option to read the
mail of the specifi ed user.

This list of options is incomplete, but it includes the most important features. You
should consult the man page for mail to learn about more unusual options.

If you want to try out these mail commands but your Linux system does
not have a working email MTA server and you do not want to (or cannot
because you are not the administrator) set up an email server, try an older
distribution. Old Fedora distributions, such as Fedora 13, often have
sendmail already configured. If you have an old computer lying around,
you can install the older distribution there, or install it within free
 virtualization software, such as VMPlayer or VirtualBox.

As an example of mail in action, consider the task of sending a quick email message.
Here’s an example of a test email:

$ mail -s "Test email" Christine

This is a test email.

EOT

$

After you type the mail command, the program waits for input via standard input, but
there’s no prompt. You signal the end of the message by pressing Ctrl+D. This example
shows a simple one-line message. After you press Ctrl+D, the program displays EOT, which
stands for End of Transmission, and the message is on its way.

http://technet24.ir/

502 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 502

To use mail in a script, you can use input redirection to pass it the contents of a fi le to
be mailed:

mail -s "Automated alert!" < /tmp/alert.txt john

This line, if included in a script, sends the contents of the /tmp/alert.txt fi le to the user
john with the "Automated alert!" subject line.

You can use mail to read incoming email too, but only if it’s stored on a local Linux
mail spool. In this case, you’ll normally use mail interactively. Type mail, and you’ll see
the contents of your mail spool. Each message has a summary line that lists the sender,
date, and subject, among other things:

0046 sally@luna.edu Sun Jan 13 18:27 116/4262 Priorities

This is message number 46, it’s from sally@luna.edu, it arrived on January 13 at
18:27 (6:27 p.m.), it has 116 lines and 4262 bytes (including headers), and its subject is
Priorities.

To read a message, type its number. You can then delete the message by typing d or reply
to it by typing r.

As a practical matter, most people prefer to use more sophisticated email readers for
their day-to-day mail reading. You’ll probably fi nd mail more useful for the scripted send-
ing of email than for reading email or sending personal email.

On Linux, email is tied intricately to user accounts. The mail server holds incoming
messages for each user, typically in a fi le in the /var/spool/mail/ directory. For instance,
the fi le that holds the mail for the user john is the /var/spool/mail/john fi le. Some email
servers store incoming mail in users’ home directories, such as ~/Maildir. This incoming
mail fi le or directory is referred to as the user’s mail spool.

You may recall that the userdel command, described in Chapter 7,
includes options related to handling users’ mail spools. If you delete a
user account but leave the user’s mail spool intact, the mail can still be
accessed. If the mail server software stores mail in /var/spool/mail,
leftover mail spools can cause problems if you eventually reuse an old
username.

Checking the Email Queue
An email server manages a queue of email messages that it must deliver. The email server
sends email messages to another computer or stores them in local users’ mail spools.
Various problems can lead to a temporary or permanent inability to deliver messages.
When a problem seems to be temporary, such as a network routing failure, the email server
must store the message and try to deliver it again later. Thus, a Linux server’s email queue
may contain undelivered messages. Knowing how to identify these messages and manage
the queue can help you keep your email subsystem working smoothly.

The mailq program is the main tool to help in email queue management. This program
was originally part of the sendmail package, but Postfi x, Exim, qmail, and other Linux

http://technet24.ir/

Managing Email 503

c09.indd 03/27/2015 Page 503

MTA servers have all implemented compatible commands. Unfortunately, command
options differ between implementations. The basic command, without any options, shows
the contents of the email queue on all systems:

$ mailq

-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------

5B42F963F* 440 Fri Jan 18 13:58:19 sally@example.com

 benf@luna.edu

-- 0 Kbytes in 1 Request.

This example, taken from a system running Postfi x, shows one message in the queue
along with relevant identifying information. The exact display format varies from one MTA
server to another. In most cases, typing mailq is equivalent to typing sendmail -bp.

If your system uses a different MTA than sendmail, often the sendmail
-bp command will still work. This command is often implemented as a
sendmail emulation layer command. You can see all the various sendmail
emulation layer commands available on your system by typing man send-
mail at the command-line.

If a network connection or upstream email server goes down temporarily, email
messages can pile up in the queue. Your MTA server will ordinarily attempt redelivery at a
later date. However, if you want to clear the queue, you can do so. Typing sendmail -q
will do the job with most MTA servers. Some have other equivalent commands, such as
postqueue in Postfi x or runq in Exim.

All email servers offer a wide variety of advanced options to prioritize email delivery,
accept messages on the command line, debug email connections, and so on. Unfortunately,
commands and procedures to use these features vary from one email server to another. You
should therefore consult your server’s documentation to learn how to use these features.

Redirecting Email
Email aliases enable one address to stand in for another one. For instance, all email
servers are supposed to maintain an account called postmaster. Somebody who’s respon-
sible for maintaining the system should read email to this account. One way to do this is
to set up an alias linking the postmaster name to the name of a real account. You can do
this by editing the aliases fi le, which usually resides in /etc or sometimes in /etc/mail.

The aliases fi le format is fairly straightforward. Comment lines begin with hash marks
(#), and other lines take the following form:

name: address1[,address2[,...]]

The name parameter that leads the line is a local name, such as postmaster. Each
address (address1, address2, and so on) can be one of the following:

 ■ A local account name to which the messages are forwarded

 ■ A local file name in which messages are stored (denoted by a leading slash)

http://technet24.ir/

504 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 504

 ■ A command through which messages are piped (denoted by a leading vertical bar character)

 ■ A file name whose contents are treated as a series of addresses (denoted by a leading
:include: string) or a full email address (such as fred@example.com)

A typical default confi guration includes a few useful aliases for accounts such as
postmaster. Most such confi gurations map nearly all of these aliases to root. However,
reading mail as root is inadvisable because doing so increases the odds of a security
breach or other problems due to mail reader bugs. Thus, you may want to set up an alias
line as follows:

root: username

This redirects all of root’s mail, including mail directed to root via another alias,
username. The username value is most likely to be a local username or a valid remote email
address. However, it can take any of the forms described earlier.

Some mail servers, including sendmail, Postfi x, and qmail, require you to compile /etc/
aliases into a binary fi le before an alias will take effect. To do so, use the newaliases
command:

newaliases

Exim has a newaliases command for compatibility with sendmail. By default, however,
it doesn’t do anything.

You should always test out an alias after you make modifications to the
alias configuration file. If it doesn’t work, you may have forgotten to run
the newaliases command!

Another approach to redirecting mail is to do so at the user level. In particular, you can
edit the ~/.forward fi le in a user’s home directory to have mail for that user sent to another
address. Specifi cally, the ~/.forward fi le should contain only the new address. This address
can be either a username on the current computer or an entire email address on another
computer.

Forwarding email has the advantage that individual users can employ it. It’s also handy
in situations such as when a user scheduled to be away for several weeks asks another
employee to fi ll in for them.

A drawback of forwarding email is that it can’t be used to set up aliases for nonexis-
tent accounts or for accounts that lack home directories. The ~/.forward fi le can also be
changed or deleted by the account owner, which might not be desirable if you want to
enforce a forwarding rule, which the user shouldn’t be able to override.

Managing Data with SQL

The Structured Query Language (SQL), as its expanded name suggests, is a language
used for retrieving data from a database. In practice, SQL is implemented in several dif-
ferent database products. Thus, you should know a little about the SQL products that are

http://technet24.ir/

Managing Data with SQL 505

c09.indd 03/27/2015 Page 505

available for Linux. With a SQL package installed, you can begin learning about the prin-
ciples of using SQL and move on to actual data storage and retrieval.

Picking a SQL Package
SQL is a language for accessing data, and specifi c SQL packages implement that language.
This distinction is similar to the one between a network protocol (such as SMTP) and the
servers that implement it (such as sendmail, Postfi x, and Exim). In principle, you can use
any SQL package to satisfy your SQL database needs. In practice, specifi c products that
store data using SQL may work better with (or even require) particular packages. The fol-
lowing products are among the common choices in Linux:

MySQL Oracle owns this SQL implementation, which has been released under the GPL.
Most major Linux distributions include MySQL in their package databases. For a complete
installation, you’ll probably need to install multiple packages, such as a client, a server, and
perhaps development tools. You can learn more at www.mysql.com.

PostgreSQL This SQL implementation evolved from the earlier Ingres software (the name
PostgreSQL is a compressed form of post-Ingres SQL). It’s available under the BSD license
and is available as multiple packages in most Linux distributions. As with MySQL, you’ll
most likely have to install a client, a server, and perhaps additional support packages.
PostgreSQL is headquartered at www.postgresql.org.

SQLite This package, based at www.sqlite.org, is a library that implements SQL. As
such, it’s not a stand-alone database; instead, it’s intended to provide programs with a way
to store data using a SQL interface within the program. If you install a program that uses
SQLite, your distribution’s package manager should install the relevant libraries for you. If
you want to write a program that requires database access and you don’t want to install a
complete client-server SQL package such as MySQL, SQLite may be just what you need.

There are dozens more SQL database products for Linux. For the purpose of learning
SQL, MySQL or PostgreSQL should do fi ne. If you have a specifi c purpose in mind for
using SQL, though, you should research SQL packages in more detail. You may need a par-
ticular product for compatibility with other software, or you may need a SQL package that
provides specifi c features.

As just noted, some SQL packages, including MySQL and PostgreSQL, operate on a client-
server model: One program (the server) manages the database, while another (the client) pro-
vides users and programs with access to the database. Such implementations can work over a
network, enabling users at multiple client systems to access a centralized database server.

Understanding SQL Basics
SQL is a tool for accessing databases, and more specifi cally, relational databases. Figure 9.2
illustrates data in a relational database. Each row (sometimes known as a tuple) represents a
single object or other item, and each column (sometimes referred to as an attribute or fi eld)
represents a specifi c feature. The combination of rows and columns is referred to as a table.
Each database may contain multiple tables, and SQL supports multiple databases. Thus, to
access data, you must fi rst select a database and a table, as described in more detail shortly.

http://technet24.ir/

506 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 506

The table data is unordered, at least conceptually. You can impose an order on query
results, as described shortly. For example, you may retrieve data from the database repre-
sented by Figure 9.2 and order the results according to cost (the fi nal column).

A database enables retrieval of information that matches specifi c criteria. You can search
for all of the green objects in Figure 9.2, for instance. You can also insert, delete, and
update information in a table. SQL supports multiple tables, so you can have, for example,
different tables for offi ce property and for employees who work in your offi ce.

F I GU R E 9 . 2 A relational database stores data in a table, with each row representing
one object or item and each column representing specific attributes.

tuples
(rows)

attributes (columns)

lizard green 5 inches soft $10

tree green 10 feet medium $200

pillow white 18 inches soft $5

brick red 8 inches hard $1

banana yellow 8 inches soft $0.10

Columns (attributes) in a database hold specifi c types of data, and swapping them
around makes little sense. For instance, it’s clear that the second column in Figure 9.2 is a
color, whereas the fi nal column is a price or value, expressed in dollars. It wouldn’t make
sense to enter green as a price or $1.00 as a color. The restrictions placed on what may
appear in a column are known as a domain or a data type. The domain for the second
column is a set of color names, whereas the domain for the fi nal column is a numeric value
expressed in dollars. Table 9.3 summarizes some common SQL data types.

Additional data types exist. Table 9.3 is intended to give you a feel for what’s available
and to list some of the data types you’re likely to encounter. Some implementations also sup-
port unique data types. Each of these data types has its own features. For instance, math-
ematic operators can manipulate the numeric data types (INTEGER, DECIMAL, and so on).

Using MySQL
To learn about SQL, you should have access to a SQL database. For purposes of demonstra-
tion, the MySQL package is used as a reference in this discussion. Other SQL implementa-
tions are similar to what is described here, but some details differ. One of these details is
how to start the database. In the case of MySQL, your distribution should include a SysV or
other startup script for the SQL server. This server may also need to be confi gured with its

http://technet24.ir/

Managing Data with SQL 507

c09.indd 03/27/2015 Page 507

own root password. Debian and related distributions will prompt for this when you install
the package, but you may need to set this manually with other distributions.

TA B LE 9 . 3 Common SQL data type

Data Type Name Purpose

INTEGER (aka INT) 4-byte integer value

SMALLINT 2-byte integer value

DECIMAL Precision storage of decimal values

NUMERIC Precision storage of decimal values

FLOAT Floating-point number

DOUBLE PRECISION Floating-point number stored with twice the precision of FLOAT

DATETIME A date and time

DATE A date

TIME A time, in HH:MM:SS format; may be a time of day or a period of time

CHAR One or more characters

VARCHAR A variable number of characters

ENUM An enumerated list, such as small, medium, or large

SET Data that may have zero or more values, as in any of the set of nuts,
sprinkles, fudge, and cherry for ice cream toppings

Starting to Use MySQL
To begin a SQL session, you should fi rst ensure that the server is running, as just described.
You can then start the SQL client. In the case of MySQL, this program is called mysql:

$ mysql

If you’ve just installed MySQL for learning purposes, it may have no databases defi ned.
To learn what’s defi ned, you can use the SHOW DATABASES command:

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

+--------------------+

1 row in set (0.00 sec)

http://technet24.ir/

508 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 508

This example illustrates an important feature of SQL: Commands are
terminated by semicolons (;). There are a few exceptions to this rule,
but if you forget the semicolon, you’re likely to see a new prompt that
reads -> rather than mysql>, at least in MySQL. You can use this fact to
split your commands across multiple lines, if you like. If you forget the
semicolon that terminates a command, you can enter it by itself on the
-> prompt line.

In this example, one database is already defi ned: information_schema. Some installa-
tions defi ne a database called test. If you see such a database, you can probably use it for
your own tests. However, other users may be able to see and modify the test database, so
don’t store important data in it.

SQL commands are conventionally shown in uppercase. However, SQL
commands are case insensitive, so you can type your commands in upper-
case, lowercase, or any mixture of case you like.

Creating Databases and Tables
If no database for testing purposes exists, you can create one with the CREATE DATABASE
command, which takes a database name as an option:

mysql> CREATE DATABASE test;

Query OK, 1 row affected (0.00 sec)

Although SQL commands are case insensitive, database names are not.
Thus, be sure to create the database name using whatever case you intend
to use to refer to it in the future.

If you type SHOW DATABASES, you’ll see the test database in addition to any that
already existed. Regardless of whether test existed when you fi rst started MySQL or it had
to be created, you can begin using it with the USE command:

mysql> USE test;

Within each database, tables must be created and selected for use. The commands to
do so are similar to the commands used to create and select databases. In a newly created
database, no tables exist:

mysql> SHOW TABLES;

Empty set (0.00 sec)

The response Empty set denotes an empty database. To fi ll the database with data, you
must fi rst decide on a table structure—what sort of data you want to record. For instance,

http://technet24.ir/

Managing Data with SQL 509

c09.indd 03/27/2015 Page 509

Figure 9.2 shows various attributes of common objects: their names, colors, sizes, hardness
levels, and values in dollars. To create a table that includes columns for these fi ve attributes,
you use a CREATE TABLE command, passing it various details:

mysql> CREATE TABLE objects (name VARCHAR(30), color VARCHAR(20),

 -> size FLOAT, hardness ENUM('soft','medium','hard'),

 -> value DECIMAL(10,2));

Query OK, 0 rows affected (0.01 sec)

This example creates a table with fi ve columns: name, color, size, hardness, and value.
Each column has an associated data type, as described in Table 9.3. A few points worth
noting about this table defi nition are as follows:

 ■ The name and color columns are both VARCHAR data type (see Table 9.3) examples, but
with different sizes. The name field may be up to 30 characters, whereas color may be
up to 20 characters. If these were defined as CHARs, each name would have to be pre-
cisely 30 characters in size, with each color precisely 20 characters. A limited set
of colors can be specified using an ENUM data type rather than a VARCHAR data type.
Presumably you wouldn’t want to limit object names this way.

 ■ The size column is a FLOAT data type, which is less precise than an integer data type, but
it can hold real (non-integer) numbers. Figure 9.2 includes sizes in inches and feet, but in
practice you’ll need to convert everything to one unit—probably inches in this case.

 ■ Note the syntax for defining the ENUM data type: the list of values as a whole is enclosed
in parentheses (()), and each enumerated value is enclosed in single quotes (') and sepa-
rated from other values by a comma (,).

 ■ The DECIMAL value includes a specification of the number of digits (10 in this example)
and the number of digits after the decimal point (2 in this example), separated by a
comma. Some implementations support a MONEY data type that can be used in this case,
but MySQL lacks this data type, so DECIMAL is the best choice for the job. A DECIMAL
type is better for currency than FLOAT because a FLOAT type is likely to introduce round-
ing errors because of the way numbers are encoded in a FLOAT value. Such errors are
typically unacceptable in currency, although they may be tolerable in some applications.

If you need to create a table with other types of values, you should consult the documen-
tation for your specifi c SQL implementation to see what data types it supports.

With the table created, you may want to verify that it’s been created correctly. You can
do so by typing the DESCRIBE objects; command. The result should be a summary of
the fi elds that you’ve just created for the objects table.

Storing Data
You can now begin to store data in your database. To do so, use the INSERT INTO
command:

mysql> INSERT INTO objects

 -> VALUES('lizard','green',6,'soft',10.00);

http://technet24.ir/

510 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 510

This example creates an entry for the fi rst row of Figure 9.2 (but with one piece of incor-
rect data, which is deliberate). You can verify that the database now holds this information
by typing the SELECT * FROM objects; command. The result is a listing of all of the
data in the objects table, which in this case should be just the one entry. (The next section,
“Retrieving Data,” covers data retrieval in more detail.)

This example entered incorrect data for one fi eld: The lizard is entered in the table as
being 6 inches in size rather than 5. You can correct this error by using UPDATE:

mysql> UPDATE objects SET size=5 WHERE name='lizard';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

This example begins with the keyword UPDATE and the table name (objects). The exam-
ple then tells MySQL what to update: SET size=5. In other words, set the size fi eld to 5.
The WHERE keyword begins a specifi cation of which rows to change. In this case, with only
one row present, you can use any data or even omit WHERE, along with the rest of the line
up to the semicolon. In most cases, though, you must provide enough criteria to identify
the column uniquely that you want to change. In this example, the name of the object is
used—hence name='lizard', which tells MySQL to change the data for all rows for which
the name fi eld is lizard.

Before you continue with data retrieval activities, you should complete a database.
Exercise 9.3 will guide you through this process.

E X E R C I S E 9 . 3

Creating a SQL Database

In this exercise, you’ll continue creating a small database. This exercise assumes that

you’ve performed the steps described in “Creating Databases and Tables” and “Storing

Data” and that you therefore have a SQL database called test that contains a table called

objects, which contains one entry based on the fi rst line in the matrix in Figure 9.2.

To complete this database, follow these steps:

1. If you’re not currently running MySQL, do so by typing mysql or whatever command

you use to access your MySQL databases.

2. If you’re not already using the test database, type USE test; to begin using the

test database.

3. Type INSERT INTO objects VALUES('tree', 'green', 120, 'medium',

200);. (You may split this command across lines if you like.) This entry is based on the

second row of Figure 9.2, but note that the size value has been expressed in inches.

4. Verify that you entered the data correctly by typing SELECT * FROM objects; and

verifying that the new entry is present.

5. Repeat step 3 (and step 4, if you like) for the remaining rows in Figure 9.2.

http://technet24.ir/

Managing Data with SQL 511

c09.indd 03/27/2015 Page 511

If you like, you can continue and enter more data; however, if you do so, some subse-

quent examples may not work as described.

Retrieving Data
The whole point of having a database is to be able to retrieve data from it. The main com-
mand for doing so has already been described: SELECT. This command’s power lies in its
ability to accept specifi cations of what to select. You can use a variety of keywords to select
data that match various criteria. These include exact matches or matches to a range of
 values. The overall form of SELECT can be described in this way:

SELECT field(s) FROM table [WHERE conditions] [ORDER BY field]

Previous examples of SELECT have used an asterisk (*) as field(s), meaning that the
command returns all of the columns that match the remaining criteria. You can instead
specify columns by name. For instance, suppose you’re interested only in the colors and
values of objects. You can view this restricted set of data using SELECT:
mysql> SELECT value,color FROM objects;

+--------+--------+

| value | color |

+--------+--------+

| 10.00 | green |

| 200.00 | green |

| 5.00 | white |

| 1.00 | red |

| 0.10 | yellow |

+--------+--------+

5 rows in set (0.00 sec)

The field(s) criteria appear as a comma-separated list of columns. In this example, the
criteria were listed in the reverse order from their database order, and so they appear in the
reverse order in the output.

A more interesting way to retrieve data is to use WHERE conditions. This tool has
already been mentioned in reference to updating data. You can use conditions to retrieve
specifi c data in several ways:

Exact Matches Using a column name, an equal sign, and a value to match returns only for
those rows that match the specifi ed value. For instance, typing SELECT * FROM objects
WHERE color='green'; returns the two entries for green objects (lizard and tree).

Numeric Tests You can retrieve data that match certain numeric criteria. For instance, to
retrieve data on all objects that are greater than 10 inches in size, you can type SELECT *
FROM objects WHERE size>10;.

http://technet24.ir/

512 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 512

Alphabetic Tests The greater-than (>) and less-than (<) operators work on letters as well
as numbers. This fact can be used to retrieve data based on the fi rst letter of a string. For
example, type SELECT * FROM objects WHERE name>'b'; to retrieve records where
the name begins with b or later letters in the alphabet. (Although this example uses a
greater-than operator, it does in fact match the letter b.)

Multiple Tests You can combine multiple criteria using the AND and OR operators. For
instance, to retrieve data on soft objects valued at more than $7.50, you can type SELECT
* FROM objects WHERE hardness='soft' AND value>7.50;.

You can have MySQL return the data as an ordered list by specifying a fi eld name after
the ORDER BY keyword:

mysql> SELECT * FROM objects WHERE hardness='soft' ORDER BY value;

+--------+--------+------+----------+-------+

| name | color | size | hardness | value |

+--------+--------+------+----------+-------+

| banana | yellow | 8 | soft | 0.10 |

| pillow | white | 18 | soft | 5.00 |

| lizard | green | 5 | soft | 10.00 |

+--------+--------+------+----------+-------+

3 rows in set (0.00 sec)

Combining Data from Multiple Tables
As noted earlier, a database may contain multiple tables. This feature of SQL enables you
to create tables for different functions. For instance, Figure 9.2 might represent a data-
base of object characteristics that are of interest to you. You might also have a database
containing objects’ locations and conditions (on a 10-point scale), as shown in Table 9.4.
Occasionally, you may need to combine these two tables to create a master table on which
you can perform queries. For you to do so, the two tables must have one matching fi eld.
This matching fi eld is used to bind the two tables together. In addition, each table must
have one fi eld whose value uniquely identifi es each row. This uniquely identifying fi eld is
known as a primary key. In the case of Figure 9.2, the fi rst column (called name) can serve
as a primary key. In the case of Table 9.4, the Object ID column will do the job.

You can create this table much as you created the fi rst one:

mysql> CREATE TABLE locations (id INTEGER, name VARCHAR(30),

 -> location VARCHAR(30), cond INTEGER);

mysql> INSERT INTO locations VALUES(1, 'banana', 'kitchen', 9);

Additional INSERT operations will fi ll out the table. At this point, you can use the SELECT
operator to select data based on fi elds from both tables. For instance, suppose you want
to know where all of the green objects are located. The fi rst table (objects) contains color
data but not locations, whereas the second table (locations) holds locations but not color
data. You can accomplish the goal by using a few tricks:

http://technet24.ir/

Managing Data with SQL 513

c09.indd 03/27/2015 Page 513

mysql> SELECT objects.name, objects.color, locations.location

 -> FROM objects, locations

 -> WHERE objects.name=locations.name AND objects.color='green';

+--------+-------+-------------+

| name | color | location |

+--------+-------+-------------+

| tree | green | backyard |

| lizard | green | living room |

+--------+-------+-------------+

2 rows in set (0.00 sec)

TA B LE 9 . 4 Data on object locations and conditions

Object ID Object name Location Condition

1 banana kitchen 9

2 banana kitchen 8

3 tree backyard 2

4 brick garage 10

5 brick garage 9

6 brick backyard 9

7 lizard living room 8

MySQL automatically combines the two tables and produces output based on the crite-
ria you specify. The fi nal output in this example includes the name, color, and location of
the objects, even though each table has just two of those three values.

A second way to combine data from multiple tables is to use JOIN. This approach is very
similar to the preceding one, but you specify one table using FROM and the other using JOIN:

mysql> SELECT objects.name, objects.color, locations.location

 -> FROM objects

 -> JOIN locations

 -> WHERE objects.name=locations.name AND objects.color='green';

Combining data lets you simplify the structure of your database in certain situations.
The examples used here illustrate this fact. The data in the objects table describes objects
generically, whereas the data in the locations table describes objects specifi cally. This
design enables each table to be relatively small. If all of the data were stored in a single

http://technet24.ir/

514 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 514

table, that table would require multiple entries for each item, duplicating a lot of data. By
splitting the data across tables, each table can be much smaller, thus reducing storage space.

A retrieval command that requires special mention is GROUP BY. This command is used
in conjunction with mathematical operators, such as SUM(), to restrict the selection to
specifi ed columns. For instance, suppose you want to know the total value of all of the
objects in the database, grouped by object type. You can do as follows, combining data
from both tables:

mysql> SELECT objects.name, objects.value, SUM(value)

 -> FROM objects, locations

 -> WHERE locations.name=objects.name

 -> GROUP BY value;

The result is a summary of the values of all of the objects by type. Omitting the GROUP
BY clause produces an error message in MySQL.

Deleting Data
Sometimes your data need to be deleted. Table 9.4 suggests that the tree in the backyard is
ill—its condition rating is just 2 on a 10-point scale. Perhaps you’ll decide to cut it down
and therefore remove it from the locations database. To do so, you’ll use the DELETE com-
mand, which takes the following form:

DELETE FROM table WHERE conditions

For instance, to delete that now-removed tree, you can type the following command:

mysql> DELETE FROM locations

 -> WHERE name='tree' AND location='backyard' ;

Query OK, 1 row affected (0.05 sec)

In this specifi c case, the WHERE condition is more detailed than it needs to be. This is
because the backyard tree is the only one in the table. As usual, when deleting any sort of
data on a computer, though, it’s better to be overly cautious than sloppy.

Before deleting data, try using SELECT to see what data your WHERE condi-
tions match. Doing this will help you to avoid accidentally deleting too
much data.

You can delete all of the data from a table by using a variant of the DELETE command:
DELETE * from locations;. This command deletes all of the table’s data without delet-
ing the table itself. This may be useful if the table is hopelessly messed up from experimen-
tation. An even more drastic deletion operation is DROP: DROP TABLE locations;. This
example completely eliminates the locations table. Naturally, this is an extremely danger-
ous command, but you may want to use it when cleaning up your own SQL practice session.

http://technet24.ir/

Exam Essentials 515

c09.indd 03/27/2015 Page 515

Learning More about SQL
SQL is a very complex topic, and this chapter can only scratch the surface. For more infor-
mation, you should read more from various sources. Your own SQL package’s documenta-
tion can be a good starting point, particularly if you need to use features that are unique to
your implementation. Books on SQL, such as Alan Beaulieu’s Learning SQL, 2nd Edition
(O’Reilly, 2009) and Larry Rockoff’s The Language of SQL (Cengage Learning, 2010), are
also worth reading if you need to do more than trivial SQL work.

Summary

Linux administrators must have at least a basic understanding of shell scripts. Many
confi guration and startup fi les are in fact shell scripts. Being able to read them, and perhaps
to modify them, will help you administer your system. Being able to create new shell scripts
is also important because doing so will help you simplify tedious tasks and create site-spe-
cifi c tools by putting together multiple programs to accomplish your goals.

Email server administration is another task with which you must have at least a passing
familiarity. Although most Linux systems don’t operate as full-blown email servers, most
Linux installations do include email servers for processing locally generated email. You can
confi gure email forwarding and perform a few other tweaks without delving too heavily
into email server confi guration.

The fi nal topic of this chapter, SQL use, will help you manage simple databases stored
using the Structured Query Language (SQL). Many programs rely on SQL for their opera-
tion, so being able to perform simple SQL queries will help you work with these programs.
You may even decide to set up databases to help manage your own tasks, such as tracking
computer equipment.

Exam Essentials

Explain the function of environment variables. Environment variables are used to store
information on the system for the benefi t of running programs. Examples include the PATH
environment variable, which holds the locations of executable programs, and HOSTNAME,
which holds the system’s hostname.

Describe various shell script components. A shell script combines several commands,
possibly including conditional expressions, variables, and other programming features. A
shell script must start with a shebang line to let the kernel know it is a script and indicate
the shell interpreter to use. Each script component has a specifi c syntax needed for proper
shell execution and logic fl ow. A shell script is run using various methods. Each method
may or may not create a subshell and may or may not require the execution bit to be set.

http://technet24.ir/

516 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 516

Describe the purpose of shell aliases. Aliases enable you to create a command
“shortcut”—a simple command that can stand in for a different or longer command.
Aliases are typically defi ned in shell startup scripts as a way to create a shortened version
of a command. Aliases also allow useful command options to be used as the new default or
they create an easier-to-remember version of a command.

Summarize the major SMTP servers for Linux. Sendmail was the most common SMTP
server a decade ago, and it is still very popular today. Postfi x and Exim are often supplied
as the default mail servers on modern distributions, whereas administrators sometimes
install qmail. Postfi x and qmail use modular designs, whereas sendmail and Exim do not.

Explain the difference between an email alias and email forwarding. An email alias is
confi gured system-wide, typically in /etc/aliases. It can set up forwarding for any local
address, even if that address doesn’t correspond to a real account, and if the system is prop-
erly confi gured, only root may edit /etc/aliases and therefore modify aliases. Email for-
warding, on the other hand, is handled by the ~/.forward fi le in a user’s home directory; it
is intended as a means for users to control their own email forwarding without bothering
the system administrator.

Summarize the structure of a SQL database. Each SQL installation consists of a number
of named databases, each of which in turn may contain multiple tables. Each table can be
thought of as a two-dimensional array of data. Each row in a table describes some object or
concept (inventory items, employees, movies in a personal DVD collection, and so on), and
each column in a table holds data about these objects or concepts (model number, salary, or
director, for example).

Describe the commands used to enter data in a SQL database. The INSERT command
inserts a single entry into a database. It requires a table name and a set of values, as in
INSERT INTO movies VALUES('Brazil', 'Terry Gilliam', 1985);. The UPDATE
command can be used in a similar way to update an existing entry, but you must use SET to
specify the column to set and WHERE to identify the row or rows to be modifi ed.

Explain the commands used to extract data from a SQL database. The SELECT command
retrieves data from a SQL database. It can be used with a variety of additional options,
such as FROM, JOIN, and WHERE, to identify the table or tables from which data should be
retrieved and to locate specifi c values of interest.

http://technet24.ir/

Review Questions 517

c09.indd 03/27/2015 Page 517

Review Questions

1. Which environment variable stores the format for the command prompt?

A. PROMPT

B. PSI

C. PAGER

D. PS1

E. None of these variables store the format for the command prompt.

2. You want to create a shortcut command for the command cd ~/papers/trade. Which of
the following lines, if entered in a bash startup script, will accomplish this goal?

A. alias cdpt='cd ~/papers/trade'

B. export cdpt='cd ~/papers/trade'

C. alias cdpt 'cd ~/papers/trade'

D. alias cd 'cdpt ~/papers/trade'

E. env cdpt `cd ~/papers/trade`

3. What is the purpose of the EDITOR environment variable?

A. If it’s set to Y (the default), the shell environment permits editing of commands; if it’s
set to N, such editing is disallowed.

B. It specifies the filename of the text editor that bash uses by default while you’re enter-
ing commands at its prompt.

C. If you type edit filename at a command prompt, the program specified by EDITOR
will be launched.

D. If it’s set to GUI, programs call a GUI editor; if it’s set to TEXT, programs call a text-
based editor.

E. Some programs refer to EDITOR to determine what external editor to launch when they
need to launch one.

4. In what environment variable is the current working directory stored?

A. PATH

B. CWD

C. PWD

D. PRESENT

E. WORKING

5. If typed in a bash shell, which of the following commands will create an environment vari-
able called MYVAR with the contents mystuff that will be accessible to any created subshells?
(Choose all that apply.)

A. export MYVAR='mystuff'

B. MYVAR='mystuff'

http://technet24.ir/

518 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 518

C. MYVAR='mystuff'; export MYVAR

D. echo $MYVAR mystuff

E. setenv MYVAR mystuff

6. What file might a user modify to alter their own bash environment?

A. /etc/inputrc

B. /etc/bashrc

C. $HOME/bashrc

D. $HOME/.profile_bash

E. ~/.bashrc

7. What commands might you use (along with appropriate options) to learn the value of a
specific environment variable? (Select two.)

A. env

B. DISPLAY

C. export

D. echo

E. cat

8. Immediately after creating a shell script called a_script.sh in a text editor, which method
will not work to run the script?

A. Typing bash a_script.sh at the command line.

B. Typing ./a_script.sh at the command line.

C. Typing . a_script.sh at the command line.

D. Typing source a_script.sh at the command line.

E. Any of the above will work.

9. Describe the effect of the following short script, cp1.sh, if it’s called as cp1.sh big.c
big.cc:
#!/bin/bash

cp $2 $1

A. It has the same effect as the cp command—copying the contents of big.c to big.cc.

B. It compiles the C program big.c and calls the result big.cc.

C. It copies the contents of big.cc to big.c, eliminating the old big.c.

D. It converts the C program big.c into a C++ program called big.cc.

E. It interprets the big.c and big.cc files as bash scripts.

10. Where are the commands iterated by the loop located within the loop?

A. Within the then statement section

B. Between the double semicolons (;;)

C. Within the case and esac constructs

http://technet24.ir/

Review Questions 519

c09.indd 03/27/2015 Page 519

D. Within the test statement

E. Between do and done constructs

11. Which of the following lines identify valid shell scripts on a normally configured system?
(Select two.)

A. #!/bin/script

B. #!/bin/bash

C. #!/bin/tcsh

D. !#/bin/sh

E. !#/bin/zsh

12. Which of the following are valid looping statements in bash shell scripting? (Select all that apply.)

A. for

B. while

C. if-then

D. until

E. case

13. Your SMTP email server receives a message addressed to postmaster. The postmaster
username has an alias of john on this computer. Assuming that the system is properly con-
figured, who will receive the email message?

A. postmaster

B. john

C. The account listed in ~/.forward

D. root

E. No user, because an alias was set

14. Which of the following is not a popular SMTP server for Linux?

A. Postfix

B. Sendmail

C. Fetchmail

D. Exim

E. qmail

15. You see the following line in a script:

mail -s "Error" -c abort < /tmp/msg root

What is the effect of this line, if and when it executes?

A. An email is sent to the user Error, the script is aborted using root privileges, and error
messages are written to /tmp/msg.

B. An email with the subject of Error and the contents from /tmp/msg is sent to the local
users root and abort.

http://technet24.ir/

520 Chapter 9 ■ Writing Scripts, Configuring Email, and Using Databases

c09.indd 03/27/2015 Page 520

C. An email with the subject of Error and the contents of /tmp/msg is sent to the local
user root, and then the script is aborted.

D. An email is sent with Error priority to the local user root, and the email system is
then shut down with error messages being stored in /tmp/msg.

