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Preface

DSP and FPGAs
Digital signal processing (DSP) is used in a very wide range of applications from high-definition
TV, mobile telephony, digital audio, multimedia, digital cameras, radar, sonar detectors, biomedical
imaging, global positioning, digital radio, speech recognition, to name but a few! The topic has
been driven by the application requirements which have only been possible to realize because of
development in silicon chip technology. Developing both programmable DSP chips and dedicated
system-on-chip (SoC) solutions for these applications, has been an active area of research and
development over the past three decades. Indeed, a class of dedicated microprocessors have evolved
particularly targeted at DSP, namely DSP microprocessors or DSPµs.

The increasing costs of silicon technology have put considerable pressure on developing ded-
icated SoC solutions and means that the technology will be used increasingly for high-volume
or specialist markets. An alternative is to use microprocessor style solutions such as microcon-
trollers, microprocessors and DSP micros, but in some cases, these offerings do not match well to
the speed, area and power consumption requirements of many DSP applications. More recently,
the field-programmable gate array (FPGA) has been proposed as a hardware technology for DSP
systems as they offer the capability to develop the most suitable circuit architecture for the com-
putational, memory and power requirements of the application in a similar way to SoC systems.
This has removed the preconception that FPGAs are only used as ‘glue logic’ platform and more
realistically shows that FPGAs are a collection of system components with which the user can
create a DSP system. Whilst the prefabricated aspect of FPGAs avoids many of the deep submi-
cron problems met when developing system-on-chip (SoC) implementations, the ability to create
an efficient implementation from a DSP system description, remains a highly convoluted problem.

The book looks to address the implementation of DSP systems using FPGA technology by
aiming the discussion at numerous levels in the FPGA implementation flow. First, the book covers
circuit level, optimization techniques that allow the underlying FPGA fabric of localized memory
in the form of lookup tables (LUTs) and flip-flops along with the logic LUT resource, to be used
more intelligently. By considering the specific DSP algorithm operation in detail, it is shown that
it is possible to map the system requirements to the underlying hardware, resulting in a more area-
efficient, faster implementation. It is shown how the particular nature of some DSP systems such
as DSP transforms (fast Fourier transform (FFT) and discrete cosine transform (DCT)) and fixed
coefficient filtering, can be exploited to allow efficient LUT-based FPGA implementations.

Secondly, the issue of creating efficient circuit architecture from SFG representations is consid-
ered. It is clear that the development of a circuit architecture which efficiently uses the underlying
resource to match the throughput requirements, will result in the most cost-effective solution. This
requires the user to exploit the highly regular, highly computative, data-independent nature of
DSP systems to produce highly parallel, pipelined circuit architectures for FPGA implementation.
The availability of multiple, distributed logic resources and dedicated registers, make this type of
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approach, highly attractive. Techniques are presented to allow the circuit architecture to be created
with the necessary levels of parallelism and pipelining, resulting in the creation of highly efficient
circuit architectures for the system under consideration.

Finally, as technology has evolved, FPGAs have now become a heterogeneous platform involving
multiple hardware and software components and interconnection fabrics. It is clear that there is a
strong desire for a true system-level design flow, requiring a much higher level system modelling
language, in this case, dataflow. It is shown how the details of the language and approach must
facilitate the kind of optimizations carried out to create the hardware functionality as outlined in
the previous paragraph, but also to address system-level considerations such as interconnection and
memory. This is a highly active area of research at present.

The book covers these three areas of FPGA implementation with a greater concentration on
the latter two areas, namely that of the creation of the circuit architectures and the system level
modelling, as these represent a more recent challenge; moreover, the circuit level optimization
techniques have been covered in greater detail in many other places. It is felt that this represents a
major differentiating factor between this book and other many other texts with a focus on FPGA
implementation of DSP systems.

In all cases, the text looks to back up the description with the authors’ experiences in imple-
menting real DSP systems. A number of examples are covered in detail, including the development
of an adaptive beamformer which gives a detailed description of the creation of an QR-based RLS
filter. The design of an adaptive differential pulse-coded modulation (ADPCM) speech compres-
sion system is described. Throughout the text, finite impulse response (FIR) and infinite impulse
response (IIR) filters are used to demonstrate the mapping and introduce retiming. The low-power
optimizations are demonstrated using a FFT-based application and the development of hierarchical
retiming, demonstrated using a wave digital filter (WDF).

In addition to the modelling and design aspect, the book also looks at the development of
intellectual property (IP) cores as this has become a critical aspect in the creation of DSP systems.
With the absence of relevant, high-level design tools, designers have resorted to creating reusable
component blocks as a way of reducing the design productivity gap; this is the gap that has appeared
between the technology and the designers’ ability to use it efficiently. A chapter is given over to
describing the creation of such IP cores and another chapter dedicated to the creation of a core for
an important form of adaptive filtering, namely, recursive least-squares (RLS) filtering.

Audience
The book will be aimed at working engineers who are interested in using FPGA technology to its
best in signal processing applications. The earlier chapters would be of interest to graduates and
students completing their studies, taking the readers through a number of simple examples that
show the various trade-offs when mapping DSP systems into FPGA hardware. The middle part of
the book contains a number of illustrative, complex DSP systems that have been implemented using
FPGAs and whose performance clearly illustrates the benefit of it use. These examples include:
matrix multiplication, adaptive filtering systems for electronic support measures, wave digital filters,
and adaptive beamformer systems based on RLS filtering. This will provide a range of readers with
the expertise of implementing such solutions in FPGA hardware with a clear treatise of the mapping
of algorithmic complexity into FPGA hardware which the authors believe is missing from current
literature. The book summarizes over 30 years of learned experience.

A key focus of the book has been to look at the FPGA as a heterogeneous platform which
can be used to construct complex DSP systems. In particular, we take a system-level approach,
addressing issues such as system-level optimization, implementation and integration of IP cores,
system communications frameworks and implementation for low power, to mention but a few. The
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intention is that the designer will be able to apply some of the techniques developed in the book
and use the examples along with existing C-based or HDL-based tools to develop solutions for
their own specific application.

Organization
The purpose of the book is to give insights with examples of the challenges of implementing digital
signal processing systems using FPGA technology; it does this by concentrating on the high-level
mapping of DSP algorithms into suitable circuit architectures and not so much on the detailed
FPGA specific optimizations as this. This topic is addressed more effectively in other texts and also
increasingly, by HDL-based design tools. The focus of this text is to treat the FPGA as a hardware
resource that can be used to create complex DSP systems. Thus the FPGA can be viewed as a
heterogeneous platform comprising complex resources such as hard and soft processors, dedicated
DSP blocks and processing elements connected by programmable and fast dedicated interconnect.
The book is organized into four main sections.

The first section, effectively Chapters 2–5 covers the basics of both DSP systems and implemen-
tation technologies and thus provides an introduction to both of these areas. Chapter 2 starts with a
brief treatise on DSP, covering both digital filtering and transforms. As well as covering basic filter
structures, the text gives details on adaptive filtering algorithms. With regard to transforms, the
chapter briefly covers the FFT, DCT and the discrete wavelet transform (DWT). Some applications
in electrocardiogram (EEG) are given to illustrate some key points. This is not a detailed DSP
text on the subject, but has been included to provide some background to the examples that are
described later in the book.

Chapter 3 is dedicated to the computer arithmetic as it is an important topic for DSP system
implementation. This starts with consideration of number systems and basic arithmetic functions,
leading to adders and multipliers. These represent core blocks in FPGAs, but consideration is
then given to circuits for performing square root and division as these are required in some DSP
applications. A brief introduction is made to other number representations, namely signed digit
number representations (SDNRs), logarithmic number systems (LNS), residue number systems
(RNS) and coordinate rotation digital computer (CORDIC). However, this is not detailed as none
of the examples use these number systems.

Chapter 4 covers the various technologies available to implement DSP algorithms. It is important
to understand the other technology offerings so that the user can opt to choose the most suitable
technology. Where possible, FPGA technology is compared with these other approaches with the
differences clearly highlighted. Technologies covered include microprocessors with a focus on the
ARM processor and DSPµs with detailed description given on the TMS320C64 series family
from Texas Instruments. Parallel machines are then introduced, including systolic arrays, single
instruction multiple data (SIMD) and multiple instruction multiple data (MIMD). Two examples of
SIMD machines are then given, namely the Imagine processor and the Clearspeed processor.

In the final part of this first section, namely Chapter 5, a detailed description of commercial
FPGAs is given, concentrating on the two main vendors, namely Xilinx and Altera, specifically
their Virtex

TM
and Stratix r© FPGA families, but also covering technology offerings from Lattice r©,

Atmel r©, and Actel r©. The chapter gives details of the architecture, DSP specific processing capa-
bility, memory organization, clock networks, interconnection frameworks and I/Os and external
memory interfaces.

The second section of the book covers the system-level implementation in three main stages
namely: efficient implementation from circuit architecture onto specific FPGA families; creation of
circuit architecture from signal flow graph (SFG) representation and; system-level specification and
implementation methodologies from a high-level model of computation representations. The first
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chapter in this part, Chapter 6 covers the efficient implementation of FPGA designs from circuit
architecture descriptions. As this has been published extensively, the chapter only gives a review of
these existing techniques for efficient DSP implementation specifically distributed arithmetic (DA),
but also the reduced coefficient multiplier (RCM) which has not been described in detail elsewhere.
These latter techniques are particularly attractive for fixed coefficient functions such as fixed filters
and transforms such as the DCT. The chapter also briefly discusses detailed design issues such as
memory realization and implementation of delays.

Chapter 7 then gives an overview of the tools for performing rapid design and covers system
specification in the form of Petri nets and other MoCs for high level embedded systems. Tools
covered include Gedae, Compaan, ESPAM, Daedalus and Koski. The chapter also looks at IP core
generation tools for FPGAs, including Labview FPGA and Synplify DSP as well as C-based rapid
IP core design tools including MATLAB r©.

The next stage of how DSP algorithms in the form of SFGs or dataflow graphs (DFGs) are
mapped into circuit architectures which was the starting point for the technique described in
Chapter 6, is then described in Chapter 8. This work is based on the excellent text by K. K.
Parhi VLSI Digital Signal Processing Systems : Design and Implementation, Wiley, 1999, which
describes how many of the techniques can be applied to VLSI-based signal processing systems.
The chapter describes how DFG descriptions can be transformed for varying levels of parallelism
and pipelining to create circuit architectures which best match the application requirements. The
techniques are demonstrated using simple FIR and IIR filters.

Chapter 9 then presents the IRIS tool which has been developed to specifically capture the
processes of creating circuit architecture from, in this case, SFG descriptions of DSP systems and
algorithms involving many of the features described in Chapter 8. It demonstrates this for WDFs
and specifically shows how hierarchy can be a major issue in system-level design, proposing the
white box methodology as a possible approach. These chapters set the scene for the system-level
issues described in the rest of the book.

The final stage of the book, namely Chapters 10 and 12 represents the third aspect of this design
challenge, highlighting on high-level design. Chapters 8 and 9 have shown how to capture some
level of DSP functionality to produce FPGA implementations. In many cases, these will represent
part of the systems and could be seen as an efficient means of producing DSP IP cores. Chapter
10 gives some detailed consideration to the concept of creating silicon IP cores, highlighting the
different flavours, namely hard, soft and firm, and illustrating the major focus for design for reuse
which is seen as a key means of reducing the design productivity gap. Generation of IP cores
has been a growth industry that has had a long association with FPGAs; indeed, attaining highly
efficient FPGA solutions in a short design time has been vital in the use of FPGAs for DSP. Details
of core generation based on real company experience is described in Chapter 10, along with a brief
history of IP core evolution. The whole process of how parameterizable IP cores are created is then
reviewed, along with a brief description of current FPGA IP core offerings from Xilinx and Altera.

Moving along with high-level design focus, Chapter 11 considers model-based design for het-
erogeneous FPGA. In particular, it focuses on dataflow modelling as a suitable platform for DSP
systems and introduces the various flavours, including, synchronous dataflow, cyclo-static dataflow,
multidimensional synchronous dataflow. Rapid synthesis and optimization techniques for creating
efficient embedded software solutions from DFGs are then covered with topics such as graph bal-
ancing, clustering, code generation and DFG actor configurability. The chapter then outlines how
it is possible to include pipelined IP cores via the white box concept using two examples, namely
a normalized lattice filter (NLF) and a fixed beamformer example.

Chapter 12 then looks in detail at the creation of a soft, highly parameterizable core for RLS
filtering. It starts with an introduction to adaptive beamforming and the identification of a QR-based
algorithm as an efficient means to perform the beamforming. The text then clearly demonstrates
how a series of architectures, leading to a single generic architecture, are then developed from the
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algorithmic description. Issues such as a choice of fixed- and floating-point arithmetic and control
overhead are also considered.

Chapter 13 then addresses a vital area for FPGA implementation and indeed, other forms of
hardware, namely that of low power design. Whilst FPGAs are purported as a low power solution,
this is only the case when compared with microprocessors, and there is quite a gap when FPGA
implementations are compared with their ASIC counterparts. The chapter starts with a discussion
on the various sources of power consumption, principally static and dynamic, and then presents a
number of techniques to first reduce static power consumption which is limited due to the fixed
nature of FPGA architecture and then dynamic power consumption which largely involves reducing
the switched capacitance of the specific FPGA implementation. An FFT-based implementation is
used to demonstrate some of the gains that can be achieved in reducing the consumed power.

Finally, Chapter 14 summarizes the main approaches covered in the text and considers some
future evolutions in FPGA architectures that may be introduced. In addition, it briefly covers some
topics not covered in the book, specifically reconfigurable systems. It is assumed that one of the
advantages of FPGAs is that they can be programmed at start-up, allowing changes to be made to
the design between operation cycles. However, considerable thought has been given to dynamically
reconfiguring FPGAs, allowing them to be changed during operation, i.e. dynamically (where the
previous mode can be thought of as static reconfiguration). This is interesting as it allows the FPGA
to be viewed as virtual hardware, allowing the available hardware to implement functionality well
beyond the capacity available on the current FPGA device. This has been a highly attractive
proposition, but the practical realities somewhat limit its feasibility.

Acknowledgements

The authors have been fortunate to receive valuable help, support and suggestions from numerous
colleagues, students and friends. The authors would like to thank Richard Walke and John Gray for
motivating a lot of the work at Queen’s University Belfast on FPGA. A number of other people
have also acted to contribute in many other ways to either provide technical input or support. These
include: Steve Trimberger, Ivo Bolsens, Satnam Singh, Steve Guccione, Bill Carter, Nabeel Shirazi,
Wayne Luk, Peter Cheung, Paul McCambridge, Gordon Brebner and Alan Marshall.

The authors’ research described in this book has been funded from a number of sources, including
the Engineering and Physical Sciences Research Council, Ministry of Defence, Defence Technology
Centre, Qinetiq, BAE Systems, Selex and Department of Education and Learning for Northern
Ireland.

Several chapters are based on joint work that was carried out with the following colleagues
and students, Richard Walke, Tim Harriss, Jasmine Lam, Bob Madahar, David Trainor, Jean-Paul
Heron, Lok Kee Ting, Richard Turner, Tim Courtney, Stephen McKeown, Scott Fischaber, Eoin
Malins, Jonathan Francey, Darren Reilly and Kevin Colgan.

The authors thank Simone Taylor and Nicky Skinner of John Wiley & Sons for their personal
interest and help and motivation in preparing and assisting in the production of this work.

Finally the authors would like to acknowledge the support from friends and family including,
Pauline, Rachel, Andrew, Beth, Anna, Lixin Ren, David, Gerry and the Outlaws, Colm and David.





1
Introduction to
Field-programmable Gate Arrays

1.1 Introduction
Electronics revolutionized the 20th century and continues to make an impact in the 21st century.
The birth and subsequent growth of the computer industry, the creation of mobile telephony and
the general digitization of television and radio services has largely been responsible for the recent
growth. In the 1970s and 1980s, electronic systems were created by aggregating standard com-
ponents such as microprocessors and memory chips with digital logic components, e.g. dedicated
integrated circuits (ICs) along with dedicated input/output (I/O) components on printed circuit
boards (PCBs). As levels of integration grew, manufacturing working PCBs became more com-
plex, largely due to increased component complexity in terms of the increase in the number of
transistors and I/O pins but also the development of multi-layer boards with up to as many as 20
separate layers. Thus, the probability of incorrectly connecting components also grew, particularly
as the possibility of successfully designing and testing a working system before production was
coming under increasingly limited time pressure.

The problem was becoming more intense due to the difficulty that system descriptions were
evolving as boards were being developed. Pressure to develop systems to meet evolving standards,
or that could change after the board construction due to system alterations or changes in the design
specification, meant that the concept of having a ‘fully specified’ design in terms of physical system
construction and development on processor software code, was becoming increasingly unlikely.
Whilst the use of programmable processors such as microcontrollers and microprocessors gave
some freedom to the designer to make alterations in order to correct or modify the system after
production, this was limited as changes to the interconnections of the components on the PCB,
was only limited to I/O connectivity of the processors themselves. Thus the attraction of using
programmability interconnection or ‘glue logic’ offered considerable potential and so the concept
of field-programmable logic (FPL) specifically field-programmable gate array (FPGA) technology,
was borne.

1.1.1 Field-programmable Gate Arrays

FPGAs emerged as simple ‘glue logic’ technology, providing programmable connectivity between
major components where the programmability was based on either antifuse, EPROM or SRAM
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technologies (Maxfield 2004). This approach allows design errors which had only been recognized
at this late stage of development to be corrected, possibly by simply reprogramming the FPGA
thereby allowing the interconnectivity of the components to be changed as required. Whilst this
approach introduced additional delays due to the programmable interconnect, it avoids a costly and
time-consuming board redesign and considerably reduced the design risks.

Like many other electronics industries, the creation and growth in the market has been driven
by Moore’s law (Moore 1965), represented pictorially in Figure 1.1. Moore’s law shows that the
number of transistors has been doubling every 18 months. The incredible growth has led to the
creation of a number of markets and is the driving force between the markets of many electronics
products such as mobile telephony, digital musical products, digital TV to name but a few. This
is because not only have the number of transistors doubled at this rate, but the costs have not
increased, thereby reducing the cost per transistor at every technology advance. This has meant
that the FPGA market has grown from nothing in just over 20 years to being a key player in the
IC industry with a market judged to be of the order of US$ 4.0 billion.

On many occasions, the growth indicated by Moore’s law has led people to argue that transistors
are essentially free and therefore can be exploited as in the case of programmable hardware, to
provide additional flexibility. This could be backed up by the observation that the cost of a transistor
has dropped from one-tenth of a cent in the 1980s to one-thousandth of a cent in the 2000s. This
observation could be argued to have been validated by the introduction of hardware programmability
into electronics in the form of FPGAs. In order to make a single transistor programmable in an
SRAM technology, the programmability is controlled by storing a ‘1’ or a ‘0’ on the gate of
the transistor, thereby making it conduct or not. This value is then stored in an SRAM cell which
typically requires six transistors, involving a 600% increase for the introduction of programmability.
The reality is that in an overall FPGA implementation, the penalty is nowhere as harsh as this, but
it has to be taken into consideration in terms of ultimate system cost.

It is the ability to program the FPGA hardware after fabrication that is the main appeal of the
technology as it provides a new level of reassurance in an increasingly competitive market where
‘right first time’ system construction is becoming more difficult to achieve. It would appear that
assessment was vindicated as in the late 1990s and early 2000s, when there was a major market
downturn, the FPGA market remained fairly constant when other microelectronic technologies
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were suffering. Of course, the importance of programmability has already been demonstrated by
the microprocessor, but this represented a new change in how programmability was performed.

1.1.2 Programmability and DSP

The argument developed in the previous section presents a clear advantage of FPGA technology
in terms of the use of its programmability to reduce the risk of incorrectly creating PCBs or
evolving the manufactured product to later changes in standards. Whilst this might have been
true in the early days of FPGA technology, evolution in silicon technology has moved the FPGA
from being a programmable interconnection technology to making it into a system component.
If the microprocessor or microcontroller was viewed as programmable system component, the
current FPGA devices must also be viewed in this vein, giving us a different perspective on system
programmability.

In electronic system design, the main attraction of microprocessors/microcontrollers is that it
considerably lessens the risk of system development by reducing design complexity. As the hard-
ware is fixed, all of the design effort can be concentrated on developing the code which will make
the hardware work to the required system specification. This situation has been complemented by
the development of efficient software compilers which have largely removed the need for designer
to create assembly language; to some extent, this can absolve the designer from having a detailed
knowledge of the microprocessor architecture (although many practitioners would argue that this
is essential to produce good code). This concept has grown in popularity and embedded micropro-
cessor courses are now essential parts of any electrical/electronic or computer engineering degree
course.

A lot of this process has been down to the software developer’s ability to exploit an underlying
processor architecture, the Von Neumann architecture. However, this advantage has also been the
limiting factor in its application to the topic of this text, namely digital signal processing (DSP).
In the Von Neumann architecture, operations are processed sequentially, which allows relative
straightforward interpretation of the hardware for programming purposes; however, this severely
limits the performance in DSP applications which exhibit typically, high levels of parallelism and
in which, the operations are highly data independent – allowing for optimisations to be applied.
This cries out for parallel realization and whilst DSP microprocessors (here called DSPµs) go some
way to addressing this situation by providing concurrency in the form of parallel hardware and
software ‘pipelining’, there is still the concept of one architecture suiting all sizes of the DSP
problem.

This limitation is overcome in FPGAs as they allow what can be considered to be a second level
of programmability, namely programming of the underlying processor architecture. By creating
an architecture that best meets the algorithmic requirements, high levels of performance in terms
of area, speed and power can be achieved. This concept is not new as the idea of deriving a
system architecture to suit algorithmic requirements has been the cornerstone of application-specific
integrated circuit or ASIC implementations. In high volumes, ASIC implementations have resulted
in the most cost effective, fastest and lowest energy solutions. However, increasing mask costs
and impact of ‘right first time’ system realization have made the FPGA, a much more attractive
alternative. In this sense, FPGAs capture the performance aspects offered by ASIC implementation,
but with the advantage of programmability usually associated with programmable processors. Thus,
FPGA solutions have emerged which currently offer several hundreds of gigaoperations per second
(GOPS) on a single FPGA for some DSP applications which is at least an order of magnitude better
performance than microprocessors.

Section 1.2 puts this evolution in perspective with the emergence of silicon technology by
considering the history of the microchip. It highlights the key aspect of programmability which is
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discussed in more detail in Section 1.3 and leads into the challenges of exploiting the advantages
offered by FPGA technology in Section 1.4.

1.2 A Short History of the Microchip
Many would argue that the industrial revolution in the late 1700s and early 1800s had a major social
impact on how we lived and travelled. There is a strong argument to suggest that the emergence
of the semiconductor market has had a similar if not more far-reaching impact on our lives.
Semiconductor technology has impacted how we interact with the world and each other through
technologies such as mobile telephony, e-mail, videoconferencing, are entertained via TV, radio,
digital video, are educated through the existence of computer-based learning, electronic books;
and also how we work with remote working now possible through wireless communications and
computer technology.

This all started with the first transistor that was discovered by John Bardeen and Walter Brattain
whilst working for William Shockley in Bell Laboratories. They were working with the semicon-
ductor material silicon, to investigate its properties, when they observed that controlling the voltage
on the ‘base’ connector, would control the flow of electrons between the emitter and collector.
This had a considerable impact for electronics, allowing the more reliable transistor to replace the
vacuum tube and leading to a number of ‘transistorized’ products.

Another major evolution occurred in the development of the first silicon chip, invented indepen-
dently by Jack Kilby and Robert Noyce, which showed it was possible to integrate components on
a single block of semiconductor material hence the name integrated circuit. In addition, Noyce’s
solution resolved some practical issues, allowing the IC to be more easily mass produced. There
were many advantages to incorporating transistor and other components onto a single chip from a
manufacturing and design point-of-view. For example, there was no more need for separate com-
ponents with manually assembled wires to connect them. The circuits could be made smaller and
the manufacturing process could be automated. The evolution of the chip led to the development
of the standard TTL 7400 series components pioneered by Texas Instruments and the building
components of many basic electronics kits. It was not known at the time, but these chips would
become a standard in themselves.

Another key innovation was the development of the first microprocessor, the Intel 4004 by Bob
Noyce and Gordon Moore in 1968. It had just over 2300 transistors in an area of only 12 mm2

which can be compared with today’s 64-bit microprocessors which have 5.5 million transistors
performing hundreds of millions of calculations each second. The key aspect was that by changing
the programming code within the memory of the microprocessor, the function could be altered
without the need to create a new hardware platform. This was fundamental to freeing engineers
from the concept of building design by components which could not be easily changed to having
a programmable platform where the functionality could be changed by altering the program code.
It was later in 1965 in (Moore 1965) that Gordon Moore made the famous observation that has
been coined as Moore’s law. The original statement indicated that the complexity for minimum
component costs has increased at a rate of roughly a factor of two per year, although this was
later revised to every 18 months. This is representative of the evolution of silicon technology that
allows us to use transistors, not only to provide functionality in processing data, but simply to
create the overhead to allow us to provide programmability. Whilst this would suggest we could
use transistors freely and that the microprocessor will dominate, the bottom line is that we are not
using these transistors efficiently. There is an overall price to be paid for this in terms of the power
consumed, thus affecting the overall performance of the system. In microprocessor systems, only
a very small proportion of the transistors are performing useful work towards the computation.
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At this stage, a major shift in the design phase opened up the IC design process to a wide range
of people, including university students (such as the main author at that time!). Mead and Conway
(1979) produced a classic text which considerably simplified the IC design rules, allowing small
chips to be implemented even without the need for design rule checking. By making some worst
case assumptions, they were able to create a much smaller design rule set which could, given the
size of the chips at that time, be performed manually. This lead to the ‘demystifying’ of the chip
design process and with the development of software tools, companies were able to create ASICs
for their own products. This along with the MOSIS program in the US (Pina 2001), provided a
mechanism for IC design to be taught and experienced at undergraduate and postgraduate level
in US universities. Later, the Eurochip program now known as Europractice (Europractice 2006)
provided the same facility allowing a considerable number of chips to be fabricated and design
throughout European universities. However, the ASIC concept was being strangled by increasing
nonrecurrent engineering (NRE) costs which meant that there was an increased emphasis on ‘right
first time’ design. These NRE costs were largely governed by the cost of generating masks for
the fabrication process; these were increasing as it was becoming more expensive (and difficult)
to generate the masks for finer geometries needed by shrinking silicon technology dimensions.
This issue has become more pronounced as illustrated in the graph of Figure 1.2, first listed in
Zuchowski et al. (2002) which gives the increasing cost (part of the NRE costs) needed to generate
the masks for an ASIC.

The FPGA concept emerged in 1985 with the XC2064TM FPGA family from Xilinx. At the same
time, a company called Altera were also developing a programmable device, later to become EP1200
device which was the first high-density programmable logic device (PLD). Altera’s technology was
manufactured using 3-µm CMOS erasable programmable read-only-memory (EPROM) technology
and required ultraviolet light to erase the programming whereas Xilinx’s technology was based
on conventional static RAM technology and required an EPROM to store the programming. The
co-founder of Xilinx, Ross Freeman argued that with continuously improving silicon technology,
transistors were going to increasingly get cheaper and could be used to offer programmability.
This was the start of an FPGA market which was then populated by quite a number of vendors,
including Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm, Plessey, Toshiba, Motorola,
and IBM. The market has now grown considerably and Gartner Dataquest indicated a market size
growth to 4.5 billion in 2006, 5.2 billion in 2007 and 6.3 billion in 2008. There have been many
changes in the market. This included a severe rationalization of technologies with many vendors
such as Crosspoint, Algotronix, Prizm, Plessey, Toshiba, Motorola, and IBM disappearing from
the market and a reduction in the number of FPGA families as well as the emergence of SRAM
technology as the dominant technology largely due to cost. The market is now dominated by Xilinx
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Table 1.1 Three ages of FPGAs

Period Age Comments

1984–1991 Invention Technology is limited, FPGAs are much smaller than the
application problem size

Design automation is secondary
Architecture efficiency is key

1992–1999 Expansion FPGA size approaches the problem size
Ease-of-design becomes critical

2000–2007 Accumulation FPGAs are larger than the typical problem size
Logic capacity limited by I/O bandwidth

and Altera and more importantly, the FPGA has grown from being a simple glue logic component
to representing a complete System on Programmable Chip (SoPC) comprising on-board physical
processors, soft processors, dedicated DSP hardware, memory and high-speed I/O.

In the 1990s, energy considerations became a key focus and whilst by this time, FPGAs had
heralded the end of the gate array market, ASIC was still seen for the key mass market areas where
really high performance and/or energy considerations were seen as key drivers such as mobile
communications. Thus graphs comparing performance metrics for FPGA, ASIC and processor were
generated and used by each vendor to indicate design choices. However, this is simplistic and a
number of other technologies have emerged over the past decade and are described in Section 1.2.1.

The FPGA evolution was neatly described by Steve Trimberger given in his plenary talk (Trim-
berger 2007) and summarized in Table 1.1. It indicates three different eras of evolution of the
FPGA. The age of invention where FPGAs started to emerge and were being used as system com-
ponents typically to provide programmable interconnect giving protection to design evolutions and
variations as highlighted in Section 1.1. At this stage, design tools were primitive, but designers
were quite happy to extract the best performance by dealing with LUTs or single transistors. In the
early 1990s, there was a rationalization of the technologies described in the earlier paragraphs and
referred to by Trimberger as the great architectural shakedown where the technology was rational-
ized. The age of expansion is where the FPGA started to approach the problem size and thus design
complexity was key. This meant that it was no longer sufficient for FPGA vendors to just produce
place and route tools and so it was critical that HDL-based flows were created. The final evolution
period is described as the period of accumulation where FPGA started to incorporate processors
and high-speed interconnection. This is described in detail in Chapter 5 where the recent FPGA
offerings are reviewed.

1.2.1 Technology Offerings

In addition to FPGAs, ASICs and microprocessors, a number of other technologies emerged over
the past decade which are worth consideration. These include:

Reconfigurable DSP processors. These types of processors allow some form of customization whilst
providing a underlying fixed type of architecture that provides some level of functionality for the
application required. Examples include the Xtensa processor family from Tensilica (Tensilica Inc.
2005) and D-Fabrix from Elixent (now Panasonic) which is a reconfigurable semiconductor
intellectual property (IP) (Elixent 2005)

Structure ASIC implementation It could be argued that the concept of ‘gate array’ technology has
risen again in the form of structured ASIC which is a predefined silicon framework where the
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user provides the interconnectivity in the form of reduced silicon fabrication. This option is
also offered by Altera through their Hardcopy technology (Altera Corp. 2005), allowing users to
migrate their FPGA design direct to ASIC.

The current situation is that quite a number of these technologies that now co-exist are targeted
at different markets. This section has highlighted how improvements in silicon technologies have
seen the development of new technologies which now form the electronic hardware for developing
systems, in our case, DSP systems.

A more interesting viewpoint is to consider the availability of programmability in these technolo-
gies. The mask cost issue highlighted in Figure 1.2, along with the increasing cost of fabrication
facilities, paints a depressing picture for developing application-specific solutions. This would tend
to suggest that dedicated silicon solutions will be limited to mass market products and will only
be able to exploited by big companies who can take the risk. Nanotechnology is purported to be a
solution, but this will not be viable within the next decade in the authors’ opinion. Structured ASIC
could be viewed as a re-emergence of the gate array technology (at least in terms of the concept of
constructing the technology) and will provide an interesting solution for low-power applications.
However, the authors would argue that the availability of programmability will be central to next
generation systems where time-to-market, production costs and pressures of right-first-time hard-
ware are becoming so great that the concept of being able to program hardware will be vital. The
next section attempts to compare technologies with respect to programmability.

1.3 Influence of Programmability
In many texts, Moore’s law is used to highlight the evolution of silicon technology. Another inter-
esting viewpoint particularly relevant for FPGA technology, is Makimoto’s wave which was first
published in the January 1991 edition of Electronics Weekly. It is based on an observation by Tsu-
gio Makimoto who noted that technology has shifted between standardization and customization
(see Figure 1.3). In the early 1960s, a number of standard components were developed, namely
the Texas Instruments 7400 TTL series logic chips and used to create applications. In the early
1970s, the custom LSI era was developed where chips were created (or customized) for specific
applications such as the calculator. The chips were now increasing in their levels of integration
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Figure 1.3 Makimoto’s wave. Reproduced by permission of Reed Business Information
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and so the term medium-scale integration (MSI) was born. The evolution of the microprocessor
in the 1970s saw the swing back towards standardization where one ‘standard’ chip was used
for a wide range of applications. The 1980s then saw the birth of ASICs where designers could
overcome the limitations of the sequential microprocessor which posed severe limitations in DSP
applications where higher levels of computations were needed. The DSP processor also emerged,
such as the TMS32010, which differed from conventional processors as they were based on the
Harvard architecture which had separate program and data memories and separate buses. Even
with DSP processors, ASICs offered considerable potential in terms of processing power and more
importantly, power consumption. The emergence of the FPGA from a ‘glue component’ that allows
other components to be connected together to form a system to becoming a system component or
even a system itself, led to increased popularity. The concept of coupling microprocessors with
FPGAs in heterogeneous platforms was considerably attractive as this represented a completely
programmable platform with microprocessors to implement the control-dominated aspects of DSP
systems and FPGAs to implement the data-dominated aspects. This concept formed the basis of
FPGA-based custom computing machines (FCCMs) which has led to the development of several
conferences in the area and formed the basis for ‘configurable’ or reconfigurable computing (Vil-
lasenor and Mangione-Smith 1997). In these systems, users could not only implement computational
complex algorithms in hardware, but use the programmability aspect of the hardware to change the
system functionality allowing the concept of ‘virtual hardware’ where hardware could ‘virtually’
implement systems, an order of magnitude larger (Brebner 1997). The concept of reconfigurable
systems is reviewed in Chapter 14.

We would argue that there have been two programmability eras with the first era occurring
with the emergence of the microprocessor in the 1970s, where engineers could now develop pro-
grammable solutions based on this fixed hardware. The major challenge at this time was the software
environments; developers worked with assembly language and even when compilers and assem-
blers emerged for C, best performance was achieved by hand coding. Libraries started to appear
which provided basic common I/O functions, thereby allowing designers to concentrate on the
application. These functions are now readily available as core components in commercial compiler
and assemblers. Increasing the need for high-level languages grew and now most programming is
carried out in high-level programming languages such as C and Java with an increased use of even
higher level environments such as UML.

The second era of programmability is offered by FPGAs. In the diagram, Makimoto indicates
that the field programmability is standardized in manufacture and customized in application. This
can be considered to have offered hardware programmability if you think in terms of the first
wave as the programmability in the software domain where the hardware remains fixed. This is
a key challenge as most of computer programming tools work on the principle of fixed hardware
platform, allowing optimizations to be created as there is a clear direction on how to improve
performance from an algorithmic representation. With FPGAs, the user is given full freedom to
define the architecture which best suits the application. However, this presents a problem in that
each solution must be handcrafted and every hardware designer knows the issues in designing and
verifying hardware designs!

Some of the trends in the two eras have similarities. In the earlier days, schematic capture was
used to design early circuits which was synonymous with assembly level programming. Hardware
description languages such as VHDL and Verilog then started to emerge that could used to produce
a higher level of abstraction with the current aim to have C-based tools such as SystemC and
CatapultC from Mentor Graphics as a single software based programming environment. Initially
as with software programming languages, there was a mistrust in the quality of the resulting
code produced by these approaches. However with the establishment of improved cost-effective,
synthesis tools which was equivalent to evolution of efficient software compilers for high-level
programming languages, and also the evolution of library functions, a high degree of confidence
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was subsequently established and use of HDLs is now commonplace for FPGA implementation.
Indeed, the emergence of IP cores mirrored the evolution of libraries such as I/O programming
functions for software flows where common functions were reused as developers trusted the quality
of the resulting implementation produced by such libraries, particularly as pressures to produce
more code within the same time-span grew with evolving technology. The early IP cores emerged
from basic function libraries into complex signal processing and communications functions such as
those available from the FPGA vendors and various IP web-based repositories.

1.4 Challenges of FPGAs
In the early days, FPGAs were seen as glue logic chips used to plug components together to form
complex systems. FPGAs then increasingly came to be seen as complete systems in themselves,
as illustrated in Table 1.1. In addition to technology evolution, a number of other considerations
accelerated this. For example, the emergence of the FPGA as a DSP platform was accelerated by
the application of distributed arithmetic (DA) techniques (Goslin 1995, Meyer-Baese 2001). DA
allowed efficient FPGA implementations to be realized using the LUT-based/adder constructs of
FPGA blocks and allowed considerable performance gains to be gleaned for some DSP transforms
such as fixed coefficient filtering and transform functions such as fast Fourier transform (FFT).
Whilst these techniques demonstrated that FPGAs could produce highly effective solutions for DSP
applications, the concept of squeezing the last aspect of performance out of the FPGA hardware
and more importantly, spending several person months to create such innovative designs, was now
becoming unacceptable. The increase in complexity due to technology evolution, meant that there
was a growing gap in the scope offered by current FPGA technology and the designer’s ability
to develop solutions efficiently using currently available tools. This was similar to the ‘design
productivity gap’ (IRTS 1999) identified in the ASIC industry where it was viewed that ASIC
design capability was only growing at 25% whereas Moore’s law growth was 60%. The problem is
not as severe in FPGA implementation as the designer does not have to deal with sub-micrometre
design issues. However, a number of key issues exist and include:

Understanding how to map DSP functionality into FPGA. Some of the aspects are relatively basic in
this arena, such as multiplications, additions and delays being mapped onto on-board multipliers,
adder and registers and RAM components respectively. However, the understanding of floating-
point versus fixed-point, word length optimization, algorithmic transformation cost functions for
FPGA and impact of routing delay are issues that must be considered at a system level and can
be much harder to deal with at this level.

Design languages. Currently hardware description languages such as VHDL and Verilog and their
respective synthesis flows are well established. However, users are now looking at FPGAs with
the recent increase in complexity resulting in the integration of both fixed and programmable
microprocessors cores as a complete system, and looking for design representations that more
clearly represent system description. Hence there is an increased EDA focus on using C as a
design language, but other representations also exist such as those methods based on models of
computations (MoCs) such as synchronous dataflow.

Development and use of IP cores. With the absence of quick and reliable solutions to the design
language and synthesis issues, the IP market in SoC implementation has emerged to fill the
gap and allow rapid prototyping of hardware. Soft cores are particularly attractive as design
functionality can be captured using HDLs and efficiently translated into the FPGA technology
of choice in a highly efficient manner by conventional synthesis tools. In addition, processor
cores have been developed which allow dedicated functionality to be added. The attraction of
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these approaches are that they allow application specific functionality to be quickly created as
the platform is largely fixed.

Design flow. Most of the design flow capability is based around developing FPGA functionality
from some form of higher-level description, mostly for complex functions. The reality now is
that FPGA technology is evolving at such a rate that systems comprising FPGAs and processors
are starting to emerge as a SoC platform or indeed, FPGAs as a single SoC platform as they
have on-board hard and soft processors, high-speed communications and programmable resource,
and this can be viewed as a complete system. Conventionally, software flows have been more
advanced for processors and even multiple processors as the architecture is fixed. Whilst tools
have developed for hardware platforms such as FPGAs, there is a definite need for software for
flows for heterogeneous platforms, i.e. those that involve both processors and FPGAs.

These represent the challenges that this book aims to address and provide the main focus for the
work that is presented.

References
Altera Corp. (2005) Hardcopy structured asics: Asic gain without the paint. Web publication downloadable from

http://www.altera.com.

Brebner G (1997) The swappable logic unit. Proc. IEEE Symp. on FPGA-based Custom Computing Machines,
Napa, USA, pp. 77–86.

Elixent (2005) Reconfigurable algorithm processing (rap) technology. Web publication downloadable from
http://www.elixent.com/.

Europractice (2006) Europractice activity report. Web publication downloadable from http://europractice-
ic.com/documents annual reports.php.

Goslin G (1995) Using xilinx FPGAs to design custom digital signal processing devices. Proc. DSPX, pp. 565–604.

IRTS (1999) International Technology Roadmap for Semiconductors, 1999 edn. Semiconductor Industry Associa-
tion. http://public.itrs.net

Maxfield C (2004) The Design Warrior’s Guide to FPGAs. Newnes, Burlington.

Mead C and Conway L (1979) Introduction to VLSI Systems. Addison-Wesley Longman, Boston.

Meyer-Baese U (2001) Digital Signal Processing with Field Programmable Gate Arrays. Springer, Germany.

Moore GE (1965) Cramming more components onto integrated circuits. Electronics. Web publication downloadable
from ftp://download.intel.com/research/silicon/moorespaper.pdf.

Pina CA (2001) Mosis: IC prototyping and low volume production service Proc. Int. Conf. on Microelectronic
Systems Education, pp. 4–5.

Tensilica Inc. (2005) The Xtensa 6 processor for soc design. Web publication downloadable from
http://www.tensilica.com/.

Trimberger S (2007) FPGA futures: Trends, challenges and roadmap IEEE Int. Conf. on Field Programmable Logic.

Villasenor J and Mangione-Smith WH (1997) Configurable computing. Scientific American, pp. 54–59.

Zuchowski P, Reynolds C, Grupp R, Davis S, Cremen B and Troxel B (2002) A hybrid ASIC and FPGA archi-
tecture. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 187–194.



2
DSP Fundamentals

2.1 Introduction
In the early days of electronics, signals were processed and transmitted in their natural form, typi-
cally an analogue signal created from a source signal such as speech, then converted to electrical
signals before being transmitted across a suitable transmission media such as a broadband connec-
tion. The appeal of processing signals digitally was recognized quite some time ago for a number
of reasons. Digital hardware is generally superior and more reliable than its analogue counterpart
which can be prone to ageing and can give uncertain performance in production. DSP on the other
hand gives a guaranteed accuracy and essentially perfect reproducibility (Rabiner and Gold 1975).
In addition, there is considerable interest in merging the multiple networks that transmit these sig-
nals, such as the telephone transmission networks, terrestrial TV networks and computer networks,
into a single or multiple digital transmission media. This provides a strong motivation to convert a
wide range of information formats into their digital formats.

Microprocessors, DSP micros and FPGAs perform a suitable platform for processing such digital
signals, but it is vital to understand a number of basic issues with implementing DSP algorithms on,
in this case, FPGA platforms. These issues range from understanding both the sampling rates and
computational rates of different applications with the aim of understanding how these requirements
affect the final FPGA implementation, right through to the number representation chosen for the
specific FPGA platform and how these decisions impact the performance of the DSP systems. The
choice of algorithm and arithmetic requirements can have severe implications on the quality of the
final implementation.

The purpose of this chapter is to provide background and some explanation for many of these
issues. It starts with a introduction to basic DSP concepts that affect hardware implementation, such
as sampling rate, computational rate and latency. A brief description of common DSP algorithms is
then given, starting with a review of transforms, including the fast Fourier transform (FFT), discrete
cosine transform (DCT) and the discrete wavelet transform (DWT). The chapter then moves onto
to review filtering and gives a brief description of finite impulse response (FIR), filters and infinite
impulse response (IIR) filters and wave digital filters (WDFs). The final section on DSP systems
is dedicated to adaptive filters and covers both the least-mean-squares (LMS) and recursive least-
squares (RLS) algorithms. The final chapter of the book discusses the arithmetic implications of
implementing DSP algorithms as the digitization of signals implies that the representation and
processing of the signals are vital to the fidelity of the final system.

As the main aim of the book is in the implementation of such systems in FPGA hardware, the
chapter aims to give the reader an introduction to DSP algorithms to such a level as to provide

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
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grounding to many of the examples that are described later. A number of good introductory texts
that explain the background of DSP systems can be found in the literature, ranging from the
basic principles (Lynn and Fuerst 1994, Williams 1986) to more comprehensive texts (Rabiner and
Gold 1975). Omondi’s book on computer arithmetic is also recommended for an excellent text on
computer arithmetic for beginners (Omondi 1994).

The chapter is organized as follows. Section 2.2 gives details on how signals are digitized and
Section 2.3 describes the basic DSP concepts, specifically sampling rate, latency and pipelining that
are relevant issues in FPGA implementation. Section 2.4 introduces DSP transforms and covers the
fast Fourier transform (FFT), discrete cosine transform (DCT) and the discrete wavelet transform
(DWT). Basic filtering operations are covered in Section 2.5 and extended to adaptive filtering in
section 2.6.

2.2 DSP System Basics
There is an increasing need to process, interpret and comprehend information, including numerous
industrial, military, and consumer applications. Many of these involve speech, music, images or
video, or may support communication systems through error detection and correction, and cryptog-
raphy algorithms. This involves real-time processing of a considerable amount of different types
of content at a series of sampling rates ranging from single Hz as in biomedical applications, right
up to tens of MHz as in image processing applications. In a lot of cases, the aim is to process
the data to enhance part of the signal, such as edge detection in image processing or eliminating
interference such as jamming signals in radar applications, or removing erroneous input, as in the
case of echo or noise cancellation in telephony. Other DSP algorithms are essential in capturing,
storing and transmitting data, audio, images and video; compression techniques have been used
successfully in digital broadcasting and telecommunications.

Over the years, a lot of the need for such processing has been standardized, as illustrated by
Figure 2.1 which gives an illustration of the algorithms required in a range of applications. In
communications, the need to provide efficient transmission using orthogonal frequency division
multiplexing (OFDM) has emphasized the need for circuits for performing the FFT. In image
compression, the evolution initially of the joint photographic experts group (JPEG) and then the
motion picture experts group (MPEG), led to the development of the JPEG and MPEG standards
respectively; these standards involve a number of core DSP algorithms, specifically DCT and motion
estimation and compensation.

The appeal of processing signals digitally was recognized quite some time ago as digital hardware
is generally superior and more reliable than its analogue counterpart; analogue hardware can be
prone to ageing and can give uncertain performance in production. DSP on the other hand, gives
a guaranteed accuracy and essentially perfect reproducibility (Rabiner and Gold 1975). The main
proliferation of DSP has been driven by the availability of increasingly cheap hardware, allowing the
technology to be easily interfaced to computer technology, and in many cases, to be implemented
on the same computers. The need for many of the applications mentioned in Figure 2.1 has driven
the need for increasingly complex DSP systems which in turn has seen the growth of the research
area involved in developing efficient implementation of some DSP algorithms. This has also driven
the need for DSP micros covered in Chapter 3.

2.3 DSP System Definitions
The basic realisation of DSP systems given in Figure 2.2, shows how a signal is digitized using an
analogue-to-digital (A/D) converter, processed in a DSP system before being converted back to an
analogue signal. The digitised signal is obtained as shown in Figure 2.3 where an analogue signal
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is converted into a pulse of signals and then quantized to a series of numbers. The input stream
of numbers in digital format to the DSP system is typically labelled x(n) and the output is given
as y(n). The original analogue signal can be derived from a range of source such as voice, music,
medical or radio signal, a radar pulse or an image. Obviously, the representation of the data is a key
aspect and this is considered in the next chapter. A wide range of signal processing can be carried
out, as illustrated in Figure 2.1, as digitizing the signal opens up a wide domain of possibilities as
to how the data can be manipulated, stored or transmitted.

A number of different DSP functions can be carried out either in the time domain, such as
filtering, or operations in the frequency domain by performing an FFT (Rabiner and Gold 1975).
The DCT forms the central mechanism for JPEG image compression which is also the foundation
for the MPEG standards. This algorithm enables the components within the image that are invisible
to the naked eye to be identified by converting the spatial image into the frequency domain. They
can then be removed using quantization in the MPEG standard without a discernible degradation in

Figure 2.1 Example applications for DSP
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Figure 2.3 Digitization of analogue signals

the overall image quality. By increasing the amount of data removed, greater reduction in file size
is achievable at a cost in image quality. Wavelet transforms offer both time domain and frequency
domain information and have roles, not only in applications for image compression, but also for
extraction of key information from signals and for noise cancellation. One such example is in
extracting key features from medical signals such as the EEG.

2.3.1 Sampling Rate

An introduction to DSP systems would be incomplete without a brief reminder of the
Nyquist–Shannon sampling theorem which states that the exact reconstruction of a continuous-
time baseband signal from its samples is possible if the signal is band limited and the sampling
frequency is greater than twice the signal bandwidth. For a more detailed explanation refer to the
papers by Shannon and Nyquist (Nyquist 2002, Shannon 1949) and also some of the texts listed
earlier in this chapter (Lynn and Fuerst 1994, Rabiner and Gold 1975, Williams 1986). In simple
terms when digitizing an analogue signal the rate of sampling must be at least twice the maximum
frequency fm (within the signal being digitized) so as to maintain the information and prevent
aliasing (Shannon 1949). In other words, the signal needs to be band limited, meaning that there
is no spectral energy above a certain maximum frequency fm. The Nyquist sampling rate fs is
then determined as 2fm.

A simple example is the sampling of the speech which is standardized at 8 kHz. This sampling
rate is sufficient to provide an accurate representation of the spectral components of the speech
signal as the spectral energy above 4 kHz and probably 3 kHz, does not contribute greatly to signal
quality. In contrast, digitizing of music typically requires a sample rate for example of 44.2 kHz
to cover the spectral range of 22.1 kHz as it is acknowledged that this is more than sufficient to
cope with the hearing range of the human ear which typically cannot detect signals above 18 kHz.
Moreover, this increase is natural due to the more complex spectral composition of music when
compared with speech.

In other applications, the determination of the sampling rate does not just come down to human
perception, but involves other aspects. Take, for example, the digitizing of medical signals such
as the electroencephalogram (EEG) which are the result of electrical activity within the brain
picked up from electrodes in contact with the surface of the skin. Through the means of capturing
the information, the underlying waveforms can be heavily contaminated by noise. One particular
application is a hearing test whereby a stimulus is applied to the subject’s ear and the resulting
EEG signal is observed at a certain location on the scalp. This test is referred to as the auditory
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brainstem response (ABR) as it looks for an evoked response from the EEG in the brainstem region
of the brain, within 10 ms from the stimulus onset. The ABR waveform of interest has a frequency
range of 100–3000 Hz, therefore bandpass filtering of the EEG signal to this region is performed
during the recording process prior to digitization. However, there is a slow response roll-off at
the boundaries and unwanted frequencies may still be present. Once digitized the EEG signal may
be filtered again, possibly using wavelet denoising to remove the upper and lower contaminating
frequencies. The duration of the ABR waveform of interest is 20 ms, 10 ms prior to stimulus and
10 ms afterwards. The EEG is sampled at 20 kHz, therefore with a Nyquist frequency of 10 kHz,
which exceeds twice the highest frequency component (3 kHz) present in the signal. This equates
to 200 samples, before and after the stimulus.

Sampling rate is directly related to DSP computation rates and therefore, performance require-
ments in terms of the throughput rates required. Typical values are given in Figure 2.4, although
sampling rate alone should not be used as the guide for technology choice. For example, take a 128
tap FIR filter for an audio application, the sampling rate may be 44.2 kHz, but the throughput rate
required will be 11.2 Msample/s as during each sample as 128 multiplications and 127 additions
(255 operations) need to be performed, at the sampling rate! If sampling rate is used as a mislead-
ing comparison, then the clock rate of the processor can also be viewed as a misleading metric.
Clock rate is usually quoted by technology providers as a measure of possible performance, as
throughput rate can then be computed by dividing the clock rate by the number of cycles needed to
be performed per sample. Most noticeably, personal computers (PCs) quote clock rates as a metric
of performance but as Chapter 3 demonstrates, it is the throughput rate that is more important.

2.3.2 Latency and Pipelining

Latency is the time required to produce a result after the input is fed into the system. In a syn-
chronous system, this can be defined as the number of clock cycles which must evolve before the
output is produced. For a simple system with inputs a0 and xn which produces an output yn, the
latency is as indicated in Figure 2.5 given as TLatency, with the throughput rate given as 1/TD,
where TD is the time between successive outputs, and therefore inputs.

In synchronous systems, throughput is related to clock rate. Given that TD is the critical path
between registers within a digital circuit, this will determine the maximum achievable clock rate
and will be directly related to the amount of logic and the physical distance between two reg-
isters. By adding additional pipelining stages the critical path within the circuit can be reduced,
however, this is at a cost of increased latency and resulting area and power. Figure 2.6 illustrates
a simple example of pipelining. Here, a computational block has six distinct stages. The diagram
shows how by placing pipeline stages at certain locations within the circuit, the physical distance
between registers can be reduced and hence the clock rate can be increased. The first example
in Figure 2.6(a) has a latency of just one clock cycle, but can only be clocked at maximum of
36.4 MHz. Figure 2.6(b) shows pipelining cuts after each major logic block, resulting in a max-
imum clock rate of 100 MHz and a latency of six clock cycles. By moving one of the pipeline
cuts to within one of the larger computational blocks (block C) while removing a pipeline cut after
block D as shown in Figure 2.6(c), the critical path can be reduced to 5 ns, resulting in a clock
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Control
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Figure 2.4 Sampling rates for many DSP systems
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Figure 2.5 Illustration of latency for a simple DSP system

(a) Clock Rate =
36.4 MHz

(b) Clock Rate =
100 MHz

(c) Clock Rate =
200 MHz

Figure 2.6 Simple pipelining example

rate of 200 MHz while maintaining a latency of 6 cycles. These figures demonstrate some basic
theory behind circuit retiming, as important feature in efficient design practices and tools and will
be covered in more detail in chapters 8 and 9.

2.4 DSP Transforms
This section will give a brief overview of some of the key DSP transforms mentioned in Section 2.2,
including a brief description of applications.

2.4.1 Fast Fourier Transform

The Fourier transform is the transform of a signal from the time domain representation to the
frequency domain representation. In basic terms it breaks a signal up into its constituent frequency
components, representing a signal as a sum of a series of sines and cosines. The Fourier series
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expansion of a periodic function, f (t), is given in Equation (2.1) below

f (t) = 1

2
a0 +

∞∑
n=1

[ancos(ωnt) + bnsin(ωnt)] (2.1)

where, for any non-negative integer n, ωn is the nth harmonic in radians of f (t) and is given
below:

ωn = n
2π

T
(2.2)

and an are the even Fourier coefficients of f (t), given as

an = 2

T

∫ t2

t1

cos(ωnt)dt (2.3)

and bn are the odd Fourier coefficients, given as

bn = 2

T

∫ t2

t1

sin(ωnt)dt (2.4)

The Discrete Fourier transform (DFT), as the name suggests, is the discrete version of the
continuous Fourier transform. applied to sampled signals. The input sequence is finite in duration
and hence the DFT only evaluates the frequency components present in this portion of the signal.
The inverse DFT will therefore only reconstruct using these frequencies and may not provide a
complete reconstruction of the original signal (unless this signal is periodic). Equation (2.5) gives
a definition for the DFT where the input sampled signal is represented by a sequence of complex
numbers, x(0), x(1), . . . , x(N − 1), and the transformed output is given by the sequence of complex
numbers, X(0),X(1), . . . , X(N − 1).

X(k) =
N−1∑
n=0

x(n)e− 2πi
N kn (2.5)

where k = 0, 1, . . . , N − 1.
The fast Fourier transform (FFT) is a computationally efficient method for calculating the DFT.

It has immense impact in a range of applications. One particular use is in the central computa-
tion within OFDM. This spread spectrum digital modulation scheme is used in communication,
particularly within wireless technology, and has resulted in vastly improved data rates within the
802.11 standards, to name just one example. Here, the algorithm relies on the orthogonal nature
of the frequency components extracted through the FFT, allowing each of these components to act
as a subcarrier. Note that the receiver uses the inverse FFT (IFFT) to detect the subcarriers and
reconstruct the transmission. The individual subcarriers are modulated using a typical low symbol
rate modulation scheme such as phase-shift or quadrature amplitude modulation (QAM), depending
on the application. For IEEE 802.11a, the data rate ranges up to 54 MBps depending on the envi-
ronmental conditions and noise, i.e. phase shift modulation is used for the lower data rates when
greater noise is present, QAM is used in less noisy environments reaching up to 54 MBps. Figure
2.7 gives an example of the main components within a typical communications chain.

The IEEE 802.11a wireless LAN standard using OFDM in the 5 GHz region of the US ISM
band over a channel bandwidth of 125 MHz. From this bandwidth 52 frequencies are used, 48 for
data and 4 for synchronization. The latter point is very important, as the basis on which OFDM
works, i.e. orthogonality, relies on the receiver and transmitter being perfectly synchronized.
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Figure 2.7 Wireless communications transmitter

2.4.2 Discrete Cosine Transform (DCT)

The DCT is based on the DFT, but uses only real numbers, i.e. the cosine part of the transform,
as defined in Equation (2.6).

X(k) =
N−1∑
n=0

cos

[
π

N

(
n + 1

2

)
k

]
(2.6)

where k = 0, 1, . . . , N − 1.
Its two-dimensional (2D) form given in Equation (2.7), is a vital computational component in

the JPEG image compression and also features in MPEG standards.

Fu,v = α(u)α(v)

7∑
x=0

7∑
y=0

fx,ycos

[
π

8

(
x + 1

2

)
u

]
cos

[
π

8

(
y + 1

2

)
v

]
(2.7)

where u is the horizontal spatial frequency for 0 ≤ u < 8, v is the vertical spatial frequency for
0 ≤ v < 8, α(u) and α(v) are constants, fx,y is the value of the (x, y) pixel and Fu,v is the value
of the (u, v) DCT coefficient. Figure 2.8 gives an illustration of the DCT applied to JPEG image
compression. The DCT is performed on the rows and the columns of the image block of 8 × 8 pixels.
The resulting frequency decomposition places the more important lower-frequency components at
the top left-hand corner of the matrix, and the frequency of the components increase when moving
towards the bottom right-hand part of the matrix. Once the image has been transformed into
numerical values representing the frequency components, the higher-frequency components may be
removed through the process of quantization as they will have less importance in image quality.
Naturally, the greater the amount to be removed the higher the compression ratio; at a certain point
the image quality will begin to deteriorate. This is referred to as lossy compression. The numerical
values for the image are read in a zigzag fashion, as depicted in Figure 2.8.

Each macro-block consists
of blocks of 8 x 8 pixels 

Transform carried out on
each block of 8 x 8 pixels

DC
component

Numerical representation of the pixels
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frequency

DCT

Visible
components
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Figure 2.8 DCT applied to image compression
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2.4.3 Wavelet Transform

A wavelet is a fast decaying waveform containing oscillations. Wavelet decomposition forms a pow-
erful tool for multi-resolution filtering and analysis and is performed by correlating scaled versions
of this original wavelet function (i.e. mother wavelet) against the input signal. This decomposes
the signal into frequency bands that maintain a level of temporal information (Mallat 1989). This
is particularly useful for frequency analysis of waveforms that are pseudo-stationary where the
time-invariant FFT may not provide the complete information.

There are many families of wavelet equations such as the Daubechies, Coiflet and Symmlet
(Daubechies 1992). Wavelet decomposition may be performed in a number of ways, namely the
continuous wavelet transform (CWT) or the discrete wavelet transform (DWT) which is described
in the next section.

2.4.4 Discrete Wavelet Transform

The DWT is performed using a series of filters, as illustrated in Figure 2.9 which shows a six-level
wavelet decomposition. At each stage of the DWT, the input signal is passed though a high-pass
and a low-pass filter, resulting in the detail and approximation coefficients such as those illustrated.

Equation (2.8) gives the equation for the low-pass filter. By removing half the frequencies at
each stage, the signal information can be represented using half the number of coefficients, hence
the equations for the low and high filters become Equations (2.9) and (2.10) respectively, where n

has now become 2n, representing the down-sampling process.

y(n) = (xg)(n) =
−∞∑
∞

x(k)g(n − k) (2.8)

ylow(n) =
−∞∑
∞

x(k)g(2n − k) (2.9)

yhigh(n) =
−∞∑
∞

x(k)h(2n − k) (2.10)

Figure 2.9 Discrete wavelet decomposition to six levels
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Figure 2.10 EEG signal showing an ABR Jewett waveform

Wavelet decomposition is a form of subband filtering and has many uses in DSP. By breaking
the signal down into the frequency bands such as those illustrated in Figure 2.9, denoising can
be performed by eliminating the coefficients representing the highest frequency components (e.g.,
levels D1 to D3) and then reconstructing the signal using the remaining coefficients. Naturally, this
could also be used for data compression in a similar method to the DCT and has been applied to
image compression.

Wavelet decomposition is also a powerful transform to use in analysis of medical signals. One
example is the determination of hearing acuity using ABR signals from the EEG recordings as
introduced in Section 2.3.1. The ABR response itself is a deterministic signal giving the same,
time-locked response at the same stimulus for the same subject, and is often referred to as the
Jewett waveform (Jewett 1970) given in Figure 2.10. The amplitude of the ABR is typically less
than 1 µV and is hidden behind the background brain activity which may be as much as 100 µV. To
extract the ABR, averaging of several thousand responses is often performed. As the background
noise is white Gaussian in nature, averaging over a substantial number acts to drive the noise to zero.
Meanwhile, the deterministic ABR maintains its presence, though some alteration to the morphology
can be expected. Even with this noise reduction, it can be difficult to ascertain if the subject has
heard or not, particularly in threshold cases. The response is time locked within 10 ms post-stimulus.
Furthermore, it has key peaks in certain frequency bands, namely, 200, 500 and 900 Hz. Wavelet
decomposition enables these key frequency bands to be extracted whilst maintaining the temporal
information useful in isolating the regions where the key peaks of the response are expected. Figure
2.11 illustrates the wavelet coefficients from the D4 band (see Figure 2.9) for the section of the
waveform before the stimulus and compare it to the post-stimulus section. This figure highlights
how wavelet decomposition can be used to focus in on both the frequency and temporal regions of
interest in a signal.

2.5 Filter Structures
2.5.1 Finite Impulse Response Filter

A simple finite impulse response (FIR) filter is given in Equation (2.11) where ai are the coefficients
needed to generate the necessary filtering response such as low-pass or high-pass and N is the
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Figure 2.11 Wavelet coefficients for the D4 level

number of filter taps contained in the function. Typically, ai and the input x(n), will have finite
length N , i.e. they will be non-zero for samples, x(n), n = 0, 1, . . . , N − 1.

The function given in Equation (2.12) can be represented using the classical signal flow graph
(SFG) representation of Figure 2.12 for N = 3. In the classic form, the delay boxes of z−1 indicate
a digital delay, the branches send the data to several output paths, labelled branches represent a
multiplication by the variable shown and the black dots indicate summation functions. The block
diagram form given in Figure 2.13 is also used where multiplication and additions is expressed by
the function blocks shown.

y(n) =
N−1∑
i=0

aix(n − i) (2.11)

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) (2.12)

A FIR filter exhibits some important properties including the following:

Superposition. Superposition holds if a filter produces an output y(n) + v(n) from an input x(n) +
u(n) where y(n) is the output produced from input x(n) and v(n) is the output produced from
input u(n).

x (n)
z−1

y(n)a1a0 a2

z−1

Figure 2.12 Original FIR filter SFG
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Figure 2.13 FIR filter SFG

Homogeneity. If a filter produces an output ay(n) from input ax(n), then the filter is said to be
homogeneous.

Shift invariance. A filter is shift invariant, if and only if, the input of x(n + k) generates an output
y(n + k) where y(n) is the output produced by x(n).

If a filter exhibits all these properties then it is said to be a linear, time-invariant (LTI) filter.
This property allows these filters to be cascaded, as shown in Figure 2.14(a) or connected in a
parallel configuration as shown in Figure 2.14(b).

One basic way of developing a digital filter is to start with the desired frequency response,
inverse filter it to get the impulse response, truncate the impulse response and then window the
function to remove artifacts (Bourke 1999, Williams 1986). If we start with a typical low-pass
function, as indicated in Figure 2.15, then translating this back to the time domain gives a typical
sinc function with a starting point at zero. Realistically, we have to approximate this infinitely long
filter with a finite number of coefficients, and given that it needs data from the future, time shift it
so that it does not have negative values. If we can then successfully design the filter and transform
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Figure 2.14 FIR filter configurations
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Figure 2.15 Low-pass filter response
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it back to the frequency domain we get a ringing or rippling effect in the cut-off and passband
frequency known as rippling and only a very gradual transition between passband and stopband
regions, termed the transition region. The ripple is often called Gibbs phenomenum after Willard
Gibbs who identified this effect in 1899.

We can reduce these effects by increasing the number of coefficients or taps to the filter, thereby
allowing a better approximation of the filter, but at increased computation cost and also by using
windowing. Indeed, it could be viewed that we were windowing the original frequency plot with
a rectangular window, but there are other types most notably von Hann, Hamming and Kaiser
windows (Lynn and Fuerst 1994, Williams 1986); these can be used to minimize rippling and tran-
sition in different ways and to different levels. The result of the design process is the determination
of the filter length and coefficient values which best meet the requirements of the filter response.
FIR filter implementations are relatively simple to understand as there is a straightforward rela-
tionship between the time and frequency domain. They have a number of additional advantages,
including:

• linear phase, meaning that they delay the input signal, but do not distort its phase
• inherent stability
• can be implemented using finite arithmetic
• low sensitivity to quantization errors

2.5.2 Correlation

A related function employed in digital communications is called correlation and is given by the
following computation:

y(n) =
∞∑

i=−∞
aix(n + i) (2.13)

Given that the correlation is performed on a finite sequence, xn, n = 0, 1, . . . , N − 1, this expression
is given by

y(n) =
N−1∑
i=0

aix(n + i) (2.14)

which is similar to the FIR filter expression of Equation (2.11) except that the order of the xn data
stream is reversed. The structures created for correlation are similar to those for FIR filters.

2.5.3 Infinite Impulse Response Filter

The main disadvantage of FIR filters is the high number of taps needed to realize some aspects
of the frequency response, namely sharp cut-off, resulting in a high computational cost to achieve
this performance. This can be overcome by using infinite impulse response (IIR) filters which use
previous values of the output as indicated in Equation (2.15). This is best expressed in the transfer
function expression given in Equation (2.16) and is shown in Figure 2.16.

y(n) =
N−1∑
i=0

aix(n − i) +
M−1∑
j=1

bjy(n − j) (2.15)

The design process is different from FIR filters and is usually achieved by exploiting the huge
body of analogue filter designs; by transforming the s-plane representation of the analogue filter
into the z -domain (Grant et al. 1989), a realistic digital filter implementation is achieved. A number
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Figure 2.16 Direct form IIR filter

of design techniques such as the Impulse Invariant method (Williams 1986), the match z -transform
and the Bilinear transform (Grant et al. 1989, Williams 1986). The resulting design gives a transfer
function expression comprised of poles and zeroes as outlined by Equation (2.17). The main concern
is to maintain stability which is achieved by ensuring that the poles are located within the unit
circle. The location of these zeroes and poles have a direct relationship on the filter properties. For
example, a pole on the unit circle with no zero to annihilate it will produce an infinite gain at a
certain frequency (Meyer-Baese 2001).

H(z) =

N−1∑
i=0

aixn−i

1 −
M−1∑
j=1

bj yn−j

(2.16)

H(z) = G
(z − ξ1)(z − ξ2) . . . (z − ξM)

(z − ρ1)(z − ρ2) . . . (z − ρN)
(2.17)

Due to the feedback loops as shown in Figure 2.16, the structures are very sensitive to quanti-
zation errors, a feature which increases as the filter order grows. For this reason, filters are built
from a concatenation of second-order IIR filters defined by Equation (2.18) leading to the structure
of Figure 2.17 where each of block Hz(j), j = 1, 2, . . . , N/2 is a second-order IIR filter.

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + b1y(n − 1) + b2y(n − 2) (2.18)

2.5.4 Wave Digital Filters

In addition to nonrecursive (FIR) and recursive (IIR) filters, a class of filter structures called
wave digital filters (WDFs) are also of considerable interest as they possess a low sensitivity to
coefficient variations. This is important as in IIR filter, this determines the level of accuracy to

x(n)
H1(z) H2(z) HN/2(z)

y(n)

Figure 2.17 Cascade of second-order IIR filter blocks
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which the filter coefficients have to be realized and has a direct correspondence to the dynamic
range needed in the filter structure; adjusting internal wordlength sizes and filter performance is
important from a hardware perspective as this will invariably affect throughput rate. This is largely
because WDFs possess a low sensitivity to attenuation due to their inherent structure, thereby
reducing the loss response due to changes in coefficient representation. This is important for many
DSP applications for a number of reasons: it allows short coefficient representations to be used
which meet the filter specification and which involve only a small hardware cost and; structures
with low coefficient sensitivities also generate small round-off errors, i.e. errors that result as an
effect of limited arithmetic precision within the structure (the issue of truncation and wordlength
errors are discussed later). As with IIR filters, the starting principle is to generate low-sensitivity
digital filters by capturing the low-sensitivity properties of the analogue filter structures.

WDFs represent a class of filters that are modelled on classical analogue filter networks
(Fettweis and Nossek 1982, Fettweis et al. 1986, Wanhammar 1999) which are typically networks
configured in the lattice or ladder structure. For circuits that operate on low frequencies where the
circuit dimensions are small relative to the wavelength, the designer can treat the circuit as an
interconnection of lumped passive or active components with unique voltages and currents defined
at any point in the circuit, on the basis that the phase change between aspects of the circuit will
be negligible. This allows a number of the circuit level design optimization techniques, such as
Kirchoff’s law, to be applied. However, at higher-frequency circuits, these assumptions no longer
apply and the user is faced with solving Maxwell’s equations. To avoid this, the designers can
exploit the fact that the designer is solving the problems only at restricted places, such as the
voltage and current levels at the terminals (Pozar 2005). By exploiting specific types of circuits
such as transmission lines which have common electrical propagation times, circuits can then be
treated as transmission line components treated as a distributed component characterized by its
length, propagation constant and characteristic impedance.

The process of producing a WDF has been comprehensively covered by Fettweis et al. (1986). The
main design technique is to generate filters using transmission line filters and relate these to classical
filter structures with lumped circuit elements, thereby exploiting the well-known properties of these
structures thereby termed a reference filter. The correspondence between the WDF and its reference
filter is achieved by mapping the reference structure using a complex frequency variable, ψ termed the
Richards variable, allowing the reference structure to be mapped effectively into the ψ domain. The
use of reference structures allows all the inherent passivity and lossless features to be transferred into
the digital domain, thereby achieving good filter performance and reducing the coefficient sensitivity to
allow use of lower wordlengths. Work in Fettweis et al. (1986) give the simplest and most appropriate
choice of ψ as the bilinear transform of the z-variable, given in Equation (2.19),

ψ = z − 1

z + 1
= tanh(ρT /2) (2.19)

where ρ is the actual complex frequency. This variable has the property that the real frequencies
ω correspond to real frequencies φ, accordingly to Equation (2.20):

φ = tan(ωT /2), ρ = jα,ψ = jφ (2.20)

This implies that the real frequencies in the reference domain correspond to real frequencies
in the digital domain. Other properties (Fettweis et al. 1986) ensure that the filter is causal. The
basic principle used for WDF filter design is illustrated in Figure 2.18, taken from (Wanhammar
1999). The lumped element filter is shown in Figure 2.18(a) where the various passive components
L2s, 1/C3s and L4s, map to R2ψ , R3/ψ and R4ψ , respectively in the analogous filter given in
Figure 2.18(b). Equation (2.19) is then used to map the equivalent transmission line circuit to give
the ψ domain filter in Figure 2.18(c).
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WDF Building Blocks

As indicated in Figure 2.18(c), the basic WDF configuration is based upon the various one-, two-
and multi-port elements. Figure 2.19 gives the basic description of the two-port element. The
network can be described by incident A1, and reflected B2 waves which are related to the port
currents, I1 and I2, port voltages, V1 and V2 and port resistances, R1 and R2 as given below
(Fettweis et al. 1986):

A1 ∼= V1 + R1I1 (2.21)

B2 ∼= V2 + R2I2 (2.22)

(a) Reference lumped element filter

(b) y domain filter structure

(c) Resulting two port filter

Figure 2.18 Wave digital filter configuration (Wanhammar, 1999)
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Figure 2.19 Basic description of a two-port adaptor

and the transfer function, S21 is given by Equation (2.23),

S21 = KB2/A1 (2.23)

where K is given as:

K =
√

R1/R2 (2.24)

In their seminal paper, Fettweis et al. (1986) show that the loss α can be related to the circuit
parameters, namely the inductances or capacitances, and frequency ω such that the loss is ω = ω0,
indicating that for a well-designed filter, the sensitivity of the attenuation is small through its
passband, thus giving the earlier stated advantages of lower coefficient wordlengths.

The basic building blocks for the reference filters are a number of these common two-port and
three-port elements or adaptors, as can be seen from the simple structure in Figure 2.18(c). A more
fuller definition of these blocks is given in (Fettweis et al. 1986, Wanhammar 1999), but mostly
they comprise multipliers and adders.

2.6 Adaptive Filtering
The material in Sections 2.2–2.5 has described both transforms and filtering algorithms that are
used in a wide range of applications. Typically, these will be applied to provide transformations
either to or from the frequency domain using the FFT or DCT, or to identify some features of a
signal as in the EEG filtering example using filtering algorithms. However, there are a number of
applications where the area of interest will not be known and a different class of filtering algorithms
are required. These are known as adaptive algorithms; they are intriguing as they provide challenges
from a high-speed implementation point-of-view. Indeed, a chapter is dedicated later in the book
to the hardware implementation of an adaptive filter.

2.7 Basics of Adaptive Filtering
The basic function of a filter is to remove unwanted signals from those of interest. Obtaining the
best design usually requires a priori knowledge of certain statistical parameters (such as the mean
and correlation functions) within the useful signal. With this information, an optimal filter can be
designed which minimizes the unwanted signals according to some statistical criterion. One popular
measure involves the minimization of the mean square of the error signal, where the error is the
difference between the desired response and the actual response of the filter. This minimization
leads to a cost function with a uniquely defined optimum design for stationary inputs, known
as a Wiener filter (Widrow and Hoff 1960). However, it is only optimum when the statistical
characteristics of the input data match the a priori information from which the filter is designed,
and is therefore inadequate when the statistics of the incoming signals are unknown or changing, i.e.
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in a nonstationary environment. For this situation, a time-varying filter is needed to allow for these
changes. An appropriate solution is an adaptive filter, which is inherently self-designing through
the use of a recursive algorithm to calculate updates for the filter parameters. These updates are
used to compute the taps of the new filter, the output of which is used with new input data to form
the updates for the next set of parameters. When the input signals are stationary (Haykin 2001),
the algorithm will converge to the optimum solution after a number of iterations, according to the
set criterion. If the signals are non-stationary then the algorithm will attempt to track the statistical
changes in the input signals, the success of which depends on its inherent convergence rate versus
the speed at which statistics of the input signals are changing. Figure 2.20 gives the generalized
structure of an adaptive filter. Here we see an input signal x(n) fed into both the FIR filter and
also the adaptive algorithm. The output from the adaptive FIR filter is yest(n), an estimation of
the desired signal, y(n). The difference between y(n) and yest(n) gives an error signal e(n). The
adaptive algorithm uses this signal and the input signal x(n) to calculate updates for the filter
weights w(n). This generalized adaptive filter structure can be applied to a range of applications,
some of which will be discussed in the next section.

2.7.1 Applications of Adaptive Filters

Adaptive filters, because of their ability to operate satisfactorily in non-stationary environments,
have become an important part of DSP applications where the statistics of the incoming signals are
unknown or changing. Some examples are in channel equalization, echo cancellation or adaptive
beamforming. The basic function comes down to the adaptive filter performing a range of different
tasks, namely, system identification, inverse system identification, noise cancellation and prediction.
For each of these applications, different formats are used of the general filter structure shown in
Figure 2.20. This section will give detail of each of these adaptive filtering set-ups with example
applications.

Adaptive filtering applied to system identification is illustrated in Figure 2.21. Here, the adaptive
filter aims to model the unknown system H , where H has an impulse response given by h(n),
for n = 0, 1, 2, 3, . . . , ∞, and zero for n < 0. The x(n) input to H is also fed into the adaptive
filter. As before, an error signal e(n) is calculated and this signal is used to calculate an update
for the filter weights, w(n), thus calculating a closer estimation to the unknown system, h(n). In
telecommunications, an echo can be present on the line due to a impedance mismatch in hybrid
components on the public switched telephone networks. In this case, the adaptive system is trained
to model the unknown echo path so that in operation, the filter can negate effects of this path, by
synthesizing the resounding signal and then subtracting it from the original received signal.

Figure 2.20 General adaptive filter system
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Figure 2.21 System indentification

Figure 2.22 shows the inverse system identification. Similarly to the example in Figure 2.21, the
adaptive filter is trying to define a model, however, in this case it is trying to model the inverse of
an unknown system H , thereby negating the effects of this unknown system. One such application
is channel equalization (Drewes et al. 1998) where the inter-symbol interference and noise within
a transmission channel are removed by modelling the inverse characteristics of the contamination
within the channel.

Figure 2.23 shows the adaptive filter used for prediction. A perfect example of this application
is in audio compression for speech for telephony. The adaptive differential pulse code modulation
(ADPCM) algorithm tries to predict the next audio sample. Then only the difference between
the prediction and actual value is coded and transmitted. By doing this, the data rate for speech
can be halved to 32 kbps while maintaining ‘toll quality’. The international standard (International
Telecommunications Union) for ADPCM defines the structure as an IIR two-pole, six-zero adaptive
predictor (ITU-T 1990).

The structure of adaptive noise cancellation is given in Figure 2.24. Here the structure is slightly
different. The reference signal in this case is the data s(n) corrupted with a noise signal ν(n). The
input to the adaptive filter is a noise signal ν′(n) that is strongly correlated with the noise ν(n), but
uncorrelated with the desired signal s(n). There are many applications in which this may be used.
It can be applied to echo cancellation for both echoes caused by hybrids in the telephone networks,

Figure 2.22 Inverse system indentification

Figure 2.23 Prediction
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Figure 2.24 Noise cancellation

but also for acoustic echo cancellation in hands-free telephony. Within medical applications, noise
cancellation can be used to remove contaminating signals from electrocardiograms (ECG). A par-
ticular example is the removal of the mother’s heartbeat from the ECG trace of an unborn child
(Baxter et al. 2006).

Adaptive beamforming is another key application and can be used for noise cancellation (Litva
and Lo 1996, Moonen and Proudler 1998, Ward et al. 1986). The function of a typical adaptive
beamformer is to suppress signals from every direction other than the desired ‘look direction’ by
introducing deep nulls in the beam pattern in the direction of the interference. The beamformer
output is a weighted combination of signals received by a set of spatially separated antennae, one
primary antenna and a number of auxiliary antennae. The primary signal constitutes the input from
the main antennae, which has high directivity. The auxiliary signals contain samples of interference
threatening to swamp the desired signal. The filter eliminates this interference by removing any
signals in common with the primary input signal, i.e. those that correlate strongly with the reference
noise. The input data from the auxiliary and primary antennae is fed into the adaptive filter, from
which the weights are calculated. These weights are then applied on the delayed input data to
produce the output beam. This is considered in detail in Chapter 12.

2.7.2 Adaptive Algorithms

The computational ingenuity within adaptive filtering are the algorithms used to calculate the
updated filter weights. Two conflicting algorithms dominate the area, the recursive least-squares
(RLS) algorithm and the least-mean-squares (LMS) algorithm. The RLS algorithm is a powerful
technique derived from the method of least-squares. It offers greater convergence rates than its
rival LMS algorithm, but this gain is at a cost of increased computational complexity, a factor
that has hindered its use in real-time applications. The LMS algorithm offers a very simplistic yet
powerful approach, giving good performance under the right conditions (Haykin 2001). However,
its limitations lie with its sensitivity to the condition number of the input data matrix as well as
slow convergence rates.

Filter coefficients may be in the form of tap weights, reflection coefficients or rotation parameters
depending on the filter structure, i.e. transversal, lattice or systolic array respectively, (Haykin 1986).
However, the LMS and RLS algorithms can be applied to the basic structure of a transversal filter
given in Figure 2.13, consisting of a linear combiner which forms a weighted sum of the system
inputs, x(n), and then subtracts them from the desired signal, y(n), to produce an error signal, e(n),
as given in Equation (2.25). In Figure 2.20, w(n) are the adaptive weight vectors.

e(n) = y(n) −
N−1∑
i=0

Wixn−i (2.25)
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Figure 2.25 Error surface of a two-tap transversal filter (Haykin 2001)

There is no distinct technique to determine the optimum adaptive algorithm for a specific appli-
cation. The choice comes down to a balance in the range of characteristics defining the algorithms,
such as:

• rate of convergence, i.e. the rate at which the adaptive algorithm reaches within a tolerance of
an optimum solution

• steady-state error, i.e. the proximity to an optimum solution
• ability to track statistical variations in the input data
• computational complexity
• ability to operate with ill-conditioned input data
• sensitivity to variations in the wordlengths used in the implementation

2.7.3 LMS Algorithm

The LMS algorithm is a stochastic gradient algorithm, which uses a fixed step-size parameter to
control the updates to the tap weights of a transversal filter, (Widrow and Hoff 1960) as shown in
Figure 2.20. The algorithm aims to minimize the mean-square error, the error being the difference
in y(n) and yest(n). The dependence of the mean-square error on the unknown tap weights may
be viewed as a multidimensional paraboloid referred to as the error surface (depicted in Figure
2.25 for a two-tap example) (Haykin 2001). The surface has a uniquely defined minimum point
defining the tap weights for the optimum Wiener solution, (defined by the Wiener–Hopf equations
detailed in the next subsection). However, in the non-stationary environment this error surface is
continuously changing, thus the LMS algorithm needs to be able to track the bottom of the surface.
The LMS algorithm aims to minimize a cost function, V (w(n)), at each time step n, by a suitable
choice of the weight vector w(n). The strategy is to update the parameter estimate proportional to
the instantaneous gradient value, dV (w(n))/dw(n), so that:

w(n + 1) = w(n) − µ
dV (w(n))

dw(n)
(2.26)

where µ is a small positive step size and the minus sign ensures that the parameter estimates
descend the error surface.
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The cost function, V (w(n)), which minimizes the mean-square error, results in the following
recursive parameter update equation:

w(n + 1) = w(n) − µx(n)(y(n) − yest(n)) (2.27)

The recursive relation for updating the tap weight vector Equation (2.26) may be rewritten as:

w(n + 1) = w(n) − µx(n)(y(n) − xT(n)w(n)) (2.28)

which can be represented as filter output (Equation 2.29), estimation error (Equation 2.30) and tap
weight adaptation (Equation 2.31).

yest(n) = wT(n)x(n) (2.29)

e(n) = y(n) − yest(n) (2.30)

w(n + 1) = w(n) + µx(n)e(n) (2.31)

The LMS algorithm requires only 2N + 1 multiplications and 2N additions per iteration for an
N tap weight vector. Therefore it has a relatively simple structure and the hardware is directly
proportional to the number of weights.

2.7.4 RLS Algorithm

In contrast RLS is a computationally complex algorithm derived from the method of least-squares
(LS) in which the cost function, J (n), aims to minimize the sum of squared errors, as given in
Equation (2.32):

J (n) =
N−1∑
i=0

|e(n − i)|2 (2.32)

Substituting (Equation 2.25) into (Equation 2.32) gives:

J (n) =
N−1∑
i=0

∣∣∣∣∣y(n) −
N−1∑
i=0

wkx(n − i)

∣∣∣∣∣
2

(2.33)

Converting from the discrete time domain to a matrix–vector form simplifies the representation
of the equations. This is achieved by considering the data values from N samples, so that Equation
(2.25) becomes:

e(n) =




e1

e2
...

eN


 =




y1

y2
...

yN


−




xT
1

xT
2
...

xT
N






W1

W2
...