E. An email with the subject of Error and contents of /tmp/msg is sent to root, and
information on this is logged with priority abort.

16. Your Internet connection has gone down for several hours. What command can you use to
check if there is a long list of jobs in the email queue?

A. service sendmail status

B. lp -d queue ~/Maildir

C. sendmail -bq

D. mailq

E. ls /var/spool

17. You examine your /etc/aliases file and find that it contains the following line:

root: jody

What can you conclude from this?

A. Email addressed to jody on this system will be sent to the local user root.

B. Email addressed to root on this system will be sent to the local user jody.

C. The local user jody has broken into the system and has acquired root privileges.

D. The local user jody has permission to read email directly from root’s mail queue.

E. The administrator may log in using either username: root or jody.

18. You’ve just installed MySQL and run it by typing mysql. How would you create a database
called fish to store data on different varieties of fish?

A. Type NEW DATABASE fish; at the mysql> prompt.

B. Type CREATE DATABASE fish; at the mysql> prompt.

C. Type NEW DATABASE FISH; at the mysql> prompt.

D. Type DATABASE CREATE fish; at the mysql> prompt.

E. Type DB CREATE fish; at the mysql> prompt.

19. Which of the following are true statements about SQL tables? (Select two.)

A. Multiple tables may exist in a single SQL database.

B. Tables may be combined for cross-table searches using the DROP command.

C. Tables consist of rows, each of which holds attributes, and columns, each of which
defines a specific database item.

D. Careful table design can reduce the amount of data entry and database storage size.

E. Tables are stored on disk using a lossy compression algorithm.

http://technet24.ir/

Review Questions 521

c09.indd 03/27/2015 Page 521

20. What is the effect of the following SQL command, assuming the various names and
data exist?

mysql> UPDATE stars SET magnitude=2.25 WHERE starname='Mintaka';

A. It returns database entries from the stars table for all stars with magnitude of 2.25
and starname of Mintaka.

B. It sets the value of the stars field in the magnitude set to Mintaka, using a precision
of 2.25.

C. It sets the value of the magnitude field to 2.25 for any item in the stars table with the
starname value of Mintaka.

D. It combines the stars and magnitude=2.25 tables, returning all items for which the
starname is Mintaka.

E. It updates the stars database, creating a new entry with a starname value of Mintaka
and a magnitude of 2.25 .

http://technet24.ir/

http://technet24.ir/

c10.indd 03/27/2015 Page 523

Chapter

10
Securing Your System

THE FOLLOWING EXAM OBJECTIVES ARE
COVERED IN THIS CHAPTER:

 ✓ 1.110.1 Perform security administration tasks

 ✓ 1.110.2 Set up host security

 ✓ 1.110.3 Securing data with encryption

http://technet24.ir/

c10.indd 03/27/2015 Page 524

Chances are that you take basic security measures in your
daily life, such as locking the door to your house or apart-
ment, not advertising an upcoming vacation on social media,

not setting your smartphone down in a store, and so on. Such measures can minimize the
risk of theft or even personal injury. Similar measures on a computer can help protect the
computer from compromise.

This chapter covers several security issues: restricting access to the computer by port
number, managing the security of individual programs, managing passwords, setting
miscellaneous account security options, and using encryption to secure data. Understanding
these basics will help you begin to secure your computer.

There is no such thing as a 100 percent secure computer. You can take
steps to improve security, but there is absolutely no guarantee that you
will not have security problems. You must decide (or the organization for
which you work must decide) just how much effort to put into securing
your systems, and live with the threat level that remains. This chapter’s
security information can help you start securing your computer. If you
need more security information, you can start your research at web-
sites such as the SANS Institute, www.sans.org, and Gibson Research
 Corporation, www.grc.com.

Administering Network Security

Linux systems are often used as server computers. On such systems, network security is
particularly important because incorrectly confi gured servers can provide troublemakers
with a way into your computer. There are several methods for protecting networked
computers from unwanted outside access. Some of the simplest methods involve blocking
or restricting access to network servers via their network ports. (Network ports are
described in Chapter 8, “Confi guring Basic Networking.”) You can check for existing
network connections, check for open ports (that is, ports that are in use by a server
program), use super daemon restrictions to limit access, and disable servers that you’re
not using.

http://technet24.ir/

Administering Network Security 525

c10.indd 03/27/2015 Page 525

The popular media uses the term hacker to refer to computer criminals.
This word has an older meaning. It also refers to individuals who are
skilled with computers and who have no malicious intent. Many Linux
 programmers consider themselves hackers in this positive sense.
Therefore, terms such as troublemaker and attacker are used in this
 chapter to refer to computer criminals.

Using Super Server Restrictions
Many network server programs directly open network ports and listen for connections.
Some distributions have network server programs that work through an intermediary: a
super server or super daemon. This is a program that listens for network connections
on behalf of another program. When a connection is initiated, the super server hands off
control of that connection to the intended server.

You can employ security checks in the super daemon to protect the servers it manages.
Linux has two primary super daemons:

inetd

xinetd

In the following pages, confi guring super server basics are described with particular
emphasis on their security features. In the case of inetd, security is handled by a package
called TCP wrappers. By contrast, xinetd’s security features are built into xinetd itself.

Whenever possible, apply redundant access controls. For instance, use
both a server’s own security features and the super daemon’s security
features to block unwanted access. This helps protect against bugs and
incorrect configurations. For example, if a problem emerges in the super
server configuration, the secondary block will probably halt the attacker. If
you configure the system correctly, such an attack will also leave a log file
message to alert you that the super server didn’t do its job.

Configuring inetd
The inetd package is a legacy super daemon in Linux. Most likely you will never run
into it. However, it is listed in the certifi cation exam objectives.

The inetd package is deprecated, and it is typically no longer
installed on Linux distributions. However, because it is a legacy super
server that deserves some review, it is still covered in the certification
exam objectives.

http://technet24.ir/

526 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 526

Setting Up inetd
Services that launched via inetd were controlled through the /etc/inetd.conf fi le or fi les
in /etc/inetd.d/. The /etc/inetd.conf fi le consisted of a series of lines, one for each
server. A typical line was similar to the following:

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd -l

Instead of using a single monolithic /etc/inetd.conf fi le, later versions of inetd
enabled you to split the confi guration into several fi les in the /etc/inetd.d/ directory.
Doing so allowed easier addition or deletion of server confi gurations by adding or deleting
their confi guration fi les. For brevity, the following paragraphs refer only to /etc/inetd
.conf, but the description applies to fi les that were in /etc/inetd.d/ as well.

Each line in /etc/inetd.conf consisted of several fi elds separated by one or more
spaces. The meanings of these fi elds were as follows:

Service Name The fi rst fi eld (ftp in the preceding example) was the name of the service as
it appeared in the /etc/services fi le.

Socket Type The socket type entry told the system what type of connection to expect—a
reliable two-way connection (stream), a less reliable connection with less overhead (dgram),
a low-level connection to the network (raw), or various others.

Protocol This was the TCP/IP Transport layer protocol used, usually tcp or udp.

Wait/No Wait For dgram socket types, this entry specifi ed whether the server connected
to its client and freed the socket (nowait) or processed all of its packets and then timed out
(wait). Servers that used other socket types would specify nowait in this fi eld.

User This was the username used to run the server. The root and nobody users were common
choices, but others were possible as well. As a general rule, servers were run with a low-privilege
user whenever possible as a security precaution. Some servers required root access, though.

Server Name This was the server’s fi lename. In the preceding example, the server is
specifi ed as /usr/sbin/tcpd, which is the TCP wrappers binary. As described shortly in
“Controlling Access via TCP wrappers,” this program was an important security tool and
was usually included as the means of launching programs via inetd.

Parameters Everything after the server name consisted of parameters that were passed to
the server. If you used TCP wrappers, you would pass the name of the true target server
(such as /usr/sbin/in.ftpd) in this fi eld, along with its parameters.

The hash mark (#) was a comment symbol for /etc/inetd.conf. Therefore, if a server was
running via inetd and you wanted to disable it, you would place a hash mark at the start of
the line. If you wanted to add a server to inetd.conf, you needed to create an entry for it.

After modifying inetd.conf, you had to restart the inetd super daemon. It was generally
restarted using a SysV startup script as described in Chapter 5, “Booting Linux and Editing
Files.” On most computers, typing something similar to the following would have worked:

/etc/init.d/inetd restart

http://technet24.ir/

Administering Network Security 527

c10.indd 03/27/2015 Page 527

Controlling Access via TCP Wrappers

The TCP wrappers package provides a library known as libwrap. Older TCP wrappers
packages used with inetd provided a program known as tcpd. The inetd did not call a
server directly; instead, inetd called tcpd, which did two things: It checked whether a
 client was authorized to access the server, and if the client had this authorization, tcpd
called the server program.

Even though inetd has gone the way of the dinosaurs, TCP wrappers
is still available for use on Linux systems. For example, the FTP server,
vsftpd, uses TCP wrappers. If a network service uses TCP wrappers, then
it uses the libwrap library. You can determine if a network service uses
TCP wrappers or not by typing ldd NetworkServiceDaemon | grep libwrap
at the command line. If you get output, then the network service uses
TCP wrappers.

TCP wrappers is confi gured through two fi les: /etc/hosts.allow and /etc/hosts
.deny. The fi rst of these specifi es computers that are allowed access to the service. Systems
not listed in hosts.allow are not permitted access. By contrast, hosts.deny lists computers
that are not allowed access; all other systems are granted access to the service. If a
computer is listed in both fi les, hosts.allow takes precedence.

Both fi les use the same basic format. The fi les consist of lines in the following form:

daemon-list : client-list

The daemon-list variable is a list of servers using the names for the servers
that appear in /etc/services. Wildcards are also available, such as ALL for
all servers.

The client-list variable is a list of computers to be granted or denied access to the
specifi ed daemons. You can specify computers by name or by IP address. Also, you can
specify a network by using a leading or trailing dot (.) when identifying networks by name
or IP address block, respectively. For instance, .ivytech.edu refers to all computers in
the ivytech.edu domain, and 192.168.7. refers to all computers in the 192.168.7.0/24
network. You can also use various wildcard options in the client-list variable, such as
ALL (all computers).

The EXCEPT operator creates an exception. For example, the following client-list
setting is placed in the hosts.deny fi le:

[...]: 192.168.7. EXCEPT 192.168.7.105

The preceding client-list setting would block all computers in the 192.168.7.0/24
network. However, an exception would be made for 192.168.7.105.

The man pages for hosts.allow and hosts.deny (they’re actually the same document)
provide additional information about more advanced features. You should consult them if
you build TCP wrappers rules.

http://technet24.ir/

528 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 528

Configuring xinetd
The xinetd program is an extended super daemon. It provides the functionality of the
legacy inetd, plus security options that are similar to those of TCP wrappers.

Setting Up xinetd
The /etc/xinetd.conf fi le controls the xinetd super daemon. On distributions that use
xinetd, this confi guration fi le contains only global default options. At the fi le’s bottom is a
directive to include fi les stored in the /etc/xinetd.d/ directory:

includedir /etc/xinetd.d

Each server that should run via xinetd installs a fi le in /etc/xinetd.d/ with its
own confi guration options. Those fi le options are then included in the main xinetd
confi guration fi le.

If you cannot find the /etc/xinetd.conf file on your system, most likely
the xinetd package is not installed. See Chapter 2, “Managing Software,”
for information on how to install this package on your system if desired.

Whether the server entry goes in /etc/xinetd.conf or in a fi le in /etc/xinetd.d/, the
confi guration information is similar to that in the inetd.conf fi le. However, the xinetd
confi guration information is spread across multiple lines and labeled more explicitly. The
following shows an xinetd confi guration example:

$ cat /etc/xinetd.d/rsync
default: off
[...]
service rsync
{
 disable = yes
 flags = IPv6
 socket_type = stream
 wait = no
 user = root
 server = /usr/bin/rsync
 server_args = --daemon
 log_on_failure += USERID
}
$

One xinetd confi guration parameter that is commonly present is disable. If you include
the line disable = yes in a service defi nition, xinetd ignores this server. Some server
packages install startup fi les in /etc/xinetd.d/ and have this option set by default. You
must edit the fi le and change the entry to read disable = no to enable the server. You can
also temporarily disable a set of servers by listing their names in the defaults section of the
main xinetd.conf fi le on a line called disabled.

http://technet24.ir/

Administering Network Security 529

c10.indd 03/27/2015 Page 529

It’s generally wise to make sure that as many servers as possible are
disabled in the xinetd configuration files. As a general rule, if you don’t
understand what a server does, leave it disabled. This will improve the
security of your system by eliminating potentially buggy or incorrectly
configured servers.

After you make changes to xinetd’s confi guration, you must either reload the
confi guration fi le or restart the super server. For example, on a system using SysV startup
scripts, you do this by running the appropriate script located in either /etc/init.d/ or
/etc/rc.d/init.d/ and passing either the reload or restart parameter:

/etc/init.d/xinetd restart

Controlling Access via xinetd
Security is handled on a server-by-server basis through the use of confi guration parameters
in either /etc/xinetd.conf or the server-specifi c confi guration fi les. Some of these options
are similar to the function of hosts.allow and hosts.deny:

Network Interface The bind option tells xinetd to listen on only one network interface
for the service. For instance, you can specify bind = 192.168.23.7 on a router to have
it listen only on the Ethernet card associated with that address. This feature is extremely
useful in routers, but it isn’t as useful in computers with just one network interface. You
can, however, use this option to bind a server only to the loopback interface, 127.0.0.1, if a
server should be available only locally. You might do this with a confi guration tool like the
Samba Web Administration Tool (SWAT). A synonym for this option is interface.

Allowed IP or Network Addresses You can use the only_from option to specify IP
addresses, networks (as in 192.168.78.0/24), or computer names on this line, separated by
spaces. The result is that xinetd will accept connections only from these addresses, similar
to TCP wrappers’ hosts.allow entries.

Disallowed IP or Network Addresses The no_access option is the opposite of only_from;
you list computers or networks here that you want to blacklist. This is similar to the hosts
.deny fi le of TCP wrappers.

Access Times The access_times option sets times during which users may access the server.
The time range is specifi ed in the form hour:min-hour:min, using a 24-hour clock. Note that
this option affects only the times during which the server will respond. If the xinetd access_
times option is set to 8:00-17:00 and somebody logs in at 4:59 p.m. (one minute before the
end time), that user may continue using the system well beyond the 5:00 p.m. cutoff time.

You should enter these options into the confi guration fi les in /etc/xinetd.d/ that
 correspond to the servers you want to protect. Place the lines between the opening brace
({) and closing brace (}) for the service. If you want to restrict all of your xinetd-controlled
servers, you can place the entries in the defaults section in /etc/xinetd.conf.

http://technet24.ir/

530 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 530

Some servers provide access control mechanisms similar to those of TCP
wrappers or xinetd. For instance, Samba provides hosts allow and hosts
deny options that work much like the TCP wrappers file entries. These
options are most common on servers that are awkward or impossible to
run via xinetd.

Confi guring a Firewall

Although the exam objectives don’t mention fi rewalls, you should be familiar with the

concept. A fi rewall is a fi lter that restricts access to and/or from computers or services.

Broadly speaking, two types of fi rewalls exist: packet-fi lter fi rewalls, which work by blocking

or permitting access based on low-level information in individual data packets (such as

source and destination IP addresses and ports), and proxy fi lters, which partially process

a transaction (such as a web page retrieval) and block or permit access based on high-level

features in this transaction (such as the fi lename of an image in the web page).

In Linux, the kernel includes packet-fi lter fi rewall capabilities, which can be programmed

via the iptables program. You can set up rules by typing iptables followed by various

options that defi ne specifi c restrictions, such as limits on the IP addresses that may

access a specifi c network port. Creating an effective fi rewall requires learning iptables

in detail and writing a script that calls this program repeatedly to set up specifi c rules.

The nftables program is slated to replace the iptables program. See netfilter.org/

projects/nftables for the current status of this program.

Many distributions make things easier by providing a generic fi rewall script that you

can confi gure using a GUI tool or text-based command. For example, Ubuntu offers the

Uncomplicated Firewall utility, ufx, to help set up iptables rules. These tools are generally

designed for protecting a single computer against unwanted outside access. Check your

distribution’s GUI system administration options and man pages for a fi rewall confi guration

tool. You may be able to set security based on a few levels (high, medium, and low security,

for instance) or in a somewhat more refi ned manner.

Linux can also function as a fi rewall computer that protects an entire network; however,

such a confi guration is likely to require in-depth knowledge of iptables, as well as

 topics which include confi guring Linux as a router.

Disabling Unused Servers
Quite a few server programs ship with most Linux distributions. This can be a great
 advantage because you don’t need to install additional software to get a server package

http://technet24.ir/

Administering Network Security 531

c10.indd 03/27/2015 Page 531

up and running. On the other hand, this very advantage can be a drawback. If
you’re not careful, you can end up running a network service and not even realize
it’s installed!

For security reasons, you should periodically audit your servers’ network services
and disable any service that you fi nd isn’t necessary. For example, if your Linux system
functions only as a print server, it should not be running the Apache web server daemon,
httpd. Limiting the network service programs running on a system equates to fewer attack
points for a troublemaker.

Several audit tools exist, such as netstat, lsof, and remote network scanners. You can
also search your local confi guration fi les for clues about what may be running. Unused
servers can be disabled by uninstalling the package or by reconfi guring the server.

Using netstat
One way to begin auditing network security is to look for network activity or open ports
on a computer. One older tool that can help in this respect is netstat. This useful program
provides many different options and output formats to deliver information about routing
tables, interface statistics, and so on.

The netstat program is considered obsolete, though you may still
find it on some Linux distributions. It is also listed in the certification
exam’s objectives and therefore needs to be covered here. However,
the current utility to use for network auditing and displaying network
 information is the ip program. See the man pages for more information
on the ip utility.

For spotting unnecessary servers, you can use netstat with its -a and -p options. The
-a option shows all network sockets. The -p option shows the PID and program name that
owns a shown socket.

The output displayed by netstat is so wide that it has to be split into two separate
snipped displays for the book, as shown here. This fi rst netstat output display shows the
three left-hand columns of information:

netstat -ap
Active Internet connections (servers and established)
Proto Recv-Q Send-Q [...]
tcp 0 0 [...]
tcp 0 0 [...]
tcp 0 0 [...]
tcp 0 0 [...]
tcp 0 0 [...]
tcp 0 0 [...]
tcp 0 0 [...]
tcp 0 0 [...]
[...]
#

http://technet24.ir/

532 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 532

This second netstat output display shows the four right-hand columns of information:

netstat -ap
Active Internet connections (servers and established)
[...]Local Address Foreign Address State PID/Program name
[...]*:sunrpc *:* LISTEN 1096/rpcbind
[...]*:ssh *:* LISTEN 1401/sshd
[...]0 localhost:ipp *:* LISTEN 1276/cupsd
[...]*:40952 *:* LISTEN 1239/rpc.statd
[...]localhost:smtp *:* LISTEN 1503/master
[...]0 192.168.56.101:ssh 192.168.56.1:49159 ESTABLISHED 2421/sshd
[...]0 *:sunrpc *:* LISTEN 1096/rpcbind
[...]*:ssh *:* LISTEN 1401/sshd
[...]
#

There is so much information when you issue this command on your system(s) that it
would be wise to pipe it into the less command like so: netstat -ap | less. Also,
you may need to adjust your screen’s resolution to prevent columns from wrapping in the
netstat output to your screen.

The netstat command can be run as an ordinary user, but it may not
return as much information. Specifically, only root and a process’s owner
see the PID/Program name column information.

The netstat command with the -ap options shows active network sockets that can
reveal the presence of servers that are running on your computer. The Local Address
and Foreign Address columns specify the local and remote addresses, including both the
hostname or IP address and the port number or associated name from /etc/services.
Entries that are not actively connected will show the local address and the foreign address
as asterisks (*).

The State column specifi es that the server is listening (LISTEN) for a connection or that
a connection is currently active (ESTABLISHED). There are several additional states as well,
besides the two shown in the preceding example. Type man netstat to learn about more
potential State statuses.

The fi nal column in this output, under the PID/Program name heading, indicates the
process ID (PID) and program name of the service using this port. Notice that several
services are currently listening for connection requests. However, there is only one estab-
lished connection whose PID is 2421, and its program is the Secure Shell daemon (sshd).

It may take some time to peruse the output of netstat, but doing so will leave you with
a much-improved understanding of your computer’s network connections. If you spot
 servers listening for connections that you didn’t realize were active, you should investigate
the matter further. Some servers may be innocent or even necessary. Others may be
pointless security risks.

http://technet24.ir/

Administering Network Security 533

c10.indd 03/27/2015 Page 533

To spot servers listening for connections quickly, type netstat -lp
rather than netstat -ap. The result will show all servers that are
listening for connections, omitting client connections and specific
server instances that are already connected to clients.

Exercise 10.1 demonstrates the use of netstat to monitor network port use.

E X E RC I S E 10 .1

Monitor Network Port Use

To get started with netstat, follow these steps:

1. Log into the Linux system as a normal user. (Acquiring root privileges will produce

more complete output, as described earlier, but it isn’t strictly necessary for this

exercise.)

2. Launch a terminal from the desktop environment’s menu system if you used a GUI

login method.

3. Type netstat -ap | less, and page through the output. Chances are you’ll see

quite a few entries for servers, which are listening for new connections and for

established connections to local servers or from local clients to remote servers. Pay

particular attention to servers that are listening for new connections. You can identify

those servers by the keyword LISTEN displayed in the State column of the output.

4. Type netstat -ap | grep ssh to fi nd connections involving SSH. Depending on

your confi guration and the servers you have running, you may see no output or many

lines of output.

5. Determine your system’s IP address by typing the ifconfig command.

6. In another terminal login session, initiate an SSH connection to your computer. (The

Secure Shell is discussed later in the section “Confi guring SSH.”) For instance, type

ssh 192.168.78.5 if the IP address you obtained in step 5 is 192.168.78.5.

7. Type netstat -ap | grep ssh in your original session (not in your SSH

connection). Compare the output to that which you obtained in step 4. The output

should have an additional line refl ecting the session you initiated in step 6.

8. Log out of the SSH session you initiated.

9. Type netstat -ap | grep ssh again. The output should be missing the line for

the session you’ve now closed.

If you’re using a multiuser system, additional SSH sessions may come and go during the

course of this exercise, refl ecting the activities of other users.

http://technet24.ir/

534 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 534

Using lsof
The lsof program nominally lists open fi les. It can be used to identify what fi les are open
in a directory, fi nd who’s accessing them, and so on. The defi nition of a fi le used by lsof
is broad because it includes network connections. Thus, you can use lsof to audit your
 network ports. With the -i parameter, the lsof command will show you not only various
services listening for connections, but also any current network connections to those
services. Here is an example:

lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
rpcbind 1096 rpc 6u IPv4 11127 0t0 UDP *:sunrpc
[...]
cupsd 1276 root 9u IPv4 11828 0t0 UDP *:ipp
sshd 1401 root 3u IPv4 12397 0t0 TCP *:ssh (LISTEN)
sshd 1401 root 4u IPv6 12401 0t0 TCP *:ssh (LISTEN)
[...]
sshd 3014 root 3r IPv4 23963 0t0 TCP↵
192.168.56.101:ssh->192.168.56.1:49165 (ESTABLISHED)
dhclient 3016 root 7u IPv4 24029 0t0 UDP *:bootpc
#

As in the output of netstat shown earlier, this output is snipped for brevity’s sake.
Notice that there are three lines that begin with sshd. The fi rst two sshd lines show servers
that are listening for connections on the ssh ports. These lines are identifi ed by the fact that
the NAME column takes the form *:service (LISTEN), where service is the service name or
port number. Other columns in the output reveal additional information, such as the PID
and username associated with the port access.

The third line beginning with sshd shows an outgoing connection from 192.168.56.101
(the system on which the lsof -i command was typed) to the ssh port on 192.168.56.101.
Such connections are identifi ed by the existence of two IP addresses (or hostnames) in the
NAME column and by the keyword ESTABLISHED in the same column.

If you type lsof -i as an ordinary user, you’ll see only your own network
connections. Thus, in order for this command to be a useful diagnostic for
system security, you must run it using superuser privileges or as root.

You can restrict the output of lsof by including an address after the -i option. The
address takes the following form:

[46][protocol][@hostname|hostaddr][:service|port]

The lsof -i address syntax is as follows:

The digit 4 or 6 that represents an IPv4 or IPv6 connection

protocol, which is a protocol type (TCP or UDP)

hostname or hostaddr, which is the computer hostname or IP address associated with
a remote system

http://technet24.ir/

Administering Network Security 535

c10.indd 03/27/2015 Page 535

service, which is a service name (from /etc/services)

port, which is a port number

For instance, suppose you want to verify that no FTP server is running on a computer.
You can search for any connections associated with the FTP port:

lsof -i :ftp

Alternatively, you can replace ftp with 21, because 21 is the port number associated
with the FTP port. (See Chapter 8 for common network port numbers.) In either case, this
command returns a list of all processes associated with FTP connections, both incoming
and outgoing. If no such connections exist, the command returns no output. Be sure to note
which output lines are linked with the server, as opposed to client processes. Even if you’re
not running an FTP server locally, the preceding command may produce dozens of lines of
output if users on the computer are accessing remote FTP clients.

Another use of lsof is in identifying who is accessing files. This might
be handy if you need to unmount a filesystem (including a network
filesystem) but can’t because of in-use files. This command is also useful
if you suspect inappropriate activities involving file access.

To perform a general audit of the network services your system is offering, you can pipe
the output into the less command. This will allow you to review the network services
methodically and determine if there is any need to disable them.

Using Remote Network Scanners
Network scanners, such as Nmap, can scan for open ports on the local computer or
on other computers. Nmap is a very easy to use utility for conducting security audits on
your systems.

Besides being used by network administrators for legitimate purposes,
network scanners are often used by troublemakers to locate systems to
attack. Many organizations have policies forbidding the use of network
scanners except under specific conditions. Therefore, you should check
these policies and obtain explicit permission to perform a network scan.
Failure to do so could cost you your job or even result in criminal charges,
even if your intentions are honorable.

Nmap is capable of performing basic checks for open ports. To conduct this
simple audit using the nmap utility, add the -sT parameters. Your fi rst scan should be
done using the loopback address (127.0.0.1). This allows you to see what network
services are being offered by your system without any fi rewall settings interfering with
the results:

http://technet24.ir/

536 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 536

$ nmap -sT 127.0.0.1

Starting Nmap 5.51 (http://nmap.org) at 2015-03-07 13:16 EST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.0011s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
111/tcp open rpcbind
631/tcp open ipp

Nmap done: 1 IP address (1 host up) scanned in 0.24 seconds
$

In the preceding example’s Nmap results, you can see that four network services
(ssh, smtp, rpcbind, and ipp) are currently listening for services requests at designated
ports (22, 25, 111, 631). However, to see what services can be reached outside the fi rewall,
you need to conduct another scan.

Most Linux distributions do not come with the nmap utility installed by
default. See Chapter 2, “Managing Software,” to learn how to install
 software packages, such as nmap.

This scan is almost exactly like the preceding example. It uses the same nmap options,
-sT. However, this time, the machine’s IP address is used instead of the loopback address.
This will allow you to see what services are not being blocked by a fi rewall:

$ nmap -sT 192.168.56.101

Starting Nmap 5.51 (http://nmap.org) at 2015-03-07 13:20 EST
Nmap scan report for 192.168.56.101
Host is up (0.00049s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind

Nmap done: 1 IP address (1 host up) scanned in 13.18 seconds
$

Notice that this time, only two services are displayed. Keep in mind that even though the
outside world may not see all of the services, you still should disable unneeded
network services.

The -sT option allows you to scan for services using TCP. Some network services use
UDP. To scan for these with nmap, use the -sU option as shown here:

$ sudo nmap -sU 127.0.0.1
[sudo] password for Christine:

http://technet24.ir/

Administering Network Security 537

c10.indd 03/27/2015 Page 537

Starting Nmap 5.51 (http://nmap.org) at 2015-03-07 13:27 EST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000022s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
68/udp open|filtered dhcpc
111/udp open rpcbind
631/udp open|filtered ipp

Nmap done: 1 IP address (1 host up) scanned in 1.29 seconds
$

Notice that superuser privileges are required to run a UDP scan, whereas they were not
required for running a TCP scan. In the previous example, there are three network services
being offered: dhcpc listening at port 68, rpcbind listening at port 111, and ipp listening at
port 631.

Nmap is capable of more sophisticated scans, including “stealth” scans that aren’t likely
to be noticed by most types of fi rewalls, ping scans to detect which hosts are active, and
more. The Nmap man page provides details. You can also fi nd out more about Nmap at
www.nessus.org.

Another scanning tool called Nessus, which is built atop Nmap, provides a graphical user
interface. It also offers a means of performing automated and sophisticated tests. Nessus is
a more sophisticated scanner in that it checks for known vulnerabilities.

Nessus comes as separate client and server components; the client enables you to
control the server, which does the actual work. You can fi nd out more about Nessus
at www.nessus.org.

You can use a stand-alone Linux boot CD-ROM to perform security checks
on a network. Special Linux distributions intended for this purpose, such
as Kali Linux (http://www.kali.org), provide easy access to Nmap and
other network security tools. These special distributions enable quick
checks of a network’s security even if no computer on that network
 regularly runs Linux.

Using fuser
Another handy network port auditing tool is the fuser command. You can use this tool
to determine the processes currently using a particular network port. For example, to see
what process is currently using network port 22, use fuser and pass the port number and
network protocol in the following manner:

$ sudo fuser 22/tcp
[sudo] password for Christine:
22/tcp: 1415 1881 1885
$

http://technet24.ir/

538 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 538

$ ps 1415
 PID TTY STAT TIME COMMAND
 1415 ? Ss 0:00 /usr/sbin/sshd
$
$ ps 1881
 PID TTY STAT TIME COMMAND
 1881 ? Ss 0:00 sshd: Christine [priv]
$
$ ps 1885
 PID TTY STAT TIME COMMAND
 1885 ? S 0:00 sshd: Christine@pts/0
$

In the preceding display, the fuser command produces three process IDs (PIDs). Each of
these processes is using port 22 with TCP. Using the ps command, you can investigate each
process further. However, there is an easier way. Simply add the -v option on the fuser
command to see all of the processes’ information in one straightforward command:

$ sudo fuser -v 22/tcp
 USER PID ACCESS COMMAND
22/tcp: root 1415 F.... sshd
 root 1881 f.... sshd
 Christine 1885 F.... sshd
$

This method provides a quick analysis of who is using port 22. Notice that each time
you use fuser, superuser privileges are required.

The ACCESS column in the preceding display indicates whether or not the process has a
fi le open (f) or a fi le open for writing (F). The fuser utility is similar to the lsof utility in
that it can also view processes accessing fi les.

Notice that the fuser command uses the syntax of Port/Protocol to
denote which port and protocol to inspect. This option matches the output
of the syntax used by Nmap’s scan output. Therefore, in security scripts,
you could use various filter commands (see Chapter 1, “Exploring Linux
Command-Line Tools”) to pull information from nmap output and feed it
into fuser commands to produce audit or security incident reports.

There is also another format of the fuser command to view network processes using a
 particular port. In the following example, the -n option is used. Notice that the -v option is still
included; however, the formatting of the port number and network protocol have changed:

$ sudo fuser -nv tcp 22
[sudo] password for Christine:
 USER PID ACCESS COMMAND
22/tcp: root 1415 F.... sshd
 root 1881 f.... sshd
 Christine 1885 F.... sshd
$

http://technet24.ir/

Administering Network Security 539

c10.indd 03/27/2015 Page 539

This displays the exact same output as previously. Since they both display the same
thing, use the syntax that is easier for you to remember.

To obtain information for other ports and protocols, just modify the options passed to
the fuser command. For example, to check what processes are accessing port 631 using the
UDP protocol, issue the following fuser command:

$ sudo fuser -nv udp 631
 USER PID ACCESS COMMAND
631/udp: root 1276 F.... cupsd
$

Each of the various auditing tools covered so far provide different types of information
that can be useful for different security tasks. One task, however, doesn’t come with a help-
ful auditing tool. You must sit down and review server confi guration fi les, as covered in the
next section.

Examining Configuration Files
Most Linux server packages include confi guration fi les. Thus, you may be able to spot
installed but unwanted servers by looking for their confi guration fi les.

Startup scripts are described in Chapter 5, “Booting Linux and Editing Files,” so review
that chapter for details of how they’re managed. If you fi nd such a script for a server that
you know you don’t want to run, you should disable it as described in Chapter 5. Keep
in mind that server startup scripts and management tools are different depending upon
whether your distribution uses SysV, Upstart, or systemd for managing system services.

Be aware that many startup scripts start entire subsystems that aren’t directly network-
related. Thus, you’ll probably see startup scripts that you don’t recognize. You should not
automatically disable these scripts because they may be necessary even if you don’t recognize
the name. If in doubt, leave them in place until you can research the matter further.

Try doing a Web search on the name of the startup script, possibly in
conjunction with “Linux” or “startup script.” Chances are that you’ll find a
helpful reference.

If your system uses xinetd, you should examine your xinetd confi guration fi les for
unwanted servers. Unlike system startup scripts, super servers launch network servers
only, not non-network services. Therefore, you should take a more aggressive approach
to disabling entries that you don’t recognize from your super server confi guration than you
do with system startup scripts.

On older distributions using the SysV startup system, /etc/inittab deserves examina-
tion. This fi le is used to control some of the earliest stages of the startup process. Older
/etc/inittab installations would start processes that accepted text-mode logins. They also
started additional similar processes used to accept logins via dial-up modems and RS-232
serial ports. This can be an issue from a security viewpoint. While it’s unlikely, you may

http://technet24.ir/

540 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 540

be surprised to fi nd a long-forgotten old dial-up modem still connected to a computer
server. You want to check to ensure that an older system isn’t listening for dial-up modem
 connections! Files called /etc/init/tty# (where # is a number) control local login access,
whereas /etc/init/ttyS# fi les control RS-232 serial or modem access.

Modern systems lack /etc/inittab or have only very basic /etc/inittab fi les.
Typically, the original /etc/inittab functions have been moved into other fi les, such
as startup scripts or fi les in /etc/init. You won’t ordinarily need to modify such
confi gurations.

Uninstalling or Reconfiguring Servers
Once you’ve identifi ed an unnecessary server, your task becomes one of shutting it down.
Broadly speaking, two options exist.

First, you can disable the server by changing its startup script confi guration or, if it
uses the system’s super daemon, disabling it in the daemon’s confi guration fi les. Consult
Chapter 5 for details on how to change a server’s startup script and/or the preceding sec-
tions on xinetd for details on how to disable xinetd via its confi guration fi les. Disabling
the server in this way has the advantage that you can easily reactivate it in the future if you
decide to do so. It has the disadvantage that the server’s fi les will continue to consume disk
space, and the server might be accidentally reactivated in the future.

Second, you can completely uninstall the server using your distribution’s package
 management tools or by otherwise deleting its fi les. Chapter 2, “Managing Software,”
describes this task. Completely uninstalling software has the advantage of reducing the
risk of accidental reactivation. However, it has the drawback that it will take more effort
to reactivate the server should you decide to do so in the future.

Overall, completely removing the server is generally preferable unless you merely want
to disable a server temporarily. If you decide to reactivate the server in the future, you can
always reinstall it.

Administering Local Security

Security isn’t limited to networking—local security issues can be as much of a threat
as remote intruders. Thus, you should attend to some local security matters: securing
passwords, limiting root access to the computer, auditing user access, setting user limits,
and tracking down SUID/SGID fi les.

Securing Passwords
A default Linux confi guration relies heavily on passwords. Users’ passwords are their keys
into the system. Careless password handling is much like the careless handling of physical
keys. In either case, security breaches can result. Understanding these risks is critical to
maintaining system security, but this is one task for which you must enlist the help of

http://technet24.ir/

Administering Local Security 541

c10.indd 03/27/2015 Page 541

your users. You should also be aware of some of the tools that Linux provides to help
keep passwords secure. (Most of the details concerning password-related commands are
described in Chapter 7, “Administering the System.”)

Looking at Password Risks
Passwords can end up in attackers’ hands in various ways, and you must take steps to mini-
mize the risk. You can take the following steps to improve your system’s security:

Use Strong Passwords Users should employ good passwords, as described shortly in
“Choosing a Good Password.” Educate your system’s users on how to build strong pass-
words and use policies and tools to enforce them.

Change Passwords Frequently You can minimize the chance of damage due to a compro-
mised password by changing passwords frequently. Some Linux tools can help to enforce
such changes, as described briefl y in the section “Using Tools for Password Management,”
and in more detail in Chapter 7.

Use Shadow Passwords If an attacker has gained access to your system or a regular user
is a troublemaker, be aware that either of them can read data stored in the password fi le
/etc/passwd. This is because the /etc/passwd fi le is world-readable. If for some reason
your Linux distribution stores its passwords in there, your system is vulnerable! Even
though passwords are hashed, there are several hashed password–cracking programs
 available. For this reason, you should store passwords in /etc/shadow. This fi le is only
readable by the superuser.

All major Linux distributions use shadow passwords by default. If yours doesn’t, you
can type pwconv to move all password information from the /etc/passwd file to the
locked-down /etc/shadow file. It’s a good idea to run the pwck utility after the conversion
to ensure that the files are in sync.

Keep Passwords Secret You should remind your users not to reveal their passwords to
others. Such trust is sometimes misplaced, and sometimes even a well-intentioned password
recipient may slip up and let the password fall into the wrong hands. This can happen by
writing the password down, storing it in electronic form, or sending it by email or other
electronic means. Users shouldn’t email their own passwords to themselves because email
can be intercepted.

Use Secure Remote Login Protocols Certain remote login protocols are inherently insecure
because they allow data to traverse the network in an unencrypted form. Intervening
computers can be confi gured to snatch passwords from such sessions. Because of this, it’s
best to disable Telnet, FTP, and other protocols that use cleartext passwords in favor of
protocols that encrypt passwords, such as SSH and SFTP.

Be Alert to Shoulder Surfing If your users log in using public terminals, as is common on
college campuses and other open areas, it’s possible that others will be able to watch them
type their passwords, a practice sometimes called shoulder surfi ng. Users should be alert to
this possibility and minimize such logins if possible.

http://technet24.ir/

542 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 542

Use Each Password on Just One System If one computer’s password database is compromised
and if users of that system reuse their passwords on other systems, those other systems can
also be compromised. For this reason, it’s best to use each password just once.

Unfortunately, the proliferation of websites that require passwords for access makes this
rule almost impossible to enforce, at least without violating the rule of not writing the
password down. (Web browsers can remember passwords for you, by storing them in a
file—essentially, writing them down.) A reasonable compromise might be to use one
password for the least-sensitive websites (such as online newspapers) and unique passwords
for sensitive websites (such as banking sites) and login accounts.

Be Alert to Social Engineering Attackers often use social engineering to obtain
 passwords. This practice involves tricking individuals into giving up their passwords by
pretending to be a system administrator or by otherwise misleading victims. Amazingly, a
large percentage of people fall for this ploy.

A related practice is phishing, in which an attacker puts up a fake website or sends an email
that seems to be from somebody else. The victim is then lured into revealing sensitive data
(such as credit card numbers).

Some of these steps are things you can do, such as replacing insecure remote login
protocols with encrypted ones. Others are things your users must do. This illustrates the
importance of user education, particularly on systems with many users.

Choosing a Good Password
As a general rule, users tend to pick passwords that are too easy to guess, and they change
those passwords infrequently. Fortunately, Linux includes tools to help make your users
select good passwords and change them regularly.

Poor but common passwords include those based on the following:

 ■ Any simple keyboard or alphanumeric combination, such as abcd or 123456

 ■ The word password

 ■ The names of family members, friends, and pets

 ■ Favorite books, movies, television shows, or the characters in any of these

 ■ Telephone numbers, street addresses, or Social Security numbers

 ■ Any other meaningful personal information

 ■ Any single word that’s found in a dictionary (in any language)

The best possible passwords are random collections of letters, digits, and punctuation.
Unfortunately, such passwords are diffi cult to remember. A reasonable compromise is to
build a password in two steps:

1. Choose a base that’s easy to remember but difficult to guess.

2. Modify that base in ways that increase the difficulty of guessing the password.

One approach to building a base is to use two unrelated words, such as bun and pen.
You can then merge these two words (bunpen). Another approach, and one that’s arguably

http://technet24.ir/

Administering Local Security 543

c10.indd 03/27/2015 Page 543

better than the fi rst, is to use the fi rst letters of a phrase that’s meaningful to the user. For
instance, the fi rst letters of “yesterday I went to the dentist” become yiwttd. In both cases,
the base should not be a word in any language.

As a general rule, the longer the password, the better. Older versions of Linux could
handle passwords of no more than eight characters, but those limits have been lifted
by the use of the MD5 and SHA password hashes, which are the standard on modern
Linux distributions. Many Linux systems require passwords to be at least four to six
characters in length; the passwd utility won’t accept anything shorter than the
distribution’s minimum.

With the base in hand, it’s time to modify it to create a password. The user should apply
at least a couple of several possible modifi cations:

Adding Numbers or Punctuation One important modifi cation is to insert random num-
bers or punctuation in the base. This step might yield, for instance, bu3npe&n or y#i9wttd.
As a general rule, add at least two symbols or numbers.

Mixing Case Linux uses case-sensitive passwords, so jumbling the case of letters
can improve security. Applying this rule might produce Bu3nPE&n and y#i9WttD,
for instance.

Growing the Haystack A would-be intruder’s task of discovering a password has been
likened to fi nding a needle in a haystack. One way to make this task harder is to increase
the size of the haystack. In password terms, this means making a password longer. You
can do this by using longer words or phrases, of course, but this can make a password
harder to remember and type. Even a size increase that simply repeats a single charac-
ter can be helpful. Thus, you might turn the passwords into Bu3nn&EPiiiiiiiiii or
Dtt:::::::::::W9i#y.

Your best tool for getting users to pick good passwords is to educate them. Tell
them that malicious individuals who know them or even who target them can guess
their passwords. Inform users that their personal information can be looked up on
social media, on company websites, on online professional networking sites, and so
on. Educating your users on proper password creation and management will help them
understand the potential threats and help to motivate at least some of them to pick
good passwords.

Password cracking tools are not just available to attackers and trouble-
makers. You can use them as well. Use password cracking tools against
passwords in your system’s /etc/shadow file. Work with your company’s
management first to determine how to handle users who habitually pick
easily cracked passwords properly.

Another password security issue is password changes. Frequently changing passwords
minimizes the window of opportunity for troublemakers to do damage. If an attacker
obtains a password but it changes before that password is used, disaster is averted.

http://technet24.ir/

544 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 544

Some system administrators set up a honeypot account. A honeypot
account is a system account with a fairly easy-to-crack password. The
account is locked down from accessing anything on the system, and it’s
also monitored. If a login occurs, you know that the /etc/shadow file has
been compromised and you can take appropriate actions, such as having
all of your users change their passwords.

As described shortly, you can confi gure accounts to require periodic password changes.
When so confi gured, an account will stop accepting logins after a time if the password
isn’t changed periodically. You can confi gure the system to warn users when this time is
approaching. This is a very good option to enable on sensitive systems or those with
many users.

Using Tools for Password Management
Most Linux distributions use shadow passwords by default, and for the most part,
this chapter is written with the assumption that this feature is active. In addition to
providing extra security by moving hashed passwords out of the world-readable /etc/
passwd fi le and into the more secure /etc/shadow fi le, shadow passwords add extra
account information.

One of the advantages of shadow passwords is that they support password aging and
account expiration features. These features enable you to enforce password changes at
regular intervals or to disable an account automatically after a specifi ed period of time. You
can enable these features and set the times using the chage command, which is described in
more detail in Chapter 7.

The usermod utility, also described in Chapter 7, can be used to adjust some shadow
password features, such as account expiration dates. The chage command is more
thorough with respect to account security features, but usermod can adjust more
nonsecurity account features.

Limiting root Access
Because root can do anything on a Linux computer, access to that account must of course
be limited. On a system with a single administrator, this can be accomplished by having the
administrator set a unique root password that nobody else knows. This user can then log
in directly as root if needed.

Using su
The single system administrator just described can also use the su command to acquire
root privileges. The su command’s name stands for switch user, and it’s used to switch to
another user’s account.

Typing su alone results in a prompt for the root password. If the user types that
 password correctly, the session effectively becomes a root session.

http://technet24.ir/

Administering Local Security 545

c10.indd 03/27/2015 Page 545

If you just type su to access the root account, be aware that not every-
thing may be set up correctly to perform tasks that require superuser privi-
leges. It’s better to type the command su - to switch to the root account.
The dash (-) after the su command starts a new shell environment and
executes the root’s profile.

You can also type a username after su to acquire that user’s privileges. When root does
so, no password is required. This is sometimes handy for investigating problems reported by
a single user.

To run a single program with root privileges, use -c to specify the program name. For
example, type su -c "lsof -i" to run the lsof -i command as root.

Logging in directly as root is generally discouraged for several reasons: No record
of who typed the password appears in log fi les; the root password can be intercepted in
various ways; and if the user leaves the terminal, a passerby can hijack the computer. Using
su is somewhat better than a direct login from a security point of view, because use of su
generally leaves a trace in system logs of who became root.

Using sudo
A method of acquiring root access that is more secure than either direct logins or su is sudo.
This program runs a single command as root; for instance, to run lsof -i as root, you type:

$ sudo lsof -i
[sudo] password for georgia:

In this example, the computer prompts for the user’s (georgia’s) password, not for the
root password. The idea behind sudo is that you fi rst confi gure the computer to accept
 certain users as sudo users. Those users may then use their own passwords to perform
superuser tasks, even if those users don’t have the root password.

All use of the sudo command is tracked. Pertinent data, such as who did what and when,
is stored in the /var/log/secure fi le.

Logging in as the root user can set up what is called a repudiation environ-
ment. A repudiation environment means that a person can deny actions.
Therefore, if a system administrator uses the root account to perform some
illegal or troublemaking activity, they can legally deny being responsible for
that activity. Systems where every user has an account and password and no
one can log into the root user’s account sets up a non-repudiation environ-
ment. This means that actions are logged and responsibility for them cannot
be easily denied. A non-repudiation environment can be created using sudo.

You can fi ne-tune what tasks users may perform using sudo. This is done via the /etc/
sudoers confi guration fi le. You must edit this confi guration fi le via visudo, which is a
variant of the vi editor (described in Chapter 5) that’s used only to edit /etc/sudoers.

http://technet24.ir/

546 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 546

The /etc/sudoers fi le consists of two types of entries:

Aliases

User specifi cations

Aliases are basically variables. You can use them to defi ne groups of commands, groups
of users, and so on. User specifi cations link users to machines and commands (possibly
using aliases for some or all options). Thus, you can confi gure sudoers such that georgia
can run network programs with root privileges but not account maintenance tools,
whereas henry can run account maintenance tools but not network programs.

Your default /etc/sudoers fi le probably includes several examples. Consider the
following lines:

$ sudo cat /etc/sudoers
[sudo] password for Christine:

[...]
Storage
Cmnd_Alias STORAGE = /sbin/fdisk, /sbin/sfdisk, /sbin/parted,[...]
#
Processes
Cmnd_Alias PROCESSES = /bin/nice, /bin/kill, /usr/bin/kill,[...]
#
[...]
#
%sys ALL = STORAGE, PROCESSES
#
%disk ALL = STORAGE
#
%wheel ALL=(ALL) ALL
[...]
$

This example defi nes two command aliases, STORAGE and PROCESSES, each of which
stands in for a set of commands. Users who are members of the sys group may use both
sets of commands. Users who are members of the disk group may use the STORAGE
commands but not the PROCESSES commands. Users who are members of the wheel group
may use all commands, whether or not they’re explicitly mentioned in /etc/sudoers.

If you desire to set up a non-repudiation environment, be aware that
some commands will need to be blocked within the /etc/sudoers file. For
example, a user who is a member of the wheel group in the preceding
/etc/sudoers file could type sudo su - at the command line. To prevent
this from occurring, add the command you wish to block preceded by an
exclamation point (!). However, once you add this blocked command, you
must include all of the allowed commands. For example, the wheel group’s
record may now look like this:

%wheel ALL=(ALL) !/bin/su, /bin/, /sbin/, /usr/bin/, /usr/sbin/

http://technet24.ir/

Administering Local Security 547

c10.indd 03/27/2015 Page 547

Some distributions, such as Ubuntu, make heavy use of sudo. These distributions are
designed to be administered exclusively via sudo, and they set up an /etc/sudoers fi le
that provides at least one user with easy access to all system utilities. Other distributions
don’t rely on sudo this way, although you can tweak your sudo confi guration to enable
administration via sudo if appropriate.

Auditing User Access
There are various times you may need to view system user access. It could be that you are
looking into a potential security break, performing an investigation for your company’s HR
department, determining if anyone is still logged on prior to a system shutdown, and so on.
There are several tools available at the command line to conduct such audits.

Determining Who Is Logged On
For determining who is currently logged onto a system, there are two primary commands
to use:

who

w

The who command simply shows you who is currently logged onto a system. It displays
the username, their current terminal, and the time they logged into the system as follows:

$ who
Christine tty2 2015-11-10 11:53
Timothy tty3 2015-11-10 12:33
Rich tty4 2015-11-10 12:36
[...]
$

You can determine a great deal of additional information with the who command by
using the -a option:

$ who -a
 system boot 2015-11-11 08:17
 run-level 5 2015-11-11 08:17
Christine + tty2 2015-11-11 11:53 00:38 1569
Timothy + tty3 2015-11-11 12:33 00:41 1571
Rich + tty4 2015-11-11 12:36 00:39 3086
LOGIN tty5 2015-11-11 08:17 1576 id=5
LOGIN tty6 2015-11-11 08:17 1578 id=6
[...]
$

The fi rst line displayed shows when the system was booted. The second line shows the
current system runlevel, which is 5. (See Chapter 5 for more information on runlevels.) The
next several lines show what users are currently logged in, when they logged in, and their
process ID (PID) numbers.

http://technet24.ir/

548 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 548

Finally, in the previous example, you can see the virtual console terminals that are not
currently in use, such as tty5, and the PID for the program connected to that terminal. You
can fi nd out more about a particular program or logged-in user by using the ps command
along with the listed PID. For example, you can see that the /sbin/mingetty program is
handling the login screen at the tty5 virtual console terminal:

$ ps 1576
 PID TTY STAT TIME COMMAND
 1576 tty5 Ss+ 0:00 /sbin/mingetty /dev/tty5
$

The who command pulls its data from the /var/run/utmp or /run/utmp file,
depending upon your distribution. To determine which file is used on your
distribution by who, using superuser privileges, type locate utmp at the
command line.

Though a much shorter command, by default, the w command shows a signifi cant
amount of information concerning logged-in users:

$ w
 13:24:25 up 5:07, 4 users, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
Christin tty2 - 11:53 48:00 1.83s 1.83s -bash
Timothy tty3 - 12:33 50:32 0.31s 0.31s -bash
Rich tty4 - 12:36 48:20 0.11s 0.11s -bash
[...]
$

The w command shows not only who is logged into the system but also what they are
doing as well as statistics concerning CPU usage. The JCPU column shows all of the CPU
time used by any processes currently attached to a particular virtual console terminal. This
time includes any currently running background jobs, but not previously run background
jobs. The PCPU column shows all of the current CPU time consumed by the program listed
in the WHAT column.

The w command uses the utmp fi le data for its display. Information stored in the /proc/
directory is used by the w command as well.

You can fi nd out more about the w and who commands by looking through their
man pages. While both the w and who commands are useful, they display only current
information. If you need historical data on a particular user, there is a different command
to use, as described in the next section.

Determining Last Access to the System
The last command can provide current and historical data concerning users logging into
and out of your system. To display the information, simply type last at the command line.
However, because there is potentially a great deal of information to display, it’s a good idea
to pipe the output into a pager, like less. Such a case is shown in Figure 10-1.

http://technet24.ir/

Administering Local Security 549

c10.indd 03/27/2015 Page 549

F I GU R E 10 .1 The last command output

The data displayed comes from the /var/log/wtmp fi le. The last command displays
the newest data fi rst. Therefore, you should see any users currently logged into the
system, denoted by the still logged in tag. The date and time shown in each user
record indicates when a user logged into the system and when they logged out. In some
cases, a user was logged into the system when the system shut down, as indicated by the
down keyword.

Be aware that the /var/log/wtmp file may be rotated by the logrotate util-
ity (see Chapter 7 for more information on logrotate). If you need to view
older /var/log/wtmp file versions, you can use the -f option on the last
command. For instance, if you rotate your wtmp file and an older version
you want to view is named /var/log/wtmp.1, you should type last
-f /var/log/wtmp.1 at the command prompt.

If you want to view just a particular user’s log in and out activities, you can pass the
username as a parameter. For example, to see if anyone has been directly accessing the root
account, enter the following:

$ last root
root tty3 Wed Nov 12 09:32 - 09:35 (00:02)
root pts/0 192.168.56.1 Fri Nov 7 10:38 - 13:04 (02:25)
root tty2 Wed Oct 29 11:37 - down (02:36)
root tty3 Fri Oct 10 08:03 - down (02:20)
root tty2 Tue Sep 30 09:44 - down (02:29)

wtmp begins Tue Mar 18 15:25:03 2015
$

Notice in the previous example that remote accesses are also logged, along with
their source address (192.168.56.1). Also, you can see when the /var/log/wtmp fi le
was started.

Any attempts to use su - to log in as root are not recorded in these files.
This is another reason the use of sudo should be employed to maintain a
non-repudiation environment on your system.

http://technet24.ir/

550 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 550

Failed login attempts are stored in the /var/log/btmp fi le. To see any failed login
attempts, you can also use the last command. Just add the -f option, as shown in this
snipped example here:

$ sudo last -f /var/log/btmp
[sudo] password for Christine:
root tty3 Wed Nov 12 09:35 gone - no logout
root tty3 Wed Nov 12 09:35 - 09:35 (00:00)
[...]
btmp begins Sat Nov 8 15:11:24 2015
$

An easier way to display this information is to use the lastb command. The lastb
 command shows all of the failed login attempts and uses all of the same options as the last
command. Here is a snipped example using lastb to display failed login attempts:

$ sudo lastb
[sudo] password for Christine:
root tty3 Wed Nov 12 09:35 - 09:35 (00:00)
root tty3 Wed Nov 12 09:35 - 09:35 (00:00)
[...]
btmp begins Sat Nov 8 15:11:24 2015
$

Notice that when using both the last command and the lastb command to display
failed login attempts, you must have superuser privileges. This is due to the /var/log/btmp
fi le being secured via permissions to keep attackers from changing failed login information
as shown here:

$ ls -l /var/log/btmp
-rw-------. 1 root utmp 3840 Nov 12 09:35 /var/log/btmp
$

Some distributions have the dump-utmp utility. If yours does, you can dump
out any of the files covered in this last section in a human-readable format.
This includes the utmp files, /var/log/wtmp files, and /var/log/btmp files.
This tool is helpful in producing audit reports with shell scripts. To find out
more about this utility, type man dump-utmp at the command prompt.

Another useful command in your auditing toolkit is the lastlog command. The last-
log utility pulls data from the /var/log/lastlog fi le. You can determine when a particular
user last logged into the system by adding the -u username option as shown here:

$ lastlog -u Christine
Username Port From Latest
Christine tty3 Wed Nov 12 10:20:36 -0500 2015
$

Be aware that if a particular user is logged into the system multiple times, lastlog will
not display multiple login entries. It only shows the last time a user logged into the system.

http://technet24.ir/

Administering Local Security 551

c10.indd 03/27/2015 Page 551

It is helpful to view every account’s /var/log/lastlog entry. You can use this as an
auditing tool to determine if accounts that should not be logged into have been accessed.
Here is a snipped example of this audit tool’s display:

$ lastlog
Username Port From Latest
root tty3 Wed Nov 12 09:32:51 -0500 2015
[...]
sshd **Never logged in**
tcpdump **Never logged in**
Christine tty3 Wed Nov 12 10:20:36 -0500 2015
sally **Never logged in**
Rich tty4 Tue Nov 11 12:36:01 -0500 2015
Timothy tty3 Tue Nov 11 12:33:08 -0500 2015
[...]
$

As you can see from the preceding example, the sshd account has never been logged
into, and that is a good thing! All of the auditing tools covered in this section can help you
keep an eye on your system to discover any potential security breaches. However, while
seeing what happened in the past is helpful, it’s even better to put limits in place to prevent
bad things from happening in the future.

Setting Login, Process, and Memory Limits
Sometimes you may want to impose limits on how many times users may log in, how much
CPU time they can consume, how much memory they can use, and so on. Imposing such
limits is best done through a Pluggable Authentication Modules (PAM) module called
pam_limits.

Most major Linux distributions use this module as part of their standard PAM confi gura-
tion, so chances are you won’t need to add it. However, you will still need to confi gure pam_
limits. You do so by editing its confi guration fi le, /etc/security/limits.conf. This fi le
contains comments (denoted by a hash mark, #) and limit lines that consist of four fi elds:

domain type item value

Each of these fi elds specifi es a particular type of information:

The Domain The domain fi eld describes the entity to which the limit applies. It can be a
username; a group name, which takes the form @groupname; or an asterisk (*) wildcard,
which matches everybody.

Hard or Soft Limits The type fi eld specifi es the limit as hard or soft. A hard limit is
imposed by the system administrator and cannot be exceeded under any circumstances,
whereas a user may temporarily exceed a soft limit. You can also use a dash (-) to signify
that a limit is both hard and soft.

The Limited Item The item fi eld specifi es what type of item is being limited. Examples
include core (the size of core fi les), data (the size of a program’s data area), fsize (the size

http://technet24.ir/

552 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 552

of fi les created by the user), nofile (the number of open data fi les), rss (the resident set
size), stack (the stack size), cpu (the CPU time of a single process in minutes), nproc (the
number of concurrent processes), maxlogins (the number of simultaneous logins), and
priority (the process priority). The data, rss, and stack items all relate to memory
consumed by a program. These and other measures of data capacity are measured
in kilobytes.

The Value The fi nal fi eld specifi es the value that’s to be applied to the limit.

As an example, consider a system on which certain users should be able to log in and
perform a limited number of actions but not stay logged in indefi nitely and consume vast
amounts of CPU time. You can use a confi guration like this one:

@limited hard cpu 2

This confi guration applies a hard CPU limit of 2 minutes to the limited group.
Members of this group can log in and run programs; however, if one of those programs
consumes more than two minutes of CPU time, it will be terminated.

CPU time and total system access time are two entirely different things.
CPU time is calculated based on the amount of time the CPU is actively
processing a user’s data. Idle time (for instance, when a user’s shell is
active but no CPU-intensive tasks are running) doesn’t count. Thus, a user
can log in and remain logged in for hours even with a very low hard CPU
time limit. This limit is intended to prevent problems caused by users who
run very CPU-intensive programs on systems that shouldn’t be used for
such purposes.

Another way to set limits on system resource use is via the ulimit command. This
command is a bash built-in command, so it affects only bash and programs launched from
it. The ulimit syntax is as follows:

ulimit [options [limit]]

The options (options) defi ne what is being limited:

Core File Limits The -c option limits the size of core dumps, which are fi les created for
debugging purposes in certain types of program crashes.

File Limits The -f option limits the size of fi les that may be created by the shell,
and -n limits the number of open fi le descriptors. (Most systems don’t honor the -n
limits, though.)

Process Limits The -u option limits the number of processes a user may run, and -t limits
the total CPU time in seconds.

Memory Limits The -v option sets the total amount of virtual memory available to the
shell, -s sets the maximum stack size, -m sets the maximum resident set size, -d limits
programs’ data set size, and -l sets the maximum size that may be locked into memory.

http://technet24.ir/

Administering Local Security 553

c10.indd 03/27/2015 Page 553

Hard and Soft Limits The -H and -S options modify other options, causing them to be set
as hard or soft limits, respectively. Hard limits may not be subsequently increased, but soft
limits may be. If neither option is provided, ulimit sets both the hard and soft limits for
the feature specifi ed.

Current Settings Passing -a causes ulimit to report its current settings.

The limit variable is typically a numeric value associated with the limit. The ulimit com-
mand is often found in system or user bash startup scripts, typically as ulimit -c 0, in order
to prevent creation of core fi les, which can sometimes clutter a fi lesystem. If your users per-
form software development, you may want to ensure that you do not set this limit, or at least
set it as a soft limit (as in ulimit -Sc 0) so that users may override it when necessary.

Because ulimit is a bash built-in command, its utility as a system security
tool is limited. If users have access to GUI login tools or can log into the
system in any way that bypasses bash (such as via SSH, depending on
how it’s configured), restrictions imposed by ulimit become meaningless.
Thus you should treat ulimit as a way to prevent problems because of
accidental, rather than intentional, abuse of the system.

One particular interesting limit involves the use of the /etc/nologin fi le. If this fi le is
present, only root may log into the computer. Other users are shown the contents of this
fi le when they attempt to log in.

In many respects, using /etc/nologin is like setting critical system limits to 0 for all
other users. This fi le can be useful on dedicated server systems that have no regular console
or remote shell users.

Locating SUID/SGID Files
Chapter 4, “Managing Files,” describes the SUID and SGID bits. In brief, these are special
fl ags that may be applied to executable program fi les. These fl ags cause Linux to treat the
program as if it were run by the program fi le’s owner (for SUID) or by the fi le’s group (for
SGID) rather than by the individual actually running the program. For instance, if a pro-
gram’s SUID bit is set and the program fi le is owned by bruce, the program, when run by
anybody, will be able to access all of the fi les owned by bruce and otherwise behave as if
bruce is running it.

The SUID and SGID bits are frequently associated with the root account
in order to enable them to perform tasks that require special privilege.
For instance, the passwd program (described in Chapter 7) is SUID root
because only root may modify the Linux password database. Thus,
for an ordinary user to change a password, some mechanism must exist
to run a process as root. That mechanism, in the case of passwd, is the
SUID bit.

http://technet24.ir/

554 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 554

The problem is that the SUID and SGID bits can be security risks. For instance, suppose
the rm program’s SUID bit was set. This program is normally owned by root, so setting the
SUID bit on rm would mean that any user could delete any fi le on the computer! Although
no Linux distribution sets the SUID bit on rm by default, the SUID bit can be set inappro-
priately or set by an attacker. For these reasons, you should periodically audit your
system to fi nd all of the SUID and SGID programs and, if appropriate, change their
permission settings.

To do this, you can use the find command (see Chapter 4). In particular, you can use
the -perm mode option, which searches for fi les with the specifi ed permission mode. To
search for SUID and SGID fi les, you should pass a mode value of +6000. The symbolic
representation for both the SUID and SGID bits is 6000, and the plus sign (+) tells find
to locate any fi le with any of the specifi ed bits set. You may also want to pass the -type
f option, which restricts the search to regular fi les. (Directories use the SUID and SGID
bits differently, as described in Chapter 4.) Thus, to search the entire computer for SUID
and SGID programs, you type this:

$ sudo find / -perm +6000 -type f
[sudo] password for Christine:
/lib64/dbus-1/dbus-daemon-launch-helper
/home/Christine/bigprogram.sh
/sbin/pam_timestamp_check
/sbin/netreport
/sbin/unix_chkpwd
[...]
$

You can search for SUID files alone by passing +4000 or -u=s. Also, you
can search for SGID alone by passing +2000 or -g=s.

The result is a list of fi les, one per line, that have either the SUID or the SGID bits set.
Programs that are likely to be present in this list include su, ping, mount, passwd, umount,
and sudo. These programs all have a legitimate need to be so confi gured.

Most systems have additional SUID and SGID programs, some of which may seem
trivial. If you have doubts about whether the program really needs SUID or SGID status,
you should investigate further. Try verifying the package integrity using your package
management tools and perform a Web search on the program name and SUID or SGID, as
appropriate. You can also try changing the SUID status of the program using chmod, as
described in Chapter 4, and see if it still works as it should when run by a normal user.

Programs that are SUID or SGID root, but shouldn’t be, can be a sign of
compromised system. Attackers might reconfigure programs this way
in order to cause trouble more easily. Thus, if you find such programs,
investigate the overall integrity of the system.

http://technet24.ir/

Configuring SSH 555

c10.indd 03/27/2015 Page 555

Configuring SSH

In the past, Telnet was the remote text-mode login protocol of choice on Linux and Unix
systems. Unfortunately, Telnet is severely lacking in security features. Thus, in recent years
SSH has grown in popularity, and it is now the preferred remote login tool. SSH can also
handle fi le transfer tasks similar to those of FTP. For these reasons, knowing how to con-
fi gure SSH can be very helpful. This task requires knowing a bit about SSH generally and
about the SSH confi guration fi les within Linux.

SSH is complex enough that only its basics are covered in this chapter. For
more details, consult OpenSSH’s documentation or a book on the topic,
such as SSH, The Secure Shell: The Definitive Guide, Second Edition, by
Daniel J. Barrett, Richard Silverman, and Robert G. Byrnes (O’Reilly, 2005)
or SSH Mastery: OpenSSH, PuTTY, Tunnels and Keys (CreateSpace, 2012)
by Michael W. Lucas.

Understanding SSH Basics
Linux supports remote login access through several different servers, including Telnet,
Virtual Network Computing (VNC), and even X. Unfortunately most of these methods
suffer from a major drawback: they transfer data over the network in an unencrypted form.
This fact means that anybody who can monitor network traffi c can easily snatch sensitive
data, often including passwords. (VNC and a few other protocols encrypt passwords but not
other data.)

This security limitation keeps these remote login tools from being highly useful. If using
a remote access tool means that you’ll be giving away sensitive data or compromising your
entire computer, it’s not a very useful tool.

Use these nonencrypting remote access tools at your own risk. It is better
to not use them.

SSH was designed to close this potential major security hole by employing strong
encryption techniques for all parts of the network connection. SSH encrypts the
password exchange and all subsequent data transfers, making it a much safer protocol
for remote access.

In addition to encryption, SSH provides fi le transfer features and the ability to
tunnel other network protocols. This feature enables nonencrypted protocols to piggyback
their data over an SSH connection, thus delivering SSH’s encryption advantages to
other protocols.

http://technet24.ir/

556 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 556

The main drawback of SSH is that the encryption and decryption con-
sumes CPU time. This fact slows down SSH connections compared to
those of direct connections and can degrade overall system performance.
If you tunnel a protocol that transfers much more data, you may see a
greater performance drop when using SSH. However, the improved
security is generally worth the slight speed cost.

Several SSH servers are available for Linux, but the most popular by far is the OpenSSH
server (www.openssh.org). This program was one of the fi rst open source implementations
of the SSH protocol. OpenSSH ships with most Linux distributions.

OpenSSH may be launched either via the xinetd super daemon or via a startup script.
Most distributions deliver suitable startup scripts with their SSH packages.

If you make changes to your SSH confi guration, you may need to pass the reload or
restart option to the startup script, as in /etc/init.d/sshd reload. (Chapter 5 covers
startup scripts in more detail.) However it’s launched, the OpenSSH server binary name
is sshd.

Setting SSH Options
For the most part, SSH works reasonably well when it’s fi rst installed, so you may not need
to make any changes to its confi guration. If you do need to make changes, though, these
are mostly handled through the main SSH confi guration fi le, /etc/ssh/sshd_config. You
can also edit some additional fi les to limit access to the SSH server or to change how SSH
manages the login process.

Configuring Basic SSH Features
The /etc/ssh/sshd_config fi le consists mainly of option lines that take the
following form:

option value

Don’t confuse the sshd_config file with the ssh_config file. The former
controls the OpenSSH server, whereas the latter controls the SSH client
program, ssh.

In addition to confi guration lines, the sshd_config fi le holds comments, which are
denoted by hash marks (#). Most sample confi guration fi les include a large number of SSH
options that are commented out. These lines specify the default values, so removing a line’s
hash mark without otherwise changing the value will have no effect.

Most options’ default values are suitable for most systems. The following list includes
some that you may want to check and, perhaps, change:

http://technet24.ir/

Configuring SSH 557

c10.indd 03/27/2015 Page 557

Protocol This option specifi es the protocol levels OpenSSH understands. Possible values
are 1 and 2. You can confi gure OpenSSH to support both protocols by separating them by
a comma, as in 1,2 or 2,1, which are equivalent. OpenSSH protocol level 1 is no longer
considered secure. Therefore, the safest confi guration is to set Protocol 2. This limits the
server’s ability to communicate with older clients, though.

PermitRootLogin By default, this option is set to yes, which enables OpenSSH to accept
direct logins by root. This is safer than a similar confi guration under Telnet, but for a bit
of added security, set this value to no. The result will be that anybody wanting to perform
remote work using superuser privileges will need fi rst to log in as an ordinary user.

X11Forwarding This option specifi es whether OpenSSH’s X tunneling features should
be active. If you want to enable remote users to run GUI programs via SSH, you must set
this option to yes. Doing so can slightly degrade security of the client’s X display, though,
depending on certain other options, hence the conservative default value of no.

For information about additional options, consult the man page for sshd_config. If
you make changes to the SSH confi guration, remember to restart it using the server’s
startup script.

Managing SSH Keys
Part of SSH’s security involves encryption keys. Each server system and each user has
a unique number, or key, for identifi cation purposes. In fact, SSH uses a security system
that involves two keys: a public key and a private key. These two keys are mathematically
linked in such a way that data encrypted with a particular public key may be decrypted
only with the matching private key.

When establishing an SSH connection, each side sends its public key to the other.
Thereafter, each side encrypts data with the other side’s public key, ensuring that only the
intended recipient can decrypt the data. In practice, this is just the fi rst step of the process,
but it’s critical. What’s more, SSH clients typically retain the public keys of servers they’ve
contacted. This enables them to spot changes to a public key. Such changes can be signs of
tampering, so if a client detects such a change, it will warn its user of this fact.

Most OpenSSH server startup scripts include code that looks for stored public and pri-
vate keys and, if they’re not present, generates them. In total, four to six keys are needed:
public and private keys for two or three encryption tools that SSH supports. These keys are
normally stored in /etc/ssh and are called ssh_host_rsa_key and ssh_host_dsa_key
for private keys, depending on the encryption algorithm used. For public keys, the same
fi lenames are used, except a .pub fi lename extension is added to the fi le’s name. Some
systems also add ssh_host_rsa1_key and its associated public key.