WN


 (2.34)

which may be expressed as:

e(n) = y(n) − X(n)w(n) (2.35)
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The cost function J (n) may then be represented in matrix form as:

J (n) = e(n)Te(n) = (y(n) − X(n)w(n))T(y(n) − X(n)w(n)) (2.36)

This is then multiplied out and simplified to give:

J (n) = yT(n) − 2yT(n)X(n)w(n) + wT(n)XT(n)X(n)w(n) (2.37)

where XT(n) is the transpose of X(n) and yT(n) is the transpose of y(n). To find the optimal
weight vector, this expression is differentiated with respect to w(n) and solved to find the weight
vector that will drive the derivative to zero. This results in a least-squares weight vector estimation,
wLS(n), which is derived from the above expression and can be expressed in matrix format as:

wLS(n) = (XT(n)X(n))−1XTy(n) (2.38)

These are referred to as the Wiener–Hopf normal equations (Equations 2.39–2.41)

wLS(n) = φ(n)−1θ(n) (2.39)

φ(n) = XT(n)X(n) (2.40)

θ(n) = XT(n)y(n) (2.41)

where φ(n) is the correlation matrix of the input data X(n) and θ(n) is the cross-correlation
vector of the input data X(n) with the desired signal vector y(n). By assuming that the number
of observations is larger than the number of weights, a solution can be found since there are more
equations than unknowns.

The LS solution given so far is performed on blocks of sampled data inputs. This solution can
be implemented recursively, using the RLS algorithm, where the LS weights are updated with each
new set of sample inputs. Continuing this adaptation through time would effectively perform the
LS algorithm on an infinitely large window of data and would therefore only be suitable for a
stationary system. A weighting factor may be included within the LS solution for application in
nonstationary environments. This factor assigns greater importance to the more recent input data,
effectively creating a moving window of data on which the LS solution is calculated. The forgetting
factor β is included in the LS cost function (from Equation 2.36) as:

J (n) =
N−1∑
i=0

β(n − i)e2(i) (2.42)

where β(n − i) is defined as 0 < β(n − i) ≤ 1, i = 1, 2 . . . , N . One form of the forgetting factor
is the exponential forgetting factor:

β(n − i) = λn−i (2.43)

where i = 1, 2, . . . , N , and λ is a positive constant with a value close to, but less than 1. Its value
is of particular importance as it determines the length of data window that is used and will effect
the performance of the adaptive filter. The inverse of (1 − λ) gives a measure of the memory of the
algorithm. The general rule is that the longer the memory of the system, the faster the convergence
and the smaller the steady-state error. However, the window length is limited by the rate of change
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in the statistics of the system. Applying the forgetting factor to the Wiener–Hopf normal equations
(Equations 2.39–2.41), the correlation matrix and the cross-correlation matrix become:

φ(n) =
n∑

i=0

λn−1x(i)xT(i) (2.44)

θ(n) =
n∑

i=0

λn−1x(i)y(i) (2.45)

The recursive representations are then expressed as:

φ(n) =
[

n−1∑
i=1

λn−i−1x(i)xT (i)

]
+ x(n)xT(n) (2.46)

or more concisely as:

φ(n) = λφ(n − 1) + x(n)xT(n) (2.47)

Likewise, θ(n) can be expressed as:

θ(n) = λθ(n − 1) + x(n)y(n) (2.48)

Solving the Wiener–Hopf normal equations to find the LS weight vector requires the evaluation
of the inverse of the correlation matrix, as highlighted by the example matrix vector expression
below (Equation 2.49):


 w1

w2

w3


 =




 X11X12X13

X21X22X23

X31X32X33


T  X11X12X13

X21X22X23

X31X32X33


−1




︸ ︷︷ ︸
correlation matrix

•




 X11X12X13

X21X22X23

X31X32X33


T  y11

y12

y13






︸ ︷︷ ︸
cross-correlation matrix

(2.49)

The presence of this matrix inversion creates an implementation hindrance in terms of both
numerical stability and computational complexity. For instance the algorithm would be subject to
numerical problems if the correlation matrix became singular. Also, calculating the inverse for
each iteration requires an order of complexity N3, compared with a complexity of order N for
the LMS algorithm. There are two particular methods to solve the LS solution recursively without
the direct matrix inversion which reduce this complexity to order N2. The first technique, referred
to as the standard RLS algorithm, recursively updates the weights using the matrix inversion
lemma. The alternative and very popular solution performs a set of orthogonal rotations, e.g.
Givens rotations (Givens 1958), on the incoming data, transforming the square data matrix into an
equivalent upper triangular matrix (Gentleman and Kung 1981). The weights can then be calculated
by back-substitution. This method, known as QR decomposition (performed using one of a range
of orthogonal rotation methods such as Householder transformations or Givens rotations), has been
the basis for a family of numerically stable and robust RLS algorithms (Cioffi 1990, Cioffi and
Kailath 1984, Dohler 1991, Hsieh et al. 1993, Liu et al. 1990, 1992, McWhirter 1983, McWhirter
et al. 1995, Rader and Steinhardt 1986, Walke 1997). There are versions of the RLS algorithm
known as Fast RLS algorithms. These manipulate the redundancy within the system to reduce the
complexity to the order of N .
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2.8 Conclusions
The chapter has given a brief grounding in DSP terminology and covered some of the common
DSP algorithms, ranging from transforms such as the DCT, FFT and DWT through to basic filter
structures such as FIR and IIR filters right through to adaptive filters such as LMS and RLS filters.
There are of course, a much wider range of algorithms, but the purpose of the chapter was to cover
the salient points of these algorithms as many are used in practical design examples later in the
book. A more detailed treatment has been given to the RLS filter structure as a chapter is dedicated
to the creation of a complex core later in the book (Chapter 12).
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3
Arithmetic Basics

3.1 Introduction
The choice of arithmetic has always been a key aspect for DSP implementation as it not only affects
algorithmic performance, but also can impact system performance criteria, specifically area, speed
and power consumption. For a DSP implementation on processor platforms, the choice of arithmetic
becomes one of selecting the suitable platform, typically either a floating-point implementation
or a fixed-point realization, with a subsequent choice of suitable wordlength for the fixed-point
wordlength. However, with FPGA platforms, the choice of arithmetic can have a much wider
impact on the performance cost right through the design process; though to be fair, architectural
decisions made by FPGA vendors which can be seen in Chapter 5, tend to dominate arithmetic
choice. Nonetheless, it is therefore worth considering and understanding arithmetic representations,
in a little more detail.

A key requirement of DSP implementations is the availability of suitable processing elements,
specifically adders and multipliers; however, some DSP algorithms, particularly adaptive filters,
also require dedicated hardware for performing division and square root. The realization of these
functions and indeed the choice of number systems, can have a major impact on hardware imple-
mentation quality. For example, it is well known that different DSP application domains, i.e. image
processing, radar and speech, can have different levels of bit toggling not only in terms of the num-
ber of transitions, but also in the toggling of specific bits (Chandrakasan and Brodersen 1996). More
specifically, the signed bit in speech input, can toggle quite often, as data oscillates around zero
whereas in image processing, the input typically is all positive. In addition, different applications
can have different toggling activity in their lower significant bits (Chandrakasan and Brodersen
1996). For this reason, it is important that some basics of computer arithmetic are covered, specif-
ically number representation as well as the implementation choices for some common arithmetic
functions, namely adders and multipliers. However, these are not covered in great detail as the
reality is that in the case of addition and multiplication, dedicated hardware is becoming avail-
able on FPGA and thus for many applications, the lowest area, fastest speed and lowest power
implementations will be based on these hardware elements.

Whilst adders and multipliers are vital for DSP systems, it is important to concentrate on division
and square root operations as these are required in many, more complex DSP functions. These are
covered in some detail here, and a brief comparison of the various methods used to implement
the operations, included. Dynamic range is a key issue in DSP, therefore the data representations,
namely fixed- and floating-point, are important. A basic description along with a review of the
notation is included.

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd



38 FPGA-based Implementation of Signal Processing Systems

The chapter is organized as follows. In Section 3.2, some basics of computer arithmetic are
covered, including the various forms of number representations with mention of more advanced
representations such as signed digit number representations (SDNRs), logarithmic number systems
(LNS), residue number systems (RNS) and the coordinate rotation digital computer (CORDIC).
Fixed- and floating-point representations are covered in Section 3.3. Section 3.4 gives a brief intro-
duction to the implementation of adders and multipliers with some discussion on the implementation
of more complex arithmetic operations that are useful in DSP systems, namely division and square
root. The chapter finishes with a discussion of some key issues including details of fixed- and
floating-point implementations and a highlight on some of the other issues in terms of arithmetic
and its representation.

3.2 Number Systems
From our early years, we have been taught to deal with decimal representations in terms of cal-
culating values, but the evolution of transistor technology inferred the adoption of binary number
systems as a more natural representation for DSP systems. Initially, the section starts with a basic
treatment of conventional number systems, explaining signed magnitude and one’s complement,
but concentrating on two’s complement as it is the most popular representation currently employed.
Alternative number systems are briefly reviewed as indicated in the introduction, as they have been
applied in some FPGA-based DSP systems.

3.2.1 Number Representations

If N is an (n + 1)-bit unsigned number, then the unsigned representation of Equation (3.1) applies:

N =
n∑

i=0

xi2
i (3.1)

where xi is the i th binary bit of N and x0 and xn are least significant bit (lsb) and most significant
bit (msb) respectively.

Signed Magnitude

In signed magnitude systems, the n − 1 lower significant bits represent the magnitude, and the
msb, xn bit, represents the sign. This is best represented pictorially in Figure 3.1(a), which gives
the number wheel representation for a 4-bit word. In the signed magnitude notation, the magnitude
of the word is decided by the three lower significant bits, and the sign determined by the sign
bit, i.e. msb. However, this representation presents a number of problems. First, there are two
representations of 0 which must be resolved by any hardware system, particularly if 0 is used to
trigger any event, e.g. checking equality of numbers. As equality is normally achieved by checking
bit-by-bit, this complicates the hardware. Lastly, operations such as subtraction are more complex,
as there is no way to check the sign of the resulting value, without checking the size of the numbers
and organizing accordingly.

One’s Complement

In one’s complement systems, the inverse of the number is obtained by inverting, i.e. one’s com-
plementing the bits of the original word. The conversion is given in Equation (3.2) for an n-bit
word, and the pictorial representation for a 4-bit binary word given in Figure 3.1(b). The problem
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still exists of two representations of 0 and a correction needs to be carried out when performing
one’s complement subtraction (Omondi 1994).

N = (2n − 1) − N (3.2)

Two’s Complement

In two’s complement systems, the inverse of the number is obtained by inverting the bits of the
original word and adding 1. The conversion is given in Equation (3.3) and the pictorial represen-
tation for a 4-bit binary word given in Figure 3.1(c). Whilst this may seem less intuitively obvious
than the previous two approaches, it has a number of advantages: there is a single representation
for 0, addition and more importantly subtraction, can be performed readily in hardware and, if the
number stays within the range, overflow can be ignored in the computation. For these reasons,
two’s complement has become the dominant number system representation.

N = 2n − N (3.3)

Signed Digit Number Representations

SDNRs were originally developed by Avizienis (1961), as a means to break carry propagation chains
in arithmetic operations. A signed binary number representation (SBNR) was successfully applied
by a number of authors (Andrews 1986, Knowles et al. 1989) in the high-speed design of circuits
for arithmetic processing, digital filtering and Viterbi decoding functionality. By allowing a negative
as well as a positive digit, means that a value can have a number of redundant representations. By
exploiting this, Avizienis (Avizienis 1961) was able to demonstrate a system for performing parallel
addition without the need for carry propagation. Of course, the redundant representation had to be
converted back to binary, but several techniques were developed to achieve this (Sklansky 1960).

SBNR representation necessitated the development of a binary set for the SDNR digit, x where
x ∈ (−1,0,1) or strictly speaking (1,0,1) where 1 represents −1. This is typically encoded by two
bits, namely a sign bit, xs and a magnitude bit, xm bit as shown in Table 3.1. A more interesting
assignment is the (+, −) scheme where a SBNR digit is encoded as (x+, x−) where x = x+ +
(x− − 1). Alternatively this can be thought of as x− = 0 implying −1 and x− = 1 implying 0
and x+ = 0 and x+ = 1 implying 0 and 1, respectively. The key advantage of this approach is
that it provides the ability to construct generalized SBNR adders from conventional adder blocks,
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Table 3.1 SDNR encoding

SDNR digit SDNR representations

Sig-and-mag +/− coding

x xs xm x+ x−
0 0 0 0 1
1 0 1 1 0
1 0 1 0 1
0 or X 1 0 1 0

and it is the key to the creation of high-speed multipliers. Whilst SDNR representations offer
performance advantages from a speed perspective, conversion to and from, binary becomes an
issue and dedicated circuitry is needed (Sklansky 1960); in addition, performing simple operations
such as comparison becomes an issue due to the redundant representation of the internal data.

Other Representations

There are a number of other number representations, including logarithmic number representations
(LNS) (Muller 2005), residue number representations (RNS) (Soderstrand et al. 1986) and the
coordinate rotation digital computer (CORDIC) (Volder 1959, Walther 1971).

In LNS, a number x is represented as a fixed-point value i as given by Equation (3.4).

i = log2 |x| (3.4)

where extra bits are used to represent the sign of x and the special case of x = 0. A major advantage
of the LNS is that multiplication and division in the linear domain is simply replaced by addition
or subtraction in the log domain. However, the operations of addition and subtraction are more
complex. In (Collange et al. 2006), the development of a LNS floating-point library is described
and it is shown how it can be applied to some arithmetic functions and graphics applications.

RNS representations are useful in processing large integer values and therefore have application
in computer arithmetic systems, and also in some DSP applications (see later), where there is a
need to perform large integer computations. In RNS, an integer is converted into a number which
is a N -tuple of smaller integers called moduli, given as (mN , mN−1,. . ., m1). An integer X is
represented in RNS by an N -tuple (xN , xN−1, . . ., x1) with xi is a non-negative integer, satisfying
the following

X = mi · qi + xi (3.5)

where qi is the largest integer such that 0 ≤ xi ≤ (mi − 1) and the value xi is known as the residue
of the X modulo mi . The main advantage of RNS is that additions, subtractions and multiplications
are inherently carry-free due to the translation into the format. Unfortunately, other arithmetic
operations such as division, comparison and sign detection are very slow and this has hindered the
broader application of RNS. For this reason, the work has largely been applied to DSP operations
that involve a lot of multiplications and additions such as FIR filtering and transforms such as the
FFT and DCT (Soderstrand et al. 1986).

The CORDIC algorithm was originally proposed by Volder (1959). The algorithm makes it possi-
ble to perform rotations using only shift and add operations. This makes it attractive for computing
trigonometric operation such as sine and cosine and also for multiplying or dividing numbers,
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although Walther (1971) made it applicable to hyperbolic functions, logarithms, exponentials and
square roots and for the first time, presented a unified algorithm for the three coordinate systems,
namely linear, circular and hyperbolic. In CORDIC implementation, the reduced computational
load in performing rotations (Takagi et al. 1991) means that it has been used for some DSP appli-
cations, particularly those implementing matrix triangularization (Ercegovac and Lang 1990) and
RLS adaptive filtering (Ma et al. 1997) as this latter application requires rotation operations.

These represent dedicated implementations and the restricted application domain of the
approaches where a considerable performance gain can be achieved, has tended to have limited
their use. More importantly, to the authors’ knowledge, the necessary performance gain over
existing approaches has not been demonstrated substantially enough to merit wider adoption.
Given that most FPGA architectures have dedicated hardware based on conventional arithmetic,
this somewhat skews the focus towards conventional two’s complement-based processing. For
this reason, much of the description and the examples in this text, have been restricted to two’s
complement.

3.3 Fixed-point and Floating-point

A widely used format for representing and storing numerical data in the binary number
system, is the fixed-point format. In fixed-point arithmetic, an integer value x represented by the
series of bits xm+n−1, xm+n−2, . . ., x0 is mapped in such a way that xm+n−1, xm+n−2, . . ., xn

represents the integer part of the number and xn−1, xn−2, . . ., x0 represents the fractional part of
the number. This is the interpretation placed on the number system by the user and generally in
DSP systems users represent input data, say x (n), and output data, y(n), as integer values and
coefficient word values as fractional so as to maintain the best dynamic range in the internal
calculations.

The key issue when choosing a fixed-point representation is to best use the dynamic range in
the computation. Scaling can be applied to cover the worst-case scenario, but this will usually
result in poor dynamic range. Adjusting to get the best usage of the dynamic range usually means
that overflow will occur in some cases and additional circuitry has to be implemented to cope
with this condition; this is particualrly problematic in two’s complement as overflow results in
an ‘overflowed’ value of completely different sign to the previous value. This can be avoided by
introducing saturation circuitry to preserve the worst-case negative or positive overflow, but this
has a non-linear impact on performance and needs further investigation.

This issue is usually catered for in the high-level modeling stage using tools such as those from
Matlab r© or Labview. These tools allow the high-level models to be developed in a floating-point
representation and then be translated into a fixed-point realization. At this point, any overflow
problems can be investigated. A solution may have implications for the FPGA implementation
aspects as the timing problems may now exist as a result of the additional circuitry. This may
seem to be more trouble than it is worth, but fixed-point implementations are particularly attractive
for FPGA implementations (and for some DSP microprocessor implementations), as word size
translates directly to silicon area. Moreover, a number of optimizations are available that make
fixed-point extremely attractive; these are explored in later chapters.

3.3.1 Floating-point Representations

Floating-point representations provide a much more extensive means for providing real number
representations and tend to be used extensively in scientific computation applications, but also
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Figure 3.2 Floating-point representations

increasingly, in DSP applications. In floating-point, the aim is to represent the real number using
a sign (S), exponent (Exp) and mantissa (or fraction) as shown in Figure 3.2. The most widely
used form of floating-point is IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). It
specifies four formats:

• single-precision (32-bit)
• double-precision (64-bit)
• single-extended precision
• double-extended precision

The single-precision is a 32-bit representation where one bit is used for the sign (S ), 8 bits for
the exponent (Exp) and 23 bits for the mantissa (M ). This is illustrated in Figure 3.2(a). This allows
representation of the number N where N is created by 2Exp−127 × M as the exponent is represented
as unsigned, giving a single-extended number of approximately ± 1038.53. The double precision is
a simple extension of the concept to 64 bits, allowing a range of ± 10308.25.

The simple example below shows how a real number, −1082.5674 is converted into IEEE 754
floating-point representation.

It can be determined that S = 1 as the number is negative.
The number (1082) is converted to binary by successive division (Omondi 1994), giving

10000111010.
The fractional part (0.65625) is computed in the same way as above, giving 10101.
The parts are combined to give the value 10000111010.10101.
The radix point is moved left, to leave a single 1 on the left, giving 1.000011101010101 × 210.
Filling with 0s to get the 23-bit mantissa gives the value 10000111010101010000000.
The exponent is 10 and with the 32-bit IEEE 754 format bias of 127, giving 137 which is given

as 10001001 in binary.

Putting all this together gives the binary pattern of Figure 3.2(a) for single precision. The same
process is applied to double precision given in Figure 3.2(b), with the main difference being the
offset added to the exponent, and the addition zero padding for the mantissa.
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3.4 Arithmetic Operations
This section looks at the implementation of various arithmetic functions, including addition and
multiplication and also division and square root. As the emphasis is on FPGA implementation which
comprises on-board adders and multipliers, the book concentrates on using these constructions,
particularly fixed-point realizations. A brief description of a floating-point adder is given in the
following section.

3.4.1 Adders and Subtracters

Addition is a key operation in itself, but also forms the basic unit of multiplication which is,
in effect, a series of shifted additions. The basic addition function is given in Table 3.2 and the
resulting implementation in Figure 3.3(a). This form comes directly from solving the 1-bit adder
truth table leading to Equations (3.6) and (3.7) and the logic gate implementation of Figure 3.3(a).

Si = Ai ⊕ Bi ⊕ Ci−1 (3.6)

Ci = Ai · Bi + Ai · Ci−1 + Bi · Ci−1 (3.7)

The truth table can also be interpreted as follows: when Ai = Bi , then Ci = Bi and Si = Ci−1;
when Ai = Bi , then Ci = Ci−1 and Si = Ci−1. This implies a multiplexer for the generation of the
carry and, by cleverly using Ai ⊕ Bi (already generated in order to develop the sum value, Si ), very
little additional cost is required. This is the preferred construction for FPGA vendors as indicated
by the partition of the adder cell in Figure 3.3(b). By providing a dedicated EXOR and MUX logic,
the adder cell can then be built by using the LUT to generate the additional EXOR function.

There has been a considerable detailed investigation of adder structures in the computer arithmetic
field as the saving of a few hundred picoseconds has considerable performance impact. A wide range
of adder structures have been developed including carry-ripple or ripple-carry, carry lookahead,
carry-save, carry skip, conditional sum, to name but a few (Omondi 1994). The ripple-carry or
carry-ripple adder is highlighted in Figure 3.4 which gives a 4-bit adder implementation where
each of the cells are defined logic represented by Equations (3.6) and (3.7).

Table 3.2 Truth table for a 1-bit adder

Inputs Outputs

A B Ci So Co

Co = A or B 0 0 0 0 0
0 0 1 1 0
0 1 0 1 0

Co = Ci 0 1 1 0 1
1 0 0 1 0
1 0 1 0 1

Co = A or B 1 1 0 0 1
1 1 1 1 1
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Figure 3.4 N-bit adder structure

To a large extent, the variety of different adder structures trade off gate complexity with system
regularity, as many of the techniques end up with structures that are much less regular. The aim
of much of the research which took place in the 1970s and 1980s, was to develop higher-speed
structures where transistor switching speed was the dominant feature. However, the analysis in
the introduction to the book, indicates the key importance of interconnect, and somewhat reduces
the impact of using specialist adder structures. Another critical consideration for FPGAs is the
importance of being able to scale adder word sizes with application need, and in doing so, offer a
linear scale in terms of performance reduction.

For this reason, the ripple-carry adder has great appeal in FPGAs and is offered in many of the
FPGA structures as a dedicated resource (see Chapter 5).
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3.4.2 Multipliers

Multiplication can be simply performed through a series of additions. Consider the example below,
which illustrates how the the simple multiplication of 5 by 11 is carried out in binary.

5 = 00101 multiplicand
11 = 01011 multiplier

00101
00101

00000
00101

00000

55 = 000110111

The usual terminology in computer arithmetic is to align the data in a vertical line and shift right
rather than shift left, as shown below. However, rather than perform one single addition at the end
to add up all the multiples, each multiple is added to an ongoing product called a partial product.
This means that every step in the computation equates to the generation of the multiples using an
and function or gate and the use of an adder to compute the partial product.

5 = 00101 multiplicand
11 = 01011 multiplier

00000 initial partial product
00101 add 1st multiple

00101
000101 shift right

00101 add 2nd multiple

001111
0001111 shift right
00000 add 3rd multiple

0001111
00001111 shift right
00101 add 4th multiple

00110111
00001111 shift right
00000 add 5th multiple

55 = 000110111
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The repetitive nature of the computation implies a serial processor unit for each stage, comprising
an array of and gates to create the product terms and an adder to perform the stage-wise addition.
With improvements in silicon technology though, parallel multipliers have now become the norm,
which means that multiple adder circuits can be used. However, if the adder structures of Figure 3.4
were used, this would result in a very slow multiplier circuit. Use of fast adders would improve the
speed, but would result in increased hardware cost. For this reason, the carry-save adder structure
of Figure 3.5 is used to generate these additions as indicated in the carry-save array multiplier
(Figure 3.6). The carry-save adder is as fast as the individual cell namely 3 gate delays, as given
in Figure 3.3. This arrangement allows a final sum and carry to be quickly generated; a fast adder
given as CPA, is then used to produce the final sum.

Even though each addition stage is reduced to two or three gate delays, the speed of the multiplier
is then determined by the number of stages. As the word size m grows, the number of stages is
then given as m − 2. This limitation is overcome in a class of multipliers known as Wallace tree
multipliers, which allows the addition steps to be perform in parallel. An example is shown in
Figure 3.7. As the function of the carry-save adder is to compress three words to two words, this
means that if n is the input wordlength, then after each stage, the n words are represented as 3k+l

An−1Bn−1Cn−1

C’n−1 Sn−1

A1 B1 C1

C’1 S1

A0 B0 C0

C’0 S0

Figure 3.5 Carry-save adder
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3rd multiple
2nd multiple

CSA2
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5th multiple

CPA

Figure 3.6 Carry-save array multiplier
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Figure 3.7 Wallace tree multiplier

where 0 ≤ l ≤ 2. This means that the final sum and carry values are produced after log1.5 n rather
than n-1 stages as with the carry-save array multiplier.

3.4.3 Division

Division may be thought of as the inverse process of multiplication, but it differs in several aspects
that make it a much more complicated function. There are a number of ways of performing division,
including recurrence division and division by functional iteration. Algorithms for division and
square root have been a major research area in the field of computer arithmetic since the 1950s.
The methods can be divided into two main classes, namely digit-by-digit methods and convergence
methods. The digit-by-digit methods, also known as direct methods, are somewhat analogous to
the pen and paper method of computing quotients and square roots. The results are computed on
a digit-by-digit basis, most significant digit (msd) first. The convergence methods, which include
the Newton–Raphson algorithm and the Taylor series expansion, require the repeated updating of
an approximation to the correct result.

Recurrence Division

Digit recurrence algorithms are well-accepted subtractive methods which calculate quotients one
digit per iteration. They are analogous to the pencil and paper method in that they start with
the msbs and work toward the lsbs. The partial remainder is initialized to the dividend, then on
each iteration, a digit of the quotient is selected according to the partial remainder. The quotient
digit is multiplied by the divisor and then subtracted from the partial remainder. If negative, the
restoring version of the recurrence divider restores the partial remainder to the previous value, i.e.
the results of one subtraction (comparison) determine the next division iteration of the algorithm,
which requires the selection of quotient bits from a digit set. Therefore, a choice of quotient bits
needs to be made at each iteration by trial and error. This is not the case with multiplication, as
the partial products may be generated in parallel, and then summed at the end. These factors make
division a more complicated algorithm to implement than multiplication and addition.
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When dividing two n-bit numbers this method may require up to 2n + 1 additions. This can
be reduced by employing the non-restoring recurrence algorithm in which the digits of the partial
remainder are allowed to take negative and positive values; this reduces the number of additions
to n. The most popular recurrence division method is an algorithm known as the SRT division
algorithm which was named after the initials of the three researchers who independently developed
it, Sweeney, Robertson and Tocher (Robertson 1958, Tocher 1958).

The recurrence methods offer simple iterations and smaller designs, however, they also suffer
from high latencies and converge linearly to the quotient. The number of bits retired at each
iteration depends on the radix of the arithmetic being used. Larger radices may reduce the number of
iterations required, but will increase the time for each iteration. This is because the complexity of the
selection of quotient bits grows exponentially as the radix increases, to the point that lookup tables
(LUTs) are often required. Therefore, a trade-off is needed between the radix and the complexity;
as a result the radix is usually limited to 2 or 4.

Division by Functional Iteration

The digit recurrence algorithms mentioned in the previous section, retire a fixed number of bits
at each iteration, using only shift and add operations. Functional iterative algorithms on the other
hand employ multiplication as the fundamental operation and produce at least double the number of
correct bits with each iteration (Flynn 1970, Ito et al. 1995, Obermann and Flynn 1997, Oklobdzija
and Ercegovac 1982). This is an important factor as there may be as many as three multiplications
in each iteration. However, with the advantage of at least quadratic convergence, a 53-bit quotient
can be achieved in 6 iterations, as shown in Figure 3.8.

3.4.4 Square Root

Methods for performing the square root operation are similiar to those for performing division. They
fall broadly into the two categogies, digit recurrence methods and methods based on convergence
techniques. The following sections give a brief overview of each.

1 bit

4

2 bits
4 bits

 8 bits

32 bits

Number of
correct bits:

Iteration:

16 bits

6

64 bits

1 2 3 5

Figure 3.8 Quadratic convergence
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Digit Recurrence Square Root

Digit recurrence methods can either be restoring or non-restoring techniques, both of which operate
msd first. The algorithm is subtractive and after each iteration, the resulting bit is set to 0 if a
negative value is found, and then the original remainder is ‘restored’ as the new remainder. If digit
is positive, a 1 is set and the new remainder is used. The ‘non-restoring’ algorithm allows the
negative value to persist and then performs a compensative addition operation in the next iteration.
The overall process between the square root and division algorithms is very similar and, as such,
there have been a number of implementations of systolic arrays designed to perform both arithmetic
functions (Ercegovac and Lang 1991, Heron and Woods 1999).

The algorithms mentioned have limited performance due to the dependence of the iterations
and the propagated carries along each row. The full values need to be calculated at each stage to
enable a correct comparison and decision to be made. The SRT algorithm is a class of non-restoring
digit-by-digit algorithms in which the digit can assume both positive and negative nonzero values.
It requires the use of a redundant number schemes (Avizienis 1961), thereby allowing digits to
take the values of 0, −1 or 1. The most important feature of the SRT method is that the algorithm
allows each iteration to be performed without full precision comparisons at each iteration, thus
giving higher performance.

Consider a value R for which the algorithm is trying to find the square root, and Si is the partial
square root obtained after i iterations. The scaled remainder at the ith step is:

Zi = 2i (R − S2
i ) (3.8)

where 1/4 ≥ R > 1 and hence 1/2 ≥ S < 1. From this, a recurrence relation based on previous
remainder calculations can be derived as (McQuillan et al. 1993):

Zi = 2Zi−1 − si(2Si−1 + si2
−i ) i = 2, 3, 4 . . . (3.9)

where, si is the root digit for iteration i − 1.
Typically, the initial value for Z0 will be set to R, while the initial estimate of the square root,

S1 is set to 0.5, (due to the initial boundaries placed on R).
Higher-radix square root algorithms exist (Ciminiera and Montuschi 1990, Cortadella and Lang

1994, Lang and Montuschi 1992). However, for most algorithms with a radix greater than 2, there
is a need to provide an initial estimate to the square root from a LUT. This relates to the following
section.

Square Root by Functional Iteration

As with the convergence division in Section 3.4.3, square root calculation can be performed using
functional iteration. They can be additive or multiplicative. If additive, then each iteration is based
on addition and will retire the same number of bits with each iteration. In other words, they converge
linearly to the solution. An example of such an algorithm is CORDIC, one use of which has been
in performing Givens rotations for matrix triangularization (Hamill et al. 2000). Mulitplicative
algorithms offer an interesting alternative as they double the precision of the result with each
iteration, that is, they converge quadratically to the result. However, they have the disdvantage of
the increased computational complexity due to the multiplications within each iterative step.

Similarly to the division methods, the square root can be estimated using Newton–Raphson or
series convergence algorithms. For the Newtown–Raphson method an iterative algoritm can be
found by using:

xi+1 = Xi − f (xi)

f ′(xi)
(3.10)
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and choosing f (x) that has a root at the solution. One possible choice is f (x) = x2 − b which
leads to the following iterative algorithm:

xi+1 = 1/2

(
Xi − b

xi

)
(3.11)

This had the disadvantage of requiring division. An alternative method would be to aim to
drive the algorithm towards calculating the reciprocal of the square root, that is 1/x2. For this,
f (x) = 1/x2 − b is used which leads to the following iterative algorithm:

xi+1 = xi

2

(
3 − bx2

i

)
(3.12)

Once solved, the square root can then be found by multiplying the result by the original value
X, that is, 1/

√
X × X = √

X.
Another method for implementing the square root function is to use series convergence

(Soderquist and Leeser 1995), Goldschmidt’s algorithm) which produces equations similar to those
equations for division (Even et al. 2003).

The aim of this algorithm is to compute successive iterations to drive one value to 1 while
driving the other value to the desired result. To calculate the square root of a value a, for each
iteration:

xi+1 = xi × r2
i (3.13)

yi+1 = yi × ri (3.14)

where we let, x0 = y0 = a. Then by letting:

ri = 3 − yi

2
(3.15)

xi → 1 and consequently yi → √
a. In other words, with each iteration x is driven closer to 1

while, y is driven closer to
√

a.
As with the other convergence examples, the algorithm benefits from using an initial estimate

of 1/
√

a to prescale the initial values of x0 and y0.
In all of the examples given for both the division and square root convergence algorithms, vast

improvements in performance can be obtained by using a LUT to provide an initial estimate to the
desired solution. This is covered in the following section.

Initial Approximation Techniques

The number of iterations for convergence algorithms can be vastly reduced by providing an ini-
tial approximation to the result read from a LUT. For example, the simplest way of forming
the approximation R0 to the reciprocal of the divisor D, is to read an approximation to 1/D

directly out of a LUT. The first m bits of the n-bit input value D are used to address the
table entry of p bits holding an approximation to the reciprocal. The value held by the table
is determined by considering the maximum and minimum errors caused by truncating D from n to
m bits.

The access time to a LUT is relatively small so it provides a quick evaluation of the first number
of bits to a solution. However, as the size of the input value addressing the LUT increases, the size
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Table 3.3 Precision of approximations for example
values of g and m

Address bits Guard bits g Out bits Precision at least

m 0 m m + 0.415bits
m 1 m + 1 m + 0.678bits
m 2 m + 2 m + 0.830bits
m 3 m + 3 m + 0.912bits

of the table grows exponentially. For a table addressed by m bits and outputting p bits the table
size will have 2m entries of width p bits. Therefore, the size of the LUT soon becomes very large
and will have slower access times.

A combination of p and m can be chosen to achieve the required accuracy for the approximation,
with the smallest possible table. By denoting the number of bits that p is larger than m as the number
of guard bits g, the total error Etotal may be expressed as (Sarma and Matula 1993):

Etotal = 2m+1
(

1

2g+1

)
(3.16)

Table 3.3 shows the precision of approximations for example values of g and m. These results
are useful in determining whether adding a few guard bits might provide sufficient additional
accuracy in place of the more costly step in increasing m to m + 1 which more than doubles the
table size.

Another simple approximation technique is known as ROM interpolation. Rather than just trun-
cating the value held in memory after the mth bit, the first unseen bit (m + 1) is set to 1, and all
bits less significant than it, are set to 0 (Fowler and Smith 1989). This has the effect of averaging
the error. The resulting approximate is then rounded back to the lsb of the table entry by adding
a 1 to the bit location just past the output width of the table. The advantage with this technique
is its simplicity. However, it would not be practical for large initial approximations as there is no
attempt to reduce the table size.

There are techniques for table compression, such as bipartite tables, which use two or more
LUTs and then add the output values to determine the approximation. To approximate a reciprocal
function using bipartite tables the input operand is divided into three parts as shown in Figure 3.9.

The (n0 + n1) bits provide the address for the first LUT, giving the coefficient a0 of length p0

bits. The sections d0 and d2, equating to (n0 + n2) bits provide addresses for the second LUT,
giving the second coefficient a1 of length p1 bits. The outputs from the tables are added together
to approximate the reciprocal, R0, using a two-term Taylor series expansion. The objective is to
use the first (n0 + n1) msbs to provide the lookup for the first table which holds coefficients based
on the values given added with the mid-value of the range of values for d2. The calculation of the
second coefficient is based on the value from sections d0 and d2 summed with the mid-value of
the range of values for d1. This technique forms a method of averaging so that the errors caused
by truncation are reduced. The coefficients for the reciprocal approximation take the form:

a0(d0, d1) = f (d0 + d1 + δ2) = 1

d0 + d1 + δ2
(3.17)

a0(d0, d1) = f ′(d0 + d1 + δ2)(d2 = δ2) = δ2 − d2

(d0 + δ1 + δ2)2
(3.18)
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Adder

P0 bits

n0 bits n1 bits n2 bits

P1 bits

n bits

P bits

R0

msb

Figure 3.9 Block diagram for the bipartite approximation method (Schulte et al. 1997)

where, δ1 and δ2 are constants exactly halfway between the minimum and maximum values for d1

and d2 respectively.
The benefit is that the two small LUTs will have less area than the one large LUT for the same

accuracy, even when the size of the addition is considered. Techniques to simplify the bipartite
approximation method also exist. One method, (Sarma and Matula 1995), eliminates the addition
by using each of the two LUTs to store the positive and negative portions of a redundant binary
reciprocal value. These are ‘fused’ with slight recoding to round off a couple of low-order bits to
obtain the required precision of the least significant bit. With little extra logic this recoding can
convert the redundant binary values into Booth encoded operands suitable for input into a Booth
encoded multiplier.

3.5 Fixed-point versus Floating-point
If the natural assumption is that ‘more accurate is always best’, then there appears no choice in
determining the number representation as floating-point will be chosen. However, the area cost
of floating-point, particularly for FPGA implementations, is prohibitive, with area costs for some
DSP applications being quoted as much as 10 times larger than fixed-point (Lightbody et al. 2007).
Take, for example, the floating-point adder given in Figure 3.10 which is derived from Pillai et al.
(2001) and is typical of adder implementations. A first examination shows that there is a number of
adders/subtracters, as well as barrel shifters and other control logic. This additional logic is needed
to perform the various normalization steps for the adder implementation. This is highlighted in
Table 3.4 which shows the various functionality required, namely circuit A, circuit B and circuit
C, i.e. bypass (illustrated in dashed lines in Figure 3.10). The table gives a simplified interpretation
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Table 3.4 Simplified version of exponent criteria
for floating-point adder operation (Pillai et al. 2001)

Exponent criteria Circuitry activated

|e1 − e2| > p C
|e1 − e2| ≤ p and subtraction B
|e1 − e2| ≤ p and addition A

for what circuitry is needed for the various conditions of the exponent values of the two numbers
namely e1 and e2 and the significance width, p. Please note this does not consider special cases
such as 0 ± operand or ∞ ± operand as the idea of the example has just been to give some idea
of complexity and to indicate why the cost of floating-point hardware is much larger than that of
fixed-point.

The area comparison for floating-point is additionally complicated as the relationship between
multiplier and adder area is now changed. In fixed-point, multipliers are generally viewed to be N
times bigger than adders where N is the wordlength. However, in floating-point, the area of floating-
point adders is comparable to that of floating-point multipliers which corrupts the assumption at the
algorithmic stages to reduce number of multiplications in favour of additions. Table 3.5 gives some
figures taken from Lightbody et al. (2007) which gives area and speed figures for floating-point
addition and multiplication implemented in a Xilinx Virtex 4 FPGA technology. Figures are also

Exponent logic

Data selector

Barrel shifter/Complementer

2’s complement adder + rounding

Result selectorExponent
Incr/Decr

Result Integration/Flags

Exponent
Subtracter

Control logic

Data selector/pre-align
0/1 bit right shifter

Adder/rounding logic

1-bit right/left shifter

Results
selector

Leading zero
counting Logic 

Normalization
Left Barrel Shifter

Bypass

Exponents Significand

A CB

Figure 3.10 Triple data path floating-point adder block diagram
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Table 3.5 Area and speed figures for various
floating-point operators implemented using Xilinx Virtex
4 FPGA technology

Function DSP48 LUT Flip-flops Speed (MHz)

Multiplier 4 799 347 141.4
Adder × 620 343 208.2
Reciprocal 4 745 266 116.5

Table 3.6 Typical wordlengths

Application Word sizes (bits)

Control systems 4–10
Speech 8–13
Audio 16–24
Video 8–10

included for a special case of floating-point division, namely a reciprocal function. The values are
based on the variable precision floating-point modules available from North Eastern University.

The decision though, is more complex than just a simple area and speed comparison, and should
be judged on the actual application requirements. For example, many applications vary in terms of
the data word sizes and the resulting accuracy. Applications can require different input wordlengths,
as illustrated in Table (3.6) and can vary in terms of their sensitivity to errors created as result of
limited, internal wordlength. Obviously, smaller input wordlengths will have smaller internal accu-
racy requirements, but the perception of the application will also play a major part in determining
the internal wordlength requirements. The eye is tolerant of wordlength limitations in images, par-
ticularly if they appear as distortion at high frequencies, whereas the ear is particularly intolerant to
distortion and noise at any frequency, but specifically high frequency. Therefore cruder truncation
may be possible with some image processing applications, but less so in audio applications.

Table (3.7) gives some estimation of the dynamic range capabilities of some fixed-point repre-
sentations. It is clear that, depending on the internal computations being performed, many DSP
applications can give acceptable signal-to-noise ratios (SNRs) with limited wordlengths, say,
12–16 bits. Given the performance gain of fixed-point over floating point in FPGAs, this has
meant that fixed-point realizations have dominated, but the choice will also depend on application
input and output wordlengths, required SNR, internal computational complexity and the nature

Table 3.7 Fixed wordlength dynamic range

Wordlength (bits) Wordlength range Dynamic range dB

8 −127 to +127 20 log 28 � 48
16 −32768 to +32767 20 log 216 � 96
24 −8388608 to +8388607 20 log 224 � 154
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of computation being performed, i.e. whether specialist operations such as matrix inversions or
iterative computations, are required.

A considerable body of work has been dedicated to reduce the number precision to best match
the performance requirements. In Constantinides et al. (2004), the author looks to derive accu-
rate bit approximations for internal wordlengths by considering the impact on design quality. A
floating-point design flow is presented in (Fang et al. 2002) which takes an algorithmic input, and
generates floating-point hardware by performing bit width optimization, with a cost function related
to hardware, but also to power consumption. This activity is usually performed manually by the
designer, using suitable fixed-point libraries in tools such as Matlab r© or Labview, as suggested
earlier.

3.6 Conclusions
The chapter has given a brief grounding in computer arithmetic basics and given some idea of
the hardware needed to implement basic computer arithmetic functions and some more complex
functions such as division and square root. In addition, the chapter has highted some critical
aspects of arithmetic representations and the implications that choice of either fixed- or floating-
point arithmetic can have in terms of hardware implementation, particularly given the current
FPGA support for floating-point. It clearly demonstrates that FPGA technology is currently very
appropriate for fixed-point implementation, but much less so for floating-point arithmetic.
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4
Technology Review

4.1 Introduction
The technology used for DSP implementation is very strongly linked with the astonishing develop-
ments in silicon technology. As was highlighted in the introduction to this book, the availability of a
transistor which has continually decreased in cost, has been the major driving force in creating new
markets and has overseen the development of a number of DSP technologies. Silicon technology
has not only offered an increasingly cheaper platform, but has also offered this at higher speeds
and at a lower power cost. This has inspired a number of DSP-based markets, specifically mobile
telephony and digital video products.

As Chapter 2 clearly indicated, there are numerous advantages of systems in the digital domain,
specifically guaranteed accuracy, essentially perfect reproducibility and better ageing; these devel-
opments are seen as key to the continued realization of future systems. The earliest DSP filter
circuits were pioneered by Leland B. Jackson and colleagues at Bell laboratories (Jackson 1970) in
the late 1960s and early 1970s. At that time, the main aim was to create silicon chips for performing
basic filtering functions such as FIR and IIR filtering. A key aspect was the observation that the
binary operation of the transistor, could be well matched, to creating the necessary digital operation
required in DSP systems.

From these early days, a number of technologies have emerged; these range from simple
microcontrollers where the performance requirement, typically sampling rate, are in the moderate
kHz range, right through to dedicated DSP SoCs that give performance nearing the TeraOPS
range. This processor style architecture has been exploited in various forms ranging from single to
multi-core processor implementations, dedicated DSP microprocessors where hardware has been
included to allow specific DSP functionality to be realized efficiently, and also reconfigurable DSP
processor architectures. Another concept is the development of application specific instruction
processors (ASIPs) that have been developed for specific application domains. The authors would
argue that the main criteria in DSP system implementation is in terms of the circuit architecture
employed. Generally speaking, the hardware resources and how they are interconnected have a
major part to play in the performance of the resulting DSP system. FPGAs allow this architecture
to be created to best match the algorithmic requirements, but this comes at increased design cost.
It is interesting to compare the various approaches, and thus the chapter aims to give an overview
of the various technologies, available for implementing DSP systems, using relevant examples
where applicable. In addition, the technologies are also compared and contrasted. As Chapter 5 is
dedicated to the variety of FPGA architectures, the FPGA material is only covered briefly here. The
major themes considered in the description include the level of programmability, the programming

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd



58 FPGA-based Implementation of Signal Processing Systems

environment (including tools, compilers and frameworks), the scope for optimization of
specifically DSP functionality on the required platform, and quality of the resulting designs in
terms of area, speed, throughput, power and even robustness. The chapter is broken down as follows.
Section 4.2 outlines some further thoughts on circuit architecture, giving some insight toward
the performance limitations of the technologies and also, comments on the importance of
programmability. In Section 4.3, the functional requirements of DSP systems are examined,
highlighting issues such as computational complexity, parallelism, data independence and
arithmetic advantages. Section 4.4 outlines the processor classification and is followed by a brief
description of microprocessors in Section 4.5, and DSP processors in Section 4.6. A number of
parallel machines are then described in Section 4.7 which include systolic array architectures,
single instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) along with
some examples. For completeness, the ASIC and FPGA route is briefly reviewed in Section 4.8,
but only briefly as this forms the major focus of the rest of the book. The final section gives
some thoughts of how the various technologies compare and sets the scene for FPGAs in the next
chapter.

4.2 Architecture and Programmability
In many processor-based systems, design simply represents the creation of the necessary high-
level code with some thought given to the underlying technology architecture, in order to optimize
code quality and thus improve performance. Crudely speaking though, performance is sacrificed
to provide this level of programmability. Take, for example, the microprocessor architecture based
on the Von Neumann sequential model. The underlying architecture is fixed and the maximum,
achievable performance will be determined by efficiently scheduling the algorithmic requirements
onto the inherently sequential, processing architecture. If the computation under consideration is
highly parallel in nature (as is usually the case in DSP), then the resulting performance could be
poor. If we were to take the other extreme and develop an SoC-based architecture to best match
the computational complexity of the algorithm by developing the right level of parallelism needed
(if such a concept exists), then the best performance should be achieved in terms of area, speed and
power consumption. This requires the use of a number of design activities to ensure that hardware
implementation metrics best match the performance criteria of the algorithm, strictly application
and indeed, that the resulting design operates correctly.

To more fully understand this concept of generating a circuit architecture, consider ‘state-of-the-
art’ in 1969. Hardware capability in terms of numbers of transistors was limited and thus highly
valuable, so the processing in the filters described in (Jackson 1970), had to be done in a rather
serial fashion. With current FPGAs, the technology provides hundreds of bit parallel multipliers,
so therefore the arithmetic style and resulting performance is therefore quite different, implying
a very different sort of architecture. The aim is thus to make best use of the available hardware
against the performance criteria of the application. Whilst this latter approach of developing the
hardware to match the performance needs is highly attractive, the architecture development presents
a number of problems related to the very process of producing this architecture, namely design
time, verification and test of the architecture in all its various modes, and all the issues associated
with producing a right first time design. Whilst the performance of implementing these algorithms
on a specific hardware platform can be compared in terms of metrics such as throughput rate,
latency, circuit area, energy, power consumption, etc. one major theme that can also be used to
differentiate these technologies is programmability, or strictly speaking, ease of programmability.
As will become clear in the descriptive material in this section, DSP hardware architectures can
range in their level of programmability. A simplest platform with a fixed hardware architecture can
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then be easily programmed using a high-level software language as, given the fixed nature of the
platform, efficient software compilers can be and indeed have been, developed to create the most
efficient realizations. However, as the platform becomes more complex and flexible, the complexity
and efficiency of these tools is compromised, as now special instructions have to be introduced to
meet this functionality. The main aim of the compiler is to take source code that may not have been
written for the specific hardware architecture, and identify how these special functions might be
applied to improve performance. In a crude sense, we suggest that making the circuit architecture
programmable achieves the best efficiency in terms of performance, but presents other issues with
regard to evolution of the architecture either to meet small changes in applications requirements or
relevance to similar applications. This highlights the importance of tools and design environments,
which is described in Chapter 11.

ASIC is at the other end of the spectrum from a programmability point-of-view; here, the
platform will have been largely developed to meet the needs of the system under consideration
or some domain-specific, standardized application. For example, WCDMA-based mobile phones
require specific standardized DSP functionality which can be met by developing a SoC platform
comprising processors and dedicated hardware IP blocks. This is essential to meet the energy
requirements for most mobile phone implementations. However, the silicon fabrication costs have
now pushed ASIC implementation into a specialized domain and typically solutions in this domain,
are either for high volume, or have specific domain requirements, e.g. ultra-low power as in low-
power sensors.

The concept of developing the architecture with some level of hardware programmability and
also software programmability, is met with the FPGA architecture. The FPGA architecture largely
comprises logic elements, LUTs, memory, routing, configurable I/O and some dedicated hardware,
and provides the ideal framework for achieving a high level of performance.

4.3 DSP Functionality Characteristics
Typically, DSP operations are characterized as being: computationally intensive; highly suited to
implementation with parallel processors, exhibiting a high degree of parallelism, data independent
and in some cases, having lower arithmetic requirements than other high-performance applications,
e.g. scientific computing. It is important to understand these issues more fully in order to judge
their impact for mapping DSP algorithms onto hardware platforms such as FPGAs.

Computational Complexity

DSP algorithms can be highly complex. For example, consider the N -tap FIR filter expression
given in the previous chapter as Equation (2.11) and repeated here (Equation 4.1) for convenience.

yn =
N−1∑
i=0

aixn−i (4.1)

In effect, this computation indicates that a0 must be multiplied by xn, followed by the multipli-
cation of a1 by xn−1 to which it must be added, and so on. Given that the tap size is N, this means
that the computation requires N multiplications followed by N − 1 additions in order to compute
yn as shown below

yn = a0xn + a1xn−1 + a2xn−2 + . . . + aN−1xn−N+1 (4.2)
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Given that another computation will start on the arrival of next sample, namely xn+1, this defines
the computations required per cycle, namely 2N operations per sample or two operations per tap.
If a processor implementation is targeted, then this requires, say, a loading of the data every cycle
which would need two or three cycles (to load data and coefficients) and to store the accumulating
sum. This could mean an additional three operations per cycle, resulting in six operations per tap, or
overall, 6N operations per sample. For an audio application with a sampling rate of 44.2 kHz, a 128-
tap filter will require 33.9 megasamples/s (MSPS) which may seem realistic for some technologies,
but when you consider image processing rates of 13.5 MHz, these computational rates quickly
explode, resulting a computation rate of 10 gigasamples/s (GSPS). In addition, this may only be
one function within the system and thus represent only a small proportion of the total processing
required.

For a processor implementation, the designer will determine if the hardware can meet the
throughput requirements by dividing the clock speed of the processor by the number of oper-
ations that need to be performed each cycle, as outlined above. This can give a poor return
in performance, as if N is large, there will be a large disparity between clock and throughput
rates. The clock rate may be fast enough to provide the necessary sampling rate, but it will
present problems in system design, both in delivering a very fast clock rate and controlling the
power consumption, particularly dynamic power consumption, as this is directly dependent on the
clock rate.

Parallelism

The nature of DSP algorithms are such that high level of parallelism are available. For example, the
expression in Equation (4.1) can be implemented in a single processor, or a parallel implementation,
as shown in Figure 4.1, where each element in the figure becomes a hardware element therefore
implying 127 registers for the delay elements, 127 multipliers for computing the products aixn−i

where i = 0, 1, 2, . . . , N − 1 and an 128-input addition which will typically be implemented as an
adder tree. In this way, we have the hardware complexity to compute an iteration of the algorithm
in one sampling period. Obviously, a system with high levels of parallelism and the needed memory
storage capability will accommodate this computation in the time necessary. There are other ways
to derive the required levels of parallelism to achieve the performance which is the focus of later
chapters.

a1

z−1

z−1

aN−1

+

Xxn

yn

X

X

z−1

a0

Figure 4.1 Simple parallel implementation of a FIR filter
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Data Independency

The data independent property is important as it provides a means for ordering the computation.
This can be highly important in reducing the memory and data storage requirements. For example,
consider N iterations of the FIR filter computation of Equation (4.1), below:

yn = a0xn + a1xn−1 + +a2xn−2 + . . . + +aN−1xn−N+1

yn+1 = a0xn+1 + a1xn + +a2xn−1 + . . . + +aN−1xn−N+2

yn+2 = a0xn+2 + a1xn+1 + +a2xn + . . . + +aN−1xn−N+3

... = ...

yn+N−1 = a0xn+N−1 + a1xn+N + +a2xn+N+1 + . . . + +aN−1xn.

It is clear that the xn data is required for all N calculations and there is nothing to stop us
performing the calculation in such a way that N computations are performed at the same time for
yn, yn+1, . . ., yn+N−1, using the xn data and thus removing any requirement to store it. Obviously
the requirement is now to store the intermediate accumulator terms. This obviously presents the
designer with a number of different ways of performing system optimization and in this case,
gives in a variation of schedule in the resulting design. This is just one implication of the data
independence.

Arithmetic Requirements

In many DSP technologies, the wordlength requirements of the input data are such that the use
of internal precision can be considerably reduced. For example, consider the varying wordlengths
for the different applications as illustrated in Table 3.6. Typically, the input wordlength will be
determined by the precision of the A/D device creating the source material, or the amount of
noise in the original source which can have an impact on the total noise in the system. Depending
of the amount and type of computation required, e.g. multiplicative or additive, the internal word
growth can be limited, which may mean that a suitable fixed-point realization is sufficient.

The low arithmetic requirement is vital, particularly for FPGA implementations where as of
yet, no dedicated floating point flexibility is available. This limited wordlength means small mem-
ory requirements, faster implementations as adder and multiplier speeds are governed by input
wordlengths, and smaller area. For this reason, there has been a lot of work involved in determin-
ing maximum wordlengths as discussed in the previous chapter. One of the interesting aspects is
that for many processor implementations, both external and internal wordlengths will have been
predetermined when developing the architecture, but in FPGAs, it may be required to carry out
detailed analysis to determine the wordlength at different parts of the DSP system (Constantinides
et al. 2004).

All of these characteristics of DSP computation are vital in determining an efficient implementa-
tion, and have in some cases, driven technology evolution. For example, one the main differences
between the early DSP processors and microprocessor, was the availability of a dedicated multi-
plier core. This was viable for DSP processors as they were targeted at DSP applications where
multiplication is a core operation but this is not the case for general processing applications, and
so multipliers were not added to microprocessors at that time.

4.4 Processor Classification
The technology for implementing DSP ranges from microcontrollers, right though to single chip
DSP multiprocessors which range from conventional processor architectures with a very long
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Table 4.1 Flynn’s taxonomy of processors

Class Description Examples

Single instruction single
data (SISD)

Single instruction stream operating on
single data stream

Von Neumann processor

Single instruction
multiple data (SIMD)

Several processing elements , operating in
lockstep on individual data streams

VLIW processors

Multiple instruction
single data (MISD)

Few practical examples

Multiple instruction
multiple data (MIMD)

Several processing elements operating
independently on their own data streams Multiprocessor

instruction word (VLIW) extension to allow instruction level parallelism, through to dedicated
architecture defined for specific application domains. Although, there have been other more compre-
hensive classifications after it, Flynn’s classification is the most widely known and used, identifying
the instruction and the data as two orthogonal streams in a computer. The taxonomy is summarized
in Table 4.1.

4.5 Microprocessors
The classical Von Neumann (vN) microprocessor architecture is shown in Figure 4.2. These types
of architecture are classical SISD type architectures, sequentially evaluating a list of instructions
to apply a variety of instructions to specified data in turn. The architecture consists of five types
of unit: a memory containing data and instructions, an instruction fetch and decode (IFD) unit, the
arithmetic logic unit (ALU), and the memory access (MA) unit. These units correspond to the four
different stages of processing, which repeat for every instruction executed on the machine.

1. Instruction fetch
2. Instruction decode
3. Execute
4. Memory access

During the instruction fetch (IF) stage, the IFD unit loads the instruction at the address in the
program counter (PC) into the instruction register (IR). In the second, instruction decode (ID) stage,
this instruction is decoded to produce an opcode for the ALU and the addresses of the two data
operands, which are loaded into the input registers of the ALU. During the execute stage (E), the
ALU performs the operation specified by the opcode on the input operands to produce the result,
which is written back into memory in the memory access (MA) stage. In general, these types
of SISD machine can be subdivided into two categories, depending on their instruction set style.
Complex instruction set computer (CISC) machines have complex instruction formats which can
become highly specific for specific operations. This leads to compact code size, but can complicate
pipelined execution of these instructions. Reduced instruction set computer (RISC) machines, on the
other hand, have regular, simple instruction formats which may be processed in a regular manner,
promoting high throughput via pipelining, but will have increased code size. The vN processor
architecture is designed for general purpose computing, and is limited for embedded applications,
due to its highly sequential nature. This makes this kind of processor architecture suitable, for
general-purpose environments. However, whilst embedded processors must be flexible, they are



Technology Review 63

Program Counter

Instruction Register

Instruction DecodeIn
st

ru
ct

io
n 

Fe
tc

h
an

d 
D

ec
od

e 
U

ni
t

Memory

Instruction
Memory

Data Memory

ALUReg

Reg Reg

Figure 4.2 Von Neumann processor architecture

often tuned to a particular application and require advanced performance requirements, such as low
power consumption or high throughput.

4.5.1 The ARM Microprocessor Architecture Family

The ARM family of embedded microprocessors are a good example of RISC processor architectures,
exhibiting one of the key trademarks of RISC processor architectures, namely that of instruction
execution path pipelining. Table 4.2 outlines the main characteristics of three members of the ARM
processor family.

The increasingly low pipelines in these processor architectures (as identified for the ARM proces-
sors in Table 4.2 and Figure 4.3) are capable of enabling increased throughput of the unit, but only
up to a point. With increased pipeline depth comes increased control complexity, a limiting factor
and one which places a limit on the depth of pipeline which can produce justifiable performance
improvements. After this point, processor architectures must exploit other kinds of parallelism,
for increased real-time performance. Different techniques and exemplar processor architectures to
achieve this are outlined in Section 4.6.

Table 4.2 ARM Microprocessor family overview

Member Pipeline depth Description

ARM7 3 Fetch, Decode, Execute

ARM9 5 Fetch, Decode, ALU, Memory Access, Write Back

ARM11 8 See Figure 4.3
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4.6 DSP Microprocessors (DSPµs)
As was demonstrated in the previous section, the sequential nature of the microprocessor architecture
makes it unsuitable for the efficient implementation of computationally complex DSP systems, either
in that it cannot achieve the required sampling rate, or it meets the requirement, but consumes a lot of
power. For microprocessor implementations, the serial architecture is such that for data processing
applications, a lot of the transistors will not be performing any useful part in the computation being
performed. Thus, the sacrifice of the fixed nature of a general processor means there are a lot of
transistors that are consuming power, but which are not contributing to the performance.

This spurred the motivation to look at other types of processor architectures for performing
DSP. In the 1980s, DSPµs such as the TMS32010 from Texas Instruments Inc. emerged, which
had similar functionality to microprocessors, but differed in that they were based on the Harvard
architecture, with separate program and data memories and separate buses. Crudely speaking, they
were microprocessor architectures which had been optimized for DSP that perform multiply and
accumulation operations, consuming less power. Figure 4.4 shows the difference between the Von
Neumann and Harvard architecture. In the Von Neumann machine, one memory is used for both
code and data, effectively providing a memory bottleneck. In the Harvard architecture, data memory
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(b) Harvard architecture
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Input/
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Figure 4.4 Von Neumann and Harvard architectures
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and program memory are separate, allowing the program to be loaded into the processor indepen-
dently from the data. The Harvard architecture has also some dedicated hardware for performing
specific operations on the data. Initially, this was a dedicated multiplier, but with increasing level
of integration, more complex functions have been added.

Separate data and program memories and dedicated DSP hardware have become the cornerstone
of earlier DSP processors. The Texas Instrument’s TMS32010 DSP (Figure 4.5) which is recognized
as the first DSP architecture, was an early example of the Harvard architecture and highlights these
features. It comprises program and data buses which can be clearly seen and even with this early
device, a dedicated multiply–accumulate functions was included in addition to the normal arithmetic
logic unit (ALU). The earlier TMS32010 16-bit processor had a 200 ns instruction cycle (5 MIPS)
and could perform a multiply–accumulate (MAC) operation in 400 ns.

Since this early devices, a number of modifications have occurred to this original architecture
(Berkeley Design Technology 2000) which are listed below; the TI TMS320C64xx series device is
described on the next section (Dahnoun 2000, Texas Instruments Inc. 1998).

VLIW. Modern processor architectures have witnessed an increase the internal bus wordlengths. This
allows a number of operations performed by each instruction in parallel, using multiple processing
function units. If successful, the processor will be able to use this feature to exploit these multiple
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hardware units; this depends on the computation to be performed and the efficiency of the
compiler in utilizing the underlying architecture. This is complicated by the move toward higher-
level programming languages which requires good optimizing compilers that can efficiently
translate the high-level code and eliminate any redundancies introduced by the programmer.

Increased number of data buses. In devices such the Analog Devices super harvard architec-
ture (SHARC) ADSP-2106x (Analog Devices Inc. 2000), the number of data buses have been
increased. The argument is that many DSP operations involve two operands, thus requiring three
pieces of information (including the instruction) to be fed from memory. By increasing the num-
ber of buses, a speed-up is achieved, but this also increases the number of pins on the device.
However, the SHARC architecture gets around this by using a program cache, thereby allowing
the instruction bus to double as a data bus, when the program is being executed out of the
program cache.

Pipelining. Whilst the introduction of VLIW has allowed parallelism, another way to exploit con-
currency is to introduce pipelining, both within the processing units in the DSP architecture,
and in the execution of the program. The impact of pipelining is to break the processing into
smaller time units, thereby allowing several overlapping computations to take place at once, in
the same hardware. However, this comes at the expense of increased latency. Pipelining can
also be employed within the processor control unit (Figure 4.6) which controls the program
fetch, instruction dispatch and instruction decode operation and is described in detail, in the next
section.

Fixed point operations. Many practical DSP systems only require fixed-point arithmetic and do not
require the full precision arithmetic offered by some DSP processing units. For this reason, fixed-
and floating-point DSP micros have evolved to match application environments. However, even
in fixed-point applications, some operations do not require the full fixed-point range of some
processor, e.g. 32 bits in the TMS320C64xx series processor and therefore inefficiency exists.
For example, for a filter application in image processing applications, the input wordlength may
vary between 8 and 10 bits, and coefficients could take the range 12–16. Thus, the multiplication
stage will not require anything larger than a 16 × 16 multiplier. This is exploited by the DSP
processors by organizing the processing unit such as in the TMS320C64xx, by allowing two
16 × 16 bit multiplications to be take place at the one time, thereby improving throughput. Thus,
the processors are not compromised in terms of the internal wordlength used.

These optimizations have evolved over a number of years, and have led to improved performance.
However, it is important to consider the operation, in order to understand how the architecture
performs in some applications.

4.6.1 DSP Micro-operation

In this section, the TMS320C64xx series architecture (Dahnoun 2000, Texas Instruments Inc. 1998)
has been chosen as it is indicative of typical DSP processors. The simplified model of the CPU of
the processor is given in Figure 4.6. It comprises the program control unit (PCU) which fetches
the instructions, dispatches them to the required processor and then performs the decode for the
instruction. In the TMS320C64xx series device, there are two datapath units. In the case of the TI
device, the function units are grouped into two sets of four (L, M, S and D) where the L unit can
be used for 32/40-bit arithmetic and compare operations, 32-bit logical operations, normalization
and bit count operations and saturated arithmetic for 32/40-bit operations, the M unit can perform
various types of multiply operation, e.g. quad 8 × 8, dual 16 × 16 and single 16 × 32 operations,
the S unit can perform various arithmetic, shift, branch and compare operations and the D unit,
various load and store operations. The reader should note that this is not an exact definition of
the processing units (Texas Instruments Inc. 1998), but gives some idea of the functionality. The
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Figure 4.6 Texas Instruments TMS320C62 and TMS320C67 block diagram(Dahnoun 2000)

processor also contains a register file and multiple paths for communication between each block.
In the case of the TI processor, there are cross-paths to allow linking of one side of the CPU to
the other (Dahnoun 2000, Texas Instruments Inc. 1998).

The key objective is to be able to exploit the processing capability offered by this multiple
hardware which depends both on the computation to be performed and the use of optimizing
compilers that perform a number of simplifications to improve efficiency. These simplifications
include routines to remove all functions that are never called, to simplify functions that return
values that are never used, to reorder function declarations and propagate arguments into function
bodies (Dahnoun 2000). The compiler also performs a number of optimizations to take advantage
of the underlying architecture including software pipelining, loop optimizations, loop unrolling and
other routines to remove global assignments and expressions (Dahnoun 2000).

4.7 Parallel Machines
Whilst the sequential model has served well in the sense that it can implement a wide range of
algorithms, the real gain from DSP implementation comes from parallelism of the hardware. For this
reason there has been a considerable interest in developing hardware involving parallel hardware
evolving from the early days of the transputer (Inmos 1989). However, it is capturing this level of
parallelism that is the key issue. A key architecture which was developed to capture parallelism is
the systolic array (Kung and Leiserson 1979, Kung 1988) which forms the starting point for this
section.

4.7.1 Systolic Arrays

Systolic array architectures were introduced into VLSI design by Kung and Leiserson in 1978
(Kung and Leiserson 1979). In summary, they have the following general features (Kung 1988):

• an array of processors with extensive concurrency
• small number of processor types
• control is simple
• interconnections are local

Their processing power comes from the concurrent use of many simple cells, rather than the
sequential use of a few very powerful cells. They are particularly suitable for parallel algorithms
with simple and regular dataflows, such as matrix-based operations. By employing pipelining, the
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Figure 4.7 Linear systolic array architectures: (a) column; (b) row

operations in the systolic array can be continually filtered through the array, enabling full efficiency
of the processing cells.

The examples in Figure 4.7 show a simple case of a systolic array with a linear structure. Here,
the black circles represent pipeline stages after each processing element (PE). The lines drawn
through these pipeline stages are the scheduling lines depicting which PEs are operating on the
same iteration at the same time; in other words, these calculations are being performed at the same
clock cycle.

Figure 4.8 shows two more examples. Figure 4.8(a) is a rectangular array of cells, each with
local interconnects. This type of array is highly suitable to matrix operations. Figure 4.8(b) gives
an example systolic array with a hexagonal structure. In all cases illustrated, each PE receives data
only from its nearest neighbour and each processor contains a small element of local memory on
which intermediate values are stored. The control of the data through the array is by a synchronous
clock, effectively pumping the data through the array hence giving them the name of ‘systolic’
arrays due to the analogy of a heart pumping blood around the body. Figure 4.9 depicts the systolic
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Figure 4.8 Systolic array architectures: (a) rectangular (b) hexagonal



Technology Review 69

schedule
vector s
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array applied for QR decomposition. The array is built from two types of cells, boundary and
internal, all locally interconnected.

The concept of systolic arrays was employed in many ways. McCanny and McWhirter (1987)
applied it at the bit level whereas the original proposer of the technique, developed the concept into
the iWarp which was an attempt in 1988 by Intel and Carnegie Mellon University to build an entirely
parallel computing node in a single microprocessor, complete with memory and communications
links. The main issue with this type of development was that it was very application specific,
coping with a range of computational complex algorithms; instead, the systolic array design concept
was applied more successfully to develop a wide range of signal processing chips (Woods and
Masud 1998, Woods et al. 2008) and indeed, Chapter 12 demonstrates how the concept has been
successfully applied to the development of an IP core.

4.7.2 SIMD Architectures

The first kinds of parallel computers based on the SIMD architectures included the Illiac IV (Barnes
et al. 1968) and the connection machine-2 or CM-2 (Hillis 1985). The Illiac IV stood for the Illinois
integrator and automatic computer and was a highly parallel machine with 64 processing engines
(PEs), all controlled by one Control Unit (CU). The PEs implemented the same operation simul-
taneous, and each PE had its localized memory. The original CM-2 concept came from MIT, and
involved a hypercube of simple processing engines comprised of simple CPUs with their own mem-
ory. The CM-2 had quite of number of simple PEs (typically 64 000) which processed one bit at a
time, but was later extended to floating point. These early architectures fell into the category of the
general SIMD-type architectures, in that they consisted of one CU, fetching and issuing instructions
to a number of processing elements (PEs) which performed the same operations simultaneously
(Sima et al. 1997). The major properties that differentiate many architectures classified as SIMD
types are PE complexity, degree of PE autonomy, PE connection types and number and connec-
tion topology of the PEs (Sima et al. 1997). Essentially, the SIMD model applies very well to
regular structure of computations which are encountered in a range of signal and image processing
applications. However, the development of traditionally massively parallel SIMD type machines
required custom implementation which were specialized for certain algorithms or applications.
This was expensive and compared poorly against the development of the complex microprocessor
which was now being driven by evolving silicon technology. For this reason, traditional SIMD type
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architectures lost ground to the MIMD-type architectures which could be built from cheap, off-the-
shelf microprocessors.

More recently, SIMD type architectures have become relevant again, although in a much smaller
scale as instruction set extensions to handle multimedia workloads in modern microprocessors.
Examples of such instruction set extensions include Streaming SIMD Extensions (SSE2) provided
by Intel initially for their Pentium 3 microprocessor families (Intel Corp. 2001) and Apple, IBM, and
Motorola’s combined offering for Altivec (Intel Corp. 2001), allowing 128 bits to be processed at a
time translating to 16 (8-bit) or 8 (16-bit) integer operations at a time, or 4 floating operations. These
new instruction sets imply architectural changes to be made to the underlying processor in terms
of processing and register file organization, and also increases in the instruction sets. Additionally,
new single-chip dedicated SIMD architectures have appeared such as Imagine processor (Khailany
et al. 2001) and Clearspeed’s CSX600 (Clearspeed Tech. plc 2006). The efficient and high-level
programming of these platforms is still a hot research issue, but the two processors are described
in a little more detail.

Imagine Processor

The Imagine chip is a parallel architecture which comprises 48 floating-point ALUs and a special
memory hierarchy, optimized for stream-based programs (Kapasi et al. 2002). The Imagine project
effort comprises, not only the architecture development, but a programming environment based on
a ‘streaming programming’ model. The key in developing both the programming environment and
the platform is vital in achieving an efficient implementation platform. The streaming programming
model is ideal for image processing applications which exhibit high levels of data streaming, due
to the need to pass around image data which is typically large. This model allows the software to
exploit the locality and parallelism inherent in many image processing applications, allowing high
performance to be gained from the underlying architecture. An expected processing performance of
18.3 GOPS is quoted for MPEG-2 encoding applications, corresponding to 105 frames per second
on a 720 × 480 pixel, 24-bit colour image whilst dissipating 2.2 W (Khailany et al. 2001).

A block diagram of the Imagine Stream Processor architecture is shown in Figure 4.10. It com-
prises a 128-kbyte stream register file known as a SRF, 48 floating-point arithmetic units organized
into 8 arithmetic clusters which are controlled by a microcontroller, a network interface, a streaming
memory system with 4 SDRAM channels, and a stream controller. A series of stream instructions
have been created: load and store which load (and store) data from (and to) the off-chip SDRAM to
(and from) the SRF, allowing access to external data; send and receive instructions which send and
receive streams of data from the SRF to other Imagine processors or processing elements connected
via the external network; a Cluster op instruction which loads the streams to the processing units
and then stores the streams back to the SRFs and Load microcode instruction which loads streams
consisting of kernel microcode, 576-bit VLIW instructions from the SRF into the microcontroller
instruction store (a total of 2,048 instructions, (Khailany et al. 2001). Imagine supports streams of
32 k words long. The processor is set up by the host processor which sends stream instructions to
the stream controller, which are then decoded and commands then issued to other on-chip modules.

One of the key attractions of Imagine is that the processing kernels can perform compound
operations; these read an element from the input stream in the SRF and then perform multiple
arithmetic operations before appending the results to output streams and transferring them back to
the SRF. This avoids the various series of fetch and execute instructions of sequential processor
and considerably reduces the data transfers as the data can be used multiple times in one process-
ing stage. This aspect was similar to the concepts of systolic arrays (Kung 1988) which reduce
bandwidth communications by reusing the data when available in the processor.

A number of examples have been presented which demonstrate the capability of the processor.
In the case of 7 × 7 convolution, Khailany et al. (2001) show how Imagine can load data from
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Figure 4.10 Imagine stream processor architecture (Khailany et al. 2001)

the external RAM as a row of pixels and then distribute these pixels individually to the each of
the eight processors, along with the previously stored data, namely an accumulating partial product
which is loaded from the SRFs. Each of these operations is then computed until the full operation is
complete. This demonstrates a number of highly important features of Imagine which is central to
achieving a high performance, namely loading of data efficiently, reuse of data within the processing
engine and efficient exploitation of parallelism within the processing engine.

The choice of 8 processors is related to the fact that the core image block size of many applica-
tions is a 8 × 8 image block and provides an efficient match between the processing requirements
and the computation needs. Thus for smaller image processing operations such as the 3 × 3 block
used in various image processing operations such as Sobel and Laplace filters, there will be an
under-utilization of the performance.

A hierarchical approach to bandwidth optimization has been used with the highest bandwidth
capability reserved for the processing engine, namely 544 Gbytes/s which is then reduced to
32 Gbytes/s (SRF bandwidth) and even further to 2.67 Gbytes/s for the off-chip bandwidth to the
SDRAM. Many of the optimizations employed to achieve performance gain in FPGA implementa-
tions, which are developing by creating the detailed circuit architecture, have been employed in the
Imagine processor, but admittedly for a limited range of application. This highlights the on-going
trend, as will be seen in the latest family of FPGA devices, to develop devices that are specific to
a range of applications and ties in with the discussion in the first chapter.

Storm Stream Processor

The concept of the Stream processor has been captured in the Storm Processor by Stream Processors
Inc., (SPI), which is a fabless semiconductor company that has spun off from the Stanford research.
The Storm-1 processor family is argued to deliver considerable improvement over other DSP
technologies as demonstrated by Table 4.3.
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Table 4.3 Storm comparison with other processors(Stream Processors Inc. 2007)

Supplier SPI Xilinx Altera TI
device Storm-1 Virtex

TM
-5 Stratix III TMS320

SP16HP 5VSX35T EP3SL70 C6454

Architecture DSP FPGA FPGA DSP

Clock Frequency 700 MHz 550 MHz 300 MHz 1 GHz

GMACS/chip 112 106 86 8

Design Software Reconfigurable Reconfigurable Software
methodology programmable hardware hardware programmable

The Storm-1 processor comprises a host CPU (System MIPS) for system-level tasks and a DSP
Co-processor Subsystem with a DSP MIPS which runs the main threads that make kernel function
calls to the data parallel unit (DPU). The DPU comprises a data parallel unit with 16 or 8 data-
parallel execution lanes (depending on the device chosen) compared with 8 in the Imagine processor.
There are 5 ALUs in each lane or cluster and an instruction fetch unit and VLIW sequencer which
would seem to capture aspects of the Stream register file. The DPU Dispatcher receives kernel
function calls to manage runtime kernel and stream loads. As in the Imagine processor, one kernel
at a time is executed across the lanes, operating on local stream data stored in the lane register
files. Each lane has a set of VLIW ALUs and distributed operand register files (ORF) allow for
a large working data set and high local bandwidth. The interlane switch is a full crossbar for
high-speed access between lanes which is scheduled at compile time and would seem to represent
an enhancement on the basic bus interconnection from the SRF in the Imagine processor. At the
time or writing, the device is priced at US$149 for a volume of 10 000 units.

As can be seen from the performance figures, the Storm-1 processor considerably outperforms
the TI processor, given that it has been developed with clear exploitation of parallelism in mind
from the start and the notion of a simple programming models to harness this power. However,
the FPGAs have not performed that badly, given the lower processing speed. The table overall
reiterates the importance of being able to harness the circuit architecture development in a way to
capture the performance.

Clearspeed CSX600 Processor

The CSX600 (Clearspeed Tech. plc 2006) is an embedded, low-power, data-parallel co-processor
from Clearspeed. The technology is targeted at fine-grained operations such as matrix and vector
operations, unrolled independent loops and multiple simultaneous data channels; these are opera-
tions where parallel processing will achieve gains and which represent classical SIMD computations.
It would appear that the architecture is now targeted at high-performance computing applications,
providing an acceleration for BLAS (basic linear algebra subprograms) libraries, standardized appli-
cation programming interfaces for subroutines to perform linear algebra operations, e.g. vector and
matrix multiplication, and the Linear Algebra PACKage (LAPACK) which is a software library
for numerical computing. Several examples are quoted for accelerating Matlab simulations and
force field in molecular dynamics (Amber 9 Sander Implicit methods). It is programmed in C, but
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Figure 4.11 Clearspeed CSX ‘poly’ execution unit

various libraries are provided to allow it to allow C++ and Fortran applications, to interact with
the processor.

The CSX600 provides 25 GFLOPS of sustained single or double precision floating-point per-
formance, while dissipating an average of 10 W. The architecture uses 64-bit addressing, thus
supporting access to multi-gigabyte DDR2 SDRAMs via a local ECC protected memory interface,
to provide the necessary memory bandwidth. Central to the CSX600 architecture is a process-
ing engine called a multi-threaded array processor (MTAP), which allows parallel computation to
take place on a core DSP function, and the ClearConnectTM Network on Chip (NoC) technology
addressing the needs of a processing engine, in getting data to and from, the processing engine via
the high bandwidth.

The architecture comprises an MTAP processor core comprising 96 high-performance ‘poly’
PE cores, each with 6 kbytes of dedicated memory, allowing local memory for each of the PEs;
128 kbytes on-chip scratch pad memory; an external 64-bit DDR2 DRAM interface; 64-bit virtual,
48-bit physical addressing and various instruction and data caches all of which are interconnected
via the ClearConnect on-chip network. The poly PE structure is given in Figure 4.11. One part of the
PE performs one-off operations and handles program control such as branch and thread switching
whereas the computational aspects that handle the highly parallel computation, are carried out in
the rest of the core.

4.7.3 MIMD Architectures

MIMD type architectures consist of a collection of processors that are interconnected by various
network topologies, each having its own control units that issue instructions. The major catego-
rization among different MIMD architectures is based on memory organization. A shared memory
model is one in which a number of processors equally share a memory space and communicate by
reading and writing locations in the shared memory. The memory would then have to be equally
accessible by all processors. A distributed memory model is one, in which processors have their
own local memories and message-passing is used for the communication among the processors
(Sima et al. 1997). This avoids any memory contention as each distributed processor will have
main access to the memory, and they are more scalable, as memory access bandwidth is limited by
the interconnection network in shared-memory architectures. Because of the scalability restrictions,
shared memory MIMD architectures have fewer processors than those of the distributed memory
MIMD architectures which can scale up to massively parallel machines.

Computer clusters, where a farm of computers (PCs, workstations or symmetric multiprocessors
(SMPs)) are connected to each other over networks implemented with high-speed interconnect
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Figure 4.12 Tilera TILE architecture (Tilera Corp. 2007)

technologies such as Myrinet (Boden et al. 1995) are considered as distributed memory MIMD
architectures. These architectures provide a lower-cost solution compared with the massively parallel
computers, albeit with a much slower interconnect.

TILE64
TM

Multi-core System

A recent example of a multi-core processor is the TILE64
TM

which comprises 64 identical processor
cores called tiles, interconnected using a propriety on-chip network topology called Mesh

TM
. The

TILE64
TM

architecture is shown in Figure 4.12. Each tile is a complete full-featured processor which
includes integrated level 1 (L1) and level 2 (L2) cache, and a nonblocking switch that connects
the tile into the mesh. The localization of the memory, means that each tile can run its own OS
separately, or multiple tiles taken together, can run a multi-processing operating system like SMP
Linux (Tilera Corp. 2007).

4.8 Dedicated ASIC and FPGA Solutions
Up to now, the DSP technology offerings have been in the form of some type of pre-defined
architectural offering. The major attraction of dedicated ASIC offerings (which largely apply to
FPGA realizations) is that the architecture can be developed to specifically match the algorithmic
requirements, allowing the level of parallelism to be created to ultimately match the performance
requirements. Take for example, the 128-tap FIR filter example quoted earlier. With FPGA and
ASIC implementations, it is possible to dedicate a multiplier and adder to each multiplication and
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addition respectively, thereby creating a fully parallel implementation. Moreover, this can then be
pipelined in order to speed up the computation and indeed, duplicated N times to give a N -fold
speed improvement. The concept of how the designer can create the hardware necessary to give
the required performance is covered in detail in Chapter 8.

When considering the programmability argument, these types of ASIC solutions will not have
been developed to include additional hardware to provide programmability as performance (speed,
area and power) has probably been the dominant aspect, to justify using the technology in the first
place. Moreover, additional levels of programmability cause an increase in test and verification
times. Non-recurrent engineering (NRE) costs are such that the cost to produce a number of pro-
totypes is now typically in excess of 1B$. Thus the argument for using dedicated ASIC hardware
has therefore got to be compelling.

However, by their very nature, FPGA solutions avoid these high NRE costs by giving the user
a part that can be programmed. Whilst the area, speed and particularly power performance is not
as compelling, the notion that the part can be programmed or configured, avoids the NRE cost
problems, but also considerably the design risk as the part can be reconfigured if mistakes have
been made in the design process.

Crudely speaking, FPGAs can be viewed as comprising:

• programmable logic units that can be programmed to realize different digital functions
• programmable interconnect to allow different blocks to be connected together
• programmable I/O pins.

This presents a huge level of programmability allowing functions that are implemented on the
FPGA to be changed, or existing functions on the FPGA to be interconnected in a different way
or indeed, circuits on different FPGAs to be interconnected in different ways. In the earlier days,
the ability to change the interconnection was the main attraction, but as FPGAs have grown in
complexity, this has been supplemented by changing actual functionality. Given that the aim is
to create highly efficient designs, the main aim is to utilize the huge processing resource in the
most efficient manner, allowing the solution to outperform other technology offerings. Like ASIC,
this requires the design of a suitable circuit architecture to best utilize this underlying hardware.
Historically, this has been viewed as a hardware design process which compared with software, is
long and involved. However, the performance advantages that some of the examples given later
in the book will demonstrate are quite large and need to be taken into consideration, which is the
main focus of this book.

4.9 Conclusions
The chapter has highlighted the variety of different technologies used for implementing DSP com-
plex systems. These compare in terms of speed and power consumption and, of course area, although
this is a little difficult to ascertain for processor implementations. The chapter has taken a specific
slant on programmability with regard to these technologies and in particular, has highlighted how
the underlying chip architecture can limit the performance. Indeed, the fact that it is possible to
develop application-specific circuit architectures for ASIC and FPGA technologies is the key fea-
ture in achieving the high performance levels. It could be argued that the fact that FPGAs allow
circuit architectures and are programmable are the dual factors that makes them so attractive for
some system implementation problems.