If your system doesn’t have these keys and you can’t get the SSH server to start up, you
can try generating the keys with the following ssh-keygen commands:

ssh-keygen -q -t rsa1 -f /etc/ssh/ssh_host_key -C '' -N ''
ssh-keygen -q -t rsa -f /etc/ssh/ssh_host_rsa_key -C '' -N ''
ssh-keygen -q -t dsa -f /etc/ssh/ssh_host_dsa_key -C '' -N ''

http://technet24.ir/

558 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 558

Each of these commands generates both a private key (named in the -f parameter) and a
public key (with the same name but with .pub appended).

Don’t run these ssh-keygen commands if the SSH key fi les already exist! Replacing the
working fi les will cause clients who’ve already connected to the SSH server to complain
about the changed keys and possibly refuse to establish a connection.

Be sure the private keys are suitably protected; if an intruder obtains one of
these keys, the intruder can impersonate your system. Typically, these files
should have 0600 (-rw-------) permissions and be owned by root. The
public key files (with .pub filename extensions) should be readable by all
users, though.

When you confi gure a client system, you may want to consider creating a global cache of
host keys. As already noted, the ssh program records host keys for each individual user. (It
stores these in the ~/.ssh/known_hosts fi le.) When you set up the client, you can populate
the global ssh_known_hosts fi le, which is normally stored in /etc or /etc/ssh. Doing so
ensures that the public key list is as accurate as the sources you use to populate the global
fi le. It also eliminates confi rmation messages when users fi rst connect to the hosts whose
keys you’ve selected to include in the global fi le.

How do you create this fi le? One simple way is to copy the fi le from a user account that’s
been used to connect to the servers you want to include, as shown here:

$ sudo cp /home/Rich/.ssh/known_hosts /etc/ssh/ssh_known_hosts
[sudo] password for Christine:
$

In the past, you could review SSH’s known hosts file in a text editor since
it’s a text-mode file. Now OpenSSH v4.0 and newer versions support hash-
ing this file’s data. When this feature is enabled, the information is hashed
and stored. The idea is that you’ll still be able to authenticate SSH servers
to which you connect because a hash of the typed hostname will match
a hash of the stored hostname. However, if an attacker steals your known
hosts file, the attacker will be unable to determine the identities of the
computers to which you’ve been connecting. An unfortunate side effect of
this hashing is that you can’t tell what servers it describes yourself.

Controlling SSH Access
You can limit who may access an SSH server in various ways. The most obvious and basic
method is via password authentication. The usual SSH authentication method is to employ
a username and password, much as Telnet does. The ssh client program sends the username
automatically or as part of the command line. Therefore, you won’t see a username prompt
when logging in via ssh, as shown in the example here:

http://technet24.ir/

Configuring SSH 559

c10.indd 03/27/2015 Page 559

$ ssh Christine@192.168.56.101
Christine@192.168.56.101's password:
Last login: Wed Nov 12 10:20:36 2015
$

The ssh command syntax requires the username to be placed before the @ symbol, as
shown in the previous example. After the @ symbol, the remote host’s IP address or name
is required. Once the connection is established, the username’s password must be entered
before access to the remote system is allowed.

Beyond password authentication, SSH supports several other types of limitations:

TCP Wrappers If you run SSH from a super server or if the server was compiled with TCP
wrappers support, you can use the /etc/hosts.allow and /etc/hosts.deny fi les to limit
access by IP address. Note that if you launch SSH via a system startup script, this approach
works only if the server was compiled to support it. This support may or may not be
present in your distribution’s standard SSH package.

Firewalls As with all servers, you can restrict access by using a fi rewall. SSH uses TCP
port 22. Technically, this isn’t an SSH feature, but it’s certainly useful for protecting an
SSH server.

/etc/nologin If this fi le is present, SSH honors it. As described earlier, this fi le’s presence
means that only root may log in. When a non-root user tries to log in locally, the fi le’s con-
tents are displayed as an error message. However, OpenSSH doesn’t do this.

Copying Files via SSH
Besides remote login access, SSH includes a fi le-copying command too: scp. This command
works much like the cp command for copying fi les locally. However, you must specify the
target computer, and optionally the username, just before the target fi lename. For instance,
to copy the fi le masterpiece.c to the lisa account on leonardo.example.com, you would
type this:

$ scp masterpiece.c lisa@leonardo.example.com:
$

The colon (:) that terminates this command is extremely important! If you omit it, you’ll
fi nd that scp works like cp, and you’ll end up with a fi le called lisa@leonardo.example
.com on the original system.

If you want to rename the fi le, you can do so by including the new name following the
colon. Likewise, you can place the fi le in a particular directory in the same way, as follows:

$ scp masterpiece.c lisa@leonardo.example.com:~/art/mona.c
$

This example copies masterpiece.c to the ~/art directory on the target computer and
renames it mona.c. If the specifi ed directory doesn’t exist, an error results and the fi le is not
transferred. If you specify a directory without a trailing slash or fi lename and you mistype
the directory name, scp will copy the fi le and rename it to your mistyped directory name.
(scp works just like cp in this respect.)

http://technet24.ir/

560 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 560

Configuring Logins without Passwords
If you use SSH a lot or if you use it in automated tools, you’ll no doubt become annoyed
by the need to type a password with every connection. There is a way around this require-
ment: You can set up the SSH client with keys and give the client’s public key to the server
computer. With this confi guration, the SSH client computer can identify itself, possibly
obviating the need for you to type a password.

Configuring SSH to operate without the use of passwords is convenient,
but it does increase security risks. If somebody you don’t trust ever gains
access to your account on the SSH client system, that person will be
able to log into the SSH server system as you without the benefit of your
 password. Thus, you should create a password-less login only from a
client that’s very well protected, if at all. Configuring access to the root
account in this way is particularly risky!

To confi gure SSH not to require a password, follow these steps:

1. Log into the SSH client system as the user who will be performing remote access.

2. Type the following command to generate a version 2 SSH key:

$ ssh-keygen -q -t rsa -f ~/.ssh/id_rsa -C '' -N ''

$

Step 2 generates a version 2 key. You can instead generate a version 1 key
by typing ssh-keygen -q -t dsa -f ~/.ssh/id_dsa -C '' -N ''. This
generates id_dsa and id_dsa.pub files. This procedure is not recom-
mended because SSH version 1 is not as secure as version 2. However,
these key files are listed in the certification objectives.

3. Step 2 generates two files: id_rsa and id_rsa.pub. Transfer the second of these files to
the SSH server computer in any way that’s convenient—via a USB flash drive, by using
scp, or by any other means. Copy the file under a temporary name, such as temp.rsa.

4. Log into the SSH server system. If you use SSH, you’ll need to type your password.

5. Add the contents of the file that you’ve just transferred to the end of the ~/.ssh/
authorized_keys file. (This file is sometimes called ~/.ssh/authorized_keys2, so you
should check to see which is present. If neither is present, you may need to experiment.)
Typing cat ~/temp.rsa >> ~/.ssh/authorized_keys should do this job, if you
stored the original file as ~/temp.rsa.

6. On some systems, you may need to modify permissions on the ~/.ssh/authorized_
keys file and on the directories leading to it. The authorized_keys file may require
0600 permissions, and you may need to remove write permissions for any but the
account’s owner on your home directory and on the ~/.ssh directory.

http://technet24.ir/

Configuring SSH 561

c10.indd 03/27/2015 Page 561

If you now log out of the SSH server system and try to log in again via SSH from
the client, you shouldn’t be prompted for a password; the two computers handle the
authentication automatically.

If this doesn’t work, chances are the ~/.ssh/authorized_keys fi le needs another name,
as described earlier. You may also want to check that the fi le includes a line matching the
contents of the original public-key fi le on the client. Some older clients may require you to
specify that you use version 2 of the SSH protocol by including the -2 option:

$ ssh -2 server

Using ssh-agent
Another SSH authentication option is to use the ssh-agent program. This program
requires a password to initiate connections, so it’s more secure than confi guring logins
without passwords; however, ssh-agent remembers your password, so you need to type it
only once per local session. To use ssh-agent, follow these steps:

1. Follow the procedure for enabling no-password logins described in “Configuring
Logins without Passwords,” but with one change: Omit the -N '' option from the
ssh-keygen command in step 2. You’ll be asked for a passphrase at this step. This
passphrase will be your key for all SSH logins managed via ssh-agent.

2. On the SSH client system, type ssh-agent /bin/bash. This launches ssh-agent,
which in turn launches bash. You’ll use this bash session for subsequent SSH logins.

3. In your new shell, type ssh-add ~/.ssh/id_rsa. This adds your RSA key to the set
that’s managed by ssh-agent. You’ll be asked to type your SSH passphrase at
this time.

From this point on, whenever you use SSH to connect to a remote system to which
you’ve given your public key, you won’t need to type a password. You will, however, have
to repeat steps 2 and 3 whenever you log out, and the benefi ts will accrue only to the shell
launched in step 2 or any shells that you launch from that one.

If you make heavy use of this facility, you can insert ssh-agent into your normal login
procedure. For instance, you can edit /etc/passwd so that ssh-agent /bin/bash is your
login shell. For a GUI login, you can rename your normal GUI login script (for instance,
change ~/.xsession to ~/.xsession-nossh) and create a new GUI login script that calls
ssh-agent with the renamed script as its parameter. Either action inserts ssh-agent at the
root of your user process tree so that any call to SSH uses ssh-agent.

Using SSH Login Scripts
Ordinarily, an SSH text-mode login session runs the user’s confi gured shell, which runs the
shell’s defi ned login scripts. The OpenSSH server also supports its own login script, sshrc
(normally stored in /etc or /etc/ssh). The OpenSSH server runs this script using /bin/sh,
which is normally a symbolic link to bash, so you can treat it as an ordinary bash script.

Setting Up SSH Port Tunnels
SSH has the ability to extend its encryption capabilities to other protocols, but doing
so requires extra confi guration. The way this is done is known as tunneling. Chapter 6

http://technet24.ir/

562 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 562

described a special type of SSH tunneling involving X, but the process can work for
other protocols.

Figure 10.2 illustrates the basic idea behind an SSH tunnel. The server computer runs
two server programs: a server for the tunneled protocol (Figure 10.2 uses the Internet Mail
Access Protocol, IMAP, as an example) and an SSH server. The client computer also runs
two clients: one for the tunneled protocol and one for SSH. The SSH client also listens for
connections for the tunneled protocol; it’s effectively both a client and a server. When the
SSH client receives a connection from the tunneled protocol’s client, the result is that the
tunneled protocol’s connection is encrypted using SSH, tunneled to the SSH server, and
then directed to the target server. Thus, data passes over the network in encrypted form,
even if the target protocol doesn’t support encryption!

F I GU R E 10 . 2 An SSH tunnel extends SSH’s encryption benefits to other protocols.

IMAP client
SSH client

IMAP server
SSH server

IMAP client to
SSH client
(IMAP proxy server)

SSH connection
(tunneling IMAP)

SSH server
(IMAP proxy client)

to IMAP server

Of course, all of this requires special confi guration. The default confi guration on the
server enables tunneling, but to be sure, check the /etc/ssh/sshd_config fi le on the server
for the following option:

AllowTcpForwarding no

If this line is present, change no to yes. If it’s not present or if it’s already set to yes, you
shouldn’t need to change your SSH server confi guration.

On the client side, you must establish a special SSH connection to the server computer.
You do this with the normal ssh client program, but you must pass it several parameters.
An example will help illustrate this use of ssh:

$ sudo ssh -N -f -L 142:mail.luna.edu:143 benf@mail.luna.edu
$

The -N and -f options tell ssh not to execute a remote command and to execute in the
background after asking for a password, respectively. These options are necessary to create
a tunnel.

The -L option specifi es the local port on which to listen, the remote computer to which
to connect, and the port on the remote computer to which to connect. This example listens
on the local port 142 and connects to port 143 on mail.luna.edu.

The fi nal parameter (benf@mail.luna.edu in this example) is the remote username and
computer to which the tunnel goes. Note that this computer need not be the same as the
target system specifi ed via -L.

http://technet24.ir/

Using GPG 563

c10.indd 03/27/2015 Page 563

If you want SSH on the client system to listen to a privileged port (that is,
one numbered below 1024), you must execute the ssh program as root,
as shown in the preceding example. If listening to a nonprivileged port is
acceptable, the ssh client can be run as a normal user.

With the tunnel established, you can use the client program to connect to the local port
specifi ed by the fi rst number in the -L parameter (port 142 in the preceding example).
For instance, this example is intended to forward IMAP traffi c, so you’d confi gure a mail
reader on the client to retrieve IMAP email from port 142 on localhost. When the email
reader does this, SSH kicks in and forwards traffi c to the SSH server, which then passes the
data on to the SSH server computer’s local port 143, which is presumably running the real
IMAP server.

All of this is hidden from the email reader program. As far as the reader program is
concerned, it is retrieving email from a local IMAP server.

Preventing SSH Security Problems
SSH is intended to solve security problems rather than create them. Indeed, on the whole,
using SSH is superior to using Telnet for remote logins, and SSH can also take over FTP-
like functions and tunnel other protocols. Thus, SSH is a big security plus compared to
using less-secure tools.

Like all servers, though, SSH can be a security liability if it’s run unnecessarily or
inappropriately. Ideally, you should confi gure SSH to accept only protocol level 2 connec-
tions and to refuse direct root logins. If X forwarding is unnecessary, you should disable
this feature. If possible, use TCP wrappers or a fi rewall to limit the machines that can
 contact an SSH server. As with all servers, you should keep SSH up to date; there’s always
the possibility of a bug causing problems.

You should consider whether you really need a remote text-mode login server. Such a
server can be a great convenience—often enough to justify the modest risk involved. For
extremely high-security systems, though, using the computer exclusively from the console
may be an appropriate approach to security.

One unusual security issue with SSH is its keys. As noted earlier, the private-key fi les are
extremely sensitive and should be protected from prying eyes. Remember to protect the back-
ups of these fi les as well. Protect system backup fi les as securely as you would the originals.

Using GPG

SSH is designed to encrypt interactive login sessions and fi le transfers. Sometimes, though,
another type of encryption is desirable: You may want to encrypt messages sent via email
or fi les sent to another person via some other means. Email was never designed as a secure
data transfer tool, and most email messages pass through several email servers and network
routers. A compromise at any one of these points enables an attacker to look at email traffi c
and extract sensitive data. Encrypting your email keeps such details private.

http://technet24.ir/

564 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 564

The usual tool for encrypting email is the GNU Privacy Guard package (GPG or
GnuPG, www.gnupg.org). This package is an open-source reimplementation of the
proprietary Pretty Good Privacy (PGP). In addition to encrypting entire messages, GPG
enables you to “sign” messages digitally.

Generating Keys
To begin using GPG, if your distribution does not install the GPG software package by
default, you will need to install the software (see Chapter 2). Chances are that if it’s not
installed by default, your distribution does include it in its repositories.

The next step is to generate keys. GPG keys are conceptually similar to SSH keys: You
need a private key (aka a secret key) and a public key. As the names imply, the private key is
kept private, but the public key is publicly available. You can sign your messages with your
private key, and readers can verify it with your public key. Also, you can encrypt a message
with another user’s public key, and it can be decrypted only with that user’s private key.

To generate keys, you use the gpg program with its --gen-key option:

$ gpg --gen-key

The program will ask you a series of questions. In most cases, answering with the
defaults should work well, although you may have to type in your full name and email
address. The keys are stored in a keyring (a fi le that holds keys) in the ~/.gnupg directory.

One question that you are asked when generating keys for gpg is the key
size. Generally, the larger the key size, the more secure the encryption. Pick
a key size that is at least 2,048 bits or larger.

Once you’ve generated your keys, you can export your public key:

$ gpg --export name > gpg.pub

This command saves the public key associated with name in the fi le gpg.pub. You can use
your email address as name. If you create additional public keys or add others’ public keys
to your keyring, you specify those keys’ names to export those keys.

After exporting your public key to a fi le, you can then make your public key available
to others so that they may encrypt fi les to be sent to you or verify your signed messages.
Adding the --armor option to the gpg --export command produces ASCII output, which
may be preferable if you intend to email the key fi le. You can make the fi le accessible on
your website, transfer it as an email attachment, or distribute it in various other ways.

Some distributions use gpg2 instead of the command gpg. If you have
gpg2, you can use the same options as gpg. However, be sure to read
through the gpg2 man pages. You may find that you want to install gpg
alongside the gpg2 package.

http://technet24.ir/

Using GPG 565

c10.indd 03/27/2015 Page 565

One important method of distributing your public key is via a keyserver. This is a net-
work server that functions much like a keyring. To send your public key to a keyserver, you
can use the --keyserver hostname and --send-keys keyname options to gpg, as follows:

$ gpg --keyserver pgp.mit.edu --send-keys jennie@luna.edu

This example sends the public key for jennie@luna.edu from your public keyring to the
server at pgp.mit.edu. Thereafter, anybody who wants to can retrieve the key from that
server. The pgp.mit.edu server is a popular site for hosting PGP public keys.

Importing Keys
To encrypt a fi le you send to others, you must obtain their public keys. Ask your correspon-
dents how to obtain them. Once you’ve done so, you can add their keys to your keyring
(that is, the set of keys GPG maintains):

$ gpg --import filename

This command adds filename to your set of public keys belonging to other people.

Although public keys are, by definition, public, there are security concerns
relating to them. Specifically, you should be sure to use a legitimate public
key. Hypothetically, a troublemaker could publish a fake public key in order
to obtain sensitive communications or fake a signed email. For instance,
George might distribute a fake GPG public key that claimed to be from
Harold. George could then either sign messages claiming to be from Harold
or intercept email sent to Harold that was encrypted using the fake key.
Thus, you should use a communication method that is as secure as possible
to distribute your public key and to receive public keys from others.

Once you’ve created your own key and, perhaps, imported keys from others, you can see
what keys are available by using the --list-keys option to gpg:

$ gpg --list-keys
/home/gjones/.gnupg/pubring.gpg

pub 1024D/190EDB2E 2015-09-05
uid George A. Jones <gjones@example.com>
sub 2048g/0D657AC8 2015-09-05
pub 1024D/A8B2061A 2015-09-05
uid Jennie Martin <jennie@luna.edu>
sub 2048g/4F33EF6B 2015-09-05

The uid lines contain identifi ers that you’ll use when encrypting or decrypting data, so
you should pay particular attention to that information.

http://technet24.ir/

566 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 566

Cryptoparties are a popular way to exchange public keys. A group of
friends gather together for an evening, each bringing a flash drive contain-
ing their own public key. One friend also brings a computer. The friends
use the computer to swap public keys. At the end of the evening, the
friends have had a good time socializing and get to take home their flash
drives with everyone’s public keys on it.

Revoking a Key
Sometimes, you might have cause to revoke a public key. For instance, suppose that you’ve
stored a copy of your private key on a laptop computer and that laptop is stolen, or perhaps
some employees have left your organization and you no longer want those individuals to be
able to use the keys associated with their employee accounts. To revoke a key, you use the
--gen-revoke keyname option to gpg:

$ gpg --gen-revoke jennie@luna.edu

The program asks you to answer a few questions, such as the reason for revoking the
key. It then generates a key block, such as the following:

-----BEGIN PGP PUBLIC KEY BLOCK-----Version: GnuPG v2.0.19 (GNU/Linux)Comment:
A revocation certificate should follow
iEwEIBECAAwFAlBPvbkFHQBG28bACgkQbBimvBMO2y4uzwCeQiLkZx8jl2
jk+ hn0OKUl3EznmBQAn2WvtuQW+AP6wlvOvNU/qYi8a7t8=s0/s
-----END PGP PUBLIC KEY BLOCK-----

You should copy this text into a fi le (say, revocation.gpg) and import the fi le to your
keyring:

$ gpg --import revocation.gpg

If you’ve distributed public keys associated with the revoked key, you should distribute
this revocation too. If you’ve sent your public keys to a GPG keyserver, you can pass your
revocation along in the same way that you sent your original public key:

$ gpg --keyserver pgp.mit.edu --send-keys jennie@luna.edu

Once this is done, you can generate and distribute a new set of keys, if desired.

Encrypting and Decrypting Data
To encrypt data, you use gpg with its --out and --encrypt options and, optionally,
--recipient and --armor:

$ gpg --out encrypted-file --recipient uid --armor --encrypt original-file

You can use the UID from a gpg --list-keys output, or just the email address portion,
as the uid in this command. If you haven’t signed the recipient’s key, you’ll have to verify
that you want to use that key. The result is a new fi le, encrypted-file, which holds an
encrypted version of original-file.

http://technet24.ir/

Summary 567

c10.indd 03/27/2015 Page 567

If you omit the --armor option, the resulting fi le is a binary fi le. To send the binary fi le
through email, you’ll need to send it as an attachment. If you include the --armor option,
the output is ASCII, so you can cut and paste the encrypted message into an email or send
it as an attachment.

If you receive a message or fi le that was encrypted with your public key, you can reverse
the encryption by using the --decrypt option:

$ gpg --out decrypted-file --decrypt encrypted-file

You’ll be asked to enter your passphrase. The result should be a decrypted version of the
original fi le.

In practice, GPG can be even easier to use than this description may make you think.
GPG is primarily used to secure and verify email, so most Linux email clients provide GPG
interfaces. These options call gpg with appropriate options to encrypt, sign, or decrypt
messages. Details vary from one email client to another, so you should consult your email
client’s documentation for details.

Signing Messages and Verifying Signatures
As noted earlier, GPG can be used to sign messages so that recipients know that they come
from you. To do so, use the --sign or --clearsign option to gpg:

$ gpg --clearsign original-file

The --sign option creates a new fi le with the same name as the original, but with .gpg
appended to the fi lename. This fi le is encrypted using your private key so that it may be
decrypted only with your public key. This means that anybody with your public key may
read the message, and anybody who can read it knows that it’s from you.

The --clearsign option works similarly, but it leaves the message text unencrypted
and only adds an encrypted signature that can be verifi ed by using your public key. The
--clearsign option creates a fi le with a name that ends in .asc.

If you receive a signed message, you can verify the signature using the --verify option
to gpg:

$ gpg --verify received-file

If any of the keys in your keyring can decode the message or verify the signature, gpg
displays a Good signature message. To read a message that was encrypted via the --sign
option, you must decrypt the message via the --decrypt option, as described earlier.

Summary

Maintaining system security is both important and time-consuming. A great deal of secu-
rity emphasis is on network security. To achieve a high level of network security, prop-
erly confi guring the server’s super daemon and disabling unused servers goes a long way.
Attending to passwords and performing miscellaneous tasks to keep your local accounts
from becoming security risks are also important security tasks.

http://technet24.ir/

568 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 568

Encryption is a hot topic in security. SSH is a protocol and tool that can handle many
network encryption tasks by encrypting two-way connections between computers. Typically
used as a remote login protocol, SSH can also be used to transfer fi les or encrypt other
 protocols. When you want to encrypt data sent to another individual via a tool such as email,
you can do so with the help of GPG. This package enables you to encrypt individual fi les,
which can then be attached to or embedded in email messages and decrypted by the recipient.

Exam Essentials

Identify the purpose of a super server. Super servers (also called super daemons), such as
inetd and xinetd, manage incoming network connections for multiple servers. They can
add security and convenience features, and they can help to minimize the memory load
imposed by seldom-accessed servers.

Explain the function of super server port access controls. Super servers or programs
called by them (such as TCP wrappers) can restrict access to ports for the servers they
 manage. These restrictions occur at a higher level than a fi rewall’s restrictions, and they
apply only to the servers managed by the super server.

Summarize the tools that you can use to identify the servers running on a computer.
The netstat and lsof programs both provide options to list all (or a subset of) the open
network connections as well as programs that are listening for connections. Remote
network scanners, such as Nmap, can probe another computer for open network ports.
The fuser program can determine the processes currently using a particular network
port. Perusal of local confi guration fi les can also provide clues as to what’s running on
a computer.

Describe why SUID and SGID programs are potentially risky. The set user ID (SUID)
and set group ID (SGID) bits tell Linux to run the program as the user or group that owns
the fi le. This is particularly risky when root owns the program fi le because it essentially
elevates all users to root for the purposes of running the fi le, making bugs in the program
more dangerous and raising the possibility of a clever user abusing the program to acquire
full root privileges or otherwise wreaking havoc.

Explain why shadow passwords are important. Shadow passwords store password hashes
in a fi le that can’t be read by ordinary users, thus making it harder for attackers on the
local system to read the hashed passwords and use brute-force attacks to discover other
users’ passwords. Modern Linux distributions use shadow passwords by default.

Explain how to generate a good password. Ideally, passwords should be random. Failing
that, one good approach is to generate a base that’s hard to guess and then modify it by
adding digits and punctuation, changing the case of some characters, changing letter order,
and signifi cantly increasing the length of the password (even with repeated characters).

http://technet24.ir/

Exam Essentials 569

c10.indd 03/27/2015 Page 569

Explain why SSH is the preferred remote text-mode login tool. The Secure Shell (SSH)
protocol provides encryption for all traffi c, including both the password exchange and all
subsequent data exchanges, whereas older tools, such as Telnet, do not. This makes SSH
much safer for the exchange of sensitive data, particularly over untrusted networks such as
the Internet.

Identify the most important SSH configuration file. The SSH server is controlled through
the /etc/ssh/sshd_config fi le. The SSH client confi guration fi le is /etc/ssh/ssh_config;
don’t confuse the two.

Describe the SSH public and private key files These keys are normally stored in the /etc/
ssh/ directory. Private key fi les are called ssh_host_rsa_key, ssh_host_rsa1_key, and
ssh_host_dsa_key, depending on the encryption algorithm used. Public key fi les have the
same fi lenames as their private keys, except a .pub fi lename extension is added.

Describe the function of GPG. GPG enables public-key encryption of individual fi les or
email messages. You can use GPG to encrypt sensitive data for transmission over email or
other insecure means.

http://technet24.ir/

570 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 570

Review Questions

1. Typing lsof -i | grep LISTEN as root produces three lines of output, corresponding
to the sendmail, sshd, and proftpd servers. What can you conclude about the security of
this system?

A. Everything is OK; the presence of sshd ensures that data are being encrypted via SSH.

B. The sendmail and sshd servers are OK, but the FTP protocol used by proftpd is
 insecure and should never be used.

C. The sendmail server should be replaced by Postfix or qmail for improved security, but
sshd and proftpd are fine.

D. Because sendmail and proftpd both use unencrypted text-mode data transfers,
 neither is appropriate on a network-connected computer.

E. No conclusion can be drawn without further information; the listed servers may or
may not be appropriate or authentic.

2. As part of a security audit, you plan to use Nmap to check all of the computers on your
 network for unnecessary servers. Which of the following tasks should you do prior to
 running your Nmap check?

A. Back up /etc/passwd on the target systems to eliminate the possibility of it being
damaged.

B. Obtain the root passwords to the target systems so that you can properly configure
them to accept the Nmap probes.

C. Obtain written permission from your boss to perform the Nmap sweep.

D. Configure /etc/sudoers on the computer you intend to use for the sweep, to give
yourself the ability to run Nmap.

E. Disable any firewall between the computer that’s running Nmap and the servers you
intend to scan.

3. Your login server is using PAM, and you want to limit users’ access to system resources.
Which configuration file will you need to edit?

A. /etc/limits.conf

B. /etc/pam/limits.conf

C. /etc/security/limits.conf

D. /etc/security/pam/limits.conf

E. /usr/local/limits.conf

4. Which of the following tools might you use to check for open ports on a local computer?
(Select three.)

A. Nmap

B. netstat

C. lsof

http://technet24.ir/

Review Questions 571

c10.indd 03/27/2015 Page 571

D. portmap

E. services

5. Which of the following commands will locate all of the program files on a computer on
which the SUID bit is set?

A. find / -type SUID

B. find / -perm +4000 -type f

C. find / -perm +SUID -type f

D. find / -type +4000

E. find / -suid

6. The /etc/sudoers file on a computer includes the following line. What is its effect?

%admin ALL=(ALL) ALL

A. Members of the admin group may run all programs with root privileges by using sudo.

B. Users in the admin user alias, defined earlier in the file, may run all programs with
root privileges by using sudo.

C. The admin user alias is defined to include all users on the system.

D. The admin command alias is defined to include all commands.

E. The user admin may run all programs on the computer as root by using sudo.

7. Which command would you type, as root, to discover all the open network connections on
a Linux computer?

A. lsof -c a

B. netstat -ap

C. ifconfig eth0

D. nmap -sT localhost

E. top -net

8. A server/computer combination appears in both hosts.allow and hosts.deny. What’s the
result of this configuration when TCP wrappers runs?

A. TCP wrappers refuses to run and logs an error in /var/log/messages.

B. The system’s administrator is paged to decide whether to allow access.

C. hosts.deny takes precedence; the client is denied access to the server.

D. hosts.allow takes precedence; the client is granted access to the server.

E. The client is granted access to the server if no other client is currently
accessing it.

9. When is the bind option of xinetd most useful?

A. When you want to run two servers on one port

B. When you want to specify computers by name rather than IP address

C. When xinetd is running on a system with two network interfaces

http://technet24.ir/

572 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 572

D. When resolving conflicts between different servers

E. When xinetd manages a DNS server program

10. You’ve discovered that the Waiter program (a network server) is running inappropriately
on your computer. You therefore locate its startup script and shut it down by removing that
script. How can you further reduce the risk that outsiders will abuse the Waiter program?
(Select two.)

A. By blocking the Waiter program’s port using a firewall rule

B. By reading the Waiter program’s documentation to learn how to run it in
stealth mode

C. By tunneling the Waiter program’s port through SSH

D. By uninstalling the Waiter package

E. By uninstalling any clients associated with Waiter from the server computer

11. You want to use xinetd access controls to limit who may access a server that’s launched via
xinetd. Specifically, only users on the 192.168.7.0/24 network block should be able to use
that server. How may you do this?

A. Enter hosts_allowed = 192.168.7.0/24 in the /etc/xinetd.conf
configuration file for the server in question.

B. Enter only_from = 192.168.7.0/24 in the /etc/xinetd.conf configuration file
for the server in question.

C. Enter server : 192.168.7., where server is the server’s name, in the /etc/
hosts.allow file.

D. Enter server : 192.168.7., where server is the server’s name, in the /etc/
hosts.deny file.

E. Type iptables -L 192.168.7.0 to enable only users of 192.168.7.0/24 to access
the server.

12. Of the following, which is the best password?

A. Odysseus

B. iA71Oci^My~~~~~~

C. pickettomato

D. Denver2Colorado

E. 123456

13. Which of the following types of attacks involves sending bogus email to lure unsuspecting
individuals into divulging sensitive financial or other information?

A. Phishing

B. Script kiddies

C. Spoofing

D. Ensnaring

E. Hacking

http://technet24.ir/

Review Questions 573

c10.indd 03/27/2015 Page 573

14. Ordinary users report being unable to log onto a computer, but root has no problems doing
so. What might you check to explain this situation?

A. A misbehaving syslogd daemon

B. A login process that’s running as root

C. The presence of an /etc/nologin file

D. The presence of an SUID bit on /bin/login

E. Inappropriate use of shadow passwords

15. Which servers might you consider retiring after activating an SSH server? (Select two.)

A. SMTP

B. Telnet

C. FTP

D. NTP

E. Samba

16. You find that the ssh_host_dsa_key file in /etc/ssh has 0666 (-rw-rw-rw-) permissions.
Your SSH server has been in operation for several months. Should you be concerned?

A. Yes

B. No

C. Only if the ssh_host_dsa_key.pub file is also world-readable

D. Only if you’re launching SSH from a super server

E. Only if you’re using a laptop computer

17. For best SSH server security, how should you set the Protocol option in /etc/ssh/
sshd_config?

A. Protocol 1

B. Protocol 2

C. Protocol 1,2

D. Protocol 2,1

E. Protocol *

18. Why is it unwise to allow root to log on directly using SSH?

A. Disallowing direct root access means that the SSH server may be run by a non-root
user, improving security.

B. The root password should never be sent over a network connection; allowing root
logins in this way is inviting disaster.

C. SSH stores all login information, including passwords, in a publicly readable file.

D. When logged on using SSH, root’s commands can be easily intercepted and duplicated
by undesirable elements.

E. Somebody with the root password but no other password can then break into
the computer.

http://technet24.ir/

574 Chapter 10 ■ Securing Your System

c10.indd 03/27/2015 Page 574

19. You’ve downloaded a GPG public key from a website into the file fredkey.pub. What must
you do with this key to use it?

A. Type inspect-gpg fredkey.pub.

B. Type gpg --readkey fredkey.pub.

C. Type import-gpg fredkey.pub.

D. Type gpg --import fredkey.pub.

E. Type gpg-import fredkey.pu b.

20. You want to send an encrypted message to an email correspondent. You both have GPG.
What do you need to exchange before you can send your encrypted message?

A. Your correspondent must obtain your GPG public key.

B. Your correspondent must obtain your GPG private key.

C. You must exchange private keys with your correspondent.

D. You must obtain your correspondent’s GPG private key.

E. You must obtain your correspondent’s GPG public key .

http://technet24.ir/

bapp01.indd 03/26/2015 Page 575

 Appendix Answers

http://technet24.ir/

576 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 576

Chapter 1: Exploring Linux
Command-Line Tools

1. D. Any of these approaches will work, or at least might work. (You might err when
performing any of them.) Option B or C is likely to be the most efficient approach;
with a long filename to type, option A is likely to be tedious.

2. E. The echo command is implemented internally to bash, although an external
version is also available on most systems. The cat, less, tee, and sed commands are
not implemented internally to bash, although they can be called from bash as external
commands.

3. E. The echo command echoes what follows to standard output, and $PROC is an envi-
ronment variable. Thus, echo $PROC displays the value of the $PROC environment
variable, meaning that it must have been set to the specified value by you, one of your
 configuration files, or a program you’ve run. Although many environment variables are
set to particular values to convey information, $PROC isn’t a standard environment vari-
able that might be associated with information described in options A, B, C, and D.

4. A. The pwd command prints (to standard output) the name of the current working
directory. The remaining options are simply incorrect, although option B describes the
cd command, and various tools can be used to reformat wide text for display or print-
ing in fewer columns, as in option C.

5. A. The dot (.) character refers to the current working directory, and the slash (/) is a
directory separator. Thus preceding a program name by ./ unambiguously identifies
the intention to run the program that’s stored in the current directory. Option B will
run the first instance of the program that’s found on the current path. Because paths
often omit the current directory for security reasons, this option is likely to fail. The
run command isn’t a standard Linux command, so option C is unlikely to do any-
thing, much less what the question specifies. Option D would be correct except that
it reverses the order of the two characters. The effect is to attempt to run the .myprog
file in the root (/) directory. This file probably doesn’t exist, and even if it did, it’s not
the file the question specifies should be run. Option E runs the first instance of myprog
found on the path, and additionally it runs the program in the background. (Chapter 2
covers background execution in more detail.)

6. E. By default, man uses the less pager to display information on most Linux systems,
so option E is correct. Although an X-based version of man does exist (xman), the
basic man doesn’t use a custom X-based application (option A), nor does it use Firefox
(option B) or the vi editor (option D). The info command and man are competing
 documentation systems, so option C is incorrect.

7. C. The > redirection operator stores a command’s standard output in a file, overwriting
the contents of any existing file by the specified name, so option C is correct.

http://technet24.ir/

Chapter 1: Exploring Linux Command-Line Tools 577

bapp01.indd 03/26/2015 Page 577

Option A specifies the standard input redirection so that ifconfig will take the con-
tents of file.txt as input. Option B is almost correct: the >> redirection operator
redirects standard output, as requested, but it appends data to the specified file rather
than overwriting it. Option D specifies a pipe; the output of ifconfig is sent through
the file.txt program, if it exists. (Chances are it doesn’t, so you’d get a command not
found error message.) Option E redirects standard error, rather than standard output,
to file.txt and so is incorrect.