Whilst the flavour of the chapter has been to present different technologies and in some
cases, compare and contrast them, the reality is that modern DSP systems are now collections
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of these different platforms. Many companies are now offering complex DSP boards comprising
microprocessors, DSPµs and FPGAs, and companies such as IBM are offering embedded FPGA
devices. Given the suitability of different platforms to different computational requirements,
this comes as no surprise. Current DSPµs and, as the next chapter will demonstrate, recent
FPGA offerings, can be viewed as heterogeneous platforms comprising multiple hardware
components.
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5
Current FPGA Technologies

5.1 Introduction
By describing the details of the various technologies in the previous chapter, it becomes clear that
the choice of the specific technology, and the resulting design approach implied by the technology,
indicates the level of performance that will be able to be achieved for the specific DSP system
under consideration. For example, the use of simple DSP microcontrollers implies a DSP system
with relatively low performance requirements, and indicates that the user needs to produce C or
C++ code as a source for its implementation. However, it is possible that the user can employ
Matlab r© or Labview as not only the initial design environment to scope the requirements such as
wordlength or number representation for the system, but also to use the design approach and its
available software routines, to produce the actual DSP source code for the microcontroller. Whilst
it could be argued that the quality of the code produced by such approaches can be inefficient, it is
quite possible that it is sufficient to meet the performance requirements of the applications, whilst
still using a practical, i.e. low-cost, microcontroller, thus, meeting cost requirements as well, by
reducing design time.

This design approach can be applied for the full range of ‘processor’ style platforms, but it may
be required that dedicated handcrafted C code is produced, to achieve the necessary performance.
This is probably particularly relevant in applications where performance requirements are tight (and
cannot be met by the computational complexity of the platform), or the specific structure possesses
dedicated functionality not well supported within the high-level tool environment; this is typically
the case for the newer reconfigurable or dedicated processors, such as the Storm Stream Processor.
In these cases, it is clear that the platform has been chosen as it offers some superior performance
in terms of an area–speed–power metric; the attraction of the platforms could be in the form of
specific features such as multiple MAC units of some commercial DSP platforms or, the dedicated
processing functionality of the specialized DSP platform such as the data parallel unit of the Storm
Stream Processor. In these cases, the user is having to compromise the ease of design, in order to
avail of the specific architectural feature offered by the technology.

This notion is taken to extreme in the SoC concept where the user is now faced with creating the
circuit architecture to best match the performance requirements of the specific system. The user can
now create the system requirements to ultimately match the DSP systems requirements. However,
this ideal notion is tampered with the practical limitations of being able to create this ultimate
architecture, and hence, design approaches which either involve a specific, existing architectural
style, or which utilize a range of existing building blocks, tend to dominate. This suggests an SoC
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implementation style, where a limited range of functionality will be employed to create systems
within a reasonable time.

As Section 4.8 indicated, this is effectively what an FPGA platform offers; FPGAs have emerged
from being a ‘glue logic’ platform, to become a collection of system components with which the
user can create a DSP system. The purpose of this chapter is to give a reasonably detailed description
of the current FPGA technologies, with a focus on how they can be used in creating DSP systems.
The complete detail is given in the various data sheets available from the variety of companies who
sell the technology, such as Xilinx, Altera, Atmel, Lattice and Atmel; however the chapter acts
to stress the important features and highlights aspects that are important for DSP implementation.
Whilst quite a number of different technologies are available from each company, the focus has
been to concentrate of the latest commercial offering such as the Stratix r©III family from Altera and
the Virtex

TM
-5 FPGA family from Xilinx. In addition, technology that is particularly different from

other offerings is also described, such as the ProASICPLUS FPGA technology from Actel which
is based on flash technology and the ispXPLD

TM
5000MX family from Lattice which extends the

CPLD concept (as compared to the LUT-based approach).
The chapter starts with a brief historical perspective of FPGAs in Section 5.2, describing how they

have emerged from being a fine-grained technology to a technology with complex system blocks.
Section 5.3 describes the Altera FPGA family, concentrating specifically on their Stratix r© III FPGA
family, as it represents the most powerful FPGA family that the company offers. The MAX r©7000
FPGA technology is also briefly described as it represents the evolution of the PLD concept which
was architecture on which Altera based their initial programmable hardware offerings. Section 5.4
then goes on to describe the FPGA technology offerings from Xilinx, specifically the Virtex

TM

FPGA family. Once again, we concentrate on the most recent FPGA version of this technology,
namely the Virtex

TM
-5 FPGA family. With both Altera and Xilinx, we have tried to concentrate on

the aspects of the hardware that are very relevant to DSP systems, but also have made an attempt
to highlight other aspects such as high speed I/O, clocking strategy and memory organization, as
these are also very important in determining overall system performance.

There are a number of other technologies offered by Actel, Atmel and Lattice that offer specific
features and are very relevant in certain markets. For example, Lattice offer the ispXPLD

TM
5000MX

family which offers a combination of E2PROM nonvolatile cells to store the device configuration
and SRAM technology to provide the logic implementation; these are described in Section 5.5.
Actel r© offer a number of FPGA technologies based on flash and antifuse technologies. Initially,
Actel were known for, and still offer, an antifuse technology, namely the Antifuse SX FPGA
technology which is described in Section 5.6.1. In Section 5.6.2, the ProASICPLUS flash, FPGA
technology is described. This approach allows the device to store its program and remove the need
for a programming device as in SRAM-based technology. The company’s most recent offering, the
Fusion

TM
technology which represents the first mixed signal FPGA, is also covered. Finally, the

Atmel r© AT40K FPGA technology is described in Section 5.7, as though a little older, it offers a
partially reconfigurable solution. In Section 5.8, some conclusions are given.

5.2 Toward FPGAs
In the 1970s, logic systems were created by building PCB boards comprising of TTL logic chips.
However, one the limitations was that as the functions got larger, the size of the logic increased,
but more importantly, the number of logic levels increased, thereby compromising the speed of the
design. Typically, designers used logic minimization techniques such as those based on Karnaugh
maps or Quine–McCluskey minimization, to create a sum of products expression which could be
created by generating the product terms using AND gates and summing them using an OR gate.
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The concept of creating a structure to achieve implementation of this functionality, was captured
in the programmable array logic (PAL) device, introduced by Monolithic Memories in 1978. The
PAL comprised a programmable AND matrix connected to a fixed OR matrix which allowed sum
of products structures to be implemented directly from the minimized expression. The concept of
an AND and OR matrix became the key feature of a class of devices known as the programmable
logic devices family; a brief classification is given in Table 5.1. As illustrated in Figure 5.1, a read
only memory (ROM) possesses the same structure, only with a fixed AND plane (effectively a
decode) and a programmable OR plane. In one sense, the structure can be viewed as providing the
capability of storing four (in general 2n) of two- (or m-) bit words, as shown in Figure 5.2. The
decoder, which is only required to reduce the number of pins coming into the memory, is used
to decode the address input pins and a storage area or memory array is used to store the data.
As the decoder generates the various address lines using AND gates and the outputs are summed
using OR gates, this provides the AND–OR configuration needed for Boolean implementation. In
general, a 2n by 1-bit ROM could implement any n-input Boolean function; a 4-input ROM or LUT
thus became the core component of the very first FPGA, namely the Xilinx XC2000 FPGA. The
4-input LUT was small enough to achieve efficient utilization of the chip area, but large enough
to implement a reasonable range of functions. If a greater number of inputs was required, this
could be achieved by cascading or parallelizing the LUT inputs. This would result in a slower
implementation, but it would provide a better utilization than with larger LUTs.

Table 5.1 PLD types

AND matrix OR matrix

ROM Fixed Prog
PLA Prog Prog
PAL Prog Fixed

f1 f2

A1 A0

AND Plane

OR
Plane m0

m1

m2

m3

Figure 5.1 ROM detailed structure
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Figure 5.2 ROM block diagram

The PLD structure had a number of advantages. It clearly matched the process of how the sum
of products sum was created by the logic minimization techniques. The function could then be
fitted into one PLD device, or if enough product terms were not available, could be fed back into
a second PLD stage. Another major advantage was that the circuit delay is deterministic either
comprising one level of logic level or two, etc. However, the real advantage came in the form
of the programmability which reduced the risk in hardware PCB development, allowing possible
errors to be fixed by adjusting the logic implementation of the PLD. However, as integration levels
grew, the concept of using the PLD as a building block became an attractive FPGA proposition as
illustrated by the early Altera offerings and indeed, by their current MAX 7000 device family. As
mentioned earlier, Xilinx opted for the ROM or look up table (LUT) approach.

5.2.1 Early FPGA Architectures

The early FPGA offerings comprised a Manhattan style architecture where each individual cell
comprised simple logic structures and cells were linked by programmable connections. Thus the
FPGA could be viewed as comprising the following:

• programmable logic units that can be programmed to realize different digital functions
• programmable interconnect to allow different blocks to be connected together
• programmable I/O pins.

This was ideal for situations where FPGAs were viewed a glue logic as programmability was then
the key to providing redundancy and protection against PCB board manufacture errors, and FPGA
components could be used to provide programmable system interconnectivity; this might even
provide a mechanism to correct faults caused by incorrect system design. However, technology
evolution outlined by Moore’s law, now provided scalability for the FPGA vendor. During the
1980s, this was exploited by FPGA vendors in scaling their technology in terms of number of
programming blocks, numbers of levels of interconnectivity and number of I/Os. However, it was
recognized that this approach had limited scope, as scaling meant that interconnect was becoming a
major issue and technology evolution now raised the interesting possibility that dedicated hardware
cells could be included, such as dedicated multipliers and more recently, processors. In addition,
the system interconnectivity issue would also be alleviated by including dedicated interconnectivity
in the form of SERDES and Rapid I/O.

Technology evolution has had a number of implications for FPGA technology:

Technology debate The considerable debate of which technology was effectively determined by
Moore’s law. In the early days, three different technologies emerged, namely conventional
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SRAM, antifuse and EPROM or E2PROM technologies. In the latter two cases, both technologies
required special steps, either to create the antifuse links or to create the special transistors to
provide the EPROM or E2PROM transistor. Technological advances favoured SRAM technol-
ogy as it only required standard technology; this became particularly important for Altera and
Xilinx, as the fabrication of FPGAs was being outsourced and meant that no specialist tech-
nology interaction with the fabrication companies was needed. Indeed, it is worth noticing that
silicon manufacturers now see FPGA technologies as the most advanced technology to test their
fabrication facilities.

Programmable resource functionality A number of different offerings again exist in terms of the
basic logic block building resource used to construct systems. Companies such as Algotronix,
Crosspoint and Plessey had offered FPGAs which were fine-grained with simple logic gates
or multiplexers, being offered as the logic resources. With interconnect playing an increasing
role in determining system performance, these devices were doomed, as described in Chapter 1.
There also existed a number of options in the coarser-grained technologies, namely the PLD-
type structure or the LUT. The PLD structure was related to logic implementation whereas the
LUT was much more flexible and it was a concept understood by computer programmers and
engineers. Examining the current FPGA offerings, it is clear to see that the LUT-based structure
now dominates with the only recent evolution an increase in the size of the LUT from 4-input
to 5/6-input in the Xilinx Virtex

TM
-5 technology and to 6-input in the Altera Stratix r©III family.

Change of FPGA market With the FPGAs growing in complexity, it now meant that the FPGA had
gone from being primarily a glue logic component, to being a major component in a complex
system with DSP being the target area of this book. However, it should still be observed that the
FPGA is an important part of the telecommunications industry. This means that FPGA vendors
have to compare their technology offerings in terms of new competitors, primarily DSP processor
developers such as TI, Analog Devices and multi-core developers. Some of these technologies
were presented in the previous chapter.

Tool flow Initially, FPGAs were not that complex, so up until the mid 1990s, it was usual that
the designer would perform manual placement of designs. The first major tool development was
automatic place and route tools which still plays a major role in the vendors’ tool flow. However,
increasingly there is a well-recognized need for system-level design tools, to address latest design
challenges. For this reason, FPGA vendors have been increasingly involved in developing system-
level design tools such as the DSP and SOPC builder from Altera, and System Generator for
DSP and AccelDSP

TM
from Xilinx in addition to system-level offerings from tools vendors. This

is an increasing problematic issue as tools tend to lag well behind technology developments and
is a major area of focus in this book.

It has now got to the stage that FPGAs represent system platforms. This is recognized by both
major vendors who now describe their technology in these terms; in Xilinx’s case, they describe
their Virtex

TM
as a platform FPGA and with Altera, they describe their Stratix III as a high end being

able to design entire systems-on-a-chip. Thus we have moved from the era of programmable cells
connected by programmable interconnect as highlighted at the start if this section, to devices that
are complex, programmable SoCs which comprise a number of key components, namely dedicated
DSP processor blocks, soft and hard processor engines.

5.3 Altera FPGA Technologies
Altera is one of the two main FPGA companies and evolved their initial architectures, based
on the PLD structure, described in the previous section. Its current FPGA portfolio is organized
into several different technologies, as outlined in Table 5.2. Altera FPL families are organized
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Table 5.2 Altera’s FPGA family range

Type Family Brief description

CPLDs MAX r©II Technology with numerous interconnected
PLD-based blocks. Family includes MAX r©II,
MAX r©3000A and MAX r©7000

FPGAs Cyclone Cost-optimized, memory-rich FPGA family
FPGAs Stratix r© High-performance, low-power FPGAs
FPGAs Stratix r© GX FPGA with high-speed serial transceivers with a

scalable, high-performance logic array
Structured HardCopy r© Low-cost, high-performance structured ASIC
ASIC with pin-outs, densities, and architecture that

complement Stratix II devices

4-input
LUT Carry

logic

Figure 5.3 Block diagram of Altera LE cell

into: configurable programmable logic devices (CPLDs) comprising the MAX r© and MAX r©II
series families; low-cost FPGA families such as the Cyclone and Cyclone II families; high-density
FPGA families such as the Stratix r©, Stratix r©II, Stratix r©III and Stratix r©GX families and; structured
ASIC solutions HardCopy r© and HardCopy r©II families. The section will concentrate mostly on the
Stratix r©III family, as we are targeting DSP and particularly, high-performance DSP applications;
however the MAX7000 series FPGA is also briefly reviewed as it is an obvious extension of the
PLD concept.

The core block in the Altera FPGAs has been the logic element (LE) which is given in Figure 5.3.
This is very similar to the Xilinx’s logic cell (LE) in their XC4000 and early Virtex

TM
FPGA

families, although Xilinx have migrated recently to a 6-input LUT. The cell was built from the
concept of meeting the criteria for implementing a purely combinational logic function (LUT
table only), delay or shift function (flip-flop only) or sequential logic circuit (combinational logic
feeding into flip-flops). Thus all configurations are provided along with various multiplexing and
interconnection. The notion of choosing a 4-input LUT (rather than larger or smaller LUT) probably
dates back to the work by Rose et al. (1990) which showed that this size of LUT produced the best
area efficiency for a number of different examples. Combinational logic implementations can then
be constructed using series of these 4-input LUTs by using the programmable interconnect to link
these 4-input LUTs together to build larger LUTs. The cell also provides a fast carry logic circuit
for accelerating the implementation of adders using the approach, illustrated in Figure 3.3(b).
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5.3.1 MAX r©7000 FPGA Technology

The basic PLD structure is given in Figure 5.4 where each of the PLD blocks are of the form given
in detail in Figure 5.5. The framework provides a mechanism for connecting PLD blocks together
via the programmable interconnect, in the same way that several PLD chips would have been
connected to provide blocks of complex logic using commercial PLDs, with the added advantage
that the PLD-based FPGA interconnect is programmable, the importance of which has already been
highlighted on a number of occasions.

The MAX r© and MAX r©II series families from Altera (Altera Corp. 2000) are extensions of the
basic concept of PLD technology. The MAX 7000 architecture is given in Figure 5.6 and consists
of logic array blocks (LABs) which comprise 16-macrocell arrays, a programmable interconnect
array (PIA) to allow connection of the blocks to each other and connection of various control inputs
such as clock, reset etc., and I/O control blocks to allow internal interfacing to both the LABs and
PIA. Four dedicated inputs allow high-speed, global control signals such as clock, reset and enable,
to be fed into each macrocell and I/O pin. Each LAB is fed by 36 general logic signals from the
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Figure 5.4 Generalized PLD-based FPGA architecture
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Figure 5.6 Altera MAX 7000E and MAX 7000S device block diagram. Reproduced by permission
of Altera Corp.

PIA, global controls for use with the register part of the functionality and also direct connection to
I/O pins to the registers in order to minimize delays for off-chip and on-chip communication.

The key computational part is the MAX 7000 macrocell given in Figure 5.7, which can be
configured for either sequential or combinatorial logic operation. It consists of a logic array, a
product-term select matrix and a programmable register. The logic array allows five product terms
to be summed and product-term select matrix allows this to be used as the main (primary) output
of the cell per macrocell, thereby providing a combinational output, or as part of a larger logic
function, i.e. a secondary input to the register, allowing sequential logic circuits to be implemented.
The flip-flop can be used as a delay, or part of a larger sequential circuit, and can be controlled in a
number of ways in terms of reset or clock, using the various select functions. The cell also contains
shareable expanders which allow inverted product terms to be fed back into the logic array, and
parallel expanders to allow creation of larger fan-in logic functions by allowing inputs from other
macrocells.

Logic is routed between LABs via the programmable interconnect array (PIA), which is a
programmable path and allows any signal to connect to any destination on the device. The route is
created by programming an E2PROM cell which controls one input of a 2-input AND gate thereby
disabling or enabling the connection. One of the key advantages of the PLD is preserved in the
PLD-based FPGA, namely the routing delays are fixed unlike other FPGA architectures described
later, which are cumulative, variable, and path-dependent and can cause problems when achieving
timing closure (timing closure is the process when all of the individual delays in the design have
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to meet the various timing constraints namely, critical path and edge to edge timing delays). Thus
this makes the timing performance easier to predict. From a DSP perspective, these devices have
limited usage as the main combinational blocks are for conventional logic implementations.

5.3.2 Stratix r© III FPGA Family

A number of variations exist for the Stratix r© III FPGA family. The Stratix III E family would
seem to be targeted toward DSP applications given the memory and multiplier rich for data-centric
applications. The Stratix III E family offers a number of features useful for DSP applications,
including: 48 000–338 000 equivalent LEs, up to 20 Mbits of memory and a number of high-speed
DSP blocks that provide dedicated implementation of multipliers, multiply accumulate blocks and
FIR filter functionality. In addition, the devices also provide adjustable voltage levels, a number of
PLLs and various clocks. The floorplan of the Altera Stratix EP3SE50 is given in Figure 5.8.

Adaptive Logic Modules

In the Stratix III, the LE concept has been extended, leading to what Altera term an adaptive
logic module or ALM, as shown in Figure 5.9. The ALM is based on 8-input LUT which can be
fractured, allowing the original LE configuration of Figure 5.3; however, it also allows a number
of other combinations, including not surprisingly, 7-input and 6-input LUTs, but also combinations
of 5-input and 3-input, and even 5-input and 5-input, 4-input and 5-input, and 6-input and 6-input
LUTs (as long as the total number of individual inputs does not exceed 8!). In addition, there
are two dedicated adders and two registers. The 2:1 register-to-LUT ratio in ALMs ensures that
the FPGA is not register-limited. The two adders can perform a 2-bit addition or a single ternary
addition. The core concept of a LUT–multiplexer–register combination still remains, but just with
a bigger LUT.
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Memory Organization

The Altera Stratix FPGA has a hierarchy of memory called TriMatrix memory, ranging from smaller,
distributed memory blocks right through to larger memory blocks which provide a memory capacity
of 17 Mbits, performing at rates of over 600 MHz. The types of memory are listed in Table 5.3.
Three types are included and listed below:

MLAB blocks or memory LABs which are created from the ALMs and is a new derivative of the
LAB. MLAB is a superset of the LAB and can give 640 bits of simple dual-port SRAM. As each
ALM can be configured as either a 64 × 1 or 32 × 2 block, the MLAB can be configured as a
64 × 10-bit or 32 × 20-bit simple dual-port SRAM block. MLAB and LAB blocks co-exist as
pairs, allowing 50% of the LABs to be traded for MLABs. The MLABs would tend to be used
as localized memory in DSP applications to store temporary and local data, thus giving high
performance as a lot of the memory can be accessed in parallel.
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Table 5.3 Stratix memory types and usage

Memory type Bits/block No. of blocks Suggested usage

MLAB 640 6750 Shift registers, small FIFO buffers, filter
FIFO buffers, filter delay lines

M9K 9,216 1144 General-purpose applications, packet
headers, cell buffers

M144K 147,456 48 Processor code storage, packet or video
frame buffers

M9K blocks which are 9 kB block RAM allow storing of fairly large data. These are located as
shown in Figure 5.8.

M144K blocks are larger, 144 kB of RAM, and from a DSP perspective for example, could be used
in image processing applications to store images.

Each embedded memory block can be independently configured to be a single- or dual-port RAM,
ROM, or shift register

DSP Processing Blocks

A key component of the Altera Stratix III FPGA, is the DSP function block; the largest Stratix
device supports up to 112 such blocks, operating up to 550 MHz, thereby allowing huge performance
capability for many DSP applications. The detailed block diagram for a half-DSP block is shown
in Figure 5.10. The input wordlength to the input register block is 144 bits which is split into 8 of
18-bit words for the multiplier inputs shown as dataa and datab respectively; the output is 72 bits.
The data is registered into and out of the DSP block, thereby avoiding any timing problems in
meeting critical path delays, when the DSP block forms part of a larger system. In addition to these
register inputs, the DSP blocks supports optional pipelining for higher speed, as indicated by the
pipeline register bank in the figure. As will be seen in later chapters, the delays introduced by the
pipeline stages, have to be taken into account in the development of the circuit architecture for the
DSP function under consideration.

The first stage of the block comprises two dual multiplication/accumulation blocks which has
been clearly developed to support specific DSP functions, namely: a 2-tap FIR filter configuration
for each block, with the second stage adder/accumulator after the optional pipeline being used to
sum the two 2-tap filters to give a four tap filter within the block; a part of a FFT bufferfly stage
and; complex operations such as a complex multiplication, where the input stage ideally implements
the complex multiplication of a + jb by c + jd given as (ac − bd) + j (ad + bc). The multipliers
are 18-bit but can also function as two 9-bit multipliers. From the Altera literature (Altera Corp.
2007), it is also indicated that 9-bit, 12-bit, 18-bit and 36-bit word lengths are supported as well
as signed and unsigned.

This multiply accumulate stage is then followed by an optional pipeline register bank and then the
second stage adder/accumulator. Once again, the adder is configured to give maximum advantage
to implement fast DSP systems, by providing a loop back from the output register bank allowing
recurrence functions, commonly found in common in IIR filter implementations, to be computed.
In addition, the DSP block provides the mechanism via the chainout adder, to add in the output
from the DSP block above; this is possible as the DSP blocks are connected in columns as shown
in Figure 5.8. This means it is now possible to implement a 4-tap filter by connecting two DSP
blocks together in this way, and even much larger filters, with accordingly more DSP blocks.
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Figure 5.10 Altera Stratix DSP block diagram (Altera Corp. 2007). Reproduced by permission
of Altera Corp.

Rounding and saturation blocks are included after the second stage adder/accumulator and
chainout adder blocks. The word growth is predictable in the first stage, but given that the output
can be continually fed back via the loop back, it is essential to employ rounding and/or saturation
to avoid overflow; likewise for the chainout adder when very larger filters are being created. The
reasons for this have been highlighted in Chapter 4.

In summary, the DSP block can perform five basic DSP operations, as illustrated in Table 5.4
which is a summary of the information presented in the data sheet. This gives more detail on
the arithmetic (signed/unsigned) and whether rounding can be applied. Two rounding modes are
supported in namely round-to-nearest-integer which is normal rounding in DSP systems and round-
to-nearest-even mode which as the name suggest rounds to nearest even number. Two saturation
modes are supported, namely asymmetric and symmetric saturation. In 2’s complement format,
the maximum negative number that can be represented is −2n−1, i.e. −128 for 8-bit, while the
maximum positive number is 2n−1 − 1, i.e. 127 for 8-bit. This is the range to which any number
will be saturated in the asymmetric case, where the range is −2n + 1 i.e. −127 to 2n−1 − 1, i.e.
127 in the symmetrical case. There are 16 different cases for rounding and saturation in the 44-bit
representation, thereby allowing a trade-off between accuracy and dynamic range, depending on
the application.
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Table 5.4 DSP block operation modes(Altera Corp. 2007)

Mode Multiplier No. of per
width (bits) mults block

Independent multiplier 9 1 8
12 1 6
18 1 4
36 1 2

Double 1 2
Two-multiplier adder 18 2 4
Four-multiplier adder 18 4 2
Multiply–accumulate 18 4 2

Shift 36 1 2

Stratix Clock Networks and PLLs

Whilst it is important to understand the DSP blocks in detail for the FPGA technology under
consideration, it is also important to have some appreciation of the clocking strategies and it can be
critical in obtaining the required performance. The Stratix III devices have a number of dedicated
global clock networks (GCLKs), regional clock networks (RCLKs), and periphery clock networks
(PCLKs). These are organized into a hierarchical clock structure that provides up to 220 unique
clock domains (16 GCLK + 88 RCLK + 116 PCLK). As the clock network can consume a
considerable amount of power, the Quartus r© II software compiler, automatically turns off clock
networks not used in the design. The Stratix has up to 12 PLLs per device and up to 10 outputs
per PLL, each of which can be programmed independently, allowing the creation of a customizable
clock frequency, with no fixed relation to any other input or output clock.

In all, 16 GCLKs are provided which seem to be organized in an H clock tree network such
as that shown in Figure 5.11. This provides an equal delay to each clock signal thereby balancing
the skew. The GCLKs signals can drive functional blocks such as ALMs, DSP blocks, TriMatrix
memory blocks and PLLs. Stratix III device I/O elements (IOEs) and internal logic can also drive
GCLKs, to create internally generated global clocks and other high fan-out control signals such as
globals resets or clock enables. The RCLK networks only pertain to the quadrant they drive into,
and once again, can be used for globals resets or clock enables. Periphery clock (PCLK) networks
are a collection of individual clock networks driven from the periphery of the Stratix III device.

Alternatively, the PLL can be used to synchronize the phase and frequency of an internal or
external clock, fco to an input reference clock, fci. The basic diagram for a PLL of the type used
in the Altera Stratix, is given in Figure 5.12. The voltage-controlled oscillator (VCO) generates a
periodic output signal. If we assume that the oscillator starts at nearly the same frequency as the
reference signal, then if the VCO falls behind that of the reference clock fci, this will be detected
by a phase detector block called a phase-frequency detector (PFD). It will do this by generating
an up (U ) or down (D) signal that effectively determines whether the VCO needs to operate at a
higher or lower frequency. These signals will then cause a circuit called a charge pump to change
the control voltage, so that the VCO either speeds up or slows down. The low-pass filter sometimes
called a loop filter, smooths out the abrupt control inputs from the charge pump, thereby preventing
voltage overshoot and converts these U and D signals to a voltage that is used to bias the VCO
via the bias generator, and thus determine how fast the VCO operates. A divider counter (÷N) in
the feedback loop increases the VCO frequency, given as fco above the input reference frequency,
meaning that the feedback clock to the PFD from the VCO is N times that of the input reference
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clock fci. Thus, the feedback clock applied to one input of the PFD is locked to the clock, fci that
is applied to the other input of the PFD.

In the Altera Stratix FPGA, the VCO output from left/right PLLs in the FPGA die, feeds 7 post-
scale counters, whilst the corresponding VCO output from top/bottom PLLs can feed 10 post-scale
counters. These counters then allow the generation of a number of harmonically related frequencies
to be produced by the PLL.
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Table 5.5 Typical memory interface speeds for Altera Stratix (Altera Corp. 2007)

Memory interface standard I/O standard Max. clock rate

−4 speed grade −2 speed grade

DDR SDRAM SSTL-2 333 400
DDR2 SDRAM SSTL-1.8 267 400
DDR3 SDRAM SSTL-1.5 200 200
RLDRAM II 1.8V HSTL 250 350
QDRII SRAM 1.8V HSTL 250 350
QDRII+ SRAM 1.5V HSTL 250 400

I/O and External Memory Interfaces

The Stratix III FPGA produces a number of standard interfaces to each of the low-voltage CMOS
and TTL standard programmable input and output pins. These pins are contained within a complex
I/O element (IOE), located in I/O blocks around the Stratix device periphery; this contains bidi-
rectional I/O buffers and I/O registers, allowing the pin to be configured for complete embedded
bidirectional single or double data rate (DDR) transfer where both the rising and falling edges of
the clock are used to accelerate data transfer. As indicated on Figure 5.8, there are up to four IOEs
per row I/O block and four IOEs per column I/O block; the row IOEs drive the row, column, or
direct link interconnects and the column IOEs, drive the column interconnects. A number of stan-
dard features are supported, including programmable input and output delay, slew rate, bus-hold
and pull-up resistors, open-drain output as well as a number of on-chip series termination modes.
This I/O configuration allows a 132 full duplex 1.25 Gbps true low-voltage differential signaling
(LVDS) channels (132 Tx + 132 Rx) to be supported on the row I/O banks.

The I/O structure also provides support for high-performance external memory standards; DDR
memory standards are supported such as DDR3, DDR2 and DDR SDRAM, QDRII+ and QDRII
SRAM and RLDRAM II at frequencies of up to 400 MHz. A sample of some of the data rates for
different speed grade technologies is listed in Table 5.5

Gigabit Transceivers

The Stratix r© III device family offers a series of high-speed Gigagbit transceiver blocks, which
allow data to be transferred at high speed, between different system devices in the DSP system,
i.e. from chip to chip. The transceiver uses one pair of differential signals, i.e. a pair of signals
which always carry opposite logical values, to transmit data and another set, to receive the data;
hence the transmit and receive properties lead to the name transceiver. These transceivers operate
at very high data rates, in the case of the Stratix r© III device family at up to 1.25 Gbps and support
a number of communication protocols such as Utopia and Rapid I/O

TM
. These are explained below.

Conventional systems can be constructed by connecting systems devices using a hierarchy of
buses; devices are thus placed at the appropriate level in the hierarchy, according to the performance
level they require, i.e. low-performance devices placed at lower-performance buses, etc. A number
of specific techniques have been introduced to achieve the performance requirements of individual
connections, such as increasing bus frequency or width, splitting the transactions and allowing
out-of-order completion. This required the development of individual system interfaces and com-
plicated the design process. Over the past several years, with the development of the concept of the
shared multi-drop bus that allows the full range of low/high bandwidth, high-speed communications
has grown in interest. The Rapid I/O

TM
standard facilitates the operation of such a platform and
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effectively sits on top of the high speed gigagbit transceiver just described. In operation, a mas-
ter or initiator processor generates a request transaction, which is transmitted to a target over the
high-speed communications framework. The target then generates a response transaction back to the
initiator to complete the operation. The Rapid I/O

TM
transactions are encapsulated in packets, which

include all of the necessary bit fields to ensure reliable delivery to the targeted end point. Rapid
I/O

TM
provides the same programming models, addressing mechanisms and transactions for both

serial and parallel implementations, including basic memory mapped I/O transactions, port-based
message passing and globally shared distributed memory with hardware-based coherency (Bouvier
2007). It can also manage any resulting errors that occur as each packet includes an end-to-end
cyclic redundancy check (CRC). The adoption of Utopia and Rapid I/O

TM
thus reduces the design

complexity by providing a standard interface for communications.

Device Security

Security is a major concern in FPGA technology as most of the major FPGA devices are based on
SRAM technology; like standard memory, the contents can be easily read. Typically the designer
will create a design using the commercial vendors’ proprietary software, resulting in a configuration
data file which programs the SRAM-based device. An EPROM can then be used to store the FPGA
programming information, or more commonly it can be stored in system memory of an available
microprocessor and loaded at power-up. Thus, the configuration information data can be captured,
either from the EPROM or the FPGA SRAM configuration data locations in the FPGA which is a
problem as it represents the designer’s intellectual property.

A feature has thus been included in the Stratix III devices that allows the FPGA configuration
bitstream to be encrypted using the industry standard, AES algorithm. The AES algorithm works
on the principle of a security key stored in the Stratix III device, which is used to encrypt the
configuration file. The design security feature is available when configuring Stratix III devices, using
the fast, passive, parallel (FPP) configuration mode with an external host such as a microprocessor,
or when using fast active serial or passive serial configuration schemes (Altera Corp. 2007). The
design security feature is also available in remote update with fast active serial configuration mode.

5.3.3 Hardcopy r© Structured ASIC Family

These devices are structured ASICs with pin-outs, densities, and architecture that complement
Stratix r© II devices. The main focus of the HardCopy r© device is to strip the reprogrammable FPGA
logic, routing, memory, and FPGA configuration-related logic and replace SRAM configuration
resources by direct metal connections. Thus, it is envisaged that the designer would prototype
the design using the Stratix r© II FPGA family and then implement the volume product using
HardCopy r©.

The memory, clock networks and PLLs are identical in both devices as these are standard
components, but the Stratix r© II adaptive logic modules (ALMs) and dedicated DSP blocks are
replaced by combinations of logic blocks, known as HCells. The Quartus II software used to
implement the design, then uses the library of pre-characterized HCell macros to replace Stratix
II ALM and DSP configurations before the design is transferred to the FPGA. This is achieved
by having eight HCell macros which implement the eight supported modes of operation for the
Stratix II DSP block for various forms of 9, 18 and 36-bit multiplication, multiply–accumulate and
complex multiplication and addition.

The HardCopy r© II memory blocks can also implement various types of memory, with or without
parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers.
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HardCopy II devices support the same memory functions and features as Stratix II FPGAs, specif-
ically the 4 k M4K RAM blocks and the 512-bit M-RAM blocks.

Of course, one the attractions of the structured ASICs compared with conventional SRAM-based
FPGA implementations, is that they do not need to be programmed as the programmability has been
effectively removed. Thus, some features need to be turned off such as the design security feature
needed to encrypt the data stream and the configuration status pins. The HardCopy II structured
ASIC follows the same principle of ASIC power-up except that is has an instant on time delay
of 50 ms. During this time, all registers are reset; having resettable flip-flops is highly attractive
feature as, for cost reasons, not all registers will be made to be resettable in ASIC implementations.

5.4 Xilinx FPGA Technologies
The first FPGA was the Xilinx XC2000 family developed in 1982. The basic concept was to have
programmable cells, connected to programmable fabric which in turn were fed by programmable I/O
as illustrated by Figure 5.13. This differentiated Xilinx FPGAs from the early Altera devices which
were PLD-based; thus the Altera FPGAs did not possess the same high levels of programmable
interconnect. The architecture comprised cells called logic cells or LCs which had functionality very
similar to the Altera LE given earlier in Figure 5.3. The interconnect was programmable and was
based on the 6-transistor SRAM cell given in Figure 5.14. By locating the cell at interconnections, it
could then provide flexible routing by allowing horizontal-to-horizontal, vertical-to-vertical, vertical-
to-horizontal and horizontal-to-vertical routing, to be achieved. The I/O cell had a number of
configurations that allowed pins to be configured as input, output and bidirectional, with a number
of interface modes.

Programmable
I/O

Programmable
Interconnect

Programmable
logic units

Figure 5.13 Early Xilinx FPGA architecture

Figure 5.14 Xilinx FPGA SRAM interconnect
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At this stage, FPGAs were viewed as glue logic devices with Moore’s law providing a continual
expansion in terms of logic density and speed. The device architecture continued largely unchanged
from the XC2000 right up to the XC4000; for example, the same LUT table size was used. The
main evolution was the inclusion of the fast adder where manufacturers observed that, by including
an additional multiplexer in the LE cell, a fast adder implementation could be achieved by mapping
some of the logic into the fast carry adder logic, and some into the LUT. The principle is illustrated
for the Virtex

TM
FPGA device in Figure 5.15. At this stage, the device was still being considered

as glue logic for larger systems, but the addition of the fast adder logic started to open up the
possibility of implementing a limited range of DSP systems, particularly those where multiplicative
properties were required, but which did not require the full range of multiplicands. This formed
the basis for a lot of early FPGA-based DSP implementation techniques which are described in
Chapter 6.

At that time, a lot of FPGA products manufacturers faded away and there began a period defined
as accumulation (see Table 1.1) where FPGAs started to accumulate more complex components,
starting with on-board dedicated multipliers, which appeared in the first Xilinx Virtex

TM
FPGA

family (Figure 5.16), Power-PC blocks and gigabit transceivers with the Xilinx Virtex
TM

-II pro and
Ethernet MAC with the Virtex

TM
-4. As with the Altera technology, it can be seen from Figure 5.16,

that the Xilinx FPGA was now becoming increasingly like a SoC with the main aim of the pro-
grammability to allow the connection together of complex processing blocks with the LCs used to
implement basic logic functionality. The fabric now comprised the standard series of LCs, allowing
functions to be connected as before, but now complex processing blocks such as 18-bit multipliers
and PowerPC processors (Figure 5.17), were becoming commonplace. The concept of platform
FPGA was now being used to describe recent FPGA devices to reflect this trend. The full current
FPGA family available from Xilinx is given in Table 5.6.

5.4.1 Xilinx Virtex
TM

-5 FPGA Technologies

The text concentrates on the latest Virtex
TM

FPGA, namely the Virtex
TM

-5 family on the basis that
it represents a more evolved member of the FPGA family. Description of the CPLD family is not
included on the basis that details are included on the Xilinx web pages. The Virtex

TM
-5 comes in a

variety of flavours, namely the LX which has been optimized for high-performance logic, the LXT
which has been optimized for high-performance logic with low-power serial connectivity, and the
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-II Pro FPGA architecture overview

Table 5.6 Xilinx’s FPGA family range

Type Family Brief description

CPLDs XC9500XL Older CPLD technology
CPLDs CoolRunner High-performance, low-power CPLD
FPGAs Virtex

TM
/ E / EM Main Xilinx high-performance FPGA

technology.
FPGAs Spartan Low-cost, high-volume FPGA

SXT which has been optimized for DSP and memory-intensive applications with low-power serial
connectivity. The Xilinx Virtex

TM
-5 family has a two speed-grade performance gain and is able to

be clocked at 550 MHz. It has a number of on-board IP blocks and a number of DSP48E slices
which give a maximum of 352 GMACS performance. It also provides up to 600 pins, giving an I/O
of 1.25 Gbps LVDS and, if required, RocketIO GTP transceivers which deliver between 100 Mbps
and 3.2 Gbps of serial connectivity. It also includes hardened PCI Express endpoint blocks and
Tri-mode Ethernet MACs.

Virtex
TM

-5 Configurable Logic Block

The logic implementation in the Xilinx device is contained within configurable logic blocks or
CLBs. Each CLB is connected to a switch matrix for access to the general routing matrix as
shown in Figure 5.18 and contains a pair of slices which are organized into columns, each with an
independent carry chain. For each CLB, slices in the bottom of the CLB are labelled as SLICE(0),
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Figure 5.17 PowerPC processor block architecture

Figure 5.18 Arrangement of slices within the CLB

and slices in the top of the CLB, are labelled as SLICE(1) and so on. Every slice contains four
logic-function generators (or LUTs), four storage elements, wide-function multiplexers, and carry
logic and so can be considered to contain four of the logic cell logic as given in Figure 5.19. In
addition to this, some slices, called SLICEM, support two additional functions: storing data using
distributed RAM and shifting data with 32-bit registers.
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The basic logic cell configuration is similar to the Altera LE given of Figure 5.3. It com-
prises a logic resource in this case, a 6-input LUT connected to a single flip-flop, via a number
of multiplexers, together with a circuit for performing fast addition. As with the Altera LE ele-
ment, the basic logic cell has been designed to cope with the implementation of combinational
and sequential logic implementations, along with some simple DSP circuits that use an adder.
The basic combination of LUT plus register has stayed with the Xilinx architecture, and has
now been extended from a 4-input LUT in the Xilinx XC4000 series and Virtex

TM
-5 series

FPGA family to a 6-input LUT; this is a reflection of improving technology as governed by
Moore’s law. It is now argued in Xilinx Inc. (2007a) that a 6-input rather than a 4-input LUT
which went all the way back to the study by Rose et al. (1990), now provides a better return
on silicon area utilization for the critical path needed within the design. The combination of
LUTs, flip-flops (FFs), and special functions such as carry chains and dedicated multiplexers,
together with the ways by which these elements are connected, has been termed ExpressFabric
technology.

The CLB can implement the following: a pure logic function by using the 6-input LUT logic
and using the multiplexers to bypass the register; a single register using the multiplexers to feed
data directly into and out of the register; and sequential logic circuits using the LUTs feeding into
the registers. Scope is also provided to create larger combinational and sequential circuits, using
the multiplexers to create large LUTs and registers. One special feature of the 6-input LUT is that
it has two outputs. This allow the LUT to implement two arbitrarily defined, five-input Boolean
functions, as long as these two functions share common inputs (see Figure 5.20). This is an attempt
to provide better utilization of the LUT resource when the number of inputs is smaller than six. This
concept also allows the logic cell to implement a full adder, as shown in Figure 5.15 whilst at the
same time, using the additional inputs and outputs to realize a 4-input LUT for some other function.
This provides better utilization of the hardware in many DSP applications, where otherwise LUTs
would be wasted to just provide a single gate implementation for a adder.

As with the Altera technology, the register resource is also very flexible, allowing a wide range
of storage possibilities ranging from edge-triggered D-type flip-flops to level-sensitive latches, all
with a variety of synchronous and asynchronous inputs for clocks, clock enables, set/reset. The D
input can be driven directly from a number of sources, including the LUT output, other D-type
flip-flops and external inputs.

One of the advantages of the larger LUT in the Xilinx Virtex
TM

-5 device is that it provides
larger distributed RAM blocks and SRL chains. A sample of the various distributed memory
configurations is given in Table 5.7 which gives the number of LUTs needed to create the various
memory configurations listed. The distributed RAM modules have synchronous write resources, and
can be made to have a synchronous read by using the flip-flop of the same slice. By decreasing the
clock-to-out delay, this will improve the critical path, but adds an additional clock cycle latency.
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Figure 5.20 Arrangement of slices within the CLB

Table 5.7 Number of LUTs for various memory configurations

No. of memory locations

Memory type 32 64 128

Single-port 1 (1-bit) 1 (1-bit) 2 (1-bit)
Dual-port 2 (1-bit) 2 (1-bit) 4 (1-bit)
Quad-port 4 (2-bit) 4 (2-bit)

Simple dual-port 4 (6-bit) 4 (3-bit)

A number of memory configurations have been listed. For the single-port configuration, a
common address port is used for synchronous writes and asynchronous reads. For the dual-port
configuration, the distributed RAM has one port for synchronous writes and asynchronous reads,
which is connected to one function generator and another port for asynchronous reads, which is
connected to a second function generator. In simple dual-port configuration, there is no read from
the write port. In the quad-port configurations, the concept is expanded by creating three ports
for asynchronous reads, and three function generators plus one port for synchronous writes and
asynchronous reads, giving a total of four functional generators.

The consideration of larger memory blocks is considered in the next section, but the combination
of smaller distributed RAM, along with larger RAM blocks, provides the same memory hierarchy
concept that was purported by the Altera FPGA, admittedly in different proportions. The LUT can
also provide a ROM capability, and as Chapter 6 will illustrate, the development of programmable
shift registers. The Virtex

TM
-5 function generators and associated multiplexers some of which were

highlighted in Figure 5.19, can implement one 4:1 multiplexers using one LUT, one 8:1 multiplexers
using two LUTs etc.
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Table 5.8 Virtex
TM

-5 memory types and usage

Memory type Bits/block No. of blocks Suggested usage

Distributed 1024 14720 Shift registers, small FIFO buffers,
RAM/slice filter FIFO buffers, filter delay lines

36 kbit 18000 488 Multi-rate FIFO
Block RAM

Memory Organization

In addition to distributed RAM, the Virtex
TM

-5 device has a large number of 36kB block RAMs,
each of which contain two independently controlled, 18 kB RAMs. The total memory configuration
is given in Table 5.8. The 18 kB RAMs have been implemented in such a way, that the blocks
can be configured to act as one 36 kB block RAM without the use of programmable interconnect.
Block RAMs are placed in columns and can be cascaded to create deeper and wider RAM blocks.
Each 18 kB block RAM, dual-port memory consists of an 18 kB storage area and two completely
independent access ports along with other circuitry to allow the full expected RAM functionality
to be achieved (See Figure 5.21). The full definition in terms of access pins is given below, and
represents a standard RAM configuration.

A clock for each 18 kB block RAM which can be configured to have rising or falling edge. All
input and output ports are referenced to the clock.

An enable signal to control the read, write, and set/reset functionality of the port with an inactive
enable pin, implying that the memory keeps the previous state.

An additional enable signal called the byte-wide write enable signal which controls the writing and
reading of the RAM in conjunction with the enable signal

The register enable pin which controls the optional output register.
The set/reset pin which forces the data output latches to contain a set value.
The address bus which selects the memory cells for read or write; its data bit width is decided by

the size of RAM function chosen.

In latch mode, the read address is registered on the read port, and the stored data is loaded into
the output latches after the RAM access time. When using the output register, the read operation
will take one extra latency cycle. The write operation is also a single clock-edge operation with
the write address being registered on the write port, and the data input is stored in memory. The
additional circuitry highlighted in Figure 5.21, shows how inverted clock can be supported along
with a registered output. The contents of the RAM can be initialized using the INIT parameter and
can be indicated from the HDL source code.

The RAM provides a number of options for RAM configuration, some of which are listed in
Table 5.9; the table shows how bit data width is traded off for memory depth, i.e. number of
memory locations.

Dedicated logic has also been included in the block RAM enables, to allow the creation of
synchronous or asynchronous FIFOs; these are important in some high-level design approaches,
as will be seen later. This dedicated logic avoids use of the slower programmable CLB logic and
routing resource, and generates the necessary hardware for the pointer write and read generation
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Figure 5.21 Block RAM logic diagram(Xilinx Inc. 2007b). Reproduced by permission of Xilinx
Inc.

Table 5.9 Memory sizes for Xilinx Virtex
TM

-5 block
RAM

Data width Memory depth

1 (cascade) 32768 (65 536)
2 16384
4 8192
9 4096
18 2048
36 1024
72 512

along with the setting of the various flags associated with FIFOs. A number of FIFO sizes can be
inferred, including 8KX4, 4KX4, 4KX9, 2KX9, 2KX18, 1KX18, 1KX36, 512X36 and 512X72.

Virtex
TM

-5 DSP Processing Resource

In addition to the scalable adders in the CLBs, the Virtex
TM

-5 also provides a dedicated DSP
processing block called DSP48E. The Virtex

TM
-5 can have up to 640 DSP48E slices which are

located at various positions in the FPGA, and supports many independent functions including
multiply, MAC, multiply add, three-input add, barrel shifting, wide-bus multiplexing, magnitude
comparator, bit-wise logic functions, pattern detect, and wide counter. The architecture also allows
the multiple DSP48E slices to be connected together to form a wider range of DSP functions, such
as DSP filters, correlators and frequency domain functions.

A simplified version of the DSP48E processing block is given in Figure 5.22. The basic archi-
tecture of the DSP48E block is a multiply–accumulate core, which is a very useful engine for
many DSP computations. However, in addition to the basic MAC function, the DSP48E block also
allows a number of other modes of operation, as summarized below:

• 25-bit x 18-bit multiplication which can be pipelined
• 96-bit accumulation or addition or subtracters (across two DSP48E slices)
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Figure 5.22 DSP processing blocks called DSP48E(Xilinx Inc. 2007c). Reproduced by permission
of Xilinx Inc.

• triple and limited quad addition/subtraction
• dedicated bitwise logic operations
• arithmetic support for overflow/underflow

Each DSP48E slice has a 25-bit X18-bit multiplier which is fed from two multiplexers; the
multiplexers accept a 30-bit A input and a 18-bit B input either from the switching matrix or from
the DSP48E directly below. These can be stored in registers (not shown in Figure 5.22) before being
fed to the multiplier. Just before multiplication, the A signal is split and only 25 bits of the signal
are fed to the multiplier. A fast multiplier technique is employed which produces an equivalent
43-bit two’s complement result in the form of two partial products, which are then sign-extended
to 48 bits in the X multiplexer and Y multiplexer respectively before being fed into three input
adder/subtracter for final summation.

As illustrated in Chapter 4, many fast multipliers work on the concept of using fast carry-save
adders to eventually produce a final sum and carry signals, and then using a fast carry ripple to
perform the final addition. This final addition is costly, either in terms of speed or if a speed-up
technique is employed, then area. By postponing the addition to the ALU stage, a two-stage addition
can then be avoided for multiply–accumulation, by performing a three-stage addition to compute
the final multiplication output and an addition for the accumulation input in one stage. Once again,
for flexibility, the adder/subtracter unit has been extended to function as a arithmetic logic unit
(ALU), thereby providing more functionality at little hardware overhead. As the final stage of the
conventional multiplication is being performed in the second-stage adder, a three-input addition is
required with the third input used to complete the MAC operation if required.

The multiplexers allow a number of additional levels of flexibility to be added. For example, the
P input can be used to feed in an input either from another DSP48E block from below using the
PCIN in the Z multiplexer or looped back from the current DSP48E block say, for example,
if a recursion is being performed using the P input to the Z multiplexer. The multiplier can
be bypassed if not required, by using the A:B input which is a concatenation of the two input
signals A and B, 25-bit and 18-bit words respectively; this gives a 43-bit word size which is
the same as the multiplier output. Provision to initialize the inputs to the ALU to all 0s or all 1s,
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is also provided. To increase the flexibility of the unit, the adder can also be split into several
smaller adders, allowing two 24-bit additions or four 12-bit additions to be performed. This is
known as the SIMD mode, as a single operation namely addition, is performed on multiple data,
thus giving the SIMD operation. The DSP48E slice also provides a right-wire-shift by 17, allowing
the partial product from one DSP48E slice to be shifted to the right and added to the next partial
product, computed in an adjacent DSP48E slice. This functionality is useful, when the dedicated
multipliers are used as building blocks, in constructing larger multipliers.

The diagram in Figure 5.22 is only basic, and does not indicate that other signals are also
provided, in addition to the multiply or multiply–accumulate output, P. These include:

The cascadable A data port called ACOUT, which allows the A internal value to be fed directly
to the output. Given that the A signal has been internally delayed, this would provide the delay
chain for DSP functions e.g. a FIR filter.

Cascadable carryout (CARRYCASCOUT ) and sign (MULTSIGNOUT ) signals which are internal
signals used to indicate the carryout and sign, when supporting 96-bit addition/subtraction across
two DSP48E slices.

Up to four carry out signals (CARRYOUT ) to support the SIMD mode of addition where up to four
separate adders will need to generate carry out signals.

A pattern detector provides support for a number of numerical convergent rounding, over-
flow/underflow, block floating-point, and support for accumulator terminal count (counter auto
reset) with pattern detector outputs (PATTERNDETECT and PATTERNBDETECT ), to indicate
if a pattern has been met and separate signals for overflow (OVERFLOW ) and underflow
(UNDERFLOW ).

From a functional perspective, the synthesis tools will largely hide the detail of how the design
functionality is mapped to the FPGA hardware, but it is important to understand that the level of
functionality that is available as it determines the design approach the user will adopt. A number
of detailed examples are listed in the relevant user guide (Xilinx Inc. 2007c), indicating how
performance can be achieved.

Clock Networks and PLLs

The Xilinx Virtex
TM

-5 FPGA family can provide a clock frequency of 550 MHz. The clock domains
in the Virtex

TM
-5 FPGA are organized into six clock management tiles or CMTs, each of which

contain two digital clock managers (DCMs) and one PLL. In total, the FPGA has eighteen total
clock generators.

A key feature of the Xilinx Virtex
TM

-5 FPGA is the DCM, which provides a wide range of
powerful clock management features including a delay-locked loop (DLL); this acts to align the
incoming clock to the produced clock as described earlier. It also allows a range of clock frequencies
to be produced, including a doubled frequency a range of fractional clock frequencies specifically
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, or 16 of the input
clock. Coarse (90◦, 180◦ and 270◦) fine-grained phase shifting and various types of fine-grained or
fractional phase-shifting are supported.

The PLL’s main purpose is to act as a frequency synthesizer and to remove jitter from either
external or internal clocks, in conjunction with the DCMs. With regard to clock generation, the six
PLL output counters are multiplexed into a single clock signal for use as a reference clock to the
DCMs. Two output clocks from the PLL can drive the DCMs; for example, one could drive the
first DCM while the other could drive the second DCM. Flexibility is provided to allow the output
of each DCM output to be multiplexed into a single clock signal, for use as a reference clock to the
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PLL, but one DCM can be used as the reference clock to the PLL at any given time (Xilinx Inc.
2007c).

I/O and External Memory Interfaces

As with the Altera FPGA device, the Virtex
TM

-5 FPGA supports a number of different I/O standard
interfaces termed SelectIO

TM
drivers and receivers, allowing control of the output strength and

slew rate and on-chip termination. As with the Altera FPGA, the I/Os are organized into a bank
comprising 40 IOBs which covers a physical area that is 20 CLBs high, and is controlled by a
single clock. The Virtex

TM
-5 FPGA also includes digitally controlled impedance (DCI) technology,

allowing the output impedance or input termination to be adjusted, and therefore, accurately match
the characteristic impedance of the transmission line. The need to effectively terminate PCB trace
signals, is becoming an increasing important issue in high-speed circuit implementation, and this
approach purports to avoid the need to add termination resistors on the board. A number of standards
are supported, including low-voltage transistor–transistor logic (LVTTL), low-voltage complemen-
tary metal oxide semiconductor (LVCMOS), peripheral component interface (PCI) including PCIX,
PCI33, PCI66, and low-voltage differential signalling (LVDS), to name but a few.

Input serial-to-parallel converters (ISERDES) and output parallel-to-serial converters
(OSERDES) are also supported. These allow very fast external I/O data rates such as SDR and
DDR, to be fed into the internal FPGA logic which may be running an order of magnitude slower.
This is essentially a serial-to-parallel converter with some additional hardware modules that allow
reordering of the sequence of the parallel data stream going into the FPGA fabric, and circuitry to
handle the strobe-to-FPGA clock domain crossover.

5.5 Lattice FPGA Families

Lattice r© offer a number of FPGA architectures, including the ispXPLD
TM

5000MX family which
extends the CPLD concept, the LatticeSC/M family which is a more of a standard FPGA with
additional high-speed communications, memory and dedicated ASIC block implementation, and
the Lattice ECP2/M family which is a low cost FPGA with a number of the features outlined in
the LatticeSC/M family.

5.5.1 Lattice r© ispXPLD 5000MX Family

The ispXPLD
TM

5000MX family offers a combination of E2PROM nonvolatile cells which stores the
device configuration, and SRAM technology to provide the logic implementation, giving a solution
that provides logic availability at boot-up. It also includes flexible memory capability, supporting
single- or dual-port SRAM, FIFO, and ternary content addressable memory (CAM) operation along
with dedicated arithmetic functionality. However, the technology benefits from the main attraction
of using the CPLD architecture to provide predictable deterministic timing. The architecture of
ispXPLD 5000MX device (Figure 5.23), consists of units called multi-function blocks (MFBs)
interconnected with a global routing pool which are connected via multi sharing arrays (MSAs)
to the input and output pins. The MFB consists of a multi-function array and associated routing,
which can cope with up to 68 inputs from the GRP and the four global clock and reset signals and
produce outputs to the macrocells or elsewhere. The device allows cascading of adjacent MFBs to
support wider operation. Each MFB can be configured in a number of modes, including logic and
memory configurations e.g., single- and dual-port RAM, FIFO Mode and CAM.

This description concentrates on the LatticeSC/M FPGA (Lattice Semi. Inc. 2007), as it repre-
sents the high-performance FPGA family, with many of the features which appear on the lower cost
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Figure 5.23 Lattice ispXPLD 5000MX family

Lattice ECP2/M families. The architecture of LatticeSC/M device is given in Figure 5.24. It com-
prises the standard programmable I/O block which is connected to rows of logic blocks organized
as programmable functional units or PFUs. These PFUs comprise slices, each of which comprise
two 4-input LUTs and two registers, along with carry propagate and carry generate signals which
allow the creation of fast adder structures. As with other FPGA offerings, this functionality can
be used to create combinational and sequential logic with the capability to scale LUT table sizes
and register dimensions as required. As in the ispXPLD

TM
5000MX family, the PFUs can also be

configured to act as memory types. The largest device offers 115 k of LUTs.
In addition to the programmable logic, the device also incorporates up to 7.8 Mb of embedded

block RAM, to match the 2 Mb of distributed RAM contained within the PFUs. These sysMEM
EBRs as they are called, can be configured as RAM, ROM or FIFO, allowing a high level of
programmability. In addition to the standard programmable I/O pins, high performance I/O is
included in the form of dedicated SERDES and PCS hardware which provides 2Gbps I/O capability.
This matches the concept of gathering large dedicated IP functionality on IP cores.

A feature that is different from offerings from Altera and Xilinx, is the structured ASIC capability
as highlighted in Figure 5.25. This masked array for cost optimization or MACO block is a sea
of 50 000 ASIC gates which has been created using a 90 nm CMOS process technology and
optimized for speed, power dissipation, and area (Lattice Semi. Inc. 2006). The MACO block
interfaces directly to the I/O and also to the FPGA fabric, thereby allowing dedicated fast low-power
implementation for specialized hardware. In addition to the gates, each MACO block contains three
64 × 40 asynchronous dual-port RAMs in addition to the RAM of the FPGA; the dual-port RAMs
are co-located to the MACO block and can be accessed through the dedicated MACO interface
block or MIB. By being located between the I/O pins and the on-board block RAM makes this ideal
for implementing a number of fast, lower-power blocks such as dedicated or specialized memory
interfaces.



Current FPGA Technologies 105

PFU

SERDES block

Block
RAM

Structured
ASIC

DLLs &
PPLs

I/O

Figure 5.24 LatticeSC/M Family

5.6 Actel FPGA Technologies
Actel r© offers a number of FPGA technologies, based on flash and antifuse technologies. They
have also recently launched a Fusion

TM
technology which represents the first mixed signal FPGA

(Actel Corp. 2007a). It comprises A/D converters, embedded flash memory and as well as more
conventional digital FPGA hardware in the form of D-type flip-flops and RAM. The flash technology
is nonvolatile, meaning that the FPGA stores its design and is live at power-up, without the need
to be programmed from a ROM or co-processor. The largest device has 1.5 M system gates with
270 kbits of dual-port SRAM, up to 8 Mbits of flash memory, 1 kbit of user flash ROM, and up to
278 user I/Os.

5.6.1 Actel r© ProASICPLUS FPGA Technology

The ProASICPLUS FPGA technology is based on flash technology. It is similar to E2PROM tech-
nology in that it stores its charge and therefore allows the device to store its program. The FPGA
technology is organized with an architecture comparable to gate arrays, as illustrated in Figure 5.25,
and comprises a sea of tiles where each tile can be configured as a three-input logic function, or
a D-type flip-flop. As the diagram shows, the architecture comprises a grid of tiles with a number
of embedded two-port SRAM blocks, top and bottom which allow synchronous and asynchronous
operation. The tiles consist of a number of multiplexers and logic gates, sufficient to allow the
creation of a flip-flop with the necessary globally connected reset and clock signalling. The tiles
connect to both the local and the longer line routing.

The tiles are connected by a hierarchy of routing that has four levels which are organized in
terms of length; it would appear to have a similar organisation to the older Xilinx XC62000 FPGA
technology which was a similarly fine-grained architecture. The next level of lines run one, two or
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Figure 5.25 Actel r© ProASICPLUS FPGA (Actel Corp. 2007b). Reproduced by permission of
Actel Corp.

four tiles. Both of these are accessible at the tile output. The next level of interconnect are long-line
resources which span the length of the chip. The final level is global signals, which by definition
have to be low-delay, as they will be used for global signals such as clock, reset and enable signals
which would be used globally and would degrade the performance of the chip.

The device also incorporates two clock conditioning blocks which, like other FPGA devices,
comprise PLLs and delay circuits for synchronizing the external clock as well as multiplier/dividers
circuits along with necessary circuitry to connect to the global routing network. The device comes
with four clock networks or global trees, specifically designed for distributing a low-latency, low-
skew clock signal.

A key aspect of the implementation process with such a fine-grained technology, is the good
placement of the design units into the hardware, as the limited routing organization can hamper
design quality and utilization of the underlying hardware blocks. For this reason, the software
allows the use of constraints to control the placement of the design. The concept of generating a
circuit architecture to best match the FPGA resource requirements, is definitely needed, not only to
achieve the necessary performance, but also to alleviate the software effort in achieving an efficient
implementation. As with other FPGAs, a range of I/O blocks is available and boundary scan in the
form of JTAG is provided for system text at the board level.

5.6.2 Actel r© Antifuse SX FPGA Technology

In addition to flash memory devices, Actel also provide an antifuse technology which is once-only
programmable. An antifuse is a two-terminal device with an unprogrammed state presenting a
very high resistance between its terminals. Typically as shown in Figure 5.26, two conductors are
separated by mostly insulator, but at certain points by amorphous or ‘programmable’ silicon. When
a high voltage is applied across its terminals, the antifuse will ‘blow’ and create a low-resistance
link (as opposed to an open circuit as in a fuse).

In the case of the Actel antifuse link shown in Figure 5.27, the connection is made up from
a combination of amorphous silicon and dielectric material and has an ‘on’ state resistance of
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Figure 5.27 Actel r© ProASICPLUS FPGA(Actel Corp. 2007c). Reproduced by permission of
Actel Corp.

25 with a capacitance of 1.0 fF (Actel Corp. 2007c). The use of three-layer metal as shown in
Figure 5.27 and the use of metal-to-metal antifuse results in better performance and smaller area.
The metal-to-metal antifuse lowers the programmed resistances, thereby providing better speed,
and the multiple metal layers now allows the placement of the antifuses above the logic, thereby
avoiding routing channels. This provides better density of logic and lead to smaller devices with
better, performance.

The architecture comprises a sea of modules which like the ProASICPLUS FPGA technology,
is fine-grained with two types of cells, namely a C-cell which is effectively a combinational cell
comprising a series of multiplexers and logic gates, and an R-cell which is a register cell which
comprises a D-type flip-flop with various multiplexing hardware, to allow various connections to the
input, and to allow various clock signals to be used to clock the cell. Because of the programmability
to configure the cell, the fabric is comprised of a variety of the different cell types, meaning that
pre-defined mappings of the cells must be created, called clusters. The two types of superclusters
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are illustrated in Figure 5.28; the one supercluster comprises two C, R and C clusters and the other
supercluster comprises a C, R and R cluster followed by a C, R and C cluster.

In this structure, a number of different level of routing is given. The first type of routing
comprises the DirectConnect which is a horizontal routing resource that connects from C-cell to its
neighbouring R-cell in a cluster, and the FastConnect routing which provides vertical routing. Two
globally orientated routing resources are also provided, known as segment routing and high-drive
routing, which as the names suggest are for smaller routes, i.e. segments and more global routes.
As with the ProASICPLUS FPGA technology, consideration has to be given to the careful placement
of the cells in order to achieve efficient implementation, otherwise the disadvantage of the delays
of programmable routes will have to be suffered.

Clock rates of 300 MHz are quoted in (Actel Corp. 2007c). In addition, it is also argued that
security is a key feature of the technology, as it proves difficult to reverse engineer the device
because it is hard to distinguish between the programmed and unprogrammed antifuses, and there
is no configuration bitstream to intercept.

5.7 Atmel FPGA Technologies
Atmel offer a range of FPGA technologies, ranging from the AT40K and AT40KAL series co-
processor FPGAs range which offer the concept of what is termed FreeRAM

TM
which can be used

without infringing the available logic resource. Their FPGA technology can be used as an embedded
core in the form of FPSLIC

TM
FPGA family, which provides from 5 k up to 50 k gates, up to 36 k of

SRAM and a 25 MHz AVR MCU. The AT6000 series FPGAs are marketed as reconfigurable DSP
co-processors, as they offer register counts of 1024 to 6400 registers, making them ideal for use as
computing DSP functions that have been off-loaded into hardware. One of the key features of the
AT6000, AT40K and AT40KAL FPGA families is that they offer reconfigurability, allowing part
of the FPGA to be reprogrammed without loss of register data, whilst the remainder of the FPGA
continues to operate without disruption. For this reason, the AT40K FPGA family are considered
in a little more detail.

5.7.1 Atmel r© AT40K FPGA Technologies

The AT40KAL is a SRAM-based FPGAs with distributed dual-port/single-port SRAM and eight
global clocks with only one global reset. The family ranges in size from 5000 to 50 000 usable gates.
The AT40KAL is a fine-grained FPGA architecture comprising simple cells organized into 4 × 4
grids, each of which are surrounded by repeater cells, as shown in Figure 5.29 (Atmel Corp. 2006).
The repeaters regenerate the signals and allow connection of any bus to any other bus, on the same
plane. Each repeater has connections to two adjacent local-bus segments, which provide localized
connections in the four cells shown, and two express-bus segments for longer line connection which
spans eight cells.

The core cell is very fine-grained, comprising two 3-input LUTs (8 × 1 ROM) which can be
configured as a 4-input LUT, a D flip-flop, a 2-to-1 multiplexer and an AND gate for implementing
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Figure 5.29 Atmel AT50K FPGA 4 × 4 cell

multiplier arrays. As with the other FPGA technologies, the combination of LUT and D-type
flip-flops allow a wide range of combinational and sequential logic to be implemented. There is a
DSP mode, but it is basic, compared with other technologies, as it only allows the generation of
an array multiplier using the cells, resulting in a relatively poor DSP performance compared with
other FPGA technologies.

At the intersection of each repeater row and column, there is a 32 × 4 RAM block accessible
by adjacent buses, which can be individually addressed through the provision of a series of local,
and express horizontal and vertical buses. Reading and writing of the dual-port FreeRAM are
independent of each other, and reading is completely asynchronous.

An interesting aspect of the Atmel r© AT40K FPGA technology is the fact that it can be partially
reconfigured, i.e. programmed, allowing the function of the design or part of the design to be
changed whilst it is operating. This is worth examining in a little more detail.

5.7.2 Reconfiguration of the Atmel r© AT40K FPGA Technologies

The AT40K FPGA technology has four basic configuration modes of operation (Atmel Corp. 2006).
First, there is power-on reset when the device is first powered up which involves a complete reset
of all of the internal configuration SRAM. Second, the same reset sequence can be invoked by the
manual reset, via the reset pin. The third configuration mode is configuration download, where the
FPGA’s configuration SRAM is programmed using serial, or parallel data via its input pins. The
fourth mode is when no configuration is active. The AT40K FPGA allows complete reconfigurability
down to the byte level.

The CacheLogic r© architecture lets users reconfigure part of the FPGA, while the rest of the
FPGA continues to operate unaffected; this done using a windowing mechanism. This allows the
user to load the SRAM memory map in smaller segments, allowing overwriting of portions of the
configuration SRAM that is not being used, with new design information. In synchronous RAM
mode, the device receives a 32- or 40-bit-wide bitstream composed of a 24-bit address and either an
8-bit-wide or 16-bit-wide dataword. Address, data and write enable are applied simultaneously at the
rising edge of CCLK. In this mode, designed to interface to a generic IO port of a microprocessor,
the FPGA configuration SRAM is seen as a simple memory-mapped address space. The user has full
read and write access to the entire FPGA configuration SRAM. The overhead normally associated
with bitstreams is eliminated, resulting in faster reconfiguration.
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5.8 General Thoughts on FPGA Technologies
The chapter has covered a number of FPGA technologies from a variety of companies, but high-
lighting the two major vendors, namely Xilinx and Altera. The major drive in FPGA technology, has
been a move from an FPGA being a fine-grained device where simple logic was implemented using
LUTs and programmable interconnect, to one where it is a collection of heterogeneous complex
units such as dedicated DSP blocks, high-speed communications blocks, soft and hard processor
and of course, the previously mentioned LUTs.

This has had a number of implication for the design process. With earlier FPGAs, the target
has been to develop an efficient implementation where utilization of FPGA hardware had been
the main focus. This involved using, initially, schematic design capture packages and then more
recently HDL-based tools, to achieve an efficient design implementation. Given that the focus was
to achieve high utilization, considerable effort was expended to utilize the underlying LUTs. Thus,
a number of circuit-level design techniques were developed to best use LUTs, and flip-flops for that
matter, to achieve the implementation. These techniques are covered in more detail in Chapter 6 as
it is important to understand the principles, even though a lot of this activity is carried in synthesis
tools. For this reason, the design techniques are only briefly covered.

As complexity has grown with more recent FPGAs, the major challenge has been to create a
circuit architectures at one level (see Chapter 8) and then system-level architectures at another level
which is a major focus in Chapters 7, 9 and 11. There has been a major focus on generating circuit
architectures that contain all of the FPGA specific details from a SFG representation of the DSP
algorithm. Since the major performance gains of FPGAs in the area of DSP implementation, this
involves exploiting concurrency in terms of parallelism and pipelining. The processes for achieving
this are described in detail in Chapter 8; the higher-level tools flows are then described in the later
chapters.
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6
Detailed FPGA Implementation
Issues

6.1 Introduction
The previous chapters have set the scene in terms of background to DSP and computer arithmetic,
and then in the last two chapters, the various implementation technologies have been highlighted;
Chapter 4 has highlighted the wider range of technologies and Chapter 5 has described, in a
little more detail, the various FPGA offerings. The remaining chapters now describe the issues
for implementing complex DSP systems onto heterogeneous platforms, or even a single FPGA
device. This encompasses considerations such as selection of the suitable model for DSP system
implementation, partitioning of DSP complexity into hardware and software, mapping of DSP
functions efficiently onto FPGA hardware, development of a suitable memory architecture, and
achievement of design targets in terms of throughput, area and energy. However, it is imperative
that the reader understands the detailed FPGA implementation of DSP functionality in order that
this process is inferred correctly at both the system partitioning and circuit architecture development
stages.

At the system partitioning level, for example, it may become clear that the current system under
consideration will consume more than the dedicated multiplicative resources available. The designer
is then faced with a number of options, either to restrict the design space so that the design mapping
ensures that only the dedicated multiplier resources are used, or alternatively, to map the design to
the existing FPGA resources, in order to create the additional multipliers using LUTs and dedicated
adders. Moreover, it may be that the additional multiplicative operations are fixed in nature, which
means that constant coefficient multipliers could be used which need considerably less LUTs.

From a circuit architecture perspective, the key objective is to achieve faster implementation,
where area against speed is a key trade-off. It is essential to be aware of the optimizations available
in producing the required design as this could determine the trade-off between implementing the
design in FPGA hardware or in software, which may be a critical decision for the system. It is clear
from published work that the decision is not obvious unless a lot of detailed work is undertaken
to investigate the FPGA implementation; however, this is clearly not practical at system level as
the design detail is severely limited. Indeed, it was the efficient mapping in the earlier LUT-based
devices such as the Xilinx XC4000 that first led to the concept of achieving performance gains
over existing DSP processor devices (Goslin 1995); this was demonstrated for some DSP functions
such as FIR filters. With modern day synthesis tools, a lot of these optimizations are contained
within the synthesis tools, but it is important that the underlying principles are understood.

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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Finally, the utilization of the design may be an issue: indeed it could be argued that, for a cost-
effective design, it should always be so, otherwise the designer is selecting a larger FPGA device
than needed, thereby increasing cost! In this case, optimization to achieve the last few nanoseconds
of timing from the design may be the critical aspect. Of course, a lot of these optimizations are
now increasingly buried within synthesis tools.

A trivial example is the design of a walking one circuit. In a typical design environment, one
would be tempted to describe this design as a finite state machine (FSM) where each state will
have one bit high. The synthesis tool will treat this as FSM machine with one hot encoding, but it
is clear that the design can be achieved by writing the code for a register chain where one of the
flip-flops is set logic ‘1’ using preset, with others being reset. This comes from the understanding
that the FPGA flip-flop has a set–preset facility. The synthesis tool might be able to come with
an efficient design, but it is clear that any doubt that the synthesis tool would give this efficient
solution can be removed by coding critical parts of the circuit in this direct way. Of course, this
could be viewed as working against the design principle of writing the code to be as portable as
possible. Therefore, the focus of this chapter is to introduce and cover in reasonable detail some
of these technology-specific design optimizations and show how the functionality is mapped into
FPGA fabric. In particular, the chapter will look at the implementation of memory in FPGAs as this
tends to be a key issue in many applications. In addition, the use of advanced design techniques for
DSP functions such as distributed arithmetic (DA) and reconfigurable mux technique for building
coefficient specific DSP functions, are also covered.

6.2 Various Forms of the LUT
The reason why most FPGA vendors choose the LUT as the logic fundamental building block, is
that an n-input LUT can implement any n-input logic function. As shown in Figure 6.1, the use
of LUTs as compared with logic gates, places different constraints on the design. For example,
the diagram shows how the function can be mapped into logic gates, where number of gates is
the design constraint. This is irrelevant from a LUT implementation perspective however, as the
underlying criteria in determining the number of LUTs is directly related to number of inputs and,
in some cases, the number of outputs in the design rather than the logic complexity. For the early
Xilinx devices, a 4-input LUT with the capability to extend this efficiently to a 5-input LUT was
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f

f

A
B

C
D

Figure 6.1 Mapping logic functions into LUTs
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the core unit, but recently, this has been extended to a 6-input LUT in the latest Xilinx Virtex
TM

-5
FPGA technologies, and to an 8-input LUT in the latest Altera Stratix r© III FPGA devices.

This represents however, only one of the reasons for using a n-input LUT as the main logic
building block of FPGAs. Figure 6.2 illustrates the resources of the CLB for the family of Xilinx
FPGA devices; this comprises two LUTs, shown on the left, two flip-flops, shown on the right
and the fast carry adder chain, shown in the middle. The figure highlights how the LUT resource
shown on the left-hand side, can be used as a LUT, but also as a shift register for performing a
programmable shift and as a RAM storage cell.

The basic principle of how the LUT can be used as a shift register is covered in detail in the
Xilinx application note (Xilinx Inc. 2005). First, the LUT can be thought of as 16:1 multiplexer as
shown in Figure 6.3 where the address input (here a 4-bit input as the note is dealing with a Xilinx
Spartan device) is used to address the specific input stored in the RAM. In this case, the contents
of the multiplexer would have been treated as being fixed. In the case of the SRL16, the Xilinx
name for the 16-bit shift register, the fixed LUT values are configured instead as an addressable
shift register, as shown in Figure 6.3(b).

The shift register inputs are the same as those for the synchronous RAM configuration of the
LUT given in (Xilinx Inc. 2005) namely, a data input, clock and clock enable. The LUT uses
a special output called Q15 in the Xilinx library primitive device which is in effect the output
provided from the last flip-flop.

The design works as follows. By setting up an address, say 0111, the value of that memory
location is read out as an output and at the same time, a new value is read in which is deemed to
be the new input, DIN in Figure 6.3(b). If the next address is 0000 and the address value is incre-
mentally increased, it will take 8 clock cycles until the next time that 0111 address corresponding
to an shift delay of 8. In this way, the address size can mimic the shift register delay size. So rather
than shift all the data as would happen in a shift register, the data is stored statically in a RAM
and the changing address line mimics the shift register effect by reading the relevant data out at
the correct time.

Details of the logic cell SRL structure are given in Figure 6.4 which refers to the Xilinx Spartan
FPGA family with a 4-input LUT. The cell has an associated flip-flop and a multiplexer which
make up the full cell. The flip-flop provides a write function synchronized with the clock, and the
additional multiplexer allows a direct DI input, or if a large shift register is being implemented,
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an SHIFTIN input from the cell above. The address lines can be changed dynamically, but in a
synchronous design implementation it would be envisaged that they would be synchronized to the
clock.

This has huge implications for the implementation of DSP systems. As will be demonstrated
in Chapter 8, the homogeneous nature of DSP operations is such that hardware sharing can be
employed to reduce circuit area. In effect, this results in a scaling of the delays in the original
circuit; if this transformation results in a huge memory increase, then the overall emphasis to
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reduce complexity has been negated. Being able to use the LUTs as shift registers in addition to the
existing flip-flops can result in a very efficient implementation. Thus, a key design criteria at the
system level, is to balance the flip-flop and LUT resource in order to achieve the best utilization
of the CLB usage. This can be seen in a number of designs later in the book.

6.3 Memory Availability
FPGAs offer a wide range of different types of memory, ranging from block RAM, through to
highly distributed RAM in the form of the multiple LUTs available, right down to the storage of
data in the flip-flops that are widely available in the FPGA fabric. As was demonstrated in the
previous section, a trade-off can be performed between the LUT and flip-flop storage capability,
but this will be for small distributed memories. There may be cases where there is a need to store
a lot of input data, such as an image of block of data in image processing applications, or large
sets of coefficient data, as in some DSP applications, particularly when multiplexing of operations
has been employed. In these cases, the requirement is probably for large RAM blocks.

As illustrated in Table 6.1, FPGA families are now adopting quite large on-board RAMs. The
table gives details of the DSP-flavoured FPGA devices, from both Altera and Xilinx. Considering
both vendors’ high-end families, the Xilinx Virtex

TM
-5 and the Altera Stratix r© FPGA technologies,

it can be determined that block RAMs have grown from being a small proportion of the FPGA
circuit area, to representing 1/15 or 1/10 of the circuit area. Typically these ratios tend to be lower for
the logic-flavoured FPGA families. In addition to small distributed RAMs, the FPGA families also
possess larger block RAM which have the advantage that they are dual-port, providing flexibility
for some DSP applications. The Virtex-5 block RAM stores up to 36K bits of data and can be
configured as either two independent 18 kb RAMs, or a 36 kb RAM. Each 36 kb block RAM can be
configured as a 64 k × 1 (when cascaded with an adjacent 36 kb block RAM), 32 k × 1, 16 k × 2,
8 k × 4, 4 k × 9, 2 k × 18, or 1 k × 36 memory. Each 18 kb block RAM can be configured as a
16 k × 1, 8 k × 2, 4 k × 4, 2 k × 9, or 1 k × 18 memory.

This section has highlighted the range of memory capability in the two most common FPGA
families. This provides a clear mechanism to develop a memory hierarchy to suit a wide range of
DSP applications. In image processing applications, various sizes of memory are needed at different
parts of the system. Take for example, the fast motion estimation circuit shown in Figure 6.5 where

Table 6.1 FPGA RAM size comparison for Xilinx Virtex 4 and 5 and Spartan FPGAs and
Altera Stratix and Cyclone FPGAs

Family Model Block Distributed Mults I/O BRAM
RAM (kb) RAM (kb) /LUT

Virtex XC5VSX35T 3024 520 192 360 5.8
XC5VSX95T 8784 1520 640 640 5.8
XC4VSX25 2304 160 128 320 14.4
XC4VSX55 5760 384 320 640 15.0

Spartan XC3S100E 72 15 4 108 4.8
XC3S1600E 648 231 36 376 2.8

Stratix EP3SE50 5328 594 384 480 9.0
EP3SE260 14688 3180 768 960 4.6

Cyclone EP2C5 117 72 13 158 1.6
EP2C70 1125 1069 150 622 1.1
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the aim is to perform the highly complex motion estimation (ME) function on dedicated hardware.
The figure shows the memory hierarchy and data bandwidth considerations for implementing such
a system. In order to perform the ME functions, it is necessary to download the current block (CB)
data and area where the matching is to be performed, namely the search window (SW), into local
memory. Given that the SW is typically 24 × 24 pixels, the CB sizes are 8 × 8 pixels and a pixel
is 8-bits, this corresponds to 3 k and 0.5 k memory files which would typically be stored in the
embedded RAM blocks. This is because the embedded RAM is an efficient mechanism for storing
such data and the bandwidth rates are not high.

In an FPGA implementation, it might then be necessary to implement a number of hardware
blocks or IP cores to perform the ME operation, so this might require a number of computations to
be performed in parallel. This requires smaller memory usage which could correspond to smaller
distributed RAM or if needed, LUT-based memory and flip-flops. However, the issue is not just
the data storage, but the data rates involved which can be high as illustrated in the figure. Smaller
distributed RAM, LUT-based memory and flip-flops provide much high data rates as they each
possess their own interfaces. Whilst this date rate may be comparable to the larger RAMs, the fact
that each memory write or read can be done in parallel, results in a very high, data rate. Thus it is
clear, that even in one specific application, there are clear requirements for different memory sizes
and date rates; thus the availability of different memory types and sizes, such as those available in
FPGAs, is vital.

6.4 Fixed Coefficient Design Techniques
Usually, a fully programmable multiplier capability is needed which is why FPGA vendors have
now included quite of number of these on FPGAs. In some DSP applications however, there is
sometimes the need to perform a multiplication of one word by a single coefficient value such
as in a fixed filtering operation, or DSP transforms such as the DCT or FFT. In a processor
implementation, this has little impact, but in dedicated hardware there is the chance to alter the
hardware complexity needed to perform the task, thus dedicated coefficient multiplication or fixed
coefficient multiplication (KCM) has the considerable potential to reduce the circuitry overhead. A
number of mechanisms have been used to derive KCMs. These include: DA (Goslin and Newgard
1994), string encoding and common sub-expression elimination (Cocke 1970, Feher 1993).
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This concept translated particularly well to earlier FPGA devices where only LUTs and dedicated
fast adders were available for building multipliers; thus an area gain was achieved in implementing
a range of these fixed coefficient functions (Goslin and Newgard 1994, Peled and Liu 1974).
A number of techniques have evolved to these fixed coefficient multiplications and whilst a lot
of FPGA architectures have dedicated multiplicative hardware on-board in the form of dedicated
multipliers or DSP blocks, it is still worth briefly reviewing the approaches available. The section
considers the use of DA which is used for single fixed coefficient multiplication (Peled and Liu
1974) and also the reduced coefficient multiplier (RCM) approach which can multiply a range of
coefficient values (Turner and Woods 2004).

6.5 Distributed Arithmetic
Distributed arithmetic (DA) is an efficient technique for performing multiply-and-add in which the
multiplication is re-organized such that multiplication and addition is performed on data and single
bits of the coefficients, at the same time. The principle of the technique is based on the assumption
that we will store the computed values rather than carry out the computation (as FPGAs have a
readily supply of LUTs).

Assume that we are computing the sum of products computation in Equation (6.1) where the
values xj represent a data stream and the values a0, a1, . . . aN−1 represent a series of coefficient
values. Rather than compute the partial products using AND gates, we can use LUTs to generate
these and then use fast adders to compute the final multiplication. An example of a 8-bit LUT-based
multiplier is given in Figure 6.6; it can seen that this multiplier would require a 4 kbits of LUT
memory resource which would be considerable.

y =
N−1∑
i=0

aixi (6.1)

The memory requirement is vastly reduced (to 512 bits for the 8-bit example) when the coef-
ficients are fixed which now makes this an attractive possibility for an FPGA architecture. The
obvious implementation is to use a LUT-based multiplier circuit such as that in Figure 6.6 to per-
form the multiplication a0x0. However, a more efficient structure results by employing DA (which
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is described in detail in (Peled and Liu 1974, Meyer-Baese 2001, White 1989). The following
analysis follows closely the approach described in White (1989). Again in the following analysis,
remember that the coefficient values a0, a1, . . . aN−1 represent a series of fixed coefficient values.