8. C. The &> redirection operator sends both standard output and standard error to the
specified file, as option C states. (The name of the file, input.txt, is intentionally
deceptive, but the usage is still valid.) Option A mentions standard error but describes
it as if it were an input stream, which it’s not; it’s an output stream. Option B mentions
standard input, but the &> operator doesn’t affect standard input. Because only option
C is correct, neither option D nor E can be correct.

9. E. In principle, you can pipe together as many commands as you like. (In practice, of
course, there will be limits based on input buffer size, memory, and so on, but these
 limits are far higher than the 2, 3, 4, or 16 commands specified in options A, B, C,
and D.)

10. B. The tee command sends its output both to standard output and to a named file.
Thus, placing the tee command (with an output filename) after another command and
a pipe will achieve the desired effect. Options A and D redirect gabby’s output to a file,
which means you won’t be able to see the output and interact with it. Option C sends
the contents of gabby-out.txt to gabby as input, which isn’t what’s desired, either.
Option E attempts to run gabby-out.txt as a program and use its output as command-
line arguments to gabby, which is not what’s desired.

11. C. The 2> redirection operator redirects standard error only, leaving standard out-
put unaffected. Sending standard error to /dev/null gets rid of it. Thus option C is
 correct. Option A pipes the standard output of verbose through the quiet program,
which isn’t a standard Linux program. Option B sends both standard output and
standard error to /dev/null, so you won’t be able to interact with the program as the
question specifies you must be able to do. Option D redirects standard output only
to the junk.txt file, so once again, interaction will be impossible—and you’ll see the
unwanted error messages on the screen. Option E’s quiet-mode program is fictitious
(or at least nonstandard), so this option is incorrect.

12. A. Option A correctly describes the difference between these two redirection operators.
Option B is almost correct, but the >> operator will create a new file if one doesn’t
already exist. The >> operator does not redirect standard error (as stated in option C)
or standard input (as stated in option D). Both operators will create a new file if one
doesn’t already exist, contrary to what option E states.

13. C. The tail command displays the final 10 lines of a file, so option C is correct. (You
can change the number of lines displayed with the -n option.) The uniq command
(option A) removes duplicate lines from a list. The cut command (option B) echoes the
specified characters or fields from an input text file. The wc command (option D)

http://technet24.ir/

578 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 578

displays counts of the number of characters, words, and lines in a file. The fmt com-
mand (option E) is a plain-text formatter.

14. A. The pr program takes a text file as input and adds formatting features intended
for printing, such as a header and blank lines, to separate pages. The command also
pipes the output through lpr (which is a Linux printing command). Option A describes
these effects and so is correct. Option B describes the effect of the cat program and so
is incorrect. The conversion of tabs to spaces can be done by the expand program, so
option C is incorrect. Although the specified command does print report.txt, error
messages are not stored in the lpr file, so option D is incorrect. Because option A is
correct, option E is incorrect.

15. B, C, D. The nl command numbers lines, so it does this task without any special
options, and option B is correct. (Its options can fine-tune the way it numbers lines,
though.) The cat command can also number lines via its -b and -n options; -b num-
bers non-blank lines, whereas -n numbers all lines (including blank lines). Thus options
C and D are both correct. Neither the fmt command nor the od command will number
the lines of the input file, so options A and E are both incorrect.

16. D. The expand command will remove tab stops at every eight characters. With newly
formatted data stored in data1.txt via the > redirection symbol, option D is the
 correct choice.

The od command will not remove tabs. Therefore, option A is incorrect. Option B
does remove the tabs; however, the resulting data fi le, data.txt, will contain dupli-
cate data records (due to the >> redirection option), some with tabs and some without.
Therefore, option B is incorrect. There is not a --remove-tabs option on the fmt com-
mand, and thus option C is incorrect. The unexpand command does the opposite of the
expand command, adding tab stops instead of removing them. Therefore, option E is
incorrect.

17. C. The sed utility can be used to “stream” text and change one value to another. In
this case, the s option is used to replace dog with mutt, making option C correct. The
syntax in option A is incorrect, and choices B and D are incorrect because grep doesn’t
include the functionality needed to make the changes. Option E combines fmt, cut,
and redirection in a way that simply won’t work to achieve the desired goal.

18. B. The fmt command performs the desired task of shortening long lines by inserting
carriage returns. It sends its results to standard output, so option B uses output redirec-
tion to save the results in a new file. The sed command of option A won’t accomplish
anything useful; it only replaces the string Ctrl-M with the string NL. Although these
strings are both sometimes used as abbreviations for carriage returns or new lines,
the replacement of these literal strings isn’t what’s required. Option C creates an exact
copy of the original file, with the long single-line paragraphs intact. Although option
D’s pr command is a formatting tool, it won’t reformat individual paragraphs. It will
also add headers that you probably don’t want. Option E’s grep command searches for
text within files; it won’t reformat text files.

http://technet24.ir/

Chapter 2: Managing Software 579

bapp01.indd 03/26/2015 Page 579

19. A. The grep utility is used to find matching text within a file and print those
lines. It accepts regular expressions, which means you can place in brackets the two
 characters that differ in the words for which you’re looking. Thus option A is correct.
The syntax for sed, od, cat, and find wouldn’t perform the specified task, so options B
through E are all incorrect.

20. C. The bracket expression within the d[o-u]g regular expression in option C means
that any three-character string beginning in d, ending in g, and with the middle charac-
ter being between o and u will match. These results meet the question’s criteria. Option
A’s dot matches any single character, so d.g matches all three words. The bracket
expression [ou] in option B matches the characters o and u, but no other values. Since
the question specifies that some other matches will be made, this option is incorrect.
Option D’s di*g matches dig, diig, diiig, or any other word that begins with d, ends
with g, and contains any number of i letters in between. Thus option D matches dig
but not dog or dug as required. Option E, like option A, uses a dot to match any char-
acter, so it will actually match certain four-letter words but not dog or dug.

Chapter 2: Managing Software

1. D. Because they must be compiled prior to installation, source packages require more
time to install than binary packages, contrary to option D’s assertion, thus making
this option correct. The other options all describe advantages of source packages over
binary packages.

2. A. The two systems use different databases, which makes coordinating between them
difficult. Therefore, using them both simultaneously is inadvisable, making option A
correct. Package management systems don’t share information, but neither do their
databases actively conflict, so option B is incorrect. Installing the same libraries using
both systems would almost guarantee that the files served by both systems would
conflict with one another, making option C incorrect. Actively using both RPM and
Debian packages isn’t common on any distribution, although it’s possible with all of
them, so option D is incorrect. The alien program converts between package formats.
Although it requires that both systems be installed to convert between them, alien is
not required to install both these systems, thus option E is incorrect.

3. E. RPMs are usually portable across distributions, but occasionally they contain
incompatibilities, so option E is correct. The package format and software licensing
have nothing to do with one another, so option A is incorrect. There is no --convert-
distrib parameter to rpm, so option B is incorrect. Although recompiling a source
package can help work around incompatibilities, this step is not always required, so
option C is incorrect. Binary packages can’t be rebuilt for another CPU architecture,
so option D is incorrect; although source packages may be rebuilt for any supported
architecture, provided the source code doesn’t rely on any CPU-specific features.

http://technet24.ir/

580 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 580

4. B. The -i operation installs software, so option B is correct. (The -v and -h options
cause a status display of the progress of the operation, which wasn’t mentioned in the
option.) Uninstallation is performed by the -e operation, and rebuilding source RPMs
is done by the --rebuild operation (to either rpm or rpmbuild, depending on the RPM
version), so options A and C are incorrect. Although the filename megaprog.rpm is
missing several conventional RPM filename components, the rpm utility doesn’t use
the filename as a package validity check, so option D is incorrect. Option E describes
a package upgrade, which is handled by the -U operation, not -i as in the question, so
option E is incorrect.

5. A. The rpm2cpio program extracts data from an RPM file and converts it into a cpio
archive that’s sent to standard output. Piping the results through cpio and using the -i
and --make-directories options, as in option A, will extract those files to the current
directory. Option B creates a cpio file called make-directories that contains the files
from the RPM package. Option C will uninstall the package called myfonts.rpm (but
not the myfonts package). The alien utility has no --to-extract target, so option D is
invalid. The rpmbuild utility builds a source RPM into a binary RPM, making option
E incorrect.

6. E. An uppercase -P invokes the purge operation, which completely removes a package
and its configuration files, so option E is correct. The -e parameter uninstalls a pack-
age for rpm, but not for dpkg, so option A is incorrect. The lowercase -p causes dpkg
to print information about the package’s contents, so option B is incorrect. The -r
parameter removes a package but leaves configuration files behind, so options C and D
are both incorrect. (Option D also specifies a complete filename, which isn’t used for
removing a package—you should specify only the shorter package name.)

7. C. You can specify Debian package archive sites in /etc/apt/sources.list, and then
you can type apt-get update and apt-get upgrade to update a Debian system
quickly to the latest packages, so option C is correct. GUI package management tools
for Debian and related distributions exist, but they aren’t apt-get, so option A is
incorrect. The alien program can convert a tarball and install the converted package
on a Debian system, but apt-get can’t do this, so option B is incorrect. dpkg and
apt-get both come with all Debian-based distributions, so option D is incorrect. The
dpkg program can install only Debian packages on Debian-based systems, but apt-get
can work with both package systems, so option E is backward.

8. E. The --get-selections action to dpkg displays the names of all installed packages,
making option E correct. There is no showall option to apt-get, so option A is incor-
rect. The showpkg subcommand to apt-cache displays information about a named
package when used without a package name, as in option B, but it displays no data.
The dpkg -r action removes a package, so option C would remove the package called
allpkgs if it were installed. The dpkg -i action installs a package, so option D is
incorrect—and that option doesn’t list a package name, which the -i action requires.

9. D. The update option to apt-get causes retrieval of new information, as described in
option D. This option is perfectly valid, contrary to option A’s assertion.

http://technet24.ir/

Chapter 2: Managing Software 581

bapp01.indd 03/26/2015 Page 581

The apt-get program doesn’t permit you to upload information to the Internet reposi-
tories, so option B is incorrect. Option C describes the effect of the upgrade or dist-
upgrade options, not the update option. The upgrade or dist-upgrade options can
upgrade APT itself, but update alone won’t do the job, so option E is incorrect.

10. A, B. The Yum utility’s update and upgrade options are nearly identical in effect,
and either can be used to upgrade an individual package, such as unzip, so options
A and B are both correct. The primary command options to yum don’t use dashes, so
options C and D are both incorrect. The check-update option to yum checks for the
availability of updates, but it does not install them, so option E is incorrect.

11. B. Yum uses files in the /etc/yum.repos.d directory to locate its repositories, so you
can add to the repository list by adding files to this subdirectory, as option B specifies,
typically either by installing an RPM or by adding a file manually. Option A describes
a method of adding a repository to a computer that uses APT, not Yum. Option C’s
add-repository subcommand is fictitious. Although the /etc/yum.conf file described
in options D and E is real, it doesn’t store repository data.

12. B. The /etc/ld.so.conf file holds the global library path, so editing it is the preferred
approach. You must then type ldconfig to have the system update its library path
cache. Thus, option B is correct. Although you can add a directory to the library path
by altering the LD_LIBRARY_PATH environment variable globally, as in option A, this
approach isn’t the preferred one, so this option is incorrect. Option C simply won’t
work. Option D also won’t work, although linking individual library files would work.
This method isn’t the preferred one for adding a whole directory, though. The ldd util-
ity displays information on libraries used by executable files, so option E won’t have
the desired effect.

13. D. Programmers select libraries, not users nor system administrators. If you don’t
like the widgets provided by one library, you have few options, and option D is
correct. (Many widget sets do provide a great deal of configurability, though, so you
may be able to work around the problem in other ways.) Options A, B, and E describe
fictitious options to ldconfig, rpm, dpkg, and the kernel. Option C wouldn’t work; Qt-
using programs would crash when they found GTK+ libraries in place of the Qt librar-
ies they were expecting.

14. D. The kill program accepts various signals in numeric or named form (9 in this
example) along with a process ID number (11287 in this example). Signal 9 corresponds
to SIGKILL, which is an extreme way to kill processes that have run out of control, thus
option D describes the effect of this command. Although you might use kill to kill
network processes, you can’t pass kill a TCP port number and expect it to work, so
option A is incorrect. The program also won’t display information about the number
of processes that have been killed, making option B incorrect. To do as option C sug-
gests, you’d need to tell kill to pass SIGHUP (signal 1), so the command would be kill
-1 11287, and option C is incorrect. The kill program can’t change the priority of a
process, so option E is incorrect.

http://technet24.ir/

582 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 582

15. C, D. The top utility displays a dynamic list of processes ordered according to their
CPU use along with additional system information, including load averages, so option
C is correct. If you want only the load average at a specific moment, uptime (option D)
may be better because it presents less extraneous information—it shows the current
time, the time since the system was booted, the number of active users, and the load
averages. Option A’s ld command has nothing to do with displaying load averages.
(It’s a programming tool that links together program modules into an executable pro-
gram.) There are no standard Linux programs called load (option B) or la (option E).

16. A. The --forest option to ps shows parent-child relationships by creating visual links
between process names in the ps output, making option A correct. (Listing 2.4 shows
this effect.) Options B and C are both valid ps commands, but neither creates the speci-
fied effect. Option D describes a fictitious ps option. Since options B, C, and D are
incorrect, option E is also necessarily incorrect.

17. A. CPU-intensive programs routinely consume 90 percent or more of available CPU
time, but not all systems run such programs. Furthermore, some types of program bugs
can create such CPU loads. Thus, option A is correct, and you must investigate the
matter more. What is dfcomp? Is it designed as a CPU-intensive program? Is it consum-
ing this much CPU time consistently, or was this a brief burst of activity? Options B,
C, D, and E all jump to conclusions or present fictitious reasons for the behavior being
normal or abnormal.

18. E. The jobs command summarizes processes that were launched from your current
shell. When no such processes are running, jobs returns nothing, so option E is
correct. The jobs command doesn’t check or summarize CPU load, so option A is
incorrect. The jobs command also doesn’t check for processes run from shells other
than the current one, so option B is incorrect (processes running under your username
could have been launched from another shell or from a GUI environment). There is no
standard jobs shell in Linux, so option C is incorrect. Because the jobs output is lim-
ited to your own processes in the shell you’re running, a blank output does not indicate
a crashed system, making option D incorrect.

19. C, E. The nice command launches a program (crunch in this example) with increased
or decreased priority. The default priority when none is specified is 10, and the nice
-10 crunch command also sets the priority to 10, so options C and E are equivalent.
Option A isn’t a valid nice command because nice has no --value option. Option B is
a valid nice command, but it sets the priority to –10 rather than 10. Despite the simi-
larity in the form of options C and D, option D is not a valid nice command, and so it
is incorrect. (When passing a numeric value to nice, you must use a preceding dash, -,
or -n.)

20. D, E. Linux insulates users’ actions from one another, and this rule applies to renice;
only root may modify the priority of other users’ processes, so option D is correct.
Similarly, only root may increase the priority of a process in order to prevent users

http://technet24.ir/

Chapter 3: Configuring Hardware 583

bapp01.indd 03/26/2015 Page 583

from setting their processes to maximum priority, thus stealing CPU time from others,
so option E is correct. Option A correctly describes nice, but not renice. The whole
point of renice is to be able to change the priorities of existing processes. Contrary to
option B, renice doesn’t care about the shell from which renice or the target program
was launched. Users may use renice to decrease their own processes’ priorities, con-
trary to option C.

Chapter 3: Configuring Hardware

1. B, C. IRQs 3 and 4 are common defaults for RS-232 serial ports, so options B and C
are both correct. IRQ 1 is reserved for the keyboard, so option A is incorrect. IRQ 8
is reserved for use by the real-time clock, so option D is incorrect. Although IRQ 16
exists on modern systems, it didn’t exist on early x86 systems, and its purpose isn’t
standardized.

2. A. Modern firmware (BIOSs and EFIs) provides the means to disable many onboard
devices, including sound hardware, in case you don’t want to use them, so option A is
correct. Although the alsactl utility mentioned in option B is real, it’s used to load or
store sound card mixer settings, not to disable the sound hardware. The lsmod com-
mand mentioned in option C displays information about loaded kernel modules, but
it doesn’t remove them or disable the hardware they use. Similarly, option D’s lspci
displays information on PCI devices, but it can’t disable them. Contrary to option E,
on-board sound hardware can usually be disabled.

3. E. The udev software creates and manages a dynamic /dev directory tree, adding
entries to that directory for devices that exist on the target system, so option E is cor-
rect. The udev software has nothing to do with software development (option A). It
doesn’t unload drivers (option B) or load drivers (option C), although it does respond to
the loading of drivers by creating appropriate entries in /dev. It also doesn’t store BIOS
configuration options in a file (option D).

4. E. SATA disks are usually handled by Linux’s SCSI subsystem and so are referred to
as /dev/sdx. However, some drivers handle these disks as if they were PATA disks
and so refer to them as /dev/hdx. Thus, option E is correct, and both options A and C
are incorrect. The /dev/mapper directory holds device files related to LVM and RAID
 configurations, not disk partition identifiers, so option B is incorrect. Option D (C:) is
how Windows would likely refer to the first partition on the disk, but Linux doesn’t
use this style of disk identifier.

5. A, C, D. There are no files called /proc/ioaddresses or /proc/hardware, so options B
and E are both incorrect. All the other files listed contain useful information; /proc/
ioports holds information about I/O ports, /proc/dma holds information about DMA
port usage, and /proc/interrupts holds information about IRQs.

http://technet24.ir/

584 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 584

6. B. Logical partitions are numbered 5 and up, and they reside in an extended partition
with a number between 1 and 4. Therefore, one of the first two partitions must be an
extended partition that houses partitions 5 and 6, making option B correct. Because
one of the first two partitions is an extended partition, the other must be a primary
partition, and there can be no more of either type of partition. This makes option A
incorrect. Gaps in the range of partitions 1–4 are normal in MBR disks, contrary to
option C. Because logical partitions are numbered starting at 5, their numbers won’t
change if /dev/sda3 is subsequently added, so option D is incorrect. On MBR disks,
partitions 1–4 must be primary or extended partitions; logical partitions are numbered
5 and up. Thus option E is incorrect.

7. E . The /etc/fstab file contains the mapping of partitions to mount points, so /etc must
be an ordinary directory on the root partition, not on a separate partition, making option
E correct. Although option A’s statement that the system won’t boot is correct, the reason
is not; /home holds user files, not critical system files. Options B and C describe restric-
tions that don’t exist. Option D would be correct if /etc were not a separate partition.

8. D. The /home directory (option D) is frequently placed on its own partition in order
to isolate it from the rest of the system and sometimes to enable use of a particular
filesystem or filesystem mount options. The /bin and /sbin directories (options A and
B) should never be split off from the root (/) filesystem because they contain critical
executable files that must be accessible in order to do the most basic work, including
mounting filesystems. The /mnt directory (option C) often contains subdirectories used
for mounting removable media, or it may be used for this purpose itself. It’s seldom
used to access hard disk partitions directly, although it can be used for this purpose.
The /dev directory (option E) usually corresponds to a virtual filesystem, which holds
pseudo-files but is not stored on a disk partition.

9. A. The 0x0f partition type code is one of two common partition type codes for
an extended partition. (The other is 0x05.) The 0x82 code refers to a Linux swap
partition, and 0x83 denotes a Linux filesystem partition. Thus, it appears that this
disk holds Linux partitions, making option A correct. Windows, FreeBSD, and Mac
OS X all use other partition type codes for their partitions, so options B, C, and E are
all incorrect. (Mac OS X is also rarely installed to MBR disks.) Partitions exist, in part,
to enable different OSs to store their data side by side on the same disk, so mixing sev-
eral partition types (even for different OSs) on one disk does not indicate disk
corruption, making option D incorrect.

10. C. Linux’s fdisk doesn’t write changes to disk until you exit the program by typing w.
Typing q exits without writing those changes, so typing q in this situation will avert
disaster, making option C correct. Typing w (option B) would be precisely the wrong
thing to do. Because fdisk doesn’t write changes until you type w, the damage is not
yet done, contrary to option A. Typing u (option D) or t (option E) would do nothing
useful because those aren’t undo commands.

11. E. The mkfs command creates a new filesystem, overwriting any existing data and
therefore making existing files inaccessible, as stated in option E. This command

http://technet24.ir/

Chapter 3: Configuring Hardware 585

bapp01.indd 03/26/2015 Page 585

doesn’t set the partition type code in the partition table, so option A is incorrect. The
mkfs command is destructive, contrary to option B. The -t ext2 option tells mkfs
to create an ext2 filesystem; it’s a perfectly valid option, so option C is incorrect.
Although mkfs could (destructively) convert ext2fs to ext4fs, the -t ext2 option clearly
indicates that an ext2 filesystem is being created, so option D is incorrect.

12. B. Although they have similar names and purposes, Linux’s fdisk isn’t modeled after
Windows’s FDISK, so option B is correct and option A is not. Windows’ FDISK does not
have GUI controls, contrary to option C. Linux’s fdisk does not format floppy disks,
contrary to option D. Both programs manage MBR disks, contrary to option E.

13. E. Swap partitions aren’t mounted in the same way as filesystems, so they have no
associated mount points, making option E correct.

14. C. The –t option is used to tell fsck what filesystem to use, so option C is correct.
(If this option isn’t used, fsck determines the filesystem type automatically.) The –A
option (option A) causes fsck to check all of the filesystems marked to be checked in
/etc/fstab. The –N option (option B) tells fsck to take no action and to display what
it would normally do without doing it. The –C option (option D) displays a text-mode
progress indicator of the check process. The -f option (option E) is fictitious.

15. A. A default use of df reports the percentage of disk space used (option D) and the
mount point for each filesystem (option E). The number of inodes (option B) and
filesystem types (option C) can both be obtained by passing parameters to df. This
utility does not report how long a filesystem has been mounted (option A), so that
option is correct.

16. D. The journal of a journaling filesystem records pending operations, resulting in
quicker disk checks after an uncontrolled shutdown, so option D is correct. Contrary
to option A, journaling filesystems are, as a class, newer than non-journaling filesys-
tems; in fact, the journaling ext3fs is built upon the non-journaling ext2fs. Although
disk checks are quicker with journaling filesystems than with non-journaling filesys-
tems, journaling filesystems do have fsck utilities, and these may still need to be run
from time to time, so option B is incorrect. All Linux-native filesystems support Linux
ownership and permissions; this isn’t an advantage of journaling filesystems, con-
trary to option C. The journal of a journaling filesystem doesn’t provide an unlimited
“undo” feature, so option E is incorrect.

17. E. When typed without a filesystem type specification, mount attempts to auto-detect
the filesystem type. If the media contains any of the specified filesystems, it should be
detected and the disk mounted, so option E is correct.

18. B. The /etc/fstab file consists of lines that contain the device identifier, the mount
point, the filesystem type code, filesystem mount options, the dump flag, and the file-
system check frequency, in that order. Option B provides this information in the cor-
rect order, and so it will work. Option A reverses the second and third fields, but is
otherwise correct. Options C, D, and E all scramble the order of the first three fields
and also specify the noauto mount option, which causes the filesystem not to mount
automatically at boot time.

http://technet24.ir/

586 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 586

19. A, B, C. The user, users, and owner options in /etc/fstab all enable ordinary users
to mount a filesystem, but with slightly different implications: user enables anybody
to mount a filesystem—and only that user may unmount it; users enables anybody to
mount a filesystem, and anybody may unmount it; and owner enables only the owner
of the mount point to mount or unmount a filesystem. Thus, options A, B, and C are
all correct. The owners parameter of option D doesn’t exist. The uid=1000 parameter
of option E tells Linux to set the ownership of files to UID 1000 on filesystems that
lack Linux permissions features. Although this might be desirable for some disks, it
doesn’t enable the user with UID 1000 to mount the disk, so option E is incorrect.

20. A. Option A correctly describes the safe procedure for removing a removable medium
that lacks a locking mechanism from a Linux computer. (Instead of typing umount /
media/usb, you could type umount /dev/sdb1; in this context, the two commands
are equivalent.) Option B reverses the order of operations; the umount command must
be typed before you physically remove the flash drive. Option C also has it backward;
the sync command would need to be issued before removing the drive. (The sync com-
mand can prevent damage when removing disks, but it isn’t a complete substitute for
umount.) There is no standard usbdrive-remove command in Linux, and if you were
to write a script that calls umount and call it usbdrive-remove, pulling the flash drive
quickly, as option D describes, would be exactly the wrong thing to do. The fsck com-
mand of option E checks a filesystem for errors. It’s not necessary to do this before
removing a disk, and it won’t unmount the disk, so option E is incorrect.

Chapter 4: Managing Files

1. B. The touch utility updates a file’s time stamps, as option B specifies. (If the speci-
fied file doesn’t exist, touch creates an empty file.) You can’t move files with touch;
that’s the job of the mv command, so option A is incorrect. Various tools can convert
 end-of-line formats, but touch is not one of them, so option C is incorrect. Testing the
validity of disk structures, as in option D, is normally done on a whole-filesystem basis
with fsck and related tools; touch can’t do this job. You can write cached data to disk
for a whole filesystem by unmounting it or by using sync, but touch can’t do this, so
option E is incorrect.

2. A, D. The –s and ––symbolic options to ln are equivalent, and both create a symbolic
(aka soft) link. Thus, options A and D are both correct. Options B, C, and E
don’t exist.

3. A. The –l parameter produces a long listing, including file sizes. The –a parameter
produces a listing of all files in a directory, including the dot files. Combining the two
produces the desired information (along with information about other files), so option
A is correct. The –p, –R, –d, and –F options don’t have the specified effects, so the
remaining options are all incorrect.

http://technet24.ir/

Chapter 4: Managing Files 587

bapp01.indd 03/26/2015 Page 587

4. D. When moving from one partition or disk to another, mv must necessarily read
and copy the file and then delete the original if that copy was successful, as stated in
option D. If both filesystems support ownership and permissions, they’ll be preserved;
mv doesn’t need an explicit --preserve option to do this, and this preservation does
not rely on having exactly the same filesystem types. Thus, option A is incorrect.
Although mv doesn’t physically rewrite data when moving within a single low-level
filesystem, this approach can’t work when you’re copying to a separate low-level file-
system (such as from a hard disk to a USB flash drive); if the data isn’t written to the
new location, it won’t be accessible should the disk be inserted in another computer.
Thus, option B is incorrect. Although not all filesystems support ownership and
permissions, many do, and these attributes are preserved when moving files between
them, so option C is incorrect. Although FAT is a common choice on removable media
because of its excellent cross-platform support, other filesystems will work on such
disks, so option E is incorrect.

5. A, B. If you try to create a directory inside a directory that doesn’t exist, mkdir
responds with a No such file or directory error. The --parents parameter tells
mkdir to create all necessary parent directories automatically in such situations, so
option A is correct. You can also manually do this by creating each necessary directory
separately, so option B is also correct. (It’s possible that mkdir one wouldn’t be neces-
sary in this example if the directory one already existed. No harm will come from try-
ing to create a directory that already exists, although mkdir will return a File exists
error.) Typing touch /bin/mkdir, as option C suggests, will likely result in an error
message if typed as a normal user and won’t help if typed as root, so this option is
incorrect. Clearing away existing directories in the one/two/three tree won’t help, so
option D is incorrect. Option E’s mktree command is fictitious.

6. D, E. The cpio and tar programs are common Linux archive-creation utilities, so
options D and E are both correct. The restore command restores (but does not back
up) data; its backup counterpart command is dump. Thus, option A is incorrect. The vi
 command launches a text editor; it’s not used to create archives, so option B is incor-
rect. There is no standard tape command in Linux, so option C is incorrect.

7. E. With the tar utility, the ––list (t) command is used to read the archive and display
its contents. The ––verbose (v) option creates a verbose file listing, and ––file (f)
specifies the filename—data79.tar in this case. Option E uses all of these features.
Options A, B, C, and D all substitute other commands for ––list, which is required by
the question.

8. A. Symbolic links can point across filesystems, so creating a symbolic link from one
filesystem (in which your home directory resides) to another (on the DVD) isn’t a
 problem, making option A correct. Hard links, as in options B, C, and D, are restricted
to a single filesystem and so won’t work for the described purpose. Because symbolic
links will work as described, option E is incorrect.

9. E. Option E is the correct command. Typing chown ralph:tony somefile.txt,
as in option A, sets the owner of the file to ralph and the group to tony. The chmod

http://technet24.ir/

588 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 588

command used in options B and D is used to change file permissions, not ownership.
Option C reverses the order of the filename and the owner.

10. C, E. The d character that leads the mode indicates that the file is actually a directory
(option C), and the r symbol in the r-x triplet at the end of the symbolic mode indi-
cates that all users of the system have read access to the directory (option E). Leading
l characters, which this mode lacks, denote a symbolic link, so option A is incorrect.
Although the x symbols usually denote executable program files, as specified in option
B, in the case of directories this permission bit indicates that the directory’s contents
may be searched; executing a directory is meaningless. SUID bits are indicated by an s
character in place of the owner’s execute bit position in the symbolic mode. Since this
position holds an x in this example, option D is incorrect.

11. C. The set user ID (SUID) bit enables programs to run as the program’s owner rather
than as the user who ran them. This makes SUID root programs risky, so setting the
SUID bit on root-owned programs should be done only when it’s required for the pro-
gram’s normal functioning, as stated in option C. This should certainly not be done for
all programs because the SUID bit is not required of all executable programs, as option
A asserts. Although the SUID root configuration does enable programs to access
device files, the device files’ permissions can be modified to give programs access to
those files, if this is required, so option B is incorrect. Although SUID root programs
are a security risk, as stated in option D, they’re a necessary risk for a few programs,
so option D goes too far. Many program files that should not be SUID root are owned
by root, so option E is incorrect.

12. E. Using symbolic modes, the o+r option adds read (r) permissions to the world (o).
Thus, option E is correct. Option A sets the mode to rwxr––––x, which is a bit odd and
doesn’t provide world read access to the file, although it does provide world execute
access. Option B sets the mode to rw–r–––––, which gives the world no access what-
soever to the file. Option C adds read access to the file for the owner (u) if the owner
doesn’t already have this access; it doesn’t affect the world permissions. Option D
removes read access for all users, so it’s incorrect.

13. D. Files start with a 666 permission bit octal number setting. Depending upon the
umask setting, permission bits may be removed, but not added. Option D, 027,
removes write permissions for the group and all world permissions. (Files normally
don’t have execute permissions set, but explicitly removing write permissions when
removing read permissions ensures reasonable behavior for directories.) Therefore,
Option D is correct. Option A, 640, is the octal equivalent of the desired rw–r–––––
permissions, but the umask sets the bits that are to be removed from permissions, not
those that are to be set. Option B, 210, would remove write permission for the owner,
but it wouldn’t remove write permission for the group, which is incorrect. This would
also leave all world permissions open. Option C, 022, wouldn’t remove world read per-
mission. Option E, 138, is an invalid umask because all the digits in the umask must be
between 0 and 7.

http://technet24.ir/

Chapter 4: Managing Files 589

bapp01.indd 03/26/2015 Page 589

14. E. Using quotas requires kernel support, the usrquota or grpquota (for user or group
quotas) filesystem mount option, and activation via the quotaon command (which
often appears in system startup scripts). Thus, option E is correct. Option A suggests
that quotaon is not necessary, which is incorrect. Option B’s statement that grpquota
is invalid is incorrect. Option C’s statement that these options disable quota sup-
port is backward. The usrquota and grpquota options are both valid, so option D is
incorrect.

15. B. The repquota utility is used to summarize the quota information about the file-
system. When used with the –a option, it shows this information for all filesystems,
so option B is correct. This command won’t return useful information when typed
alone, though, so option A is incorrect. The quotacheck utility checks quota informa-
tion about a disk and writes corrections, so options C and D are both incorrect. The
edquota utility enables you to edit quota information. It doesn’t summarize quota
information, and -a isn’t a valid option to edquota. Thus, option E is incorrect.

16. D. The /opt directory tree exists to hold programs that aren’t a standard part of a
Linux distribution, such as commercial programs. These programs should install in
their own directories under /opt; these directories usually have bin subdirectories of
their own, although this isn’t required. Thus, option D is correct (that is, it’s a plausible
possibility). The /usr/sbin directory holds programs that are normally run only by
the system administrator, so it’s not a likely location, making option A incorrect. The
/etc/X11 directory holds X-related configuration files; so it’s very unlikely that
 WonderCalc will be housed there, making option B incorrect. The /boot directory
holds critical system boot files, so option C is incorrect. The /sbin directory, like
/usr/sbin, is an unlikely location for user files, so option E is incorrect. (Furthermore,
/sbin seldom contains subdirectories.)

17. A. The find utility (option A) operates by searching all files in a directory tree, and so
it’s likely to take a long time to search all of a computer’s directories. The locate pro-
gram uses a precompiled database, whereis searches a limited set of directories, and
type searches the shell’s path and built-in commands, so these commands will take less
time. Thus, options B, C, D, and E are all incorrect.

18. C. The type command identifies a command, as executed by the shell, as being a
built-in shell command, a shell alias, or an external command, whereas the whereis
 command helps find the location of external command files, thus option C is correct.
Neither type nor whereis identifies the CPU architecture of a program file, can locate
commands based on intended purpose, complete an incompletely typed command,
or identify a command as a binary or a script; thus, the remaining options are all
incorrect.

19. B. The find command includes the ability to search by username using the -user
name option, where name is the username; thus option B is correct. The -uid option to
find can also locate files owned by a user, but it takes a numeric user ID (UID) as an
argument, so option A isn’t quite correct. The locate command provides no ability

http://technet24.ir/

590 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 590

to search by user, so options C and D are incorrect. Although option E is a valid find
command, it finds all of the files under /home with a filename of karen, not all files
owned by the user karen, so this option is incorrect.

20. D. The which program searches the path just as bash does, but it prints the path to
the first executable program it finds on the path. Thus option D is correct. The which
program doesn’t conduct an exhaustive search of the system, so there could be many
more files called man on the system, contrary to option A. System package tools and
which aren’t closely related; option B is incorrect. Although /usr/bin/man would be
run when the user whose which output matches that in the question types man, this
may not be true of others because the path can vary from one user to another, thus
option C is incorrect. The which program doesn’t reveal file ownership information,
so option E is incorrect.

Chapter 5: Booting Linux and
Editing Files

1. C. The Master Boot Record (MBR) can contain a boot loader that is up to 446 bytes
in size, so option C is correct. If more space is required, the boot loader must load a
secondary boot loader. Although the boot loader is loaded into RAM (option A), it’s
not stored there permanently because RAM is volatile storage. Both /dev/boot and
/dev/kmem (options B and D) are references to files on Linux filesystems; they’re only
available after the system starts and lots of other boot processes have occurred. The
swap partition (option E) is used as an adjunct to RAM; the BIOS won’t look there for
a boot loader.

2. C. Runlevel 1 is single-user mode, and adding the digit 1 to the kernel’s options line in
a boot loader will launch the system in this runlevel, so option C is correct. Options A
and B both present invalid kernel options and so are incorrect. Although the telinit
command specified in options D and E will change the runlevel once the computer is
running and runlevel 1 is a single-user mode, these commands are not passed to the
kernel via a boot loader, so these options are both incorrect.