Assume the input stream xn is represented by as a two’s complement signed number which
would be given as:

xn = −x0
n +

M−1∑
j=1

xj
n2j (6.2)

where x
j
n2j denotes the j th bit of xn which is the nth sample of the stream of data x and x0

n denotes
the sign bit and so is indicated as negative in the equation. The data wordlength is thus M bits.
The computation of y can then be rewritten as:

y =
N−1∑
i=0

ai


−x0

n +
M−1∑
j=1

x
j

i .2j )


 (6.3)

Multiplying out the brackets, we get:

y =
N−1∑
i=0

ai(−x0
n) +

N−1∑
i=0

ai

M−1∑
j=1

x
j

i 2j (6.4)

The fully expanded version of this is given below:

y = a0(−x0
0 ) + a0(x

1
0 21 + x2

0 22 + . . . + xM−1
0 2M−1)

+a1(−x0
1 ) + a1(x

1
1 21 + x2

1 22 + . . . + xM−1
1 2M−1)

...

+aN−1(−x0
N−1) + aN−1(x

1
N−121 + x2

N−122 + . . . + xM−1
N−1 2M−1).

Reordering, we get:

y =
N−1∑
i=0

ai(−x0
i ) +

M−1∑
j=1

[
N−1∑
i=0

ai(x
j

i )

]
2j (6.5)

and once again, the expanded version gives a clearer idea of how the computation has been reor-
ganized as shown below:

y = 20(a0(−x0
0 ) + a1(−x0

1 ) + . . . + a1(−x0
N−1)

+2−1(a0x
1
0 + a1x

1
1 + . . . + aN−1x

0
N−1)

...

+2−M+1(a0x
M−1
0 + a1x

M−1
1 + . . . + aN−1x

M−1
N−1 )
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Given that the coefficients are now fixed values, the term
∑N−1

i=0 ai(x
i
n) in Equation (6.5) has

only 2K possible values and the term
∑N−1

i=0 ai(−x0
n) has only 2K possible values. Thus the imple-

mentation can be stored in a LUT of size 2 × 2K bits which for the earlier 8-bit example would
represent 512 bits of storage.

Consider an implementation where N = 4 in order to see how it fits into the FPGA LUT-based
architecture. This gives the expanded expressions for each of the terms in Equation (6.6) as follows:

N−1∑
i=0

ai(x
j

i ) = a0(x
0
0 ) + a1(x

0
1 ) + a2(x

0
2 ) + a3(x

0
3 ) (6.6)

This then shows that if we use the x inputs as the addresses to the LUT, then the stored values are
those shown in Table 6.2. By rearranging Equation (6.7) to achieve the representation in Equation
(6.8), we see that the contents of the LUT for this calculation are simply the inverse of those stored
in Table 6.2 and can be performed by performing a subtraction rather than addition for the two’s
complement bit. The computation can either be performed using parallel hardware or sequentially,
by rotating the computation around an adder, as shown in Figure 6.7 where the final stage of
computation is a subtraction rather than addition. It is clear to see that this computation can be
performed using the basic CLB structure of the Xilinx FPGA family and the LE from Altera where
the 4-bit LUT is used to store the DA data; the fast adder is used to perform the addition and
the data is stored using the flip-flop. In effect, a CLB can perform one ‘bit’ of the computation
meaning that now 8 LUTs are only needed to perform the computation admittedly at a slower rate
than a parallel structure, due to the sequential nature of the computation.

Table 6.2 LUT contents for DA computation

Address LUT contents

x0
3 x0

2 x0
1 x0

0

0 0 0 0 0
0 0 0 1 a0

0 0 1 0 a1

0 0 1 1 a1 + a0

0 1 0 0 a2

0 1 0 1 a2 + a0

0 1 1 0 a2 + a1

0 1 1 1 a2 + a1 + a0

1 0 0 0 a3

1 0 0 1 a3 + a0

1 0 1 0 a3 + a1

1 0 1 1 a3 + a1 + a0

1 1 0 0 a3 + a2

1 1 0 1 a3 + a2 + a0

1 1 1 0 a3 + a2 + a1

1 1 1 1 a3 + a2 + a1 + a0
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Figure 6.7 DA-based multiplier block diagram

N−1∑
i=0

ai(x
0
i ) = a0(x

0
0 ) + a1(x

0
1 ) + a2(x

0
2 ) + a3(x

0
3 ) (6.7)

N−1∑
i=0

ai(−x0
i ) = x0

0 (−a0) + x0
1 (−a1) + x0

2 (−a2) + x0
3 (−a3) (6.8)

It is clear to see the considerable advantages that this technique offers for a range of DSP
functions where one part of the computation is fixed. This includes some fixed FIR and IIR filters,
a range of fixed transforms, namely the DCT and FFT and other selected computations. The
technique has been covered in detail elsewhere (Peled and Liu 1974, Meyer-Baese 2001, White
1989) and a wide range of applications notes are available from each FPGA vendor on the topic.

6.6 Reduced Coefficient Multiplier
The DA approach has enjoyed considerable success and has really been the focal point of using
the earlier FPGA technologies in DSP computations. However, the main limitation of the tech-
niques is that the coefficients must be fixed in order to achieve the area reduction gain. If some
applications require full coefficient range then a full programmable multiplier must be used, which
in earlier devices was costly as it had to be built of existing LUT and adder resources, but in
more recent FPGA families has been provided in the form of dedicated DSP hardware in the
Xilinx Virtex

TM
-5 and the Altera Stratix r© families. However, in some applications such as the

DCT and FFT, there is the need for limited range of multipliers. This is illustrated for the DCT
computation.

The DCT is an important transformation, widely employed in image compression techniques.
The two-dimensional (2D) DCT works by transforming an N × N block of pixels to a coefficient
set which relates to the spatial frequency content that is present in the block. It is expressed as
follows:

y(k, l) = α(k)α(l)

N−1∑
n=0

N−1∑
m=0

x(n,m)c(n, k)c(m, k) (6.9)

where c(n, k) = cos(2n + 1)πk/2N and c(m, k) = cos(2m + 1)πk/2N and indices k and l range
from 0 to N − 1 inclusive. The values α(k) and α(l) are scaling variables. Typically, the sepa-
rable property of the function is exploited, to allow it to be decomposed into two successive 1D
transforms; this is achieved using techniques such as row–column decomposition which requires
a matrix transposition function between the two 1D transforms.
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The equation for an N-point 1D transform, which relates an input data sequence
x(i), i = 0>N − 1, to the transformed values Y (k), k = 0>N − 1, is given in Equations (6.10)
and (6.11).

Y (0) = α(0)

N−1∑
n=0

x(i) (6.10)

Y (k) = α(k)

N−1∑
n=0

x(i)cos

[
kα(2i + 1)

2N

]
∀k = 1, . . . , N − 1 (6.11)

where α(0) = 1/
√

N , otherwise α(k) = 2/
√

N . Expanding out the equation into a matrix form, we
get the following matrix vector computation.




Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7




=




C4 C4 C4 C4 C4 C4 C4 C4

C1 C3 C5 C7 −C7 −C5 −C3 −C1

C2 C6 −C6 −C2 −C2 −C6 C6 C2

C3 −C7 −C1 −C5 C5 C1 C7 −C3

C4 −C4 −C4 C4 C4 −C4 −C4 C4

C5 −C1 C7 C3 −C3 −C7 C1 −C5

C6 −C2 C2 −C6 −C6 C2 −C2 C6

C7 −C3 C3 −C1 C1 −C1 C5 −C7







X0

X1

X2

X3

X4

X5

X6

X7




(6.12)

In its current form the matrix vector computation would require 64 multiplications and 63 additions
to compute the Y vector. However, a lot of research work has been undertaken to reduce the com-
plexity of the DCT by precomputing the input data in order to reduce the number of multiplications.
One such approach proposed by Chen et al. (1977) leads to the realization of the form given in
Equation (6.13). These types of optimizations are possible and a range of such transformations exist
for the DCT for both the 1D version (Hou 1987, Lee 1984, M.T. Sun et al. 1989) and the direct
2D implementation (Duhamel et al. 1990, Feig and Winograd 1992, Haque 1985, Vetterli 1985).




Y0

Y2

Y4

Y6

Y1

Y3

Y5

Y7




=




C4 C4 C4 C4 0 0 0 0
C2 C6 −C6 −C2 0 0 0 0
C4 −C4 −C4 C4 0 0 0 0
C6 −C2 C2 −C6 0 0 0 0

0 0 0 0 C1 C3 C5 C7

0 0 0 0 C3 −C7 −C1 −C5

0 0 0 0 C5 −C1 C7 C3

0 0 0 0 C7 −C5 C3 −C1







X0 + X7

X1 + X6

X2 + X5

X3 + X4

X0 − X7

X1 − X6

X2 − X5

X3 − X4




(6.13)

Equation (6.13) can either be implemented with a circuit where a fully programmable multiplier
and adder combination could be used to implement either a row or a column, or possibly the
whole circuit. However, this is unfortunate as the multiplier is only using 4 separate values at the
multiplicand, as illustrated by the block diagram in Figure 6.8. This shows that ideally we need a
multiplier which can cope with 3 separate values. Alternatively, a DA approach could be used where
either 32 separate DA multipliers could be used to implement the matrix computation. Alternatively,
8 DA multipliers could be used, thereby achieving a reduction in hardware, but the dataflow would
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Figure 6.8 Reduced complexity multiplier

be complex in order to load the correct data at the correct time. It would be much more attractive
to have a multiplier of the complexity of the DA multiplier which would multiply a limited range
of multiplicands, thereby trading hardware complexity off with computational requirements which
is exactly what is achieved in the RCM multipliers developed by Turner and Woods (2004).

6.6.1 RCM Design Procedure

The previous section on DA highlighted how the functionality could be mapped into a LUT-based
FPGA technology. In effect, if you view the multiplier as a structure that generates the product
terms and then uses an adder tree to sum the terms to produce a final output, then the impact of
having fixed coefficients and organizing the computation as proposed in DA allows one to map
a large level of functionality of the product term generator and adder tree within the LUTs. In
essence, this is where the main area gain is achieved.

The concept is illustrated in Figure 6.9, although it is a little bit of illusion, as the actual AND and
adder operations are not actually generated in hardware, but will have been precomputed. However,
this gives us an insight in how we can map additional functionality onto LUT-based FPGAs which
is the core part of the approach.
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Figure 6.9 DA-based multiplier block diagram
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In the DA implementation, the focus was to map as much as possible of the adder tree into the
LUT. If we consider mapping a fixed coefficient multiplication into the same CLB capacity, then
the main requirement is to map the EXOR function for the fast carry logic into the LUT as shown
in Figure 6.10. This will not be as efficient as the DA implementation, but now the spare inputs can
be used to implement additional functionality, as shown by the various structures of Figure 6.11.
This is the starting point for us to create the structures for realizing a plethora of circuits.

Figure 6.11(a) implements the functionality of A + B or A + C, Figure 6.11(b) implements the
functionality of A − B or A − C, and Figure 6.11(c) implements the functionality of A + B or
A − C. This leads to the concept of the generalized structure of Figure 6.12 and Turner (2002)
gives a detailed treatment of how to generate these structures automatically, based on an input of
desired coefficient values. However, here we use an illustrative approach to show the functionality
of the DCT example is mapped using his technique, but it should be noted that this is not the
technique used in Turner (2002).

Co
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Figure 6.10 Mapping multiplier functionality into Virtex 4 CLB
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Figure 6.11 Possible implementations using the multiplexer-based design technique
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Figure 6.12 Generalized view of technique where a set of N input functions are mapped to an
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Figure 6.13 Multiplication by either 45 or 15

Some simple examples are used to demonstrate how the cells given in Figure 6.11, can be
connected together to build multipliers. The circuit in Figure 6.13 multiplies, an input by two
coefficients namely, 45 and 15. The notation x × 2n represents a left-shifting by n. The circuit is
constructed from two 2n ± 1 cascaded multipliers taking advantage of 45 × x and 15 × x having
the common factor of 5 × x. The first cell performs 5 × x and then the second cell performs a
further multiplication of 9 or 3, by adding either a shifted version by 2(21) or by 8(23), depending
on the multiplexer control signal setting (labelled 15/45). The shifting operation does not require
any hardware as it can be implemented as routing in the FPGA.

Figure 6.14 gives a circuit for multiplying by 45 or the prime number, 23. Here a common factor
cannot be used, so a different factorization of 45 is applied, and a subtracter is used to generate
multiplication by 15, i.e. (16 − 1), needing only one operation as opposed to three. The second cell
is set up to add a multiple of the output from the first cell, or a shifted version of the input X. The
resulting multipliers implement the two required coefficients in the same area as a KCM for either
coefficient, without the need for reconfiguration. Furthermore, the examples give some indication
that there are a number of different ways of mapping the desired set of coefficients and arranging
the cells in order to obtain an efficient multiplier structure.

In Turner and Woods (2004), the authors have derived a methodology for achieving the best
solution, for the particular FPGA structure under consideration. The first step involves identifying
the full range of cells of the type shown in Figure 6.11. Those shown only represent a small sample
for the Xilinx Virtex

TM
-II range. The full range of cells depends on the number of LUT inputs

and the dedicated hardware resource. The next stage is then to encode the coefficients to allow the
most efficient structure to be identified which was shown to be signed digit (SD) encoding. The
coefficients are thus encoded and resulting shifted signed digits (SSDs) then grouped to develop
the tree structure for the final RCM circuit. Prototype C++ software was developed to automate
this process.
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Figure 6.14 Multiplication by either 45 or 23
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6.6.2 FPGA Multiplier Summary

The DA technique has been shown to work well in applications where the coefficients have fixed
functionality. As can be seen from Chapter 2, this is not just limited to fixed coefficient operations
such as fixed coefficient FIR and IIR filtering, but also could have application in fixed transforms
such as the FFT and DCT. However, the latter RCM design technique provides a better solution as
the main requirement is to develop multipliers that multiply a limited range of coefficients, not just
a single value. The RCM technique has been demonstrated for DCT and a polyphase filter with a
comparable quality in terms of performance to implementation based on DA techniques for other
fixed DSP functions (Turner and Woods 2004, Turner et al. 2002).

It must be stated that changes in FPGA architectures, primarily the development of DSP48s in the
Xilinx Virtex

TM
-5 FPGA technologies, and the DSP function blocks in the latest Altera Stratix r© III

FPGA devices, have reduced the requirement to build fixed coefficient or even limited coefficient
range structures as the provision of dedicated multiplier-based hardware blocks results in much
superior performance. However, there may still be instances where FPGA resource is limited and
these techniques, particularly if they are used along with pipelining, can result in implementations
of the same speed performance of these dedicated blocks. Thus, it is useful to know that these
techniques exist if required.

6.7 Final Statements
The chapter has aimed to cover some techniques that are specifically looking at mapping DSP
systems onto specific FPGA platforms. Many will argue that in these days of improving technology
and the resulting design productivity gap (IRTS 1999) we should move away from this aspect of
the design approach altogether. Whilst the sentiment is well intentioned, there are many occasions
where the detailed implementation has been important in realizing practical circuit implementations.

In image processing implementations as the design example in Figure 6.5 indicated, the derivation
of a suitable hardware architecture is predicated on the understanding of what the underlying
resources are, both in terms of speed and size. Thus a clear understanding of the practical FPGA
limitations is important in developing a suitable architecture. Some of the other fixed coefficient
techniques may be useful in applications where hardware is limited and users may wish to trade
off between the DSP resource for other parts of the application. Whilst it has not been specifically
covered in the chapter, a key aspect of efficient FPGA implementation is the development of efficient
design styles. A good treatment of this was given by Michael Keating and Pierre Bricaud in their
Reuse Methodology Manual for System-On-A-Chip Designs (Keating and Bricaud 1998). The main
scope of this text was to highlight a number of good design styles that should be incorporated in
the creation of efficient HDL code for implementation on SoC platforms. In addition to indications
for good HDL coding, the text also offered some key advice on mixing clock edges, developing
approaches for reset and enabling circuitry and clock gating. These are essential, but it was felt
that the scope this book was to concentrate on the generation of the circuit architecture from a high
level.
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7
Rapid DSP System Design Tools
and Processes for FPGA

7.1 Introduction
The evolution of computing architectures, spurred by the relentless growth in silicon integration
technology, has seen the development of a number of new DSP implementation technologies. These
platforms include single chip multiprocessor or heterogeneous system-on-chip solutions and indeed,
FPGA. As highlighted as early as Chapter 1, the evolution in the computing architectures for this
technology has for a number of years, outpaced the designers’ ability to implement DSP systems
using them. This observation has been popularly termed, the design productivity gap (IRTS 1999),
and its main causes are a major limiting factor in the industry drive towards realising SoC design
flows. It is forcing the electronic design automation (EDA) industry, to significantly reconsider
the concepts of system design (Keutzer et al. 2000, Lee et al. 2003, Rowson and Sangiovanni-
Vincentelli 1997).

Modern DSP implementation platforms are composed of a mixture of heterogeneous processing
architectures, including microcontroller unit (MCU) Von Neumann-like processing architectures,
increased computationally capable processors such as VLIW DSP microprocessors, or dedicated
hardware for efficient task implementation. The evolution of the modern FPGA means that it is also a
potential candidate as an implementation platform, either as a standalone SoPC, or as a complement
to existing software-based platforms. FPGA-based embedded platforms propose entirely new and
more complex implementation issues to the designer, due to the lack of a defined processing
architecture.

This wide range of target processing architectures and corresponding implementation techniques
makes DSP system implementation, at the current levels of design abstraction, an arduous task.
Consequently, the use of coherent rapid implementation frameworks which translate a behavioural
system description directly to an embedded manifestation, is critical. This chapter outlines current
approaches to this problem.

Generally, the concept of model-based design of embedded systems is rapidly growing in pop-
ularity. This concept, a generalization of numerous specific design methodology types and tools,
encourages the use of semantically well-defined modelling languages for expression of algorithm
behaviour. The semantics of each of these types of models are then exploited to provide rapid
implementation capabilities. As such, there are two crucial aspects to any design approach: the
particular model of computation (MoC) employed for algorithm specification, and the methodology

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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used for refinement of these models leading to an implementation. This chapter outlines major
developments in these fields in particular.

Following from this, FPGA-specific system synthesis problems are numerous. Three concerns
are most prominent for the programmable logic community at present: synthesis of dedicated
hardware intellectual property (IP) cores and core networks; software synthesis for multiprocessor
architectures, and finally large-scale system level design for deriving and automatically realizing a
given application on a heterogeneous FPGA architecture. These three aspects are addressed in turn,
with a number of typical design tools in each field supplied.

The chapter is organized as follows. The reasons for the need for and prevalence of certain
design approaches and tools are highly linked with the evolution of FPGA devices, and this moti-
vation is outlined in Section 7.2. The underpinning design methodologies and modelling languages
which enable toolsets such as those outlined above are outlined in Section 7.3. Section 7.4.3
describes how such modelling and rapid implementation techniques are exploited for single and
multi-processor software synthesis; tools and techniques for IP core and core network synthesis are
outlined in Section 7.5. Section 7.6 focuses on tools for automatically generating heterogeneous
FPGA architectures and mapping algorithm specifications onto these architectures.

7.2 The Evolution of FPGA System Design
The unconventional evolutionary path charted by FPGA since the emergence of the first devices
has strongly influenced the design methodology and tool requirements of modern devices. Three
distinct ‘ages of FPGA’ can be identified, each of which has its own distinct device design and
programming methods.

7.2.1 Age 1: Custom Glue Logic

When FPGAs first emerged, the relative dearth (by today’s standards) of logic resource on a
single device means that little substantial functionality could be realized on a single chip, but their
programmable nature meant FPGA made ideal host devices for customizable glue logic for multi-
chip ASIC processing platforms. The low levels of complexity meant that single chip architectures
could be realized with sufficiently high productivity using gate-level schematic-based capture of
chip architectures and functionality. As such, gate-level schematic-based design prevailed during
this period.

7.2.2 Age 2: Mid-density Logic

With the introduction of new generations of FPGA devices, such as the Xilinx XC4000 and Virtex
devices and Altera Stratix devices, the levels of logic density realisable continued to increase with
Moore’s Law. This, coupled with the potentially exceptionally high levels of parallelism meant
that gradually FPGA moved from being simple glue logic enabling devices to hosts for complex
DSP components such as filters and transforms. This evolution gave rise to an industry for the
development of high-performance DSP IP cores. This trend continued with the introduction of
high-performance small components such as multipliers, adders and memories on Virtex

TM
and

Virtex
TM

-2 series FPGAs from Xilinx and Cyclone devices from Altera. The increased design
complexity for these devices means that the emergence of register transfer level (RTL) design
tools such as Xilinx ISE and languages such as VHDL, complemented the emergence of RTL-level
synthesis tools to translate EDIFs to FPGA programming files.

This phase resulted in a legacy of large numbers of IP cores and the associated need for design
tools for core network construction have continued to play an important part in current FPGA
design methodologies and tools. These are considered in Section 7.5.



Rapid DSP System Design Tools and Processes for FPGA 129

7.2.3 Age 3: Heterogeneous System-on-chip

The emergence of Virtex
TM

-2 Pro and Stratix FPGA devices meant that the traditional FPGA pro-
grammable logic was complemented by embedded microprocessors such as PowerPC in Virtex

TM
-2

Pro, and high-speed dedicated serial communications transceivers such as Xilinx RocketI/O. Since
then until the present, FPGA have been single chip heterogeneous processing solutions, with the
performance capability and flexibility which meant they could be placed at the heart of DSP systems,
rather than as add-on accelerators.

This substantial jump in device performance requires similarly substantial advances in FPGA
design tool capabilities. The capability of these devices were now directly in league with SoC ASIC
solutions, and whilst the performance of these devices was similar, it meant the FPGA design com-
munity had to adopt new technology in terms of multiprocessor software design, core network
construction, heterogeneous system integration and high-speed off-chip and on-chip communica-
tions network design. Unfortunately, this technology was not readily forthcoming.

Whilst the move from between ages 1 and 2 of FPGA evolution was readily assisted by the
industry-wide move from gate-level to RTL-level design abstraction, a similar standardization effort
for the move from ages 2 to 3 has not been readily forthcoming. In the context of FPGA, such
technology should address the issues of IP core synthesis and core network construction, multipro-
cessor system design, and system integration and optimization. Unfortunately, the initial design tool
offerings, such as Xilinx Embedded Development Kit (EDK) and Altera SoPC Builder offered only
primitive initial capabilities in this area. The remainder of this chapter outlines current state-of-the-
art tools and practices in each of these areas, starting from the global system design methodology
perspective (Section 7.3), and incorporating multiprocessor software synthesis (Section 7.4.3), IP
core and core network synthesis (Section 7.5) and heterogeneous multiprocessor architecture design
and synthesis is covered in Section 7.6.

7.3 Design Methodology Requirements for FPGA DSP
System design approaches have fallen largely into three main categories, namely: hardware–
software codesign (HSC), function–architecture codesign (FAC - Fig.7.1(b) and platform-based
design (PBD), Figure 7.1(a), (Keutzer et al. 2000).

The PBD ethos follows the classic Y-chart approach to system design, where one of a domain of
algorithms is mapped to a relatively fixed structure platform (although it may be tailored in a number
of specific ways). The platform is considered a ‘flexible’ integrated circuit where customization for
a particular application is achieved by ‘programming’ one or more of the components of the chip.

7.4 System Specification
It should be noted from Section 7.1, that a key common aspect in all system design processes
(in particular PBD and FAC), is the use of a model of the application in a well-defined model of
computation (MoC) type language. In the description of design processes and tools which follow,
it is apparent that these all follow this philosophy.

7.4.1 Petri Nets

A Petri net (Murata 1989) is a weighted, directed bipartite graph, consisting of places and transitions
(Figure 7.2). Places (P1 –P4 in Fig.7.2) contain tokens, with tokens moving from place to place via
transitions. A transition (T1 and T2 in Figure 7.2) is enabled if each of its input places have a
specified minimum number of tokens, at which point the specified numbers of tokens are removed
from the input places, and a specified number inserted into the output places. The state of a Petri
net is defined by a configuration of tokens in places, with the firing or transition rule of the net,
determining the next state from the current state.
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7.4.2 Process Networks (PN) and Dataflow

The roots of the most popular current dataflow languages lie in the Kahn process network (KPN)
model (Kahn 1974). The KPN model describes a set of parallel processes, or ‘computing stations’,
communicating via unidirectional first-in first-out (FIFO) queues. A computing station consumes
data tokens coming along its input lines, using localized memory, producing output on one or all
of its output lines. In DSP systems, the tokens are usually digitized input data values. Continuous
input to the system generates streams of input data, prompting the computing stations to produce
streams of data on the system outputs. The general structure of a KPN is shown in Figure 7.3. The
semantics of repetitive application of specific computing functions to every input sample in KPN
makes this modelling approach a good match with the behaviour of DSP systems.

In the dataflow process network (DPN) model (Lee and Parks 1995), the KPN model is augmented
with semantics for the computing station (known here as an actor) behaviour. A sequence of actor
firings is defined to be a particular type of Kahn process called a dataflow process, where each firing
maps input tokens to output tokens, and a succession maps input streams to output streams. A set of
firing rules determine for each actor, how and when it fires. Specifically, actor firing consumes input
tokens and produces output tokens. A set of sequential firing rules exist for each actor, and define the
input data conditions under which the actor may fire. Given the solid computational foundation of
DPN, which describes how actors fire and communicate deterministically, numerous application-
specific refinements on this general theme have been proposed. Three specific variants are of
particular importance in this section, synchronous dataflow (SDF), cyclo-static dataflow (CSDF)
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Figure 7.3 Simple KPN structure
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and multidimensional synchronous dataflow (MSDF), variants whose capabilities are exploited in
later chapters of this book.

As outlined previously, numerous different MoC languages are popularly exploited in mod-
ern system level design tools for embedded systems in general and FPGA in particular. Indeed,
standardization efforts such as the unified modelling language or UML, (Marsh 2003) attempt to
standardize the interaction of these models. UML has various domains of system description, each
of which exposes different system characteristics and which are suitable for describing a different
type of system. Whilst the implementations may be less efficient than hand-coded realizations in
many specific systems cases, the rapid implementation still may produce adequately efficient results
across a range of systems, saving on design time. A number of such approaches exploiting these
techniques for software synthesis for single and multi-processor architectures are outlined next.

7.4.3 Embedded Multiprocessor Software Synthesis

A number of tools associated with UML, such as Real Time Studio from Artisan (Arti-
san Software Tools Ltd 2004) and Rhapsody from I-Logix can produce embedded code from such
models. Other approaches use domain-specific graphical system descriptions. The MATLAB r©
Real Time Workshop (RTW) offers code generation capabilities for a number of target types
directly from Simulink r© graphical system descriptions. Given the availability of hardware
synthesis flows from Simulink r© for FPGA technology (Hwang et al. 2001), this places the
MATLAB r© toolsuite in a very promising position for heterogeneous system design, although an
integrated heterogeneous environment does not yet exist.

Alternative approaches, such as the Rhapsody and Statemate tools from I-Logix (Gery et al. 2001,
Hoffmann 2000) and Ptolemy Classic (Madahar et al. 2003), offer code generation capabilities
from various domain-specific high-level system descriptions. Whilst each of these approaches offer
specific rapid implementation capabilities, none is a complete system level heterogeneous FPGA
design solution. A number of tools offer a different type of approach, where applications are
described in a MoC (to provide a platform-independent description of the DSP algorithm), before
interfacing to an API to enable rapid porting of autocoded implementations of the algorithm to the
target platform. Typical of such an approach is GEDAE.

7.4.4 GEDAE

GEDAE is a graphical dataflow algorithm specification and embedded rapid multiprocessor imple-
mentation environment. The structure of the GEDAE development environment is shown in Figure
7.4(a). Every processor in the system is characterised by a board support package (BSP), which is
the platform API. The flow graph editor connects a set of primitives (the basic leaf functions of
the application) in a DFG format, and schedules them. The primitives are described as structured
C functions with some imposed semantics to express the dataflow nature of the actors.

For high-level system optimization, a number of graph transformations can be applied, as will be
described in Chapter 11. The DFG is partitioned across the processors in the platform, and a number
of primitives inserted on-the-fly, such as inter-processor communication (send/recv) primitives, copy
boxes for data movement within a schedule and sync primitives for synchronization of primitives
with data streams. The resulting structure is then scheduled to generate the program to be executed
on the target processor. For high-level system optimization, a number of graph transformations can
be applied. The DFG is partitioned across the processors in the platform, and a number of inter-
processor communication (send /recv ) primitives are inserted on-the-fly. The resulting structure is
then scheduled to generate the program to be executed on the target processor.

The result of the scheduler is a launch package consisting of executables for all of the micro-
processors in the implementation platform and the schedule information for each processor. The
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Figure 7.4 GEDAE in the ESPADON system-level design environment

schedules can utilize a set of optimized vector library functions, for improved function performance
on embedded processors. The distributed application schedules for each processor are executed by
the data driven runtime kernel. The command program on the host transfers data with the dis-
tributed application and has access to all elements of the distributed application for alteration and
even dynamic reconfiguration. Part of the GEDAE BSP permits embedded inter-processor commu-
nication without the command program. When the application is deployed, the command program is
removed, and the host system reads the launch package, initializes the various platform processors,
and the application then runs distributed across the processors.

This currently plays a major part in current rapid prototyping approaches for military applications.
Figure 7.4(b) shows the place of GEDAE in the ESPADON design flow, the result of a major
European collaboration primarily involving BAE Systems and Thales.

7.5 IP Core Generation Tools for FPGA
7.5.1 Graphical IP Core Development Approaches

Block-based tools generate VHDL or Verilog HDL code from the block diagram to support hardware
design. The code can then be fed to a hardware synthesis tool, to implement the DSP design in an
FPGA or ASIC. The block-based approach still requires that the designer be intimately involved
with the timing and control aspects of cores, in addition to being able to execute the back-end
processor of the FPGA design flow. Furthermore, the only blocks available to the designer are the
standard IP core library. The system designer must still be intimate with the underlying hardware
in order to effectively implement the DSP algorithm into the hardware.

Most of these tools represent signal-processing algorithms on the popular Simulink r© and
MATLAB r© platforms and enable FPGA implementation from these high-level descriptions, by
generating VHDL or Verilog HDL code. Libraries of Simulink r© blocks are provided to represent
common signal processing functions. After users employ these special blocks to develop their
algorithms, the FPGA tools can convert the design into an FPGA implementation. These tools
include Xilinx’s System Generator and Altera’s DSP Builder.
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System Generator (Xilinx Inc. 2000) uses the popular MATLAB r©Simulink r© tool from Math-
Works Inc., and the cores developed by Xilinx Inc. to give a powerful high-level modelling envi-
ronment which can be used for DSP system design. The algorithm is described using Simulink r©,
implemented initially using double precision arithmetic, then trimmed down to fixed point, and
translated into hardware implementation. System Generator consists of a Simulink r© library called
the Xilinx Blockset, and software to translate a Simulink r© model into a hardware realization of the
model. In addition, System Generator automatically produces command files for FPGA synthesis,
HDL simulation, and implementation tools, thereby allowing the user to work entirely in a graph-
ical environment. The Xilinx Blockset can be freely combined with other Simulink r© blocks, but
only the Xilinx blocks and subsystems are converted into hardware. System Generator does this by
mapping the Xilinx Blockset subsystems into IP library modules, and converting the Simulink r©
hierarchy into a hierarchical VHDL netlist.

Whilst this allows fast algorithmic level description, implementation issues such as core datapath
latencies, levels of pipelining and numerical truncation, which can have a major impact on the
resulting system performance, are not considered. Currently, it is left to the user to incorporate
the impact of these issues when using the cores, and modify the model accordingly, which is not
inconsiderable. Furthermore, the standard library of Xilinx IP Cores are the only blocks available
to the designer. Other ‘black-box’ cores can be developed by a logic designer using standard HDL
techniques, but these cannot currently be modelled in the same environment. When combined with
the Xilinx System Generator

TM
for DSP tool, the new AccelDSP Synthesis 8.1 tool provides DSP

algorithm and system designers who use MATLAB r© and Simulink r© design tools with the a capable
design flow for high-performance DSP systems.

7.5.2 Synplify DSP

Synplify r© DSP is an IP core architectural synthesis tool which generates RTL-level core architec-
tures from combinations of low-level IP cores connected via the MATLAB Simulink r© algorithm
simulation environment. The designer develops their algorithm model in Simulink r© and gradually
refines it to a dedicated hardware FPGA architecture via a number of steps, as outlined in Figure
7.5. As this shows, the starting point is the ideal algorithm model, incorporating any manner of
number representation system (such as float, double, etc.). This is then refined to a fixed-point
equivalent in the Synplify DSP design environment. Each actor on the Simulink r© graph is then
mapped to an actor in a Simulink r© blockset supplied with the tool, representing the behaviour of
the core which represents that actor.

To account for discrepancies between the ideal algorithm behaviour and the physical behaviour
of the equivalent core, a number of automated optimizations of the architecture are possible during
the DSP Synthesis phase in Figure 7.5, including pipelining, retiming and automated vectorization
of the architecture. The resulting finalized architecture is then converted to an RTL equivalent for
implementation on the device via traditional RTL-level synthesis.

Further features, including fine-tuned design of state machine behaviour and architectures via
synthesis from specification in a subset of MATLAB M-code, allow fine-grained optimization of
the architecture and behaviour.

7.5.3 C-based Rapid IP Core Design

The C language is also commonly used to describe DSP algorithms because of the large amount
of proven open source code that exists, particularly in standards-based applications. In addition,
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designing in C enables significant productivity gains when compared with a traditional Verilog or
VHDL RTL design methodology due to the higher level of abstraction provided by C. Mentor
Graphics Catapult C and Celoxica’s Handel-C are two of the leading tools that enable designers to
target FPGA product using C. C-based design tools for FPGAs have had their limitations in fully
exploiting the FPGA architecture. FPGA constructs such as lookup tables, shift-register logic, and
pipelining all need to be understood for implementing high-performance designs.

SPARK is a high-level synthesis framework for applying parallel compiler tranformations (Gupta
et al. 2003). The effect of SPARK is that high-quality synthesis results are generated for designs
with complex control flow. It takes an unrestricted input behavioural description in ANSI-C, parses
it to give a hierarchical intermediate representation, and produces synthesizable RTL-level VHDL.
During scheduling, a series of transformations are used including a data dependency extraction
pass, parallelizing code motion techniques, basic operation of loop (or software) pipelining, and
some supporting compiler passes (Gupta et al. 2003). After scheduling, the SPARK system then
performs resource allocation, control synthesis and optimization to generate a FSM controller.

Handel-C is a high level programming language for implementing algorithms in hardware
(FPGAs or ASICs), and the accompanying design tools allow architectural design space explo-
ration, and hardware/software co-design (Oxford Hardware Compilation Group 1997), (Page 1996),
(Celoxica Ltd 2002). It extends a small subset of C, removing processor-oriented features such as
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pointers and floating-point arithmetic. It has been extended with a few constructs for configuring the
hardware device and to support generation of efficient hardware. These hardware design extensions
include flexible data widths, parallelism and communications between parallel elements.

Handel-C can be used to describe complex algorithms using all common expressions, and then
translate them into hardware at the netlist level with a few hardware-optimizing features. Unfor-
tunately, Handel-C allows only the design of digital, synchronous circuits and highly specialized
hardware features are not provided. The low-level problems described earlier are hidden com-
pletely, because its focus is on fast prototyping and optimization at the algorithmic level, instead of
investigation of all potentially possible design features. The compiler carries out all the gate-level
decisions and optimization so that the programmer can focus on the design task.

7.5.4 MATLAB r©-based Rapid IP Core Design

Although C/C++ has been the popular choice as a language for synthesis, users may choose
MATLAB r© in some approaches because of the following factors (Haldar 2001). First, MATLAB r©
provides a higher level of abstraction and less development time than C. Secondly, MATLAB r©
has a well-defined signal/image processing function blockset with a rich set of library functions
related to matrix manipulation. In MATLAB r©, the optimizations are easier and the compiler is less
error-prone because of the absence of pointers and other complex data structures. Finally, extracting
parallelism from MATLAB r© is easier than C because automatic extraction of parallelism from C
loops suffers from complex data dependency analysis, whereas DSP algorithms in MATLAB r© are
expressed as matrix operations which are very amenable to parallelization.

AccelFPGA (AccelFPGA 2002) provides a missing link between the DSP algorithm crea-
tion and FPGA hardware design. It produces optimized and synthesized RTL models from
MATLAB r© and Simulink r© in terms of the target FPGA’s internal execution resources, routing
architecture and physical design. This designer productivity tool is based on MATCH (MATLAB r©
compiler for heterogeneous computing systems, (Haldar 2001)). It helps the designer to develop
efficient code for configurable computing systems (Banerjee et al. 1999). In the MATCH project
(Haldar 2001), a comparison in performance between compiler-generated hardware and manually
designed hardware, indicates that the manually designed hardware was highly optimized for
performance. Therefore, as AccelFPGA attempts to raise the abstraction level for design entry,
higher levels of abstraction do not address the underlying complexities required for efficient
implementations and so there is a trade-off between design time and quality.

7.5.5 Other Rapid IP Core Design

Synopsys Behavioral Compiler
TM

(Synopsys Inc. 2000) is a behavioural synthesis tool, which allows
designers to evaluate alternative architectures, quickly generate an optimal gate-level implementa-
tion, and create designs that consist of a datapath, memory I/O and a control FSM. The features of
Behavioral Compiler include chaining, multicycle operation, pipelined operations, loop pipelining,
behavioural retiming and so on. Chaining schedules multiple intra-iteration-dependent operations
into a single cycle, where the sum delay of the individual operators is less than the given clock
period. Multicycle operations take more than a single cycle to complete, and are automatically
scheduled over the required number of cycles. Behavioral Compiler can create multiple architec-
tures from a single specification, and trade-off throughput and latency using high-level constraints
because of these features.

MMAlpha, which is written in C and Mathematica, is a programming environment for manip-
ulating and transforming the ALPHA program language (Derrien and Risset 2000). It provides a
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path from high-level functional specification of an algorithm, to a synthesizable VHDL program.
MMAlpha targets both ASICs and FPGAs, and is a functional data parallel language that allows
expression of both recurrence equations and the hardware architecture of systolic arrays (Dupont de
Dinechin et al. 1999). Advanced manipulation of ALPHA programs consists of pipelining, changes
of basis, normalization and scheduling. Pipelining is a transformation widely used in systolic syn-
thesis. It can be implemented by changing the basis in ALPHA. ALPHA also provides syntax for
retiming synchronous architectures. In order to produce a hardware implementation for an ALPHA
specification, ALPHARD, a subset of ALPHA, is used. ALPHARD enables a structural definition
of a regular architecture such as systolic arrays to be given, and generates VHDL code at RTL
level. However, only 1D and not 2D systolic arrays represented by ALPHARD programs can be
translated to VHDL code.

JHDL (Bellows and Hutchings 1998) is a set of FPGA CAD tools based on Java HDL, originally
for reconfigurable systems, developed at Brigham Young University. The main objective of JHDL
is to develop a tool for describing circuits that can be dynamically changed over time. It allows
the user to develop high-performance reconfigurable computing applications. JHDL is based on
Java and is a structural design environment that results in smaller and faster circuits, compared
with those developed using conventional behavioural synthesis tools. It supports some level of
device independence, and uses TechMapper to target particular FPGA platforms. JHDL assumes
a globally synchronous design, and does not support multi-clock synchronous and asynchronous
loops. In addition, JHDL does not support behavioural synthesis. Compared with Handel-C, it is a
lower level and provides much more control over the actual implementation in hardware, but is a
much more difficult design environment.

7.6 System-level Design Tools for FPGA
7.6.1 Compaan

This research effort, is composed of three main tools, Compaan, LAURA and ESPAM. Com-
paan/LAURA (Stefanov et al. 2004) is a system-level design and optimization approach following
the design ethics of PBD. Compaan is an automated toolset for generation of stream-based function
(SBF) models (a variant of Process Networks with nodes of the structure shown in Figure 7.6(b)
(Kienhuis and Deprettere 2001)) of DSP applications from nested loop representations written in
conventional sequential languages such as MATLAB r© or C++, as shown in Figure 7.6(a). The SBF
algorithm representation can then be implemented as dedicated hardware networks on FPGA via an
implementation paradigm, which produces wrappers for pre-design intellectual property cores, as
described in Harriss et al. (2002). In recent years, this effort has expanded to produce the LAURA
tool for implementation optimisation, and the ESPAM tool for code generation for multiproces-
sors communicating via a crossbar switch component. System optimization is performed largely
by exploiting sequential code parallelization techniques such as loop unrolling or loop skewing, as
outlined in Stefanov et al. (2002).

7.6.2 ESPAM

The ESPAM system synthesis tool (Nikolov et al. 2006) extends the design process proposed by
Compaan to target heterogeneous multiprocessor platforms. Again, the design process starts with a
sequential application specified in MATLAB r© or C++ or an equivalent programing language, which
is automatically converted to a parallel KPN specification by the KPNgen tool (Verdoolaege et al.
2007), which has added capabilities to process so-called weakly dynamic program types and estimate
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KPN FIFO buffer sizes. The resulting KPN is then mapped to a multiprocessor system-on-chip
(MPSoC) platform specification. Source for each processor in the platform is generated, along with
a crossbar, bus-based or point-to-point inter-processor communication architecture (Nikolov et al.
2006). System optimization is achieved via the application of various optimising transformations in
the process of translating the input sequential specification to a KPN. An overview of the ESPAM
design approach is given in Figure 7.7.

7.6.3 Daedalus

The Daedalus MPSoC design approach combines the synthesis capabilities of ESPAM with the
system-level simulation capabilities of the Sesame system-level simulation and exploration envi-
ronment, that has been developed at the University of Amsterdam (Pimentel et al. 2006, Thompson
et al. 2007). Essentially, this combination augments the parallel algorithm derivation and rapid
synthesis capabilities of ESPAM, with the capability to automatically explore the multiprocessor
network topology and algorithm to architecture mapping design spaces. This allows automatic gen-
eration of the platform and mapping specifications to the ESPAM synthesis tool, where previously
these inputs were manually generated. The overall Daedalus system design framework is shown in
Figure 7.8. In Thompson et al. (2007), the developers have demonstrated the capabilities of this
tool, to automatically explore the real-time performance design space for an MPEG application,
by varying the number of PowerPC and Microblaze processor components in an MPSoC network,
hosted on a Xilinx Virtex 2 Pro 2 FPGA.
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7.6.4 Koski

The Koski multiprocessor SoC (MP-SoC) design environment is a unified UML-based infras-
tructure for design space exploration and automatic synthesis, programming and prototyping of
MPSoCs, primarily aimed at wireless sensor network applications (Kangas et al. 2006). The Koski
environment structure is outlined in Figure 7.9.

Koski has a component-based design ethos, with the final architecture composed of numerous
embedded processors and IP cores interface to a HIBI bus network (Salminen et al. 2006). As this
shows, the inputs to Koski are manual specifications of application behaviour, the architecture and
design constraints. Algorithm specification in Koski is via the KPN modelling language discussed
in Section 7.4.2. From these, models of both the algorithm and architecture, as well as the mapping
of KPN actors to the platform are derived. As Figure 7.9 shows, the architecture exploration
consists of two phases: a static and a dynamic phase. The static phase determines the allocation
of multiprocessor resources (in a variety of possible architectures from single to multiprocessor)
and the mapping of the application onto the platform, and scheduling of the implementation.
In the dynamic phase, finer-grained exploration is enabled, via time-accurate modelling of the
implementation. Koski then supplies the software and RTL synthesis technology to enable the final
implementation to be prototyped on an FPGA prototyping platform.

7.7 Conclusion
This chapter has outlined cutting-edge technology in the fields of application modelling, design
methodology, IP core and core network synthesis, multiprocessor software synthesis and system-
level design tools for heterogeneous FPGA systems. It has been shown that the rapid implemen-
tation capabilities of all these approaches stem from the exploitation of well-defined semantics in
application-defining MoCs to produce embedded hardware and software implementations.
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When considering rapid implementation tools in varying domains, it is notable that they have
this single global similarity in common. Chapter 8 examines techniques for exploiting signal flow
modelling for automatic, component-based synthesis of highly pipelined IP cores. It is revelatory to
compare and contrast the treatment of the inherent dataflow modelling semantics, in this case with
their treatment in multiprocessor software synthesis tools, such as GEDAE. Chapter 11 outlines
how, although these two approaches have identical starting points, they are quite disparate and
noncomplementary approaches. Furthermore, this chapter outlines techniques to exploit the common
starting point for joint synthesis of systems which are more efficient than those which could be
achieved using these current, disparate techniques.
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8
Architecture Derivation for
FPGA-based DSP Systems

8.1 Introduction
The technology review, Chapters 4 and 5, clearly demonstrated the need to develop a circuit
architecture when implementing DSP algorithms on silicon hardware, whether the platform is
ASIC or FPGA technology. The circuit architecture allows the performance needs of the application
to be captured effectively. As was highlighted earlier, it is possible to implement high levels of
parallelism available in the FIR filter expression (Equation 2.11 in Chapter 2), in order to achieve a
performance increase, or to pipeline the SFG or dataflow graph (DFG) heavily. The first realization
assumes that the hardware resource is available in terms of silicon area and the second approach
assumes that the increased latency in terms of clock cycles, incurred as a result of the pipelining
(admittedly at a smaller clock period), can be tolerated. It is clear that optimizations made at the
hardware level can have direct cost implications for the resulting design. Both of these aspects can
be captured in the circuit architecture.

As described in Chapter 5, this trade-off is much easier to explore in ‘fixed architectural’ plat-
forms such as microprocessors, DSP processors or even reconfigurable processors, as sufficiently
appropriate tools can, or have been developed to map the algorithmic requirements efficiently onto
the available hardware. As already discussed, the main attraction of using FPGAs is that the high
level of available hardware, can be developed to meet the specific needs of the algorithm. However,
this negates the use of efficient compiler tools as in effect, the architectural ‘goalposts’ have moved
as the architecture is created on demand! This fact was highlighted in Chapter 8 which covered
some of the high-level tools that are being developed either commercially, or in universities and
research labs. Thus, it is typical that a range of architecture solutions are explored with cost factors
that are computed at a high level of abstraction.

In this chapter, we will explore the direct mapping of simple DSP systems or more precisely,
DSP components such as FIR or IIR filters, adaptive filters, etc. as these will now form the part of
more complex systems such as beamformers, echo cancellers, etc. The key focus is to investigate
how changes applied to SFG representations can impact the FPGA realizations of such functions,
allowing the reader to quickly work in the SFG domain, rather than at the circuit architecture
domain. This trend becomes increasingly prevalent through the book, as we attempt to move to a
higher level representation. The later chapters demonstrate how higher levels of abstraction can be
employed to allow additional performance improvements by considering system level implications.

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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Section 8.2, looks at the DSP characteristics and gives some indication of how these map to FPGA
implementation. We then attempt to describe how SFG changes are manifested in FPGA technology
concentrating specifically on the Xilinx Virtex FPGA family. Given that a key aspect of FPGA
architecture is the distributed memory, efficient pipelining is highlighted as a key optimization. This
is explored in detail and formal methods to achieve the required levels of pipelining are presented.
This section relies heavily on an excellent text by Keshab K. Parhi (Parhi 1999) which covers the
implementation of complex DSP systems in VLSI hardware. The chapter then goes onto to cover
a number of circuit level optimisations available to achieve the necessary speed but at a lower
(or higher) area cost. This involves transforming the original SFG to achieve the necessary speed
target; this could involve duplicating the hardware in order to improve the number of computations,
a process called unfolding, or by sharing the available hardware if the speed available is too great.
This is known as folding. Throughout the chapter, the techniques are applied to simple examples
usually FIR and IIR filters.

8.2 DSP Algorithm Characteristics
By their very nature, DSP algorithms tend to be used in applications where there is a demand to
process lots of information. As highlighted in Chapter 2, the sampling rates can range from kHz
as in speech environments, right through to MHz, in the case of image processing applications.
It is vital to clearly define a number of parameters with regard to system implementation of DSP
systems:

• sampling rate can be defined as the rate at which we need to process the DSP signal samples for
the system or algorithm under consideration. For example, in a speech application, the maximum
bandwidth of speech is typically judged to be 4 kHz, resulting in a sampling rate of 8 kHz.

• throughput rate defines the rate at which data samples are processed. In some cases, the aim
of DSP system implementation is to match the throughput and sampling rates, but in the lower
sampling rates systems (speech and audio), this would result in under-utilization of the processing
hardware. For example speech sampling rates are 8 kHz, but the speeds of many DSP processors
are of the order of hundreds of MHz. In these cases, there is usually a need to perform a high
number of computations per second which means that the throughput rate can be several of
orders of magnitude higher say p, than the sampling rate. In cases where the throughput is high
and the computational needs are moderate, then the possibility exists to reuse the hardware, say
p times.

• clock rate defines the operating speed of the system implementation and is a figure that has been
historically quoted by PC vendors to give some notion of performance. We argue it can be false
in some applications as memory size, organization and usage can be more critical in determining
performance. In DSP systems, a simple perusal of DSP and FPGA data sheets indicates that the
clock rates of the latest Xilinx Virtex 5 FPGA family is 550 MHz whereas the TI’s C64xx DSP
family can run up to 1 GHz. At first thought, it would appear that the DSP processor is faster
than the FPGA, but it is the amount of computation that can be performed in a single cycle that
it is important. This is a major factor in determining the throughput rate which is a much more
accurate estimate of performance, but is of course, application dependent.

Thus, it is clear that we need to design systems ultimately for throughput and therefore sampling
rate, as a first measure of performance. This relies heavily on how efficiently we can develop the
circuit architecture. As Chapters 4 and 5 clearly indicated, this comes from harnessing effectively
the underlying hardware resources to meet the performance requirements. For ASIC applications,
this is a fairly open hardware platform, but for FPGAs this is restricted in terms of processing
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elements, e.g. dedicated DSP blocks, scalable adder structures, LUT resources, memory resource
(distributed RAM, LUT RAM, registers) and interconnection, e.g. high-speed Rocket I/O, various
forms of programmable interconnect etc. The aim is to match these resources to the computational
needs which we will do here based initially on performance and then trading off area, if throughput
is exceeded.

This does present major challenges. In DSP processors, the fixed nature of the architecture is
such that efficient DSP compilers have evolved to allow high-level descriptions, for example C
language descriptions, to be compiled, assembled and implemented onto the processors. Thus the
aim of the DSP compiler is to investigate if the processing clock speed will allow one iteration
of the algorithm to be computed at the required sampling rate. It does this by examining the fixed
resources of the processor and scheduling the computation in such a way to achieve the required
sampling rate. In effect, this involves reusing the available hardware, but we intend not to think
about the process in these terms. From FPGA implementation, an immediate design consideration
is to consider how many times can we reuse the hardware and does this allow us to achieve the
sampling rate? This change of emphasis is creating the hardware resource to match the performance
requirements is a key focus of the chapter.

8.2.1 Further Characterization

Some basic definitions of sampling, throughput and clock rates have now been explored for DSP
systems. However, as we start to explore different techniques to change and improve circuit
architectural descriptions, it is important to explore other timing aspects. For example, employ-
ing concurrency, in the form of parallelism and pipelining, can have additional impact on the
performance and timing of the resulting FPGA implementations.

Latency is the time required to produce the output, y(n) for the corresponding x(n) input. At first
glance, this would appear to equate to the throughput rate, but as the computation of y(n) = a x(n)

shown in Figure 8.1 clearly demonstrates, this is not the case, particularly if pipelining is applied.
In Figure 8.1, the circuit could have three pipeline stages and thus will produce a first output after
three clock cycles, hence known as the latency ; thereafterwards, it will produce an output once
every cycle which is the throughput rate. Consider the simple recursion y(n) = a y(n − 1) shown
in Figure 8.2. The present output y(n) is dependent on the previous output y(n − 1), and thus the

Figure 8.1 Latency and throughput rate relationship for system y(n) = ax(n)
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Figure 8.2 Latency and throughput rate relationship for system y(n) = a, y(n − 1)

latency determines the throughput rate. This means that if it takes three clock cycles to produce
the first output, then we have to wait three clock cycles for the circuit to produce each output
and for that matter, enter every input. Thus it is clear that any technique such as pipelining that
alters both the throughput and the latency, must be considered carefully, when deriving the circuit
architectures for different algorithms.

There are a number of optimizations that can be carried out in FPGA implementation to perform
the required computation, as listed below. Whilst it could be argued that parallelism is naturally
available in the algorithmic description and not an optimization, the main definitions here focus
around exploitation within FPGA realization; a serial processor implementation does not necessarily
exploit this level of parallelism.

Parallelism can either naturally exist in the algorithm description or can be introduced by organizing
the computation to allow a parallel implementation. In Figure 8.3, we can realize processes P1,
P2 and P3 as three separate processors, PE1, PE2 and PE3 in all three cases. In Figure 8.3(a),
the processes are driven from a single source, in Figure 8.3(b), they are from separate sources
and in Figure 8.3(c), the processes are organized sequentially. In the latter case, the processing
is inefficient as only one processor will be used at any one time, but it is shown here for
completeness.

P1

P2

P3

P1

P2

P3

P1 P2 P3

(a) Single source (b) Multiple sources

(c) Sequential algorithm

Figure 8.3 Algorithms realizations using three processors PE1, PE2 and PE3
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Figure 8.4 Interleaving example

Interleaving can be employed to speed up computation, by sharing a number of processors to
compute iterations of the algorithm in parallel, as illustrated in Figure 8.4 for the sequential
algorithm of Figure 8.3(c). In this case, the three processes P1, P2 and P3 perform three iterations
of the algorithm in parallel and each row of the outlined computation is mapped to an individual
processor, PE1, PE2 and PE3.

Pipelining is effectively another form of concurrency where processes are carried out on separate
pieces of data, but at the same time, as illustrated in Figure 8.5. In this case, the three processes
P1, P2 and P3 are performed at the same time, but on different iterations of the algorithm. Thus
the throughput is now given as tPE1 or tPE2 or tPE3 rather than tPE1 + tPE2 + tPE3 as for
Figure 8.3(c). However, the application of pipelining is limited for some recursive functions such
as the computation y(n) = ay(n − 1) given in Figure 8.6. As demonstrated in Figure 8.6(a), the
original processor realization would have resulted in an implementation with a clock rate fc and
throughput rate f . Application of four levels of pipelining, as illustrated in Figure 8.6(b), results
in an implementation that can be clocked four times faster, but since the next iteration depends
on the present output, then it will have to wait four clock cycles. This gives a throughput rate
of once every four cycles, indicating a nil gain in performance. Indeed, the flip-flop setup and
hold times now form a much larger fraction of the critical path, and thus the performance would
actually have been degraded in real terms.

It is clear then, whilst these optimizations exist, it is not a straightforward application of one
technique. For example, it may be possible to employ parallel processing in the final FPGA
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Figure 8.5 Example of pipelining
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(a) Original recursive computation (clock rate, f and throughput rate, f )

(b) Pipelined version (clock rate, 4f and throughput rate, f )

Figure 8.6 Pipelining of recursive computations y(n) = ay(n − 1)

realization and then employ pipelining within each of the processors. In Figure 8.6(b), pipelin-
ing did not give a speed increase, but now four iterations of the algorithm can be interleaved,
thereby achieving a fourfold improvement. It is clear that there are a number of choices available
to the designer to achieve the required throughput requirements with minimal area requirements
such as sequential versus parallel, trade-off between parallelism/pipelining and efficient use of hard-
ware sharing. The focus of this chapter is to demonstrate how the designer can start to explore
these trade-offs in an algorithmic representation, by starting with a SFG or DFG description and
then carrying out manipulations with the aim of achieving improved performance.

8.3 DSP Algorithm Representations
There are a number of ways of representing DSP algorithms ranging from mathematical descriptions,
to block diagrams, right through to HDL descriptions of implementations. In this chapter, we
concentrate on a SFG and DFG representation as we use this as a starting point for exploring some
of the optimizations briefly outlined above. For this reason, it is important to provide more detail
on SFG and DFG representations.

8.3.1 SFG Descriptions

The classical description of a DSP system is typically achieved using a signal flow graph (SFG).
The SFG representation is a collection of nodes and directed edges, where a directed edge (j, k )
denotes a linear transform from the signal at node j to the signal at node k. Edges are usually
restricted to multiplier, adder or delay elements. The classical SFG of the expression y(n) =
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Figure 8.7 Various representations of simple DSP recursion y(n) = ay(n − 1) + x(n)

ay(n − 1) + x(n) is given in Figure 8.7(a) whereas the block diagram is given in Figure 8.7(b).
The DFG representation is shown in Figure 8.7(c) and it shown here, as it is a more useful
representation for applying much of the retiming optimizations applied later in the chapter.

8.3.2 DFG Descriptions

In DFGs, nodes represent computations or functions and directed edges represent data paths with
non-negative numbers associated with them. Dataflow captures the data-driven property of DSP
algorithms where node can fire (perform its computation) when all the input data is available. This
creates precedence constraints (Parhi 1999). There is an intra-iteration constraint if an edge has no
delay, in other words the ordering of firing is dictated by DFG arrow direction. The inter-iteration
constraint applies if the edge has one or more delays and will be translated to a digital delay or
register when implemented.

A more practical implementation can be considered for a 3-tap FIR filter configuration. The
SFG representation is given in Figure 8.8. One of the transformations that can be applied to SFG
representation is that of transposition. This is carried out by reversing the directions in all edges,
exchanging input and output nodes whilst keeping edge gains or edge delays unchanged as shown
in Figure 8.8(b). The reorganized version is shown in Figure 8.8(c). The main difference is that the
dataflow of the x(n) input has been reversed without causing any functional change to the resulting
SFG. It will be seen later how the SFG of Figure 8.8(c) is a more appropriate structure to which
to apply pipelining.

The data flow representation of the SFG of Figure 8.8(b) is shown in Figure 8.9. In Figure 8.9,
the multipliers labelled as a0, a1 and a2 represent pipelined multipliers with two levels of pipeline
stages. The adders labelled as A0 and A1 represented pipelined adders with a pipeline stage of 1.
The D labels represent single registers with size equal to the wordlength (not indicated on the
DFG representation). In this way, the dataflow description gives a good indication of the hardware
realization; it is clear that it is largely an issue of developing the appropriate DFG representation for
the performance requirements needed. In the case of pipelined architecture, this is largely a case of
applying suitable retiming methodologies to develop the correct level of pipelining, to achieve the
performance required. The next section is totally dedicated to retiming because as will be shown
there, recursive structures, i.e. those involving feedback loops, can present particular problems.

8.4 Basics of Mapping DSP Systems onto FPGAs
One of the main goals in attaining an FPGA realization is to determine the levels of pipelining
needed. The timing of the data through the 3-tap FIR filter of Figure 8.8(a) for the nodes labelled
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Figure 8.8 SFG representation of 3-tap FIR filter
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Figure 8.9 Simple DFG

(1), (2) and (3), is given in Table 8.1. We can add a delay to each multiplier output as shown in
Figure 8.8(a), giving the change in data scheduling, as shown in Table 8.2. Note that the latency
has now increased, as the result is not available for one cycle. However, adding another delay onto
the outputs of the adders causes failure, as indicated by Table 8.3. This is because the process by
which we are adding these delays has to be carried out in a systematic fashion by the application
of a technique known as retiming. Obviously, retiming was applied correctly in the first instance
as it did not change the circuit functionality but incorrectly in the second case. Retiming can be
applied via the cut theorem as described in (Kung 1988).

8.4.1 Retiming

Retiming (Leiserson and Saxe 1983) is a transformation technique used to move delays in a circuit
without affecting the input/output characteristics. Retiming has been applied in synchronous designs
for clock period reduction (Leiserson and Saxe 1983), power consumption reduction (Monteiro et al.
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Table 8.1 FIR filter timing

Clock Input Node 1 Node 2 Node 3 Output

0 x(0) a0x(0) a0x(0) a0x(0) y(0)

1 x(1) a0x(1) a0x(1) + a1x(0) a0x(1) + a1x(0) y(1)

2 x(2) a0x(2) a0x(2) + a1x(1) a0x(2) + a1x(1) + a2x(0) y(2)

3 x(3) a0x(3) a0x(3) + a1x(2) a0x(3) + a1x(2) + a2x(1) y(3)

4 x(4) a0x(4) a0x(4) + a1x(3) a0x(4) + a1x(3) + a2x(2) y(4)

Table 8.2 Revised FIR filter timing

Clock Input Node 1 Node 2 Node 3 Output

0 x(0) a0x(0)

1 x(1) a0x(1) a0x(0) a0x(0) y(0)

2 x(2) a0x(2) a0x(1) + a1x(0) a0x(1) + a1x(0) y(1)

3 x(3) a0x(3) a0x(2) + a1x(1) a0x(2) + a1x(1) + a2x(0) y(2)

4 x(4) a0x(4) a0x(3) + a1x(2) a0x(3) + a1x(2) + a2x(1) y(3)

Table 8.3 Faulty application of retiming

Clock Input Node 1 Node 2 Node 3 Output

0 x(0) a0x(0)

1 x(1) a0x(1) a1x(0)

2 x(2) a0x(2) a0x(1) + a1x(0) a2x(0) y(0)

3 x(3) a0x(3) a0x(2) + a1x(1) a0x(1) + a1x(0) + a2x(0)

4 x(4) a0x(4) a0x(3) + a1x(2) a0x(2) + a1x(1) + a2x(1)

1993), and logical synthesis. The basic process of retiming is given in Figure 8.10 as taken from
(Parhi 1999). For a circuit with two edges U and V and ω delays between them, as shown in
Figure 8.10(a), a retimed circuit can be derived with ω′ delays as shown in Figure 8.10(b), by
computing the ω′ value as given in equation (8.1) where r(U) and r(V ) are the retimed values for
nodes U and V , respectively.

ωr(e) = ω(e) + r(U) − r(V ) (8.1)

Retiming has a number of properties which are summarized (Parhi 1999):

1. Weight of any retimed path is given by Equation (8.1).
2. Retiming does not change the number of delays in a cycle.
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Figure 8.10 SFG representation of 3-tap FIR filter (Parhi 1999)

3. Retiming does not alter the iteration bound (see later) in a DFG as the number of delays in a
cycle does not change.

4. Adding the constant value j to the retiming value of each node does not alter the number of
delays in the edges of the retimed graph.

Figure 8.11 gives a number of examples of how retiming can be applied to the FIR filter
DFG of Figure 8.11(a). For simplicity, we have replaced the labels of a0, a1, a2, A0 and A1

of Figure 8.9 by 2, 3, 4, 5 and 6 respectively. We have also shown separate connections between
the x(n) data source and nodes 2, 3 and 4; the reasons for this will be shown shortly. By applying
equation (8.1) to each of the edges, we get the following relationships for each edge:

ωr(1 → 2) = ω(1 → 2) + r(2) − r(1)

ωr(1 → 3) = ω(1 → 3) + r(3) − r(1)

ωr(1 → 4) = ω(1 → 4) + r(4) − r(1)

ωr(2 → 5) = ω(2 → 5) + r(5) − r(2)

ωr(3 → 5) = ω(3 → 5) + r(5) − r(3)

ωr(4 → 6) = ω(4 → 6) + r(6) − r(4)

ωr(5 → 6) = ω(5 → 6) + r(6) − r(5)

(8.2)

Using a retiming vector r(1) = −2, r(2) = −2, r(3) = −2, r(4) = −2, r(5) = 0, r(6) = 0 in
Equation (8.2), we get the following values:

ωr(1 → 2) = 0 + (−2) − (−2) = 0

ωr(1 → 3) = 1 + (−2) − (−2) = 1

ωr(1 → 4) = 2 + (−2) − (−2) = 2

ωr(2 → 5) = 0 + (0) − (−2) = 2

ωr(3 → 5) = 0 + (0) − (−2) = 2

ωr(4 → 6) = 0 + (0) − (−2) = 2

ωr(5 → 6) = 0 + (0) − (0) = 0
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(a) DFG of original 3-tap FIR filter

(b) FIR filter DFG retimed with r(1) = −2, r(2) = −2, r(3) = −2
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(c) FIR filter DFG retimed with r(1) = −2, r(2) = −2, r(3) = −2
r(4) = −1, r(5) = −1, r(6) = 0

Figure 8.11 Retimed FIR filter

This gives the revised diagram shown in Figure 8.11(b) which gives a circuit where each mul-
tiplier has two pipeline delays at the output edge. A retiming vector could have been applied
which provides one delay at the multiplier output, but the reason for this retiming will be seen
later. Application of an alternative retiming vector namely, r(1) = −2, r(2) = −2, r(3) = −2,

r(4) = −1, r(5) = −1, r(6) = 0 gives the circuit of Figure 8.11(c) which gives a fully pipelined
implementation. It can be seen from this figure that the application of pipelining to the adder stage
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required an additional delay D, to be applied to the connection between 1 and 4. It is clear from
these two examples that a number of retiming operations can be applied to the FIR filter. A retiming
solution is feasible if ωr ≥ 0, holds for all edges.

ωr(1 → 2) = 0 + (−2) − (−2) = 0

ωr(1 → 3) = 1 + (−2) − (−2) = 1

ωr(1 → 4) = 2 + (−1) − (−2) = 3

ωr(2 → 5) = 0 + (−1) − (−2) = 1

ωr(3 → 5) = 0 + (−1) − (−2) = 1

ωr(4 → 6) = 0 + (0) − (−1) = 1

ωr(5 → 6) = 0 + (0) − (−1) = 1

It is clear from the two examples outlined that retiming can be used to introduce inter-iteration
constraints (Parhi 1999) to the DFG which is manifested as a pipeline delay in the final FPGA
implementation. However, the major issue would appear to be the determination of the retiming
vector which must be such that it moves the delays to the edges needed in the DFG whilst at the
same time, preserving the viable solution, i.e. ωr ≥ 0 holds for all edges. One way of determining
the retiming vector, is to apply a graphical methodology to the DFG which symbolizes applying
retiming. This is known as the cut-set or cut theorem and was presented by Kung (1988).

8.4.2 Cut-set Theorem

A cut-set in an SFG (or DFG) is a minimal set of edges, which partitions the SFG into two parts.
The procedure is based upon two simple rules.

Rule 1: Delay scaling. All delays D presented on the edges of an original SFG may be scaled, i.e.,
D′ −→ αD, by a single positive integer α, which is also known as the pipelining period of
the SFG. Correspondingly, the input and output rates also have to be scaled by a factor of
α (with respect to the new time unit D′). Time scaling does not alter the overall timing
of the SFG.

Rule 2: Delay transfer. (Leiserson and Saxe 1983) Given any cut-set of the SFG, which partitions
the graph into two components, we can group the edges of the cut-set into inbound and
outbound, as shown in Figure 8.12, depending upon the direction assigned to the edges. The
delay transfer rule states that a number of delay registers, say k, may be transferred from
outbound to inbound edges, or vice versa, without affecting the global system timing.

Let’s consider the application of Rule 2 to the FIR filter DFG of Figure 8.11(a). The first cut
is applied in Figure 8.13(a) where the DFG graph is cut into two distinct regions or sub-graphs,
sub-graph # 1 comprising nodes 1, 2, 3 and 4, and sub-graph # 2 comprising 5 and 6. Since all
edges between the regions are outbound from sub-graph # 1 to sub-graph # 2, a delay can be added
to each. This gives Figure 8.11(b). The second cut splits the DFG into sub-graph # 3, comprising
nodes 1, 2, 3 and 5 and sub-graph # 4 comprising nodes 4 and 6. The addition of a single delay
to this edge lead to the final pipelined design, as shown in Figure 8.11(c).

These rules provide a method of systematically adding, removing and distributing delays in a SFG
and therefore adding, removing and distributing registers throughout a circuit, without changing
the function. The cut-set retiming procedure is then employed, to cause sufficient delays to appear
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Figure 8.12 Cut-set theorem application
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Figure 8.13 Cut-set timing applied to FIR filter

on the appropriate SFG edges, so that a number of delays can be removed from the graph edges
and incorporated into the processing blocks, in order to model pipelining within the processors; if
the delays are left on the edges, then this represents pipelining between the processors.

Of course, the selection of the original algorithmic representation can have a big impact on
the resulting performance. Take, for example, the alternative version of the SFG shown initially
in Figure 8.8(c), and represented as a DFG in Figure 8.14(a); applying an initial cut-set allows
pipelining of the multipliers as before, but now applying the cut-set between nodes 3 and 5, and
nodes 4 and 6, allows the delay to be transferred resulting in a circuit architecture with a lower
number of delay elements as shown in Figure 8.14(c).

8.4.3 Application of Delay Scaling

In order to investigate the delay scaling aspect, let’s consider a recursive structure such as the second
order IIR filter section given in Equation (8.3). The block diagram and the corresponding DFG is
given in Figures 8.15(a) and 8.15(b) respectively. The target is to apply pipelining at the processor
level, thereby requiring a delay D on each edge. The problem is that there is not sufficient delays in
the 2 → 3 → 2 loop, to apply retiming. For example, if the cut shown on the figure was applied, this
would end up moving the delay on edge 3 → 2 to edge 2 → 3. The issue is resolved by applying
time scaling, by working out the worse case pipelining period, as defined by Equations (8.4)
and (8.5).

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + b1y(n − 1) + b2y(n − 2) (8.3)

αc = Bc

Dc
(8.4)

α = max {allαc} (8.5)
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Figure 8.15 2nd-order IIR filter

In Equation (8.4), the value Bc refers to the delays required for processor pipelining and the value
Dc refers to the delays available in the original DFG. The optimal pipelining period is computed
using Equation (8.5) and is then used as the scaling factor. There are two loops as shown, giving
a worst-case loop bound of 2. The loops are given in terms of unit time (u.t.) steps.

1 → 2 → 4 → 1 (3 u.t.)

2 → 3 → 2 (2 u.t.)

Loop bound � 1 (3/2 = 1.5 u.t.)

Loop bound � 2 (2/1 = 2 u.t.)
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Figure 8.16 Pipelining of a 2nd-order IIR filter

Table 8.4 Faulty application of retiming

Area Throughput

Circuit DSP48 Flip-flops
Clock Data rate
(MHz) (MHz)

Figure 8.15(b) 2 20 176 176
Figure 8.16(d) 2 82 377 188

The process of applying the scaling and retiming is given in Figure 8.16. Applying scaling of 2
gives the retimed DFG of Figure 8.16(a). Applying the cut shown in the figure gives the modified
DFG of Figure 8.16(b) which then has another cut applied, giving the DFG of Figure 8.16(c).
Mapping of the delays into the processor and adding the numbers to show the pipelining level
gives the final pipelined IIR recursion (Figure 8.16(d)).

The final implementation has been synthesized using the Xilinx Virtex 5 FPGA and the synthesis
results can be viewed for the circuits of Figure 8.15(b) and Figure 8.16(d) in Table 8.4.
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Figure 8.17 Simple DFG example (Parhi 1999)

8.4.4 Calculation of Pipelining Period

The previous sections have outlined a process for first determining the pipelining period then allow-
ing scaling of this pipelining period to allow pipelining at the processor level which is the finest
level of pipelining possible within FPGA technology (Although, as will be seen in Chapter 14,
adding higher levels of pipelining can be beneficial for low-power FPGA implementations). How-
ever, the computation of the pipelining period was only carried out on a simple example of an
IIR filter 2nd-order section and therefore much more efficient means of computing the pipelining
period are needed. A number of different techniques have been presented in (Parhi 1999). The one
considered here is known as the longest path matrix algorithm (Parhi 1999) and is best illustrated
with an example.

Longest Path Matrix Algorithm

A series of matrices is constructed and the iteration bound is found by examining the diagonal
elements. If d is the number of delays in DFG, then create L(m) matrices where m = 1, 2, >, d

such that element l11,j is the longest path from delay element di which passes through exactly
m − 1 delays (not including di and dj ); if no path exists, then l11,j is −1. The longest path can be
computed using Bellman–Ford or Floyd–Warshall algorithm (Parhi 1999).

Example 1. Consider the example given in Figure 8.17. Since the aim is to produce a pipelined
version of the circuit, we have started with pipelined version indicated by the (1) expression included
in each processor. This can be varied by changing the expression to (0) if the necessary pipelining
is not required, or to a higher value, e.g. (2) or (3), if additional pipelined delays are needed in the
routing to aid placement and routing or for low-power implementation.

The first stage is to compute the L(m) matrices, beginning with the L(m) matrix. This is computed
by generating each term, namely l1

1,j , which is given as the path from delay di through to dj . For
example, d1 to d1 passes through either 1 (d1 → d2 → 2 → 3 → 1 → d1) or 2 delays (d1 → d2 →
2 → d4 → 1 → d1), therefore (1, 1) = −1. For l1

3,1, the path d3 to d1 passes goes through nodes
(4) and (1), giving a delay of 2; therefore, l1

3,1 = 2. For l1
2,1, the path d2 to d1 passes goes through

nodes (2), (3) and (1), therefore l1
2,1 = 3. This gives the matrix as shown below:


 −1 0 −1

7 −1 3
3 −1 −1
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The higher-order matrices do not need to derived from the DFG. They can be recursively
computed as:

lm+1
i,j =

max
kεK (−1, l1

i,j + lmk,j )

where K is the set of integers k in the interval [1, d ] such that, neither l1
i,k = −1 nor lmi,k = −1

holds. Thus for l2
1,1, we can consider K = 1, 2, 3 but 1,3 include −1, so only K = 2 is valid. Thus

l2
1,1 =

max
kε3 (−1, 0 + 7)

The whole L(2) is generated is this way as shown below.




−1 0 −1
7 −1 3
3 −1 −1




L(1)




−1 0 −1
7 −1 3
3 −1 −1


⇒

L(1)




7 −1 3
6 7 −1

−1 3 −1




L(2)

While L(2) was computed using only L(1), the matrix L(3), is computed using both L(1) and L(2)

as shown below, with the computation for each element given as

l3
i,j =

max
kεK (−1, l1

i,j + l2
k,j )

as before. This gives the computation of L(3) below:




−1 0 −1
7 −1 3
3 −1 −1




L(1)




7 −1 3
6 7 −1

−1 3 −1


⇒

L(2)




6 7 −1
14 6 10
10 −1 6




L(3)

Once the matrix L(m) is created, the iteration bound can be determined using Equation (8.6)
as shown below. In this case, m = 3 as there are three delays, therefore L(3) represents the final
iteration.

T∞ =
max

i,mε1, 2, . . . , D

{
lml,l

m

}
(8.6)

For this example, this gives the following:

T∞ =
{

7

2
,

7

2
,

6

3
,

6

3
,

6

3

}
= 4
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Figure 8.18 Lattice filter (Parhi 1999)

Example 2. Consider the lattice filter DFG structure given in Figure 8.18(a). Once again, a
pipelined version has been chosen by selecting a single delay (1) for each processor.

The four possible matrix values are determined as follows:

D1 → M3 → A3 → D1
D1 → A4 → D2 and D1 → M4 → A3 → M3 → A4 → D2
D2 → M2 → A1 → A3 → D1
D2 → M2 → A1 → A3 → M2 → A4 → D2

thereby giving: (
2 4
3 5

)
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The higher-order matrix L2 is then calculated as shown below:

(
2 4
3 5

)

L(1)

(
2 4
3 5

)
⇒

L(1)

(
7 9
8 10

)

L(2)

This gives the iteration bound as follows:

T∞ =
max

i, mε1, 2

{
lmi,i

m

}
(8.7)

which resolves to:

T∞ =
{

2

1
,

5

1
,

7

2
,

10

2

}
= 5

Applying this scaling factor to the lattice filter DFG structure of Figure 8.18(b) gives the final
structure of Figure 8.18(c), which has pipelined processors as indicated by the (1) expression added
to each processor. This final circuit was created by applying delays across the various cuts and
applying retiming at the processor level to transfer delays from input to output.

8.5 Parallel Operation
The previous section has highlighted methods to allow levels of pipelining to be applied to an
existing DFG representation, mostly based on applying processor-level pipelining as this represents
the greatest level applicable in FPGA realizations. This works on the principle that increased speed
is required, as demonstrated by the results in Table 8.4, and more clearly speed improvements with
FIR filter implementations. Another way to improve performance is to parallelize up the hardware
(Figure 8.19). This is done by converting the SISO system such as that in Figure 8.19(a) into a
MIMO system such as that illustrated in Figure 8.19(b).

This is considered for the simple FIR filter given earlier. Consider the 4-tap delay line filter
given next

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3) (8.8)

xn ynSISO

xk

MIMO
xk+1

yk

yk+1

(a) SISO (b) MIMO

Figure 8.19 Manipulation of parallelism
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Figure 8.20 Block FIR filter

Assuming blocks of two samples per clock cycle, we get the following iterations performed on
one cycle.

y(k) = a0x(k) + a1x(k − 1) + a2x(k − 2) + a3x(k − 3)

y(k + 1) = a0x(k + 1) + a1x(k) + a2x(k − 1) + a3x(k − 2)

In the expressions above, two inputs x(k) and x(k + 1) are processed and corresponding outputs
y(k) and y(k + 1) produced at the same rate. The data is effectively being processed in blocks and
so the process is known as block processing, where k is given as the block size. Block diagrams for
the two cycles are given in Figure 8.20(a). Note that in these structures any delay is interpreted as
being k delays as the data is fed at twice the clock rate. As the same data is required at different
parts of the filter at the same time, this can be exploited to reduce some of the delay elements,
resulting in the circuit of Figure 8.20(b).

The FIR filter has a critical path of TM + (N − 1)TA where N is the number of filter taps which
determines the clock cycle. In the revised implementation however, two samples are being produced
per cycle, thus throughput rate is 2/(TM + (N − 1)TA). In this way, block size can be varied as
required, but this results in increased hardware cost.

Parhi (Parhi 1999) introduced a technique where the computation could be reduced by reordering
the computation as below.

y(k) = a0x(k) + a2x(k − 2) + z−1(a1x(k + 1) + a3x(k − 1))

By creating two tap filters, given as y(1k) = a0x(k) + a2x(k − 2) and y(2k) = a1x(k + 1) +
a3x(k − 1), we re-cast the expressions for y(k) as below:

y(k) = y(1k) + z−1(y(2(k + 1)))

The expression for y(k + 1) is rewritten as below:

y(k + 1) = (a0 + a1)(x(k + 1) + x(k)) + (a2 + a3)(x(k − 1) + x(k − 2))

−a0x(k) − a1x(k + 1) − a2x(k − 2) − a3x(k − 1)
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Figure 8.21 Reduced block-based FIR filter

This results in a single 2-tap filter given below, comprising a structure with coefficients (a0 +
a1) and (a2 + a3), thereby reducing the complexity of the original 4-tap filter. It does involve
the subtraction of two terms, namely y(k) and y(2k + 1), but these were created earlier for the
computation of y(k). The impact is to reduce the overall multiplications by 2 at the expense of
one addition/subtraction. This is probably not as important for an FPGA implementation where
multiplication cost is comparable to addition for typical wordlengths. More importantly though,
the top and bottom filters are reduced in length by 2 (N /2) taps and an extra 2- (N /2)-tap filter is
created to realize the first line in each expression. In general terms, filters have been halved, thus the
critical path is given as TM + (N/2)TA + 3TA with three adders, one to compute x(k) + x(k + 1),
one to subtract y(1k) and one to subtract y(2(k + 1)).

y(k + 1) = (a0 + a1)(x(k + 1) + x(k)) + (a2 + a3)(x(k − 1) + x(k − 2))

− y(1k) − y(2(k + 1))

8.6 Hardware Sharing
8.6.1 Unfolding

The previous section indicated how we could perform parallel computations in block. Strictly
speaking this is known as unfolding. Unfolding is a transformation technique that can be applied
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Figure 8.22 Unfolded first-order recursion

to a DSP program to create a new program that performs more than one iteration of the original
program. It is typically described using an unfolding factor typically J which describes the number
of iterations by which it is unfolded. For example, consider unfolding the first-order IIR filter
section, y(n) = x(n) + by(n − 1) by three, giving the expressions below:

y(k) = x(k) + by(k − 1)

y(k + 1) = x(k + 1) + by(k)

y(k + 2) = x(k + 2) + by(k + 1)

The SFG and DFG representation is given in Figure 8.22(a) where the adder is replaced by
processor A and the multiplier by B. The unfolded version given in Figure 8.22(b) where A0, A1

and A2 represent the hardware for computing the three additions and B0, B1 and B2 represent the
hardware for computing the three multiplications. With unlooped expressions, each delay is now
equivalent to three clock cycles. For example, the previous value needed at processor B0 is y(n − 1)

which is generated by the delaying the output of A2, namely y(n + 2), by an effective delay of 3.
When compared with the original SFG, the delays would appear to have been redistributed between
the various arcs for A0 –B0, A1 –B1 and A2 –B2.

An algorithm for automatically performing unfolding was given in Parhi (Parhi 1999) and
repeated here. It is based on the fact that the kth iteration of the node U(i) in the J -unfolded
DFG executes the J (k + i)th iteration of the node U in the original DFG.

Unfolding algorithm:

1. For each node U in the original DFG, draw the J nodes U(0), U(1), . . . , U(J − 1).
2. For each edge U → V with w delays in the original DFG, draw the J edges U(i) → V (i + w)/J

with (i + w%J ) delays for i = 0, 1, . . . , J − 1 where % is the remainder.

Consider the FIR filter DFG, a DFG representation of the FIR filter block diagram of
Figure 8.23(a). Computations of the new edges in the transformed graphs, along with the
computation of the various delays, is given below for each edge. This gives the unfolded DFG of
Figure 8.23(b) which equates to the folded circuit given in Figure 8.23(a).

X0 → A(0 + 0)%2 = A(0), Delay=�0/2� = 0
X1 → A(1 + 0)%2 = A(1), Delay=�1/2� = 0
X0 → B(0 + 1)%2 = B(1), Delay=�1/2� = 0
X1 → B(1 + 1)%2 = B(2), Delay=�2/2� = 1
X0 → C(0 + 2)%2 = C(0), Delay=�2/2� = 1
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X1 → C(1 + 2)%2 = C(1), Delay=�3/2� = 1
X0 → D(0 + 3)%2 = D(1), Delay=�3/2� = 1
X1 → D(1 + 3)%2 = D(0), Delay=�4/2� = 2

8.6.2 Folding

The previous section outlined a technique for a parallel implementation of the FIR filter structure.
However in some cases, the desire is to perform hardware sharing or folding to reduce the amount
of hardware by a factor, say k, and thus also reduce the sampling rate. Consider the FIR filter block
diagram of Figure 8.24(a). By collapsing the filter structure onto itself four times i.e. folding by
four, the circuit of Figure 8.24(b) is derived. In the revised circuit, the hardware requirements have
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Figure 8.23 Unfolded FIR filter-block
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Figure 8.24 Folded FIR filter section

Table 8.5 Scheduling for Figure 8.24(b)

Cycle Adder Adder Adder System
clock input input output Output

0 a3 0 a3x(0) (y(3)′′′)
1 a2 0 a2x(0) (y(2)′′)
2 a1 0 a1x(0) (y(1)′)
3 a0 0 a0x(0) y(0)

4 a3 0 a3x(1) (y(4)′′′)
5 a2 a2x(1) a2x(1) + a3x(0) (y(3)′′)
6 a1 a1x(1) a1x(1) + a2x(0) (y(2)′)
7 a0 a0x(1) a1x(1) + a2x(0) y(1)

8 a3 0 a3x(2) (y(5)′′′)
9 a2 a2x(1) + a3x(0) a2x(1) + a2x(1) + a3x(0) (y(4)′′)

been reduced by four with the operation scheduled onto the single hardware units, as illustrated in
Table 8.5.

The timing of the data in terms of the cycle number number is given by 0, 1, 2 and 3, respectively,
which repeats every four cycles (strictly, this should by k, k + 1, k + 2 and k + 3). It is clear from
the table that a result is only generated once every four cycles, in this case on the 4th, 8th cycle,
etc. The partial results are shown in brackets as they are not generated as an output. The expression
y(3)′′′ signifies the generation of the first part of y(3), y(3)′′, second part of y(3) etc.

This folding equation (Parhi 1999) is given in Equation (8.9), where all inputs of a simplex
component arrive at the same time and the pipelining levels from each input to an output are the
same.

DF (U e−→V ) = Nw(e) − Pu + v − u (8.9)
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U  V w(e)D
 Nl+v+Av

DF(U→V) PuDHu Hv:
:

(a) An edge U→V with w(e) delays (b) Corresponding folded datapath

Figure 8.25 Folding transformation

where w(e) is the number of delays in the edge U e−→V , N is the pipelining period, Pu is the
pipelining stages of the Hu output pin and u and v are folding orders of the nodes U and V that
satisfy 0 ≤ u, v ≤ N − 1. Consider the edge e connecting the nodes U and V with w(e) delays
shown in Figure 8.25(a), where the nodes U and V may be hierarchical blocks. Let the executions of
the l th iteration of the nodes U and V be scheduled at time units NL + u and NL + v respectively,
where u and v are folding orders of the nodes U and V that satisfy 0 ≤ u, v ≤ N−1. The folding
order of a node is the time partition to which the node is scheduled to execute in hardware (Parhi
1999). Hu and Hv are the functional units that execute the nodes U and V respectively. N is
the folding factor and is defined as the number of operations folded onto a single functional unit.
Consider the l th iteration of the node U. If the Hu output pin is pipelined by Pu stages, then the
result of the node U is available at the time unit Nl + u + Pu, and is used by the (l + w(e))th
iteration of the node V. If the minimum value of the data time format of Hu input pin is Av , this
input pin of the node V is executed at N(l + w(e)) + v + Av . Therefore, the result must be stored
for D

′
F (U e−→V ) = [N(l + w(e)) + v + Av] − [Nl + Pu + Av + u] time units. The path from Hu

to Hv needs D
′
F (U e−→V ) delays, and data on this path are inputs Hv at Nl + v + Av , as illustrated

in Figure 8.25(b). Therefore, the folding equation for hierarchical complexity component is given
in Equation (8.10).

DF (U e−→V ) = Nw(e) − Pu + Av + v − u (8.10)

This expression can be systematically applied to the block diagram of Figure 8.24(a) to derive
the circuit of Figure 8.24(b). For ease of demonstration, the DFG of Figure 8.26(a) is used. In the
figure, an additional adder, H has been added for simplicity of folding. In Figure 8.26(a), we have
used a number of brackets to indicate the desired ordering of the processing elements. Thus, the
goal indicated is that we want to use one adder to implement the computations a3x(n), a2x(n),
a1x(n) and a0x(n) in the order listed. Thus, these timings indicate the schedule order values u
and v. The following computations are created as below, giving the delays and timings required as
shown in Figure 8.26(a).

DF(A→H) = 4(0) − 0 + 1 − 1 = 0
DF(B→E) = 4(0) − 0 + 2 − 2 = 0
DF(C→F) = 4(0) − 0 + 3 − 3 = 0
DF(D→G) = 4(0) − 0 + 4 − 4 = 0
DF(H→E) = 4(1) − 0 + 2 − 1 = 5
DF(E→F) = 4(1) − 0 + 3 − 2 = 5
DF(F→G) = 4(1) − 0 + 4 − 3 = 5

Figure 8.27(a) shows how a reverse in the timing ordering leads to a slightly different folded
circuit (Figure 8.27(b)) where the delays on the feedback loop have been changed and the timings
on the multiplexers have also been altered accordingly. This example demonstrates the impact of
changing the time ordering on the computation. The various timing calculations are shown below.
The example below works on a set of order operations given as (1), (3), (2) and (4), respectively,
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and requires two different connections between adder output and adder input with different delays
namely 3 and 6.

DF(A→H) = 4(0) − 0 + 1 − 1 = 0
DF(B→E) = 4(0) − 0 + 3 − 3 = 0
DF(C→F) = 4(0) − 0 + 2 − 2 = 0
DF(D→G) = 4(0) − 0 + 4 − 4 = 0
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DF(H→E) = 4(1) − 0 + 3 − 1 = 6
DF(E→F) = 4(1) − 0 + 2 − 3 = 3
DF(F→G) = 4(1) − 0 + 4 − 2 = 6

The application of the technique becomes more complex in recursive computations, as demon-
strated using the second-order IIR filter example given in (Parhi 1999). In this example, the author
demonstrates how the natural redundancy involved when a recursive computation is pipelined, can
be exploited to allow hardware sharing to improve efficiency.

8.7 Application to FPGA
The chapter has briefly covered some techniques for mapping algorithmic descriptions in the form
of DFGs, into circuit architectures. The initial material demonstrates how we could apply delay
scaling to first introduce enough delays into the DFGs in order to allow retiming to be applied. This
translates to FPGA implementations where the number of registers can be varied as required. As
Chapter 5 had illustrated, use of pipelining is a powerful technique for producing high-performance
FPGA implementations.

In the design examples presented, a pipelining of 1 was chosen as this represents the finest level
of pipelining possible in FPGAs. This is done by ensuring inter-iteration constraints on the edges
which can then be mapped into the nodes to represent pipelining. The delays remaining on the
edges then represent the registers needed to ensure correct retiming of the DFG.

The chapter also reviews how to incorporate parallelism into the DFG representation which again
is a realistic optimization to apply to FPGAs given the hardware resources available. In reality, a
mixture of parallelism and pipelining is usually employed in order to allow the best implementation
in terms of area and power that meets the throughput requirement.

8.8 Conclusions
The chapter has highlighted a number of techniques that allow the user to map an algorithmic DFG
representation into a circuit architecture that is suitable for FPGA implementation. The technique
concentrates on introducing registers into DFG representations and also transforming the DFG rep-
resentation into a parallel implementation. These techniques are particularly suitable in generating
IP core functionality for specific DSP functionality. As Chapter 11 illustrates, these techniques are
now becoming mature, and the focus is moving to creating efficient system implementations from
high-level descriptions where the node functionality may have been already captured in the form
of IP cores. Thus, the rest of the book concentrates on this higher-level problem.
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9
The IRIS Behavioural Synthesis
Tool

The descriptions in Chapter 7 have highlighted the range of tools and methodologies available
for implementing FPGA-based DSP systems. In particular, the chapter highlighted the tools for
synthesizing dedicated IP cores; however, the discussion in Chapter 8 highlighted some of the
issues in creating the circuit architectures that are the basis of these IP cores. The exploration of
the algorithmic concurrency in the form of levels of parallelism and pipelining in the algorithm
representation typically a DFG, is instrumental in generating an efficient FPGA implementation. A
number of simple examples were covered to illustrate the basic techniques, but the reality is that
these techniques are difficult to explore on even reasonably complex algorithms. For this reason,
there is a strong interest in developing synthesis tools to automate many of these techniques.

Behavioural synthesis tools accept a behavioural description of the functionality required of the
hardware, then select suitable hardware building block components from libraries supplied by the
tool vendor or the user, generate the interconnections needed among components, assign operations
and data used in the behavioural description to the selected computational and storage components,
determine the order in which operations execute on computational and storage components, and then
generate a specification for a controller to implement this sequencing of operations. The resulting
design can then be targeted to FPGA implementation using logic synthesis tools. To be effective,
behavioural synthesis tools must accept user-specified constraints and/or optimization goals for the
synthesized architecture. These typically include cost, clock cycle time, throughput, and latency.
Such tools should also provide intuitive presentations of the results of the synthesis process that
allow the user to quickly understand the synthesized architecture and the results of assignment
and scheduling. The chapter describes the IRIS synthesis tool that has been developed at Queen’s
University, which captures many of these aspects and in effect, implement the techniques explored
in Chapter 8. The tool represents one example of a number of behavioural synthesis, but gives
details on implementing FPGA-based DSP systems from SFG descriptions. The chapter presents
an expanded version of the paper by Yi and Woods (2006).

The chapter is organized as follows. Section 9.1 gives a brief introduction to behavioural synthesis
tools with the aim of highlighting some of the processes described in the chapter. The IRIS synthesis
tool is described in Section 9.2 which is based on the modular design procedure, described in Section
9.2.1. A key aspect of the synthesis flow is retiming and is described in Section 9.3. The examples
in Chapter 8 were simple DFG descriptions, but the description in Section 9.4 shows the challenges
in creating hierarchical implementations of SFG functionality. Section 9.5 then goes on to describe
how hardware sharing can be implemented in hierarchically described functions.

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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9.1 Introduction of Behavioural Synthesis Tools
Some vendors provide CAD tools for digital system synthesis, typically using some form of synthe-
sis, starting from the RTL level. A number of mature lower-level design tools for FPGA-based DSP
design exist, such as Synplify (Synplify 2003) and Design Manager (Xilinx Inc. 2001). However,
there is a clear need for higher-level synthesis tools to efficiently implement system and architec-
tural level synthesis. At behavioural or algorithm level, the specification is given as an algorithm
where basic structural elements are controllers and netlist. Architectural level synthesis (Vanhoof
et al. 1993) generates a structural system description of the RTL level, starting from a behavioural
(algorithmic) specification.

The following metrics are used to define a good synthesis system (Roy 1993).

Capability to synthesize complex designs: a synthesis system should be able to handle examples of
reasonable size and complexity.

Shorter design cycles: a good synthesis system reduces the product life cycle and lowers chip cost
significantly.

Extensive design space exploration: it is essential that a synthesis system explores a vast design
space in an effort to produce optimal or near optimal designs.

Realistic constraints-driven synthesis: it should be able to work with realistic instead of abstract
constraints.

However, some of the above metrics are conflicting and in a single processor implementation,
an improvement in one metric tends to result in slippage in another. For example, extensive design
space exploration will usually slow down the design process that can mean an increase in the design
cycle. The various tasks associated with architectural level synthesis include scheduling of operators
to control steps (scheduling), allocation of operators to operations in the description (allocation),
assignment of operators to operations (binding) and allocation and assignment of memory modules
to variables (allocation and binding).

Scheduling, resource allocation and binding are tasks involved in finding a satisfactory solution
within the design space. Scheduling is an important sub-task in the synthesis process. Scheduling
affects several aspects of the synthesized design, including the total number of functional units used,
the total time of computation, the storage and interconnect requirements. The main focus here is
to minimize the number of function units and therefore circuit area. Scheduling algorithms can
be broadly classified as time-constrained or resource-constrained. In time-constrained scheduling,
the number of function units are minimized for a fixed number of control steps. In resource-
constrained scheduling, the number of control steps is minimized for a given design cost, i.e. the
number of functional and storage units. Previous synthesis approaches include as soon as possible
(ASAP) or as late as possible (ALAP) scheduling, which are the simplest ways to find a solution to a
scheduling problem with precedence constraints (Dewilde et al. 1985). ASAP and ALAP scheduling
have the disadvantage that nowhere does the algorithm refer to the resource usage. Therefore,
no attempt is made to minimize the cost function and take into account resource constraints.
List scheduling methods (Davidson et al. 1981) are targeted to resource-constrained problems by
identifying the available time instants in increasing order and scheduling as many operations at
a certain instant before moving to the next. The integer linear programming (ILP) method (Lee
et al. 1989) tries to find an optimal schedule using a branch-and-bound search algorithm, which is
relatively straightforward to automate. Most of these algorithms are based on a simplex method. The
complexity of the ILP formulation increases rapidly with the number of control steps. In practice,
the ILP approach is applicable only to very small-scale problems.

Force directed scheduling FDS (Paulin and Knight 1989) acts to minimize area hardware subject
to a given time constraint by balancing the concurrency of operations, values to be stored, and data
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transfers. The iterative refinement (IR) scheduling method (Park and Kyung 1991) is a heuristic
scheduling algorithm that has the feature of escaping from a local minimum. Each edge describes a
precedence constraint between two nodes, which is an intra-iteration precedence constraint if the
edge has zero delays or an inter-iteration precedence constraint if the edge has one or more delays
(Parhi 1999). Together, the intra- and inter-iteration precedence constraints specify the order in
which the nodes in the signal flow graph (SFG) can be executed. If recursive nodes in noncritical
recursive loops have loop flexibility (as will be illustrated later), then the nodes of that loop can
be shifted to another time partition without violating intra- and inter-iteration precedence con-
straints. Exploration of the inter-precedence constraints generates better schedules and minimizes
the number of allocated processors by using loop flexibility. All these algorithms described above
are only concerned with the intra-iteration precedence constraints. Minnesota architecture synthesis
(MARS, Wang and Parhi 1994) exploits both inter- and intra-iteration precedence constraints.

9.2 IRIS Behavioural Synthesis Tool
In the brief survey of design tools for mapping DSP systems to FPGAs in Chapter 7, it was
shown that some of these efforts have focused on the design of FPGA-based architectural synthesis
tools. However, there still are some limitations for each tool and there are clearly a number of
important issues that are not adequately addressed by current systems. One example is that the
computational delay generated by pipelining effects on system behaviour and system architecture.
Although Handel-C, AccelChip (AccelFPGA 2002), JHDL (Bellows and Hutchings 1998) and
MMAlpha (Derrien and Risset 2000) can pipeline the circuit using syntax, and System Generator
(Xilinx Inc. 2000) can change the latencies of Xilinx processor blocks to pipeline the circuit,
the resulting timing problems are left to the designer to solve. There is less work in the area
of automatically implementing the circuit-level issues, such as data time format, pipelining level
and numerical truncations, at the high level. In addition, many of the tools impose architectural
constraints on the designer, limiting free exploration of a wide range of architectural alternatives.
Specifically, the designer may want to exploit solutions with hardware sharing, but the circuits
and corresponding control circuitry cannot be automatically generated by current tools. Finally, the
tools have not allowed the architecture of the algorithmic design function to be determined in terms
of specific technology features, and actually low-level design techniques such as pipelining.

This work described in this chapter, acts to solve the implementation-level issues during archi-
tectural synthesis for FPGA-based DSP design. The work is based on the existing architectural
tools, IRIS (Trainor et al. 1997), which was developed at Queen’s University Belfast and originally
targeted at VLSI. The corresponding synthesis methodology in the IRIS architectural synthesis tools
is reviewed in following sections.

It is important to have synthesis tools which perform optimizations at each level of the design
flow. In the mid 1990s, it was argued that a design tool was required that allowed users to quickly
develop VLSI circuit architectures from SFG representations using user-generated processing units.
For this reason, the IRIS architectural synthesis tool was developed (Trainor et al. 1997); it provided
an effective path to lower-level silicon design tools. Unlike other approaches, the emphasis in IRIS
was to allow architectural exploration of algorithms by using user-generated processing units in
order to generate optimal architectures based on those units. This was based on the premise of using
in-house-developed processor cores provided by large companies and so this allowed development
of solutions based on their own processing cores. The main advantage of IRIS was that it offered the
designer full freedom to investigate a wide range of architectures using user-preferred blocks. This
has gathered increasing importance as the silicon IP cores have been developed thereby increasing
the need for these user-preferred blocks. The tool was also coupled to conventional VHDL synthesis
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tools, and has been used to produce practical and realistic designs as it fully considered the effects of
chip-level engineering issues. Some design issues such as the organization of the data entering and
leaving the various processors, number systems employed, levels of pipelining and the handling of
numerical truncation can change the characteristics of the complete system, particularly timing and
latency (McGovern 1993), and thereby alter system function. A synthesis methodology, termed the
modular design procedure (MDP, Trainor 1995) was proposed to provide a bridge between high-
level algorithms to architecture mapping techniques and lower-level design tools. This became the
core component of IRIS.

9.2.1 Modular Design Procedure

The MDP provides a way of incorporating all necessary implementation-level criteria into the
architectural derivation process. Two processor performance issues were considered: space–time
data format and parameterization of processor latencies (Trainor 1995).

Space–Time Data Format at the Processor Inputs and Outputs

The data format, or ‘time shape’, of data entering or leaving a processor may be defined as the
position in the time of the bits, or digits, of the data value relative to each other (McGovern 1993).
Figure 9.1 shows some examples of typical data time format.

The common procedure of pipelining processing elements at a fine-grained level, i.e. within
the processor module, leads to non-parallel output format, so a tool’s ability to cope with these
nonstandard formats was essential. This is probably not as relevant with modern FPGA structures
where most adders and multipliers consume inputs and produce outputs in bit-parallel form, as
indicated by Figure 9.1(a). The detailed structure of the particular processor, and particularly the
placement of internal pipelining registers, determines the data time shape at each processor input
and output. It is also necessary to maintain information on the processor time shapes to determine
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what extra circuitry, if any, needs to be placed between connected processors to convert between
the formats of the data at the output of the first processor, and the format expected at the input of
the second.

Parameterization of Processor Latencies

The latency in each datapath of processor must be incorporated into the processor model used
during synthesis. The main reason is that the number of clock cycles required for a particular
processor to produce its results has profound effects on the timing of data throughout the entire
architecture. In order to illustrate the operation of the MDP, the example of the design of a simple
Wallace tree multiplier architecture processor is considered and shown in Figure 9.2.

A Wallace tree multiplier given earlier in Figure 3.7 comprises CSAs connected to a fast adder.
The obvious approach of pipelining is shown in Figure 9.2(b). In order to use the Wallace tree
multiplier in conjunction with the MDP, the appropriate processor performance values, namely
data time shapes and parameterized datapath latencies, must be determined and incorporated within
models of the particular processor. An MDP example of partial product summation with Wallace
trees, for 9-bit operands, is shown in Figure 9.2(c). The box represents the tree of CSA processors.
The parameterized expressions within boxes along a particular datapath refer to the latency of that
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datapath, whilst the data time shape is shown graphically at the input and output of the model.
The time shape is deduced by considering the timing of each bit of data as it passes through the
multiplier. Notice that the construction of a processor model has abstracted away the detail, leaving
only the latency and data time shape information. In addition to the word-length parameters and
internal pipelining stages, some of the latency values in the processor model are also dependent
on an additive truncation term t to reflect the fact that the latency through that datapath can
be increased if numerical truncation is applied. The latency of the datapath is redefined as the
time difference between when the first bit of the input enters the array and when the first usable
bit emerges from the output. As was highlighted in Chapter 3, modeling of truncation in DSP
applications is important, although it may seem odd to model truncation within the processor in
this way, but this allows the impact of system level truncation decisions to be taken into account
in the synthesis of systems as truncation can sometimes increase output latency. For example, if
the output time shape is a skewed format and numerical truncation is needed, a certain number
of the least significant bits are discarded and extra clock cycles may be needed to be taken into
account before the first usable bit emerges. These extra cycles are reflected in the truncation term
within the latency expression. The value of the term depends on the output data time shape and
on which output bit the truncation is applied. The key feature of IRIS is the creation of the circuit
architecture from the SFG representation which requires the use of a retiming process which is
described next.

9.3 IRIS Retiming
The starting point for IRIS, is a SFG representation of the algorithm to be synthesized where each
processing node in the SFG is then assigned a model of a fine-grained pipelined processor. With the
processor MDP models now defined, these models can be embedded into the SFG representation.
The architecture now requires to be rescheduled, i.e. retimed because of the changes in processor
latencies. This retiming process is based on the retiming routine outlined via the cut-set theorem
(Kung 1988, Leiserson and Saxe 1983) described earlier in Section 8.4.2; as with the cut-theorem,
retiming routine in IRIS includes two steps, namely delay scaling and delay transfer. Delay scaling
is used in a recursive architecture, i.e. one with feedback loops, in order to introduce sufficient
delays around the feedback loop such that delay transfer can be carried out successfully. After the
delay transfer routine, sufficient delays will have been created to appear on the appropriate SFG
edges so that a number can be removed from the graph edges and incorporated into the processing
blocks, in order to model the datapath latencies. This is referred to as embedding the processor
models into the SFG (Trainor et al. 1997). The pure delays refer to any excess delays left on the
graph edges, and are required for correct timing. This is the fundamental to the correct design of
circuit architectures in IRIS.

When using the cut-set retiming procedure for a nonrecursive structures such as FIR filters,
delay transfer is repeatedly applied to add or remove delays until sufficient delays appear within
the architecture to allow processor embedding to take place. Recursive architectures, such as IIR
filters, which exhibit feedback loops, cause additional problems. If delay transfer is applied to
such loops, it cannot change the number of delays in the loops because delays that are removed
from connections travelling in one direction must be transferred to the connections travelling in
the opposite direction. Therefore, the delay transfer procedure is insufficient to carry out retiming
successfully. The time scaling procedure can be applied by scaling up all the delay values by a factor
α, called the pipelining period, and then redistributing this increased number of registers around
the feedback loop, using the delay transfer procedure, in order to facilitate processor embedding.
It is important to realize that applying time scaling to recursive architectures reduces the efficiency
of such circuits by a factor of α, which may be defined as the ratio of sampling rate and clock rate.
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Clearly, the problem is the determination of the optimal value of α for recursive structures.
A value that is too small will lead to an incorrectly timed circuit, whilst too large a value will
produce extra unnecessary registers in the architecture. This problem is solved by exploiting analysis
carried out in Kung (1988) which was highlighted in Section 8.4.3 which identified the worst-case
pipelining period (see Equations (8.3) and (8.4)).

9.3.1 Realization of Retiming Routine in IRIS

In order to carry out the retiming routines in IRIS, the SFG schematic is modelled as a doubly
weighted graph (Christofides 1975), where the various external connectors and arithmetic processors
represent the graph nodes and connections between these nodes represent the graph edges. For each
edge, two weights can be defined, namely SFGW and PW. SFGW, previously called SFGWeight in
earlier papers (Yi et al. 2005), refers to the number of delay elements on a particular edge, and PW
(previously, ProcWeight) refers to the number of delay elements required on that edge for processor
embedding to occur. The maximum allowable sampling period is α as defined in Equation (9.1).

In order to automate the procedure, IRIS employs the Floyd–Warshall algorithm (Parhi 1999)
from graph theory, which determines the fastest loop in doubly weighted graphs. The algorithm
solves the problem of finding a loop φ that satisfies Equation (9.2), where e is an edge in the
weighted graph. Due to the fact that the algorithm has been cast as a minimization problem, the
correct value of α is the reciprocal of the minimal value of Z(φ) (Trainor et al. 1997).

α = max



∑
e∈φ

P rocWeight (e)∑
e∈φ

SFGWeight (e)


 (9.1)

Z(�) =



∑
e∈φ

SFGWeight (e)∑
e∈φ

P rocWeight (e)


 (9.2)

When the pipelining period has been determined, all delay elements within the SFG are scaled
up by this value, which is equivalent to adjusting the rate of the entire structure to its slowest loop.

After delay scaling, the retiming procedure needs to be applied, in order to compensate for the
different performance characteristics between the generic SFG processors and the practical models.
The retiming routine, which has been solved as a linear programming problem in IRIS, minimizes
the total number of delays used. A retiming r of a SFG G gives the nodes an integer value.
The value r(v) is the number of delays drawn from each of the incoming edges of node v and
pushed to each of outgoing edges. The value r(v) is positive if delays move from input to output,
otherwise negative. Equation (9.3) represents the objective function for the linear programming
problem, where β(e) denotes the edge width, the symbol e(v −→?) and e(? −→ v) represent edges
beginning and ending at node v respectively. The formulation of the linear constraints involves
constructing expressions of the form of Equation (9.4), in which the edge e leaves node u and
enters node v. The retiming functions within IRIS utilize the revised simplex technique (Gnizio
1985), which is widely used in automated linear programming solvers.

min
∑
v∈V

r(v)


 ∑

e(v−→?)

β(e) −
∑

e(?−→v)

β(e)


 (9.3)

r(u) − r(v) ≥ ProcWeight(e) − SFGWeight(e) (9.4)
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Figure 9.3 Second-order IIR filter

In order to illustrate the process of retiming procedure in IRIS, the second-order IIR filter, given
earlier as Equation (8.3), is used. The example was implemented in Section 8.4.3, but is given here
again in order to illustrate how IRIS operates. A SFG is represented in Figure 9.3(a), where the
MAC processor is assumed to have zero latency.

High-speed applications usually require pipelined designs, so all of the nodes of the circuit are to
be implemented using pipelined MAC processors where adders and multipliers have one pipeline
stage. Notice that in Figure 9.3(b), the ‘width’ for each connection in the structure equals the
wordlength of the data travelling along that connection. Parameter values for the nodes shown in
Figure 9.3(b) need to be supplied to calculate specific latency values and data time shapes for the
filter design.

In this example, the MAC processor architecture and the corresponding MDP models are shown
in Figure 9.3(b). The latency value of an output equals the maximum delays of all datapaths from
all inputs to this output. For example, there are three datapaths from each input to output So in
the pipelined MAC processor. The latency of output So is 2, which is equal to the delays from
inputs Pi, Qi to output So. The paths that have the maximum latency are used to define the input
data time format at clock cycle 0. As all bits of the inputs or outputs in this model enter or leave
the processor at the same time, the data time format is [0, 0, 0 · · · 0] labeled [0]. All of the other
inputs and outputs data time formats will be referenced with respect to these paths. For example,
the latency of the signal So equals 2 and is the maximum value of all output latencies. As the
signal Pi and Qi data time formats are equal to [0, 0, 0, 0, 0, 0, 0, 0] shown in Figure 9.3(b) and the
latency from Si to So is 1, the signal Si should enter the processor one clock after the signal Pi and
Qi, so the data time format is [1, 1, 1, 1, 1, 1, 1, 1], labeled [+1], in the processor MDP model. All
inputs and outputs data time formats and datapath latencies are given in Figure 9.3(b). The SFG
of Figure 9.3(a) exhibits two loops, highlighted in Figure 9.3(a). Using the MDP model shown in
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Figure 9.3(b), evaluating Equation (9.1) gives the result that is displayed in Equation (9.5).

α1 =




∑
e∈φ

PW(e)∑
e∈φ

SFGW(e)


 = 2

1
= 2{loop1}

α2 =




∑
e∈φ

PW(e)∑
e∈φ

SFGW(e)


 = 2 + 2

1 + 1
= 2{loop2}

α = max (α1, α2) = 2 (9.5)

Notice that the loop bound of loop 2 should equal to (1 + 1 + 1)/(1 + 1) = 1.5 which is different
from α2. The reason is that the data time format at the inputs may be at a different time, which
is not considered in the delay scaling and delay transfer retiming procedure in IRIS. Given the
connection between output So(MAC4) and input Si(MAC5) in loop 2, the data time format of Si

is [+1], which means the input data enters MAC5 one clock cycle later than the other inputs (Pi

and Qi). When the two delays are moved into the processor MAC5 to incorporate the pipelined
processor, an additional delay should be added in the edge of input Si(MAC5). This additional
delay can be used to model the output latencies of MAC4 caused by pipelining. Pipelining period
of the second-order IIR filter is 2 cycles, and hence all delay elements in the filter SFG must be
scaled by a factor of 2 before retiming takes place. After delay scaling and retiming, the revised
SFG is given in Figure 9.4.

The figures shows the time at which the inputs need to enter the design by indication of the
number of delays on the inputs. In reality, these delays would not need to be implemented in the
circuit, but would represent the control needed for correct operation.

9.4 Hierarchical Design Methodology
The description in the previous section has indicated how the retiming techniques outlined in
Chapter 8 have been automated within IRIS. The output of the tool flow is then an optimized
circuit architecture which could be coded up in VHDL and implemented using FPGA place and route
design tools. The examples described represent DSP functionality where the design is implemented
as a flat SFG representation. Increasingly, DSP hardware design flows need to cope with hierarchy
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involving complex components Typically, designs are constructed in a hierarchical fashion where
sub-components are created and then used to build larger systems. This brings specific problems
when applying retiming in the way proposed, as these sub-components cannot be treated simply as
black box components as they comprise internal timing.

This section describes how hierarchy is incorporated within the design flow, and introduces
the concept of white box hierarchical management which allows some changes to the internal
architecture of the previously created cores. The challenges are illustrated using a wave digital
elliptic (WDE) filter example (Lawson and Mirzai 1990) which could not be synthesized using the
original IRIS tools; thus, it represents a good example to illustrate the timing issues for hierarchical
circuits using the original IRIS tools. The white box methodology is then proposed and applied to
synthesize hierarchical structures. A revision to MDP is also proposed to deal with the hierarchical
automatic synthesis issues.

9.4.1 White Box Hierarchical Design Methodology

During the synthesis process, one must decide whether to keep the hierarchy of the design or flatten
it (Xilinx Inc. 1999). Flattening of the design may produce a smaller or faster design from a logic
perspective, but it creates other complications in the design flow. First of all, blindly flattening
the entire design may produce a single block of logic, large enough to overwhelm the capacity
of the synthesis tool, resulting in unmanageable run times, or a suboptimal netlist. In addition, it
may result in a highly disorganized netlist since the regularity of the various subsystems has not
been maintained. As higher density FPGAs are introduced, the advantages of hierarchical designs
considerably outweigh any disadvantages.

The disadvantage of a hierarchical approach compared with a flattened method is that design
mapping may give a solution that is not as optimal across hierarchical boundaries. Whilst this can
cause inefficient device utilization and decreased design performance, the hierarchical approach
allows efficient design partitioning, a mix of options for individual block and incremental design
changes, more efficient management of the design flow, and reduces design and debugging time
by exploiting reuse. To benefit from a hierarchical approach, effective strategies are required to
partition the design, optimize the hierarchy, and fine-tune the hierarchical synthesis process.

The hierarchical design flow is synonymous with the concept of IP core reuse (Keating and
Bricaud 1998), where designs can be pre-generated for a range of system parameters so that they
can be widely applied (McCanny et al. 1997). This is explored in more detail in Chapters 10 and
12. Thus, the use of IP cores is forcing a hierarchical approach.

Two different hierarchical synthesis methodologies have been defined by Bringmann and Rosen-
stiel (1997), and are based on:

• black-box reuse, where previously synthesized systems as components with no access to internal
structure;

• white-box reuse, where previously synthesized systems as components with the possibility of
changing internal architecture for pipelining or retiming reasons.

Both these approaches are commensurate with the IP core design approach, where the system
designer may have limited knowledge and control over the complex components. It is then possible
to develop models giving datapath latency and input timing, and perform synthesis in a hierarchical
manner which is synonymous with the approach proposed in IRIS. As will be demonstrated using
the WDE filter example (Parhi 1999), this is counterproductive and can lead to very inefficient
solutions.

White box hierarchical management is used in Synplify Pro synthesis tools. During the syn-
thesis process, the tools dissolve as much of the design’s hierarchy as possible to allow efficient
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optimization of logic across hierarchical boundaries while maintaining fast run times (Drost 1999).
Synplify Pro then rebuilds the hierarchy as closely as possible to the original, with the exception
of any changes caused by optimizations that straddles the hierarchical boundaries. This gives a
final netlist that will have the same hierarchy as the original source code, ensuring that hierarchical
register names remain consistent, and that major blocks of logic remain grouped together. This
method of handling hierarchical boundaries, combined with the architecture-specific mapping, cre-
ates an efficient and effective optimization engine. However, designers need to manually consider
the circuit level issues in terms of the selection of components in Synplify Pro (such as the latency
of selected component). Manual solutions of circuit-level issues reduce design space exploration at
the algorithm level, and increase time-to-market.

This section presents a design methodology based on white box reuse, which allows changes to be
made to the internal delays without affecting the overall architecture. Along with the development
of a hierarchical approach, the automatic synthesis methods for circuit level issues need to be added
to hierarchical design. In the following section, MDP model extraction from previously synthesized
subsystems in hierarchical circuits will be introduced.

9.4.2 Automatic Implementation of Extracting Processor Models from Previously Synthesized
Architecture

The hierarchical timing issues will be demonstrated using a simple fifth-order WDE filter circuit
shown Figure 9.5(a) which has been taken from Parhi (1999). As briefly described in Chapter 2,
WDF filters have excellent stability properties (even under nonlinear operating conditions resulting
from overflow and roundoff effects), low-coefficient wordlength requirements, inherently good
dynamic range, etc. (Gazsi 1985). They are particularly attractive due to their low sensitivity to
coefficient quantization (Lawson and Mirzai 1990). The fifth-order WDE filter is constructed from
module A, B, C and D subsystems which are given in Figure 9.5(b–e), and are composed of
multiplication and addition operations.

A number of steps are proposed to cope with this design in a hierarchical fashion. First, the
processor models of the basic arithmetic operations are formulated. To achieve a high-performance
FPGA implementation, each multiplier and adder is assumed to have a pipeline register on their
outputs although various levels of pipelining can be modelled in IRIS. This is commensurate
with FPGA implementations where pipelining at the component level represents the finest level of
pipelining possible. Next, the basic arithmetic processors are used to synthesize the SFGs for the
module subsystems. Then the synthesized module architectures are used to derive equivalent IRIS
processors. Finally, the processor models for the module A, B, C and D subsystems are employed
to synthesize the SFG for the fifth-order WDE filter.

The major difficulty is that some modules, namely A and D, may include registers that can
impact the process of determining the pipelining period. For example, the delay in the module
D subsystem results in the wrong pipelining period in the top-level circuit. Second, techniques
whereby the original IRIS can automatically extract processor models from previously synthesized
architectures have not yet been implemented and so a new technique is needed. Finally, there
are some instances where the hierarchical circuit cannot be synthesized, even if the pipelining
period can be calculated correctly because retiming using the linear programming used by IRIS
(Trainor 1995, Trainor et al. 1997) will have no solution. The alternative is to flatten the hierarchical
SFG level until the circuit can be synthesized. These approaches will be discussed in detail. It is
important to note that these timing problems are applicable to a wider range of tools than IRIS
when investigating hierarchical designs.

In the hierarchical SFG, the pipelining period for each processor will have been determined in
advance for the MDP model. Thus, the calculation of the pipelining period α (Parhi 1999) of the
hierarchical SFG becomes a complex task in IRIS. To calculate the whole circuit pipelining period,
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it is necessary to assume that the pipelining period equals 1 and then allow IRIS to change it to
the maximum pipelining period of all modules. When the IRIS synthesis and retiming routines are
applied to the module level subsystems, which are modules A–D shown in Figure 9.5(b–e), a
maximum pipelining period of seven clock cycles is calculated, which is the pipelining period of
module D(αD = 7) shown below. Thus, the whole circuit pipelining period changes to 7.

Module A: loop bound αA = 3
Module B: no loop
Module C: no loop
Module D: loop bound αD = 7

IRIS ensures that when the subsystem architecture is converted to a processor model, there are
as few delays as possible contained within the subsystem model. As these delays cannot take part
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in the retiming process initiated during the synthesis of the complete fifth-order WDE filter, this
provides a better solution. Thus, any retiming latches that are necessary to change the input/output
data flow in module A, will appear between the various processor instances. This allows IRIS to
be more successful in minimizing the total number of retiming latches employed both within and
between, the various subsystems in the fifth-order WDE filter.

The synthesized architecture for the module A subsystem is given in Figure 9.6(a). The retiming
values of inputs and outputs can be obtained using a revised simplex linear programming (Vajda
1981). The retiming value of an input refers to the number of delays that move from outside to
inside the subsystem and vice versa for the output. For example, the retiming value of input In is
4, which means that four delays are moved into subsystem. The retiming value of output Out is
zero, which means that no delays are moved out from the subsystem.

In order to generate the MDP model for the retimed module A architecture shown in
Figure 9.6(a), first consider the original SFG algorithm representation of module A subsystem
shown in Figure 9.5(b), where the latency of multiplier and adder is 0. The input arrives and
output leaves the subsystem at the same time, therefore the data time formats of the input and
output are 0 and latency of output is also 0. After changing the latency of multiplier and adder to
one, the IRIS retiming subroutine is used to deal with the timing problem caused by the latency
of the multiplier and adder. The retiming value of the input In refers to the required number
of delays when the latency of a processor changes, and is added to the input. The data time
format of the output Out will be changed to 4 because the output Out appears after four clock
cycles. The synthesized architecture is generated after moving four delays into module A and
performing retiming. The implemented MDP representation of the module A subsystem is shown
in Figure 9.6(b).

The module A subsystem with one input and one output, is a simple subsystem, and so the
module B subsystem will be used to demonstrate the extraction method for multiple inputs and
outputs. The module B subsystem has no loops with a pipelining period of 7 that would equal
the system pipelining period. In the original module B, all the inputs/outputs appeared at the same
time and their data time formats and output latencies were zero. After retiming, the various inputs
and outputs of the module B subsystem may emerge during different clock cycles, as shown in
Figure 9.7(a) where retiming values of inputs, e.g. In1 and outputs are shown in brackets, e.g. (+5).

IRIS selects the maximum retiming value of all inputs in subsystem as β, and adds [+β] delays
to all inputs. The data time format of all outputs will be changed to β because β delays are inserted
in the inputs. After IRIS retiming, the number of delays in the input edge will reduce the retiming
value of that input, and the number of delays that equal the retiming value will be added to that
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output. For module B, the β value is 5, and these delays are added to all inputs. After retiming, the
number of delays at the input In3 edge is changed to 1 and equals the β value minus the retiming
value of input In3. The number of delay at output Out2 edge is the retiming value of Out2 and is
equal to 4. The whole procedure is illustrated in Figure 9.7(b). The latency of an output is defined
as the time difference, in terms of clock cycles, between the input of the first bit of an operand and
the emergence of the first bit of the corresponding output. For example, the output Out1 is related
to all inputs, the first input comes at clock cycle 0; the emergence time of the output is 5, therefore
the latency of output Out1 is 5. The resulting MDP model that will be used in next-level synthesis
is shown in Figure 9.7(c).

9.4.3 Hierarchical Circuit Implementation in IRIS

Once processor models of the type described in the previous section have been obtained for all
the different processing subsystems, the appropriate models are then embedded into the processing
nodes of the higher level SFG. As previously stated, a rescheduling or retiming of the architecture is
now required in the higher-level circuit because of the change in the lower-level processor latencies
due to pipelined processor used.

Retiming of the hierarchical architecture is then carried out in two stages: delay scaling and
processor embedding (Kung 1988). However, the previously used, double-weighted graph repre-
sentation is not sufficient to solve the timing problem in hierarchical circuits because the inputs
can emerge at different times. For example, the latency of output Out3 in the module B subsystem
is 5, therefore five delays are needed in the output Out3 edge for embedding in the processor. The
additional one delay will be added in the input In3 edge after processor embedding. The original
IRIS tool cannot represent the additional one delay in the weighted graph, and cannot therefore
solve the problem efficiently. To address this, the treble-weighted graph is introduced where vari-
ous external connectors, arithmetic processors and wire joints that permit branching of signal paths
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represent the graph nodes, and the connections between these nodes represent graph edges. For
each edge, three weights can be defined, as shown below. Whilst SFGW and PW were defined for
the original IRIS, PWI (or strictly ProcWeightIn) is new and is added to solve the problem outlined
above, with PW changed to PWO, i.e. ProcWeightOut.

SFGW – number of delays on a particular edge
PWO – number of delays required for processor embedding to occur
PWI – number of delays added to the edge for processor embedding

The PWO value of edges is related to the output of the starting processor and is the latency of
the output that is the smallest value of data time format representation of that output pin (this is to
cater for cases not discussed here, where data is bit skewed and not bit parallel). The PWI value
of edges is associated with the input signal of the end processor, and equals the smallest value of
data time format representation of that input pin. The PWO and PWI values of edges are related
with connectors and wire joints and equal 0. The pipelining period α is changed to Equation (9.6)
for the hierarchical circuit and the objective function and constraints for the linear programming
problem is shown in Equation (9.7). The new PWI parameter is added to correct Equation (9.1)
and Equation (9.4) because of hierarchical synthesis.

α = max

⌈∑
e∈φ PWO(e) −∑

e∈φ PWI(e)∑
e∈φ SFGW(e)

⌉
(9.6)

min
∑
v∈V

r(v)


 ∑

e(v−→?)

β(e) −
∑

e(?−→v)

β(e)




r(u) − r(v) ≥ PWO(e) − SFGW(e) − PWI(e) (9.7)

As the algorithm delays of the subsystems in low-level schematics can determine the pipelining
period of the higher-level circuit, the calculation of the pipelining period, (α) of the hierarchical
SFG, using Equation (9.6), becomes a complex task in IRIS. After the generation of the MDP
models of subsystems, IRIS will calculate the whole fifth-order WDE filter pipelining period as
outlined in the following subsections.

9.4.4 Calculation of Pipelining Period in Hierarchical Circuits

In the example of a fifth-order WDE filter, modules A and D include registers that may affect
the pipelining period determined by the IRIS retiming subroutine. From the previous section, the
pipelining period of the module level subsystems is 7, which is greater than the initial value 1.
Therefore, the whole system pipelining period changes to 7. The synthesized MDP models for
module A and B subsystems have been shown in Figures 9.6(b) and 9.7(c). The same automatic
processor model extraction is applied to the modules C and D, and the synthesized circuits and
graphical representations are shown in Figures 9.8 and 9.9.

Once all of the processor models have been obtained, the appropriate models are then embedded
into the processing nodes of the higher-level SFG. As previously stated, a retiming of the architecture
is now required in the higher-level circuit because of the changes in the lower-level processor
latencies.

Due to the fact that the delays in the subsystem of the original SFG cannot be used as SFGW
in Equation (9.6) in the higher-level hierarchical synthesis, the pipelining period of hierarchical
architectures using Equation (9.6) will produce the wrong result in many cases. For example, the
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fifth-order WDE filter (Figure 9.5(a)) exhibits two recursive loops highlighted below. Using the
PWO, PWI and SFGW values, evaluating Equation (9.6) gives the results below.

Loop1: B(0) −→ B(1) −→ C −→ B(1) −→ B(0) −→ D

α1 =
∑
e∈φ

P rocWeightOut(e)−∑
e∈φ

P rocWeightIn(e)∑
e∈φ

SFGWeight (e)

= 1+1+4+4+5−0−0−1−1−0
1 = 13

Loop2: Module B(0) −→ Module B(1) −→ Module C −→ Module D −→ Module C −→
Module B(1) −→ Module B(0)−→ D

α2 =
∑
e∈φ

P rocWeightOut(e)−∑
e∈φ

P rocWeightIn(e)∑
e∈φ

SFGWeight (e)

= 1+1+5+1+4+4+5−0−0−1−1−1−1−0
1 = 17

The critical loop is loop 2 whose pipelining period is 17, but the loop 2 datapath includes
one algorithm delay in module D subsystem and its pipelining period should have been 12, i.e.
�23/(1 + 1)�. In addition, the pipelining period is equal to infinity when Equation (9.6) is used to
calculate loop 3 shown in Figure 9.5(a). This is because the output Out2 of module B subsystem
is only related to the inputs In1 and In2. The connections between module B(0) and module B(1)
cannot form a loop. In order to solve these two problems, some other parameter needs to be added
to the output in addition to data time format and latency.
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Table 9.1 Relationship inputs vectors of module A–D

Output Module A Module B Module C Module D

Out 1 [In 1] [In 1, In 2, In 3] [In 1, In 2, In 3] [In 1, In 2]
Out 2 [In 1, In 2] [In 1, In 2, In 3] [In 1, In 2]
Out 3 [In 1, In 2, In 3] [In 1, In 2, In 3] [In 1, In 2]

The relationship inputs vector of an output is introduced and describes inputs that have a datapath
link to that output. For example, the relationship inputs vector of the output Out2 in module B is
[In1, In2 ] and means it is dependent on In1 and In2. The relationship inputs vectors of Module
A–D were shown in Table 9.1. If there is a datapath from input u to output v in a subsystem, the
information (latency, function delay), called datapath delay pair, will be calculated. The function
delay does not increase the latency, but generates the correct function and can be used as SFGW. The
latency refers to the pipelining delay and is used as PWO. If there are multiple datapaths between
u and v, the values of function delay are different, and IRIS needs to keep all the information pairs
to calculate the pipelining period. If the function delay in the datapath delay pair is the same, the
biggest latency value will be selected to calculate the pipelining period. The datapath delay pair is
not needed if the subsystems do not include the function delay as the MDP model treble weights can
be used to calculate the pipelining period. If the subsystems include the function delay, the MDP
model and datapath delay pair will be used together to calculate the pipelining period. The MDP
model determines the PWI and the datapath delay pair determines the PWO and SFGW values.
The datapath delay pairs of module A and D, which include the function delay, have been shown
in Table 9.2. The MDP model now includes four parameters that are data time format, datapath
latency, relationship inputs vector and datapath delay pair.

By applying this method, the pipelining period of the higher-level circuit can be calculated. IRIS
examines the SFG for loops and determines whether delay scaling is necessary. There are 25 loops
in the top-level fifth-order WDE filter. The calculation of critical loops is shown below, and the
pipelining period of the circuit is 13.

Loop1: Module B(0) −→ Module B(1) −→ Module C −→ Module B(1) −→ Module B(0)
−→ D

α1 =
∑
e∈φ

PWO(e)−∑
e∈φ

PWI(e)∑
e∈φ

SFGW(e)

= 1+1+4+4+5−0−0−1−1−0
1 = 13

Table 9.2 Datapath delay pair of modules A and D

Module A Module D

In 1 In 1 In 2

Out 1 (4,0) (5,1) (5,0) (12,1) (4,0) (11,1)
Out 2 (6,0) (13,1) (5,0) (12,1)
Out 3 (1,0) (8,1) (7,1)
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Loop2: Module B(1) −→ Module C −→ Module B(1) −→ Module A −→ D

α2 =
∑
e∈φ

PWO(e)−∑
e∈φ

PWI(e)∑
e∈φ

SFGW(e)

= 1+4+5+4−0−1−0−0
1 = 13

9.4.5 Retiming Technique in Hierarchical Circuits

After delay scaling, the linear programming routine is employed to carry out processor embedding.
In some situations, the hierarchical circuit cannot be synthesized, even when the pipelining period
can be calculated correctly because the linear programming has no solution. The retiming routine
of IRIS will carry out synthesis from the top level and generate the circuit. Otherwise, it will flatten
the conflicting subsystem and synthesize the circuit again. If there is no result for circuit synthesis
exists in this level, the IRIS tool will continue iteratively to flatten the conflicting subsystem and
retime until the circuit can be synthesized. Currently, the IRIS tools cannot do this automatically.

The linear programming can have no solution because some constraints are in conflict. For
example, the constraint of edge from output Out2 of module B(0) to input In2 of module B(1) is
r(B0) − r(B1) ≥ 1, using Equation (9.7), and the constraint of edge from output Out3 of module
B (1) to input In3 of module B(0) is r(B1) − r(B0) ≥ 3. These two constraints are in conflict, so
the linear program will have no solution. In this case, the IRIS retiming routine flattens modules
B(0), B(1), C and D, performs retiming, and translates the flattened circuit back to the hierarchical
circuit. The treble-weighted graph for the partly flattened SFG of the fifth-order WDE filter is given
in Figure 9.10, where the inputs and outputs of the flattened subsystems are used as graph nodes
with zero values for PWO and PWI. After retiming, the synthesized architecture for the fifth-order
WDE filter is as shown in Figure 9.11. It can be translated back to a hierarchical representation.
For example, the module B(0) subsystem is flattened in the retiming procedure and the inputs and
outputs of the module B(0) are marked and related with the corresponding nodes of the treble-
weighed graph in order to be translated back to the module B(0) subsystem after retiming. In order
to test methodology correctness, the completely flattened circuit of the fifth-order WDE filter is
built up and synthesized using the IRIS tools. The retimed SFG is the same as in Figure 9.11.
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During synthesis, IRIS produces the structural VHDL description of the fifth-order WDE filter
circuit. Each processor type (multiplier and adder) and delay blocks are defined and their inter-
connection specified. Separate blocks of code for the modules (A0, A1, B0, B1, C and D) and
the filter architecture are generated. This permits the complete hierarchical VHDL description to
be loaded into Synplify Pro for logic synthesis, and hence physical implementation via the Xilinx
Design Manager.
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Table 9.3 Comparison of the characteristics

Architecture Critical path
Hardware elements

Adder Multiplier Delay

WDEF 3TM + 11TA 26 8 7
PWDEF TM 26 8 104
OPWDEF TM 26 8 132

Table 9.4 Virtex-II post-layout results for sampling rate

Circuit name Clock (MHz)
Critical paths (ns)

Logic Route Total

WDEF 25.6 24.2 14.9 39.0
PWDEF 173.0 3.8 1.9 5.8

Table 9.5 Virtex-II implementation (post-layout) results for area

Circuit name Clock (MHz)
Area

LUTs MULT SRL16 FFs Slice

WDEF 25.6 286 8 56 161
PWDEF 173.0 430 8 144 464 448

A comparison of the fifth-order WDE filter implementations in terms of critical paths and hard-
ware overhead is given in Table 9.3. WDEF is the original filter shown in Figure 9.5 and PWDEF
is the optimized design shown in Figure 9.11. The circuit shown in Figure 9.12 is the original
pipelined WDE filter (OPWDEF) generated by the original IRIS tools. The PWDEF and OPWDEF
circuits have a 93% critical path reduction over the WDEF circuit. PWDEF gives a 27% reduction
in delays compared with OPWDEF. Tables 9.4 and 9.5 give details on 8-bit input/output coefficients
post-layout information for WDEF and PWDEF system using a Virtex-II XC2V80fg144-5 chip.
The implementation results obtained by the design flow show that the system performance can reach
up to 173 MHz for the PWDEF circuit. The retimed designs have smaller routing interconnection
delays than their non-pipelined counterpart because of the pipelining registers.

9.5 Hardware Sharing Implementation (Scheduling Algorithm)
for IRIS

Section 9.4 presented the main functions of the new IRIS tool, which allow the designer to quickly
and automatically synthesize a circuit architecture from a hierarchical algorithmic SFG representa-
tion, and evaluate the effects of the latency and data time format on the architectural synthesis. In
regard to architectural exploration, the designer may want to investigate solutions with hardware
sharing. This will require complex control, therefore a means of scheduling and generating control
for the circuit is essential. This section describes the scheduling algorithm and controller adopted
in the IRIS tools, namely the extended Minnesota architecture synthesis (EMARS) scheduling
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algorithm for hierarchical scheduling (Yi et al. 2002). This is an extension to the MARS schedul-
ing algorithm presented by (Wang and Parhi 1994) which exploits both inter- and intra-iteration
precedence constraints. This section concentrates on adopting the EMARS scheduling algorithm for
IRIS in order to realize scheduling and hardware sharing architectural transformations. A revised
folding transformation technique provides a systematic technique for designing control circuits for
hardware where several algorithm operations are time-multiplexed onto a single functional unit.

The main changes to the MARS algorithm are that the calculation of loop bound is changed to
apply the complex component and hierarchical circuit. The corresponding changes are needed for
initial scheduling, resolving conflict, scheduling and resource allocation. The folding transformation
(Parhi 1999) provides a systematic technique for designing control circuits for hardware where
several algorithm operations are time-multiplexed onto a single functional unit. The derivation of
the folding equation is based on this technique. In the hierarchical architecture, the folding equation
is changed to suit the hierarchical architecture. The main steps of EMARS algorithm are described
as follows.

Step 1: Scheduling and Resource Allocation Algorithm for Recursive Nodes

The objective of high level architectural synthesis is to translate an algorithmic description to an
efficient architectural design while using realistic technological constraints. The resultant architec-
ture must maintain the original functionality while meeting speed and area requirements. As was
previously demonstrated, the recursive sections of the system determine the maximum sampling
rate. The scheduling for recursive nodes is considered first.

Step 1.1: Loop Search and Iteration Bound

When a loop is located, the original MARS calculates the loop bound as follows:

TLBj
= TLj

DLj

(9.8)

where TLj
= the loop computation time of loop j and DLj

= the number of loop delays within
loop j. The iteration bound can be calculated from the loop bound values by locating the maximum
loop bound. As the original MARS only considers the simple components with all inputs arriving
and outputs leaving at the same time, the computation equation of the complex and hierarchical
architecture block is considered here. In EMARS, the loop bound and the computation time of
critical path are calculated as follows:

TLBj
=

∑
e∈j

PWO(e) − ∑
e∈j

PWI(e)∑
e∈j

SFGW(e)
(9.9)

TCrit =
∑
e∈p

PWO(e) −
∑
e∈p

PWI(e) (9.10)

where the meanings of PWO(e), PWI(e) and SFGW(e) are same as those given for Equation (9.6).
The values j and p refer to loop j and datapath p respectively.

The second-order IIR filter is used to illustrate the limitations of the original MARS scheduling
algorithm and to indicate that the new Equations (9.9), (9.10) are correct for the second-order IIR
filter.
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Figure 9.13 (a) SFG of the second order IIR filter using MACs; (b) pipelined MAC architecture;
(c) dependence graph and PGH value for nodes. Reproduced from Hierarchical Synthesis of Com-
plex DSP Functions Using IRIS by Y. Yi & R. Woods, IEEE Trans on Computer Aided Design,
Vol. 25, No. 5,  2006 IEEE

Consider the second-order IIR filter benchmark as shown in Figure 9.13(a), which consists of
five MACs. It is assumed that each multiplier and adder has a computation time of 1 unit, which is
commensurate with FPGA implementation. The MDP model of MAC is shown in Figure 9.13(b)
and the dependence graph and PGH values for the nodes of the filter are shown in Figure 9.13(c).
This filter contains a recursive section which has two recursive nodes (MAC4 and MAC5), and a
non-recursive section which has three non-recursive nodes (MAC1, MAC2 and MAC3). There are
2 loops in this filter:

Loop1: MAC5(Pi)−→MAC5(So)−→ D4

Loop bound = 2−0
1 = 2

Loop2: MAC4(Pi)−→MAC4(So)−→ MAC5(Si)−→MAC5(So)−→ D4−→ D3

Loop bound = 2−1+2−0
1+1 = 3

2

Critical path:MAC1(So)−→MAC2(So)−→MAC3(So)−→Mac4(So)−→MAC5(So)
Tcrit = 2 − 1 + 2 − 1 + 2 − 1 + 2 − 1 + 2 = 6

Therefore the total number of loops required to schedule the recursive nodes is 2: Loop1
and Loop2. In the filter, the iteration bound is 2 units and the computation time of the critical path
is 6 units.

Step 1.2: Initial Schedule

The iteration bound (or pipelining period) has been calculated in step 1.1. The iteration time partition
is defined to be the time step at which a task is executed modulo of the iteration bound (Wang and
Parhi 1994). For example, the iteration bound of the second-order IIR filter is 2, therefore there are
two iteration time partitions (0,1). If a task is scheduled at time step 5, then the task is assigned to
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time partition 1 which is 5 modulo 2. The processor lower bound is given in MARS as follows:

(Lower bound)u =
⌈

Nu × Tu

Pu × T

⌉
(9.11)

where Nu = number of U -type operations, Tu = computation time of a U -type operation, Pu =
pipelining level of a U -type processor and T = iteration period.

Compared with the single operation in the MARS scheduling algorithm, the different outputs in
the hierarchical architecture in IRIS may have different computation times and pipelining levels.
In EMARS, Tu refers to the longest computation time of all outputs of a U -type operation and Pu

is the highest pipelining level of a U -type operation. The Tu and Pu of the MAC are related to
output So. The lower bound of the MAC in the second-order IIR filter is given in Equation (9.12),
which means 3 MAC processors are required.

(Lower bound)MAC =
⌈

5 × 2

2 × 2

⌉
= 3 (9.12)

At this point, the schedule matrices are created with one matrix for each operation type. The
matrices represent each recursive node scheduled in one iteration time partition, where rows rep-
resent iteration time partitions and columns represent loops and loop sections. Each loop or loop
section is assigned to a set of columns in such a way that the first set of columns corresponds
to the most critical loop and the last set to the least critical loop. The most critical loop is firstly
scheduled, starting from time 0 and maintaining the intra-iteration precedence constraints.

In IRIS, the intra-dependence constraint used to generate scheduling matrices is different from
the simple operation because all inputs of the revised MDP model in IRIS come into the processor at
different times. In the EMARS algorithm, the starting scheduling time of the node refers to the time
of an input pin with data time format [0]. For example, the scheduling time of the MAC processor
shown in Figure 9.13(b) is determined by the input pins Pi and Qi. If there is an intra-dependence
constraint from processor A to B, the scheduling time of the processor B can be calculated using
the following equation:

TB = TA + LA − DB (9.13)

where TA = the scheduling time of processor A, TB = the scheduling time of processor B, LA =
the latency of the output pin of processor A and DB = the minimum value of data time format of
the input pin of processor B.

For the second-order IIR filter example, Loop1, the critical loop, is scheduled first and the node
MAC5 is scheduled at time 0. Because there is an intra-dependence constraint between MAC4 and
MAC5 in Loop2 and the starting time partition of MAC5 is 0, the scheduling time of node MAC4
is calculated as −1 using Equation (9.13). MAC4 is a wrapped node (Wang and Parhi 1994), i.e. a
node which has been scheduled at time steps which are either negative (i.e. t < 0) or greater than
or equal to T (i.e. t ≥ T . Non-wrapped nodes are those which are scheduled at time steps equal
to the time partitions (i.e. 0 ≤ t ≤ T − 1). Wrapped nodes are identified in the schedule with a
superscript of +l or −1. The schedule matrix and initial schedule are shown in Tables 9.6 and 9.7,
where L1 and L2 refer to the loops, and M1, M2 and M3 are the physical MAC processors.

The loop flexibility available for each member of set L defines the number of iterations that
nodes of a loop may be shifted before violating the inter-iteration precedence constraint. MARS
calculates the loop flexibility F for each loop of L by the following equation, where T is iteration
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Table 9.6 Schedule matrix
for 2nd-order IIR filter

Time L1 L2

0 MAC5
1 MAC4+1

Table 9.7 Initial schedule for
2nd-order IIR filter

Time M1 M2 M3

0 MAC5
1 MAC4+1

period, DL is number of loop delays and TL is loop computation time.

F = T × DL − TL (9.14)

For EMARS, TL = ∑
e∈L PWO(e) −∑

e∈L PWI (e) and DL = ∑
e∈L SFGW(e).

The flexibility of Loop1 and Loop2 can be determined as F1 = 2 × 1 − 2 = 0 and F2 = 2 ×
2 − (2 + 2 − 1 − 0) = 1.

Step 1.3: Resolve Confict

The EMARS algorithm adopts the same principle as the MARS scheduling for resolving conflict
(Wang and Parhi 1994). In the second-order IIR filter example, a valid conflict-free scheduling for
recursive nodes is the same as the initial schedule shown in Table 9.7.

Step 2: Scheduling and Resource Allocation for Non-recursive Nodes

In this subsection, the main EMARS steps for scheduling and resource allocation of the non-
recursive nodes are described.

Step 2.1: Calculate Minimum Number of Processors

The exact number of additional processors, (P rocessor)u, can be calculated in MARS using the
equation below.

(Processor)u =
⌈

(Nu − T Su) × Tu

Pu × T

⌉
(9.15)

where Nu is the number of type U operations within the non-recursive section, T Su is the number
of available time partitions in the U -type processors, Tu is the computation time of a U -type
operation, Pu is the pipelining level of a U -type processor and T is the iteration period.
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In EMARS, once again, Tu refers to the longest computation time of all outputs of a U -type
operation and the Pu is the highest pipelining level of a U -type operation. For the second-order
IIR filter, the exact number of additional MAC processors is given as:

(Processor)MAC =
⌈

(3 − 4) × 2

2 × 2

⌉
= 0 (9.16)

There are four time partitions available for the MAC processor, and three time partitions needed
for non-recursive MAC nodes. MARS determined that this filter will not require any new processors,
therefore the number of MAC processors required will be three which is given in Equation (9.12).

Step 2.2: Locate Feed-forward Paths

The second-order IIR filter in Figure 9.13 only contains one feed-forward path shown in Figure 9.14,
which ends on a recursive node. The recursive node MAC4 does not include in this feed-forward
path.

Step 2.3: Create an Initial Schedule

Continuing with the second-order IIR filter shown in Figure 9.13, the initial scheduling from feed-
forward paths is shown in Table 9.8, where M1–M3 refer to the three MAC processors. Note that
from the schedule matrix, there exists no conflict and it is also the final conflict-free schedule for
the non-recursive nodes.

Step 3: Control Circuit Implementation Using Revised Folding Technique

After a final schedule and the number of processors are given, IRIS can construct the datapaths that
connect the processors, and generate the control circuitry using a revised folding transformation
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Recursive
Nodes

D

D

Figure 9.14 Schedule for a second order IIR filter
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Table 9.8 Final conflict-free schedule for
2nd-order IIR filter

Time
MAC processors

M1 M2 M3

0 MAC5 MAC3+1 MAC1+2

1 MAC4+1 MAC2+1

technique. The derivation of the revised folding equation, which forms the basis for the IRIS
controller, is introduced in this subsection.

While the folding transformation reduces the number of functional units in the architecture, it
may also lead to an architecture that uses a large number of registers. Some techniques can be used
to minimize the number of registers (Parhi 1994), but they increase the routing circuit complexity.
In this subsection, the hardware-sharing circuits are targeted to Xilinx FPGAs. As FPGAs are a
‘register rich’ architecture and the interconnect delay of the routed circuit can often be up to as much
as 60% of the total critical path in an FPGA, there is a deliberate intention not to reduce registers
as these can be used by retiming routine to improve throughout. These issues are highlighted in
next section in the implementation of the delayed LMS filters (Yi and Woods 2006, Yi et al. 2005).

Step 3.1: Revised Folding Transformation

As illustrated in Section 8.6.2, a folding set is an ordered set of operations executed by the same
functional unit (Parhi 1999). Each folding set contains N entries, some of which may be null
operations. The operation in the j th position within the folding set (where j goes from 0 to
N − 1) is executed by the functional unit during the time partition j. The use of systematic folding
techniques is demonstrated using the second-order IIR filter example. This filter is folded with
folding factor N = 2, using folding sets that can be written as S1 = MAC5, MAC4, S2 = MAC3,
MAC2 and S3 = MAC1, -. The folding sets S1, S2 and S3 contain only MAC operations, and
the nodes in same folding set are executed by the same MAC hardware. The folding factor N = 2
means that the iteration period of the folding hardware is 2.

If a folded system can be realized, D
′
F(U e−→V ) ≥ 0 must hold for all of the edges in the SFG.

Once valid folding sets have been assigned, retiming can be used to either satisfy this property or
determine that the folding sets are not feasible. A set of constraints for each edge of the SFG is
found using Equation (9.17) and the technique for solving systems of inequalities can be used to
determine if a solution exists and to find a solution, if one indeed exists. The inequalities constraints
is given below:

r(U) − rV ≤ �D
′
F(U e−→V )

N
� (9.17)

where �x� is the largest integer less than or equal to x.
In the following, the method by which these techniques can be used to design folded architectures

and generate the folded second-order IIR filter is described. The basic procedure is as follows:

• perform retiming for folding
• write the folding equations
• perform register allocation
• draw the folded architecture
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Table 9.9 Folding equations and retiming for folding constraints

Edge Folding equation Retiming for folding constraint

1 −→ 2(P ) D
′
F(U e−→V ) = 2(1) − 0 + 0 + 1 − 0 = 3 r(1) − r(2) ≤ 1

1 −→ 2(S) D
′
F(U e−→V ) = 2(0) − 2 + 1 + 1 − 0 = 0 r(1) − r(2) ≤ 0

2 −→ 3(P ) D
′
F(U e−→V ) = 2(1) − 0 + 0 + 0 − 1 = 1 r(2) − r(3) ≤ 0

2 −→ 3(S) D
′
F(U e−→V ) = 2(0) − 2 + 1 + 0 − 1 = −2 r(2) − r(3) ≤ −1

3 −→ 4(S) D
′
F(U e−→V ) = 2(0) − 2 + 1 + 1 − 0 = 0 r(3) − r(4) ≤ 0

4 −→ 5(S) D
′
F(U e−→V ) = 2(0) − 2 + 1 + 0 − 1 = −2 r(4) − r(5) ≤ −1

5 −→ 5(S) D
′
F(U e−→V ) = 2(1) − 2 + 0 + 0 − 0 = 0 r(5) − r(5) ≤ 0

5 −→ 4(P ) D
′
F(U e−→V ) = 2(2) − 2 + 0 + 1 − 0 = 3 r(5) − r(4) ≤ 1

The folding equation (see Equation 8.10) and the retiming for folding constraints (see
Equation 9.17) for the SFG in Figure 9.13(a) are given in the Table 9.9. According to the
technique for solving systems of inequalities, the first step is to draw a constraint graph. Given a
set of M inequalities in N variables where each inequality has the form ri − rj ≤ k for integer
value of k, the constraint graph can be drawn using the following procedure (Parhi 1999):

• draw the node i for each of the N variables ri;
• for each inequalities ri − rj ≤ k, draw the edge j −→ i from the node j to the node i with

length k;
• draw the node N + 1, for each node i, i = 1, 2, . . . , N , draw the edge N + 1 −→ i from the

N + 1 to the node i with length 0.

One of the shortest path algorithms (Parhi 1999) can be used to determine if a solution exists
and to find a solution. The system of inequalities has a solution if and only if the constraint graph
contains no negative cycles. If a solution exists, one solution is where ri is the minimum-length
path from the node N + 1 to the node i. The constraint graph for the inequalities in the right column
of Table 9.9 is shown in Figure 9.15. The set of constraints has a solution because no negative
cycles exist. One solution is r(1) = −2, r(2) = −2, r(3) = −1, r(4) = −1, r(5) = 0.

The retimed SFG is shown in Figure 9.16. The folding equation for the retimed SFG is given in
Table 9.10, and the folded SFG is shown in Figure 9.17.

The revised folding transformations have been described in this section for mapping DSP algo-
rithms to time-multiplexed architectures. The new folding equations suit both hierarchical and
flattened circuits. For flattened circuits, Av will equal 0, and the folding equation will be the
original one.
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Figure 9.15 Constraints graph for the second-order IIR filter
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Table 9.10 Folding equations for the retimed SFG in
Figure 9.16

Edge Folding equation

1 −→ 2(P ) D
′
F(U e−→V ) = 2(1) − 0 + 0 + 1 − 0 = 3

1 −→ 2(S) D
′
F(U e−→V ) = 2(0) − 2 + 1 + 1 − 0 = 0

2 −→ 3(P ) D
′
F(U e−→V ) = 2(2) − 0 + 0 + 0 − 1 = 3

2 −→ 3(S) D
′
F(U e−→V ) = 2(1) − 2 + 1 + 0 − 1 = 0

3 −→ 4(S) D
′
F(U e−→V ) = 2(0) − 2 + 1 + 1 − 0 = 0

4 −→ 5(S) D
′
F(U e−→V ) = 2(1) − 2 + 1 + 0 − 1 = 0

5 −→ 5(S) D
′
F(U e−→V ) = 2(1) − 2 + 0 + 0 − 0 = 0

5 −→ 4(P ) D
′
F(U e−→V ) = 2(1) − 2 + 0 + 1 − 0 = 1

a0 −→ 1(Q) D
′
F(U e−→V ) = 2(0) − 0 + 0 + 0 − 0 = 0

a1 −→ 2(Q) D
′
F(U e−→V ) = 2(0) − 0 + 0 + 1 − 0 = 1

a2 −→ 3(Q) D
′
F(U e−→V ) = 2(1) − 0 + 0 + 0 − 0 = 2

b2 −→ 4(Q) D
′
F(U e−→V ) = 2(1) − 0 + 0 + 1 − 0 = 3

b1 −→ 5(Q) D
′
F(U e−→V ) = 2(2) − 0 + 0 + 0 − 0 = 4
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9.6 Case Study: Adaptive Delayed Least-mean-squares Realization
Adaptive filters have uses in a number of applications that require differing filter characteristics
in response to variable signal conditions, such as noise cancellation, linear prediction, adaptive
signal enhancement, and adaptive control. The LMS algorithm is the most widely used adaptive
filtering algorithm in practice (Farhang-Boroujeny 1998). The wide spectrum of applications of the
LMS algorithm can be attributed to its simplicity and robustness to signal statistic. The TF-DLMS
algorithm is described by the following equations:

Filter output:

yn =
N−1∑
i=0

wn−i,ixn−i = wn,0xn + wn−1,1xn−1 + · · · + wn−(N−1),N−1xn−(N−1) (9.18)

Error:

e(n − m) = d(n − m) − y(n − m) (9.19)

Delayed coefficient update:

wn,i = wn−1,i + 2µen−mxn−m−i (9.20)

An 8-tap TF-DLMS architecture is given in Figure 9.18. Using the DLMS algorithm, registers
can be inserted into the error feedback path before the adaptation loop. The main challenge now
is to use these delays as a means of pipelining the LMS filter. This process first involves the
determination of the number of delays needed to achieve a fully pipelined version of the circuit.
This is important as a value that is too small will lead to a low-speed circuit, whilst too large a value
will produce a slower convergence rate and poor tracking capacity. IRIS determines the unknown
amount of delays (e.g. mD) in terms of circuit performance (speed and area) requirements. Once
this has been determined, a fully pipelined implementation is developed.

x(n)

y(n)

e(n-mD)
−+

PM7 PM1PM2PM3PM4PM5PM6 PM0

µ

D

µ

D

µ

D

µ

D

µ

D

µ

D

µ

D

2D

µ

D

0

D

2D2D2D2D2D2D

D D D D D D

mD

mD

d(n)

D D D D D D D

mD

Coefficient
Update Path

(CUP)

Filter Feed-
forward Path

(FFP)

Error Feedback
Path (EFP)

Figure 9.18 An 8-tap TF-DLMS algorithm architecture



200 FPGA-based Implementation of Signal Processing Systems

x(n)

y(n)

−+

0

mD

mD

D D D D D D

µ

D

µ

D

2D

D

µ

D

µ

D

µ

D

µ

D

µ

D

µ

D

D

D

2D 2D

D

2D

D

2D

D

2D

DD

2D

MAC1 MAC2 MAC3 MAC4 MAC5 MAC6 MAC7 MAC8

MACµ1 MACµ2 MACµ3 MACµ4 MACµ5 MACµ6 MACµ7 MACµ8

Tap1 Tap2 Tap3 Tap4 Tap5 Tap6 Tap7 Tap8

mD

d(n)

A1

Figure 9.19 The 8-tap TF-DLMS filter with m delays in EFP datapath. Reproduced from Hier-
archical Synthesis of Complex DSP Functions Using IRIS by Y. Yi & R. Woods, IEEE Trans on
Computer Aided Design, Vol. 25, No. 5,  2006 IEEE

9.6.1 High-speed Implementation

The TF-LMS adaptive filter (Jones 1992) has similar convergence behaviour as the DLMS filter.
An 8-tap predictor system with mD delays is given in Figure 9.18. The number of delays has been
defined as mD as this value will be determined by the number of pipeline stages (mD) which has
not yet been determined. This emphasizes how choices at the circuit architectural level impacts the
design of the algorithm.

The hierarchical SFG of the 8-tap TF-DLMS with m delays in the EFP datapath is given in
Figure 9.19. It shows that the DLMS filter is constructed from an adder and eight instances of
tap cell. Within these tap cells, one MAC and several MACµ (a MAC with a scaling circuit µ)
operations are carried out to implement the multiplier and accumulate function.

The arithmetic representation of a circuit is a three-level hierarchical circuit. The types of pro-
cessor chosen for this design example include pipelined dedicated multiplier and adder processors.
The DLMS filter was implemented using fixed-point arithmetic and all fixed-point implementation
issues were considered (Ting et al. 2000). This analysis includes: a detailed study of wordlength
growth in order to achieve the best wordlength in terms of the adaptive filtering performance and
cost of realization, application of truncation/rounding circuitry, use of saturation, and exploitation
of bit-shift for simple multiplication (Ting et al. 2000).

If the given specification demands a high-speed circuit which we assume here as an FPGA
implementation is being targeted, the multipliers and adders will be pipelined. In this design, the
multiplier operation in the MAC and MACµ subsystems is based on a dedicated 8-bit signed
multiplier, which is pipelined by one stage. The circuit for the adder processor is based on an
addition of two 8-bit and 16-bit words in the MAC and MACµ subsystem respectively, and can
be implemented using a fast carry chain adder pipelined by one stage. The scaling circuit is
implemented using a 5-bit arithmetic shift right operation. The step size used in the RDLMS
design is 2−5 (0.03125) which is the nearest power-of-2 number to the optimal step size obtained
using MatlabTM simulation.

Changing the latency of the multiplier and adder to one delay gives the circuit architecture in
Figure 9.20. After the IRIS SignalCompiler reads the model file of the 8-tap TF-DLMS adaptive
filter, graphical representations of the basic parameterized processor models (multiplier and adder),
displaying the information contained within the IRIS processor library, are generated. They are
also shown in Figure 9.20. All input and output data time formats and the output latency of basic
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Table 9.11 Data time format and latency of multiplier (S=A*B)

Port name
Data time format

Latency
Type Value

A Parallel [0,0,0,0,0,0,0,0] 0
B Parallel [0,0,0,0,0,0,0,0] 0
S Parallel [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 1

Table 9.12 Data time format and latency of adder (S=A+B)

Port name
Data Time Format

Latency
Type Value

A Parallel
[0,0,0,0,0,0,0,0](8-bit)

0
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] (16-bit)

B Parallel
[0,0,0,0,0,0,0,0](8-bit)

0
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] (16-bit)

S Parallel
[1,1,1,1,1,1,1,1](8-bit)

1
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (16-bit)

Xilinx processor blocks used in this design are given in Tables 9.11 and 9.12. Parameter values for
the nodes shown in Figure 9.21 need to be supplied to calculate specific latency values and data
time shapes for the filter design. In this example, the automatic synthesis process for hierarchical
design is implemented using the IRIS tools described in Section 9.4.

Since there is no feedback loop in the subsystems of MAC and MACµ, the pipelining period is
1. IRIS automatically synthesizes the MAC and MACµ subsystems using the retiming technique
described in Section 9.4, and the truncation question is also considered using this method. The
original circuit, synthesized circuit and the MDP models for the MAC and MACµ subsystems are
shown in Figure 9.21(a) and (b), respectively. All inputs and outputs data time formats and output
latency are given in Tables 9.13 and 9.14. The relationship inputs vectors are shown in Table 9.15.

The generated MDP models of subsystems MAC and MACµ are used in the higher-level sub-
system synthesis. The higher-level subsystem is a TAP subsystem and its pipelining period is 1.
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Figure 9.21 Subsystem models in TF-DLMS filter. Reproduced from Hierarchical Synthesis of
Complex DSP Functions Using IRIS by Y. Yi & R. Woods, IEEE Trans on Computer Aided Design,
Vol. 25, No. 5,  2006 IEEE

Table 9.13 The data time format and latency of the MAC
Subsystem

Port name
Data time format

Latency
Type Value

Pi Parallel [0,0,0,0,0,0,0,0]
Qi Parallel [0,0,0,0,0,0,0,0]
Si Parallel [1,1,1,1,1,1,1,1]
Po Parallel [0,0,0,0,0,0,0,0] 0
So Parallel [2,2,2,2,2,2,2,2] 2

The original circuit, synthesized circuit and the MDP model of the TAP subsystem are shown in
Figure 9.21(c). All inputs and outputs data time formats and the output latency of TAP are given in
Table 9.16. The relationship inputs vectors of subsystem TAP have been shown in Table 9.15. The
datapath delay pairs of TAP subsystem, which include the function delay, are shown in Table 9.17.

The top-level 8-tap TF-DLMS circuit is synthesized using the MDP models of the TAP subsys-
tem and adder processor. The number of pipeline cuts in the error feedback (mD) of TF-DLMS
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Table 9.14 The data time format and latency of MACµ Subsystem

Port name
Data time format

Latency
Type Value

Pi Parallel [0,0,0,0,0,0,0,0]
Qi Parallel [0,0,0,0,0,0,0,0]
Si Parallel [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Po Parallel [0,0,0,0,0,0,0,0] 0
Qo Parallel [0,0,0,0,0,0,0,0] 0
So Parallel [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] 2

Table 9.15 Relationship inputs vectors of MAC, MAC and TAP

Module output MAC MACµ Module output TAP

Po [Pi] [Pi] x0 [xi]
Qo [Qi ] x0l [xil]
So [Pi, Qi, Si] [Pi,Qi, Si ] e0 [ei ]

y0 [xi, xil , ei , yi]

Table 9.16 The data time format and latency of TAP

Port name
Data time format

Latency
Type Value

xi Parallel [1,1,1,1,1,1,1,1]
xil Parallel [0,0,0,0,0,0,0,0]
ei Parallel [0,0,0,0,0,0,0,0]
yi Parallel [2,2,2,2,2,2,2,2]
xo Parallel [1,1,1,1,1,1,1,1] 1
xol Parallel [0,0,0,0,0,0,0,0] 0
eo Parallel [0,0,0,0,0,0,0,0] 0
yo Parallel [3,3,3,3,3,3,3,3] 3

Table 9.17 Datapath delay pair of TAP
subsystem

TAP
xi xil ei yi

xo (0,0)
xol (0,0)
eo (0,0)
yo (2,0) (4,1) (4,1) (1,0)
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Figure 9.22 The synthesized TF-RDLMS filter. Reproduced from Hierarchical Synthesis of Com-
plex DSP Functions Using IRIS by Y. Yi & R. Woods, IEEE Trans on Computer Aided Design,
Vol. 25, No. 5,  2006 IEEE

circuit needs to be determined. Eight loops are identified in the top-level 8-tap TF-DLMS archi-
tecture as shown below. The corresponding pipelining period is calculated using Equation (9.16).
Pipelining periods of 1–8 are determined and made equal to 1 cycle in order to generate a high-
speed architecture. The optimal values for these loops are given as: m8 = −3D,m7 = −2D,m6 =
−1D,m5 = 0D,m4 = 1D, m3 = 2D,m2 = 3D,m1 = 4D. From this equation, it can be seen that
the optimal value of the number of delays m for the complete architecture is determined by the
slowest cycle and equals 4D. The synthesized circuit for the 8-tap predictor filter using IRIS is
shown in Figure 9.22, where the synthesized tap architecture in shown in Figure 9.21(c).

Loop 1: TAP8(yo) −→ mD −→ A1 −→ TAP8(ei)

α1 = ⌈ 4+1−0−0
m+1

⌉ = 1 �⇒ m1 = 4D

Loop 2: TAP7(yo) −→ TAP8(yo) −→ mD −→ A1 −→ TAP8(eo) −→ TAP7(ei)

α2 = ⌈ 4+4+1+0−2−0−0−0
1+1+m+2

⌉ = 1 �⇒ m2 = 3D

Loop 3: TAP6(yo) −→ TAP7(yo) −→ TAP8(yo) −→ mD −→ A1 −→ TAP8(eo)

−→ T AP 7(eo) −→ T AP 6(ei)

α3 = ⌈ 4+4+4+1+0+0−2−2−0−0−0−0
1+1+1+m+4

⌉ = 1 �⇒ m3 = 2D

...

Loop 8: TAP1(yo) −→ TAP2(yo) −→ TAP3(yo) −→ TAP4(yo) −→ TAP5(yo)

−→ TAP6(yo) −→ TAP7(yo) −→ TAP8(yo) −→ mD −→ A1 −→ TAP8(eo) −→
TAP7(eo) −→ TAP6(eo) −→ TAP5(eo) −→ TAP4(eo) −→ TAP3(eo) −→
TAP2(eo) −→ TAP1(ei)

α8 = ⌈ 4×8+1+0×7−2×7−0−0×6
1×8+m+14

⌉ = 1 �⇒ m8 = −3D

m = max(allmc) = 4D

The TF-RDLMS N-tap filter has been constructed using the TAP processor module structure
shown in Figure 9.23. In this TAP structure, the filter weights are updated locally, therefore the
order can be increased by adding more TAP elements, if needed. The filter also has the advantage
that increasing the filter order does not increase the critical path. The latency of the error signal
e(n), which is used to update the filter coefficient and affects filter performance, is increased by 4
delays rather than by 3N delays as in the TF-FPDLMS structure (Ting et al. 2000) which provides
a performance advantage.
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(b) N-order TF-RDLMS filter
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Figure 9.23 Transposed fine-grain retiming DLMS filter

9.6.2 Hardware-shared Designs for Specific Performance

Due to the advance of the Xilinx FPGA Virtex-II technology, the speed of the dedicated adder and
multiplier has up to 180 MSPS performance. In many applications, sampling rates can exceed expec-
tations, so hardware sharing may be desirable. To achieve this, the EMARS scheduling algorithm
and revised folding technique is used. Here, the hardware sharing circuit for an 8-tap TF-DLMS
filter is generated using the IRIS scheduling functions. The ratio between the clock rate and the
sampling rate can be regarded as a hardware sharing factor (HSF):

HSF = clock rate

sampling rate

which is also equal to the pipelining period. Assuming that the circuit sampling rate is 80 MHz,
the hardware sharing factor is then 2, which is �180/80� = 2.

As the subsystems of MAC and MAC do not include the feedback loop and delays, the synthe-
sized circuit and MDP model with pipelining period of 2 will be the same as the circuit with the
pipelining period of 1 shown in Figure 9.21(a) and (b). The synthesized circuit of the TAP subsys-
tem, and the corresponding IRIS MDP Model with pipelining period of 2 are shown in Figure 9.24.
All inputs and outputs data time formats and the TAP output latency with pipelining period of 2 are
given in Table 9.18. The relationship input vectors of the TAP subsystem are the same as for the
TF-DLMS filter shown in Table 9.15. The datapath delay pairs of the TAP subsystem with sharing
circuit is shown in Table 9.19.

The top-level 8-tap TF-DLMS circuit is synthesized using this TAP subsystem MDP model and
adder processors. The number of pipeline-cuts in the error feedback (mD) needs to be decided.
The same method is used to decide the optimal m values for the TF-DLMS circuit in Figure 9.19.
In this case, the optimal value of m is 2 because the pipelining period is 2. The final conflict-free
scheduling matrix for the TF-DLMS is shown in Table 9.20. Note that iteration period is equal
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to the pipelining period in this matrix. However, a new processor was allocated because of the
tight precedence constraints. The final hardware operators counted for this example equal the exact
number of four TAP operators (T1–T4) and one addition operator (A1).
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Figure 9.24 The synthesized tap subsystem and MDP models (α = 2)

Table 9.18 The data time format and latency of
TAP

Port name
Data time format

Latency
Type Value

xi Parallel [0,0,0,0,0,0,0,0]
xil Parallel [0,0,0,0,0,0,0,0]
ei Parallel [0,0,0,0,0,0,0,0]
yi Parallel [1,1,1,1,1,1,1,1]
xo Parallel [0,0,0,0,0,0,0,0] 0
xol Parallel [0,0,0,0,0,0,0,0] 0
eo Parallel [0,0,0,0,0,0,0,0] 0
yo Parallel [2,2,2,2,2,2,2,2] 2

Table 9.19 Datapath delay pair
of TAP subsystem

TAP
xi xil ei yi

xo (0,0)
xol (0,0)
eo (0,0)
yo (2,0) (4,2) (4,12) (1,0)

Table 9.20 The scheduling matrix of a
hardware-sharing TF-DLMS filter

Time step
TAP Adder

T1 T2 T3 T4 A1

0 Tap1 Tap2 Tap3 Tap4 Adder
1 Tap5 Tap6 Tap7 Tap8
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Figure 9.25 The final hardware architecture of the TF-DLMS filter of Figure 9.5 as generated by
IRIS with pipelining period of 2

The hardware sharing circuit for the TF-DLMS circuit with pipelining period of 2, using the
IRIS scheduling function is shown in Figure 9.25.