3. D. The kernel ring buffer, which can be viewed by typing dmesg (piping this through
less is a good supplement), contains messages from the kernel, including those from
hardware drivers. These messages may provide a clue about why the disk didn’t appear,
thus option D is correct. The /var/log/diskerror file (option A) is fictitious, as is
/mnt/disks (option B). The /etc/inittab file (option C) doesn’t directly control
disk access, and so it is unlikely to provide useful information. The files specified
in option E are GRUB Legacy and GRUB 2 configuration files, which don’t contain
 information that could explain why a disk isn’t responding.

http://technet24.ir/

Chapter 5: Booting Linux and Editing Files 591

bapp01.indd 03/26/2015 Page 591

4. B. Ordinarily, Linux runs init (option B) as the first program; init then runs, via
various scripts, other programs. The dmesg program (option A) is a user diagnostic
and information tool used to access the kernel ring buffer; it’s not part of the startup
process. The startup program (option C) is fictitious. The rc program (option D)
is a script that some versions of init call, typically indirectly, during the startup
sequence, but it’s not the first program that the kernel runs. LILO is an older boot
loader for Linux on BIOS systems, and lilo (option E) is the command that installs
this boot loader to the MBR. Since boot loaders run before the kernel loads, this
option is incorrect.

5. D. Option D is the correct GRUB 2 configuration file. Option A is a fictitious file;
it doesn’t exist. Although some of GRUB 2’s boot loader code may be written to the
MBR, as implied by option B, this isn’t the location of the program’s configuration file.
Options C and D are both possible names for the GRUB Legacy configuration file, but
that name is not shared by GRUB 2.

6. A. The initrd keyword identifies an initial RAM disk file in the GRUB 2 configura-
tion file, and a space separates this keyword from the filename. (Several variants on
this syntax are possible.) Option B adds an equal sign (=), which renders the syntax
incorrect. Options C, D, and E use the incorrect initramfs and ramdisk keywords
instead of initrd.

7. D. You use grub-install to install the GRUB Legacy boot loader code into an MBR
or boot sector. When using grub-install, you specify the boot sector on the command
line. The MBR is the first sector on a hard drive, so you give it the Linux device identi-
fier for the entire hard disk, /dev/sda. Hence, option D is correct. Option A specifies
using the grub utility, which is an interactive tool, and the device identifier shown in
option A is a GRUB-style identifier for what would probably be the /dev/sda3 parti-
tion in Linux. Option B is almost correct, but it installs GRUB to the /dev/sda1 parti-
tion’s boot sector rather than to the hard disk’s MBR. Option C is the command to
install LILO to the MBR rather than to install GRUB. Option E contains the same
error as option B, and it also uses the fictitious grub-legacy command.

8. B. The root keyword in a GRUB Legacy configuration file tells the boot loader where
to look for files, including its own configuration files, kernel files, and so on. Because
GRUB Legacy numbers both disks and partitions starting from 0, (hd1,5) refers to the
sixth partition on the second disk, as option B specifies. Option A is incorrect because
you pass the Linux root partition to the kernel on the kernel line, not via the GRUB
root keyword. Options A, C, and E all misinterpret the GRUB numbering scheme. The
GRUB installation location is specified on the grub-install command line, so options
D and E are incorrect, and /dev/hd1,5 isn’t a standard Linux device file, which also
makes option D incorrect.

9. B. The initdefault action specifies the default runlevel, so option B is correct. The
remaining options are all taken from actual /etc/inittab files but don’t have the
specified meaning.

http://technet24.ir/

592 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 592

10. A, B, E. Runlevel 0 (option A) is the reserved runlevel for halting the system. Runlevel
1 (option B) is reserved for single-user mode. Runlevel 6 (option E) is reserved for
rebooting. Runlevel 2 (option C) is the default runlevel on Debian and most distribu-
tions derived from it, but it does none of the things described in the question. Runlevel
5 (option D) is a regular, user-configurable runlevel, which isn’t normally used for the
things described in the question. (Many systems use it for a regular boot with a GUI
login prompt.)

11. B, C. The first number in the runlevel output is the previous runlevel (the letter
N is used to indicate that the system hasn’t changed runlevels since booting). The
second number is the current runlevel. Hence, options B and C are both correct, while
options A and D are both incorrect. The runlevel changes very quickly, and the run-
level utility doesn’t provide a code to indicate that the runlevel is in the process of
being changed, so option E is incorrect.

12. A. The –c option to shutdown cancels a previously scheduled shutdown, as stated in
option A. Options B and C describe the effects of the -r and -h options to shutdown,
respectively. No shutdown option asks for confirmation before taking action, although
you can delay a shutdown by specifying a shutdown time in the future, so option D is
incorrect. No shutdown option closes open windows in X, except as a consequence of
shutting down, so option E is incorrect.

13. B. The journalctl program displays the systemd log file, so option A is incorrect.
Options C and D are commands used for the SysV initialization process, and Option E
is the systemd process command. Option B, systemctl, is the correct answer.

14. B. The telinit command is used to change runlevels; when it’s passed the 1 param-
eter, as in option B, telinit changes to runlevel 1, which is single-user mode. The
runlevel command (option A) displays the current runlevel but doesn’t change runlev-
els. Although telinit can be used to shut down or reboot the computer, the shutdown
command (option C) can’t be used to change runlevels except to runlevel 0 or 6. There
is no standard single-user command (option D). The halt command (option E), like
shutdown, can’t be used to change to single-user mode.

15. A. The isolate command for the systemctl program allows you to change the
target of the system. The rescue target specifies single-user mode. Option B changes
the system to the default target, which may or may not be single-user mode. The
 journalctl program in Option C displays the systemd log files. The systemd program
isn’t used to change targets (Option D), and the start command only starts a single
unit, not a target (Option E).

16. A. In vi, dd is the command-mode command that deletes lines. Preceding this com-
mand by a number deletes that number of lines. Thus option A is correct. Although yy
works similarly, it copies (yanks) text rather than deleting it, so option B is incorrect.
Option C works in many more-modern text editors, but not in vi. Option D works in
Emacs and similar text editors, but not in vi. Option E works in many GUI text edi-
tors, but not in vi.

17. D. The :q! vi command does as option D states. Options A and E are both simply
incorrect. Option B would be correct if this command was typed while in vi’s insert

http://technet24.ir/

Chapter 6: Configuring the X Window System, Localization, and Printing 593

bapp01.indd 03/26/2015 Page 593

mode, but the question specifies that command mode is in use. To achieve option C,
the command would be :wq, not :q!.

18. E. Vi is included on Linux emergency systems, embedded systems, and other systems
where space is at a premium because its executable is tiny. Emacs is, in contrast, a
behemoth. Thus option E is correct. Contrary to option A, vi isn’t an X-based program
(although X-based vi variants are available); Emacs can be used in text mode or with
X. Extended Binary Coded Decimal Interchange Code (EBCDIC) is an obscure 8-bit
character encoding system used on some very old mainframe OSs. When run on Linux,
vi doesn’t use EBCDIC; furthermore, EBCDIC offers few or no advantages over the
American Standard Code for Information Interchange (ASCII). Thus option B is incor-
rect. Vi’s modes, referred to in option C, have nothing to do with non-English language
support. Option D is backward; it’s Emacs that includes a web browser, email client,
and other add-ons.

19. A, B, C. Typing R (option A) in command mode enters insert mode with the system
configured to overwrite existing text. Typing i or a (options B and C, respectively)
enters insert mode with the system configured to insert text. (The i and a commands
differ in how they place the cursor; a advances one space.) Typing : (option D) in com-
mand mode enters ex mode (you typically type the ex-mode command on the same
command line immediately after the colon). Pressing the Esc key (option E) returns vi
to command mode from insert mode.

20. B. The Esc key exits vi’s insert mode, as option B specifies. Typing a tilde (~) inserts
that character into the file, so option A is incorrect. The Ctrl+X, Ctrl+C key combina-
tion exits from Emacs, but it’s not a defined vi key sequence, so option C is incorrect.
The F10 key and the Shift+Insert key combination also aren’t defined in vi, so options
D and E are both incorrect.

Chapter 6: Configuring the X Window
System, Localization, and Printing

1. A. On most Linux systems, some runlevels don’t run X by default, so using one of them
along with the startx program (which starts X running) can be an effective way to test
changes to an X configuration quickly, making option A correct. The telinit program
changes runlevels, which is a lengthy process compared to using startx, so option B
is incorrect. Unplugging the computer to avoid the shutdown process is self-defeating
because you’ll have to suffer through a long startup (if you use a non-journaling file-
system), and it can also result in data loss, thus option C is incorrect. The startx
utility doesn’t check the veracity of an X configuration file; it starts X running from a
text-mode login, making option D incorrect. Reconfiguring an X server does not nor-
mally require network access; the X server runs on the computer at which you sit. Thus
option E is incorrect.

2. D. The XF86Config and xorg.conf file design enables you to define variants or multiple
components and easily combine or recombine them as necessary, using the structure

http://technet24.ir/

594 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 594

specified in option D. Options A, B, and C all describe fictitious structures. Option E
is incorrect because the X.org-X11 and XFree86 configuration files use a text-mode
structure, not a binary structure.

3. C. The vertical refresh rate range includes a maximum value, but that value may be
reduced when the resolution and vertical refresh rate would demand a higher hori-
zontal refresh rate than the monitor can handle. Thus, option C is correct. Since the
resolution affects the maximum refresh rate, option A is incorrect. The color depth is
irrelevant to resolution and refresh rate calculations, so option B is incorrect. The
computations shown in options D and E are bogus, making these options incorrect.

4. E. Option E describes the correct location for this option. The ServerLayout sec-
tion (referenced in option A) combines all of the other options together but doesn’t
set the resolution. The Modeline option in the Monitor section (as described in option
B) defines one possible resolution, but there may be several Modeline entries defin-
ing many resolutions, and there’s no guarantee that any of them will be used. The
 Modeline option doesn’t exist in the Device section (as suggested by option C), nor
is that section where the resolution is set. There is no DefaultResolution section
(as referenced in option D).

5. B. By maintaining fonts on one font server and pointing other X servers to that font
server, you can reduce the administrative cost of maintaining the fonts on all of the
systems, so option B is correct. Font servers don’t produce faster font displays than
X’s local font handling; if anything, the opposite is true. Thus, option A is incorrect.
XFree86 4.x supports TrueType fonts directly, so option C is incorrect. Converting a
bitmapped display into ASCII text is a function of optical character recognition (OCR)
software, not a font server, so option D is incorrect. Neither X core fonts nor a font
server handles font smoothing; for that, you need Xft. Thus, option E is incorrect.

6. C, E. XDMCP servers are typically launched either from a system startup script or by
init (as specified in /etc/inittab), as described in options C and E. The XDMCP
server then starts X. The Start folder mentioned in option A is a Windows construct,
not a Linux construct. The ~/.xinitrc script mentioned in option B is an X login
script used when starting X from the command line via startx; it’s not used to start
X automatically when the system boots. A boot manager, as described in option D,
launches the kernel; it doesn’t directly start X, so option D is incorrect.

7. E. The XDM greeting is a resource set in the /etc/X11/xdm/Xresources file, so option
E is correct. XDM doesn’t offer many options on its main screen and certainly not
one to change its greeting, as described in option A. The kernel doesn’t directly handle
the login process, nor does it pass options directly to XDM, so option B is incorrect.
Although the xorg.conf file mentioned in option C is real, this file provides no XDM
configuration options because XDM is a separate program from the X server. There is
no standard xdmconfig program, as mentioned in option D.

8. C. KDM and GDM add many features, one of which is a menu that enables users to
select their desktop environment or window manager when they log in rather than
specifying it in a configuration file, as option C states. Option A describes one of the

http://technet24.ir/

Chapter 6: Configuring the X Window System, Localization, and Printing 595

bapp01.indd 03/26/2015 Page 595

advantages of the Secure Shell (SSH) as a remote-access protocol. Option B describes a
feature common to all three XDMCP servers. Option D describes the way both KDM
and XDM function; GDM is the one that presents username and password fields in
series rather than simultaneously. Although a failure of X to start usually results in a
fallback to a text-mode login, this feature is not provided by the XDMCP server, so
option E is incorrect.

9. A. The xhost command controls various aspects of the local X server, including the
remote computers from which it will accept connections, making option A correct.
Option B sets the DISPLAY environment variable, which doesn’t directly affect the X
server (it does tell X clients which X server to use). Option C initiates a text-mode
remote login session with penguin.example.com. Option D’s xaccess is a fictitious
program. Although logging into penguin.example.com via ssh may also initiate an
X tunnel, this isn’t guaranteed, and such a tunnel doesn’t cause the local X server to
accept direct connections from the remote computer, so option E is incorrect.

10. A. As stated in option A, GNOME, KDE, and other user programs often override the
keyboard repeat settings in the X configuration file. Option B has it almost backward;
most Linux distributions have abandoned XFree86, and therefore its XF86Config file,
in favor of X.org-X11 and its xorg.conf file. Option C is pure fiction; xorg.conf set-
tings apply to all varieties of keyboards, and there is no standard usbkbrate program.
Although some keyboards do have hardware switches, they don’t affect X’s ability to
control the keyboard repeat rate, contrary to option D. Although you can set a key-
board’s nationality in xorg.conf, this option is independent of the keyboard repeat rate
settings, so option E is incorrect.

11. C, E. The Orca and Emacspeak programs both provide text-to-speech conversion
facilities, so options C and E are both correct. Braille is a form of writing that uses
bumps or holes in a surface that can be felt by the reader. Although Linux supports
Braille output devices, the question specifies computer-generated speech, which
Braille is not, so option B is incorrect. SoX (option A) is an audio format converter,
but it won’t convert from text to speech. The talk program (option D) is an early
Unix online text-mode “chat” program, but it has no built-in speech synthesis
 capabilities.

12. B, E. Time zones are determined by the /etc/localtime file, so replacing that one with
the correct file (a selection is stored in /usr/share/zoneinfo) will fix the problem,
making option B correct. (You may also need to edit /etc/timezone or some other file
to keep automatic utilities from becoming confused.) Utilities such as tzselect will
make these changes for you after prompting you for your location, so option E is also
correct. The hwclock program mentioned in option A reads and writes data from the
system’s hardware clock. Although it relies on time zone data, it can’t adjust your sys-
tem’s time zone itself. There is no standard /etc/tzconfig file, although the tzconfig
program, like tzselect, can help you set the time zone. Thus, option C is incorrect.
The /etc/localtime file is a binary format; you shouldn’t attempt to edit it in a text
editor, making option D incorrect.

http://technet24.ir/

596 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 596

13. D. Linux, like Unix, maintains its time internally in Coordinated Universal Time
(UTC), so setting the computer’s hardware clock to UTC (option D) is the recom-
mended procedure for computers that run only Linux. Although Linus Torvalds spent
time at the University of Helsinki, Helsinki time (as in option A) has no special place in
Linux. Local time (as in option B) is appropriate if the computer dual-boots to an OS,
such as Windows, that requires the hardware clock to be set to local time, but this is
the second-best option for a Linux-only system. Option C’s US Pacific time, like Hel-
sinki time, has no special significance in Linux. Internet time (option E) is an obscure
way to measure time that divides each day into 1,000 “beats.” It’s not a time zone and
is not an appropriate way to set your hardware clock.

14. C. When set, the LC_ALL environment variable (option C) adjusts all the locale (LC_*)
variables, so setting this and then running the script will make the programs that your
script uses work as if on a British computer. The BIOS has no location code data, so
option A is incorrect. There is no standard /etc/locale.conf file, so option B is incor-
rect. There is no standard locale_set utility, so option D is incorrect. Although setting
the TZ environment variable, as in option E, will set the time zone for your local shell
to that for Great Britain, this won’t affect the sort of text formatting options noted in
the question.

15. A. The Unicode Transformation Format 8 (UTF-8) standard can encode characters
for just about any language on Earth, while looking just like ordinary ASCII to pro-
grams that only understand ASCII. Thus UTF-8 (option A) is the preferred method
for character encoding when a choice is possible. ASCII (option B) is an old standard
that’s adequate for English and a few other languages, but it lacks some or all charac-
ters needed by most languages. ISO-8859 (options C and D) is a standard that extends
ASCII, but it requires separate encodings for different languages and so it is awkward
when a computer must process data from multiple languages. ATASCII (option E) is a
variant of ASCII used in the 1980s by Atari for its home computers; it’s obsolete and
inadequate today.

16. E. The smart filter makes a print queue “smart” in that it can accept different file types
(plain text, PostScript, graphics, and so on) and print them all correctly, as in option E.
Font smoothing is useful on low-resolution computer monitors, but not on most print-
ers, and adding font smoothing is not a function of a smart filter, so option A is incor-
rect. A smart filter doesn’t detect confidential information (option B) or prank print
jobs (option D). The lpr program can be given a parameter to email a user when the
job finishes (option C), but the smart filter doesn’t do this.

17. B, D. The job ID (option B) and job owner (option D) are both displayed by lpq. Unless
the application embeds its own name (option A) in the filename, that information
won’t be present. Most printers lack Linux utilities to query ink or toner status (option
C); certainly lpq can’t do this. Although knowing when your job will finish printing
(option E) would be handy, providing this information is well beyond lpq’s capabilities.

18. C. The lprm command (option C) deletes a job from the print queue. It can take
the -Pqueue option to specify the queue and a print job number or various other

http://technet24.ir/

Chapter 7: Administering the System 597

bapp01.indd 03/26/2015 Page 597

parameters to specify which jobs to delete. BSD LPD, LPRng, and CUPS all imple-
ment the lprm command, so you can use it with any of these systems, making option A
incorrect. Option B presents the correct syntax but the wrong command name; there
is no standard lpdel command. The cupsdisable command can be used to disable
the whole queue but not to delete a single print job, so option D is incorrect. Because
option C is correct, option E obviously is not.

19. B. PostScript is the de facto printing standard for Unix and Linux programs, as speci-
fied in option B. Linux programs generally do not send data directly to the printer port
(option A); on a multitasking, multiuser system, this would produce chaos because of
competing print jobs. Although a few programs include printer driver collections, most
forgo this in favor of generating PostScript, making option C incorrect. Printing utili-
ties come standard with Linux; add-on commercial utilities aren’t required, so option
D is incorrect. Verdana is one of several “web fonts” released by Microsoft. Although
many Linux programs can use Verdana for printing if the font is installed, most Linux
distributions don’t install Verdana by default, and few Linux programs use it for print-
ing by default even if it’s installed, so option E is not correct.

20. B. The mpage utility (option B) prints multiple input pages on a single output page, so
it’s ideally suited to the specified task. PAM (option A) is the Pluggable Authentica-
tion Modules, a tool for helping to authenticate users. 4Front (option C) is the name of
a company that produces commercial sound drivers for Linux. The route command
(option D) is used to display or configure a Linux routing table. The 411toppm program
(option E) converts files from Sony’s 411 image file format to the PPM image file for-
mat; it doesn’t do the specified task.

Chapter 7: Administering the System

1. E. When the usermod -L username command is used, the username record in the
/etc/shadow file has its password field modified. An exclamation point (!) is placed in
front of the password, making the password inoperable and thus locking the account.
Therefore, option E is correct. An x exists in the /etc/passwd file’s records’ password
field, if the /etc/shadow file is used for passwords (which it should be) and does not
indicate a locked account. Therefore, option A is incorrect. Option B is only true when
an account has not yet had a password set. Therefore, option B is incorrect. Option C
is also incorrect. You would never have a blank password field for a user account’s
/etc/shadow record, unless the file had been incorrectly manually modified. Manual
modifications of the /etc/shadow files are never recommended. A user record could
have a zero (0) as the first character in their password field, but this would be due to
the password being hashed, not locked. Therefore, option D is incorrect.

2. A, B, C. The useradd command is used to add user accounts to a Linux system, and
therefore option A is correct. The adduser command is available on some Linux

http://technet24.ir/

598 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 598

distributions, and it also allows you to add user accounts to the system. Thus, option B
is correct as well. The useradd command has a valid -c option that allows you to enter
comments, such as a user’s full name. Therefore, option C is also correct. There is no
usradd command, so option D is incorrect. The passwd command cannot add users to
the system. Therefore, option E is incorrect.

3. A. The chage command changes various account expiration options. The -M parameter
sets the maximum number of days for which a password is valid, and in the context of
the given command, time is a username. Thus, option A is correct. Options B, C, D,
and E are all made up.

4. D. The /etc/passwd entries have third and fourth fields of the UID and the GID, but
this line has only one of those fields (which one is intended is impossible to deter-
mine); this example line’s fourth field is clearly the fifth field of a valid entry. Thus,
option D is the correct answer. Option A is incorrect because, although /bin/passwd
is an unorthodox login shell, it’s perfectly valid. This configuration might be used on,
say, a Samba file server or a POP mail server to enable users to change their passwords
via SSH without granting login shell access. The sally username is valid and thus,
Option B is not a correct answer. You may have usernames that are all lowercase let-
ters. Option C is a correct observation, but an incorrect answer; the username and the
user’s home directory name need not match. The hashed password is officially stored
in the second field, but in practice, most Linux computers place the hashed passwords
in the /etc/shadow file. An x value for the password is consistent with this use, so
option E is incorrect.

5. E. Option E is the best way to accomplish the task, because it will add sally to the
Development group without removing her from any other groups or potentially damag-
ing the /etc/group file. Option A would attempt to add the groups Development and
sally to the system, thus it is not even a valid choice. Option B, also not a valid choice,
would attempt to add the groups Production and sally. Option C would work, but
it is very dangerous to edit an account configuration file manually instead of using
account tools. Therefore, option C is not the best choice. Option D would work, but
it would remove sally from all of her other groups, including the Production group.
Therefore, option D is not the best choice either.

6. B, C, D. Files in /etc/skel are copied from this directory to the new users’ home
directories by certain account-creation tools. Thus, files that you want in all new users’
home directories should reside in /etc/skel. Options B, C, and D all describe rea-
sonable possibilities, although none is absolutely required. Including a copy of /etc/
shadow in /etc/skel (option A) would be a very bad idea because this would give all
users access to all other users’ hashed passwords, at least as of the moment of account
creation. You wouldn’t likely find package management databases (option E) in /etc/
skel, since users don’t need privileged access to this data, nor do they need individual-
ized copies of it.

7. C. The userdel command deletes an account, and the -r option to userdel (option C)
causes it to delete the user’s home directory and mail spool, thus satisfying the terms of

http://technet24.ir/

Chapter 7: Administering the System 599

bapp01.indd 03/26/2015 Page 599

the question. Option A deletes the account but leaves the user’s home directory intact.
Option B does the same; the -f option forces account deletion and file removal under
some circumstances, but it’s meaningful only when -r is also used. Option D’s rm com-
mand deletes the user’s home directory (assuming that it’s located in the conventional
place, given the username) but doesn’t delete the user’s account. Option E’s usermod
command can modify accounts, including locking them, but it can’t delete accounts.
Furthermore, the -D option to usermod is fictitious.

8. E. The emerg priority code (option E) is the highest code available and so is higher than
all the other options. From highest to lowest priorities, the codes given as options are
emerg, crit, warning, info, and debug.

9. A. The logrotate program consults a configuration file called /etc/logrotate.conf
(option A), which includes several default settings and typically refers to files in /etc/
logrotate.d to handle specific log files. The remaining options are all fictitious, at
least as working log files for logrotate.

10. D. The logger utility can be used to create a one-time log file entry that you specify.
In its simplest form, it takes no special arguments, just a message to be inserted in the
log file, as in option D. The dmesg utility in option A is used to review the kernel ring
buffer; it doesn’t create log file entries. Option B’s syslog command isn’t a Linux user-
mode command, although it is the name of the logging system generically as well as a
programming language command name. Option C’s rsyslogd is the name of one of
several system logging daemons; it maintains the system log, but isn’t used to manually
insert log entries. Option E’s wall command writes a message to all users logged into
virtual console terminals. It won’t create a log file entry as the question requires and is
not installed on all distributions.

11. C. The logrotate program can be started automatically—and unattended—on a regu-
lar basis by adding an entry for it in cron, so option C is correct. The at utility (option
A) would be used if you wanted the program to run only once. Option B, logrotate.d,
is a file stored in the /etc directory, which defines how the program is to handle spe-
cific log files. The inittab file (option D) is used for services and startup and not for
individual programs. The ntpd program (option E) is the Network Time Protocol
daemon, which synchronizes the system’s clock with outside time sources.

12. E. The hwclock utility is used to view or set the hardware clock. The ––systohc sets
the hardware clock based on the current value of the software clock, thus option E
is correct. Option A’s date utility can be used to set the software clock but not the
hardware clock; it has no ––sethwclock option. Option B’s ntpdate is used to set the
software clock to the time maintained by an NTP server; it doesn’t directly set the
hardware clock. Option C’s sysclock utility is fictitious. Option D’s time command
is used to time how long a command takes to complete; it has no ––set or ––hw option
and does not set the hardware clock.

13. A. The format of the date command’s date code is [MMDDhhmm[[CC]YY][.ss]]. Given
that the question specified an eight-digit code, this means that the ordering of the

http://technet24.ir/

600 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 600

items, in two-digit blocks, is month-day-hour-minute. Option A correctly parses this
order, whereas options B, C, D, and E do not.

14. C. Multiple server entries in /etc/ntp.conf tell the system to poll all of the named
servers and to use whichever one provides the best time data. Thus option C is correct.
(The pool.ntp.org subdomain and numbered computers within that subdomain give
round-robin access to a variety of public time servers.) Options A and B both incor-
rectly state that one server statement overrides another, when in fact this isn’t the
case. The server statements shown in the question are properly formed. These server
entries are properly formed, so option D is incorrect. Although it is true that this con-
figuration will result in use of tardis.example.com should the public-pool server be
unavailable, as option E states, this is not the only reason the NTP server will use
tardis.example.com; this could happen if the public-pool server provides an inferior
time signal, for instance. Thus option E is incorrect.

15. D. Once you’ve configured one computer on your network to use an outside time
source and run NTP, the rest of your computers should use the first computer as their
time reference. This practice reduces the load on the external time servers as well as
your own external network traffic. Thus option D is correct. (Very large networks
might configure two or three internal time servers that refer to outside servers for
redundancy, but this isn’t necessary for the small network described in the question.)
Option A describes the procedure to locate a time server for the first computer config-
ured (gateway.pangaea.edu) but not for subsequent computers. Although configuring
other computers to use ntp.example.com instead of or in addition to gateway.pan-
gaea.edu is possible, doing so will needlessly increase your network traffic and the
load on the ntp.example.com server. Thus options B and C are both incorrect.
Contrary to option E, NTP is suitable for use on small local networks, and in fact it’s
very helpful if you use certain protocols, such as Kerberos.

16. B, D. The cron utility is a good tool for performing tasks that can be done in an
unsupervised manner, such as deleting old temporary files (option B) or checking
to see that disk space is not low (option D). Tasks that require interaction or do not
occur on a scheduled basis, such as creating accounts (option C), aren’t good candi-
dates for cron jobs, which must execute unsupervised and on a schedule. Although a
cron job could restart a crashed server, it’s not normally used to start a server when
the system boots (option A); that’s done through system startup scripts or a super
server. Sending files to a printer (option E) is generally handled by a print server such
as the cupsd daemon.

17. B. User cron jobs don’t include a username specification (tbaker in options A and C).
The */2 specification for the hour in options C and D causes the job to execute every
other hour; the 7,19 specification in options A and B causes it to execute twice a day,
on the 7th and 19th hours (in conjunction with the 15 minute specification, that means
at 7:15 a.m. and 7:15 p.m.). Thus, option B provides the correct syntax and runs the
job twice a day, as the question specifies, whereas options A, C, and D all get some-
thing wrong. Option E causes the job to run once an hour, not twice a day.

http://technet24.ir/

Chapter 8: Configuring Basic Networking 601

bapp01.indd 03/26/2015 Page 601

18. B. The anacron program is a supplement to cron that helps ensure that log rotation,
daily backups, and other traditional cron tasks are handled even when the computer
is shut down (and, hence, when cron isn’t running) for extended periods of time. This
is the program to add to the system to achieve the stated goal, and option B is correct.
There is no common Linux utility called tempus, so option A is incorrect. Option C’s
crontab is the name of a file or program for controlling cron, which is likely to be an
unreliable means of log rotation on a laptop computer. The ntpd program (option D) is
the NTP daemon, which helps keep the system clock in sync with an external source.
Although running ntpd on a laptop computer is possible, it won’t directly help with
the task of scheduling log rotation. The syslog-ng package is an alternative system log
daemon, but this program doesn’t help solve the problem of missed daily backups when
using standard cron utilities, so option E is incorrect.

19. E. The at command runs a specified program at the stated time in the future. This
time may be specified in several ways, one of which is teatime, which stands for
4:00 p.m. Thus, option E is correct. The objections stated in options A, B, C, and
D are all invalid. (You may pass a script to at with the -f parameter, but this isn’t
required, contrary to option D.)

20. A, C. The contents of /etc/cron.daily are automatically run on a daily basis in
most Linux distributions, and the crontab utility can create user cron jobs that run
programs at arbitrary time intervals, so both A and C are correct. The at command
noted in option B can be used to run a program a single time, but not on a regular
basis (such as daily). Option D’s run-parts utility is used by some distributions as a
tool to help run programs in the /etc/cron.* subdirectories, but it’s not used to sched-
ule jobs. Although the crontab program can maintain user crontabs, it’s not used as
shown in option E and it has no -d parameter at all.

Chapter 8: Configuring Basic
Networking

1. A, B, E. Ethernet (option B) is currently the most common type of wired network hard-
ware for local networks. Linux supports it very well, and Linux also includes support
for Token Ring (option A) and Fibre Channel (option E) network hardware. DHCP
(option C) is a protocol used to obtain a TCP/IP configuration over a TCP/IP network.
It’s not a type of network hardware, but it can be used over hardware that supports
TCP/IP. NetBEUI (option D) is a network stack that can be used instead of or in
addition to TCP/IP over various types of network hardware. Linux doesn’t support
NetBEUI directly.

2. B. IP addresses consist of four 1-byte numbers (0–255). They’re normally expressed
in base 10 and separated by periods. 63.63.63.63 meets these criteria, so option B is

http://technet24.ir/

602 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 602

correct. 202.9.257.33 includes one value (257) that’s not a 1-byte number, so option
A is incorrect. 107.29.5.3.2 includes five 1-byte numbers, so option C is incorrect.
98.7.104.0/24 (option D) is a network address—the trailing /24 indicates that the
final byte is a machine identifier, and the first 3 bytes specify the network. Option E,
255.255.255.255, meets the basic form of an IP address, but it’s a special case—this
is a broadcast address that refers to all computers rather than to the single computer
specified by the question.

3. C. The gateway computer is a router that transfers data between two or more network
segments. As such, if a computer isn’t configured to use a gateway, it won’t be able to
communicate beyond its local network segment, making option C correct. A gateway
is not necessary for communicating with other systems on the local network segment,
so option A is incorrect. If your DNS server is on a different network segment, name
resolution via DNS won’t work, as stated in option B; however, other types of name
resolution, such as /etc/hosts file entries, will still work, and the DNS server might
be on the local network segment, so option B is incorrect. Gateways perform the same
function in both IPv4 and IPv6 networking, so option D is incorrect. DHCP functions
fine without a gateway, provided that a DHCP server is on the same local network
segment as its clients (as is normally the case), so option E is incorrect.

4. D. The Secure Shell (SSH) protocol uses port 22, so if the traffic to port 22 is using
the correct protocol, it’s SSH traffic and option D is correct. The Hypertext Trans-
fer Protocol (HTTP; option A) is conventionally bound to port 80; the Simple Mail
Transfer Protocol (SMTP; option B) uses port 25; Telnet (option C) uses port 23; and
the Network News Transfer Protocol (NNTP; option E) uses port 119. None of these
would normally be directed to port 22.

5. D. The Interactive Mail Access Protocol (IMAP) is assigned to TCP port 143. Ports
21, 25, 110, and 443 are assigned to the File Transfer Protocol (FTP), the Simple Mail
Transfer Protocol (SMTP), the Post Office Protocol version 3 (POP3), and the Hyper-
text Transfer Protocol over SSL (HTTPS), respectively. Although some IMAP server
programs also support POP3 and might therefore listen to both ports 110 and 143, the
question specifies IMAP exchanges, so option D is the only correct answer.

6. C, E. Option C, dhcpd, is the Linux DHCP server. Option E, ifconfig, can be used for
network configuration but is not itself a DHCP client. The others are all DHCP clients.
Any given computer will use just one DHCP client (or none at all), but any one of A, B,
or D will be available choices.

7. B, C. When used to display information on an interface, ifconfig shows the
hardware and IP addresses (options B and C) of the interface, the protocols (such as
TCP/IP) bound to the interface, and statistics on transmitted and received packets.
This command does not return information about programs using the interface (option
A), the hostname associated with the interface (option D), or the kernel driver used by
the interface (option E).

8. A. The host program (option A) is a commonly used program to perform a DNS
lookup. There is no standard dnslookup program (option B), although the nslookup

http://technet24.ir/

Chapter 8: Configuring Basic Networking 603

bapp01.indd 03/26/2015 Page 603

program is a deprecated program for performing DNS lookups. pump (option C) is a
DHCP client. ifconfig (option D) is used for configuration of networking parameters
and cards. netstat (option E) is a general-purpose network diagnostic tool.

9. B. To add a default gateway of 192.168.0.1, the command would be route add
default gw 192.168.0.1, as in option B. Specifying the IP address of the host
system (as in options A, C, and D) is not necessary and in fact will confuse the route
command. Although route provides a -host option, using host (without a dash), as in
option E, is incorrect. Furthermore, option E omits the critical add parameter.

10. A, B. The dhclient utility, if installed, attempts to configure and bring up the
network(s) passed to it as options (or all networks if it’s given no options) using
a DHCP server for guidance. Thus option A may work, although it won’t work if no
DHCP server is available. Option B applies whatever network options are configured
using distribution-specific tools and brings up the network. Thus options A and B both
may work, although neither is guaranteed to work. Option C displays the network
status of eth1, but it won’t activate eth1 if it’s not already active. There is no standard
network utility in Linux, so option D won’t work. The netstat utility is a network
diagnostic tool; it won’t bring up a network interface, so option E is incorrect.

11. E. Although not all systems use /etc/hostname, option E correctly describes it for those
systems that use it. The file or files that hold information on package repository servers
vary from one package system to another, so option A is incorrect. Option B describes
the purpose of /etc/resolv.conf. Option C describes the purpose of /etc/hosts.
Option D doesn’t describe any standard Linux configuration file, although the gateway
computer’s IP address is likely to appear in a distribution-specific configuration file.

12. C. The traceroute command (option C) identifies the computers that lie between your
own computer and a destination computer, along with some very basic information
about network packet travel time and reliability. Thus, traceroute can help you track
down the source of the described problem—perhaps a router that’s critical to reach-
ing all of the non-responsive systems has failed. The netstat and ifconfig utilities of
options A and D both provide information about local network configuration options,
but they most likely won’t be of much help in diagnosing a problem that affects only
some sites. The ping utility (option B) may help you quickly identify sites that have
failed but won’t be of much use beyond that. You can use dig (option E) to obtain
information on the mapping of hostnames to IP addresses, but it won’t help in
resolving basic connectivity problems.

13. B. Both global and link-local IPv6 addresses can use the system MAC address as part
of the IPv6 address, thus option A is incorrect. The fee network address identifies a
site-local address but not a link-local address, so option C is also incorrect. An address
that starts with 2001 would be a normal global address, making option D incorrect.
IPv6 link-local addresses start with fe80, thus C is the correct answer.

14. C. The netstat program produces various network statistics, including the process IDs
(PIDs) and names of programs currently accessing the network when it’s passed the -p

http://technet24.ir/

604 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 604

parameter, thus option C is correct. The ifconfig program can’t produce this informa-
tion, and the -p option to this program is fictitious, so option A is incorrect. Option
B’s /proc/network/programs file is also fictitious. Option D’s /etc/xinetd.conf file is
real and may provide some information about some servers that are using the network
(as described in Chapter 10), but this file won’t provide information about all servers,
much less about clients that are accessing the network. The dmesg command displays
the kernel ring buffer, which doesn’t contain information on programs that are
currently accessing the network, so option E is incorrect.

15. A, D. If you get any response at all, you know that the basic network connection is
working, including that the server is responding to the client. With basic knowledge
of IMAP commands, telnet enables you to test the server’s responses in more detail
than most IMAP clients (mail readers) permit. Thus options A and D are both correct.
Option B describes the functionality of traceroute or tracepath; telnet provides no
information about intermediate routers’ functionality, so option B is incorrect. Because
neither telnet nor IMAP on port 143 uses encryption, option C is incorrect. Further-
more, a packet sniffer is likely to have no effect on the transfer of data; it just copies
the data so that the packet sniffer’s user can see it. Although telnet can be used for
remote access in a way that could make option E correct, the question specifies using
telnet to connect to port 143, which is the IMAP port, not the Telnet port. Thus,
option E is incorrect. (Furthermore, using telnet for remote administration is very
risky because telnet is an unencrypted protocol.)

16. B. The computer’s IP address (172.25.78.89) and netmask (255.255.255.0) mean
that the computer can directly address computers with IP addresses in the range of
172.25.78.1 to 172.25.78.254, but the gateway address (172.25.79.1) is outside of this
range. Thus, either the IP address or the gateway address is wrong, and option B is cor-
rect. Nothing about the way DNS operates necessitates that the DNS server be on the
same network segment as the DNS client, so option A is incorrect. Although private IP
addresses are often isolated from the Internet, as option C specifies, Network Address
Translation (NAT) can get around this limitation. Thus, although there could be some
truth to option C, it’s not certain to be true. The Class A/B/C distinctions are just
guidelines that can be overridden by specific configurations. Thus option D is incor-
rect. Option E’s assertion that ifup is used only on computers that use DHCP is incor-
rect; ifup can work on computers that use static IP addresses provided the relevant
information is entered correctly.

17. E. The -n option is used when you want to use route to display the current routing
table, and it does as option E specifies. There is no route parameter that behaves as
options A or C specify. Option B describes the purpose of the netmask parameter to
route. Option D describes the purpose of the -net parameter to route.

18. E. Option E correctly identifies the function of /etc/resolv.conf. Option A describes
the purpose of /etc/services. Various distribution-specific configuration files per-
form the function described in option B, but /etc/resolv.conf is not one of these
files. A DHCP client sends a broadcast to locate a DHCP server; there is no client

http://technet24.ir/

Chapter 9: Writing Scripts, Configuring Email, and Using Databases 605

bapp01.indd 03/26/2015 Page 605

configuration file that holds the DHCP server’s address, as option C describes. The
routing table is maintained internally, although basic routing information may be
stored in distribution-specific configuration files, so option D is also incorrect.

19. B. The /etc/hosts file holds mappings of IP addresses to hostnames, on a one-line-
per-mapping basis. Thus option B is correct. The file does not list the users (option C)
or other hosts (option A) allowed to access this one remotely, affect remote administra-
tion through a web browser (option D), or map port numbers to protocols (option E).

20. D. The /etc/nsswitch.conf file controls the order of name resolution, among other
things. Option D correctly describes the procedure for changing the order in which
Linux performs name resolution. The /etc/resolv.conf file mentioned in option A
controls the DNS servers that Linux consults, but it doesn’t control access to /etc/
hosts. Option B’s nslookup command resolves a hostname, so option B will return
the IP address of the computer called dns, if Linux can find such a system. The /etc/
named.conf file of option C is the configuration file for the standard name server. This
server isn’t likely to be installed on most Linux systems, and even if it is, the procedure
described in option C is invalid. Like option B’s nslookup, option E’s dig looks up
hostname-to-IP-address mappings, so option E will display such mappings for the com-
puters called local and dns, if they exist.

Chapter 9: Writing Scripts, Configuring
Email, and Using Databases

1. D. The PS1 environment variable contains various formatting codes preceded by a
backslash (\) as well as text to be included in the primary command prompt. There-
fore, option D is correct. There is no environment variable called PROMPT, nor is there
an environment variable called PSI, so options A and B are incorrect. Programs that
use a pager, such as less or more, use the PAGER environment variable. If the variable is
set, the programs use the pager listed in the variable. Therefore, option C is incorrect.
Option D is correct, so option E is incorrect.

2. A. The alias built-in command creates a duplicate name for a (potentially much
longer) command. Option A shows the correct syntax for using this built-in command.
It causes the new alias cdpt to work like the much longer cd ~/papers/trade. The
export command in option B creates an environment variable called cdpt that holds
the value cd ~/papers/trade. This will have no useful effect. Option C, if placed in
a bash startup script, will cause an error because it uses incorrect alias command
syntax, as does option D. Although env is a valid command, it’s used incorrectly in
option E, and so this option is incorrect.

3. E. Some programs use the EDITOR environment variable as described in option E.
Contrary to option A, the EDITOR environment variable has nothing to do with

http://technet24.ir/

606 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 606

command-line editing. When you’re typing at a bash command prompt, bash itself pro-
vides simple editing features, so option B is incorrect. (You can launch the editor speci-
fied by $EDITOR by typing Ctrl+X followed by Ctrl+E, though.) The edit command
doesn’t behave as option C suggests. (This command may be configured differently on
different systems.) You can create links called GUI and TEXT to have the EDITOR envi-
ronment variable behave as option D suggests, but this isn’t a normal configuration.

4. C. The PWD environment variable holds the present working directory, so option C
is correct. The PATH environment variable (option A) holds a colon-delimited list of
directories in which executable programs are stored so that they may be run without
specifying their complete pathnames. There are no standard CWD, PRESENT, or WORKING
environment variables, so options B, D, and E are all incorrect.

5. A, C. Option A creates the desired environment variable. Option C also creates the
desired environment variable. It combines the variable setting and the export of the
MYVAR variable using a different method than option A uses. It combines the two
commands on one line using a semicolon (;). Option B creates a local variable—but
not an environment variable—called MYVAR, holding the value mystuff. After typing
option B, you can also type export MYVAR to achieve the desired goal, but option B
by itself is insufficient. Option D displays the contents of the MYVAR variable and also
echoes mystuff to the screen, but it doesn’t change the contents of any environment
variable. Option E’s setenv isn’t a valid bash command, but it will set an environ-
ment variable in tcsh.

6. E. The ~/.bashrc file is a non-login bash startup script file. As such, it can be used to
alter a user’s bash environment, and option E is correct. The /etc/inputrc file is
a global bash configuration file for keyboard customization and setting terminal
behavior. The ~/.inputrc file is for users to create or modify their own keyboard
configuration file. Therefore, option A is incorrect. The /etc/bashrc file is a global
bash startup script. Editing it will modify users’ bash environments, but an individual
user should not be able to modify it, so option B is incorrect. There is no standard
$HOME/bashrc file because the filename is missing its prefixed period (.). Thus, option
C is incorrect. Likewise, option D’s $HOME/.profile_bash doesn’t refer to a user’s con-
figuration file and is incorrect. However, there is a $HOME/.bash_profile bash
configuration file.

7. A, D. The env command displays all defined environment variables, so option A satis-
fies the question. (In practice, you might pipe the results through grep to find the value
of a specific environment variable.) The echo command, when passed the name of a
specific environment variable, displays its current value, so option D is also correct.
DISPLAY is an environment variable, but it’s not a command for displaying environment
variables, so option B is incorrect. You can use the export command to create an envi-
ronment variable but not to display the current settings for one, so option C is incor-
rect. Option E’s cat command concatenates files or displays the contents of a file to the
screen, but it doesn’t display environment variables.

8. B. Before using the ./ execution method, the script must have at least one executable
bit set. Therefore, an error will be generated since chmod was not used to modify the
execute permissions on the a_script file. Thus Option B is the correct choice since it

http://technet24.ir/

Chapter 9: Writing Scripts, Configuring Email, and Using Databases 607

bapp01.indd 03/26/2015 Page 607

would not work. Option A uses the bash command to execute a script, and this will
work fine without any file permission changes. Likewise, when you source a file using
either the source command or a dot (.) and a space, there is no need to modify a
scripts permission bits before executing the file. Therefore, option C and option D are
incorrect because they also work fine.

9. C. The cp command is the only one called in the script, and that command copies files.
Because the script passes the arguments ($1 and $2) to cp in reverse order, their effect
is reversed—where cp copies its first argument to the second name, the cp1.sh script
copies the second argument to the first name. Thus, option C is correct. Because the
order of arguments to cp is reversed, option A is incorrect. The cp command has noth-
ing to do with compiling (option B) or converting (option D) C or C++ programs, so
neither does the script. The reference to /bin/bash in the first line of the script identi-
fies the script itself as being a bash script; it does not cause the arguments to the script
to be run as bash scripts, so option E is incorrect.

10. E. The commands iterated by the for, while, and until loops are located between the
do and done constructs. Therefore, option E is correct. Commands in the then state-
ment section are for an if-then construct, not a loop, thus option A is incorrect. Dou-
ble semicolons are used for case constructs, but not loops, and so option B is incorrect.
The case and esac keywords begin and end a case construct, and thus option C is
incorrect. A test statement can be used to determine whether or not a loop’s commands
should iterate or not. However, it does not contain the actual commands to be iterated,
and therefore option D is incorrect.

11. B, C. Valid shell scripts begin with the characters #! and the complete path to a pro-
gram that can run the script. Options B and C both meet this description, because
/bin/bash is a shell program that’s installed on virtually all Linux systems and /bin/
tcsh is often also available. There is no standard /bin/script program, so option A
is incorrect. Options D and E are both almost correct; /bin/sh is typically linked to a
valid shell and /bin/zsh is a valid shell on many systems, but the order of the first two
characters is reversed, so these options are incorrect.

12. A, B, D. The for, while, and until statements are all valid looping statements in bash,
so options A, B, and D are all correct. The if-then statement in bash’s scripting lan-
guage tests a condition and, if it is true, executes its commands one time only. There-
fore, option C is incorrect. The case statement is a conditional, not a looping statement
in bash, so option E is incorrect.

13. B. When aliases are properly configured, any email addresses sent to the email with an
alias is received by the alias account. Therefore, option B is correct. The postmaster
username would not receive the email because the alias is set to john, and so option
A is incorrect. The ~/.forward file is associated with email forwarding, not aliases.
Therefore, option C is incorrect. There is no reason for root to receive this email, so
option D is incorrect. An alias does allow email to be sent to the alias account, so the
statement in Option E does not make sense and is incorrect.

14. C. The Fetchmail program is a tool for retrieving email from remote POP or IMAP
servers and injecting it into a local (or remote) SMTP email queue. As such, it’s not

http://technet24.ir/

608 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 608

an SMTP server, so option C is correct. Postfix (option A), sendmail (option B), Exim
(option D), and qmail (option E) are all popular SMTP email servers for Linux.

15. B. The -s option to mail sets the message subject line, and -c sets carbon copy (cc:)
recipients. Input redirection (via <) reads the contents of a line into mail as a message.
A mail command line normally terminates with the primary recipient. Thus, option
B correctly describes the effect of the specified line. Options A, C, D, and E are all
confused in their interpretation of the effects of mail parameters. Options A, B, and
D also confuse input and output redirection, and option A incorrectly suggests that a
script (or the mail program) can elevate its run status to root privileges.

16. D. To view your mail queue, use the mailq command (option D). The service
 sendmail status command is a SysV service status command and does not show
mail queues, so option A is incorrect. Option B is a printer command and is therefore
incorrect. Option C is close, but the correct command is sendmail -bp not -bq.
Option E will show you the various directories within /var/spool and is therefore not
the correct command.

17. B. The /etc/aliases file configures system-wide email forwarding. The specified
line does as option B describes. A configuration like this one is common. Option
A has things reversed. Option C is not a valid conclusion from this evidence alone,
although an intruder conceivably may be interested in redirecting root’s email, so if
jody shouldn’t be receiving root’s email, this should be investigated further. Although
the effect of option D (jody reading root’s email) is nearly identical to the correct
answer’s effect, they are different; jody cannot directly access the file or directory that
is root’s email queue. Instead, the described configuration redirects root’s email into
jody’s email queue. Thus, option D is incorrect. Because /etc/aliases is an email
configuration file, not an account configuration file, it can’t have the effect described
in option E.

18. B. The CREATE DATABASE command creates a new database with the specified name.
Because SQL commands are case insensitive, this command may be typed in uppercase
or lowercase, and option B is correct. Options A and C both use the incorrect com-
mand NEW rather than CREATE, and option C specifies the database name as FISH rather
than fish. (Database names are case sensitive.) Option D reverses the order of the
CREATE and DATABASE keywords. Option E uses the fictitious command DB.

19. A, D. A single database may hold multiple tables, as option A suggests. Option D is
also correct; if data is split across tables (such as into tables describing objects generi-
cally and specifically), databases can be more space efficient. Option B is incorrect
because the DROP command doesn’t combine tables—it deletes a table! Option C is
incorrect because it reverses the meaning of rows and columns in a SQL table. A lossy
compression algorithm, as the name suggests, deliberately corrupts or loses some
data—an unacceptable option for a text database, making option E incorrect. (Lossy
compression is used for some audio and video file formats, though.)

20. C. The UPDATE command modifies existing database table entries, and in this case it
does so as option C describes. Option B also describes an update operation, but in a

http://technet24.ir/

Chapter 10: Securing Your System 609

bapp01.indd 03/26/2015 Page 609

confused and incorrect way. Options A and D both describe database retrieval opera-
tions, but UPDATE doesn’t retrieve data. Option E mistakenly identifies stars as a data-
base name, but it’s a table name, and it mistakenly identifies the operation as adding a
new entry (INSERT in SQL) rather than as modifying an existing entry (UPDATE in SQL).

Chapter 10: Securing Your System

1. E. The server names alone are insufficient to determine whether they’re legitimate.
The computer in question may or may not need to run any of these servers, and their
presence may or may not be intentional, accidental, or the sign of an intrusion. Thus,
option E is correct. Contrary to option A, the mere presence of an SSH server does
not ensure security. Although, as option B asserts, FTP is not a secure protocol, it’s
still useful in some situations, so the mere presence of an FTP server is not, by itself,
grounds for suspicion. Similarly, in option C, although some administrators prefer
Postfix or qmail to sendmail for security reasons, sendmail isn’t necessarily bad, and
the names alone don’t guarantee that the sshd and proftpd servers are legitimate. As
option D states, sendmail and proftpd both use unencrypted text-mode transfers, but
this is appropriate in some situations, so option D is incorrect.

2. C. Although Nmap and other port scanners are useful security tools, troublemak-
ers also use them, and many organizations have policies restricting their use. Thus,
you should always obtain permission to use such tools prior to using them, as option
C specifies. A port scanner can’t cause damage to /etc/passwd, so there’s no need to
back it up, contrary to option A. A port scanner also doesn’t need the root password
on a target system to operate, so you don’t need this information, making option B
incorrect. (In fact, asking for the root password could be seen as extremely suspicious!)
Although you could use sudo to run Nmap, there’s no need to do so to perform a TCP
scan, and you can perform a UDP scan by running Nmap as root in other ways (such
as via a direct login or by using su). Thus, option D isn’t strictly necessary, although
you might want to tweak /etc/sudoers as a matter of system policy. Because a firewall
is part of your network’s security, you probably want it running when you perform a
network scan, contrary to option E. Furthermore, it would be safer to leave the fire-
wall running and scan from behind it if you want to test the security of the network in
case of a firewall breach.

3. C. The /etc/security/limits.conf (option C) file holds the configuration settings
that allow you to limit users’ access. The other options listed don’t give the correct path
to this file.

4. A, B, C. Nmap (option A) is usually used to perform scans of remote computers, but
it can scan the computer on which it’s run as well. The netstat (option B) and lsof
(option C) utilities can both identify programs that are listening for connections (that
is, open ports) on the local computer. The Network File System (NFS) and some other

http://technet24.ir/

610 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 610

servers use the portmap program (option D), but it’s not used to identify open ports.
There is no standard Linux services program (option E), although the /etc/services
file holds a mapping of port numbers to common service names.

5. B. The -perm option to find locates files with the specified permissions, and +4000 is a
permission code that matches SUID files. The -type f option restricts matches to files
in order to avoid false alarms on directories. Option B uses these features correctly.
Options A, C, and D use these features incorrectly. Option E specifies a fictitious
-suid parameter to find.

6. A. Option A correctly describes the meaning of the specified line. A percent sign (%)
identifies a Linux group name, and the remainder of the line tells sudoers to enable
users of that group to run all programs as root by using sudo. The remaining options
all misinterpret one or more elements of this configuration file entry.

7. B. The netstat command can do what is described in the question. The -ap options to
the command are good choices to discover all the open network connections, so option
B is correct. Although lsof can also accomplish the job, the -c a option is incorrect;
this option restricts output to processes whose names begin with a. Thus, option A is
incorrect. Option C’s ifconfig command doesn’t display open network connections,
so it’s incorrect. Although option D’s nmap command will locate ports that are open on
the localhost interface, it doesn’t locate all open connections, nor does it locate con-
nections on anything but the localhost interface. Option E’s top command displays a
list of processes sorted by CPU use, not open network connections (-net is an invalid
option to top as well).

8. D. Option D is correct. TCP wrappers uses this feature to allow you to override broad
denials by adding more specific access permissions to hosts.allow, as when setting a
default deny policy (ALL : ALL) in hosts.deny.

9. C. The bind option of xinetd lets you tie a server to just one network interface rather
than link to them all, so option C is correct. It has nothing to do with running multiple
servers on one port (option A), specifying computers by hostname (option B), resolving
conflicts between servers (option D), or the Berkeley Internet Name Domain (BIND) or
any other DNS server (option E).

10. A, D. Using a firewall rule to block Waiter’s port, as in option A, can increase security
by providing redundancy; if Waiter is accidentally run in the future, the firewall rule
will block access to its port. Uninstalling the program, as in option D, improves secu-
rity by reducing the risk that the program will be accidentally run in the future. Most
programs don’t have a “stealth” mode, so option B is incorrect. (Furthermore, reading
the documentation isn’t enough; to improve security, you must change some configu-
ration.) Tunneling Waiter’s connections might have some benefit in some situations,
but this configuration requires setup on both client and server computers and by itself
leaves the server’s port open, so option C is incorrect. Clients associated with the server
program, installed on the server computer, pose little or no risk of abuse of the associ-
ated server; the clients on other computers are most likely to be used to abuse a server
program, and you can’t control that. Thus option E is incorrect.

http://technet24.ir/

Chapter 10: Securing Your System 611

bapp01.indd 03/26/2015 Page 611

11. B. Option B correctly describes how to accomplish this goal. Option A is incorrect
because the hosts_allowed option isn’t a legal xinetd configuration file option.
Option C correctly describes how to configure the described restriction using TCP
wrappers, which is generally used with inetd, but it’s not the way this is done using
xinetd. Option D is also a TCP wrappers description, but it reverses the meaning.
Option E’s iptables utility configures a firewall. Although a firewall rule could be a
useful redundant measure, the question specifies an xinetd configuration, and option
E’s use of iptables is incorrect.

12. B. Ideally, passwords should be completely random but still memorable. Option B’s
password was generated from a personally meaningful acronym and then modified
to change the case of some letters, add random numbers and symbols, and extend its
length using a repeated character. This creates a password that’s close to random but
still memorable. Option A uses a well-known mythological figure, who is likely to
be in a dictionary. Option C uses two common words, which is arguably better than
option A, but not by much. Option D uses two closely related words separated by a
single number, which is also a poor choice for a password. Option E uses a sequential
series of numbers, which is a poor (but sadly common) password choice.

13. A. Phishing (option A) involves sending bogus email or setting up fake websites that
lure unsuspecting individuals into divulging sensitive financial information or other
sensitive information. Script kiddies (option B) are intruders who use root kits. Spoof-
ing (option C) involves pretending that data is coming from one computer when it’s
coming from another. Ensnaring (option D) isn’t a type of attack. Hacking (option E)
refers to either lawful use of a computer for programming or other advanced tasks or
breaking into computers.

14. C. The /etc/nologin file, if present, prevents logins from ordinary users; only root
may log in. You might set this file when performing maintenance and then forget to
remove it, thus explaining the symptoms in the question. Thus, option C is correct.
The syslogd daemon mentioned in option A records system messages, and it is unlikely
to produce the specified symptoms. The login process ordinarily runs as root and is
normally SUID root, so options B and D are also incorrect. Shadow passwords, as
in option E, are used on almost all modern Linux systems and are not likely to cause
these symptoms.

15. B, C. SSH is most directly a replacement for Telnet (option B), but SSH also includes
file-transfer features that enable it to replace FTP (option C) in many situations. SSH is
not a direct replacement for the Simple Mail Transfer Protocol (SMTP, option A), the
Network Time Protocol (NTP, option D), or Samba (option E).

16. A . The ssh_host_dsa_key file holds one of three critical private keys for SSH. The fact
that this key is readable (and writeable!) to the entire world is disturbing, so option
A is correct. In principle, a troublemaker who has acquired this file might be able to
redirect traffic and masquerade as your system, duping users into delivering passwords
and other sensitive data. Because of this, option B (no) is an incorrect response, and

http://technet24.ir/

612 Appendix ■ Answers

bapp01.indd 03/26/2015 Page 612

the conditions imposed by options C, D, and E are all irrelevant, making all of these
options incorrect.

17. B. SSH protocol level 2 is more secure than protocol level 1; thus option B (specifying
acceptance of level 2 only) is the safest approach. Option A is the least safe approach
because it precludes the use of the safer level 2. Options C and D are exactly equivalent
in practice; both support both protocol levels. Option E is invalid.

18. E. Allowing only normal users to log in via SSH effectively requires two passwords for
any remote root maintenance, improving security, so option E is correct. Whether or
not you permit root logins, the SSH server must normally run as root, since SSH uses
port 22, a privileged port. Thus, option A is incorrect. SSH encrypts all connections,
so it’s unlikely that the password, or commands issued during an SSH session, will be
intercepted, so option B isn’t a major concern. (Nonetheless, some administrators
prefer not to take even this small risk.) SSH doesn’t store passwords in a file, so option
C is incorrect. Because SSH employs encryption, option D is incorrect (this option
better describes Telnet than SSH).

19. D. Option D provides the correct command to import fredkey.pub prior to use. The
inspect-gpg, import-gpg, and gpg-import commands of options A, C, and E are
fictitious, and there is no --readkey option to gpg, as option B suggests.

20. E. The usual method of sending encrypted messages with GPG entails the sender using
the recipient’s public key to encrypt the message. Thus, option E is correct. Option A
would be correct if your correspondent needed to send you an encrypted message, but
the question only specifies you sending the encrypted message. Options B, C, and D all
entail delivery of private keys, which is inadvisable at best, because private keys in the
wrong hands permit the holder to impersonate the person who owns the keys.

http://technet24.ir/

bindex.indd 03/26/2015 Page 613

Index

http://technet24.ir/

http://technet24.ir/

bindex.indd 03/26/2015 Page 615

Index

[] (brackets) in file naming, 180
` (backtick) character, 21
| (pipe) character, 19–20
~ (tilde) character in commands, 6
/ (root) directory, 218
* (asterisk) in file naming, 179, 180
\ (backward slash) in file naming, 179
- (dash) in file naming, 178
. (dot) in file naming, 178
/ (forward slash) in file naming, 179
? (question mark) in file naming, 179,

180
~ (tilde) in file naming, 178
_ (underscore) in file naming, 178
“ (quotation mark) in file naming, 179

A
Accelerated-X, 281
accessibility, X

display, 312–314
keyboard, 310–312
mouse, 310–312

AccessX utility, keyboard, 310–312
accounts

chage, 354–355
configuration files, 355–357
deleting, 358–359
groups, 345–346
network account databases, 357–358
records, viewing, 362–364
usermod, 352–353
usernames, 345
users, 344–345

adding, 348–350
password setting, 350–351

ACL (access control list), 205
AD (Active Directory), 357–358
addresses, network, 414–415

base-10 numbers, 416
broadcasts, 419–420
DHCP and, 415
IPv4, 416
IPv6, 416–417
link-local, 417
MAC, 415
managing, 415–316, 415–417
network mask, 417–419

aliases, 459–460
alien utility, 75–77
answers to questions, 576–612
apt-cache, 67
apt-get, 68–71
archiving files, 187

cpio utility, 191–194
dd utility, 194–195
tar utility, 188–191
zip files, 188

assistive technologies in X, 314
at, 396–398
attackers, 525
automated tasks

at, 396–398
cron, 389

anacron, 394–396
cron jobs, 389

creating, 390–391
user cron jobs, 391–393

http://technet24.ir/

616 background processes – command completion

bindex.indd 03/26/2015 Page 616

B
background processes, 95–96
backtick (`) character, 21
base-10 numbers, 416
BaseT cabling, 409
bash, 4–5

environment variables, 455
history, 11–12
prompt, 458–459

bin directory, 219
binary packages, 49
BIOS (Basic Input/Output System),

109, 117
boot loaders, 235–237
boot partition, 236

bitmap fonts, 296
boot directory, 218
boot disks, 117–119
boot loaders

BIOS, 235–237
damaged, 246
EFI, 237–238
GRUB (Grand Unified Boot Loader),

234, 236
GRUB 2, 243–245
GRUB legacy

configuring, 238–241
installation, 242
interacting, 242–243

gummiboot, 246
installation, 234
LILO, 245
LILO (Linux Loader), 234, 236
Linux Kernel, 245
overview, 235
rEFInd, 245–246
rEFIt, 245
Syslinux, 245

boot process
kernel ring buffer, 247
messages, 248
steps, 248–249

boot sector, 117
booting

answers to questions, 590–593
without keyboard, 112

Bounce Keys, 311
Bourne Again Shell, 4
Bourne shell, 4
bracket expressions, 35
Braille displays, 314
broadcasts, 419–420
Btrfs (butter eff ess), 146
built-in commands, 6–7

C
cabling (network), 409, 410
caches, rebuilding, 86–87
cat command, 22–23
cd command, 6
chage, 354–355
characters, translating, 27
chattr command, 212–213
checksums, 49
chgrp command, 200
chmod command, 206–208
chown command, 200
CHS geometry, 118
CIDR (Classless Inter-Domain

Routing), 417
clients

servers and, 427
X remote access, 306–307

client-server, X remote access, 306–307
coldplug devices, 119–120
command completion, 9–10

http://technet24.ir/

command line – dd utility 617

bindex.indd 03/26/2015 Page 617

command line, 4
answers to questions, 576–579
built-in commands, 6
case, 11
command completion, 9–10
deleting text, 11
editors, invoking, 11
external commands, 6–9
generating command lines, 20–21
internal commands, 6–9
moving within, 10
retrieving commands, 10
searching for commands, 10
transposing text, 11

commands
` (backtick) character, 21
~ (tilde) in, 6
aliases, 459–460
built-in, 6–7
editing, exercise, 12–13
file management, 180–186
file-combining, 22–24
file-formatting, 28–31
file-summarizing, 33–35
file-transforming, 24–28
file-viewing, 31–33
shell scripts, 463–465
shortcut characters, 6

concatenation, 22–23
conditional expressions, 478–479
configuration

account files, 355–357
networking

answers to questions, 601–605
connections, 436–437
GUI configuration tools, 434
hardware, 428
hostnames, 435–436
ifdown, 434–435

ifup, 434–435
routing, 432–433
static IP address, 429–432

shells, 13
files, modifying, 460–462

X font server, 299–300
cp (copy) command, 183–185
cpio files, 56–57
cpio utility, 191–194
cron, 389

anacron, 394–396
cron jobs, 389

creating, 390–391
user cron jobs, 391–393

csh (C shell), 5
CUPS (Common Unix Printing System),

321–322, 324
configuration, 324

files, editing, 325–326
CUPS DDK, 327
Gutenprint drivers, 327
printer definitions, 327
Web-based utilities, 327–329

cut command, 33–34

D
DAC (discretionary access control)

model, 205
daemons, 344–345

syslogd, 365, 366
databases

answers to questions, 605–609
installed files, 49
network account databases, 357–358
SQL, 504
whatis, 15–16

D-Bus (Desktop Bus), 120
dd utility, 194–195

http://technet24.ir/

618 DDC (Data Display Channel) – editors

bindex.indd 03/26/2015 Page 618

DDC (Data Display Channel), 289
Debian

apt-cache, 67
apt-get, 68–71
compared to other formats, 73–74
conventions, 63–64
distributions, 63–64
dpkg command set, 64–67
dselect, 72–73
package reconfiguration, 73
tools, configuring, 74–75

default interactive shells, 5
default system shells, 5
dependencies, 49

packages, 77–78
rebuilding, 79–80
replacing, 79
startup scripts and, 80–81
upgrading, 79
versions, 80

shared libraries, 86
dev directory, 220–221
development libraries, 80
DHCP, network configuration, 428–429
directories

/ (root) directory, 218
var, 220
sbin, 219
/boot directory, 218
commmands

mkdir, 198
rmdir, 198

disk use monitoring and, 160–161
media, 220
/etc directory, 218
dev, 220–221
font directory, 296–297
lib, 219
bin, 219

tmp, 220
mnt, 220
home, 220
root, 220
permissions, 204
opt, 219–220
proc, 221
skeleton, 365
usr, 219
usr/local, 219
usr/share/man, 219
usr/X11R6, 219

disk error, partitioning and, 133
disk quotas, 213–214

edquota command, 215–216
support, 214–215

disk space, partitioning and,
133

disks. See hard disks
display

Braille, 314
X, 312–314

DMA (direct memory addressing), 116
dmesg command, 247
DNS (Domain Name System),

421–424
documents, here documents, 19
domain names, 420–421
dpkg package, 64–67
drivers, USB, 127–128
dselect package, 72–73
DSL (Digital Subscriber Line), 438
duplicate lines, deleting, 28
dynamic libraries, 82

E
echo command, 7
editors, invoking, 11

http://technet24.ir/

edquota command – FHS (Filesystem Hierarchy Standard) 619

bindex.indd 03/26/2015 Page 619

edquota command, 215–216
EEPROM (electronically erasable

programmable read-only memory),
109

EFI (Extensible Firmware Interface),
109, 117

boot loaders, 237–238
email, 497–498

answers to questions, 605–609
IMAP (Internet Message Access

Protocol), 498
mail, 500–502
mailq, 502–503
MTAs (Mail Transfer Agents),

498
MUAs (Mail User Agents),

498
queue, 502–503
receiving, 500–502
redirecting, 503–504
sending, 500–502
sendmail, 500
SMTP (Simple Mail Transfer

Protocol), 498
software, 498–500

env command, 14
environment variables, 4, 13–14, 454–

455
bash, 455
common, 455–458

environments
system environments, 364–365
users, 364–365

ESP (EFI System Partition),
117

etc directory, 218
Ethernet, 409
exit command, 7
expand command, 25

expansion cards, 120
PCI, configuring, 121–122

expressions
conditional, 478–479
regexp, 37–38
regular expressions

bracket expressions, 35
escape, 36
grep, 36–38
parentheses, 36
range expressions, 35–36
repetition operators, 36
sed command, 38–40
single characters, 36
start/end of line, 36
strings, 36

ext2fs (Second Extended File System),
145

ext3fs (Third Extended File
System), 146

ext4fs (Fourth Extended File System),
146

extended partitions, 134
external commands, 6–9
external hard disks, configuration, 132
extracting text, 33–34

F
FAT (File Allocation Table), 147

filenames and, 179
FDDI (Fiber Distributed Data Interface),

409
fdisk, 140–142
Fedora, 50
FHS (Filesystem Hierarchy Standard)

FSSTND comparison, 217–218
shareable files, 217
static files, 217–218

http://technet24.ir/

620 Fiber Channel – file-combining commands

bindex.indd 03/26/2015 Page 620

syslogd daemon, 365
unshareable files, 217
variable files, 217–218

Fiber Channel, 409
file descriptors, 17

STDERR (standard error), 17
STDIN (standard input), 17
STDOUT (standard output), 17–19

file management
access, 200–213
answers to questions, 586–590
archiving, 187

cpio utility, 191–194
dd utility, 194–195
tar utility, 188–191
zip files, 188

attributes, 212–213
commands

cp (copy), 183–185
ls (list), 180–182
mv (move), 185–186
rm (remove), 186
touch, 186

directories, 198
permissions, 204

disk quotas, 213–214
edquota, 215–216
setting, 215–216
support, 214–215

FHS
/ (root) directory, 218
var directory, 220
sbin directory, 219
/boot directory, 218
media directory, 220
/etc directory, 218
dev directory, 220–221
FSSTND comparison, 217–218
lib directory, 219

bin directory, 219
tmp directory, 220
mnt directory, 220
home directory, 220
root directory, 220
opt directory, 219–220
proc directory, 221
usr directory, 219
usr/local directory, 219
usr/share/man directory, 219
usr/X11R6 directory, 219

find command, 222–223
groups, 200, 210–212
links, 195–197
locate command, 223–224
modes

changing, 206–208
default, 210–212

naming files, 178–179
wildcards, 180

ownership
changing, 200
ls command, 199

permissions
ACL, 205
bits, 201–205
DAC model, 205
directories, 204
file type codes, 201
MAC, 205
RBAC, 205
SELinux, 205
strings, 202
user mask, 210
uses, 203

type command, 225
whereis command, 224
which command, 224

file-combining commands, 22–24

http://technet24.ir/

file-formatting commands – fmt command 621

bindex.indd 03/26/2015 Page 621

file-formatting commands, 28–31
files

footers, 32
headers, 31–32
installed file database, 49
joining, 23–24
journal files, 365–366
libraries, locating, 83–85
log files, 344, 365–366
merging, 24
naming, 178–179

wildcards, 180
open, listing, 534–535
paging, 32–33
printing, 30–31
sorting, 26
splitting, 26–27
static, 217–218
variable, 217–218

file-summarizing commands, 33–35
filesystems

Btrfs, 146
checking, 157–158
creating, 148–150
debugging interactively, 154–155
ext2fs, 145
ext3fs, 146
ext4fs, 146
FAT (File Allocation Table), 147
HFS (Hierarchical File System), 147
ISO-9660, 147
JFS, 146
journaling filesystems, 156
maintenance, 151–155
mounting, 161

permanently, 167–169
temporarily, 162–166

NTFS (New Technology File
System), 147

parameters, tunable, 153–154
partitioning and, 133
ReiserFS, 146
types, 145–148
UDF (Universal Disc Format), 147
unmounting, 161

temporarily, 162–166
virtual, 114

syfs, 119
XFS, 146

file-transforming commands,
24–28

file-viewing commands, 31–33
filters, 4

file-combining commands, 22–24
find command, 222–223
firewalls, 530
firmware, 108