9.7 Conclusions
The material presented here describes work undertaken in creating a SFG-based synthesis tool,
IRIS which has been used to automate many of the techniques presented in Chapter 8. In addition,
the material has shown how the hierarchical nature of design creation, places considerable design
constraints on the techniques presented there and additional criteria need to be taken into consid-
eration to create the hardware cores. In the chapter, two examples, namely the second-order IIR
filter and the fifth-order WDE filter have been used to demonstrate the challenges. This provides
a clear insight into the challenges that will be met when creating FPGA functionality. Chapter 12
now gives details on the additional aspects required to capture this functionality in the form of a
useful IP core.
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10
Complex DSP Core Design
for FPGA

Silicon technology is now at the stage where it is feasible to incorporate many millions of gates on
a single square centimetre of silicon (Rowen 2002) with predictions of chip designs reaching over 2
billion transistors/cm2 by 2015 (Soderquist and Leeser 2004). This now permits extremely complex
functions, which would previously be implemented as a collection of individual chips, to be built
as a complete system-on-a-chip (SoC). The ability to encompass all parts of an application on the
same piece of silicon presents advantages of lower power, greater reliability and reduced cost of
manufacture. Consequently, increased pressure has been put on designers to meet ever-tightening
time-to-market deadlines, now measured in months rather than years. The whole emphasis within
the consumer market is to have high numbers of sales of cheaper products with a slimmer life span
and in a much shorter time-to-market. Particularly with the onset of new standards such as H.264
and MPEG4 which are driving the growth of high-definition TV and mobile video.

This increasing chip density has enabled an expansion of FPGA capabilities with devices such
as Xilinx’s Virtex V and Altera’s Stratix III offering full SoC functionality. With their vast expanse
of usable gates comes the problem of developing increased complex systems to be implemented
on these devices. Just as with ASIC development, as the complexity of the designs rises, the
difference in the growth rate of the feasible number of gates per chip and the number of gates per
chip actually being manufactured, widens. As was indicated in Chapter 1, this is commonly referred
to as the design productivity gap (IRTS 1999) and highlights a divergence that will not be closed
by incremental improvements in design productivity. Instead a complete shift in the methodology
of designing and implementing multi-million gate chips is needed that will allow designers to
concentrate on higher levels of abstraction within the designs.

As the silicon density grows, design complexity increases at a far greater rate since they are
now composed of more facets of the full system design and may combine components from a
range of technological disciplines. Working more at the system level, designers are now becoming
more heavily involved with integrating the key components without the freedom to delve deep
into the design functionality. Existing design and verification methodologies have not progressed
at the same pace, consequently adding to the widening gap between design productivity and silicon
fabrication capacity.

Test and verification has become a major aspect of electronic design under much concern at
present. Verification of such complex systems has now become the bottleneck in system-level
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 2008 John Wiley & Sons, Ltd
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design as the difficulties scale exponentially with chip complexity. Design teams may often spend
as much as 90% of their development effort on block or system level verification (Rowen 2002).
There are many strategies being investigated to develop systems to accelerate chip testing and
verification, particularly to address the increased difficulty in testing design components integrated
from a third party. So much more is at stake, both with time and monetary concerns. The industry
consensus on the subject is well encapsulated by Rowen (2002):

“Analysts widely view earlier and faster hardware and software validation as a critical risk-
reducer for new product development projects”.

This chapter will cover the evolution of reusable design processes, with a focus on FPGA-based
IP core generation. Issues such as the development of reusable IP cores through to integration issues
are discussed. The chapter starts in Section 10.1 by outlining the motivation for design for reuse and
giving some targets for reuse. Section 10.2 outlines the development of IP cores and Section 10.3
highlights how they have grown from simple arithmetic libraries to complex system components.
This is followed by a description of how parameterizable IP cores are created in Section 10.4 with
the FIR filter used to demonstrate some of the key stages. The integration process is covered in
Section 10.5 and followed by a description of a case study, namely the ADPCM IP core in
Section 10.6. Finally, a brief description is given of the third party FPGA IP vendors in Section
10.7 followed by some conclusions in Section 10.8.

10.1 Motivation for Design for Reuse
There is a great need to develop design and verification methodologies that will accelerate the
current design process so that the design productivity gap can be narrowed. As the number of
available transistors doubles with every technology cycle then the target should be to increase
design productivity at this same rate. To enable such an achievement, a greater effort is needed
to research the mechanics of the design, test, and verification processes, an area that to date has
so often been neglected. Design for reuse is heralded to be one of the key drivers in enhancing
productivity, particularly aiding system-level design.

In addition to exponentially increased transistor counts, the systems themselves have become
increasingly complex, due to the combination of complete systems on a single device with com-
ponent heterogeneity bringing with it, a host of issues regarding chip design, and in particular test
and verification. Involving full system design means that developers need to know how to combine
all the different components building up to a full system-level design. The sheer complexity of this
development process impacts the design productivity and creates ever-demanding time-to-market
deadlines. Obtaining a balance of design issues such as performance, power management and manu-
facturability, with time-to-market and productivity is a multidimensional problem that is increasing
in difficulty with each technological advancement.

Enhancement in design productivity can be achieved by employing design for reuse strategies
throughout the entire span of the project development from initial design through to functional test
and final verification. By increasing the level of abstraction, the design team can focus on pulling
together the key components of the system-level design, using a hierarchical design approach. This
same approach needs to be employed through all the modelling, simulation, test and verification of
component and higher-level blocks. For verification there needs to be a formal strategy with code
reuse and functional test coverage (Huang et al. 2001, Moretti 2001, Varma and Bhatia 1998).

To increase the overall productivity and keep pace with each technology generation, the amount
of reuse within a system design must increase at the same rate, and the level of abstraction must
rise. Productivity gains by employing reuse strategies for high-level functional blocks are estimated
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to be in excess of 200% (Semiconductor Industry Association 2005). These reusable components
need to be pre-verified with their own independent test harness that can be incorporated into the
higher-level test environment. This can be achieved by incorporating IP cores from legacy designs
or third party vendors. The need for such cores has driven the growth in IP core market, with ever
greater percentages of chip components coming from IP cores.

Within the International Technology Roadmap for Semiconductors 2005 report (Semiconduc-
tor Industry Association 2005) the percentage of logic from reused blocks is currently at 36%
(2008) and this figure is expected to steadily increase to 48% by 2015, and continue increasing in
a similar manner beyond this time frame. The ITRS has published an update to the 2005 roadmap
giving market-driven drivers (Association SI 2006). Table 10.1 gives a summary of some of the
data referring to the need for reuse.

Another important area for improving design productivity is by forming the same design for
reuse principles with embedded software, resulting in libraries of functions that can be integrated
into the system-level design.

10.2 Intellectual Property (IP) Cores
One of the most favourable solutions for enhancing productivity is the strategy of using pre-
designed functional blocks known as silicon intellectual property (IP) cores, often referred to as
virtual circuits (VCs). The terminology of IP cores applies to a range of implementations, from
dedicated circuit layout designs through to efficient code targeted to programmable DSP or RISC
processors, or core descriptions captured in a hardware description language (HDL). Within the
realms of ASIC and FPGA implementations, IP cores are often partitioned into three categories:

• hard IP
• firm IP
• soft IP

Hard IP refers to designs represented as mask layouts, whereas firm IP refers to synthesized netlists
for a particular technology. Soft IP refers to the HDL version of the core that will have scalability
and parameterization built in. For the latter, the term that has evolved is parameterizable IP.
They can be designed so that they may be synthesized in hardware for a range of specifications
and processes. For digital signal processing (DSP) applications parameters such as filter tap size,
transform point size, or wordlength (Erdogan et al. 2003, Guo et al. 2004, Hunter 1999, McCanny
et al. 1996), may be made to be a programmable feature. Parameters controlling these features would
be fed into the code during the synthesis, resulting in the desired hardware for the application. There
are advantages and disadvantages with each type of IP core, as illustrated in Figure 10.1.

Table 10.1 SOC design productivity trends (normalized to 2005)

2005 ’08 ’10 ’12 ’14 ’16 ’18 ’20

Design needed to be reused (%) 30 42 50 58 66 74 82 90
Trend: SOC total logic size 1.0 2.2 3.4 5.5 8.5 13.8 20.6 34.2
Required productivity for new designs 1.0 2.0 3.0 4.6 6.7 10.2 14.3 22.1
Required productivity for reused

designs
2.0 4.0 6.0 9.2 13.5 20.4 28.6 44.2
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Figure 10.1 Benefits of IP types

These types of parameterizable soft IP cores allow the most flexibility and will provide the best
levels of reuse, but there is a major cost in terms of test and verification as they will need to be tested
in every mode. Moreover, there is an presumption that the cores will work best across different
FPGA technologies or that the performance will scale linearly as the parameters are changed within
the current FPGA technology. These issues thus act to reduce design confidence. These problems
do not arise with hard IP cores such as the PowerPC in the Xilinx FPGAs, where the dedicated
functionality is predictable. However, the major limitation here is that this platform is not suitable
for DSP applications, as the concurrency offered by the FPGA was the main reason for opting for
the FPGA platform in the first place. Thus, the flexibility is extremely limited by the underlying
dedicated hardware platform.

Although fixed in their design, some flexibility can still be included from the onset in firm and
hard IP devices. In these cases, the IP parameters that define the core are termed static IP (Junchao
et al. 2001), whereby registers internal to the final design can be set to allow a multiplexing of
internal circuits so to reconfigure the functionality of the design. Reconfiguration has been a subject
of great interest with FPGAs, particularly with their increasing capabilities, (Alaraje and DeGroat
2005, Sekanina 2003). In contrast, the IP parameters within soft IP cores are termed dynamic IP
parameters. They are often local or global parameters such as data widths, memory sizes and timing
delays. Control circuitry may also be parameterized, allowing scalability of the design. Parameters
may also be set to allow the same primary code to be optimized for varying target technologies
from ASIC libraries to different FPGA implementations.

Many companies offer IP products based around DSP solutions, that is, where the IP code
is embedded onto DSP processors. This offers full flexibility, but with the obvious reduction in
performance in terms of area, power and speed. Texas Instruments (TI) and ARM are two examples
of extremely successful companies supplying both the chip sets and the supporting libraries of
embedded components. In a similar manner, a wealth of companies delivering firm and soft IP
cores has been established. This has been of particularly true for the advent of FPGA companies
that not only sell the chips on which to implement the user’s designs, but can also provide many
of the fundamental building blocks needed to create these designs. The availability of such varied
libraries of functions and the blank canvas of the FPGA brings great power to even the smallest
design team. They no longer have to rely on internal experts in certain areas, allowing them to
concentrate on the overall design, with the confidence that the cores provided by the FPGA vendors
have been tested through use by previous companies.
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A list of some current IP vendors (Davis 2006) follows:

4i2i Communications Ltd: IP Cores in Verilog and VHDL for FPGAs and ASICs. Specializing in
video coding and DSP technology (http://www.4i2i.com/)

Conexant, Amphion IP Cores: IP Cores in Verilog and VHDL for FPGAs and ASICs. The company
specializes in video, imaging, security, speech and audio, broadband wireless and DSP technology
(http://www.conexant.com/products).

Axeon Ltd: Vindax IP Cores – Synthesizable and scalable microprocessor architecture, optimized
to support machine learning, (http://www.axeon.com)

ARC: configurable cores: CPUs/DSP (http://www.arc.com/)
Digital Core Design: VHDL and Verilog cores for microcontrollers, bus interfaces and arithmetic

co-processors (http://www.dcd.com.pl/)

This gives some idea of the diversity of IP products, and the increasing scale of the components.
The large cores tend to come in areas where dedicated standards have indicated a desired or
restricted performance, such as in the case of video coding (JPEG, MPEG) and bus and memory
interfaces.

Within hard IP cores, components can be further defined (Chiang et al. 2001), although the
definitions could be applied across all variations of IP cores, with the pre-silicon stage relating
more to the soft IP core and the production stage relating to a pre-implemented fixed design hard
IP core:

Pre-silicon: given a one-star rating if design verified through simulation
Foundry verified: given a three-star rating if verified on a particular process
Production: given a five-star rating if the core is production proven

When developing IP, vendors often offer low-cost deals to attract system designers to use their
new product and prove its success. Once silicon is proven, the product offers a market edge to
competitive products.

10.3 Evolution of IP Cores
As technology has advanced, the complexity of the granularity of the core building blocks
has increased, raising the level of design abstraction. This has led to a design evolution
resulting in a hierarchy of fundamental building blocks. This section gives a summary of this
evolution.

Within the realms of ASICs, families of libraries evolved, bringing a high level of granularity
to synthesis. At the lowest level, the libraries defined gated functions and registers. With increased
granularity, qualified functional blocks were available within the libraries for functions such as
UARTs, Ethernet, USBs controllers, etc. Meanwhile within the DSP domain, processors companies
such as Texas Instruments Inc. (TI) were successfully producing software solutions for implemen-
tation on their own devices. It was with the development of families of arithmetic functions that
the role of IP cores in design for reuse for ASIC and FPGA designs, came into play. It was a
natural progression from the basic building blocks that supported ASIC synthesis. The wealth of
dedicated research into complex and efficient ways for performing some of the most fundamen-
tal arithmetic operations lent itself to the design of highly sophisticated IP cores operating with
appealing performance criteria.
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Figure 10.2 gives an illustration of this evolution of IP cores and how they have increased in
complexity with lower-level blocks forming key components for the higher levels of abstraction.
The arithmetic components block shows a number of key mathematical operations, such as addition,
multiplication and division, solved and implemented using a number of techniques such as carry-
look-ahead and high radix forms of arithmetic. Many of the techniques to achieve this level of
functionality were covered in Chapter 3.

With greater chip complexity on the horizon, the arithmetic components became building blocks
for the next level of complexity hierarchy, such as filter banks which consist of a large array of
MAC blocks. This led to the development of fundamental DSP functions such as FFTs and DCTs.
These examples are matrix-based operations, consisting of a large number of repetitive calculations
that are performed poorly in software. They may be built up from a number of key building blocks
based on multiply and accumulate operations. The structured nature of the algorithms lends itself
to scalability, allowing just a small number of parameters to control the resulting architecture for
the design. Such examples of parameters could be the choice of wordlength and truncation. Other
examples would be based on the dimensions of the matrix operations, relating, for example, to the
number of taps on a filter. This allows the work devoted to a single application to be expanded to
meet the needs of a range of applications.

Other more complicated foundation blocks were developed from the basic arithmetic functions.
More complicated filter-based examples followed such as adaptive filters implemented by the LMS
algorithm or the more complex QR based RLS algorithm. The latter is given as an example in
Chapter 12. Highly mathematical operations lend themselves well to IP core design. Other examples,
such as forward error correction chains and encryption, whereby there is a highly convoluted
manipulation of values, have also been immensely successful.

IP cores have now matured to the level of being able to perform full functions that might have
previously been implemented on a number of independent logic blocks or devices. Again, this
raises the level of complexity within the base logic blocks. An example of this is the DCT. The
development of a high-performance IP block for the DCT has been an area of keen interest (Hunter
1999). A complex component in itself, it is a fundamental part of the JPEG and MPEG image
compression algorithms which are themselves commercial IP products.

Each of the levels of design abstraction is covered in more detail over the following sections.

10.3.1 Arithmetic Libraries

The examples in Figure 10.2 list a number of basic mathematical operations namely addition,
multiplication, division and square root. The efficient hardware implementation of even the most
basic of these, that is addition, has driven an area of research, breaking down the operations
to their lowest bit level abstraction and cleverly manipulating these operations to enhance the
overall performance in terms of area, clock speed, and output latency (Ercegovac and Lang 1987,
Hwang 1979, Koren 1993, Schwarz and Flynn 1993, Srinivas and Parhi 1992, Takagi et al. 1985).
The following sections give some detail regarding the choice of arithmetic components and how
parameters could be included within the code.

Fixed-point and Floating-point Arithmetic

The arithmetic operations maybe performed using fixed-point or floating-point arithmetic. As dis-
cussed in Chapter 3, with fixed-point arithmetic the bit width is divided into a fixed-width magnitude
component and a fixed-width fractional component. Due to the fixed bit widths, overflow and
underflow detection are vital to ensuring that the resulting values are accurate. With floating-point
arithmetic, the numbers are represented as shown earlier in Figure 3.2 and provide a much better
dynamic range.
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Figure 10.2 Evolution of IP cores

Although the number representation within the data width differs for fixed- and floating-point
design, there is overlap on how the main functionality of the operation is performed, as illustrated
for multiplication in Figure 10.3, and there has been research into automating the conversion from
fixed- to floating-point, (Shi and Brodersen 2003).

As was discussed in Chapter 3, floating-point and fixed-point arithmetic have their advantages
and disadvantages. A QR filter implementation on FPGA using floating-point arithmetic is given
in Lightbody et al. (2007). Earlier studies (Walke 1997) of the QR filter implementation showed
floating-point arithmetic to be a more efficient and higher-performing solution for particular appli-
cation (adaptive beamforming for radar) when compared with fixed-point arithmetic. However, this
investigation concentrated on ASIC implementations. With the FPGA implementation the issue
of fixed- versus floating-point arithmetic was clouded and no longer clear-cut, and seems heavily
dependent on the capabilities of the prospective FPGA device. Indeed, with the absence of dedi-
cated floating-point hardware in FPGA, the performance is poor and work by Craven and Athanas
(2007) suggests that the performance can be even poorer than a processor implementation.

Addition, Multiplication, Division and Square Root

There has been an extensive body of work devoted to high-performance implementations of
arithmetic components, (Ercegovac and Lang 1987, Hwang 1979, Koren 1993, Schwarz and
Flynn 1993, Srinivas and Parhi 1992, Takagi et al. 1985) some of which has been highlighted in
Chapter 3. For addition and subtraction and also now for multiplication, the evolution of
dedicated fixed-point additive and multiplicative hardware has negated the need for any detailed
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implementation discussion and, to a great extent, dedicated cores are irrelevant, except of course,
in floating-point. Floating-point arithmetic cores have been developed for both ASIC and FPGA
by Amphion semiconductors (now Conexant) and also by Northeastern university (University N
2007). As Chapter 3 highlighted, there are a number of ways of performing division, including
recurrence methods and division by functional iteration. These techniques lead to an architectural
description with defined multiplicative and additive stages which can be scaled to meet the
wordlength requirements. The key trade-off is the use of the LUT to create the initial estimate
which acts to speed up the process, but which makes the core less scalable.

As the level of abstraction within VLSI design has been raised beyond the bit level arithmetic
computations described above, tools such as Synplicity enable key arithmetic components of fixed-
point multiplication and addition to be inferred using simple arithmetic operands. Within FPGAs,
the devices have high-performance fixed-point multiplication operations already implemented on
the device.

10.3.2 Fundamental DSP Functions

This section gives some examples of the more intricate cores that can be based from lower-level
arithmetic modules. See Chapter 2 for more detail of the following algorithms.

FFT: the FFT is a powerful and efficient matrix based operation. It is widely used and can be
utilised in applications such as orthogonal frequency division multiplexing, a powerful modula-
tion/demodulation scheme for communications applications such as wireless (IEEE802.11a/g) or
broadcasting (DVB-T/H)

DCT: this is another matrix-based operation that is of great importance for many image processing
applications.

LMS and RLS filter: adaptive filtering algorithms are used in many applications such as mobile
telephony and radar.

Wavelets: wavelet decomposition has a range of signal processing applications, including image
compression.



Complex DSP Core Design for FPGA 219

Filter banks: filter bank architectures can be highly regular, consisting of a systolic array of repet-
itive cells, e.g. MAC operations. Within such a regular structure there is an obvious ability to
create scalable code to allow a range of filter taps to be supported. The complexity increases
drastically if the level of hardware needs to be kept to a minimum, with hardware reuse focused
on a core number of operations on which to schedule the full functionality of the algorithm.

In each case, the aim is to derive the circuit architecture in such a way so as to preserve regularity
and programmability as this will allow the core to be parameterized and produce reasonably con-
sistent performance results across the range of parameters. Take for example the FFT; it is possible
to decompose the FFT in such a way that large FFTs can be created from smaller block sizes. This
is a clear means of allowing the block size to be parameterized, even though it may not be the
most area- and speed-efficient solution; however, it will give good performance across the block
size parameters. The availability of a scalable adder also means that performance is predictable
for different wordlengths, although this becomes an issue for the multiplier function as these have
limited wordlength in Xilinx Virtex (18-bit) and Altera Stratix (36-bit) FPGA families. Once these
wordlengths are exceeded, the multipliers have to be constricted from several blocks.

10.3.3 Complex DSP Functions

The DSP functions summarized above form main algorithmic functions within a range of applica-
tions and would need to be scalable across key parameters. However, there are some applications
where the performance is reasonably well defined within the standards such as JPEG and MPEG.
As already discussed, the DCT forms a key function within JPEG compression. This is illustrated
in Figure 10.4. A key balance is to create the more complex DCT functionality directly in hard-
ware and dedicate the rest of the functionality into software. It might then be possible to reuse the
hardware block to create bigger block sizes, if needed. MPEG4 video encoding involves additional
motion estimation and compensation blocks which represent some 90% of the processing time.
Thus, there is interest in developing parameterizable cores for motion estimation.

10.3.4 Future of IP Cores

As the level of abstraction within the core building blocks of designs increases, the role of the
designer is moving more toward that of a system integrator, particularly with development using
current FPGA devices enabling full system functionality on a single device. For the growth in IP
core use to continue, other aspects within the design flow will need to be addressed. The following
is quoted from Gajski et al. (2000):

“IP tool developers provide IP providers and system integrators with design methodologies and
tools to support IP development and system integration”.

The following section details the process from design concept to scalable (soft IP) solution.

8 × 8 Pixel
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DCT Quantizer Huffman
encoding

Compressed
image

Source encoder Entropy encoder

Figure 10.4 JPEG image compression
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10.4 Parameterizable (Soft) IP Cores
This section will cover the development of parameterizable IP cores for DSP functions. The starting
point for the hardware design of a mathematical component may be from the SFG representation
of the algorithm. Here, a graphical depiction of the algorithm shows the components required
within the design and their interdependence. The representation could be at different levels, from
the bit-level arithmetic operations through to the cell-level functions. The SFG gives information
regarding the flow of data through these components and provides a very powerful representation
of the design from which the hardware architecture can be developed.

An example SFG is given in Figure 10.5 which depicts two variations of how to perform complex
multiplication. This simple example shows how, by reordering the arithmetic operations, changes
can be made to enhance the area or critical path of the resulting hardware architecture. This solution
for the complex multiplication of two numbers (a + jb) and (c + jd) is:

(a + jb)(c + jd) = [a(c − d) + d(a − b)] + j [b(c + d) + d(a − b)]

Figure 10.6 shows the conventional design flow for a DSP-based circuit design, starting from
the SFG representation of the algorithm. Typically, this cycle would be re-iterated, either because
of design changes or lack of desired performance. Many of the steps were covered in the pre-
vious chapters. The process starts with a definition of the algorithm in terms of the SFG or
DFG description. A detailed analysis is then carried out as highlighted in Chapter 2, to deter-
mine key aspects such as internal wordlengths, truncation issues, throughput rate requirements.
These then form the bounds for the creation of the circuit architecture which was covered in detail
in Chapter 8. When complete, the circuit architecture is coded up as a HDL-based description and
conventional synthesis tools used to create the final design. If a certain aspect of the specification
were to be changed, such as wordlength, then the traditional full design flow would need to be
repeated.

The development of the IP core where the HDL is parameterized allows this flow to be dra-
matically altered, as shown in Figure 10.7. The design needs to encompass the initial studies in
the effects of wordlength and arithmetic on SNR, area and timing performance. Effort would be

jdc
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1 add and 1 multiply
in both paths

a jb

(a) 4 multiplications/2 additions (b) 3 multiplications/5 additions

jdc

ac−bd j(ad+bc)

a jb
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Figure 10.5 Complex multiplication SFG
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Figure 10.6 VLSI circuit design flow

needed to ensure that operation scheduling would still be accurate if additional pipeline stages were
to be included, the aim being that the parameterization of the core would lead seamlessly to a
library of accurate implementations targeted to a range of specifications, without the need to alter
the internal workings of the code. The system should effectively allow a number of parameters
to be fed into the top level of the code. These would then be passed down through the different
levels of abstraction of the code to the lowest levels. Obviously, considerable effort is needed at the
architecture level to develop this parameterizable circuit architecture. This initial expense in terms
of time and effort undoubtedly hinders the expanded use of design for reuse principles. However,
with this initial outlay, great savings in company resources of time and money may be obtained.
The choice of which design components on which to base further designs and develop them as
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IP, is vital for this success. The initial expenditure must in the long run result in a saving of
resources.

Future design engineers need to be taught how to encompass a full design for reuse method-
ology from the project outset to its close. The design process needs to consider issues such as
wordlength effects, hardware mapping, latency and other timing issues before the HDL model
of the circuit can be generated. The aspects that need to be considered create a whole new
dimension to the design process, and designers need to keep in mind reusability of whatever
they produce whether for development or test purposes. If a design is developed in a parame-
terized fashion then initial analysis stages can be eliminated from the design flow, as illustrated
in Figure 10.7, allowing additional circuits to be developed and floorplanned in extremely short
time scales, typically in days as opposed to months. This activity represents a clear market for
IP core developers (Howes 1998) as it can considerably accelerate the design flow for their cus-
tomers. However, it requires a different design approach on behalf of the IP core companies to
develop designs that are parameterizable and which will deliver a quality solution across a range of
applications.

10.4.1 Identifying Design Components Suitable for Development as IP

Within a company structure, it is vital that the roadmap is considered within the development of IP
libraries, as there is a greater initial overhead when introducing design for reuse concepts. Greater
success can be obtained by taking an objective look into possible future applications, so that a
pipeline of developments can evolve from the initial groundwork, thereby justifying incorporation
of design for reuse from the outset. It is often possible to develop a family of products from the
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same seed design, by including parameterization in terms of wordlength and level of pipelining,
and by allowing scalability of memory resources and inputs.

Larger designs may need to be broken down into manageable sections that will form the reusable
components. This is particularly true for large designs such as MPEG video compression, whereby
a range of different applications would require slightly different implementations and capabilities.
By picking out the key components that remain unchanged throughout the different MPEG profiles
and using these as the key hardware accelerators for all of the designs, vast improvements in time-
to-market can be met. Furthermore, existing blocks from previous implementations also have the
advantage of having been tested in full, especially if they have gone to fabrication or deployment
on FPGA. Reusing such blocks adds confidence to the overall design. Existing IP may also form
the key building blocks for higher-level IP design, creating a hierarchical design.

Figure 10.8 illustrates some of these key points. A depiction is given of repetitive blocks being
used in multiple designs. Similarly, the figure shows larger designs built up from a hierarchy of
lower-level blocks. The company roadmap is illustrated, highlighting the importance of careful
choice of which components to assign the extra design effort. Scalability is another key consider-
ation. Can the design be expanded and scaled to meet the demands of a variation of applications?
An example of this is in speech compression whereby a codec may need to work on a range of
channel numbers depending on the overall application, for example, a simple DECT phone or for
a telecommunications network.

10.4.2 Identifying Parameters for IP Cores

Identifying the key parameters when developing an IP core requires a detailed understanding of
the range of implementations in which the core may be used. The aim is not to just create as
much flexibility into the design as possible, but to identify the benefits that this additional effort
will bring in the long run. Over-parameterization of a design not only affects the development
time, but also affects the verification and testing to ensure that all permutations of the core have
been considered. In other words, consider the impact on the design time and design performance
of adding an additional variable and weigh this against how the added flexibility will broaden the
scope of the IP core!

Company roadmap 

Repetitive block 

Scalability

Library of IP

Hierarchical design

Figure 10.8 Components suitable for IP
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There follows a list of example parameters, some of which are illustrated in Figure 10.9:

• modules/architecture
• wordlength
• memory
• pipelining
• control circuitry
• test environment

An obvious parameter is wordlength. Choice of wordlength comes down to a trade-off between
SNR and performance criteria such as area and critical path. Figure 10.10 gives an illustration
of such an analysis, plotting the SNR against a range of wordlengths. From this simple example
it can be seen that increasing the wordlength further will not significantly improve the overall
performance. For some components such as addition, an increase of one bit will linearly scale the
area of the resulting implementation. However, for components such as multiplication and division,
increasing the wordlength will have an exponential effect on the area. For this reason, wordlength
analysis is critical as well as truncation or rounding analysis.

Enabling full scalability of the hardware is another example. The diagram shows a single block
that is repeated as the needs of the application scale. An example of this could be for an N-tap
filter. As N increases the hardware should be able to increase the logic blocks accordingly to meet
the application requirements.
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Memory may also need to be scalable to account for the different wordlengths, but also for
variations in the number of inputs or stored values. More importantly, how the memory architecture
is created is also very important. This was highlighted in Chapter 5 where Tables 5.3 and 5.8 give
the list of memory available in Altera Stratix and Xilinx Virtex FPGA families respectively. It is
clear that embedded RAM gives area efficient, coarse memory blocks, but embedded LUTs allow
faster operation due to the highly parallel nature of their operation and the fact that they can
be co-located to the hardware. This would need to be taken into consideration when the core is
developed.

Different applications could be implemented using a combination of sub-blocks. This is rep-
resented in the Figure 10.9 with the module blocks labelled A, B, C and D, depicting a simple
architecture. As with area, additional bits within the wordlength will have a knock-on effect on
the critical path, possibly resulting in the need to introduce further pipeline stages throughout the
design, as illustrated, using the same simple architecture of sub-blocks, A, B, C and D. Enabling
the level of pipelining to be varied is an important parameterizable feature that can widen the
application opportunities.

Allowing flexibility in the data rate and associated clock rate performance for an application will
also require the ability to vary the level of pipelining within the design to meet the critical path
requirements. As already mentioned, this may tie in with changes in the wordlength and often a
variation in the number of pipeline stages will be part of the reusable arithmetic cores. Obviously
an increase or decrease in the number of pipeline cuts in one module will have a knock-on effect
on the scheduling and timing for the associated modules and the higher level of hierarchy. For
this reason, control over the pipeline cuts within the lower-level components of a design must be
accessible from the higher level of the module design, so that lower-level code will not need to be
edited manually.

There may also be a need to develop scalable control circuitry that will allow for the changes
in parameters, such as additional pipelining delays or any increase in the number of inputs or
wordlength, that may have an effect on the scheduling and timing of the module. One important
example is how to develop parameterizable control to handle the scheduling of multiple operations
onto a single instantiation of hardware.

Obtaining a fully parameterizable design is a convoluted issue that needs to be planned; the
overall goal is that the code can be resynthesized for a new architecture in extremely short timescales
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while still meeting the desired performance criteria. This a key factor for the success of an IP core.
It is crucial that the resulting core has performance figures in terms of area, power and speed,
comparable to a handcrafted design. As usual, the process comes down to a balance between time
and money resources and the performance criteria of the core.

An alternative method for developing parameterizable cores can be to create a software
code to automate the scripting of the HDL version of the module. This is particularly useful
with Verilog as it does not possess the same flexibility in producing scalable designs as
VHDL.

Consideration must be made to the level of parameterization within a design. From the outset
it would seem reasonable to include as much flexibility within a design as possible. Surely doing
this would widen the market potential for the IP core. Gajski et al. (2000), highlight the issue of
over-parameterization. The more variables that are placed within a core the harder it is to verify
the full functionality of each permutation of the design. There is also the aspect that a design
that has been made overly generic may not command the performance requirements for a specific
application. Gajski stated that, as the number of parameters increases, there is a decrease in the
quality and characterization of the design, that is, how well the design meets the needs of the user.
There are also the added complications with verification and testing. These points are highlighted
in Figure 10.11. It is essential to consider such issues when choosing parameters, so as to find a
balance between design flexibility and design reliability.

10.4.3 Development of Parameterizable Features Targeted to FPGA Technology

Many of the IP designs targeted for ASIC implementation can be expanded for FPGA implemen-
tations and vice versa. Each technology has its own characteristics, but by accounting for these
differences, it becomes viable to create the code in such as way that cores can be retargeted at
the top level to the FPGA or ASIC family of choice. This is of particular importance as FPGAs
are rapidly progressing, thus legacy code needs to accommodate additions for future devices and
packages. This was illustrated in the example in Figure 10.9 where it is shown how one seed design
can be used as a base from which to generate technology-specific designs targeted to ASIC and
FPGA.

Allowing the same code to be altered between the two technologies has the obvious advantage of
code reuse, broadening the market for the product by not limiting the target technology. However,
it also allows for a verification framework, whereby cores are prototyped on FPGA; the same
code is then retargeted to ASIC. There is obviously no guarantee that the code conversion from
FPGA to ASIC implementations will not in itself incur errors. However, the ability to verify the
code on a real-time FPGA platform brings great confidence to the design process and enables even
the functional design to be enhanced to better meet the needs of the specification. Typically the
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Figure 10.11 Effect of generalization on design reliability (Gajski et al. 2000)
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following issues need to be considered when switching between the two main streams of target
implementation:

FPGA embedded arithmetic
ASIC custom designed arithmetic cores
Technology specific memory
Pipelining may need to be adjusted to meet the desired performance on the chosen technology.
Area and resources. The chosen FPGA will have limited resources compared with ASIC. The

designer may wish to keep within a particular grade and size of FPGA device for cost reasons.
This may impact the maximum achievable clock rate while limiting the amount of possible
pipelining.

IP components for FPGA implementation offer a great acceleration of the development full sys-
tems on a single device. Furthermore, vendors such as Xilinx and Altera have collaborated with
external design houses to develop a wide library of functions targeted to their devices, available to
download from their home websites, specifically the Xilinx Alliance program and Altera’s Mega-
functions Partners program. The accessibility of such material enhances the user’s capabilities when
using their FPGA devices and expands the market sector. It is a symbiotic relationship, allowing
the IP core vendors, the FPGA companies, and design houses to flourish.

Memory Block Instantiation

One example of the variations between FPGA devices are the memory blocks. Each family has its
own architecture for these blocks. In Verilog for FPGA implementation, one of two solutions can be
used. Instantiations of block RAMs for the target device can be scripted with DEFINEs at the top
level of the code pointing to the memory of choice. Alternatively, the code can be written in such
a way as to ‘infer’ the application of a memory, which will be picked up during synthesis by the
modern tools and they will instantiate the memories accordingly. However, slight improvements
may be still be obtained if the memory instantiations are handcrafted, but this results in more
complex code.

Arithmetic Block Instantiation

Different target FPGAs may have variants of arithmetic operations available for the user. The
implementation of these embedded blocks could be inferred within the code. However, some cus-
tomization may be required to build up arithmetic operations on wider bit widths. Another example
could be the implementation of floating-point arithmetic blocks using these embedded FPGA mod-
ules as the core computation blocks. If the code is to be employed over a range of FPGA families,
and even between FPGA and ASIC, then there needs to be a facility to define the operator choice
at the top level. Within Verilog, this would be done through the use of DEFINEs held in a top-level
file, allowing the user to tailor the design to their current requirements, providing them with three
choices:

1. Infer arithmetic operation: A + B, etc.
2. Instantiate built-in operators available on FPGA device
3. Instantiate custom crafted arithmetic operators

The later may be the better choice for multiplication of larger numbers or floating-point arith-
metic. Or it may also be important to use custom arithmetic functions if extra pipelining stages



228 FPGA-based Implementation of Signal Processing Systems

are required within the operators to meet critical path demands. This is design dependent and may
require analysis.

Parameterized Design and Test Environment

All associated testing code accompanying the IP core should be designed with scalability in mind.
Bit-accurate software models used for functional verification should have the capability to vary bit
widths to match the IP core. For cycle-accurate testing, timing must also be considered. Test benches
and test data derivation are also required to be parameterizable, allowing for a fully automation
generation of an IP core and its associated test hardness. The use of software such as C to generate
the test harness and test data files may be advantageous in the development of the IP core, and is
illustrated in Figure 10.12.

10.4.4 Application to a Simple FIR Filter

This section gives an example of parametric design applied to a simple FIR filter given originally
in Figure 2.13. The key parameters for the design will be highlighted and suggestions as to how
they can be incorporated into the code will be made. A more complete FIR design example is given
in Chapter 8.

Floating point C-model

Functional operation
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number of inputs, filter dimensions,

performance criteria such as pipelining,
memory dimensions, wordlengths

Fixed point
cycle accurate C-model

Test cycle accurate
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Test HDL
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HDL test bench

and test data

HDL with test bench
and test data

Figure 10.12 Test design flow
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Figure 10.13 FIR example

In this example the FIR filter has four levels of hierarchy, as depicted in Figure 10.13, with
the individual arithmetic units being the lowest level of hierarchy and the full FIR filter being the
highest level of hierarchy:

Level 1: This is the top level of the filter structure within input x(n) and output y(n).
Level 2: The top level of the FIR filter can be composed of a single multiplier for a0x(n) followed

by a number of delay–MAC modules (shown in the shaded boxes in Figure 10.13).
Level 3: This is the arithmetic operation level, consisting of the multiply, add and delay

modules.
Level 4: The arithmetic modules can be broken down to another lower level of hierarchy, performing

the bit-level operations which will usually not be relevant for FPGAs unless the designer is
building multipliers from adders and LUTs.

Another dimension of the design may be the folding of the FIR operations onto a reduced
architecture, that is, the hardware modules are reused for different operations within the filter, as
depicted in Figure 10.14. In this example, all the MAC operations are performed on one set of
multiplier and adder modules. Multiplexers are used to control the flow of data from the output of
the MAC operations and back into the arithmetic blocks. The scheduling of operations onto a single
unit provides technical challenges that are beyond the scope of this chapter, but were covered in
detail in Chapters 8 and 9.

The choice of level of hardware reduction will depend on the performance requirements for the
application. Taking this same example, we can provide figures to give a performance comparison
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between a version without hardware reduction with our example of just a single MAC unit.
Figure 10.15 depicts a 6-tap FIR example, specified by the equation:

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3) + a4x(n − 4) + a5x(n − 5)

For the purposes of this example, the latencies for the multiplication and addition modules
within the MAC units are 2 and 1 clock cycles respectively. These latencies are due to pipeline
cuts placed within the modules and achievable with FPGA implementations. The pipeline cuts
within the arithmetic modules are represented by the diagonal lines in Figure 10.15. Additional
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Figure 10.15 Six-tap FIR example with timing
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pipeline cuts are labelled and are used to retime the circuit and schedule the operations correctly
due to the latency within the arithmetic modules.

Numbers within the figure represent the clock cycle at which the operation has been performed.
For example, after two clock cycles, due to the latency of the multiplier, a0x(n) has been calculated.
After three clock cycles, due to the algorithmic delay plus the multiplier latency, a1x(n − 1) has
been calculated. These values need to be summed. However, to match the scheduling of the results
for a0x(n) and a1x(n − 1), a0x(n) needs to be delayed further by one clock cycle. This was covered
in detail in Chapter 8. The overall latency for resulting output, y(n) is seven clock cycles. In other
words, the result for y(n) is ready for output seven clock cycles after x(n) is input into the filter,
with a new result available with each subsequent clock cycle. Once again, the FIR operations can
be mapped down onto one MAC unit with a few multiplexers. This means that all the operations
need to scheduled appropriately so that they are performed at the correct time with the correct
inputs. The latency of the arithmetic units is the same. This was covered by section 8.6.2. As
always, choosing an appropriate architecture comes down to a balance of performance needs, and,
area and timing criteria.

10.5 IP Core Integration
One of the key challenges of successful design reuse is with the integration of the IP cores within
a user’s system design. This can often be the stumbling block within a development. Investigations
have been performed to highlight these issues, (Chiang et al. 2001, Gajski et al. 2000, Moretti 2001)
while others have set out guidelines to try to standardize this process (Birnbaum 2001, Birnbaum
and Sachs 1999, Coussy et al. 2002, 2006, 2007).

In order to achieve successful integration of an IP core into a current design project certain
design strategies must be employed to make the process as smooth as possible. Section 10.5.1
highlights some of the pitfalls that might be met, and provides some guidance when dealing with
IP cores sourced externally from the design team, whether internal or external to the company.

One of the considerations that may need to be addressed is whether to source IP components
from external sources, or from within a company or organization, but from different departments.
Successful intra-company use of IP requires adequate libraries and code management structures.
Incorporating IP components from other design teams, whether they are inter- or intra-company,
can often be the main barrier slowing down the employment of design for reuse strategies in
system-level design. This is largely due to the requirement to fully validate the core across the
range of functionality.

10.5.1 Design Issues

Greater success can be obtained by taking an objective look into possible future applications so
that a pipeline of developments can evolve from the initial groundwork. If design for reuse is
incorporated from the initial outset then there can be incredible benefits in the development of a
library of functions from the initial design. To summarize:

• Need to determine the parts of the design that will be useful in future developments.
• What are the possible future applications?
• Study the road map for future products.
• Is there a possibility of developing a family of products from the same seed design?
• How can a larger design be partitioned into manageable reusable sections?
• Find existing level of granularity, i.e. is there any previous IP available that could provide a

starting level for development?
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Outsourcing IP

One of the limiting factors of using outsourced IP is the lack of confidence in that IP. The IP can
be thought of as having different grades, with a one-star relating to a core verified by simulation, a
three-star would relate to a core that has been verified through simulation on the technology, that
is, a gate level simulation. Finally, a five-star IP core provides the most confidence as it has been
verified through implementation (Chiang et al. 2001).

FPGA vendors have collaborated with the IP design houses to provide a library of functions for
implementation on their devices, and this brings a level of confidence to the user. The aspect of
core reliability is not as crucial for FPGA as it is for ASIC, but it is still important. Time wasted
on integration issues of the IP into the user’s product may be critical to the success of the project.

Certain questions could be answered to help determine the reliability of an IP vendor:

• Has the core been used in previous implementations for other users?
• Do the company supply user guide and data book documentation?
• Does the core come supplied with its own testbench and sufficient and suitable test data?
• Will the company supply support with the integration, and will this incur an added cost?

In-house IP

For a small company within the same location, it would be a much easier task to share and distribute
internal IP. However, this task becomes logistically difficult with larger companies spanning a
number of locations, some of which may be in different time zones as well as the physical distance.
Furthermore, there is always competition of staff time resources. Project leaders may not be happy
with their team spending time supporting the integration of their legacy code into another group’s
development. This time resource needs to be recognized at a company level and measures put in
place to support such collaboration.

It would be appropriate for the company to introduce a structure for IP core design, and give
guidelines on the top-level design format. Stipulating a standard format for the IP cores could be
worthwhile and can create greater ease of integration. Forming a central repository for the cores
once they have been verified to an acceptable level would be a necessity to enable the company’s
full access to the IP. Most companies already employ some method of code management to protect
their products.

10.5.2 Interface Standardization and Quality Control Metrics

A major limiting factor in the use of IP has been due to integration problems. Another issue is the
lack of confidence that a developer might have in third party IP. This section gives a brief summary
of some of the standards

Virtual Socket Interface Alliance

The Virtual Socket Interface Alliance (VSIA) is a standards organization that was established in
1996 to support the standardization and adoption of IP core development and design for reuse
practices in the electronics industry. It was an alliance that was representative of a cross-section of
the SoC industry. After 11 years, this organization has recently ceased operation within the SoC
industry. During this time in operation, VSIA established more than 20 standards, specifications
and technical documents distributed to members at a small fee, or no fee at all. They have passed
on their standards and work to be handled and progressed by other organizations who develop IP
and electronics standards. One such example is the IEEE.
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One of their particular successes has been the VSIA Quality IP (QIP) metric (VSIA 2007). This
free document covers the major design considerations met when deciding to integrate third party
IP. It provides a metric for vendor qualification as well as metrics for the comparison of soft, hard
and verification IP. It is well established and has been widely employed by developers over several
years since publication.

In addition to supporting documentation the QIP is implemented by an Excel spreadsheet in
which the user has to insert certain information and parameters about the product and vendors
that they are considering to use. The spreadsheet consists of a number of individual sheets, one
for vendor assessment, and several for soft IP integration, IP development among others. The list
below gives some of the questions asked about the vendor:

Processes:
Is the development process for IP defined and documented?
Does a process for measuring customer satisfaction exist and is this process used consistently?

Verification:
Is the requirements change process for IP defined, documented and followed consistently?
Does a detailed and coordinated test plan exist and can this document be made available to the

user?
Has the IP been used in a real production environment?

Revision control:
Are the revision control scheme and related guidelines fully documented?
Are end-of-life notices for IP given well in advance (at least 6 months)?

Distribution:
Does the user get notified automatically if supporting deliverables of the IP change, or if new

features or revisions of the IP become available?
Consistency:

Are the IP and associated deliverables provided in a standardized consistent manner?
Support:

Is a problem-reporting infrastructure and corresponding processes in use?
Can IP be evaluated before purchase?

Documentation:
Does the documentation cover all aspects necessary to successfully integrate the IP into a system?

Vendor confidence:
Has the company been in existence for over 5 years?
Are there more than 50 employees?
Can customer references be made available?

This is just a subset of the detail asked within the QIP spreadsheet. The sheet for the metric for
Soft IP integration asks questions such as:

• Has the IP be integrated by a team other than the developers?
• Is there training?
• Has it been in FPGA or IC production?
• Is there adequate documentation?

Interface information; instantiation guidance; area and power estimates on the relevant technol-
ogy; verification methods; deliverable list.

• Integration:
Build environment: are scripts supplied? Scan insertion scripts? Portability with other design

tools?
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This list is far from complete. The QIP asks questions in great detail.
The Soft IP development sheet is a useful guide to those planning to develop an IP core. It can

act as a checklist for providing quality code and represents much of what has been discussed in
this chapter. These are some of the most relevant comments:

• Are all delay values passed as parameters rather than being hard coded?
• Are values such as bit widths, register addresses, etc. represented by parameters?
• Is there consistency with signal naming standards?
• Verilog: are the ‘define’ references kept to one file?
• VHDL: are the deferred constants obtaining their values from one package?
• Does functional coverage receive 98% for all synthesizable statements?
• Are the regression tests scripted with log files?

The QIP documentation is a very useful tool and as a result has been widely used. It is constantly
going through revisions and the VSIA has now passed it on to the IEEE where it will be developed
further.

VSIA also had an IP protection working group and had been currently involved in developing
encryption standards for IP cores in addition to their existing soft and hard tagging standards.
Commercial entities ChipEstimate (www.chipestimate.com) and Design and Reuse (www.design-
reuse.com), benefited from the use of VSIA’s IP transport specifications.

10.6 ADPCM IP Core Example
Adaptive differential pulse code modulation (ADPCM) is one of a number of speech compression
algorithms defined by the International Telecommunication Union (ITU). It is a popular choice
for speech compression for a number of applications, from digital cordless phones to telephone
networks. It provides the compression of a 64 kbit/s pulse code modulation (PCM) audio channel
to a 40, 32, 24 or 16 kbit/s ADPCM audio channel and vice versa. The standard operating rate of
32 kbit/s offers high-quality compressed speech with no noticeable loss in fidelity in comparison
with PCM. Table 10.2 gives a summary of the key ITU standards for PCM and ADPCM.

Due to the variability in the range of applications within which ADPCM could be used, devel-
oping a design to match the diverse needs is a challenge. Figure 10.16 gives the basic structure for
APDCM compression from a PCM input. The crux of APDCM compression is adaptive prediction
of the current sample using the previous speech samples. Once calculated the predicted sample
is subtracted from the actual current sample. Only this error signal is quantized and encoded for
transmission. Then on the decoding side, that is, the receiver, the reverse process is performed to
regenerate the actual speech sample.

This technique relies on the fact that speech offers some level of pseudo stationarity. That is,
over a short period of time, about 20 ms, the statistics of the signal remain largely unchanged.
This allows for the adaptive prediction used in ADPCM. For the other variants of the ADPCM
ITU (G.726) standard there are different quantizer tables to perform the encoding to 40, 32, 24 or
16 kbit/s, and similarly, with the decoding. Or alternatively, a single quantization table can be used
for all four compression rates (ITU G.727), but with the quantization tables for the 16, 24, and
32 kbit/s data rates being subsets of the table for the 40 kbit/s data rate. However, this optimization
is at a cost of a slight degradation to the signal-to-quantization-noise ratio.

As it can be seen in the figures for encoding (Figure 10.16) and decoding (Figure 10.17), there
are certain components that are consistent in both and could be used to perform both tasks, therefore
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Table 10.2 Summary of key ITU standards for PCM and ADPCM

Compression standard Rates (kbit/s) Features

PCM (G.711) 64 Conversion from 14-bit or 13-bit uniform PCM to
8-bit logarithmic PCM using either A or µ
encoding laws. With 8-bits being used to
represent each sample the data rate for speech
is reduced from 96 kbit/s to 64 kbit/s when
sampled at 8 kHz

ADPCM (G.726) 40, 32, 24, 16 This standard is based on the G.723 and G.721
standards It has the added flexibility of allowing
the difference signal to be coded using only
2 bits, thus resulting in a data rate of 16 kbit/s
(16 kbit/s overload channels carrying voice in
DCME)

ADPCM (G.727) 40, 32, 24, 16 The standard provides conversion of a 64 kbit/s
PCM channel to and from variable rate
embedded ADPCM channels, at rates of 40, 32,
24 and 16 kbit/s. The standard has been
developed to allow the difference signal to be
represented by a set of core bits and
enhancement bits. The core bits are the
essential part for transmission. In the presence
of congestion the enhancement bits may be
dropped from the transmission so that the
essential core bits are not lost
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giving the opportunity to develop a single device with dual functionality. Alternatively, separate
modules could be developed for the encoding and decoding functions. Scalability can be achieved
by scaling the memory and addressing logic, or by implementing multiple instantiations of the
encoder or decoder blocks if needed.

A summary of the implementation considerations for an IP core for ADPCM is given below:

Range of Applications to be Supported

Applications range from simple DECT phones to high-end telecommunications systems such as
OC-192 supporting over 1000 voice channels. Scalability would need to be incorporated to allow
use of the core computation blocks for multiples of channels (Figure 10.18). Likewise, multiple
instantiations of the core computational block may be needed to meet aggressive channel demands.
Note that speech has set requirements on data rate and the sampling rate that can be delivered.
Adding additional channels requires that the key hardware can manage the computation meeting
real-time voice requirements.

Variations of ADPCM Standard

There are a number of variants of the ADPCM and PCM standards, some of which are listed in
Table 10.2, and illustrated in Figure 10.19. It is wise to support an extensive variation of these
standards, as this will increase the widespread suitability. For example, PCM has two variants,
referred to as A-law and µ-law. The A-law variant is the standard within Europe whereas the
µ-law is the standard in the US.

Supporting a Range of FPGA Devices and/or ASIC Technologies

By including additional code and parameters, the same core design can be retargeted to a different
technology which can enable a design to be prototyped on FPGA before targeting to ASIC. It
would also allow for low-yield implementations that would not warrant the ASIC design overhead.
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Likewise, there is a great benefit in the ability to quickly redevelop the core for emerging ASIC
foundries.

Ability to Support a Range of Performance Criteria

Variation in voice compression applications creates a wide span of desired features. For some
applications, for example, mobile communications, power consideration and chip area could be the
driving criteria for the device. For others, a high-data-rate system could be the primary objective.

Scalable Architecture

To create the flexibility needed to support such a wide range of design criteria, a scalable architecture
needs to be developed that can increase the level of physical hardware to match the needs of the
specification. Some key points driving the scalable architecture are:

• desired data rate
• area constraints
• clock rate constraints
• power constraints

Figure 10.18 illustrates possible architectures for scalable design.

Clock Rate Performance

The required clock rate for the system is dependent on the architecture design and the target
technology. Specifying the system requirements enables the designer to make a choice regarding
the target technology and facilitates a compromise with other performance criteria such as power
and area.

Level of Pipelining

The desired clock rate may rely on pipelining within the design to reduce the critical path. The
choice of pipelining within the submodules of the design will have a great influence over perfor-
mance. For example, consider a module that performs both the encoding and decoding function,
in other words, it can perform the full duplex operation. Speech is sampled at 8 kHz. For a multi-
channel implementation all the computation for the encoding and decoding of all the channels
needs to be carried out before the next sample, that is, within 1/8000 s (0.000125 s). For an
example module with a maximum clock rate of 300 MHz there will be 37 500 clock cycles in a
0.000125 s time frame. If in this example we consider that a duplex operation takes 20 clock cycles
then the number of possible channels that can be supported is then (300000000 ÷ 8000) ÷ 20 =
1875 duplex channels. That is 1875 encode and 1875 decode channels.

If, for example, the module was more heavily pipelined so to reach a clock rate of 500 Hz and
this increased the number of cycles per a duplex operation to 25, the number of duplex channels
supported can be estimated as (500000000 ÷ 8000) ÷ 25 = 2500.

Figures 10.18 and 10.19 illustrate the range of applications that a parameterized ADPCM IP core
would need to support.
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10.7 Current FPGA-based IP Cores
FPGA companies identified earlier on the importance of IP cores to assist in developing solutions
using their technology. For this reason, they began to develop their in-house IP libraries, but quickly
identified that there were advantages to be had in developing relationships with third party vendors,
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Figure 10.19 Variations of PCM and ADPCM

as both parties could benefit from the relationship, one because they would receive income for their
cores and the other because the availability of the IP was making the solution easier for the customer.
Both the main vendors have active IP programs, Xilinx in the form of the Alliance program and
Altera in the form of the Megafunctions Partners Program; Actel have a CompanionCore Alliance
Program and Lattice have the ispLeverCORE

TM
Connection. In all cases, companies must meet a

number of criteria to become members of the respective IP programs.
Table 10.3 gives the full range of third party IP available in the areas of processors, interfaces,

DSP and communications. As can be seen from the table, soft cores are available for at least one
form of a microprocessor or microcontroller. The interfaces give a wide range of most common
interface technologies which is vitally important, given the use of FPGAs in telecommunications
applications. The DSP list comprises most of the functions listed in this book, along with complex
systems such as JPEG and MPEG.

Of course, as was highlighted in this chapter, there can be changes from technology offering
to technology offering and there is some work in migrating the cores to the latest technology.
Moreover, some of the IP cores may no longer be actively supported by the component. Take for
example, Amphion, who have been bought out by Conexant; the encryption and encryption cores
are no longer their core business, but will be still be offered.
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Table 10.3 Complete third party IP available from Altera

Technical area IP available

Processors
NIOSII, ARM Cortex, 2901 processor, C68000 microprocessor, CZ80CPU,

R8051 microcontroller, DF6811 CPU microcontroller

Interfaces
DDR/DDR2 RAM, 32/64-bit PCI, PCI express, Rapid I/O, DMA, CAN,

UART, I2C, Gigabit Ehternet, 10/100/1000 Ethernet, ATA-4/5, AMBA,
USB

DSP

FIR filter, FFT, Reed Solomon Decoder/encoder, Viterbi decoder, AES and
DES encryption/decryption, SHA, Turbo encoder, motion JPEG, ADPCM,
H264, JPEG, DCT/IDCT, DWT, PPL, digital modulators receivers, CCIR
encoder/decoder

Communications
CRC compiler, POS-phy, UTOPIA, SONeT/SDH, Ethernet layer 2, Gigabit

ethernet MUX, ATM format/deformat, AA5, HDLC, SPI-4

Table 10.4 Third party IP available for Xilinx Virtex FPGAs

Area Function Provider

Encryption/decryption SHA, MD5 Hashing, AES
AES Enc./Dec., TDES,
RSA

Helion Tech. Limited Hidea Sol. Co.,
Ltd, CAST, Inc.

Video H.264/AVC decoder, deblock
H.264/AVC deblock JPEG
encoder

Nero AG, Global Dig. Tech. Elecard
Dev. CJSC CAST Inc., Barco-Silex

Audio processor Sample rate conversion 32-bit
APS3 processor

Coreworks CAST, Inc.

Computer

SDRAM controller Flash, SD
memory controllers
DDR controller Serial ATA
8-bit high speed controllers

Array Electronics Eureka Technology
HCL Tech. Ltd., CAST Inc. ASICS
World Ser. Ltd CAST Inc.

Telecommunications

SONET/SDH framer, digital
wrapper EtherCAT slave
controller ADPCM
Ethernet MAC, MAC,
HiGig Interlaken
interconnect

Xelic, Inc. Beckhoff Auto. GmbH
Pinpoint Sol. Inc. MorethanIP
GmbH Sarance

Data compression LZRW3 Helion Tech. Ltd

10.8 Summary
This chapter has provided an overview of some of the key challenges in IP design with a focus
on FPGAs. The motivation behind using IP cores and design for reuse practices is covered, with
discussion of the ever-widening design productivity gap. This point is highlighted in the ITRS
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2005 report (Semiconductor Industry Association 2005) where it states that ‘to avoid exponentially
increasing design cost, overall productivity of designed functions on chip must scale at > 2× per
technology generation’. To do this, design reuse is a necessity which is in effect, what IP cores
capture. For this reason, we have seen a remarkable growth in the IP industry.

To some extent, many of the techniques described in Chapter 8 become the cornerstone for the
development of such techniques. The major goal is to develop methodologies and flows which derive
circuit architectures in such a way that aspects such as regularity and scaling are naturally captured
when translating the algorithmic description into hardware. However, this is not straightforward
and for this reason, Chapter 12 has been dedicated to the development of a silicon IP core for RLS
filtering.

As the IP core problem has evolved from the creation of simple arithmetic cores, to the creation
of system components such as FFT, DCT and DWT cores, right up to the development of complete
systems such as JPEG and MPEG encoders, so therefore has the design problem. The methods
in Chapter 8 are successful in creating efficient architectures for complex components such as
FIR filters, DCT cores and the like, but as the work in Chapter 9 quickly demonstrated, this was
insufficient for system descriptions. Therefore the design problem has changed and we need to
develop higher-level techniques as the problem grows. However, any future design flow must also
attempt to incorporate the IP cores as this considerable body of design work cannot be ignored.
Thus, the next chapter acts to address this issue.
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11
Model-based Design
for Heterogeneous FPGA

11.1 Introduction
The material to this point has clearly indicated the requirement for a shift toward higher-level
representations of FPGA-based DSP systems and the need for carrying out optimizations at this
higher level. The material in Chapter 6 covered lower-level design techniques which were aimed at
producing efficient FPGA implementations of circuit architectures. These design techniques covered
not only the choice of how to map memory requirements into LUT and embedded RAM resources
and the implications that this has on performance, but also the use of distributed arithmetic and
reconfigurable multiplexers to reduce hardware costs. However, the evolution of FPGA technologies
toward coarser-grained heterogeneous platforms, i.e. those comprising processors and complex DSP
blocks involving dedicated multipliers and MAC units, has negated the impact of many of these
latter techniques.

The material in Chapter 8 and the subsequent tool development work in Chapter 9, showed how
it is possible to explore levels of parallelism and pipelining at SFG and DFG descriptions of DSP
system, rather than at the lower-level HDL-based circuit architecture. It was shown how levels
of parallelism and pipelining could be adjusted to best match the performance requirement of the
application under consideration against the processing and memory resources of the FPGA technol-
ogy available. This assumes that the SFG representation effectively represents the computational
needs of a DSP system, but this is not the case. Take for example, a system implementation which
requires a number of FIR filters in different places in the system; the SFG limitations requires
that each filter requires separate hardware unless hardware sharing has been explicitly created in
the SFG representation. It should not be an issue of how the system is described, but a system
optimization that the user could investigate.

Thus, it is clear that a higher-level representation is required than SFG that allows the user
to investigate the impact of system-level partitioning and system-level optimizations such as the
hardware-sharing just proposed, to be explored. Such approaches form part of a larger trend toward
model of computation (MoC)-based design. MoCs are used to express characteristics of systems
such as timeliness, i.e. how the system deals with the concept of time, concurrency, liveness,
heterogeneity, interfacing and reactivity (Lee and Sangiovanni-Vincentelli 1998). They attempt
to define how a system works and how it interacts with the real, analogue world. A plethora
of models has been suggested for rigorous modelling of different types of embedded systems.

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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Determining the appropriate MoC for modelling of certain types of system should be based on
the specific characteristics of that system. For instance, a general characterization of DSP systems
could describe systems of repetitive intensive computation on streams of input data. As such, DSP
system developers frequently come to the same conclusion on this choice and use the dataflow
MoC (Najjar et al. 1999). The most widely used dataflow domains, and the manner in which they
enable system-level design and optimization of embedded DSP systems, are outlined in this section.

The chapter gives a detailed analysis of how dataflow MoC can be used to create FPGA-based
DSP systems and illustrated this with some innovative work in creating the features of such a system
and demonstrating it using suitable examples. Section 11.2 which gives an overview of dataflow
modelling and highlights some of the different flavours; in particular, it covers the challenges
of rapidly implementing FPGA-based DSP systems. Section 11.3 describes how changes in DFG
descriptions can have a major impact in embedded system implementation. In Section 11.4, the
reader is given a detailed treatment of the synthesis of system descriptions using pipelined cores,
without the need for the redesign of these cores. The design of the necessary control and wrappers
for these cores is then outlined in Section 11.5. Two examples, namely a normalized lattice filter and
a fixed beamformer, are then used to demonstrate the approach in Section 11.6. Finally, concluding
remarks are made in Section 11.7.

11.2 Dataflow Modelling and Rapid Implementation for FPGA DSP
Systems

The roots of the most popular current dataflow languages lie in the Kahn process network (KPN)
model (Kahn 1974). The KPN model describes a set of parallel processes (or ‘computing stations’)
communicating via unidirectional first-in first-out (FIFO) queues. A computing station consumes
data tokens coming along its input lines, using localized memory, producing output on one or all
of its output lines. In DSP systems, the tokens are usually digitized input data values. Continuous
input to the system generates streams of input data, prompting the computing stations to produce
streams of data on the system outputs. The general structure of a KPN is shown in Figure 11.1.
The semantics of repetitive application of specific computing functions to every input sample in
KPN makes this modelling approach a good match with the behaviour of DSP systems.

In the dataflow process network (DPN) model (Lee and Parks 1995), the KPN model is augmented
with semantics for computing station (known here as actor) behaviour. A sequence of actor firings
is defined to be a particular type of Kahn process called a dataflow process, where each firing
maps input tokens to output tokens, and a succession map input streams to output streams. A set
of firing rules determine, for each actor, how and when it fires. Specifically, actor firing consumes

Actor/Computing
Station

Input Data
Stream

Output Data
Stream

FIFO Queue Input
Port

Output
Port

Figure 11.1 Simple KPN Structure
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input tokens and produces output tokens. A set of sequential firing rules exist for each actor, and
define the input data conditions under which the actor may fire. Given the solid computational
foundation of DPN, which describes how actors fire and communicate deterministically, numerous
application-specific refinements on this general theme have been proposed. Three specific variants
are of particular importance in this section, synchronous dataflow (SDF), cyclo-static dataflow
(CSDF) and multidimensional synchronous dataflow (MSDF). The semantics of these three are
outlined now.

11.2.1 Synchronous Dataflow

Lee defines a synchronous dataflow (SDF) system (Lee and Messerschmitt 1987b) to be one where
‘we can specify a priori the number of input samples consumed on each input and the number of
output samples produced on each output each time the block is invoked’. This is not the definition
of synchronicity supplied for general MoC definition in (Lee and Sangiovanni-Vincentelli 1998);
nevertheless, this knowledge allows derivation of a static system schedule (i.e. one that is generated
at compile time), which is important because it means that multiprocessor schedules with low run-
time overhead can be created. This was a significant advance in the dataflow MoC, and pioneered
a large body of research into dataflow system modelling and implementation techniques. However,
this advantage is gained at the expense of expressive power since SDF forbids data-dependent
dataflow behaviour.

Each port j on an actor i in an SDF graph has an associated firing threshold tfij which specifies
the number of tokens consumed/produced (depending on the direction of the port) at that port in
a firing of the actor. This value is quoted adjacent to the port, as illustrated in Figure 11.2. When
all port thresholds in an SDF are unity, the graph is known as homogeneous, or a single-rate DFG
(SRDFG). Otherwise, the DFG is known as a multi-rate dataflow graph (MRDFG).

If, for actor j connected to arc i, xi
j (n) is the number of tokens produced and yi

j (n) is the number
consumed at the nth invocation of the actor, an SDF graph can characterized by a topology matrix
� (Equation 11.1).

�ij =




xi
j (n) if task j produces on arc i

−yi
j (n) if task j consumes from arc i

0 otherwise

(11.1)

A key element of proving the consistency of a DFG is the satisfaction of a set of balance
equations (Lee 1991). Actor A fires proportionally q(A) times in an iteration of the schedule and
produces tA tokens per firing, and actor B fires proportionally q(B) times and consumes tB tokens
per firing. If A is connected to B, in an iteration of the schedule all FIFO queues return to their
initial state (Lee and Messerschmitt 1987a), then Equation (11.2) will hold. Collecting such an
equation for each arc in the graph, a system of balance equations is constructed, which is written
compactly as Equation (11.3). In Equation (11.3), the repetitions vector q describes the number of

A1
1

1

2

B
3 1

C

1

i2

i1

A2

Figure 11.2 Simple SDF graph
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firings of each actor in an iteration of the execution schedule of the graph, where entry qi is the
number of firings of actor i in the schedule.

q(A)tA = q(B)tB (11.2)

�q = 0 (11.3)

11.2.2 Cyclo-static Dataflow

The cyclo-static dataflow (CSDF) model (Bilsen et al. 1996) notes the limitation of the MRDFG
that only invariant actor behaviour from firing to firing can be supported. It expands the SDF
model to allow a cyclically changing actor behaviour, whilst still maintaining the static schedula-
bility capabilities. The firing activity of each actor is generalized where every actor vj now has a
sequence of j firings γ = [fj (1), fj (2), . . . , fj (Pj )] each of which has different firing rules, with
γi occurring on the i (mod j )th firing of the actor, creating the scenario where the sequence of firings
is repeatedly cycled through in turn. The scalar production and consumption values of actor ports in
the SDF graphs are replaced with vectors of length P , where Pi defines the number of tokens con-
sumed/produced at that port on the ith firing of the actor. If, for actor j connected to arc i, Xi

j (n) is
the total number of tokens produced and Y i

j (n) the total number consumed during the first n invoca-
tions of the actor, a CSDF topology matrix � is defined as in Equation (11.4). Figure 11.3 shows an
example CSDF graph with the threshold vector enclosed in rectangular braces adjacent to the port.

�ij =




Xi
j (Pj ) if task j produces on arc i

−Y i
j (Pj ) if task j consumes from arc i

0 otherwise

(11.4)

11.2.3 Multidimensional Synchronous Dataflow

The atomic token principle of SDF mean multidimensional systems (i.e. those featuring compu-
tations on multidimensional tokens such as vectors or matrices) must be collapsed onto graphs
using unidimensional streams, a restriction which can hide data-level parallelism in the algorithm.
To overcome this limitation, the SDF model was generalized to multidimensional synchronous
dataflow (MSDF). Initial work (Lee 1993a,b) evolved the SDF domain to sampling on rectangular
lattice shaped problems, but later (Murthy and Lee 2002) extended the technique to arbitrarily
shaped lattices. Token production and consumption are now specified as M -tuples, and the number
of balance equations per arc increased from 1 to M. An example MSDF graph and its associated
balance equations are given in Figure 11.4 (Lee 1993a) where the M dimensions of the tokens
produced and consumed, are given in circular braces adjacent to the port. This domain provides an
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Figure 11.3 Simple CSDF graph
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(a) MSDF Graph (b) Balance Equations

(od1,od2)

(id1,id2)
a b

ra,1od1 = rb,1id1

ra,2od2 = rb,2id2

Figure 11.4 MSDF graph and association balance equations

elegant solution to multidimensional scheduling problems in SDF graphs, and exposes additional
intra-token parallelism for higher-order dimension tokens (Lee 1993a).

11.2.4 Dataflow Heterogeneous System Prototyping

Typically, heterogeneous system design for system-on-chip (SOC) and FPGA requires an incremen-
tal refinement from a high-level system model to implementation (Keutzer et al. 2000). This requires
resolution of issues such as communication refinement (Rowson and Sangiovanni-Vincentelli 1997)
and dedicated hardware synthesis, amongst a plethora of others. Alternatively by closely matching
the behavioural semantics of the implementation to the semantics of the high-level specification,
a direct translation from the functional to the implementation domains can be enabled. This is a
rapid system integration technique. A general overview of such a desired methodology is outlined
in Figure 11.5, and this shows the three key requirements for such an approach:

1. A suitable modelling domain for the specification
2. A rapid integration approach
3. Capability for analysis and high-level optimization of the implementation

The high-level algorithm model should ideally employ infinitely precise mathematics, but the
architecture of modern workstation technology where this modeling is performed in practice means
that integer and single- or double-precision floating-point mathematics are used in modelling appli-
cations such as MATLAB, which is usually sufficient for most applications. After ideal algorithm
verification the numerical modelling is then adapted to incorporate reduced precision numerical
modelling (fixed/floating-point) and wordlength minimization with a view to identifying candidate
functions for implementation as dedicated hardware components. The importance of this type of
operation is acknowledged by the incorporation of reduced precision mathematical modelling in
system design languages such as SystemC (Grötker et al. 2002), and tools such as MATLAB.

The system functionality is then mapped to one of the physical processors on the embedded
platform. This partitioning is usually based on physically constraining implementation factors such
as throughput requirements, available dedicated hardware resources, communications bandwidth or
power consumption (Gajski et al. 1994, Kalavade and Lee 1997). After partitioning, the implemen-
tation begins.

11.2.5 Partitioned Algorithm Implementation

Implementation requires rapid translation of the partitioned algorithm to networks of interacting
hardware and software portions. The general structure of this integration approach is shown in
Figure 11.6. The partitioned algorithm specifies pools of functionality to be implemented on one or
more microprocessors, pools to be implemented on one or more FPGAs, and inter-processor com-
munication points. This describes the entire embedded system at a functional level. This description
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Figure 11.5 DSP system design methodology

then requires translation to a physical manifestation. Actors are collected into pools, before resolu-
tion of three major issues:

1. Software synthesis for each of the embedded microprocessors
2. Hardware synthesis for each FPGA
3. Inter-processor communication fabric insertion

For design time minimization, the designer can make use of the extensive and growing libraries
of precomposed functionality for efficient implementation of specific actors in both hardware and
software. In particular for FPGA designers, there now exist extensive libraries of intellectual prop-
erty (IP) components (cores), parameterized in terms of features such as word size to encourage
reuse in multiple system instances. This methodology emphasizes core-based design due to the
potential for reduced design time offered by use of these components, since implementation effort
reduces to core integration.

There are however, a number of issues with such an approach. Integrating multiple different
cores from multiple different sources into a single FPGA core network means that interfacing
issues may occur. Despite efforts by standards bodies such as the Virtual Socket Interface Alliance
or VSIA (VSIA 2007), no standard interface protocol for cores has been widely adopted, meaning
that the designer must impose one for a particular application. Additionally, in the MoC-based
design approaches used in this methodology, there may be behavioural flexibility demands made of
the core, not addressed by the core synthesis procedure. These are considered in more detail later
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Figure 11.6 DSP system rapid implementation

in this chapter. In the remainder of this section the processes of inter-processor communication
refinement and software synthesis are described.

11.3 Rapid Synthesis and Optimization of Embedded Software
from DFGs

A DFG G = V , E, describes a set of vertices (actors) V interconnected by a set of edges E.
Recalling that the edges are conceptually FIFO token queues, where the tokens can be any arbitrary
numerical storage unit, then in translation from algorithm to a software routine executing on an
embedded microprocessor there are four main stages, as outlined in Figure 11.7. Consider the four
steps in the context of the example DFG in Figure 11.8.

a d
DFG

Description Graph
Balancing Clustering Scheduling

Buffer memory
requirements Embedded Code

Code
Generation

b

c

Figure 11.7 Rapid software synthesis from DFGs
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Figure 11.8 Example DFG

11.3.1 Graph-level Optimization

The first level of optimization occurs by applying algorithmic engineering techniques to the DFG
for implementation optimization. This is particularly applicable to system modelling using MSDF
semantics (Murthy and Lee 2002). Consider the simple equivalent DFGs in Figure 11.9. Assuming
token atomicity, then the maximum possible partitioning of the DFG of Figure 11.9(a) is to a
single processor, with all the communication channels implementing vector transfers. This hides
some of the data parallelism inherent in the vector multiplication algorithm. For an n-element vector,
processing the vector multiplication may require n cycles, a critical drawback for high-throughput
implementation. Alternatively, the token may be specified as a scalar as in Figure 11.9(b), allowing
an n-fold increase in multiprocessor partitioning and corresponding throughput. This manipulation
also alters the required memory resource for each processor, since each now requires buffering for
scalar tokens rather than n-element vectors. The drawbacks include increased scheduling complexity
when the intra-token parallelism is exploited. This optimization may be particularly applicable to
FPGA hardware component network synthesis, since the structure of the computational resource
on FPGA is under control of the designer. Hence, this may offer a very promising architectural
exploration approach for DFG actor networks mapped to FPGA.

Notice that at this level, to enable the kinds of optimizing transformation described here, the
graph must be flexible, primarily in terms of the tokens it processes: i.e. the token dimensions xi

processed at port i.

11.3.2 Graph Balancing Operation and Optimization

In the domain of dataflow-based rapid embedded system design, undoubtedly the two most signif-
icant advances were the establishment of the SDF domain, and associated potential for minimal
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Figure 11.9 Scalar/vector DFG comparison
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run-time overhead embedded execution, and the introduction of formal analysis methods for con-
sistency of DFGs in terms of ensuring memory-bounded and deadlock-free execution (Lee 1991).
All the other, more expressive dataflow domains in this section stem from generalization of these
ideas, and in particular Equations (11.2) and (11.3). For instance, CSDF merely generalizes the
scalar q and r in Equation (11.2) to two-dimensional objects, and exploits the space afforded by
the extra dimension to affect variable actor firing activity, exploiting previously hidden parallelism
and enabling more effective use of memory resources, without violating the consistency conditions
in Equations (11.2) and (11.3) (Parks et al. 1995).

During the first stage, of translation from the application DFG to an embedded implementation,
graph balancing is performed, i.e. the consistency conditions in Equations (11.2) and (11.3) (Parks
et al. 1995) are satisfied. For the example SDF graph of Figure 11.8, with actor and arc numbering
as in Figure 11.10, � and q are given in Equations (11.5) and (11.6), respectively.

� =
[

2 −1 0
0 2 −1

]
(11.5)

qT = [
1 2 4

]
(11.6)

At the balancing level of abstraction, the main optimization opportunities arise as a result of
implementing block processing (Lee and Messerschmitt 1987a). Essentially, this involves applica-
tion of an integer scaling factor to q to scale the number of firings of each actor by an integer
number. Once this is applied, lower-level transformations can be applied to increase implementation
efficiency and performance, as outlined in Section 11.3.4.

11.3.3 Clustering Operation and Optimization

Numerous valid schedules exist for the example DFG of Figure 11.8, two valid examples being S1 =
ABCCBCC and S2 = ABBCCCC. Note that these two schedules have different ordered groupings
of the various actor firings. Within a given balanced manifestation of a dataflow algorithm, qi

defines the number of firings of actor i in an iteration of the schedule. At the clustering stage, the
set of firings of each actor is subdivided into groups of one or more consecutive firings, known
as executions. The number of firings per execution of actor i is known as its granularity and
defines the number of tokens which must be available at the input to each port of the actor prior to
execution. For the example schedules S1 and S2, the dependence graphs, outlining the firings and
executions of each actor are given in Figure 11.11.

2
(3,1)

2
(3,1)

1
(3,1)

1
(3,1)

1

1

2

2

3

BA C

Figure 11.10 Numbered example DFG

Firing Execution

A B C C B C C A B B C C C C

(a) S1 Dependence Graph (b) S2 Dependence Graph

Figure 11.11 Schedules firing/execution organization



252 FPGA-based Implementation of Signal Processing Systems

Reinterpreting Equation (11.2) in terms of execution thresholds and invocations allows the defi-
nition of a balanced system as Equation (11.9), where �e is given as in equation (11.7) and qe, the
execution repetition vector, is derived by solving Equation (11.8) for each DFG arc. Note particu-
larly the inclusion of a scaling factor kj associated with each actor j . This is used for optimization
of the clustering stage later in this section.

�ij =




kj × xi
j (n) if task j produces on arc i

−kj × yi
j (n) if task j consumes from arc i

0 otherwise

(11.7)

qe(j) = q(j)/kj (11.8)

�eqe = 0 (11.9)

Provided that Equation (11.9) is satisfied, the schedule is sample rate consistent, one of the two
key features of a valid schedule (Lee 1991, see Section 11.3.4 for more details). Hence controlling
the clustering stage via manipulation of �e and qe provides two degrees of freedom for implemen-
tation optimization. This manipulation is affected by manipulating the k factor associated with each
actor during the clustering stage. Consider how this may enable implementation optimization in the
context of the example DFG of Figure 11.8. The values of �e and qe given the actor/arc labelling
in Figure 11.10 are given in Table 11.1.

The high-g transformation is used to maximize individual actor execution thresholds by increas-
ing the values of kj in Equations (11.8) and (11.7). This reduces the number of executions of each
actor, and is used to cluster the actors in a manner which may reduce run-time overheads in the
implementation. These overheads may arise from a variety of sources, such as IPC (where time
penalties can be incurred for setting up/shutting down a communication link with a remote proces-
sor) or dynamic scheduling. Consider the first schedule, A(2B(2C)), in Figure 11.11(a), where the
actor C is an IPC actor, sending data to a remote processor. In this scenario, the overhead associ-
ated with setting up and shutting down the transfer is invoked at the invocation and conclusion of
the actor execution, respectively. To maximize the efficiency of the communication (i.e. amount of
data transferred per overhead penalty invoked), the number of firings of C per execution (i.e. the
granularity of C ) should be maximized by increasing the value of kc. This is affected by setting
kc = 4 during the clustering step, such that a single execution of C occurs, with all the firings
occurring during this execution. This may result in a schedule such as ABBCCCC.

Consider, on the other hand, the two schedules from Figure 11.15 in terms of data memory
requirements for execution initiation. In Figure 11.11(a), the high granularity of C means that a
data buffer must be maintained to store all four of the tokens to be input to C before the first firing
starts. In cases like this, to reduce the amount of buffer memory required for execution, high-q
transformation may be used. In the case of Figure 11.15, this involves minimizing kc and kb to,

Table 11.1 Example Schedules �e and qe

Schedule � qeT

ABCCBCC

[
2 −1 0
0 2 −2

] [
1 2 2

]
ABBCCCC

[
2 −2 0
0 4 −4

] [
1 1 1

]
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for instance, kc = 2 and kb = 1, respectively. This reduces the number of firings in an execution,
reducing the number of tokens which must be stored before execution of b and c can begin.

11.3.4 Scheduling Operation and Optimization

The final step before generating the source code for the embedded implementation of the DFG is
scheduling of the executions. During this step the various executions of each actor are sequenced
for sequential execution. As outlined in (Lee 1991), two key steps must be satisfied before it can be
ensured that a periodic admissible schedule is achievable for the embedded schedule implementation
of the DFG. The first step, verification of graph sample rate consistency is ensured during graph
balancing, as outlined Section 11.3.2. The second step is to ensure that the phenomenon of deadlock
is avoided.

A significant body of research effort has been invested in studying various scheduling techniques
for optimization of the embedded implementation in terms of varying aspects, such as data/code
memory (Bhattacharyya et al. 1999), IPC or inter-processor synchronization overhead (Sriram and
Bhattacharyya 2000). For instance, the high-q transformation techniques outlined in Section 11.3.3
are somewhat redundant without the ability to perform an interleaved scheduling optimization on
the system. In the high-q schedule of Figure 11.11(a), fragmenting the executions of B and C has
no effect on the data memory requirements unless the scheduling step can recognize the potential to
interleave the executions of B and C such that the data buffer used to store the tokens for input
to C can be reused for each execution, thus halving the input data buffer memory requirements
for C. Without this interleaving, high-q optimization has no effect on data buffer requirements of
embedded software.

11.3.5 Code Generation Operation and Optimization

Given q for the example DFG in Figure 11.8, some valid schedules for this graph include: S1 =
A(2B(2C)); S2 = ABCBCCC; S3 = A(2B)(4C) and S4 = A(2BC)(2C). The terms in parentheses
in S1, S3 and S4 indicate looped invocations of these schedules. Hence S1 has one firing of A,
followed by two repetitions of BCC. Likewise S3 implements ABBCCCC, and S4 implements
ABCBCCC. The code generator inserts code portions representing the functionality of an actor at
each schedule actor instance. For example, in S2 the code generator must instantiate seven code
segments, one for each actor instance in the schedule. However, in S1, S3 and S4 the terms in
parentheses are replaced by single instantiations in code loops, reducing the number of schedule
actor instances. The code segment in Figure 11.12 is typical of that which may be generated from
S4. The different scheduling methods generate schedules requiring differing code memory space.
Likewise, the buffer memories for each schedule also vary. Table 11.2 summarizes the code and
buffer memory requirements for each schedule. It is clear that how the system is scheduled has a
significant impact on the physical embedded manifestation.

code block for A
for (i=0;i<2;i++){

code block for B
code block for C

code block for C

}

}

for(i=0;i<2;i++){

Figure 11.12 Looped schedule source generated from schedule S4
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Table 11.2 Scheduling variants memory requirements

Schedule Code memory size (blocks) Buffer memory size (tokens)

A(2B(2C)) 3 4
ABCBCCC 7 5
A(2B)(4C) 3 6
A(2BC)(2C) 4 5

11.3.6 DFG Actor Configurability for System-level Design Space Exploration

Post integration, the real-time and physical constraints of the specification, such as throughput,
processing resource, memory usage or some other constraining factors, must be met. Should these
constraints be met, the implementation process is then complete. Otherwise, a method to transform
the implementation must be applied. These transformations can be applied at low abstraction levels,
where the high design detail means that applying numerous different transformations can be difficult
and time consuming, somewhat negating the fast design time capabilities of a rapid implementation
methodology. An alternative approach is to apply high-level transformations to the algorithm to
influence the embedded implementation. This is a coarse-grained exploration, but is significantly
faster and less detailed than low-level transformation, and may be complemented by lower-level
transformations to allow the necessary fine-grained control of the implementation. This fast design
space exploration is a major benefit of current MoC-based rapid implementation approaches.

This section has shown how flexibility of dataflow actors in certain respects enables generation
of different multiprocessor schedules, to influence the embedded implementation. This allows the
designer to manipulate the DFG context in which an actor operates to allow system-level exploration
of the embedded implementation at the graph, balancing and clustering levels. A summary of the
various types of flexibility required for optimization at the various abstraction levels is given in
Table 11.3.

The graph-level transformations outlined in Section 11.3.1 depend on the ability to trade off
the number of actors with the token dimensions of the incoming and outgoing arcs, as defined
by the symbols A and X respectively in Table 11.3. At the balancing stage, the number of firings
of each actor in the schedule can be manipulated by implementing block processing, i.e. scaling
the q vector in Equation (11.3) by a constant scaling factor J . Finally, at the clustering stage the
actor execution scaling factor is introduced to enable high-g /high-q transformation, as outlined in
Section 11.3.3.