BIOS (Basic Input/Output System),
109

boot disks, 117–119
DMA (direct memory addressing),

116
EEPROM (electronically erasable

programmable read-only
memory), 109

EFI (Extensible Firmware Interface),
109

I/O addresses, 115–116
IRQs (interrupt requests),

112–115
ISA (Industry Standard Architecture),

114
OpenFirmware, 109
PCI (Peripheral Component

Interconnect), 114
POST (power-on self-test), 109
UEFI (Unified EFI), 109

fmt command, 28

http://technet24.ir/

622 fonts – hard disks

bindex.indd 03/26/2015 Page 622

fonts
default, 312–313
X, 295

bitmap, 296
core fonts, 296–299
font directory, 296–297
font path, 297–299
font server configuration, 299–300
outline, 296
TrueType, 296
Xft, 300–301

foreground processes, 95–96
formatting, paragraphs, reformatting, 28
FSSTND (Filesystem Standard), FHS

comparison, 217–218
functions, scripts, 495–496
fuser, 537–539

G
gdisk, 142–143
GDM (GNOME Display Manager), 302

configuration, 305
remote access and, 309

Ghostscript, 322, 323–324
GIMP Tool Kit (GTK+), 81
glibc, 81
GMT (Greenwich mean time), 380
GNU Parted, 140–142
GOK (GNOME On-Screen Keyboard),

312
gpasswd, 360–361
GPG

keys
decryption, 566–567
encryption, 566–567
generating, 564–565
importing, 565
revoking, 566

signing messages, 567
verifying signatures, 567

GPL (General Public License), 50
GPT partitions, 135–136
grep command, 36–38
groupmod, 360–361
groups, 344, 345–346

adding, 359–360
configuration files, 361–362
deleting, 362
gpasswd, 360–361
groupmod, 360
GUIDs and, 346–347
UIDs and, 346–347

GRUB (Grand Unified Boot Loader),
234, 236

GRUB 2, 243–245
GRUB legacy

configuration, 238–341
installation, 242
interacting with, 242

GTK+ (GIMP Tool Kit), 81
GUI (graphical user interface). See also

X Window
shells, 6
X GUI login system, 301–302

XDMCP server, 302–306
GUIDs (group IDs), 346–347
gummiboot, 246

H
hackers, 525
HAL (Hardware Abstraction Layer)

daemon, 120
hard disks

configuration, 129–132
external, 132
layout, 132–138
mount points, 136–137
partitioning

benefits, 133
common partitions, 137–138

http://technet24.ir/

hard links – insmod 623

bindex.indd 03/26/2015 Page 623

creating partitions, 139–145
fdisk, 140–142
gdisk, 142–143
GNU Parted, 143–145
GPT partitions, 135–136
LVM (logical volume

management), 136
MBR partitions, 134–135
multiple partitions, 139
physical volumes, 136
systems, 133–134

PATA (Parallel Advanced Technology
Attachment), 129–130

SATA (Serial Advanced Technology
Attachment), 130

hard links, 195–196
hardware

answers to questions, 583–586
coldplug devices, 119–120
expansion cards, 120
hotplug devices, 119–120
kernel modules, 122–123

loading, 124–125
removing, 125–126

network, 408–409
cabling, 409–410
configuration, 428
Ethernet, 409
hubs, 410–411
switches, 410–411
types, 409–411
wireless networks, 409–410

SCSI (Small Computer System
Interface), 130–132

hardware clock, 379
hashbang, 463
hashpling, 463
head command, 31–32
help system, man utility, 14–16
here documents, 19
HFS (Hierarchical File System), 147

HIPPI (High-Performance Parallel
Interface), 409

history, 10
bash, 11–12

history command, 11
hostnames, 420–421

DNS (Domain Name System),
421–424

network configuration and, 435–436
hotplug devices, 119–120
hubs, 410–411

I
ICMP (Internet Control Message

Protocol), 413–414
ifdown, 434–435
if-then statement, 479
ifup, 434–435
IMAP (Internet Message Access

Protocol), 498
inetd, 525–527
initialization process, 249–250

systemd, 258–259
systemctl, 262–263
targets, 259–260
default, 261
unit configuration, 260–261
units, 259–260

SysV
runlevel changes, 255–258
runlevel functions, 250–252
runlevel services, 252–255

Upstart, 263–264
native methods, 264
SysV compatible methods, 264–

265
input

redirecting, 17–19
standard input, 17

insmod, 124–125

http://technet24.ir/

624 installation – LightDM (Light Display Manager)

bindex.indd 03/26/2015 Page 624

installation, boot loaders, 234, 235
BIOS, 235–237
damaged, 246
EFI, 237–238
GRUB 2, 243–245
GRUB legacy, 238–243
gummiboot, 246
LILO, 245
Linux Kernel, 245
rEFInd, 245–246
rEFIt, 245
Syslinux, 245

installed file database, 49
internal commands, 6–9
I/O addresses, 115–116
IP (Internet Protocol), 413
IP addresses, static, 429–432
IPP (Internet Printing Protocol), 325–326
IPv4, 416

classes, 418
IPv6, 413, 416–417
IRQs (interrupt request), 112–115
ISA (Industry Standard Architecture), 114
ISO-9660, 147

J
JFS (Journaled FileSystem), 146
jobs command, 94
join command, 23–24
joining files, 23–24
journal files, 365–366

systemd-journald, 374–376
viewing data, 376–379

K
KDM (KDE Display Manager), 302

configuration, 305
remote access and, 309

Kerberos, 357–358
kernel, 88

modules, 122–123
loading, 124–125
removing, 125–126

kernel ring buffer, 247
keyboard

AccessX utility, 310–312
booting without, 112
GOK (GNOME On-Screen

Keyboard), 312
onscreen keyboards, 312

Keyboard Repeat Rate, 311
kill, 97–99
killing processes, 97–99
ksh (Korn shell), 5

L
LBA (logical block addressing), 118
LDAP (Lighweight Directory Access

Protocol), 357–358
ldconfig, 85–86
less command, 32–33
lib directory, 219
libraries, 48

cache rebuilding, 86–87
development libraries, 80
dynamic, 82
files, locating, 83–85
managing, 85–86
paths, 83–85
principles, 81–83
shared, 81

changes, 82
dependencies, 86

static, 82
widget sets, 81

LightDM (Light Display Manager), 302
configuration, 305–306

http://technet24.ir/

LILO (Linux Loader) – mouse 625

bindex.indd 03/26/2015 Page 625

LILO (Linux Loader), 234, 236, 245
lines

duplicate, deleting, 28
numbering, 29–30

link-local addresses, 417
links

hard, 195–196
creating, 196

ln command, 196–197
symbolic, 195–196

creating, 196
Linux Kernel, 245
lists

commands, 493–495
processes, 88

ln command, 196–197
load average, 94
local security

login limits, 551–553
memory limits, 551–553
passwords, 540–541

risks, 541–542
strong, 542–543
tools, 544

process limits, 551–553
root access, 544

su, 544–545
sudo, 545–547

SGID files, 553–554
SUID files, 553–554
user access audits, 547–551

locales, 318–321
localization

answers to questions, 593–597
locales, 318–321
time zones

individuals’, 317–318
Linux, 315–317

LocalTalk, 409
locate command, 223–224

log files, 344, 365–366
contents, 373
logging options, 366–369
manual logging, 369–370
rotating, 370–373

logical partitions, 134
login shells, 7
logout command, 7
logrotate, 370–373
lpr, 321–322
ls (list) command, 180–182, 199
lsmod command, 123
lsof, 534–535
lspci command, 121–122
LVM (logical volume management), 136

M
MAC (mandatory access control), 205
MAC (Media Access Control), 415
machine names, 420–421
mail, 500–502
mailq, 502–503
man utility, 14–16
Mandriva, 50
MBR partitions, 134–135
media directory, 220
merging files, 24
mkdir command, 198
modprobe, 124–125
Module section (X server), 285–286
mount command, 162–166
mount points, 136–137
mounting filesystems, 161

permanently, 167–169
temporarily, 162–166

mouse
Click Options, 311
Mouse Gestures, 312
Simulated Mouse Clicks, 312

http://technet24.ir/

626 Mouse Keys – NTFS (New Technology File System)

bindex.indd 03/26/2015 Page 626

Mouse Keys, 311
Mouse Tracking, 311
tmp directory, 220
MTAs (Mail Transfer Agents), 498
multicasting, 418
multithreaded programs, 94
mv (move) command, 185–186
MySQL, 505, 506

combining data, 512–514
data retrieval, 511–512
data types, 507
databases, 508–509
deleting data, 514
starting sessions, 507–508
storage, 509–510
tables, 508–509

N
naming files, 178–179

wildcards, 180
netstat, 531–533
network account databases, 357–358
network mask, 417–419
network printers, 329–330
network scanners, 535–537
networking

addresses, 414–415
base-10 numbers, 416
broadcasts, 419–420
DHCP and, 415
IPv4, 416
IPv6, 416–417
link-local, 417
MAC, 415
managing, 415–316, 415–417
network mask, 417–419

broadcasts, 419–420
CIDR (Classless Inter-Domain

Routing), 417

configuration
answers to questions,

601–605
connections, 436–437
DHCP and, 428–429
GUI configuration tools, 434
hardware, 428
hostnames, 435–436
ifdown, 434–435
ifup, 434–435
routing, 432–433
static IP address, 429–432

connections
network status, 441
route tracing, 439–441
testing, 438–439

DSL (Digital Subscriber Line),
438

hardware, 408–409
cabling, 409, 410
Ethernet, 409
hubs, 410–411
switches, 410–411
types, 409–411
wireless networks, 409–410

hostnames, 420–421
DNS (Domain Name System),

421–424
IPv4 classses, 418
multicasting, 418
packets, 411
ports, 424–427
protocol stacks, 411–412
TCP/IP, hardware, 408–411
traffic, 441–443

nice, 96–97
nl command, 29–30
mnt directory, 220
NTFS (New Technology File System),

147

http://technet24.ir/

NTP (network time protocol) – PCI (Peripheral Component Interconnect) 627

bindex.indd 03/26/2015 Page 627

NTP (network time protocol), 381–383
clients, 388
servers, 384–388
time source, 383–384

numbering lines, 29–30

O
octal dump (od), 25
od command, 25
home directory, 220
root directory, 220
open files, listing, 534–535
OpenFirmware, 109
operators, redirection, 18
outline fonts, 296
output, redirecting, 17–19

P
package management, 48

RPM, 59–61
packages, 48–49

binary packages, 49
checksums, 49
converting between, 75–77
Debian

conventions, 63–64
distributions, 63–64

dependencies, 49, 77–78
rebuilding, 79–80
replacing packages, 79
startup scripts and, 80–81
upgrading packages, 79
versions, 80
workarounds, 78–79

installed file database, 49
RPM

compatibility issues, 52
naming convention, 51

RPM (RPM Package Manager), 48
uninstallation, 49
upgrades, 49

packets, 411
paging through files, 32–33
paragraphs, reformatting, 28
partitioning

benefits, 133
common partitions, 137–138
extended partitions, 134
GPT partitions, 135–136
logical partitions, 134
LVM (logical volume management), 136
MBR partitions, 134–135
physical volumes, 136
primary partitions, 134
systems, 133–134

partitions
bootable, 141
creating, 139–145
deleting, 141
disk use monitoring, 158–160
fdisk, 140–142
gdisk, 142–143
GNU Parted, 143–145
multiple, 139
swap partitions, 150
type, 141

passwords, 540
risks, 541–542
setting, 350–351
strong, 542–543
tools, 544

paste command, 24
PATA (Parallel Advanced Technology

Attachment), 129–130
paths, libraries, 83–85
PCI (Peripheral Component

Interconnect), 114
card configuration, 121–122

http://technet24.ir/

628 PCL (Printer Control Language) – pwd command

bindex.indd 03/26/2015 Page 628

PCL (Printer Control Language), 323
permissions

ACL, 205
bits, 201–205
DAC model, 205
directories, 204
file type codes, 201
MAC, 205
RBAC, 205
SELinux, 205
strings, 202
symbolic, 208
user mask, 210
uses, 203

pgrep command, 94–95
pgrps, 96–97
physical volumes, 136
pids, 96–97
pipe (|) character, 19–20
pipes, 16
piping, 19–20
pkill command, 99
PLIP (Parallel Line Interface Protocol),

408–409
ports

numbers, 425–426
privileged, 427
unprivileged, 427

positional parameter variables, 474–478
POST (power-on self-test), 109
PostgreSQL, 505
PostScript, 322–323

PPD (PostScript Printer Definition),
325

pound bang, 463
PPD (PostScript Printer Definition), 325
PPP (Point-to-Point Protocol), 438
pr command, 30–31
primary groups, 345

primary partitions, 134
printing

answers to questions, 593–597
CUPs, printer definitions, 327
files, 30–31
Ghostscript, 322, 323–324
IPP (Internet Printing Protocol),

325–326
Linux architecture, 321–322
to network printers, 329–330
PCL (Printer Control Language),

323
PostScript, 322
PPD (PostScript Printer Definition),

325
print queue, 321

displaying information, 332–333
lpq, 332–333
lpr, 330–332
lprm, 333
removing jobs, 333

system, 324
privileged ports, 427
processes, 48, 87

background, 95–96
foreground, 95–96
jobs, 94
kernel, 88
killing, 97–99
lists, 88
pgrep, 94–95
priorities, 96–97

protocol stacks, 411–412
ps, 88

options, 89–90
output, 90–92
top tool, 92–94

opt directory, 219–220
pwd command, 6

http://technet24.ir/

range expressions – SCSI (Small Computer System Interface) 629

bindex.indd 03/26/2015 Page 629

R
range expressions, 35–36
RBAC (role-based access control),

205
Red Hat, 50–51
redirection, 16

| (pipe) character, 19–20
here documents, 19
input, 17–19
operators, 18
output, 17–19

rEFInd, 245–246
rEFIt, 245
regexp, 37–38
regular expressions

bracket expressions, 35
escape, 36
grep, 36–38
parentheses, 36
range expressions, 35–36
repetition operators, 36
sed command, 38–40
single characters, 36
start/end of line, 36
strings, 36

ReiserFS filesystem, 146
remote access, X

clients, 306–307
client-server principles,

306–307
SSH and, 308

rm (remove) command, 20, 186
rmdir command, 198
proc directory, 221
root, 9
routing, network configuration,

432–433
RPM (RPM Package Manager), 48

comparisons to other package
formats, 62–63

compatibility issues, 52
configuration files, 61–62
data extraction, 56–57
distributions, 50–52
naming convention, 51
package management, 59–61
query output, 55–56
rpm command set, 52–56

rpm command
operations, 53–54
syntax, 52

S
SATA (Serial Advanced Technology

Attachment), 130
sbin directory, 219
scripts, 462–463

answers to questions, 605–609
commands in, 463–465
conditional expressions, 478–479
functions, 495–496
loops, 485–486

for, 490–493
until, 488–490
while, 486–488

running, 465–470
shell scripts, 463

commands in, 463–465
running, 465–470
variables, 470–478

variables
positional parameter variables,

471–473
user-defined variables, 474–478

SCSI (Small Computer System Interface),
130–132

http://technet24.ir/

630 searches – split command

bindex.indd 03/26/2015 Page 630

searches, for commands, 10
security

answers to questions, 609–612
GPG, 563

decryption, 566–567
encryption, 566–567
keys, 564–566
signature verification, 567
signed messages, 567

local
login limits, 551–553
memory limits, 551–553
passwords, 540–544
process limits, 551–553
root accss, 544–547
SGID files, 553–554
SUID files, 553–554
user access audits, 547–551

network
configuration files, 539–540
firewalls, 530
lsof, 534–535
netstat, 531–533
network scanners, 535–537
partitioning and, 133
servers, 530–533, 540
super daemon, 525
super server, 525–530
TCP Wrappers, 527

SSH (Secure Shell), 555–557
access control, 558–559
file copy, 559
keys, 557–558
login configuration, 560–561
port tunnels, 561–563

sed command, 38–40
SELinux, 205
sendmail, 500
servers, clients and, 427
set command, 7

SGID files, 553–554
sh (Bourne shell), 4
shared libraries, 81

changes, 82
dependencies, 86

shebang, 463
shell scripts. See scripts
shells, 4

configuration, 13
files, modifying, 460–462

default interactive, 5
environment variables, 4, 454–455
GUI and, 6
login shells, 7
options, 4
scripts, 462
starting, 5–6
subshells, 454
system shells, 5

Simulated Mouse Clicks, 312
skeleton directory, 365
Slow Keys, 311
smart filter in printing, 323–324
SMB/CIFS (Server Message Block/

Common Internet File System),
329–330

SMTP (Simple Mail Transfer Protocol),
498

soft links, 195–196
software

answers to questions, 579–583
email, 498–500

software clock, 379
sort command, 26
sorting, files, 26
spaces

converting from tabs, 25
converting to tabs, 27–28

speech synthesis, 314
split command, 26–27

http://technet24.ir/

splitting files – SysV 631

bindex.indd 03/26/2015 Page 631

splitting files, 26–27
SQL (Structured Query Language), 504

columns, 505
MySQL, 505, 506

combining data, 512–514
data retrieval, 511–512
data types, 507
databases, 508–509
deleting data, 514
starting sessions, 507–508
storage, 509–510
tables, 508–509

packages, 505
PostgreSQL, 505
rows, 505
SQLite, 505
table data, 505–506

SQLite, 505
SSH, X connection encryption, 308
SSH (Secure Shell), 555–557

access control, 558–559
file copying, 559
keys, encryption, 557–558
login configuration, 560–561
port tunnels, 561–563

standard input, 17
startup scripts, package dependencies,

80–81
static files, 217–218
static IP address, network configuration,

429–432
static libraries, 82
STDERR (standard error), 17
STDIN (standard input), 17
STDOUT (standard output), 17–19
Sticky Keys, 310
streams, 16
subshell, 454
SUID (set user ID), 204–205

files, 553–554

SUSE, 50
swap files, 150
swap partitions, 150
switches (network), 410–411
syfs virtual filesystem, 119
symbolic links, 195–196
symbolic modes, 207
symbolic permissions, 208
Syslinux, 245
syslogd daemon, 365, 366
system environments, 364–365
system shells, 5
system time

GMT (Greenwich mean time), 380
hardware clock, 379
NTP (network time protocol), 381–388
setting, 380–381
software clock, 379
UTC (Coordinated Universal Time),

380
systemctl, 262–263
systemd, 249–250
systemd initialization process, 258–259

systemctl, 262–263
targets, 259–261
units, 259–261

systemd-journald, 374–376
SysV, 249–250

runlevel functions, 250–252
runlevel services, 252–253

current, 255
default, 255
halt, 257
init, 256
managing, 253–254
poweroff, 257
reboot, 257
shutdown, 256–257
telinit, 256

startup scripts, 253

http://technet24.ir/

632 tabs – users

T
tabs

converting from spaces, 27–28
converting to spaces, 25

tail command, 32
tail-merging, 213
tar utility, 188–191
tarballs, 49
TCP (Transmission Control Protocol),

414
TCP Wrappers, 527
TCP/IP (Transmission Control Protocol/

Internet Protocol), 408
hardware, 408–411
ICMP (Internet Control Message

Protocol), 413–414
IP (Internet Protocol), 413
IPv6, 413
ports, 427
TCP (Transmission Control Protocol),

414
UDP (User Datagram Protocol),

414
tcsh shell, 5
terminal, 6
terminal emulator, shells and, 6
text, extracting, 33–34
text editors, vi

modes, 265–266
procedures, 266–269
saving changes, 269–270

time command, 7
Time Out, 311
time zones

individuals’, 317–318
Linux computers, 315–317

Token Ring networks, 409
top tool, 92–94
touch command, 186

tr command, 27
translating characters, 27
troublemakers, 525
TrueType fonts, 296
type command, 7, 225

U
udev, 120
UDF (Universal Disc Format), 147
UDP (User Datagram Protocol), 414
UEFI (Unified EFI), 109
UIDs (user IDs), 346–347
umask command, 210–212
umount command, 166
uname command, 6, 88
unexpand command, 27–28
uninstallation, 49
uniq command, 28
unprivileged ports, 427
upgrades, 49
UpStart, 249–250, 263–264

native methods, 264
SysV compatible methods, 264–265

USB (Universal Serial Bus), 108
data transfer speed, 126
device configuration, 126–127
drivers, 127–128
hubs, 127
manager applications, 128–129
ports, 127

user space programs, 120
user-defined variables, 474–478
usermod, 352–353
usernames, 345
users, 344–345

adding, 348–350
cron jobs, 391–393
environments, 364–365
groups, 345–346

http://technet24.ir/

users – X Window System 633

GUIDs and, 346–347
passwords, setting, 350–351
UIDs and, 346–347

users, 97
\usr directory, 219
\usr/local directory, 219
\usr/share/man directory, 219
\usr/X11R6 directory, 219
UTC (Coordinated Universal Time),

315
system clock, 380

utilities
alien, 75–77
man, 14–16

V
var directory, 220
variables

environment variables, 4, 13–14,
454–455

common, 455–458
files, 217–218
shell scripts

positional parameter variabls,
471–473

user-defined variables, 474–478
vi text editor

case, 269
change text, 269
colon commands, 266
Command Mode, 265
editing procedures, 266–269
Ex Mode, 265
go to a line, 269
Insert Mode, 265
open text, 269
saving changes, 269–270
search, 269
undo, 269

video, X Window System, 281–282
virtual filesystems, 114

syfs, 119

W
wc command, 34–35
Web-based CUPS utilities, 327–329
whatis database, 15–16
whereis command, 224
which command, 224
widget sets, 81
Wi-Fi, 409–410
wildcards, file naming, 180
wireless networks, 409–410
word count, 34–35
writing scripts, 462

X
X Window System, 280

Accelerated-X, 281
accessibility, 310–314
answers to questions, 593–597
assistive technologies, 314
configuration

color depth, 291–292
configuration files, 283–284
configure-and-test cycle, 284–285
keyboard, 286–287
loading modules, 285–286
monitor, 288–289
mouse, 287–288
resolution, 291–292
utilities, 282–283
video card, 289–290

display information, 293–295
fonts, 295

bitmap, 296
core fonts, 296–299

http://technet24.ir/

634 xargs command – zsh (Z shell)

bindex.indd 03/26/2015 Page 634

font directory, 296–297
font path, 297–299
font server configuration, 299–300
outline, 296
TrueType, 296
Xft, 300–301

GUI login system, 301–302
XDMCP server, 302–306

keyboard, 310–312
mouse, 310–312
multi-head displays, 292
remote access

client-server principles, 306–307
remote clients, 307–309
SSH and, 308

server, 280–282
video drivers, 281–282
window manager, 294
XFree86, 281
X.org-X11, 281

xargs command, 20–21
XDM (X Display Manager), 302

configuration, 304
remote access and, 309

XDMCP (X Display Manager Control
Protocol), 301–302

server, 302–303
GDM configuration, 305
KDM configuration, 305
LightDM configuration, 305–306
XDM configuration, 304

XFree86, 281
configuration files, 283–284

XFS (Extents File System), 146
Xft fonts, 300–301
xinetd, 528–530
X.org-X11, 281

configuration file, 283
xterm, 6

Y
Yellow Dog, 50
Yum, 57–61

configuration files, 61–62
yum command, 57–59

Z
zip files, 188
zsh (Z shell), 5

http://technet24.ir/

 Free Online Learning
Environment

Register on Sybex.com to gain access to the free online interactive
learning environment and test bank to help you study for your

Linux Professional Institute (LPI) LPIC-1 certifi cation.

The online test bank includes:

• Assessment Test to help you focus your study to specifi c objectives
• Chapter Tests to reinforce what you learned
• Practice Exams to test your knowledge of the material
• Electronic Flashcards to reinforce your learning and provide last-minute
test prep before the exam

• Searchable Glossary gives you instant access to the key terms you’ll need
to know for the exam

Go to http://sybextestbanks.wiley.com to register and gain access to this
comprehensive study tool package.

http://technet24.ir/

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://technet24.ir/

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Assessment Test
	Answers to the Assessment Test
	Part I Exam 101-400
	Chapter 1 Exploring Linux Command-Line Tools���
	Understanding Command-Line Basics��
	Exploring Your Linux Shell Options���
	Using a Shell��������������������
	Exploring Shell Configuration������������������������������������
	Using Environment Variables����������������������������������
	Getting Help�������������������

	Using Streams, Redirection, and Pipes��
	Exploring File Descriptors���������������������������������
	Redirecting Input and Output�����������������������������������
	Piping Data between Programs�����������������������������������
	Generating Command Lines�������������������������������

	Processing Text Using Filters������������������������������������
	File-Combining Commands������������������������������
	File-Transforming Commands���������������������������������
	File-Formatting Commands�������������������������������
	File-Viewing Commands����������������������������
	File-Summarizing Commands��������������������������������

	Using Regular Expressions��������������������������������
	Understanding Regular Expressions��
	Using grep�����������������
	Using sed����������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 2 Managing Software����������������������������������
	Package Concepts�����������������������
	Using RPM����������������
	RPM Distributions and Conventions��
	The rpm Command Set��������������������������
	Extracting Data from RPMs��������������������������������
	Using Yum����������������
	RPM and Yum Configuration Files��������������������������������������
	RPM Compared to Other Package Formats��

	Using Debian Packages����������������������������
	Debian Distributions and Conventions���
	The dpkg Command Set���������������������������
	Using apt-cache����������������������
	Using apt-get��������������������
	Using dselect, aptitude, and Synaptic��
	Reconfiguring Packages�����������������������������
	Debian Packages Compared to Other Package Formats��
	Configuring Debian Package Tools���������������������������������������

	Converting between Package Formats���
	Package Dependencies and Conflicts���
	Real and Imagined Package Dependency Problems��
	Workarounds for Package Dependency Problems��
	Startup Script Problems������������������������������

	Managing Shared Libraries��������������������������������
	Library Principles�������������������������
	Locating Library Files�����������������������������
	Library Management Commands����������������������������������

	Managing Processes�������������������������
	Understanding the Kernel: The First Process��
	Examining Process Lists������������������������������
	Understanding Foreground and Background Processes��
	Managing Process Priorities����������������������������������
	Killing Processes������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 3 Configuring Hardware�������������������������������������
	Configuring the Firmware and Core Hardware���
	Understanding the Role of the Firmware���
	IRQs�����������
	I/O Addresses��������������������
	DMA Addresses��������������������
	Boot Disks and Geometry Settings���������������������������������������
	Coldplug and Hotplug Devices�����������������������������������

	Configuring Expansion Cards����������������������������������
	Configuring PCI Cards����������������������������
	Learning about Kernel Modules������������������������������������
	Loading Kernel Modules�����������������������������
	Removing Kernel Modules������������������������������

	Configuring USB Devices������������������������������
	USB Basics�����������������
	Linux USB Drivers������������������������
	USB Manager Applications�������������������������������

	Configuring Hard Disks�����������������������������
	Configuring PATA Disks�����������������������������
	Configuring SATA Disks�����������������������������
	Configuring SCSI Disks�����������������������������
	Configuring External Disks���������������������������������

	Designing a Hard Disk Layout�����������������������������������
	Why Partition?���������������������
	Understanding Partitioning Systems���
	An Alternative to Partitions: LVM��
	Mount Points�������������������
	Common Partitions and Filesystem Layouts���

	Creating Partitions and Filesystems��
	Partitioning a Disk��������������������������
	Preparing a Partition for Use������������������������������������

	Maintaining Filesystem Health������������������������������������
	Tuning Filesystems�������������������������
	Maintaining a Journal����������������������������
	Checking Filesystems���������������������������
	Monitoring Disk Use��������������������������

	Mounting and Unmounting Filesystems��
	Temporarily Mounting or Unmounting Filesystems���
	Permanently Mounting Filesystems���������������������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 4 Managing Files�������������������������������
	Using File Management Commands�������������������������������������
	Naming Files�������������������
	Exploring Wildcard Expansion Rules���
	Understanding the File Commands��������������������������������������
	Archiving File Commands������������������������������
	Managing Links���������������������
	Understanding the Directory Commands���

	Managing File Ownership������������������������������
	Assessing File Ownership�������������������������������
	Changing a File’s Owner������������������������������
	Changing a File’s Group������������������������������

	Controlling Access to Files����������������������������������
	Understanding Permissions��������������������������������
	Changing a File’s Mode�����������������������������
	Setting the Default Mode and Group���
	Changing File Attributes�������������������������������

	Managing Disk Quotas���������������������������
	Enabling Quota Support�����������������������������
	Setting Quotas for Users�������������������������������

	Locating Files���������������������
	Getting to Know the FHS������������������������������
	Employing Tools to Locate Files��������������������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 5 Booting Linux and Editing Files��
	Installing Boot Loaders������������������������������
	Boot Loader Principles�����������������������������
	Using GRUB Legacy as the Boot Loader���
	Using GRUB 2 as the Boot Loader��������������������������������������
	Using Alternative Boot Loaders�������������������������������������

	Understanding the Boot Process�������������������������������������
	Extracting Information about the Boot Process��
	Locating and Interpreting Boot Messages��
	The Boot Process�����������������������

	The Initialization Process���������������������������������
	Using the SysV Initialization Process��
	Runlevel Functions�������������������������
	Identifying the Services in a Runlevel���
	Managing Runlevel Services���������������������������������
	Checking Your Runlevel�����������������������������
	Changing Runlevels on a Running System���

	Using the systemd Initialization Process���
	Units and Targets������������������������
	Configuring Units������������������������
	Setting the Default Target���������������������������������
	The systemctl Program����������������������������

	Using the Upstart Initialization Process���
	Using Upstart-Native Methods�����������������������������������
	Using SysV Compatibility Methods���������������������������������������

	Editing Files with vi����������������������������
	Understanding Vi Modes�����������������������������
	Exploring Basic Text-Editing Procedures��
	Saving Changes���������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Part II Exam 102-400
	Chapter 6 Configuring the X Window System, Localization, and Printing��
	Configuring Basic X Features�����������������������������������
	X Server Options for Linux���������������������������������
	Methods of Configuring X�������������������������������
	X Configuration Options������������������������������
	Obtaining X Display Information��������������������������������������

	Configuring X Fonts��������������������������
	Font Technologies and Formats������������������������������������
	Configuring X Core Fonts�������������������������������
	Configuring a Font Server��������������������������������
	Configuring Xft Fonts����������������������������

	Managing GUI Logins��������������������������
	The X GUI Login System�����������������������������
	Running an XDMCP Server������������������������������
	Configuring an XDMCP Server����������������������������������

	Using X for Remote Access��������������������������������
	X Client-Server Principles���������������������������������
	Using Remote X Clients�����������������������������

	X Accessibility����������������������
	Keyboard and Mouse Accessibility Issues��
	Screen Display Settings������������������������������
	Using Additional Assistive Technologies��

	Configuring Localization and Internationalization��
	Setting Your Time Zone�����������������������������
	Querying and Setting Your Locale���������������������������������������

	Configuring Printing���������������������������
	Conceptualizing the Linux Printing Architecture��
	Understanding PostScript and Ghostscript���
	Running a Printing System��������������������������������
	Configuring CUPS�����������������������
	Monitoring and Controlling the Print Queue���

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 7 Administering the System���
	Managing Users and Groups��������������������������������
	Understanding Users and Groups�������������������������������������
	Configuring User Accounts��������������������������������
	Configuring Groups�������������������������
	Viewing Individual Account Records���

	Tuning User and System Environments��
	Using Log and Journal Files����������������������������������
	Understanding syslogd����������������������������
	Setting Logging Options������������������������������
	Manually Logging Data����������������������������
	Rotating Log Files�������������������������
	Reviewing Log File Contents����������������������������������
	Exploring the systemd Journal System���

	Maintaining the System Time����������������������������������
	Understanding Linux Time Concepts��
	Manually Setting the Time��������������������������������
	Using Network Time Protocol����������������������������������

	Running Jobs in the Future���������������������������������
	Understanding the Role of cron�������������������������������������
	Creating System cron Jobs��������������������������������
	Creating User cron Jobs������������������������������
	Using anacron��������������������
	Using at���������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 8 Configuring Basic Networking���
	Understanding TCP/IP Networking��������������������������������������
	Knowing the Basic Functions of Network Hardware��
	Investigating Types of Network Hardware��
	Understanding Network Packets������������������������������������
	Understanding Network Protocol Stacks��
	Knowing TCP/IP Protocol Types������������������������������������

	Understanding Network Addressing���������������������������������������
	Using Network Addresses������������������������������
	Resolving Hostnames��������������������������
	Network Ports��������������������

	Configuring Linux for a Local Network��
	Network Hardware Configuration�������������������������������������
	Configuring with DHCP����������������������������
	Configuring with a Static IP Address���
	Configuring Routing��������������������������
	Using GUI Configuration Tools������������������������������������
	Using the ifup and ifdown Commands���
	Configuring Hostnames����������������������������

	Diagnosing Network Connections�������������������������������������
	Testing Basic Connectivity���������������������������������
	Tracing a Route����������������������
	Checking Network Status������������������������������
	Examining Raw Network Traffic������������������������������������
	Using Additional Tools�����������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 9 Writing Scripts, Configuring Email, and Using Databases��
	Managing the Shell Environment�������������������������������������
	Reviewing Environment Variables��������������������������������������
	Understanding Common Environment Variables���
	Using Aliases��������������������
	Modifying Shell Configuration Files��

	Writing Scripts����������������������
	Beginning a Shell Script�������������������������������
	Using Commands in Shell Scripts��������������������������������������
	Running a Shell Script�����������������������������
	Using Variables in Shell Scripts���������������������������������������
	Using Conditional Expressions������������������������������������
	Using Loops������������������
	Using Lists������������������
	Using Functions����������������������

	Managing Email���������������������
	Understanding Email��������������������������
	Choosing Email Software������������������������������
	Working with Email�������������������������

	Managing Data with SQL�����������������������������
	Picking a SQL Package����������������������������
	Understanding SQL Basics�������������������������������
	Using MySQL������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 10 Securing Your System��������������������������������������
	Administering Network Security�������������������������������������
	Using Super Server Restrictions��������������������������������������
	Disabling Unused Servers�������������������������������

	Administering Local Security�����������������������������������
	Securing Passwords�������������������������
	Limiting root Access���������������������������
	Auditing User Access���������������������������
	Setting Login, Process, and Memory Limits��
	Locating SUID/SGID Files�������������������������������

	Configuring SSH����������������������
	Understanding SSH Basics�������������������������������
	Setting SSH Options��������������������������
	Preventing SSH Security Problems���������������������������������������

	Using GPG����������������
	Generating Keys����������������������
	Importing Keys���������������������
	Revoking a Key���������������������
	Encrypting and Decrypting Data�������������������������������������
	Signing Messages and Verifying Signatures��

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Appendix Answers
	Chapter 1: Exploring Linux Command-Line Tools��
	Chapter 2: Managing Software�����������������������������������
	Chapter 3: Configuring Hardware��������������������������������������
	Chapter 4: Managing Files��������������������������������
	Chapter 5: Booting Linux and Editing Files���
	Chapter 6: Configuring the X Window System, Localization, and Printing���
	Chapter 7: Administering the System��
	Chapter 8: Configuring Basic Networking��
	Chapter 9: Writing Scripts, Configuring Email, and Using Databases���
	Chapter 10: Securing Your System���������������������������������������

	Index
	EULA