11.3.7 Rapid Synthesis and Optimization of Dedicated Hardware from DFGs

Chapters 6 and 8 have described how the register-rich programmable logic present on an FPGA
makes them ideal for hosting high-throughput, pipelined circuit architectures for DSP functions.
Furthermore, the substantial body of research into automated design techniques for translating signal

Table 11.3 DFG actor configuration for embedded optimization

Abstraction level Manipulation aspect Description

A Number of actors
Algorithm X Connecting arcs token dimensions

S Number of arcs
Balancing J Blocking factor
Clustering k Actor execution scaling factor
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Figure 11.13 MRDFG pipelined core synthesis process

flow graphs (SFGs – a type of SRDFG) to pipelined hardware architectures (Parhi 1999), means
that these design approaches can achieve high real-time performance and fit into a dataflow-centric
system level design approach. These types of approach are in line with the requirements for a
rapid core generation technique for this rapid implementation methodology. A typical architectural
synthesis technique for translating MRDFG specifications to pipelined circuit implementations, is
outlined in Figure 11.13.

The most important factor of note in this process is the first, i.e. conversion of the MRDFG
description of the algorithm to a single rate SFG description. This conversion is required because
the behavioural semantics of the multi-rate model are significantly more expressive than the single
rate (Lee and Messerschmitt 1987b) and these semantics must be refined to enable the lower-level
design processes for pipelined hardware (Parhi 1999). Specifically, there are a number of restrictions
associated with SFG modeling of the system:

1. The port thresholds of all ports in the DFG are fixed at unity
2. The each actor fires only once in an iteration of the schedule
3. Port tokens are atomic

The restricted behavioural semantics of SFG as compared with MRDFG result in the more
complicated semantics of the MRDFG model, and corresponding manipulations of these aspects,
manifest as structural changes in the SFG graph. Architectural synthesis itself consists of three main
SFG structural transformations to produce a suitable pipelined component implementation (Parhi
1999). Retiming processes were described earlier in Chapter 8 as well as folding and unfolding,
used to optimize the circuit architecture for area or throughput constraints.

Technology for SFG architectural synthesis now includes techniques for hierarchical synthesis,
advanced scheduling algorithms and incorporation of predefined cores for the lowest level (known
here as primitive level) components (Yi and Woods 2006). However, the main bulk of recent work
in this area has been performed in the translation from SFG to pipelined hardware architecture,
largely considering the transformation from MRDFG to SFG to be a necessary precursor step.
Given that the entire architectural synthesis process in Figure 11.13 is based on the SFG domain,
the resulting pipelined core architecture is specific for that SFG structure, and hence by logical
extension the MRDFG behavioural configuration from which the SFG was created. The restrictions
imposed by this scenario are outlined in Section 11.3.8.

11.3.8 Restricted Behavioural Synthesis of Pipelined Dedicated Hardware Architectures

The problem with applying SFG synthesis approaches to actors is that alteration of any of the
configuration factors in Table 11.3 does not affect the structure of the MRDFG, but conceals the



256 FPGA-based Implementation of Signal Processing Systems

A B C
(2,1) (m,n) (m,n) (2,1)

Figure 11.14 Example architectural synthesis MRDFG

changes in the behavioural semantics of the language. However, in conversion from MRDFG to
SFG, these changes are then manifest as structural changes in the SFG, since the behavioural
semantics are fixed here. Since the pipelined core is the result of applying architectural synthesis
techniques to the SFG, this means that exploring the system design space using MRDFG actor
configuration alterations requires re-synthesis of the resulting pipelined core for every explored
point in the design space mapped out by the factors in Table 11.3. To illustrate the issues that
arise from this restriction, consider Figure 11.14, which represents the MRDFG for a hypothetical
architectural synthesis process.

Here, actor A produces tokens with dimensions (2, 1) onto the arc. These tokens are consumed
by B, which is to be implemented as a pipelined hardware component. B consumes and produces
tokens with dimensions (m, n), with the values of m and n under the control of the designer
for algorithm level optimization as described in Section 11.3.1. The multidimensional semantics of
MSDF enables token dimension exploration via manipulation of the language semantics, as outlined
in Section 11.2.3. When converted to SFG however, this type of graph-level exploration of intra-
token parallelism is forbidden, and manifests as structural changes in the DFG. To demonstrate
this, the SFG for different values of (m, n) for B in Figure 11.14 are shown in Figure 11.15. It is
assumed that the token dimensions transferred at an SFG actor port is (1, 1) with a value of G of
1, to ensure that SFG structural changes are as a result of token dimension alteration only.

In the three different configurations, altering the DFG token dimensions has altered the number
of input ports on B since each SFG actor must transfer (m, n) of dimension (1, 1) in one firing.
Furthermore, it is clear that varying the token dimensions has had the effect of altering qi , the
number of firings of actor i in an iteration of the graph schedule, resulting in variable numbers
of actor instances since, in an SFG, q(i) is always 1. Hence, applying the types of graph-level
transformation outlined in Section 11.3.1 without having to re-synthesize the pipelined hardware
for every point in the exploration space, actors must be flexible in terms of their number of ports
and the number of firing instances. This observation is reinforced by analysis of the variation
of SFG structure with block processing exploration at the graph balancing stage as outlined in
Section 11.3.2. Figure 11.16 shows the SFG resulting from the MRDFG of Figure 11.14, for j = 1
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C1,3

B2,1

B1,1

A1,1

A1,2

A1,3

A1,1 B1,1 C1,1
B1,1

B1,1

C1,1A1,1

(b) (m,n) = (1,3 )

(a) (m,n) = (1,1 )

(c) (m,n) = (2,1)

Figure 11.15 SFG structure variation with graph-level manipulation
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Figure 11.16 SFG structure variation with block processing factor

and J = 2 and constant token dimensions. As this illustrates, applying block processing effectively
replicates the SFG.

This section has shown that, due to the discrepancies between the MRDFG and the SFG
behavioural semantics, SFG cannot be used for multiple MRDFG actor configurations. It logically
follows that any pipelined core generated from an SFG via architectural synthesis cannot be used
for different MRDFG actor configuration realizations, i.e. is not reusable in multiple MRDFG sys-
tems; every configuration change of an MRDFG actor in high-level embedded system exploration
requires redesign and re-synthesis of a new pipelined core.

This is not just a drawback of SFG architectural synthesis techniques, but has ramifications for
all pipelined cores when these are to be included in embedded systems, generated from MRDFGs.
Hence, the dual requirements of rapid pipelined hardware component synthesis and core-based
reuse of the generated components are not concurrently possible for MRDFG frameworks, given
the current technology; when designing algorithms at the MRDFG level, the designer has only
inferred, rather than exerted direct control on, the structure of the dedicated hardware architecture.
The next section outlines a pipelined hardware core synthesis approach which overcomes these
difficulties to enable generation of pipelined dedicated hardware flexible enough to implement
multiple configurations of MRDFG actor without redesign, enabling true system-level exploration
of heterogeneous FPGA DSP systems.

11.4 System-level Modelling for Heterogeneous Embedded DSP
Systems

The key issue with lack of explicit designer control on the structure of the implementation is the
lack of structural flexibility in the MRDFG itself. A single actor in standard dataflow languages such
as SDF or MSDF can represent any number of tasks in the implementation, rather than employing
a close relationship between the number of DFG actors and number of cores in the solution.
To overcome this structural inflexibility, the multidimensional arrayed dataflow (MADF) domain
may be used (McAllister et al. 2006). To demonstrate the semantics of the domain, consider a matrix
multiplication problem – multiplication of m1 by m2 (dimensions (m, n) and (n, p) respectively).
The MSDF graph of this problem is given in Figure 11.17(a).

By interpreting m2 as a series of parallel column vectors, each of which is a column of m2,
the vectors can be grouped into matrices of any size, allowing concurrent multiplication of m1

by an array of y matrices m20 ,m21 , . . . , m2y−1 where m2i
is composed of the p column vectors

i × p/y, . . . , ((i + 1) × p/y) − 1 of m2. The subdivision of m2 into parallel sub-matrices for p = 4
is given in Figure 11.17(b). Note the regular relationship between the number of multipliers and
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(a) MSDF Matrix Multiplier

(b) Parallel Matrix Multiplication
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Figure 11.17 Matrix multiplication MSDF and parallelism exploration

the size of sub-matrix consumed by each. This kind of relationship could be exploited to regularly
change the structure of the DFG, trading off the number of actors and the token dimensions
processed at the ports of each, enabling trade-off of the number of actors and the token dimensions
processed by each (i.e. the same kind of transformation as enabled in MSDF) whilst still controlling
the algorithm ‘structure’. Given an appropriate synthesis methodology, this could be extended to
influence the number of FPGA cores and token dimensions processed by each, and used to trade
resource usage with throughput by instantiation of variable numbers of cores.

The MADF modelling domain is designed to enable this kind of graph-level control of the
underlying processing structure. In MADF, the notions of DFG actors and edges are extended
to arrays. An MASDF graph G = Va, Ea describes arrays of actors connected by arrays of arcs.
An MADF graph for matrix multiplication is shown in Figure 11.18. Actor arrays are black, as
opposed to single actors (or actor arrays of size 1) which are white. Arc arrays are solid, as opposed
to single arcs (or arc arrays of size 1) which are dashed. The size of an actor array is quoted in
angle brackets above the actor array.

In such a graph, the system designer controls parameters such as y in Figure 11.18. This is used
to define the size of the m mult, m src1, m src2 and snk actor arrays, as well as the dimensions
of the tokens consumed/produced at the ports o on m src2, and b and o on m mult. If the array of
m mult actors is translated to a family of cores configurable in terms of port token dimension, this
allows simple graph-level control of the number of cores and token dimensions for each. However,
as outlined in Section 11.3.8, cores produced via single rate dataflow synthesis have fixed port
token dimensions. The technique for overcoming this restriction, is outlined next.

11.4.1 Interleaved and Block Actor Processing in MADF

Consider the case of the array of sub-matrices of m2 input to m mult in the matrix multiplication
example of Figure 11.18. How may a single core be made flexible enough to implement any size
of input matrix on this input, given that the pipelined core produced from an SFG description has
fixed token dimensions?
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(m,n) <y>
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Figure 11.18 Matrix multiplication MADF
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Figure 11.19 Sub-matrix decomposition for fixed token size processing

As outlined in Section 11.4, each of the y sub-matrices can be interpreted as a series of p column
vectors, with the ith sub-matrix composed of the column vectors i × p/y, . . . , ((i + 1) × p/y) − 1
of m2. As for the example of Section 11.4, where y = 4, the ith sub-matrix can be interpreted in
two ways, as illustrated in Figure 11.19.

As this shows, the matrix token can be interpreted as an array of base tokens. If the actor
to process the sub-matrix can only process the base tokens, then the entire sub-matrix may be
processed using multiple iterations to process the independent base tokens. To enable this, MADF
allows variable-sized arrays of actor ports, with each consuming tokens of fixed dimensions (the
base token). To enable the multiple iterations of the actor to process the multiple base tokens in
the actual token, MADF actors may be cyclic (Section 11.2.2), with individual firings consuming
one or more base tokens through each port in the array in turn. Figure 11.20 illustrates the full,
fixed token processing version of the MADF matrix multiplication problem. Note the presence of
port arrays (black) with fixed token dimensions.

Having opened up the intra-token exploration space by separating the actual token processed
across multiple streams transporting base tokens, further implementation exploration may be
enabled. In the case where the port array is used to process a single token, interleaved processing
of each port in the array can be implemented, i.e. a single base token is consumed through each
port in turn to form the full token. In this case, the threshold of each port array element is 1.
However, having opened up the token processing into a multi-stream processing problem, block
processing is enabled, by allowing thresholds greater than 1 at each element of the port array
element. At a port array, the ith element has a production/consumption vector of length psize

(the size of the port array) with all entries zero except the ith. These vectors exhibit a diagonal
relationship, i.e. for the port array a, all entries in the consumption vector of a0 are zero except
element 0, all entries in the consumption vector for a1 are zero except the element 1, and so forth.
A generalized version of this pattern, for a port array with n elements with thresholds z is denoted
by < n > [z], as illustrated in Figure 11.21 for m mult when y = 3. The value of z, the threshold
on each child port indicates whether interleaved or block processing is used (z = 1 for interleaved,
z > 1 for block processing).

Given this level of flexibility in the MADF structure, it is clear that given the appropriate
dedicated hardware synthesis methodology, the designer can control the number of hardware com-
ponents and the characteristics of each from the graph level. The most pressing concern when
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Figure 11.20 Full MADF matrix multiplication
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Figure 11.21 Block processing matrix multiplication

generating the embedded implementation of an MADF is the manner in which the architectural
synthesis methodology can bridge the gap between the fixed semantics of the pipelined core
(i.e. fixed token dimensions, threshold and number of processed streams). As outlined in this
section, these restrictions are in direct contrast to the flexible nature of the MADF actors that the
hardware components are to implement. An appropriate architectural synthesis methodology must
be able to exploit pipelined IP cores of fixed semantics to the implementation of a MADF actor with
a configuration Cb, as given in Equation (11.10), where X, T and S represent variable expressions
of the token dimensions, thresholds and number of streams processed at each port respectively.
Section 11.5 outlines how this is achieved.

Cb = {Tb Xb Sb} (11.10)

11.5 Pipelined Core Design of MADF Algorithms
An array of MADF actors translates to an array of virtual processors (VPs) on implementation, as
outlined in Figure 11.22. There are two main implementation tasks to be resolved: generation of
the VP nodes and the interconnecting FIFO network. A VP is composed of three parts:

1. Control and communications wrapper (CCW)
2. Functional engine (FE)
3. Parameter bank (PB)

The CCW implements the cyclic schedule to switch the streams of data across which the VP
(which represents an MADF actor) may be shared, into and out of the FE. The read unit here also
implements the necessary edge FIFO buffering for the MADF network. The FE implements the
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functionality of the node and is the core portion of the unit. It can take any architecture, but here it
is a high-throughput pipelined core. The PB provides local data storage for run-time constants for
the core, e.g. FIR filter tap weights. All portions of the VP are automatically generated; however,
the pipelined FE core part is flexible for reuse across multiple applications and MADF actor
configurations, and as such may only require creation and reuse in a core-based design strategy.
Efficient generation of FIFO buffers and controllers for automatic generation of dedicated dataflow
hardware is a well-researched area (e.g. Dalcolmo et al. 1998, Harriss et al. 2002, Jung and Ha
2004, Williamson and Lee 1996). Specifically, the remainder of this chapter is concerned with
design of reusable FE cores.

In the case where the FE part of a VP is a pipelined core, it is designed as a white box component
(WBC) as described in Chapter 9 (Yi and Woods 2006); the structure and behaviour of which are
described here using an example two-stage finite impulse response (FIR) filter WBC, as illustrated
in Figure 11.23. The WBC is composed of a computational portion and a state space and is created
as described earlier in Chapter 9, but the key aspect to designing reusable, configurable cores lies
in the proper design of the circuitry for the state space portion. The SFG architectural synthesis
process generates a base data state space for a MADF actor, operating on base tokens. This then
undergoes a series of augmentations to give the WBC a flexible internal structure which may be
regularly changed without redesign to achieve regular changes in MADF actor configuration.

11.5.1 Architectural Synthesis of MADF Configurable Pipelined Dedicated Hardware

The pipelined WBC architecture resulting from SFG architectural synthesis is merely a retimed
version of the original SFG algorithm, the computational resource of which must effectively be time
multiplexed between each of the n elements of the input stream array, with the entire computation
resource of the SFG dedicated to a single stream for a single cycle in the case of interleaved
processing, and for multiple cycles in the case of block processing.

To enable interleaved processing, the first stage in the WBC state space augmentation process is
lateral delay scaling. To enable interleaved sharing, the the SFG structure is k -slowed (Parhi 1999),
where the delay length on every edge resulting from SFG architectural synthesis is scaled by
a factor k, where in the case of interleaved processing of n input streams, k = n. This type of
manipulation is known as lateral delay scaling.

In the case where block processing is required, base tokens are consumed/produced from a
single port array element for a sustained number of cycles. Accordingly, the VP state space should
have enough state capacity for all S streams, activating the state space associated with a single
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Figure 11.23 Two-stage FIR WBC
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stream in turn, processing for an arbitrary number of tokens, before loading the state space for
the next stream. This kind of load–compute–store behaviour is most suited to implementation
as a distributed memory component, with the active memory locations determined by controller
schedule. This is known here as vertical delay scaling, where each SFG delay is scaled into an
S -element DisRAM.

Given the two general themes of lateral and vertical delay scalability, an architectural
synthesis process for reusable WBC cores to allow actor and pipelined core configuration in
terms of the factors in Equation (11.10), a four-stage architectural synthesis procedure has been
developed.

1. Perform MASDF Actor SFG Architectural Synthesis. For a chosen MADF actor, C is fixed and
defined as the base configuration Cb. This is converted to a SFG for architectural synthesis. The
MADF actor Cb is the minimum possible set of configuration values for which the resulting
pipelined architecture, the base processor Pb may be used, but, by regular alteration of the
parameterized structure, the processor can implement integer supersets of the configuration. The
lower the configuration values in the base, the greater the range of higher-order configurations
that the component can implement. To more efficiently implement higher-order configurations,
Cb can be raised to a higher value. For a two-stage FIR Cb = {1 1 1}, the WBC of the Pb is
shown in Figure 11.23.

2. Lateral Delay Scalability for Interleaved Processing. To implement k -slowing for variable inter-
leaved operation, the length of all delays must be scaled by a constant factor Q. All the
lowest level components (adder/multipliers) are built from pre-designed cores which have fixed
pipelined depths (in the case of Figure 11.23 these are all one) which cannot be altered by
the designer. To enable the scaling of these delays, these are augmented with delays on their
outputs to complete the scaling of the single pipeline stages to that of length Q. The resulting
FIR circuit architecture for the pipelined FIR of Figure 11.23 is shown in Figure 11.24(a).
The notation (Q)D refers to an array of delays with dimensions (1,Q). Note that all delay
lengths are now a factor of Q, the lateral scaling factor, and the presence of the added delay
chains on the outputs of the lowest level components. This type of manipulation is ideally
suited to FPGA where long delays are efficiently implemented as shift registers (Xilinx Inc.
2005).

3. Vertical Delay Scalability for Block Processing. For block processing, the circuit delays are
scaled by a vertical scaling factor P to allow combined interleaved/block processing. This
results in arrays of delays with dimensions (P, Q). When this is applied to the circuit of
Figure 11.24(a), the FIR circuit architecture shown in Figure 11.24(b) is created. Note the
presence of the vertical scaling factor on all delay arrays. This kind of miniature embedded
RAM-based behaviour is ideally suited to FPGA implementation, since these can implement
small distributed RAMs (DisRAM) in programmable logic. These DisRAMs have the same
timing profile as a simple delay (Xilinx Inc. 2005), and as such do not upset edge weights in
the circuit architecture.

4. Retime Structure to Minimize Lateral Delay Scalability. When Pb is configured to
implement a much higher order MADF actor configuration than Cb, very large delay
lengths can result. To minimize these, retiming is applied to the augmented processor
architecture.

11.5.2 WBC Configuration

After creation of the configurable based WBC architecture Pb, it must be configured for use with
specific MADF actor configuration. To configure Pb (Cb = {Tb Xb Sb}) with pipeline period αc
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Figure 11.24 Scaled variants of two-stage FIR WBC

(Parhi 1999) to implement a higher-order MADF actor P, where X is an n-dimensional token of
size x(i) in the ith dimension, the following procedure is used.

1. Determine lateral scaling factor Q by Equation (11.11)

Q =
⌈

1

αc

n−1∏
i=0

xi

xbi

⌉
(11.11)

2. Scale all edge delay lengths by a factor Q. Scale primitive output delays to length (Q − 1) × L

where L is the number of pipeline stages in the primitive.
3. Scale all delays vertically by a vertical scaling factor P as given by Equation (11.12)

P = S

Sb
(11.12)

11.6 System-level Design and Exploration of Dedicated Hardware
Networks

This section outlines two examples, namely a normalized lattice filter (NLF) and a fixed beamformer,
in order to demonstrate many of the features outlined in the previous sections.
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Figure 11.25 Eight-stage NLF MADF graph

11.6.1 Design Example: Normalized Lattice Filter

To demonstrate the effectiveness of this architectural synthesis and exploration approach, it is
applied to an eight-stage NLF design problem given in (Parhi 1999). The MADF graph is shown
in Figure 11.25, with the NLF actor, the only part implemented in dedicated hardware as part of
this design example.

As Figure 11.25 shows, the src and sink arrays generate an array of eight scalar tokens which are
processed by the NLF array. The designer controls the size of the NLF actor array by manipulating
the variable y on the graph canvas. This, in turn, determines n, the size of the port array of
each element of the NLF actor array. To test the efficiency of this MADF synthesis and exploration
approach, the SFG architectural synthesis capability for Pb is limited to only retiming (i.e. advanced
architectural explorations such as folding/unfolding are not performed), placing the emphasis for
implementation optimization entirely on the MADF design and exploration capabilities. The Pb

operates on scalar tokens with Cb = {1b 1b 1} to maximize SFO flexibility by maximizing the
number of achievable configurations. The target device is the smallest possible member of the
Virtex-II ProTM family which can support the implementation. This enables two target device
specific design rules for efficient synthesis:

1. if (P, Q) = (1, 1)Dtype = FDE

2. if P > 1, Dtype = DisRAM (RAM16x1s), otherwise Dtype = SRL16 + FDE.

The SFG of an 8 stage NLF with Cb = {1b 1b 1} is shown in Figure 11.26(a), with the SFG of
the NLF stage shown in Figure 11.27(a). If the lowest-level components (adders and multipliers)
from which the structure is to be constructed are implemented using single-stage pipelined black box
components (a common occurrence in modern FPGA), then a particular feature of the NLF structure
is the presence of 36 recursive loops in the structure, with the critical loop (Parhi 1999) occurring
when two pipelined stages are connected. For single-stage pipelined adders and multipliers, this
has a pipeline period, (α), of 4 clock cycles. Hence by Equation (11.11), Q = xi

4×xb
.

The base processor Pb is created via hierarchical SFG architectural synthesis (Yi and Woods
2006), and produces the pipelined architecture of Figure 11.26(b), with the architecture of each
stage as shown in Figure 11.27(b). After lateral and vertical delay scaling and retiming, the NLF
and stage WBC architectures are as shown in Figure 11.26(c) and Figure 11.27(c) respectively.

Synthesis of the given architecture for three different values of y has been performed. 8
1BS-NLF,

2
4BS-NLF and 1

8BS-NLF are the structures generated when y is 8, 2 and 1 respectively and each
VP performs interleaved sharing over the impinging data streams, whilst results for a single VP
processing a 68 element vector (68

1 BS-NLF ), are also quoted to illustrate the flexibility of the WBC
architectures. A block processing illustration of 16 streams of four-element vector tokens (1

4BS-
NLF 16) is also quoted in Table 11.4. These results illustrate the effectiveness of this approach for
core generation and high-level architecture exploration. Transforming the MASDF specification by
trading off number of actors in the family, token size per actor, and number of functions in the
MASDF actor cyclic schedule, has enabled an effective optimization approach without redesign.
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Table 11.4 NLF post Place and route synthesis results on Virtex-II Pro FPGA

Configuration Slices Logic Throughputmult18
LUTs SRL DisRAM FDE (Msamples/s)

8
1BS-NLF 2784 1472 4840 312 397.4

2
4BS-NLF 670 368 1210 78 377.9

1
8BS-NLF 442 186 207 801 39 208.6

68
1 BS-NLF 442 186 207 801 39 208.6

1
4BS-NLF 16 508 188 7 576 105 39 135.8

The initial implementation (y = 8, 8
1BS-NLF ) created an eight-element VP array. Given the large

number of multipliers (mult18) required for implementation, the smallest device on which this
architecture can be implemented is an XCV2VP70. However, given the pipeline period inefficiency
in the the original WBC architecture, reducing y to 2 produces two four-element vector processors
(2
4BS-NLF ) with almost identical throughput, enables a significant reduction in required hardware

resource with little effect on throughput. This amounts to a throughput increase by a factor 3.9 for
each VP with no extra hardware required in the WBC. The large reduction in required number of
embedded multipliers also allows implementation on a much smaller XC2VP20 device. Decreasing
y still further to 1, produces a single eight-element vector processor (1

8BS-NLF ). Whilst throughput
has decreased, a significant hardware saving has been made. The NLF array can now be implemented
on a smaller XC2VP7 device.

This example shows that the MADF synthesis approach can achieve impressive implementation
results via simple system-level design space exploration. Using a single pipelined core, this approach
has enabled highly efficient architectures (3.9 times more efficient than one-to-one mappings) to be
easily generated, in a much simpler and more coherent manner than in SFG architectural synthesis.
Furthermore, by manipulating a single DFG-level parameter, this design example can automatically
generate implementations with wildly varying implementation requirements, offering an order of
magnitude reduction in device complexity. This illustrates the power of this approach as a system-
level, core-based design flow with highly efficient implementation results and rapid design space
exploration capabilities.

11.6.2 Design Example: Fixed Beamformer System

Beamforming provides an effective and versatile method of spatial filtering for radar, sonar, biomed-
ical and communications applications (Haykin 1986). A beamformer is typically used with an array
of sensors which are positioned at different locations so that they are able to ‘listen’ for a received
signal by taking spatial samples of the received propagating wave fields. The structure of a fixed
beamformer (FBF) is shown in Figure 11.28.

The FBF samples complex data impinging on N sensors and performs independent FIR filtering
and scaling on the output of each of the N samples by individual elements of a constant weighting
vector to steer the beamformer response spatially toward a particular target. The scaled values are
all then summed. For a target, the average power at the output of the beamformer is maximized
when the beamformer is steered toward the target. The structure of the FBF system is highly regular,
and can be exploited by the MADF modelling domain to provide wide-ranging and effective design
space exploration. The MADF graph of the FBF algorithm is shown in Figure 11.29.
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Figure 11.29 Fixed beamformer MADF graph

The MADF graph consists of an array of N inputs, one for each sensor in the array. This is
tightly correlated with the number of members in the DRx and multK actor families, as well as
the size of the port family i on the sum actor (again a port family is denoted in black). Hence, by
altering the value of N, parameterized control of the algorithm structure is harnessed for a variable
number of sensors. By coupling the implementation structure tightly to the algorithm structure, this
gives close control of the number of DRx and multK cores in the implementation.

For the purposes of this design example, N = 128 and the design process targets a Xilinx Virtex
II Pro 100 FPGA. The core library consists only of complex multiplication, addition and sum cores,
and hence the entire system is to be composed from these. The lengths of the DRx filters is taken
as 32 taps. Given that this structure then requires 16896 multipliers, and it is desirable to utilize the
provided 18 bit multipliers on the target device (of which only 444 are available), this presents a
highly resource-constrained design problem. The approach here offers two ways to help counteract
this problem: architectural manipulation when the functionality has been implemented already, and
processing of multiple streams of data in each VP.

To enable the exploration of the number of channels processed by each core in the implementa-
tion, each actor must be able to process multiple channels in the MADF algorithm. This is enabled
using the MADF structure of Figure 11.30. Here, a second parameter, M has been introduced to
denote the number of actors used to process the N channels of data. Note that the ports on the DRx
and multK actors are now both families of size M to denote the sharing of the actor amongst N /M
data streams processed in a cyclic fashion (McAllister et al. 2006). On synthesis, a wide range of
synthesis options are available for the FBF dedicated hardware system on a chosen device, with
an accompanying wide range of real-time performance capabilities and resource requirements, and
these are summarized in Table 11.5. The breakdown of the proportion of the programmable logic
(LUT/FDE) by VP function (WBC, PB or CCW) is given in Table 11.6

An initial implementation consisting of a single core can process a 128-element vector
(i.e. interleave shared across the 128 input streams); increasing the value of M by 2 and 4 can
produce increases in throughput by factors of 2.2 and 4.3, respectively; it should be noted
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Table 11.5 FBF post-place and route synthesis results on Virtex II Pro FPGA

M(i) Logic mult18 mux Throughput
LUT/SRL/DisRAM/FDE (%) F5/F6/F7/F8(%) (MSamples/s)

1(i)
3493/16128/8448/5790 99 528/256/128/64

1.45
(8)/(37)/(19)/(6) (22) (1)/(1)/(1)/(1)

2(i)
4813/16128/8448/10844 198 512/256/128/64

3.18
(11)/(37)/(19)/(11) (45) (1)/(1)/(1)/(1)

4(i)
8544/16128/8448/21576 396 528/256/128/64

6.19
(19)/(37)/(19)/(22) (89) (1)/(1)/(1)/(1)

1(b)
3490/0/24576/5278 99 528/256/128/64

1.45
(8)/(0)/(56)/(5) (22) (1)/(1)/(1)/(1)

2(b)
4812/0/24576/8892 198 528/256/128/64

3.51
(11)/(0)/(56)/(9) (45) (1)/(1)/(1)/(1)

4(b)
8554/0/24576/17672 396 528/256/128/64

1.45
(19)/(0)/(56)/(18) (89) (1)/(1)/(1)/(1)

Table 11.6 FBF implementation resource breakdown

M(i)
LUT FDE

%WBC %CCW %PB %WBC %CCW %PB

1(i) 3.7 31.3 6.5 1.3 0 98.7
2(i) 3.6 28.7 69.5 0.9 0 99.1
4(i) 3.2 25.5 71.3 0.3 0 99.7
1(b) 3.7 31.3 6.5 1.3 0 98.7
2(b) 3.6 28.7 69.5 1.0 0 99.0
4(b) 3.2 25.5 71.3 0.3 99.7

that the architectures used for core sharing amongst multiple streams exhibit minimal resource
differences. This is a direct result of the abstraction of the core architectures for target portability.
Whilst the overheads in terms of LUTs (which may be configured as 16 bit shift registers
(SRLs) or DisRAMS for the WBC wrapping in the VP is expensive (up to 35% overhead) the
major part of this is required entirely for storage of on-chip filter tap and multiplier weights
in the SFO parameter banks. This storage penalty is unavoidable without exploiting on-chip
embedded BlockRAMs. In addition, the overhead levels decrease with increasing values of M
since the number of tap weights remains constant independent of M. The CCW incurs little LUT
overhead, instead exploiting the embedded muxF5, muxF6, muxF7 and muxF8 multiplexers of the
FPGA (Xilinx Inc. 2005) to implement the switching. These are not used at all anywhere else in
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the design and hence are plentiful. Finally, it should be noted that all the cores in the system are
100% utilized, depending on input data.

11.7 Summary
This chapter has described techniques to enable system-level design and optimization of dedicated
hardware networks in FPGA. It is important to note that in industrial system design flows, dedicated
hardware generally forms a small part of a final embedded DSP system, and as such its design,
integration and reuse should lend itself well to industrial heterogeneous system design flows.

Popularly, rapid DSP system implementation approaches are based on dataflow-centric
approaches. Whilst rapid implementation of pipelined DSP cores is in itself a dataflow design
flow, the final product of the process is rigid and inflexible for integration, reuse and manipulation,
along with software parts of the system. For such approaches to become popularly accepted, this
situation must be rectified.

A number of techniques have been outlined to bridge the gap between what system designers
require and what dedicated hardware permits. By accepting that flexibility is imperative in the
resulting dedicated hardware, this section has shown that dedicated hardware creation, manipulation
and reuse can be effectively merged into a heterogeneous system design flow.

The use of MADF as a modelling approach for DSP systems helps encapsulate the required
aspects of system flexibility for DSP systems, in particular the ability to exploit data-level par-
allelism, and control how this influences the implementation. This has been shown to be an
effective approach; for a NLF filter design example, impressive gains in the productivity of the
design approach were achieved. This included an almost four-fold increase in the efficiency of
the implementation via simple transformations at the DFG level, negating the need for complex
SFG architectural manipulations. Otherwise, this approach has proven effective at rapid design
space exploration, producing NLF implementations of varying throughput and drastically different
physical resource requirements (an order of magnitude variation in device complexity) simply by
manipulating a single parameter at the graph level. Furthermore, in a FBF design example, the
effectiveness of this approach has been demonstrated by enabling rapid design space exploration,
producing a variety of implementations for a specific device via manipulation of a single DFG
parameter.
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12
Adaptive Beamformer Example

Chapter 8 covered techniques to create efficient circuit architectures for SFG-based DSP systems.
In this description, it was clear that many of the implementations could be created in a generic
fashion with levels of pipelining used as a control parameter. Chapter 10 indicated that development
of this generic architecture could be used across a wide range of applications if the parameterizable
features could be used to drive efficient implementations across this range of parameters. This can
only be achieved by identifying the key parameters of the DSP core functionality and then cleverly
deriving a scalable architecture that will allow these parameters to be altered, whilst still producing
linearly scaled performance. This requires a combination of high-level design optimizations and
use of the techniques highlighted in Chapter 8.

This chapter is dedicated to the development of a QR-based IP core for adaptive beamforming.
This example covers a number of stages, from the development of the mathematical algorithm
through to the design of a scalable architecture. Focus is given to the techniques used to take the
original architecture, then map and fold it down onto an efficient and scalable implementation,
meeting the needs of the system requirements. Issues such as parameterizable timing and control
management are also covered and how this relates to the earlier techniques.

The chapter is organized as follows. Section 12.1 gives an introduction to adaptive beamforming
and the generic design process is covered in Section 12.2. The adaptive beamforming application is
outlined in Section 12.3 and the development of the QR-based algorithm covered in Section 12.4.
Algorithm to architecture procedures are covered in Section 12.5 and then applied to produce the
efficient architecture design given in Section 12.6. A series of different architectures are developed.
These are then used to develop the generic architecture which is given in Section 12.7. The details
of how the architecture is retimed to cope with processors with detailed timing considerations are
given in Section 12.8, leading to the parameterized QR architecture, highlighted in Section 12.9. In
Section 12.10, the issues of generic control for this architecture is covered. Finally, a beamformer
application is described in Section 12.11 and followed by conclusions.

12.1 Introduction to Adaptive Beamforming
Adaptive beamforming is a form of filtering whereby input signals are received from a number of
spatially separated antennae, referred to as an antennae array. Typically its function is to suppress
signals from every direction other than the desired ‘look direction’ by introducing deep nulls in
the beam pattern in the direction of the interference. The beamformer output is a weighted linear
combination of input signals from the antennae array, represented by complex numbers, therefore

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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Figure 12.1 Diagram of an adaptive beamformer for interference cancelling. Reproduced from
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allowing an optimization both in amplitude and phase due to the spatial element of the incoming
data.

Figure 12.1 illustrates an example with one primary antenna and a number of auxiliary antennae.
The primary signal constitutes the input from the main antennae, which has high directivity. The
auxiliary signals contain samples of interference, threatening to swamp the desired signal. The filter
eliminates this interference by removing any signals in common with the primary input signal.
The input data from the auxiliary and primary antennae is fed into the adaptive filter, shown in
Figure 12.1, from which the weights are calculated. These weights are then applied on the delayed
input data to produce the output beam, as depicted in Figure 12.1. It is the choice and development
of an algorithm for adaptively calculating the weights that is the focus of this chapter.

There are a range of applications for adaptive beamforming from military radar applications to
communications and medical applications, (Athanasiadis et al. 2005, Baxter and McWhirter 2003,
Choi and Shim 2000, de Lathauwer et al. 2000, Hudson 1981, Shan and Kailath 1985, Wiltgen
2007). Due to the possible applications for such a core, this chapter will investigate the development
of an IP core to perform the key computation found in a number of such adaptive beamforming
applications.

12.2 Generic Design Process
In the development of a new hardware core, a series of design stages may be followed. Figure 12.2
gives a summary of a typical design process applied in the development of a single-use implemen-
tation. It also gives the additional considerations required in generic IP core design, as highlighted
in Chapter 10. A number of key issues are addressed.

The process begins with a detailed specification of the problem and the purpose of the design. At
this point, consideration may be given toward employing design for reuse strategies to develop a
generic end product. Considerations include the initial extra cost in terms of money and time in
the development of a generic core, so it is essential that this cost will be more than recouped if
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Figure 12.2 Generic design process. Reproduced from Lightbody et al.,  2003 IEEE

the IP core is used in future designs. Is the development applicable over a range of applications
or is it a one-off requirement?

Analysis is then required to determine the most suitable algorithm. The choice of this algorithm
is key as successful hardware implementation requires a detailed understanding of how the
mathematical functionality is implemented. This has impact on the overall performance of a
circuit, in terms of area, critical path, and power dissipation.

Identification of the core functionality as there may only be a number of key components that are
suitable to be implemented as IP cores. These are functions that will transfer from application
to application, so it is imperative to determine expected variations in specification for future
applications. Are all these variables definable with parameters within the generic design, or
would other techniques be required to create the flexibility of the design?

Wordlength analysis to determine fixed-/floating-point arithmetic and consideration of rounding and
truncation within the design.
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Details of architecture design which will determine possible clock rates and area requirements.
This will depend on the target technology or specific FPGA device, influence the choice of sub-
modules involving analysis of levels of parallelism and pipelining. It is an interlinked loop, as
depicted in Figure 12.2, with each factor influencing a number of others. All these factors have
an influence over the final architecture design and it is a multidimensional optimization with no
one parameter operating in isolation.

Determination of parameters for the generated architectures. Within a generic design, different
allowable ranges may be set on the parameters defining the generated architectures. For example,
different wordlength parameters will have a knock-on effect on the level of pipelining required
to meet certain performance criteria.

Generic design choices could be included for a range of target implementations, e.g. parameters to
switch between ASIC and FPGA specific code. Even within a certain implementation platform,
there should be parameters in place to support a range of target technologies or devices, so to
make the most of their capabilities and the availability of on-board processors or arithmetic units.

Refinement of architecture solution to meet the performance criteria, but at a reduced area cost. This
includes application of the folding techniques outlined in Chapter 8, but the key mechanics of a
successful generic design also require the development of scalable control circuitry and scalable
scheduling of operations. Generating an architecture to meet the performance criteria of a larger
design is one thing, but developing the generic scheduling and control of such a design is of a
different level in complexity.

Software modelling of the algorithm is essential in the design development, initially for verifica-
tion and to analyse the finite precision effects. Such a model then forms the basis for further
development and implementation of the hardware architecture involving creation of test data for
validation of the HDL code and synthesized netlist. For the generic IP core the software mod-
elling forms an important part of the reuse design process as analysis is still required from the
outset to determine the desired criteria for the implementation such as SNR and data wordlengths
for the new applications.

12.3 Adaptive Beamforming Specification
The specification for this design is to have a generic core that can be redeveloped quickly for future
adaptive beamforming applications. The process of designing such a generic architecture adds to
the development time, and the future potential should be considered up front before deciding to
apply a design for reuse methodology. However, gains can be made if such a generic core has
reuse potential, providing for powerful and useful design libraries.

Adaptive beamforming is a general algorithm applicable in a range of applications, from medical
separation of signals to military radar applications. The key factor for development of a generic
design is to determine the key component within a range of adaptive beamforming applications that
would be consistent to some degree and could therefore be suitable to develop as an IP core. To
widen the potential of the core, it will need to be able to support a varied range of specifications
dealing with issues such as the following.

Number of Inputs

The beamformer design will need to support a varied number of auxiliary and primary inputs, as
depicted in Figure 12.3. The weights are calculated for a block of the input data coming from N

antennae (generally, only a proportion of this input data is needed, but there should be at least
2N data samples used from each block). These weights are then applied to the same input data to
generate the beamformer output for that block. For the final design, a more efficient post-processor
is developed to extract the weights such as that described in Shepherd and McWhirter (1993).
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Supporting a Range of FPGA Devices and/or ASIC Technologies

By including some additional code and parameters, the same core design can be re-targeted to a
different technology. Doing this could enable a design to be prototyped on FPGA before targeting
to ASIC. It would also allow for low-yield implementations that would not warrant the ASIC design
overhead. Likewise, there is a great benefit in the ability to quickly redevelop the core for emerging
ASIC foundries.

Ability to Support a Range of Performance Criteria

The variation in adaptive beamformer applications creates a wide span of desired features. For some
applications, for example, mobile communications, power consideration and chip area could be the
driving criteria for the device. For others, a high data rate system could be the primary objective.

Scalable Architecture

To create the flexibility needed to support such a wide range of design criteria, a scalable architecture
needs to be developed that can increase the level of physical hardware to match the needs of the
specification. Some key points driving the scalable architecture are

• desired data rate
• area constraints
• clock rate constraints
• power constraints

Clock Rate Performance

The required clock rate for the system is dependent on the architecture design and the target
technology. Specifying the system requirements enables the designer to make a choice regarding
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the target technology and facilitates compromise with other performance criteria such as power and
area.

Wordlength

Different applications will require different wordlengths, therefore a range of wordlengths should
be supported.

Level of Pipelining

The desired clock rate may rely on pipelining within the design to reduce the critical path. Giv-
ing a choice of pipelining within the submodules of the design will have a great influence over
performance.

These values will form the basis from which to develop the adaptive beamformer solution from
the generic architecture. The surrounding software models and testbenches should include the same
level of scalability so to complete the parameterization process.

The remainder of this chapter will describe the design stages in the development of a generic
adaptive beamformer core suitable for parameterization and fast prototyping. A summary is pre-
sented, showing the transition from problem to mathematical algorithm. From this a suitable solution
is determined and an architecture is derived. A focus is given for the later as a design for reuse
methodology is followed with the aim of developing a generic core, forming a key component of
the full adaptive beamforming application.

12.4 Algorithm Development
The aim of an adaptive filter is to continually optimize itself according to the environment in which
it is operating. A number of mathematically and highly complex algorithms exist to calculate
the filter weights according to an optimization criterion. Typically, the target is to minimize an
error function, which is the difference between a desired performance and the actual performance.
Figure 12.4 highlights this process.
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Figure 12.4 Adaptive filter system
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A great volume of research has been carried out into different methods for calculating the filter
weights. Adaptive Filter Theory by Haykin (2002) gives a well-rounded introduction to adaptive
filtering. The possible algorithms range in complexity and capability, requiring detailed analysis
to determine a suitable algorithm. However there is no distinct technique in finding the optimum
adaptive algorithm for a specific application. The choice comes down to a balance of the range of
characteristics defining the algorithms, such as:

1. Rate of convergence, i.e. the rate at which the adaptive algorithm comes within a tolerance of
an optimum solution

2. Steady-state error, i.e. the proximity to an optimum solution
3. Ability to track statistical variations in the input data
4. Computational complexity
5. Ability to operate with ill-conditioned input data
6. Sensitivity to variations in the wordlengths used in the implementation

Two methods for deriving recursive algorithms for adaptive filters use Wiener filter theory and
the method of least-squares (LS), resulting in the LMS and RLS algorithms respectively which have
been covered in Chapter 2. The key issue concerning the choice of these algorithms is complexity
versus performance.

12.4.1 Adaptive Algorithm

It is widely accepted that RLS solutions offer superior convergence rates to the LMS solutions under
stationary environments. A RLS solution would therefore be expected to react faster under non-
stationary conditions; however, this is not a straightforward comparison (Eleftheriou and Falconer
1986, Eweda 1998, Eweda and Macchi 1987, Haykin 2002, Kalouptsidis and Theodoridis 1993).
General observations made from these references include:

In general, the RLS algorithm is preferable over the LMS algorithm when tracking performance
and speed of convergence is critical, especially in situations where there is a high-to-medium
SNR (Kalouptsidis and Theodoridis 1993).

The convergence rate of the LMS algorithm is governed by the choice of step size µ, where
increasing µ accelerates the convergence. However, this does not compensate fully for the slower
rate as the algorithm loses the benefits of noise smoothing at the steady state when µ is large.
There are normalized versions that allow for a greater step size at the start, which is then
reduced as the algorithm approaches its steady state (Bitmead and Anderson 1980, Kalouptsidis
and Theodoridis 1993, Morgan and Kratzer 1996).

The convergence rate of the RLS algorithm is independent of the spread of eigenvalues within the
input correlation matrix. This is not the case for the LMS algorithm, as when the eigenvalue
spread of the correlation matrix is great then the convergence is rather slow, (Eweda and Macchi
1987), i.e. the eigenvalues effectively form a convergence time constant and determine the value
of the correction size µ, which ensures stability (Eleftheriou and Falconer 1986).

The memory of the adaptive algorithm governs the rate of convergence. The RLS algorithm incor-
porates a forgetting factor λ, which assigns greater importance to more recent data. It takes a
value between 0 and 1 and acts to determine a window of data on which the LS solution is
carried out. With larger values of λ, the window length will be longer and will possess a longer
memory. Bringing λ further away from 1 shortens the memory and enables the algorithm to
track the statistical changes within the data. However, λ also governs the rate of convergence
and the steady-state error. In a stationary environment the best steady-state performance results
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from slow adaptation where λ is close to 1. Conversely, smaller values of λ result in faster con-
vergence but greater steady state error. This is similar to the memory-convergence relationship
existing within the LMS algorithm, which is determined by the step size µ.

The optimum choice comes down to a fine balance of convergence rate, steady-state error,
tracking ability, numerical stability, and computational complexity. The main hindrance of the RLS
algorithm has been its computational complexity; however with technological growth the use of
RLS in real-time applications is becoming feasible. The RLS solution was chosen over the LMS
solution for the example presented here due to its superior convergence rates and reduced sensitivity
to ill-conditioned data.

12.4.2 RLS Implementation

As outlined in Section 2.7.4, the standard RLS algorithm requires the explicit computation of
the correlation matrix, φ(n) = XT(n)X(n). This is an intensive computation that has the effect of
squaring the condition number of the problem, causing a negative effect on the required wordlength
for stability in finite wordlength systems. The weights can be found in a more stable manner,
avoiding both the computation of the correlation matrix and its inverse by using QR decomposition,
a form of orthogonal triangularization with good numerical properties.

The choice of implementation uses QR decomposition (QR-RLS) as the central algorithm for
adaptively calculating the filter weights, (Gentleman and Kung 1981, McWhirter 1983).

12.4.3 RLS Solved by QR Decomposition

The P × N dimensioned data matrix, X(n), is decomposed into an N × N dimensioned upper
triangular matrix, R(n), through the application of a unitary matrix, Q(n), such that:

Q(n)X(n) =
[

R(n)

O

]
(12.1)

where O is a zero matrix resulting if N < P . Since Q(n) is a unitary matrix, then:

φ(n) = XT(n)X(n) = XT(n)QT(n)Q(n)X(n) = RT(n)R(n) (12.2)

The triangular matrix, R(n), is the Cholesky (square root) factor of the data correlation matrix
φ(n). Since Q(n) is unitary then the original system equation may be expressed as:

‖J (n)‖ = ‖Q(n)e(n)‖ =

∥∥∥∥∥∥∥Q
T (n)X(n)︸ ︷︷ ︸

R(n)

WLS(n) + QT (n)y(n)︸ ︷︷ ︸
u(n)

∥∥∥∥∥∥∥ (12.3)

It follows that the least-squares weight vector wLS(n), must satisfy the equation:

R(n)wLS(n) + u(n) = 0 (12.4)

Since R(n) is an upper triangular matrix the weights can be solved using back-substitution. QR
decomposition is an extension of this QR factorization, which enables the matrix to be triangularized
again when new data enter the data matrix, without having to compute the triangularization from the
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original square matrix format. In other words, it updates the old triangular matrix when new data
are entered. The data matrix X(n) and the measurement vector y(n) at time n can be represented
in a recursive manner by the previous resulting matrix and vector and the new data, such that:

X(n) =
[

λ(n)X(n − 1)

xT (n)

]
(12.5)

and

y(n) =
[

λ(n)y(n − 1)

y(n)

]
(12.6)

where xT(n) and y(n) form the appended row at time n. A square root form of the algorithm is
achieved as follows:

QT

[
λ0.5R(n − 1)

xT (n)

]
WLS(n) = QT(n)

[
λ0.5u(n − 1)

y(n)

]
+ QT(n)e(n) (12.7)

where β = λ0.5. This then gives:

QT

[
β(n)R(n − 1) β(n)u(n − 1)

xT (n) y(n)

]
=
[

R(n) u(n)

O α(n)

]
(12.8)

This is computed to give: [
R(n)

O

]
WLS(n) =

[
u(n)

α(n)

]
(12.9)

α(n) is related to the a posteriori least-squares residual, e(n), at time n such that:

e(n) = α(n)γ (n) (12.10)

where γ (n) is the product of cosines generated in the course of eliminating xT(n).
The high-level dependence graph realization of the QR solution for RLS is shown in Figure 12.5.

a(n)

b(n) R(n)xT(n) y(n)

R(n−1)

u(n−1)

u(n)

g (n)
(Where e(n) = g (n) a(n))

Figure 12.5 High-level dependence graph for the QR-RLS solution
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12.4.4 Givens Rotations Used for QR Factorization

A family of numerically stable and robust RLS algorithms has evolved from a range of QR decom-
position methods such as Givens rotations (Gentleman and Kung 1981, Givens 1958, McWhirter
1983), CORDIC (Hamill 1995), and Householder transformations (Cioffi 1990, Liu et al. 1990,
1992, Rader and Steinhardt 1986). Givens rotations are orthogonal plane rotations, used to elimi-
nate elements within a matrix. By applying a series of successive Givens rotations, a matrix can
be triangularized by eliminating the elements beneath the diagonal. This operation is known as QR
factorization whereby a matrix X(n) is decomposed into an upper triangular matrix R(n) and an
orthogonal matrix Q(n), such that:

X(n) = Q(n)R(n) (12.11)

The X(n) matrix is pre-multiplied by rotation matrices one element at a time. The rotation
parameters are calculated so that the sub-diagonal elements of the first column are zeroed. Then the
next column’s sub-diagonal elements are zeroed and so forth, until an equivalent upper triangular
matrix is formed.

Givens performs this operation through a sequence of rotations, which are best described by a
trivial example using a 2 × 3 matrix, as shown below:[

a11 a12 a13

a11 a12 a13

]
(12.12)

This matrix is transformed into a pseudo-triangular matrix by eliminating the element, a21. This
is achieved by multiplying the matrix through by the rotation matrix:[

cos α sin α

−sin α cos α

]

Thus: [
a11 a12 a13

a11 a12 a13

] [
cos α sin α

−sin α cos α

]
=

[
a11cos α + a21sin α a12cos α + a22sin α a13cos α + a23sin α

−a11sin α + a21cos α −a12sin α + a22cos α − a13sin α + a23cos α

]

To eliminate a21 we need to solve for [−a11sin α + a21cos α] = 0

Therefore, from trigonometry:

sin α = a21/

√
a2

11 + a2
21

cos α = a11/

√
a2

11 + a2
21
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Applying the rotation to eliminate a21 results in the pseudo-triangular matrix:[
a11 new a12 new a13 new

a12 new a13 new

]
(12.13)

This function lends itself for implementation on a triangular systolic array, as shown in
Figure 12.6, consisting of two types of cell, referred to as a boundary cell (BC) and an internal cell
(IC). The elements on which the rotations are performed are x and R, where x is the input value
into the cell and R is the value that is held in the memory of that cell. The rotation parameters, cos
α, and sin α are calculated in the BC (denoted by a circle) so that the input x value to that cell is
eliminated, and the R value within that cell is updated according to that rotation and stored for the
next iteration. The rotation parameters are then passed along the entire row unchanged through the
ICs (denoted by a square) continuing the rotation. The dependence graph in Figure 12.6 represents
the elimination of x21, relating to the sub-diagonal element, a21 in the first column shown in the
previous example. In effect, the R and x values are considered as a polar coordinate, (R, x).

Eliminating the x input to the BC is achieved by rotating R through an angle α, such that:

Rnew = Rcos α + xsin α = R2 + x2

√
R2 + x2

=
√

R2 + x2

where

c = cos α = R

Rnew

and
s = sin α = x

Rnew

The same rotation within the BC is carried on throughout the ICs:

Rnew = cR + sx

xnew = cx − sR
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By concatenating successive Givens rotations QR factorization can be implemented for an n × n

matrix. The diagram Figure 12.7, shows an example of a 3×3 matrix. It has been pipelined allowing
the R values to be fed back into the cells for the next iteration.

The following section gives a more detailed look at the process of developing a hardware
architecture from a mathematical algorithm for the RLS algorithm solved by QR decomposition
using Givens rotations.

12.5 Algorithm to Architecture
In the previous section, details have been given on the analysis of adaptive algorithms and in
particular RLS solved by QR decomposition using Givens rotations. A key aspect in achieving a
high-performance circuit implementation is to ensure an efficient mapping of the algorithm onto
silicon hardware. This may involve developing a hardware architecture in which independent oper-
ations are performed in parallel so as to increase the throughput rate. In addition, pipelining may be
employed within the processor blocks to achieve faster throughput rates. One architecture that uses
both parallelism and pipelining is a systolic array. Its processing power comes from the concurrent
use of many simple cells rather than the sequential use of a few very powerful cells. The result is a
regular array of identical processors with only local interconnections. As technology advances, gate
delay is no longer the dominating factor controlling the performance of circuits. Instead, intercon-
nection lengths have the most influence over the critical paths and power consumption of a circuit,
hence the importance of keeping connections local.

Figure 12.8 illustrates the process from algorithm to architecture with the starting point within
the diagram being the RLS algorithm solved by QR decomposition. The next stage of the diagram
depicts the RLS algorithm solved through QR decomposition using a sequential algorithm. That is,
for each iteration of the algorithm, a new set of values are input to the equations thus continuously
progressing toward a solution. The QR operation can be depicted as a triangular array of operations.
The data matrix is input at the top of the triangle and with each row another term is eliminated
so to eventually result in an upper triangular matrix. The dependence graph (DG) in Figure 12.8
depicts this triangularization process. The cascaded triangular arrays within the diagram represent
the iterations through time, i.e. each one represents a new iteration. The arrows between the cascaded
arrays highlight the dependency through time.

From the DG, a suitable SFG can be derived and from this representation, an architecture can
be developed. The following sections give a brief overview of each of these stages as depicted in
Figure 12.8.
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12.5.1 Dependence Graph

The dependences between data can be identified in a DG, allowing the maximum level of con-
currency to be identified by breaking the algorithm into nodes and arrows. The nodes outline the
computations and the direction of the arrows shows the dependence of the operations. This is
shown for the QR algorithm by the three-dimensional DG in Figure 12.9. The diagram shows three
successive QR iterations, with ‘dependence arcs’ connecting the dependent operations. Some of the
variable labels have been omitted for clarity.

The new data are represented by xT(n). The term n represents the iteration of the algorithm. In
summary, the QR array performs the rotation of the input xT(n) vector with R values held within
the memory of the QR cells so that each input x value into the BCs, are rotated to zero. The same
rotation is continued along the line of ICs via the horizontal arrows between QR cells. From this
DG, it is possible to derive a number of SFG representations. The most obvious projection which
is used here, is to project the DG along the time (i.e. R) arrows.

12.5.2 Signal Flow Graph

The transition from the DG to SFG is clearly depicted in Figure 12.10. To derive the SFG from the
DG, the nodes of the DG are assigned to processors, then their operations are scheduled on these
processors. One common technique for processor assignment is linear projection of all identical
nodes along one straight line onto a single processor. This is represented mathematically by the
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Figure 12.9 Dependence graph for QR decomposition

projection vector d (Figure 12.10). Linear scheduling is then used to determine the order in which
the operations are performed on the processors. The schedule lines in Figure 12.10 indicate the
operations that are performed in parallel at each cycle. Mathematically they are represented by a
schedule vector s normal to the schedule lines, which points in the direction of dependence of the
operations, i.e. it shows the order in which each line of operations is performed.

There are two basic rules that govern the projection and scheduling, and ensure that sequence
of operations is retained. Given a DG and a projection vector d , the schedule is permissible if and
only if:

• all the dependence arcs flow in the same direction across the schedule lines;
• the schedule lines are not parallel with the projection vector d .

In the QR example (Figure 12.10), each triangular array of cells within the DG represents one QR
update. When cascaded, the DG represents a sequence of QR updates. By projecting along the time
axis, all the QR updates may be assigned onto a triangular SFG, as depicted in the Figure 12.10(b).
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In the DG, the R values are passed through time from one QR update to another, represented
by the cascaded triangular arrays. This transition is more concisely represented by the loops in
Figure 12.10(b), that feed the R values back into the cells via an algorithmic delay needed to hold
the values for use in the next QR update. This is referred to as a recursive loop.

The simplicity of the SFG is that it assumes that all operations performed within the nodes take
one cycle, as with the algorithmic delays, represented by small black nodes. These algorithmic
delays partition the iterations of the algorithm and are a necessary part of the algorithm. The result
of the SFG is a more concise representation of the algorithm than the DG.

The remainder of the chapter gives a detailed account of the processes involved in deriving
an efficient architecture and hence hardware implementation of the SFG representation of the
algorithm. In particular, emphasis is on creating an intuitive design that will be parameterizable,
therefore enabling a fast development for future implementations.

12.5.3 Systolic Implementation of Givens Rotations

The resulting systolic array for the conventional Givens RLS algorithm is shown in Figure 12.11.
Note that the original version, proposed by Gentleman and Kung (1981), shown in Figure 12.7,
did not include the product of cosines formed down the diagonal line of BCs, and is represented
by the arrows connecting the BCs down the diagonal. This modification was made by McWhirter
(1983) and is of significant importance as it allows the QR array to perform both the functions for
calculating the weights and also enables it to operate as the filter itself, that is, the error residual
(a posteriori error) may be found without the need for weight vector extraction. This offers an
attractive solution in applications such as adaptive beamforming, where the output of interest is
the error residual. The definitions for the BC and ICs are depicted in Figures 12.12 and 12.13
respectively.
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Figure 12.12 BC for QR-RLS algorithm

The data vector xT(n) is input from the top of the array and is progressively eliminated, by
rotating it within each row of the stored triangular matrix R(n − 1) in turn. The rotation parameters
c and s are calculated within a BC such that they eliminate the input, xi,i (n). These parameters
are then passed unchanged along the row of ICs, continuing the rotation. The output values of the
ICs, xi+1,j (n) become the input values for the next row. Meanwhile, new inputs are fed into the
top of the array, and so the process repeats. In the process, the R(n) and u(n) values are updated
to account for the rotation and then stored within the array to be used on the next cycle.

For the RLS algorithm, the implementation of the forget factor λ, and the product of cosines γ ,
need to be included within the equations. Therefore the operations of the BC and ICs have been
modified accordingly. A notation has been assigned to the variables within the array. Each R and
u term has a subscript, denoted by (i, j), which represents the location of the elements within the
R matrix and u vector. A similar notation is assigned to the X input and output variables. The cell
descriptions for the updated BC and ICs are shown in Figures 12.12 and 12.13 respectively. The
subscripts are coordinates relating to the position of the cell within the QR array.
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12.5.4 Squared Givens Rotations

There are division and square root operations within the BC cell computation for the standard
Givens rotations (Figure 12.12). There has an extensive body of research into deriving Givens
rotation QR algorithms which avoid these complex operations, while reducing the overall number of
computations (Cioffi and Kailath 1984, Döhler 1991, Hsieh et al. 1993, Walke 1997). One possible
QR algorithm is the squared Givens rotation (SGR (Döhler 1991)). Here the Givens algorithm has
been manipulated to remove the need for the square root operation within the BC and half the
number of multipliers in the ICs. Studies by Walke (1997) showed that this algorithm provided
excellent performance within adaptive beamforming at reasonable wordlengths (even with mantissa
wordlengths as short as 12 bits with an increase of 4 bits within the recursive loops). This algorithm
proves to be a suitable choice for the adaptive beamforming design. Figure 12.14 depicts the SFG
for the SGR algorithm, and includes the BC and IC descriptions.

This algorithm still requires the dynamic range of floating-point arithmetic, but offers reduced
size over fixed-point algorithms, due to the reduced wordlength and operations requirement. It has
the added advantage of allowing the use of a multiply–accumulate operation to update R. The
simplicity of the recursive loop is a key advantage as the number of clock cycles within this loop
will govern the maximum throughput for a particular clock frequency. For example, if a QR array
had 10 clock cycles within the recursive loop then there would need to be 10 clock cycles between
successive QR iterations, to enable the value R(n) to be calculated in time for use in iteration
n + 1.

At little cost in hardware, the wordlength of the accumulator can be increased to improve the
accuracy to which R is accumulated, while allowing the overall wordlength to be reduced. This
has been referred to as the enhanced SGR algorithm, (E-SGR) (Walke 1997).

However, even with the level of computation reduction achievable by the SGR algorithm, the
complexity of the QR cells is still large. In addition the number of processors within the QR array
increases quadratically with the number of inputs, such that for an N-input system, (N2 + N)/2
QR processors are required; furthermore, implementing a processor for each cell could offer data
rates far greater than those required by most applications. The following section details the process
of deriving an efficient architecture with generic properties for implementing the SGR QR-RLS
algorithm.

12.6 Efficient Architecture Design
With the complexity of the SGR QR-RLS algorithm coupled by the number of processors increasing
quadratically with the number of inputs, it is vital to generate efficient QR array architectures tailored
to the applications that meet desired performance with the lowest area cost. Consider an example
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Figure 12.14 Squared Givens rotations QR-RLS algorithm

application consisting of 40 inputs, but only requiring a throughput of 1 MSPS. Implementing
the full QR array, using a clock rate of 200 MHz and a recursive loop delay of 4 clock cycles
(a value which is used throughout the duration of this chapter). This means that the new inputs
could be fed into the QR array every 4 clock cycles, therefore providing throughput capability of
200 MHz/4 = 50 MSPS. Quite clearly, this performance is not required and the design could benefit
from a reduction in hardware.

This is achievable by mapping the triangular functionality down onto a smaller array of proces-
sors. The triangular shape of the QR array, in addition to the position of the BC operations along
the diagonal, complicates the process of deriving an efficient architecture. Figure 12.15 shows an
example of a simple mapping of the QR cells onto a linear architecture by a projection from left
to right onto N processors. There are two issues with such a mapping. First, both BC and IC
operations are mapped onto the same processor; from Figure 12.14 it can be seen that there are
distinct differences between these operations. Second, the processors of the mapped architecture are
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Figure 12.16 Radar mapping (Rader 1992, 1996)

not used efficiently, with only the first being exploited to its full capacity. This efficiency reduces
down the column of processors, leading to an overall efficiency in the region of 60%–certainly not
an optimum use of resources.

Rader (1992, 1996) produced an efficient architecture by manipulation of the triangular shape
before assigning the operations to the processors, as depicted in Figure 12.16. Part B of the QR
array is mirrored in the x-axis and then folded back onto the rest of the array. This results in a
rectangular array of cells which can then be mapped down onto a linear architecture consisting of
N/2 processors. However, the processors still need to perform both QR operations. One option is
the use of the CORDIC algorithm (Hamill 1995) which has strong archiecture similarities between
BC and IC, another could be to design a generic QR cell (Lightbody et al. 2007) based on core
arithmetic blocks on which to build up cell functionality. Other mappings for the QR array also
exist, one solution (Tamer and Ozkurt 2007) used a tile structure on which to map the QR cells,
leading to processors performing only the IC operation and also ones performing both functions.

Another mapping (Walke 1997), manages to maintain an efficient architecture while keeping the
BC and IC operations to distinct processors. This is achieved by cleverly manipulating the triangular
shape of the array so as to align all the BC operations onto one column of a rectangular array of
processors, while all the IC operations are mapped to the other columns. It does this by folding
and rotating parts of the QR array, as depicted in Figure 12.17 for an example 7-input triangular
array. The resulting mapping assigns the triangular array of 2m2 + 3m + 1 cells (i.e. N = 2m + 1



290 FPGA-based Implementation of Signal Processing Systems

inputs) onto a linear architecture, with local interconnections, comprising of 1 BC processor and m

IC processors, all used with 100% efficiency. The method is described in greater detail elsewhere
(Lightbody 1999, Lightbody et al. 2003, Walke 1997).

For clarity, each QR operation is assigned a co-ordinate originating from the R (or U ) term
calculated by that operation, i.e. the operation R1,2 is denoted by the coordinate, 1, 2, and U1,7 is
denoted by 1, 7. To simplify the explanation, the multiplier at the bottom of the array is treated as
a BC, denoted by 7, 7.

The initial aim of this mapping is to manoeuvre the cells so that they form a locally interconnected
regular rectangular array. This can then be partitioned evenly into sections, each to be assigned to an
individual processor. This should be done in such a way to achieve 100% cell usage and a nearest
neighbour connected array. Obtaining the rectangular array is achieved through the following four
stages. The initial triangular array is divided into two smaller triangles A and B. A cut is then
made after the (m + 1)th BC at right angles to the diagonal line of BCs (Figure 12.17a). Triangle
A forms the bottom part of a rectangular array, with m + 1 columns and m + 1 rows.

Triangle B now needs to be manipulated so that it can form the top part of the rectangular array.
This is done in two stages. By mirroring triangle B first in the x-axis, the BCs are aligned in such
a way that they are parallel to the BCs in the triangle A, forming a parallelogram, as shown in
Figure 12.17(b). The mirrored triangle B is then moved up along the y-axis and left along the
x-axis to a position above A, forming the rectangular array (Figure 12.17(c)). As depicted, the BC
operations are aligned down two columns and so the rectangular array is still not in a suitable
format for assigning operations onto a linear architecture.

The next stage aims to fold the large rectangular array in half so that the two columns of
BC operations are aligned along one column. This fold interleaves the cells so that a compact
rectangular processor array (Figure 12.17(d)) is produced. From this rectangular processor array, a
reduced architecture can be produced by projection down the diagonal onto a linear array, with all
the BC operations assigned to one BC process and all the IC operations assigned to a row of m IC
processors (Figure 12.17e). The resulting linear architecture is shown in more detail in Figure 12.18.

There are lines drawn through each row of processors within the rectangular array of operations
in Figure 12.17(e) (labelled 1–7). These represent the operations that need to be performed on each
cycle of the resulting linear array architecture. This is what is termed as the schedule of operations
and is more compactly denoted by s , the schedule vector, an arrow that is perpendicular to the
schedule lines. At this stage of the analysis, it is assumed that each cell processor takes one clock
cycle. There are registers present on the all the processor cell outputs of the resulting linear array
to maintain this schedule. Multiplexers are placed on the inputs of the QR cells to control the data
inputs, whether from the system inputs or from the adjacent cells. The bottom multiplexers govern
the different directions of data flow that occur between rows of the original array.

The original QR array cells store the R values from one iteration to the next. This same storage
needs to be performed for the reduced architecture, therefore requiring a number of R values to
be stored within the recursive loops of the cells for multiple clock cycles. One solution is to hold
the values locally within the recursive datapaths of the QR cells, rather than external memory, i.e.
the values are pipelined locally to delay them until they are needed. Some of the required delays
within the recusive loop are met by the latency of existing operations within the loop and the
remainder are achieved by inserting additional registers. External memory could be suitable under
some specifications.

12.6.1 Scheduling the QR Operations

The derivation of the architecture is only a part of the necessary development. A more complex
task can be the determination of a valid schedule that ensures that the data required by each set of
operations is available at the time of execution, while maintaining efficiency. This implies that the
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data must flow across the schedule lines in the direction of the schedule vector. The rectangular
processor array in Figure 12.17(e) contains all the operations required by the QR algorithm, showing
the sequence that they are to be implemented on the linear architecture. Therefore, this diagram
can be used to show the schedule of the operations to be performed on the linear architecture. An
analysis of the scheduling and timing issues can now be refined. Looking at the first schedule line, it
can be seen that operations from two different QR updates have been interleaved. The shaded cells



292 FPGA-based Implementation of Signal Processing Systems

IC2BC1

δ′

δ

d′

d
x

Output

y(n)

δ1(n) =1 x2(n)x1(n)

IC3

x6(n)
x3(n)

r

r′

r

r′

IC4

x5(n)
x4(n)

r

r′

MUX MUX MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

Figure 12.18 Linear architecture for a 7-input QR array. Reproduced from Design of a Param-
eterizable Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody &
R. Woods, IEEE Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

represent the current QR update at time n and the unshaded cells represent the previous unfinished
update at time n − 1. Effectively the QR updates have been interleaved. This is shown in more
clarity in Figure 12.19. The first QR operation begins at cycle =1 then after 2m + 1 cycles of the
linear architecture, the next QR operation begins. Likewise, after a further 2m + 1 cycles the third
QR operation is started. In total, it takes 4m + 1 cycles of the linear architecture to complete one
specific QR update.

The QR cells need to be able to take the x inputs from external system inputs, i.e. from the
snapshots of data forming the input x(n) matrix and y(n) vector, as depicted in Figure 12.19.
The external inputs are fed into the linear architecture every 2m + 1 clock cycles. They will
also take inputs, which are internal to the linear array. The mapping process has enabled these
interconnections to be kept local which is a major benefit.

If each QR cell takes a single clock cycle to produce an output then there will be no violation
of the schedule shown in Figure 12.17. However, additional timing issues must be taken into
account as processing units in each QR cell have detailed timing requirements. The retiming of the
operations is discussed in more detail later in Section 12.8.

Note that the processor array highlighted in Figure 12.19 is equivalent to the processor array
given in Figure 12.17(e). This processor array is the key starting point from which to develop a
generic QR architecture.

12.7 Generic QR Architecture
The technique presented so far has been applied to a QR array with only one primary input, that
is, one y input. To develop a generic QR architecture the number if primary inputs would need to
be variable. This would result in a QR array consisting of a triangular part and a rectangular part
(Figure 12.20), the sizes of which are determined by the number of auxiliary and primary inputs,
respectively. Typically, the number of inputs to the triangular part is at least a factor greater than
the number of inputs to the rectangular part, with example numbers for the radar application being
40 inputs for the triangular part and in the region of only 2 for the rectangular part.
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This section extends the mapping technique already presented to implement architectures for the
generic QR array consisting of both the triangular and rectangular parts. Different levels of hardware
mapping are applied, providing a range of suitable architectures based on the original linear array.
The number of IC processors may be reduced further, or multiple linear arrays may be combined,
depending on the performance requirements for the application. Note that the connections have
been removed from Figure 12.20 and in following diagrams, in order to reduce the complexity of
the diagram and aid clarity.

12.7.1 Processor Array

In the previous section, the triangular structure of the QR array was manipulated into a rectangular
processor array of locally interconnected processors, as shown in Figure 12.17(d). From this starting
point the operations can be mapped onto a reduced architecture. A simplified method for creating
the processor array is demonstrated in the following example.
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The processor array is obtained through two steps. First, a fold is made by folding over the
corner of the array after the mth cell from the right-hand side, as depicted in Figure 12.20. The
cells to be folded from the corner of the array are then interleaved between the rows of unfolded
cells, as shown in Figure 12.21. For the next stage, successive QR updates need to be considered.
The gaps within the structure in Figure 12.21 are removed by interleaving this QR update with the
previous iteration and the next iteration. This is effectively the same process as the derivation for
the linear array, as shown in Figure 12.19 for the original triangular array without the rectangular
part.

The choice of position of the fold and the size of the triangular part of the array are important. By
placing the fold after the mth cell from the right-hand side, a regular rectangular array of operations
can be produced. This can be shown in greater detail, for the generic QR array of Figure 12.22.
Just as with the triangular array, the same process applied to the triangular and rectangular part
leads to a section which repeats over time and contains each of all the required QR operations.
This section is referred to as the processor array. It is more clearly depicted in Figure 12.23, which
shows just the repetitive section from Figure 12.22.

In the example given in Figure 12.23 the processor array contains QR operations built up from
three successive QR updates, represented by the differently shaded cells. The interconnections have
been maintained within this figure, highlighting the local interconnectivity of cells. The size of the
processor array is determined by the original size of the triangular QR array, that is, the number of
auxiliary and primary inputs; (2m + 1) and p respectively. The resulting processor array has the
dimensions (2m + 1) rows by (m + p + 1) columns, the product of which gives the total number of
cells in the original array. From this processor array, a range of architectures with a variable level
of hardware reduction can be obtained by dividing the array into partitions and then assigning each
of the partitions to an individual processor. There are several possible variants of QR architecture,
as listed next:
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Linear architecture: the rectangular array is projected down onto a linear architecture with one
BC and (m + p) ICs.

Rectangular architecture: the rectangular array is projected down onto a number of linear rows
of cells. The architecture will have r rows, (where 1 < r = 2m + 1), and each row will have
one BC and (m + p) ICs.

Sparse linear architecture: the rectangular array is projected down onto a linear architecture with
one BC and less than (m + p) ICs.

Sparse rectangular architecture: the rectangular array is projected down onto a number of linear
rows of cells. The architecture will have r rows, (where 1 < r = 2m + 1), and each row will
have one BC and less than (m + p) ICs.

The above extract is taken from Lightbody et al.,  2003 IEEE
Using the same QR processor array example from Figure 12.23, examples of each type of reduced

architecture are given in the following sections.

Linear Array

The linear array is derived by assigning each column of operations of the processor array onto
an individual processor, resulting in a linear architecture of m + p + 1 processors, as shown in
Figure 12.24. In total it takes 16 (i.e. 4m + p + 1) cycles of the linear array to complete each QR
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Figure 12.24 Linear array. Reproduced from Design of a Parameterizable Silicon Intellectual
Property Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans on VLSI
Systems, Vol. 11, No. 4,  2003 IEEE

operation. In addition there are 7 (i.e. 2m + 1) cycles between the start of successive QR updates.
This value is labelled as TQR. Note that so far, the latency of the QR cells is considered to be
one clock cycle, i.e. on each clock cycle, one row of QR operations are performed on the linear
architecture. Likewise, it is also assumed that the recursive loops only have a one cycle delay. The
later sections will examine the effect of multi-cycle latency, which occurs when cell processing
elements with detailed timings are used in the development of the generic QR architecture.

Sparse Linear Array

A further level of hardware reduction is given in Figure 12.25, resulting in a sparse linear array.
Here the number of IC processors has been halved. When multiple columns (i.e. NIC columns)
of IC operations are assigned to each processor then the number of iterations of the architecture
is increased by this factor. Hence, for the sparse linear array, TQR is expressed as the product of
2m + 1 (used in the linear array) and NIC. The schedule for the sparse linear array example is
illustrated in Figure 12.26.
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Rectangular Array

The processor array can be partitioned by row rather than by column so that a number of rows of
QR operations are assigned to a linear array of processors. Figure 12.27 shows the processor array
mapped down on an array architecture. As the processor array consisted of 7 rows, 4 are assigned
to one row and 3 are assigned to the other. To balance the number of rows for each linear array, a
dummy row of operations is needed and is represented by the cells marked by the letter D.

On each clock cycle the rectangular array processor executes two rows of the original processor
array. Each QR iteration takes 18 cycles to be completed which is 2 more clock cycles than for
the linear array due to the dummy row of operations. However, the QR updates are started more
frequently. In this case TQR is 4, compared with the linear array which took 7 cycles. For the array
architecture, TQR is determined by

TQR = (2m + 1) + ND

Nrows
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Figure 12.26 One QR update scheduled on the sparse linear array

where, Nrows is the number of lines of processors in the rectangular architecture, and, ND is
the number of rows of dummy operations needed to balance the schedule. The resulting value
relates to the number of cycles of the architecture required to perform all the operations within
the processor array.
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Sparse Rectangular Array

The sparse rectangular array assigns the operations to multiple rows of sparse linear arrays. A
number of rows of the processor array are assigned to each linear array. The columns are also
partitioned so that multiple columns of operations are assigned to each IC processor, as shown in
Figure 12.28.

The QR update takes 34 cycles for completion and each update starts every 7 cycles, i.e. TQR = 7.
Including the term NIC the equation for TQR becomes:

TQR = ((2m + 1) + ND)NIC

Nrows

For example, TQR = ((2 × 3 + 1 + 0) × 2)/2 = 7 cycles.

The discussion to date has concentrated on mapping QR arrays that have an odd number of
auxiliary inputs. The technique can be applied to an array with an even number with a slight
reduction in overall efficiency.
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Figure 12.28 Sparse rectangular array

12.8 Retiming the Generic Architecture
The QR architectures discussed so far, have assumed that the QR cells have a latency of one
clock cycle. The mapping of the architectures is based on this factor; hence there will be no
conflicts of the data inputs. However, the inclusion of actual timing details within the QR cells will
affect this guarantee of a valid data schedule. The arithmetic intellectual property (IP) processors
(McCanny et al. 1997, University N 2007), used to implement the key arithmetic functions such
as multiplication, addition and division, involve timing details which will impact the overall circuit
timing. This was discussed in detail in Chapter 8. The overall effect of retiming is to incur variable
latencies in the output datapaths of the QR cells. The effect of real timing as a result of using real
hardware within the QR cells is discussed in this section. The choice for the QR array was to use
floating-point arithmetic to support the dynamic range of the variables within the algorithm. The
floating-point library used supported variable wordlengths and levels of pipelining, as depicted in
Figure 12.29.
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In adaptive beamforming, as with many signal-processing applications, complex arithmetic rep-
resentations are needed as incoming signals contain a magnitude and a phase component. This
is implemented using one signal for the real part and another for the imaginary part, and gives
the BC and IC operations shown in the SFGs depicted in Figure 12.30. The floating-point com-
plex multiplication is built up from four real multiplications and two real additions: that is,
(a + jb)(c + jd) = (ac − bd) + j (ad + bc). An optimization is available to implement the com-
plex multiplication using three multiplications and five additions/subtractions. However, given that
an addition is of a similar area to multiplication within floating-point arithmetic due to the costly
exponent calculation, this is not beneficial. For this reason, the four-multiplication version is used.
The detail of the complex arithmetic operations is given in Figure 12.31.

The SFGs for the BC and ICs are given in Figures 12.32 and 12.33, respectively. These diagrams
show the interconnections of the arithmetic modules within the cell architectures. Most functions
are self-explanatory except for the shift-subtracter. For small values of x, the operation

√
1 − x

can be approximated by 1 − x2 which may be implemented by a series of shifts denoted by,
D = A − Shift(A, N). This operation is used to implement the forgetting factor, β within the
feedback paths of the QR cells. This value β is close to one, therefore x is set to (1 − β) for the
function application.

There are a number of feedback loops within the QR cells, as shown in Figures 12.32 and 12.33.
These store the R values from one RLS iteration to the next. These loops will be a fundamental
limit to achieving a throughput rate that is close to the clock rate and, more importantly, could lead
to considerable inefficiency in the circuit utilization. In other words, even when using a full QR
array, the delay in calculating the new R values will limit the throughput rate.
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Figures 12.32 and 12.33 show the QR cell descriptions with generic delays placed within the
datapaths. These are there to allow for the re-synchronization of operations due to the variable
latencies within the arithmetic operators, i.e. to ensure correct timing. The generic expressions for
the programmable delays are listed in Tables 12.1 and 12.2 for the BC and IC, respectively.

Second, to maintain a regular data schedule, the latencies of the QR cells are adjusted so that
the x values and rotation parameters are output from the QR cells at the same time. The latency of
the IC in producing these outputs can be expressed generically using a term LIC. The latencies of the
BC in producing the rotation parameters a and b are also set to LIC to keep outputs synchronized.
However, the latency of the BC in producing the δout is set to double this value, i.e. 2LIC, as this
relates back to the original scheduling of the full QR array, which showed that no two successive
BC operations are performed on successive cycles. By keeping the structure of the data schedule,
the retiming process comes down to a simple relationship, as illustrated in Table 12.3.
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Table 12.1 BC generic timing. Reproduced from Design of a
Parameterizable Silicon Intellectual Property Core for QR-Based
RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans on
VLSI Systems, Vol. 11, No. 4,  2003 IEEE

BC Delay value

BRL 2PA + 2PM + PR + PS − TQR

PB1 PM

PB2 TQR − PA − PB

PB2a If BRL < 0, then −BRL, otherwise, 0
PB2b If BRL < 0, then PB2 − PB2a, otherwise PB2
PB3 If BRL > 0, then BRL, otherwise, 0
PB4 2PA + PM + PR + PD − PB3
PB5 2PA + 2PM + PR + PD − TQR

PB5a If PB5 < 0, then PB5, otherwise, 0
PB5b If PB5 > 0, then PB5, otherwise, 0
PB6 LIC − Lδ

PB7 LIC − La

PB8 LIC − Lb

12.8.1 Retiming QR Architectures

This next section continues to discuss the retiming issues and how to include them in a generic
architecture.



306 FPGA-based Implementation of Signal Processing Systems

Table 12.2 IC generic timing. Reproduced from Design of a Parameterizable
Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody & R.
Woods, IEEE Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

IC Delay value

IRL 2PA + PM + PR − TQR

PI 1 TQR − PA − PS

PI 1a If IRL < 0, −IRL, otherwise, 0
PI 1b If IRL < 0, PI1 − PI1a, otherwise, PI1
PI 2 If IRL > 0, IRL, otherwise, PI1
PI 3 PI2 + PA + PM

PI 4 LIC − Lx

PI 5 LIC

PI 6 LIC − PI2

Table 12.3 Generic expressions for the latencies of the BC and IC.
Reproduced from Design of a Parameterizable Silicon Intellectual Property
Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans
on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

Latency Value

La PM

Lb PM + PB5
Lδ PB3 + PB4 + 2PM

Lx P I3 + PA

Retiming of the Linear Array Architecture

The latency has the effect of stretching out the schedule of operations for each QR update. This
means that iteration n = 2 begins 2m + 1 clock cycles after the start of iteration n = 1. However,
the introduction of processor latency stretches out the scheduling diagram such that the n = 2
iteration begins after (2m + 1)LIC clock cycles. This is obviously not an optimum use of the linear
architecture as it would only be used every LICth clock cycle.

A factor, denoted as TQR, was introduced in the last section as the number of cycles between the
start of successive QR updates, as determined by the level of hardware reduction. It can be shown
that a valid schedule which results in a 100% utilization can be achieved by setting the latency LIC

to a value that is relatively prime to TQR. That is, if the two values do not share a common factor
other than 1 then their lowest common multiple will be their product. Otherwise there will be data
collisions at the products of LIC and TQR with their common multiplies.

If : TQR = mod c and LIC = mod c

Then : TQR = d × c and LIC = e × c

Giving : c = TQR

d
= LIC

e

Where c is a common multiple of TQR and LIC and a positive integer other than 1, and, d and e

are factors of TQR and LIC, respectively. Hence, there would be a collision at, TQR × e = LIC × d .
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This means that the products of both TQR × e and LIC × d must be less than TQR × LIC. Therefore,
there is a collision of data. Conversely, to obtain a collision-free set of values c is set to 1.

The time instance TQR × LIC does not represent a data collision as the value of TQR is equal to
2m + 1, and the QR operation that was on line to collide with a new QR operation will have just
been completed. The other important factor in choosing an optimum value of TQR and LIC is to
ensure that the processors are 100% efficient.

The simple relationship between TQR and LIC is a key factor in achieving a high utilization
for each of the types of structure. More importantly, the relationship gives a concise mathematical
expression that is needed in the automatic generation of a generic QR architecture, complete with
scheduling and retiming issues solved.

Figure 12.34 shows an example schedule for the 7-input linear array shown in Figure 12.17
where LIC is 3 and TQR is 7. The shaded cells represent the QR operations from different updates
that are interleaved with each other and fill the gaps left by the highlighted QR update. The schedule
is assured to be filled by the completion of the first QR update; hence, this is dependent on the
latency LIC.

12.9 Parameterizable QR Architecture
The main areas of parameterization include the wordlength, latency of arithmetic functions, and the
value of TQR. Different specifications may require different finite precision therefore the wordlength
is an important parameter. The QR cells have been built up using a hierarchical library of arithmetic
functions, which are parameterized in terms of wordlength, with an option to include pipelining to
increase the operation speed as required. These parameters are passed down through the hierarchy
of the HDL description of the QR cells to these arithmetic functions. Another consideration is the
value of TQR, which determines the length of the memory needed within the recursive loops of the
QR cells which hold the R and u values from one QR update to the next. Both TQR and the level
of pipelining within the arithmetic functions are incorporated in generic timing expressions of the
SGR QR cells.

12.9.1 Choice of Architecture

Table 12.4 demonstrates the process for designing a QR architecture when given a specific sample
rate (100 MHz) and QR array size. The examples below are for a large QR array with 45 auxiliary
inputs and 12 primary inputs, i.e. m = 22 and p = 12. The resulting processor array is 2m + 1 = 45
rows by m + p + 1 = 35 columns. For a given sample throughput rate and clock rate we can
determine the value for TQR, as depicted in Table 12.4. Note that the resulting value for TQR, and
LIC must be relatively prime, but for these examples we can leave this relationship at present.

The general description for TQR, as shown above, can be rearranged to give the following
relationship:

NIC

Nrows
= TQR

2m + 1

This result is rounded down to the nearest integer. There are 3 possibilities:

If
TQR

2m + 1
> 1then a sparse linear array is needed

If
TQR

2m + 1
= 1then a linear array is needed

If
TQR

2m + 1
< 1then a rectangular array is needed
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Figure 12.34 Schedule for a linear array with an IC latency of 3. Reproduced from Linear QR
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Table 12.4 Example QR architectures

Architecture
No. of processors

TQR
Data rate

BC IC Total (MSPS)

Full QR array (processor for
each QR cell)

45 1530 1575 4 25

Rectangular 1 (12 linear
arrays, one for 4 rows)

12 408 420 4 25

Rectangular 2 (3 linear
arrays, one for 15 rows)

3 102 105 15 6.67

Sparse rectangular (2
columns of ICs to each
processor of 3 linear
arrays)

3 51 54 30 3.33

Linear (1 BC,26 ICs) 1 34 35 45 2.22

Sparse linear 2 columns of
ICs to each IC processor
on a linear array

1 17 18 90 1.11

The above equation is reproduced from Design of a Parameterizable Silicon Intellectual Property
Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans on VLSI Systems,
Vol. 11, No. 4,  2003 IEEE.

Depending on the dimensions of the resulting architecture, the designer may decide to
opt for a sparse rectangular architecture. Note that the maximum throughput rate that the
full triangular array can meet for a 100 MHz clock is limited to the 25 MSPS due to the
4 cycle latency within the QR cell recursive path (i.e. 100 MHz ÷ 4 = 25 MSPS). The
first rectangular array solution is meeting the same throughput performance as the full QR
array while using only 408 ICs and 12 BCs instead of the full array which requires 1530 ICs
and 45 BCs.

12.9.2 Parameterizable Control

A key aspect of the design of the various architectures is the determination of the control data needed
to drive the multiplexers in these structures. Due to the various mappings that have been applied,
it is more relevant of think of the IC operation as having four different modes of operation, input,
mirrored input, unmirrored cell and mirrored cell (Figure 12.35, Walke 1997), where x represents
the x-input data and θ represents the rotation parameters. The mirrored ICs are the result of the
fold used to derive the rectangular processor array from the QR array, and simply reflect a different
data flow. The cell orientation is governed by the multiplexers and control, and is therefore an issue
concerning control signal generation.

The four modes of operation can be controlled using two control signals, C, which determines
whether the x input is from the array (I) or from external data (E), and F, which distinguishes
between a folded (M) and an unfolded operation (U). The latter determines the source direction of
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the inputs. The outputs are then from the opposite side of the cell. A mechanism for determining
the control of each architecture is given in the next few sections.

12.9.3 Linear Architecture

The control signals for the linear architecture were derived directly from its data schedule. The
modes of operation of the cells were determined for each cycle of the schedule, as shown in Table
12.5. Figure 12.36 shows the QR cells with the surrounding control and multiplexers needed to
accept and process the correct data. The control signals for a full QR operation for this example
are given in Table 12.6.

The control and timing of the architectures for the other variants is more complex, but can be
derived from the original control for the linear array. Consideration needs to be given to the effect
that latency has on the control sequences. In the sparse variants, extra delays need to be placed
within the cells to organize the schedule, and in the rectangular variants, the cells need to be able
to take x and θ inputs from the cells above and below, as well as from adjacent cells. Each of
these variants shall be looked at in turn.

12.9.4 Sparse Linear Architecture

Figure 12.37(a) shows two columns of operations being assigned onto each IC. From the partial
schedule shown in Figure 12.37(b) it can be seen that the transition of a value from left to right
within the array requires a number of delays. The transfer of θ1 from the BC(1,1), to the adjacent
IC(1,2) takes three cycles. However, the transfer of X12 from the IC to the BC only takes one
cycle.
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Table 12.5 Modes of operation of the QR cells for the linear array

Cycle BC1 IC2 IC3 IC4 IC5 IC6 IC7

1 IC UC UC UC UC UC MIC
2 UC IC UC UC UC MIC UM
3 UC UC IC UC MIC UC MIC
4 UC UC UC IC UM MIC UM
5 UC UC UC UC IC UM MIC
6 UC UC UC UC UM IC UM
7 UC UC UC UC UM UM IC

E I

XL

XL

BC

E I

c

(a) Boundary cell

E I

Xout

UM

XR

F

I C

C

(b) Internal cell

F

UM

XExt XExtdExt

θ

θL

θout

θR

Figure 12.36 QR cells for the linear architecture. Reproduced from Design of a Parameterizable
Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE
Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

The example in Figure 12.38 shows the partitioning of three columns of ICs. Scheduling them
onto a single processor requires their sequential order to be maintained. The IC operations have
been numbered, 1, 2 and 3, for the first row, and 1′, 2′ and 3′ for the second row. The outputs
generated from operation 2 are required for operation 1′ and 3′. Because, all the operations are
being performed on the same processor, then delays are needed to hold these values until they are
required by operations 1′ and 3′. Operation 3 is performed before operation 1′, and operations 3, 1′,
and 2′ are performed before operation 3′, which relates to two and four cycle delays respectively.
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Table 12.6 Linear array control for the external/internal x inputs and for
mirrored / not mirrored cells

Cycle C1 C2 C3 C4 C5 C6 C7 F1 F2 F3 F4 F5 F6

1 E I I I I I E U U U U U M
2 I E I I I E I U U U U M U
3 I I E I E I I U U U M U M
4 I I I E I I I U U U U M U
5 I I I I E I I U U U U U M
6 I I I I I E I U U U U U U
7 I I I I I I E U U U U U U
8 E I I I I I E U U U U U M
9 I E I I I E I U U U U M U

10 I I E I E I I U U U M U M
11 I I I E I I I U U U U M U
12 I I I I E I I U U U U U M
13 I I I I I E I U U U U U U

This has been generically defined according to the number of columns of operations within the
processor array assigned to each IC, NIC, as shown in Figure 12.39.

In general terms, the two output values x and θ are transferred from operation (c + 1) to c and
(c + 2) to match Figure 12.39. The value that is fed to a specific operation depends on whether the
cells perform the folded or unfolded modes of operation as summarized in Table 12.6. If the data is
transferred between the same type of cell (i.e. U → U , or M → M) then the delay will be either
NIC − 1 or NIC + 1, according to Table 12.7. However, if the data transfer is between different
types of cell (i.e. U → M , or M → U , as in the case of the end processor), then the number of
delays will be NIC. This is summarized in Table 12.7.

Table 12.7 Required delays for sparse linear array

Transfer of data
between cells:
U not mirrored;
M mirrored

Direction in terms of
QR operation

Direction of
data flow
shown in
processor
array

Delays needed Label

U → U (i, j) → (i, j + 1), θ → NIC + 1 D1
(i, j) → (i + 1, j), x ← NIC − 1 D2

M → M (i, j) → (i + 1, j), θ ← NIC − 1 D2
(i, j) → (i, j + 1), x → NIC + 1 D1

U → M(end cell) (i, j) → (i, j + 1), θ ↓ NIC D3

M → U (end cell) (i, j) → (i + 1, j), x ↓ NIC D3
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These delays are then used within the sparse linear architecture to keep the desired schedule,
shown in Figure 12.40. The three levels of delays are denoted by the square blocks labelled D1, D2
and D3. These delays can be redistributed to form a more efficient QR cell architecture, as shown
in Figure 12.41. The extra L and R control signals indicate the direction source of the inputs, with
E and I control values determining whether the inputs come from an adjacent cell or from the
same cell. EC refers to the end IC that differs slightly in that there are two modes of operation
when the cell needs to accept inputs from its output. The control sequences for this example are
given in Table 12.8.

From Table 12.8, it can be seen that EC is the same as R and is the inverse of L. In addition,
the states alternate between E and I with every cycle, therefore, one control sequence could be
used to determine the control of the internal inputs. This control value has been labeled D. The
control signals are categorized as external input control, Ci , fold control Fi , array control Li and
internal input control Di The subscripts are coordinates representing the cells to which the control
signals are being fed.

One of the key issues with the sparse linear array is the effect of the latencies in the QR cells
on the schedule (which previously assumed a one cycle delay). With the linear architecture, the
schedule was scaled by the latency. However, with the sparse linear array there was a concern that
the delays NIC − 1, NIC, and NIC + 1, would also need to be scaled in order to keep the structure
of the original schedule, which would cause inefficiency.

In the example given in Figure 12.42, the latency of the IC is 3, so this gives the minimum value
for NIC as 4. NIC + 1 is therefore 5 and NIC − 1 is 3 clock cycles. The shaded cells in Figure 12.42
show one complete QR update with interconnection included. The rest of the QR operations are
shown, but with limited detail to aid clarity. Since it is most probable that the latency of the IC will
exceed the number of columns assigned to each processor, then it figures that the delays within
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Table 12.8 Control sequence for sparse linear array.

External input control Fold control Internal input

Cycle External input
control

C1 C2 C3 C4 F2 F3 F4 L R EC

1 X1(1) E I I I U U M E I E
2 X8(0) I I I E U U U I E I
3 I I I I U U U E I E
4 X2(1) I E I I U U U I E I
5 X7(0) I I I E U U U E I E
6 I I I I U U U I E I
7 X3(1)X8(0) I E I E U U M E I E
8 X9(0) I I I E U U M I E I
9 X10(0) I I E I U M U E I E

10 X4(1) I I E I U U U I E I
11 I I I I U U M E I E
12 I I I I U U M I E I
13 X5(1) I I E I U U U E I E
14 I I I I U U U I E I

the linear sparse array will depend on LIC, i.e. the (NIC − 1) delay will not be needed and the
schedule realignment will be performed by the single and double cycle delays shown by numbered
boxes in Figure 12.41. The highlighted cells represent a full QR update while the other numbered
cells represent interleaved QR operations. The faded gray BCs with no numbers represent unused
positions within the schedule.

12.9.5 Rectangular Architecture

The rectangular architecture consists of multiple linear array architectures that are concatenated.
Therefore, the QR cells need to be configured so that they can accept inputs from the above linear
array. In addition, the top linear array needs to be able to accept values from the bottom linear
array. The QR cells are depicted in Figure 12.43. The control signals, E and I , decide on whether
the X inputs are external (i.e. system inputs) or internal. The control value T refers to inputs from
the above array and A refers to inputs from adjacent cells. When used as subscripts, TR and TL
refer to values coming from the left and right cells of the array above; AR and AL refer to the
values coming from the right and left adjacent cells within the same linear array.

12.9.6 Sparse Rectangular Architecture

The QR cells for the sparse rectangular array need to be able to feed inputs back to themselves
in addition to the variations already discussed with the linear and rectangular architectures. The
extra control circuitry is included in the QR diagrams shown in Figure 12.44. The control and
the delays required by the sparse arrays to realign the schedule are brought together into LMR
multiplexer cells (Figure 12.45) that include delays needed to take account of the retiming analysis
demonstrated in this section.

It was discussed in connection with the sparse linear array how certain transfer in data values
required the insertion of specific delays to align the schedule. This also applies to the rectangular
array and the same rules can be used.
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Figure 12.42 Effect of latency on schedule for the sparse linear array (LIC = 3)
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The starting point for determining the schedule for the sparse rectangular array is the schedule
for the sparse linear array. From this, the rows of operations are divided into sections, each to be
performed on a specific sparse linear array. The control, therefore, is derived from the control for
the sparse linear version.The next section deals with parametric ways of generating the control for
the various QR architectures. In addition to the control shown so far, the next section analyses how
latency may be accounted for within the control generation.

12.9.7 Generic QR Cells

The sparse rectangular array QR cells shown in Figure 12.44 can be used for all the QR architecture
variants, by altering the control signals and timing parameters. However, in the sparse variants there
are added delays embedded within the LMR control cells. These can be removed for the full linear
and rectangular array versions, by allowing them to be programmable so that they may be set to
zero for the non-sparse versions. The key to the flexibility in the parameterizable QR core design
is the generic generation of control signals. This is discussed in the following section.

12.10 Generic Control
The previous section detailed the various architectures derived from the QR array. Some detail was
given of the control signals needed to operate the circuits. This section looks at generic techniques
of generating the control signals that may be applied to all the QR architecture variants. It is
suggested that a software interface is used to calculate each control sequence as a bit-vector seed
(of length TQR) that may be fed through a linear feedback register which will allow this value to
be cyclically output bit by bit to the QR cells. The first stage in developing the control for a sparse
QR array architecture is to look at the generic processor array which gives the control needed for
the linear array. This can be used as a base from which to determine the control by folding and
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manipulating the control signals sequence into the required sequence for the sparse linear arrays.
The control for the rectangular versions may be generated quite simply from the control for the
linear architectures.

12.10.1 Generic Input Control for Linear and Sparse Linear Arrays

The input of external X values follows the original folding of the QR triangular array with a new
external X-input fed into a cell of the linear array on each cycle. It starts from the left-most cell,
reaching the right-most cell and then folding back until all the 2m + p + 1 inputs are fed into the
array for that specific QR update. This is highlighted for one set of QR inputs in Figure 12.46. The
next set of inputs follow the same pattern, but start after TQR cycles. This results in a repetitive
segment of control that repeats every TQR cycles, (which is 7 for the linear array example and 14
for the sparse linear array example). From this, it can be possible to automatically generate the
control vectors, containing TQR bits, which represent the repeating sections for each of the control
signals, C1–C7. Determining the start of a set of QR inputs in relation to the previous set can be
achieved using the dimensions of the original array, and the resulting processor array from which
the reduced QR architectures are derived. This relationship is depicted by Figure 12.47. The heavy
lines indicate the series of inputs for one QR update, and relate to the highlighted control for the
external inputs for the linear array example in Figure 12.46.

Software code can be written to generate the control signals for the external inputs for the linear
and sparse linear array. The inputs are broken down into two series (Figure 12.47), one dealing
with the inputs going from left to right, and the other dealing with the inputs from right to left (the
change in direction being caused by the fold). The code generates the position of the control signals
within the control vector for each input into each processor. If the vector number is larger than
the vector then the vector size is subtracted from this value, leaving the modulus as the position.
However, after initializing the operation of the QR array it is necessary to delay this control signal
by an appropriate value.
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Figure 12.47 Control for the external inputs for the linear QR arrays. Reproduced from Design of
a Parameterizable Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody
& R. Woods, IEEE Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

12.10.2 Generic Input Control for Rectangular and Sparse Rectangular Arrays

The control from the rectangular versions is relatively easy and comes directly from the control
vectors for the linear array, given in Figure 12.46, by dividing the signals vectors into parts relating
to the partitions within the processor array. For example, if the control seed vectors for the linear
array are 8 bits wide and the rectangular array for the same system consists of two rows, then each
control vector seeds would be divided into two 4 bit wide vectors. One for the first rectangular
array and the other for the second. The control seed for the sparse rectangular array is derived in
the same manner, but from the control of the sparse linear array with the same value of NIC. The
same code may be edited to include the dummy operations that may be required for the sparse
versions. Figure 12.48(a) shows an example sparse linear array mapping with m = 4, p = 3, and
NIC = 2. The control (Figure 12.48b) can be divided into two sections for implementing a sparse
rectangular array consisting of two rows of the sparse linear array.

12.10.3 Effect of Latency on the Control Seeds

The next stage is to determine the effect that latency has on the control vectors. Previously delay
values, D1, D2 and D3, as discussed for the sparse linear array, were necessary to account
for multiple columns (NIC) of operations applied to each IC, where, for a system with a sin-
gle cycle latency, D1 = (NIC − 1), D2 = NIC , and D3 = (NIC + 1). However, in the real system
the processors have multiple latency. It is assumed that the latency of the IC (LIC) will be greater
than these delays the latencies are increased such that the appropriate delays become D1 = LIC,
D2 = LIC + 1, and D3 = LIC + 2. For the linear array the values D1, D2 and D3 are all set to
LIC; then the code may be used to generate the control vectors. The only difference is when the
position of the control value exceeds the width of the vector. With the single latency versions this
was accounted for by subtracting the value TQR from the value, (where the width of the vector seed
is TQR).
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Figure 12.48 Partitioning of control seed. Reproduced from Design of a Parameterizable Silicon
Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans
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Cycle Input c1  c2  c3  c4  c5  c6  c7  c8  c9  
1 X1(1) X8(0) E I I I I I I E I
2 X2(1) X9(0) I E I I I I I I E
3 X3(1) X10(0) I I E I I I I I E
4 X4(1) X11(0) I I I E I I I E I
5 X5(1) X12(0) I I I I E I E I I 
6 X6(1) I I I I I E I I I 
7 X7(1) I I I I I I E I I 

Figure 12.49 Control when latency = 1. Reproduced from Design of a Parameterizable Silicon
Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans
on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

Finding the section that repeats is complicated as the delays lengthen the control sequence.
However, a repetitive control sequence of length TQR can still be found. When latency is included
within the calculations, it is not sufficient to reduce the value to within the bounds of the vector
width. Alternatively, the position of the control value within the vector is found by taking the
modulus of TQR. An analysis of the effect of latency on the control vectors is shown through an
example linear array where m = 3, p = 5 and TQR = 2m + 1 = 7. Figure 12.49 shows the control
vectors for the system with single cycle latency. Figure 12.50, shows the effect of the control timing
for the set of inputs for one QR update when a latency of 3 is considered. Using these control
value positions gives the control vectors shown in Figure 12.51.

One point to highlight is the fact that there may be several cycles of the control vector before
the required input is present. For example, the vector in the above example for C4 is [I I E I I
I I ], however, the first required input is at time=10, not 3. Therefore it is necessary to delay the
start of this control signal by 7 cycles. The technique relies on the use of initialization control
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Input Latency = 1 Latency = 3

Time Position in vector Time Position in vector 
X1 1 1 1 1 
X2 2 2 4 4 
X3 3 3 7 7 
X4 4 4 10 10mod7 = 3
X5 5 5 13 13mod7 = 6
X6 6 6 16 16mod7 = 2
X7 7 7 19 19mod7 = 5
X8 8 8mod7 = 1 22 22mod7 = 1
X9 9 9mod7 = 2 25 25mod7 = 4
X10 10 10mod7 = 3 28 28mod7 = 0, set to 7
X11 11 11mod7 = 4 31 31mod7 = 3
X12 12 12mod7 = 5 34 34mod7 = 6

Figure 12.50 Determining the position in control vector. Reproduced from Design of a Param-
eterizable Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody &
R. Woods, IEEE Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

cycle Inpu t c1 c2 c3 c4 c5 c6 c7 c8 c9
1 X8(1) E I I I I I I E I
2 X6(2) I I I I I E I I I 
3 X11(0) X4(3) I I I E I I I E I
4 X9(1) I E I I I I I I E
5 X7(2) I I I I I I E I I 
6 X12(0) X5(3) I I I I E I E I I 
7 X10(1) I I E I I I I I E

X1(4)

X2(4)

X3(4),

Figure 12.51 Effect of latency on control seeds. Reproduced from Design of a Parameterizable
Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE
Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

signals to start the cycling of the more complicated control vectors for the processors. This would
be provided by the overall system level control for the full application. The method discussed offers
a parametric way of dealing with control signal generation and allows the majority of the control
to be localized. These same principles applied to the control signals for the timing of the external
inputs may be extended for the rest of the control signals, i.e. the fold, internal input, and row
control.

12.11 Beamformer Design Example
For a typical beamforming application in radar, the values of m would be in range of 20 to over
100. The number of primary inputs p would typically range from 1 to 5 for the same application.
An example specification is given in Figure 12.52. One approach is to use the QR array. Assuming
the fastest possible clock rate, fCLK, then the fundamental loop will dictate the performance for
example, resulting in a design with 25% utilisation for a TQR of four clock cycles. Thus the major
challenge is now to select the best architecture which will closest match the throughput rate with
the best use of hardware. For the example here, a desired input sample rate of 15 MSPS with a
maximum possible clock rate of 100 MHz is assumed.
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2m+1=45 p=4 

2m+1=45 
2m+1=45

1 boundary cell, m+p=26 internal cells, 

Triangular QR array
Processor array

Figure 12.52 Example QR architecture derivation, m = 22, p = 4. Reproduced from Design of a
Parameterizable Silicon Intellectual Property Core for QR-Based RLS Filtering, by G. Lightbody
& R. Woods, IEEE Trans on VLSI Systems, Vol. 11, No. 4,  2003 IEEE

The value for TQR can be calculated using the desired sample rate SQR and the maximum clock
rate fCLK:

TQR = fCLK

SQR
= 100 × 106

15 × 106
= 6.67

This value is the maximum number of cycles allowed between the start of successive QR updates,
therefore, it needs to be rounded down to the nearest integer. The ratio of Nrows/NIC can be obtained
by substituting for the known parameters into the relationship below:

Nrows

NIC
= 2m + 1

TQR
= 45

6
= 7.5

where 1 ≤ Nrows ≤ 2m + 1 (i.e. 45) and 1 ≤ NIC ≤ m + p (i.e. 26). Using these guidelines an
efficient architecture can be derived by setting NIC = 2, and hence, Nrows = 15. The operations are
distributed over 15 sparse linear architectures, each with 1 BC and 13 ICs, as shown in Figure 12.53.

Also note that the critical path within the circuit must be considered to ensure that the core can
be clocked fast enough to support the desired QR operation. Here, additional pipeline stages may
be added to reduce the critical path and therefore improve the clock rate. However, this has the

Performs 3
rows of the

processor array

1

2

3

4

13  

14  

15  

13 internal cellsrows 

Figure 12.53 Example architecture. Reproduced from Design of a Parameterizable Silicon Intel-
lectual Property Core for QR-Based RLS Filtering, by G. Lightbody & R. Woods, IEEE Trans on
VLSI Systems, Vol. 11, No. 4,  2003 IEEE
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effect of increasing the latencies and these must then be included in the architecture analysis. Each
row of processors is responsible for three rows of operations within the processor array, therefore,
TQR = 6, resulting in an input sample rate of 16.67 MSPS, which exceeds the required performance.
The details of some example architectures for the same QR array are given in Table 12.4.

The value for TQR for the full QR array implementation is determined by the latency in the
recursive loop of the QR cells (consisting of a floating-point addition and a shift-subtract function).
For the example shown, the QR array needs to wait four clock cycles for the calculation of the
value in the recursive loop, which therefore determines the sample rate of the system. This example
emphasizes the poor return of performance of the full QR implementation at such a high cost of
hardware. As shown in Table 12.4 the same performance may be achieved by using a rectangular
array of a reduced number of processors resulting in a saving in hardware resources at no cost.

12.12 Summary
The goal of this chapter was to document each of the stages of the development for an IP core for
adaptive beamforming. The main aspects covered were the design choices made with regard to:

• decision to use design for reuse strategies to develop an IP core
• determination of the algorithm
• determination of a suitable component to design as an IP core
• specifying the generic parameters
• algorithm to architecture development
• scalable architectures
• scalable scheduling of operations and control

Each stage listed above was detailed for the adaptive beamforming example. Background infor-
mation was supplied regarding the RLS choice of algorithm decided upon for the adaptive weight
calculations. The key issue with the algorithm used is its computational complexity. Techniques and
background research were summarized, showing the derivation of the simplified QR-RLS algorithm
suitable for implementation on a triangular systolic array. Even with such reduction in the complex-
ity, there may still be a need to map the full QR-array down onto a reduced architecture set. This
formed a key component of the chapter giving a step-by-step overview of how such a process can
be achieved while maintaining a generic design. Focus was given to architecture scalability and the
effects of this on operation scheduling. Further detail was given to the effects of processor latency
and retiming on the overall scheduling problem, showing how such factors could be accounted for
upfront. Finally, examples were given on how control circuitry could be developed so to scale with
the architecture, while maintaining performance criteria. It is envisaged that the principles covered
by this chapter should be expandable to other IP core developments.
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13
Low Power FPGA Implementation

13.1 Introduction
As has been indicated in the introduction to this book, a lot has been made about improving tech-
nology and how this has offered increased numbers of transistors, along with improving the speed
of the individual transistors. This has been central to the growth of FPGA technology and largely
responsible for the change in constitution of FPGA technology during the emergence of platform
SoC devices. This technological evolution has been largely responsible for driving the success of
FPGA technology as the programmability aspect allows the user to develop circuit architectures
with a high levels of parallelism and pipelining that are ideally suited to DSP applications. This
degree of control allows the user to produce high performance without the need to resort to high
clock rates as in processor implementations.

One issue that deserves special attention is power consumption. Power consumption scales down
with technology evolution, which would suggest that it should be less of an issue. The problem,
though, is that the number of transistors that can be associated with a single implementation has also
increased, thereby increasing the power consumed by a single chip. However, this represents only
one aspect of the problem. The major issue is that the nature of how power is consumed in silicon
chips is changing as technology evolves, and this has severe implications for FPGAs. One trend is
that the leakage power which was treated as negligible many years ago and virtually ignored, is now
becoming dominant; this is a problem for all microelectronics devices. However, the power needed
to charge and discharge the interconnect in chips as compared with that required by the transistors,
which had been an increasingly important problem over the past decade, is particularly relevant to
FPGA implementation due to the programmable interconnection provided. This is known as dynamic
power consumption and worsens as technology evolves. It will therefore mean that interconnect will
play a much more dominant part in FPGA implementations when compared with equivalent designs
in ASIC technology. Of course, the programmable nature of FPGA means that we can act to reduce
this power consumption, which is not the case for processors where the underlying architecture
developed for ease of programmability is particularly unsuited for low power implementations.

There are a number of important reasons therefore, for reducing power consumption. Increased
power consumption leads to an increase in device temperature which if uncontrolled can have
severe implications for device reliability. Lower power consumption has the impact of reducing
heat dissipation leading to lower costs for thermal management, both in terms of packaging costs to
dispense the heat from the chip die thereby avoiding the ghastly aluminium towers seen on many
microprocessor chips, and also reducing the cost or even reducing the need for fan-based cooling
systems usually needed to ensure better airflow for lower temperatures of the complete board. Work

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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(Xilinx Inc. 2007) indicates that ‘a decrease of 10◦C in device operating temperature can translate
to a 2× increase in component life’. A lower-power FFGA implementation has immediate benefits
to the design of the power supply of the complete system, which could result in fewer and cheaper
components. For example, the implementation cost for a high-performance power system has been
estimated as being between US$0.50 and US$1.00 per watt (Xilinx Inc. 2007). Thus, reducing the
power consumption of the FPGA implementation has clear cost and reliability impact.

With battery technology not really offering any major innovations to increase energy without
increasing system cost or weight, portability is now relying heavily on reducing device power
consumption. As new services are introduced in mobile hardware, this translates to an increasing
system performance budget, which must be achieved within the existing, or more realistically, a
reduced power budget. To reduce risk, this would imply using programmable hardware solutions
which immediately implies high power consumption.

The purpose of the chapter is to give an overview of the sources of power consumption and the
design techniques that can be used to reduce it. It starts off in Section 13.2 by looking at the various
sources of power and describes how they will be vary in the future by referring to the International
Technology Roadmap for Semiconductors (IRTS 2003). Section 13.3 briefly reviews the possible
approaches to reduce power consumption. Voltage reduction is introduced in Section 13.4, as a
technique to reduce static power consumption. However, given the limited scope to reduce power
through voltage scaling in FPGA due to the fact that the voltage has been carefully chosen for safe
operation of the device, a number of techniques for reducing dynamic power consumption are then
outlined in Section 13.5. These include use of pipelining, imposition of locality, data reordering
and fixed coefficient exploitation. In Section 13.10, some of these techniques are then applied to
the design of an FFT and real power results, presented.

13.2 Sources of Power Consumption
Power consumption in a CMOS technology can be defined in two parts, namely static power
consumption which as the name suggests is the power consumed when the circuit is in static
mode, switched on, but necessarily processing data, and dynamic power consumption which is
when the chip is processing. The static power consumption is important for battery life in standby
mode as it represents the power consumed when the device is powered up and dynamic power
is important for battery life when operating as it represents the power consumed when processing
data. The static power consumption comprises a number of components, as shown in Figure 13.1.

Gate

Source Drain

Subthreshold
leakage Reverse biased

Junction BTBT
Reverse biased
Junction BTBT

Gate leakage

Bulk

Figure 13.1 Sources of leakage components in MOS transistor
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Figure 13.2 Simple CMOS inverter

The gate leakage is current that flows from gate to substrate, source-to-drain leakage (known as
the subthreshold current) is the current that flows in the channel from the drain to source, even
though the device is deemed to be off (i.e. the gate-to-source voltage VGS is less than the threshold
voltage of the transistor VT) and reverse-biased BTBT currents which are the currents that flow
through the source–substrate and drain–substrate junctions of the transistors when the source and
drain are at higher potential than the substrate.

13.2.1 Dynamic Power Consumption

For dynamic power consumption, the leakage through a simple inverter, given in Figure 13.2, is
considered. Assume that a pulse of data is fed into the transistor charging up and charging down
the device. Power is consumed when the gates drive their output to a new value and is dependent
on the resistance values of the p and n transistors in the CMOS inverter.

Thus, the current through the capacitor and the voltage across it are given as (Wolf 2004):

iC(t) = VDD − VSS

Rp
e(−t/RpCL) (13.1)

where the voltage is given by:

vC(t) = VDD − VSS
[
1 − e(−t/RpCL)

]
. (13.2)

giving the energy required to charge the capacitor as:

EC =
∫

iCL(t)VCL(t))dt, (13.3)

=
[
CL(VDD − VSS)

2
(

e−t/RpCL − 1

2
e−2t/RpCL

)]∞

0
, (13.4)

= 1

2
CL(VDD − VSS)

2 (13.5)
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Table 13.1 Typical switching activity levels (Chandrakasan and
Brodersen 1996)

Signal Activity (α)

Clock 0.5
Random data signal 0.5
Simple logic circuits driven by random data 0.4–0.5
Finite state machines 0.08–0.18
Video signals 0.1(MSB)–0.5(LSB)
Conclusion 0.05–0.5

As the same charge will then be dissipated through the n-type transistor when the capacitance
is discharging, therefore, in a cycle of operation of the transistor, the total energy consumption
of the capacitance will 1

2CL(VDD − VSS)2. When this is factored in with the normal operation of
the design, which can be assumed to synchronous operating at a clock frequency of f, then this
will define the total power consumed, namely 1

2CL(VDD − VSS)
2f . However, this assumes that

every transistor is charging and discharging at the rate of the clock frequency which will never
happen. Therefore, a figure to indicate what proportion of transistors are changing, namely α, is
introduced. For different circuits, the value of α will vary, as shown in Table 13.1 (Chandrakasan
and Brodersen 1996).

This gives the expression for the dynamic power consumption of a circuit, Pdyn as shown in
Equation (13.6):

Pdyn = 1

2
CL(VDD − VSS)

2f α (13.6)

which, when VSS is assumed to be 0, reduces to the better-known expression of Equation (13.7):

Pdyn = 1

2
CLV 2

DDf α (13.7)

In addition, short-circuit current can be classified as dynamic power consumption. Short-circuit
currents occur when the rise/fall time at the input of a gate is larger than the output rise/fall time,
causing imbalance and meaning that the supply voltage VDD is short-circuited for a very short space
of time. This will particularly happen when the transistor is driving a heavy capacitative load which
it could be argued, can be avoided in good design. To some extent therefore, short-circuit power
consumption is manageable.

13.2.2 Static Power Consumption

The scaling of technology has provided the impetus for many product evolutions as it gives a
scaling of the transistor dimensions, as illustrated in Figure 13.3. Simply speaking, scaling by k
means that the new dimensions shown in Figure 13.3(b) are given by L′ = 1/k(L), W ′ = 1/k(W)

and tox = 1/k(tox). It is clear that this will translates to an k2 increase in the number of transistors
and also an increase in transistor speed; an expected decrease in transistor power as currents will
also be reduced.

The expected decrease in power consumption, however, does not transpire. In order to avoid
excessively high electric fields in the scaled structure, it is necessary to scale the supply voltage
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Figure 13.3 Impact of transistor scaling

VDD. This in turn requires a scaling in the threshold voltage Vth, otherwise the transistors will
not turn off properly. The reduction in threshold voltage results in an increase in subthreshold
current. In order to cope with the short channel effects which have come about as a result of
scaling the transistor dimensions, it is typical to scale the oxide thickness which results in high
tunnelling through the gate insulator of the transistor, leading to the gate leakage. This gate leakage
is therefore inversely proportional to the gate oxide which will continue to decrease for improving
technologies, therefore exacerbating the problem.

Scaled devices also require high substrate doping densities to be used near the source–substrate
and drain–substrate junctions in order to reduce the depletion region. However, under high reversed
bias, this results in significantly large BTBT currents through these junctions (Roy et al. 2003).
The result is that scaling results in a dramatic increase in each of these components of leak-
age and, with increasing junction temperatures, the impact is worsened as the leakage impact is
increased (Xilinx Inc. 2007).

The main issue with increasing number of transistors is that their contribution to static power
consumption is also growing. This is illustrated from the graph in Figure 13.4, taken from Interna-
tional Technology Roadmap for Semiconductors (IRTS 2003), (Kim et al. 2003) which shows that
a cross-over point is emerging for 90 nm and smaller technology nodes where static power will
begin to eclipse dynamic power for many applications.

This graph has a major impact for many technologies as it now means that, unlike power
consumption in the previous decade where the power consumption issue largely impacted the
dynamic operation of the device, allowing designers to reduce its impact, the power consumption
will not be predicated on the normal standby mode of operation for the device. This will have impact
for system design for fixed, but particularly for wireless applications. A number of approaches are
being adopted to address this.

Xilinx has attempted to address the impact of high static power in the Virtex-4 and following
devices by employing a triple-oxide in their 90 nm FPGA (Xilinx Inc. 2007). Triple-oxide is used
to represent the three levels of oxide thickness used in FPGAs. A thin-oxide is used for the small,
fast, transistors in the FPGA core, a thick-oxide is used for the higher-voltage, swing transistors
for the I/O which do not have to be fast, and a third-level oxide called a middle-thickness oxide is
used for the configuration memory cells and interconnect pass transistors. These transistors operate
at a higher threshold voltage than the thin-oxide transistors, but as they are only used to store the
configuration for logic and data passing, there is no strict requirement for speed. This represents a
sensible trade-off in reducing power consumption and is not really applicable to technologies other
than FPGAs such as microprocessors and DSP processors, unless they have transistors for storing
configuration data.
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Altera employ a similar strategy using two types of transistors, namely a transistor with low-
voltage threshold and small minimal channel length for high-speed operation in the DSP blocks
and logic elements, and a low power transistor with a higher threshold voltage and larger channel
length to implement the less demanding areas of the chip in terms of performance such as the
configuration RAM and memory blocks.

Whilst addressing static power consumption is therefore vital in developing a low power FPGA
solution, it is somewhat determined by the underlying application of many of the transistors used
in FPGA architectures; some of these used for storage and control, and are therefore not under the
direct influence of the designer. In addition, the device will have already been optimized for low
power performance as outlined above. There are however, some techniques that can act to reduce
the power consumption from a static power consumption perspective.

Clock Tree Isolation

One of the main contributors to static power consumption is the clock signal through its distribution
network, namely a clock tree and the circuits connected to it which it will act to toggle on a regular
basis, particularly if the design is synchronous. As the description in Chapter 5 indicated, most
FPGAs have a number of clock signals with PPLs and individual dedicated clock tree networks
which can be turned off and on as required. This is done by using clock multiplexing to turn off
parts of the FPGA.

In the Virtex-4 FPGA, this is achieved using a clock gating block which provides an efficient
means of turning off a global clock net. This has much more impact than simply disabling flip-flops
as it allows the large toggling net to be turned off, thereby avoiding the dynamic power dissipation
due to the intense toggling. Moreover, it should be noted that unlike Equation (13.7), these nets
are being clocked at the clock frequency and hence, will produce a much higher power reduction.
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13.3 Power Consumption Reduction Techniques
By examining the expression of Equation (13.7), it is clear that there are number of factors that
can be varied for dynamic power consumption. The power supply voltage VDD will obviously have
been predetermined by the FPGA vendor (and optimized to provide low power operation) and any
scope to reduce this voltage will be made available to the user via the design software. This only
leaves adjustment of the other parameters, namely the toggling rate which will be determined by the
clock frequency f, the switching activity α, and the load capacitance CL. However, any technique
that acts to adjust the clock frequency f and/or switching activity α should be developed on the
understanding that the overall clock rate for the system will have generally been determined by
the application, and that the switching activity will be governed again by the application domain,
meaning that levels shown in Table 13.1 should be given consideration.

Generally speaking, power reduction techniques either act to minimize the switched capacitance
Cf or employ techniques which reduce the supply voltage by increasing the system’s throughput
beyond that necessary, either through the use of parallel hardware, thereby increasing area and
therefore capacitance, or increasing the speed (Chandrakasan and Brodersen 1996). The voltage
is then reduced, slowing up performance until the required throughput rate is met, but at a lower
power consumption budget. This latter approach acts to give a squared reduction in power, at the
expense of a linear increase in area, i.e. CL and/or frequency f . This is a little more difficult in
FPGAs, but work by (Chow et al. 2005) suggests appropriate techniques and will be described in
Section 13.4.

There is also some scope to reduce the capacitance and the switching activity, but rather than
consider this separately, it is useful to think about reducing the switched capacitance of a circuit,
i.e. the sum of all of toggling activity of each node multiplied by the capacitance of that node.
This is an important measure of power consumption as opposed to just circuit capacitance alone,
as a circuit can either have a ‘large’capacitative net with a ‘low’ switching activity which will
not contribute greatly to power consumption, or a number of ‘low’ capacitance nets with a ‘lot’of
switching activity which can contribute to power consumption. The same argument applies to
switching activity levels; some nets can have high switching activity, but a low capacitance and so
on. A large proportion of the techniques fall into this domain, so detailed consideration is given in
Section 13.5.

13.4 Voltage Scaling in FPGAs
As the name indicates, voltage scaling involves reducing the supply voltage of the circuit in such
a way that the circuit can still operate correctly. Typically, the designer will have exploited any
voltage capacity by applying design techniques to slow down the circuit operation, presumably
by achieving an area reduction or some other gain. Reductions in the voltage may cause a circuit
failure as the critical path timing may or may not, be met. This is because scaling the voltage
causes affects the circuit delay, td, as determined by the expression below (Bowman et al. 1999):

td = kVDD

(VDD − Vt)2
(13.8)

where k and α are constants with 1 < α < 2. As VDD is scaled, the circuit delay td increases.
The impact of voltage scaling can be addressed in two ways, adding circuitry to detect exactly

when this happens with a specific FPGA implementation and detecting the correct voltage threshold
to achieve lower-power operation (Chow et al. 2005), or applying design techniques to speed up
the circuit operation.
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Figure 13.5 Use of parallelism (and voltage scaling) to lower power consumption

One such approach is to speed up the computation, as shown in Figure 13.5. If we presume the
operation shown in Figure 13.5(a) matches the speed requirements at the operating voltage, then if
parallelism can either be added to the circuit implementation or possibly exploited if it naturally
exists (as is the case in many DSP systems), then the circuit shown in Figure 13.5(b) can result.
This resulting circuit now operates much faster than the original circuit, so it is possible to apply
voltage scaling; this will result in a power reduction due to the V 2

DD voltage scaling as well as
the scaling in the frequency. Of course, the circuit in Figure 13.5(b) will have a larger area and,
therefore, capacitance and switching activity, but the squared reduction and frequency reduction
will more than outweigh this gain.

It is also important to consider the possible means by which voltage scaling can be applied to
FPGAs. This should only applied to the FPGA core as the device will be used in a wide range
of applications; this is possible as there are many VDD pins supplied to the core and I/O ring.
It is important that the I/O pins operates to the specifications to which they have been designed,
particularly as some static power consumption techniques will have already been applied to some
FPGA devices such as the Xilinx Virtex-4 and -5 families and Altera’s Stratix II and III FPGA
families. Reducing the voltage has the impact of increasing the circuit delay, but given that only
parts of the circuit need to operate at the slowest circuit delay, there is scope for reducing the
voltage for a large portion of the circuit without impacting performance. Of course, the design has
to be reliable across a range of devices and there can be a variation in delay times as well as
operating temperature.

The work in Chow et al. (2005) follows the first principle of assuming the original circuit,
altering the internal voltage supply and then checking for any possible errors (although it can of
course be used for the second approach shown in Figure 13.5). They argue that on the basis that
the designer can observe any two types of design errors as a result of the voltage scaling in normal
operation, then it is just a case of trying to work out two other types of error: I/O errors which
have resulted as the lower-voltage core circuit has to interface to the I/O which is operating at
the original voltage; and delay errors which occur as a result of the critical path now possibly not
meeting the timing requirement. In the case of I/O errors, the danger is that a high output signal
from the core will be too small for the threshold voltage of the I/O buffer to correctly detect it, as
a high value; this means it will incorrectly interpret it as a low value.

Chow et al. (2005) use a logic delay measurement circuit (LDMC) (Gonzalez et al. 1997) which
is used in addition to the designer’s FPGA circuit and which consists of a delay line or inverter chain,
a chain of flip-flops, and a leading zero detector implemented using normal FPGA logic resources.
The circuit effectively generates a warning signal by propagating a wave front through the inverter
chain using the clock signal, and then measuring how many of the flip-flops will have correctly
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clocked the data using the same clock signal. Thus, the number of inputs that have switched will
depend on the delay of the inverters which in turn will depend on temperature and supply voltage;
the circuit’s propagation delay can then be computed using this leading-zero detector. In this way,
the LDMC measures how many delay stages that the falling edge propagates in half of a clock
period. The circuit is investigated for a number of circuits and the authors show power reductions
in the range of 4–54%, although they would typically expect to achieve 20–30% which is still
impressive. The main limitation of this approach is that the design would have to be investigated
for each FPGA operating in its specific environment as circuit performance will vary from FPGA
to FPGA. Given the relationship between power consumption, delay and temperature, it cannot be
assumed that the performance will be the same from device to device. This is avoided in normal
FPGA operation by specifying for worst-case operation. However, they are a number of other low
power design techniques that do not require alteration of FPGA parameters that the designer may
want to investigate before adopting such an approach.

13.5 Reduction in Switched Capacitance
The previous techniques require that the voltage is scaled (typically only the internal voltage),
but does not deal with the results in the application of this scaling. However, as was suggested
in Section 13.3, another technique to reduce power consumption involves reducing the switched
capacitance of the circuit. As demonstrated in Equation (13.7), this produces a squared (f × CL

product) reduction in dynamic power consumption. The resulting FPGA layout can have a major
influence on the switched capacitance as the layout determines first, the capacitance of the routed
interconnect and therefore to some extent, the switching activity due to the different delays in
various routes (although overall switching will be governed by input data and circuit functionality).
However, the FPGA layout can be heavily influenced by the architectural style developed to create
the design, meaning that, as will be seen in this section and in the FFT example (Section 13.10),
architectural decisions can have a major impact on power consumption.

A number of techniques are considered which are well understood in the literature. These tech-
niques are not covered in detail and represent only a number of possible optimizations possible.

13.6 Data Reordering
In DSP processor implementations described in Chapter 4, the architecture is typically composed
of data and program memory connected to the processor via data busses. In these architectures
therefore, the capacitance of the buses will be fixed, but in some cases it may be possible to reorder
the data computation in order to minimize the Hamming difference and thereby achieve a reduction
in the switching activity on the large capacitative buses. Consider a simple 4-tap filter with 4-bit
coefficients listed below:

a0 1011 a0 1011
3 1

a1 0110 a2 1001
4 3

a2 1001 a3 0100
3 1

a3 0100 a1 0110
4 3

a0 1011 a0 1011
8 transitions 3 transitions
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Figure 13.6 Generic MAC time domain filter implementation (Erdogan and Arslan 2002)

It can be seen that if the coefficients are loaded in the normal numerical order, namely
a0, a1, a2, a3 and back to a0, then this will require 14 transitions. This will involve charging
and discharging of the line capacitance of the interconnect to load these coefficients into the
processing engine. Depending on the architectural decisions made, this interconnection length
could be considerable. For example, a DSPµ-style implementation was chosen where data is
loaded from coefficient memory across a lengthy bus, so this would translate to quite a large
contribution to switched capacitance. By changing the order of loading, the number of transitions
can be reduced to 8 as shown. The main issue is then to resolve the out-of-order operation of the
coefficient. Whilst this may be an issue in some circuit architecture implementations where the
selection of the coefficients is done using fixed multiplexers which cannot be changed and which
will never be the case for DSP processor implementations. This works well in applications where
the coefficients are predetermined and will not change. If this was the case, it would be possible to
develop the circuit architecture using many of the techniques outlined in Chapter 8, to produce an
architecture where this was exploited. For example, hardware sharing could be controlled based
on the switching activity of the coefficients.

In (Erdogan and Arslan 2002), the authors show how this can be applied to the design of
FIR filters to achieve a reported 62% reduction in power consumption. The architecture shown
in Figure 13.6 has been reproduced from their paper and represents a MAC structure comprising
a multiplier and adder which are fed by program and coefficient data from the memory. The
structure presented can be made to be cascadable by feeding the output of the previous section into
the current block. This structure clearly supports out-of-order operation to be performed, resulting
in a reduction of the switching data from the coefficient memory via the large coefficient data bus.
By exploiting the direct form FIR filter implementation rather than the transposed form, this also
reduces the switching on the data bus as one data word is loaded and then reused.

13.7 Fixed Coefficient Operation
The DA and RCM techniques presented in Chapter 6 represent an optimization that can be applied
in addition to the reordering technique. These techniques were originally presented as they allowed
both a reduction in area and in some cases, an increase in speed. However, the underlying concept
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for both approaches is that they reduce the amount of hardware required to perform the computation
of a full multiplication, and therefore by implication, reduce the amount of interconnection needed
to construct the multipliers and therefore the switched capacitance accordingly. In the case of
the RCM, only part of the multiplier structure is implemented to perform the computation, so
scope exists to create additional multiplexing features which could be used to turn off parts of the
multipliers, although this had not been investigated in detail.

13.8 Pipelining
An effective method to reduce power consumption is by using pipelining coupled with power-
aware component placement. Pipelining, as illustrated in Figure 13.7, breaks the processing of the
original circuit of Figure 13.7(a) into short stages, as illustrated in Figure 13.7(b), thereby providing
a speed-up, but with increasing the latency in terms of the number of clock cycles, not necessarily
the actual time (as the clock period has been shortened). The increase in processing speed can be
used in a similar way to the use of parallelism in Figure 13.5, to allow the voltage to be reduced,
thereby achieving a power reduction (Chandrakasan and Brodersen 1996). Indeed as seen in earlier
chapters, both techniques can be applied to provide considerable speed improvement.

In addition to providing the speed-up, pipelining provides a highly useful mechanism to reduce
power consumption (Raghunathan 1999, Keane et al. 1999), particularly in FPGA (Wilton et al.
2004). In FPGA designs, the aim of the place and route tools is to achieve the best placement
in order to achieve the required speed (and more recently, power-efficient realization). Pipelining
provides more rigorous structure to the design, allowing faster placement and also reduces the
number of longer nets that result in the design. Moreover, the pipelined circuit suffers fewer glitches
than an unpipelined version, since it typically has fewer logic levels between registers. Thus, there
is a reduction in the overall and average netlengths and a decrease in the switching activity, as
a highly pipelined circuit suffers fewer glitches than an unpipelined circuit, since it typically has
fewer logic levels between registers, which results in less dynamic power being consumed.

Operation
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Operation
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Operation/N
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(a) Original implementation (b) Pipelined implementation

Figure 13.7 Application of pipelining



340 FPGA-based Implementation of Signal Processing Systems

CLB

CLB

Figure 13.8 Typical FPGA interconnection route

a3

yk

a2

Cut2

xk xk−1 xk−2 xk−3

a0 a1

Cut1

Figure 13.9 Pipelined FIR filter implementation for low power

This technique is particularly effective in FPGA technology because the increasing flexibility
comes at a power budget cost due to the long routing tracks and programmable switches. These
features afford the programmability, but are laden with parasitic capacitance (Chen et al. 1997),
as illustrated by Figure 13.8 which shows a model of a typical FPGA route. Another benefit of
implementing pipelining in a FPGA is that it may be using an under-utilized resource, namely the
flip-flop at the output of the logic cell, thereby only providing a small area increase (Wilton et al.
2004). Whilst it could be argued that the flip-flop would not have been used in the unpipelined
version and is therefore not contributing to power, it should be noted that it will still probably have
a clock supplied to it which will act to dominate the power consumption.

Consider the application of pipelining to a FIR filter given in Figure 13.9. The filter is a simple
delay line filter structure as described in earlier chapters. Two levels of pipelining will be investi-
gated, namely a layer of pipelining after the multipliers, as shown by Cut2 and given as PL1 in
Table 13.2, and another pipeline cut in the adder (and delay) chain, Cut1 in addition to the first
level of pipelining, given as PL2 in Table 13.2, i.e. PL2 encompasses Cut1 and Cut2.

A number of filter realizations were investigated namely a 4, 8, 16, and 32 tap FIR filter imple-
mented on a Virtex-II XC-2V3000bf 957-6 FPGA (McKeown et al. 2006). The filter is initialized
by loading coefficients using an address bus, data bus and enable signal so that this was consistent
for all implementations. No truncation was employed and the output word length is 24 and 27 bits
for the 4-tap and 32-tap filters respectively. Expansion is handled by including a word growth
variable which is defined for each filter size to prevent truncation. The unpipelined version (PL0) is
used to benchmark the power consumption before reduction techniques are applied. Functionality
remains the same in all versions, except for the latency imposed by pipelining stages. A speech
data file is used to simulate the designs, filter clock speed is 20 MHz and simulation time is 200 µs.

The FIR filters were coded in VHDL with generic parameters used for coefficient and input data
word sizes. Three filters (band-pass, low-pass and high-pass) were created in Matlab r© for 4, 8, 16
and 32 tap filters and filter coefficients extracted and used as input. ModelSim

TM
and Synplicity r©
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Synplify Pro r© were used for simulation and synthesis respectively. Xilinx ISE
TM

Project Navigator
(version 6.2) was used to translate, map, place and route the designs and sub-programs of the ISE

TM

design suite were used to compile component libraries, manually place and route and generate post
place and route VHDL files for XPower. Xpower was then used to generate simulation results for
Table 13.2. The flow is given in Figure 13.10. The results shows power reductions of 63–59% for

Table 13.2 Internal signal/logic power consumption of various FIR filters
(McKeown et al. 2006)

Filter tap size

Technique 4 8 16 32

PL0 8.4 89.7 272.0 964.2
PL1 3.1 (−63%) 29.1 (−68%) 89.7 (−67%) 391.7 (−59.3%)
PL2 1.5 (−82%) 6.7 (−93%) 8.1 (−97%) 16.4 (−98%)
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Figure 13.10 Detailed design flow for Xpower estimation
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Figure 13.11 Tap signal capacitance and toggle activity

single stage pipelined versions and 82–98% for the two stage pipelined versions, depending on
filter size.

It is clear from the table that the pipelining becomes more effective as filter size and thus
design area and interconnection lengths increase; this gives greater opportunity for power-aware
placement. Net lengths are shortened by placing interconnected components closely together. This
reduces power consumption in two ways, first by decreasing the net capacitances and second by
reducing unequal propagation delays. Partitioning the design into pipelined stages further reduces
power consumption by diminishing the ripple effect of propagation delays. This can be seen in
Figure 13.11 which shows post place and route capacitances rounded to the nearest integer, plotted
against the summation of the toggling activity on nets with equivalent capacitances. These values
are plotted for PL0, PL1 and PL2 versions and show that, not only is toggle activity reduced on high
capacity nets, but overall there are fewer toggles in the design when power reduction techniques
are implemented.

The results presented in Wilton et al. (2004) are more thorough as they are based on data from
a real board set-up and are equally impressive. They have presented results for a 64-bit unsigned
integer array multiplier, a triple-DES encryption circuit, an 8-tap floating point FIR filter and a
Cordic circuit to compute sine and cosine of an angle. A summary of the power results just for the
FIR filter and the CORDIC circuit are given in the Table 13.3. They were taken from the circuits
implemented on an Altera Nios Development Kit (Stratix Professional Edition) which contains a
0.13 µm CMOS Stratix EP1S40F780C5 device; this was used to produce the original FPGA power
results and the estimated power was taken from Quartus simulator and power estimator.

The results show the impact of applying of different levels of pipelining. They quote savings over-
all of 40–82% and indicate that, when quisicient power is factored out from the results, the savings
on the dynamic logic block energy can be as high as 98%. They indicate that lower-level physical



Low Power FPGA Implementation 343

Table 13.3 Pipelining results for 0.13 µm FPGA

Benchmark circuit Pipeline stages Estimated power Original FPGA power

8-tap floating point FIR filter
2 4420 7866
4 2468 5580

Max. 776 3834

Cordic circuit to compute
sine and cosine of angle

4 971 5139
8 611 4437

16 565 4716
Max. 567 4140

design optimizations presented in the work of (Lamoureux and Wilton 2003) can only achieve
energy savings of up 23%, highlighting the importance of applying system-level optimizations, and
highlighting the impact of pipelining generally.

13.9 Locality
As discussed in Chapter 4, systolic arrays (Kung and Leiserson 1979, Kung 1982) were initially
introduced as a solution to solve the design problems inherent at the time, namely design complex-
ity and the increasing problem of long interconnect in VLSI designs (Mead and Conway 1979).
Systolic array architectures have many attractive features, including data and processor regularity,
as well as locality in terms of processor interconnection. The early structures were developed for
regular computations such as matrix–matrix multiplication and LU decomposition which involved
a combination of parallel and pipelined processing. Systolic array architectures take advantage of
the highly regular nature of DSP computations and offered huge performance potential.

The key attraction of systolic array architectures is that they provide an architectural framework
to ensure regularity in the development of FPGA circuit architectures. As was demonstrated in
the pipelining example in the previous section, an architectural optimization can bring benefits
in terms of reduced power consumption. The work of Keane et al. (1999), showed clearly how
creating architectures, in this case bit-level architectures for multipliers, could provide reduced
power consumption. The comparison was based on ASIC, but the key message from the paper
was the importance of preserving locality. Figure 13.12 shows the switching activity for different
netlengths for a carry-save multiplier (Figure 3.6) and a Wallace tree multiplier (Figure 3.7).

The first graph Figure 13.12(a) shows how the switching is limited to a few netlist length sizes
when regularity is preserved in the layout process. The second graph Figure 13.12(b) shows the
impact when the same design is flattened during synthesis for the same structure. The final graph
Figure 13.12(c) gives the distribution for the Wallace tree. It should be noted that higher activity
occurs on the larger nets. Both designs have similar transistor counts and toggling activity for
the simulation undertaken, and clearly indicate that this effect is responsible for the 40% increase
in power in the Wallace tree implementation. The problem worsens as wordlength grows. The
application of locality to FPGA implementations is demonstrated next in the application of the
approach to an FFT implementation.
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Figure 13.12 Switched capacitance activity for different multiplier structures

13.10 Application to an FFT Implementation
Many of these concepts can be applied to a real DSP example, in this case an FFT design imple-
mentation which can be implemented in many ways. There are a number of texts that look at FPGA
implementation Meyer-Baese (2001). Consider the discrete Fourier transform (DFT) of N complex
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Figure 13.13 FFT structure

data points, x(n)is defined by:

Xk =
N−1∑
n=0

x(n)Wnk
N k = 0, 1, . . . , N − 1 (13.9)

where WN is the twiddle factor WN = e−j (2π/N). The FFT can be derived from this, as presented
in Bi and Jones (1989) which involves rewriting the DFT expression. By far the most common and
widely used of these is the Cooley–Tukey algorithm (Cooley and Tukey 1965) which reduces the
algorithmic complexity from O(N2) to O(N log N) through use of an index mapping scheme using
the symmetry and periodicity in the transform coefficients. The radix-4 implementation recursively
decomposes the algorithm until only 4-point DFTs are required. The results are then combined to
compute the N -point transform. The FFT is computed using the butterfly unit (Figure 13.13(a))
and the perfect shuffle network (Figure 13.13(b)). The globally recursive nature of the algorithm
manifests itself as global interconnect, requiring irregular routing where data is routinely passed to
nonadjacent processing elements (PEs, Stone 1989). The radix-4 algorithmic expression is expressed
as:

Xk =
N/4−1∑
n=0

x(n)Wnk
N + W

Nk/4
N

N/4−1∑
n=0

x(n + N/4)Wnk
N

+W
Nk/2
N

N/4−1∑
n=0

x(n + N/2)Wnk
N + W

3Nk/4
N

N/4−1∑
n=0

x(n + 3N/4)Wnk
N (13.10)

Typically, larger point FFTs are created from small FFT blocks, but the inherent irregularity
can impact speed performance and contribute to consumed power. An alternative decomposition
of the computation is possible which involves identifying repetitive patterns in the structure of the
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16-point DFT matrix shown in Equation (13.11).
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Figure 13.14 shows how the roots to the left and right of the imaginary (Im) axis and the roots
above and below the real (Re) axis are mirrored. The angle q of roots 1, −j, −1 and j follow
as 2π/(N/4). Factoring out −j,−1 and j from the roots in the third, second and first quadrants,
respectively, means that the remaining factors of these roots lie solely in the fourth 1 quadrant. If
the roots are then grouped with a periodicity of θ = 2π/(N/4), an extremely efficient factorization
of the transform matrix is obtained.

After mapping the indices and rearranging the input/output sequences of the DFT matrix in
Equation (13.11), it can be partitioned into N /4 blocks of columns, allowing extraction of a com-
mon factor for each row, resulting in each column block being identically factorized. The transform
matrix can then be partitioned row-wise into four separate (N /4) by (N /4) matrices. Further factor-
ization along each column is then carried out resulting in the transform matrix in Equation (13.12).
This implementation retains the same computational efficiencies as the Cooley–Tukey algorithm,
but with increased data locality, as shown in Figure 13.15.
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The architecture was originally developed as part of a major chip design project carried out in
the 1990s, involving Queen’s University Belfast, Snell and Wilcox and the BBC with the aim of

Im

Reθ
WN/2 = −1

WN/4 = −J

WN/4 = −J

W0 = 1

Figure 13.14 Factorization of the roots by −1, j and −j



Low Power FPGA Implementation 347

1 1 1

−j

−j

−1 j

j
−1 1 −1

−1

Input
Formatter

16-point
commutator

1 1 1

−1

−1−1 1

−1

X X X ROM

64-point
commutator

X X X ROM

Output
Formatter

j

−j

−j

−j

−j

j

j

j

1 1 1

−1

−1 1

−1

−1

Figure 13.15 64-point FFT architecture

developing a 64-point FFT processor for use in digital TV applications (Hui et al. 1996). The focus
of the work was to investigate if this regularity would transfer to a FPGA implementation, so a
64-point FFT (QFFT 64) architecture was coded in VHDL and compared with AFFT 64, a 64-point
soft IP FFT core from Amphion (now Conexant) and XFFT 64, a 64-point FFT core generated from
Xilinx’s Coregen IP library. The latter two designs were designed to be highly parameterized and
could operate in various modes, but both would appear to be based on a similar architecture to that
presented in Figure 13.13(a). Table 13.4 has been developed from results taken from the Virtex-2Pro

platform developed specifically to allow power comsumption measurements using a test harness
and real power measurements. As the cores operated at different speeds, a number of different cores
were used for each configuration namely 1 × QFFT 64, 4 × XFFT 64 and 4 × AFFT 64 cores at
800 MSPS and 3 × QFFT 64, 12 × XFFT 64 and 12 × AFFT 64 cores at 2.4 GSPS.

Figure 13.16 shows the toggling activity for the various netlengths given. As with the multiplier
example shown in Figure 13.12, the regularity of the architecture has resulted in much smaller
netlength, as indicated by the capacitances on the x -axis. In addition, there is dramatically reduced
toggling on these nets. This represents the main saving in power consumption for the core.

In addition to the regular structure, the designs have all been pipelined, which has acted to
reduce the netlengths in all of the designs. To further minimize interconnect, coefficients were
pre-computed and stored in distributed RAM local to the PE. The input, output and commutator

Table 13.4 Power consumption and resource usage for 800 MSPS

Power Resources

Data set 1 Data set 2 Slices LUTs Mult18 × 18

QFFT64 1029 945 1950 2966 18
XFFT64 1616 (36%) 1496 (37%) 4991 (61%) 6571 (55%) 24 2(5%)
AFFT64 4044 (75%) 3288 (71%) 9697 (80%) 15871 (81%) 0
QFFT64 1029 945 1950 2966 18
XFFT64 1616 (36%) 1496 (37%) 4991 (61%) 6571 (55%) 24 2(5%)
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components consist of a series of delays and commutation multiplexers. Delay lines are implemented
as shift register LUTs (SRLs) which allow variable delay length with no interconnect penalty.

13.11 Conclusions
The chapter has given a description of the sources of power consumption in FPGAs, covering both
static and dynamic power consumption. Whilst some techniques were presented for static power
reduction, the majority of the techniques focused on dynamic power reduction as this represented
the main techniques available to the designer, due to the prefabricated nature of the FPGA. A
number of techniques including data reordering, fixed coefficient functionality, use of pipelining
and imposition of regularity were highlighted. These were then applied to the design of a 64-point
FFT processor.

There are a number of other technqiues that merit considerations such as the development of
memory architectures. One of the main advantages of FPGAs is the availability of localized memory.
Typically this is not exploited as it is difficult to operate with multiple memory resources. However,
developing high-level design methodologies to allow the creation of local memory in the resulting
architecture is highly attractive as it represents a much more powerful, locality optimization than
the one presented here. In addition, this can be driven from the dataflow level as shown in Fischaber
et al. (2007). It is the authors’ opinion that this will increasingly become an area of research over
the next decade.
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14
Final Statements

14.1 Introduction
The book has outlined many of the techniques needed to create FPGA solutions for DSP systems.
Some of these have been encapsulated within the design tools and then applied to a number of
design examples. In addition to achieving efficient FPGA implementations in terms of area, speed
and throughput rates, the book has also covered the key area of low-power implementations, briefly
covering a number of techniques to reduce the dynamic power consumption. The key of these
approaches was to derive an efficient circuit architecture which successfully utilized the underlying
resources of the FPGA to best match the computational and communication requirements of the
applications. Typically, this involved using high levels of parallelism and pipelining.

If FPGA-based DSP system implementation is to be successfully automated, this requires incor-
poration of the tools described in Chapter 9, either within commerical HDL-based or C-based
design tools (as is beginning to happen with the Synplify DSP tools), or within higher-level design
environments such as those outlined in Chapter 11. If this is to be successful, then any high-level
approach should allow designers to create efficient FPGA implementations from high-level descrip-
tions, and/or to incorporate existing IP cores, as this may represent considerable years of design
time, within the high-level design flow.

The purpose of this chapter is to give some attention to issues which have either had to be ignored
or that have not been described in detail. In Section 14.2, reconfigurable FPGA systems fall into this
latter category, as the underlying programmable nature of FPGAs provides an interesting platform
to allow the realization of such systems. Two topics which need additional comment and which
are mentioned in the text in Sections 14.2 and 14.3, are implementation of dedicated floating-point
hardware on FPGA and the creation of memory architectures, respectively. In Section 14.4, the
chapter also attempts to address future trends and outline future challenge for FPGA developers.

14.2 Reconfigurable Systems
Conventionally, the realm of programmability has been the domain of the microprocessor which
executes a sequence of instructions describing the required behaviour of the system; system func-
tionality is then changed by changing the instructions. This has the advantage that it does not
require any modification of the circuitry, but is limited in that it cannot deliver the same processing
performance and power consumption that comes with a custom hardware solution. The problem is
that quite a considerable portion of the circuitry that goes into a modern microprocessor is used

FPGA-based Implementation of Signal Processing Systems R. Woods, J. McAllister, G. Lightbody and Y. Yi
 2008 John Wiley & Sons, Ltd
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for storage and control. This overhead is needed to allow the computational tasks to heavily reuse
the small, active portion of the microprocessor, namely the function units (FUs).

Conceptually, the FUs are all that are needed to evaluate the operations describing the system.
However, in practice, a processor needs to move data between the FUs as well as between the
memory and FUs. This is complicated by the practical limitation of how much fast multi-port
memory can be placed near the FUs. To address this problem, the memory in a processor is
organized into layers of hierarchy. The fastest, most costly memory (the register file) forms the
top layer of the memory hierarchy and is placed at the heart of the system to store for values over
multiple cycles. With each step down the hierarchy, the memory increases in capacity, but at the
cost of slower access speeds. The movement and management of moving data between the layers
is another essential task required of the processor.

The result of developing this programmable architecture is that a lot of transistors are not
performing any useful computation at one time. In an environment where silicon area is increasingly
becoming a premium commodity, there is a strong need to reduce the pressure on large memory
blocks as this will lead to bottlenecks. With regard to system memory, there is an effect known
as memory wall, as proposed by Flynn et al. (1989) which indicates that the ratio of the memory
access time to the processor cycle time will increase as the technology improves.

This would tend to indicate that a major change is needed in terms of how architectural solu-
tions are derived. To some extent this was seen in the 1980s where damning forecasts on the
impact of interconnect delay implied a shift to new architectures, such as those based on systolic
arrays architectures (Kung and Leiserson 1979, Kung 1988); one major development was the ill-
fated iWarp multiprocessing supercomputer developed jointly by Intel and H T Kung’s group at
Carnegie Mellon University. The aim was to build an entire parallel-computing node in a single
microprocessor with the classical organization of systolic arrays, namely with localized memory
and nearest-neighbour communications links. Whilst this concept worked well for highly compu-
tational operations, such as matrix–matrix and matrix–vector-based computations, it worked less
well for less regularly organized computations.

Reconfigurable computing however, does not suffer from this limitation as the main attraction
is to change the hardware based on the computational needs. It is targeted at complex systems
with the aim to organize functionality in such a way that the computationally complex aspects are
decomposed into the field-programmable hardware; reconfigurable computing allows the accelera-
tion seen in the earlier sections of this book to be achieved with the more control-orientated aspects
being mapped to a more suitable platform, namely a processor. This infers the use of programmable
processors connected to single or arrays of FPGAs.

14.2.1 Relevance of FPGA Programmability

In the early days of FPGAs, a number of different programming technologies emerged specifically
E2PROM technology, antifuse technology and of course, SRAM technology. SRAM programming
technology brought about an interesting mode of operation, namely that the functionality could be
changed as part of the normal mode of operation or in other words, reconfigured. This could either
be done statically between downtimes in normal modes of operation or dynamically, i.e. as part
of the normal mode of operation. Basically, the FPGA comprise a huge amount of programmable
logic, registers, memory blocks and dedicated processing blocks which can be configured to work
in different ways to realize a variety of functions. The FPGA can be considered to be like a smart
memory device where the ‘state’ of the structure is downloaded from a processor to the FPGA
device. This configuration of the FPGA is then used to perform an operation on the incoming data.
By rewriting different data to the FPGA device, the function performed on the data is changed. So,
rather than writing and reading data to a memory device, we are storing data to the FPGA device
which changes the function of the data fed into, and accepted back from, the FPGA device.
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This is designated as comprising two distinct strata by (Maxfield 2004), namely the logic stra-
tum which performs the operation as outlined above and stores the necessary information for the
data in the available memories and the SRAM configuration stratum which contains the necessary
programming information. Thus, interacting with the logic stratum is a normal mode of operation
whereas programming the SRAM configuration stratum defines the mode of configuration. To use
this as a programming mode is highly attractive, meaning it is possible to program the hardware
to best meet the computational requirements under consideration, ideally on demand, as and when
required.

This concept remains a key attraction as it meant that the available hardware resource could
be configured to most efficiently implement the functionality required, but this presents a number
of challenges. These include the impact of the time to reconfigure the hardware in environments
such as DSP, where data is continually being fed and thus must be stored. In addition, there is the
impact in processing time, as indicated by the graph in Figure 14.1 taken from Heron et al. (2001)
which shows that the reconfiguration time TR can have an impact on the performance capability,
even though the performance rate of the FPGA is superior. Thus there is a break-even time, TB

after which it becomes advantageous to perform reconfiguration. The underlying reliability of a
system is not in question as the state of the device is constantly being changed; the question must
be asked if the hardware has configured properly.

14.2.2 Existing Reconfigurable Computing

There has been a lot of work on reconfigurable computing platforms, with a good reviews available
(Bondalapati and Prasanna 2002, Compton and Hauck 2002, Todman et al. 2005). The classification
of reconfigurable systems was highlighted initially in (Compton and Hauck 2002) and revised in
Todman et al. (2005). A simplified version of the diagram shown in Todman et al. (2005) is given
in Figure 14.2. The figure shows how reconfigurable units, typically in the form of FPGAs, can be
added to conventional CPUs to provide the CPU/FPGA configuration.

In the first class shown in Figure 14.2(a), the reconfigurable unit is seen as an external pro-
cessing unit. A number of example boards exist for this type of configuration from both main
FPGA vendors, and also companies such as Celoxica. The second and third classes use a recon-
figurable unit as a dedicated co-processor unit, either connected solely to the bus or to both the
CPU and the bus. Research examples include RAPid (Ebeling et al. 1996) and Piperench (Laufer
et al. 1999). The fourth class incorporates the reconfigurable unit or fabric within the CPU. This
would either be in the form of a fabric to change the interconnectivity of the individual processor

Time (ms)

Computational
Performance
(2D 8 × 8 DCT/s)

µPFPGA

TB

TR 5.74.2

1696

Figure 14.1 Impact of reconfiguration time for an 8 × 8 2D DCT implementation
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Figure 14.2 Classes of reconfigurable systems

or could involve the reconfiguration of a subunit to change its functionality or individual intercon-
nectivity, or both. An example is the reconfigurable algorithm processing (RAP) technology from
Elixent (2005).

This comparison now is a little dated as the evolution in FPGA technology, as described in
Chapter 5, indicates. FPGAs are now available with both software and hard microprocessors
included on the FPGA substrate. This means that the concept of using FPGAs as a hardware
accelerator can still exist, as demonstrated in some commercial and high-performance computing
solutions, but now the concept of incorporating the core within the FPGA fabric exists. However,
many of the issues addressed by the models still apply as many of the approaches considered
the implications in terms of performance with regard to the ratio of communications/computing
hardware, both in terms of speed and cost.

14.2.3 Realization of Reconfiguration

There are a number of ways that this reprogrammability can be realized where each approach has
subtle, but important differences. The first lies in how the reprogrammability is used in the design to
allow a degree of flexibility to be incorporated into the circuit. A large circuit will quickly become
very large if many partially redundant components are incorporated at any particular instant of
time. MacBeth and Lysaght (2001) highlight the unnecessary overhead of having a reprogrammable
core in a reprogrammable device and propose categorizing these circuits as programmable multi-
function cores (PMCs). This can also help FPGA realization close the performance gap with ASICs;
in ASICs, circuits have to be developed in such a way that they provide versatility, allowing all
possible situations to be covered in the one implementation, thereby trading area and speed for
flexibility. As the FPGA fabric has to support reconfiguration by its very nature, these resources
could be used to change the circuit (its state) so that the best circuit implementation can operate at
any given time. The more tailored the circuit becomes, the more likely it will have to be modified to
maintain the advantage, but there is a great benefit in terms of both circuit area and data throughput.
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Using the fabric of the FPGA as part of the process of changing the circuit’s state, can deliver an
area decrease of 21% and a speed increase of 14% (MacBeth and Lysaght 2001).

Run-Time Reconfiguration

FPGAs have a limited capacity to perform logic operations, but reconfiguration can be used to get
around this. By time-sharing the FPGAs logic, the FPGA can implement circuit operations that
are beyond the area capability of the hardware (Lysaght and Stockwood 1996). This has led to the
concept of virtual hardware (Brebner 1999) where the physical resource does not limit the amount
of circuitry that can be accommodated on a single device.

Run-time Reconfiguration (RTR) can be used to simplify the design of the hardware (Brebner
1999, MacBeth and Lysaght 2001, Walke et al. 2000). When a circuit design is constrained by
being used across multiple tasks or by being reduced in size through data folding, it will cause
complex timing issues and may require hardware sharing. Within the FPGA, a circuit can time-
share portions of the hardware. This can be used to simplify the circuit designs. For example, in
a hypothetical system proposed by (Walke et al. 2000), three finite impulse response (FIR) poly-
phase filters are required with different tap lengths; each filter was designed to time-share a limited
number of multipliers, but not all at the same time; reconfiguring the circuitry with the choice
of FIR filter to be used, removes the time and control complexity required to combine the three
filters together. So when the hardware is required to cover a number of possibilities, for reasons
of limited hardware resource or multiple standards, a system can reconfigure to select the parts
of the circuit that are required. This has distinct advantages as it obviates the need to develop
the complex control circuitry needed to switch the various circuit modes, such as that required in
ASIC design.

14.2.4 Reconfiguration Models

A number of models have emerged for reconfiguration.

Single Context

The traditional model of the commercially available FPGA is the single context, which only allows
the circuitry to be changed by loading a completely new configuration. This type of model is not
best suited for RTR because of the associated time to make changes in the firmware. The speed at
which the data can be written is limited by the bandwidth of the configuration data transfer from
its source to the FPGA. This can be determined by the width (pins) and speed of the interface on
the device and in the way it is interfaced to the system. While reconfiguration data is being written
onto the device, the current circuitry cannot be used. Other features have been proposed and added
to overcome this bandwidth limitation.

Partially Reconfigurable

Examples of commercial partially reconfigurable FPGAs include the Stratix r©III family from Altera
and the Virtex

TM
-5 FPGA family from Xilinx. These devices have much more scope for RTR than

single context FPGA as sections can be changed independently. As the reconfiguration sections are
made smaller, the cost incurred in making changes to the circuitry reduces, thus allowing frequent
changes without significant overheads. A feature that is often available with this type of device is
reconfiguration with continued operation. While parts of the FPGA are reconfigured, other parts
can still be functional, masking the time needed for reconfiguration.



356 FPGA-based Implementation of Signal Processing Systems

Multi-Context

There have been a number of studies into multi-context designs (DeHon 1996, Scalera and Vazquez
1998, Trimberger et al. 1997), but so far this has not resulted in a commercially available product.
These devices tackle the problem of transferring the reconfiguration data by storing more than one
plane of reconfiguration data on-chip. The process of reconfiguration is achieved by selecting one
of the planes to drive the configuration of the logic. The switch between contexts can be achieved
in only a few clock cycles. The multiple contexts allow background loading of the configuration
data, as the configuration data can be loaded into a context that is not active.

A possible problem with such a device lies in the number of contexts required in a typical system
implementation, this may be greater than the available hardware and the sharing of data between
contexts. The SCORE (Section 2.6.2) architecture shares some similarities with the multiplier
contexts FPGA, but allows the amount of resources used for the contexts to be altered.

Pipeline Reconfiguration

The pipeline reconfiguration model views the reconfiguration of the device as pipelined blocks and
can be seen as a modification of partially reconfigurable FPGAs (Luk et al. 1997). It is viewed
as pipeline datapaths, each stage of which is reconfigured as a whole. This permits the overlap-
ping of the reconfiguration and execution. The required reconfiguration is broken into stages of
reconfiguration where each stage is loaded in sequence. After each stage has been programmed,
it immediately begins to operate, thereby the configuration of a stage is exactly one step ahead
of the dataflow. Once the device has run out of space, it starts to swap out stages that have been
resident longest on the FPGA, replacing them in the next stage. This allows applications to exceed
the physical resources of the device and still run with a reduced throughput. Piperench (Laufer
et al. 1999) is an example of this type of model. In this case, the author points out the advantage of
forward compatibility, as further devices can retain the same stages and just increase the numbers
of stages.

Configuration Caching

Figure 14.3 shows an abstracted model of the FPGA, where there is a FPGA array and a reconfig-
uration data storage device. As it is not possible to supply the bandwidths required, the movement
of configuration data can result in a long halt in the circuit processing. In this case, pre-fetching
and caching can be used (Hauck et al. 1999), as shown in Figure 14.3, to reduce the ‘burstiness’ of
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Figure 14.3 Pre-fetching and caching used to get around the bandwidth limitation of reconfigu-
ration data transfer
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the data movement. Caching data close to the FPGA’s array, such as on-chip, makes it possible to
use a high-bandwidth channel with the cache being fed via a narrow channel. However, a problem
with pre-fetching occurs with conditional branching when incorrect data is fetched (Hauck et al.
1999).

Configuration Compression

Configuration compression reduces the amount of data to be moved and therefore cuts the recon-
figuration time by using data compression. Figure 14.4 shows an abstract view of this model.
As with the pre-fetching, the link from the decompression hardware to the FPGA array is much
larger than the link to the reconfiguration data store. The concept was initially developed for the
Xilinx XC6200 FPGA technology which has a wildcarding feature that allows address and data
values to be written simultaneously to multiple locations. This device had been developed specif-
ically to support dynamic reconfiguration and it recognized that it is necessary to change parts
of the device at the same time, hence the wildcarding features. Hauck et al. (1999) showed that
it is possible to compress the data streams in a way that allows the wildcarding hardware of the
XC6200 to decompress the reconfiguration data stream. Hauck et al. (1999) and Li and Hauck
(2001) went on to consider other compression methods with low overheads that can be used with
other FPGAs.

14.3 Memory Architectures
The support for parallel and pipelining operation was highlighted as the major attraction of FPGAs
when considered for implementing DSP systems. However, one factor that has received some
attention throughout is the availabilitiy of a wide range of different sizes of parallel memory,
whether this was in the form of distributed RAM blocks, simple LUTs or a single flip-flop. As was
highlighted by Flynn et al. (1989), the memory wall gives a depressing future for fixed computer
architectures as the ratio of the memory access time to the processor cycle time increases. Whilst
some approaches act to address this via technology, FPGAs get around this problem by naturally
developing a highly parallel solution through the use of a distributed memory architecture. This
can happen through deliberate derivation of a distributed memory architecture or as a result of a
algorithmic optimization, as for example in the application of pipelining which is in effect results
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in the creation of distributed memory. This approach is particularly suited for DSP due to data-
independent operation and resgular high computation rates, thereby allowing parallel architectures
with little control complexity.

This would then suggest that FPGAs provide a useful platform for developing new types of
computer architectures which are memory-orientated, rather than computation-orientated. The text
has clearly shown how different circuit architectures were developed for different DSP algorithms.
The architectrual derivations were usually driven by creating the necessary computation resources
to meet the detailed specifications of the system. There is a strong case for suggesting more detailed
research into the development of memory-orientated architectures where some basic principles are
developed for creating the memory requirements of some DSP algorithms. This was seen to some
extent in the Imagine processor (Kapasi et al. 2002) where the memory was developed for the
class of algroithms needed, and in trivial FPGA examples in Chapters 6, 8 and 9, where different
memory, i.e. LUTs in the forms of SRLs, was selected in preference to flip-flops to provide more
efficient implementation delay chains, either because of lack of flip-flop resource or more relevant
selection of resource. However, this has tended to be a good design decision rather than a conscious
need to develop memory-orientated architectures. Work by Fischaber et al. (2007) has suggested
how design of memory can be directed from the dataflow level.

14.4 Support for Floating-point Arithmetic
A conscious decision to first introduce scalable adder structures in early FPGAs and then dedicated
multiplicative complexity in latter versions, such as the such as the Stratix r©III family from Altera
and the Virtex

TM
-5 FPGA family from Xilinx, has really influenced the use of FPGAs for DSP

systems. Along with the availability of distributed memory, this has driven an additional interest
in using FPGAs for supercomputing due to the extremely high computation rates required. A
number of hardware platforms are now available from a wide range of vendors including solutions
from Cray, SGI and Nallatech, and would appear to offer high performance for supercomputing.
However, work by Craven and Athanas (2007) would suggest that the performance achievable,
even when using many of the techniques highlighted in this book, is limited and that use of FPGA
in supercomputing applications, will have limited application.

A key reason for this is the lack of suitable floating-point support in FPGA, even though the
work in Craven and Athanas (2007) avoided the use of floating-point arithmetic and used fixed-point
hardware. The figures outlined in Chapter 3 and repeated here in Table 14.1, highlight the problems
of using floating-point arithmetic in FPGAs. A fixed-point implementation would only need one
DSP48 if the wordlength was less than 18 bits, and would not require a lot of the flip-flops outlined
in the table. This extra hardware is required to implement the hardware necessary to perform the
data selection, rounding and normalization, illustrated earlier in Figure 3.10. If FPGAs are to be

Table 14.1 Area and speed figures for various
floating-point operators implemented using Xilinx
Virtex-4 FPGA technology

Function DSP48 LUT Flip-flops Speed (MHz)

Multiplier 4 799 347 141.4
Adder 620 343 208.2
Reciprocal 4 745 266 116.5
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Table 14.2 Impact of technology scaling on interconnect delay (Davis et al. 2001)

Intrinsic delay of 1mm interconnect (ps)
Technology MOSFET switching delay (ps) Minimum scaled Reverse scaled

1.0 µm(Al, SiO2) 20 5 5
0.1 µm(Al, SiO2) 5 30 5
35 nm(Cu, low k) 2.5 250 5

used extensively in supercomputing, support for these functions will need to be included in future
versions of FPGAs as well as much better high-level programming support for pipelining.

14.5 Future Challenges for FPGAs
The offerings in the most recent commercial FPGAs are highly impressive. The recent devices
represent highly complex platforms which push the silicon technology and now apparently are
used, in preference to memory, as complex devices to test future silicon technologies. However,
there are number of challenges that will particularly affect FPGAs.

Technology scaling offers a number of advantages, but it accentuates one particular relationship
which is problematic for FPGAs and that is the ratio of interconnect to transistor delay. Some
examples of this are shown in Table 14.2 which is taken from (Davis et al. 2001) and shows
the ratio of interconnect to transistor delay for various technologies. In this table, minimum scaling
represent what will actually happen to the delay if no measures are taken into consideration whereas
reverse scaling refers to the impact of fattening the wires, thereby reversing the scaling process.
Reverse scaling will be deliberately employed to counteract the increased resistance impact of the
interconnect, as indicated in (Table 14.2). Whilst this addresses the timing problems, it causes a
dramatic decrease in wiring densities, thereby reducing levels of integration and making larger
bus-driven structures inefficient from an area perspective. Given the high dependence of FPGAs
on programmable routing, either approach has implications; one, minimum scaling, will act to slow
the system considerably whereas the other, reverse scaling, will have a major area impact. It seems
likely that the impact of this effect will be to increase the use of larger heterogeneous blocks on
FPGAs.

Progressive scaling has driven the semiconductor industry, allowing vendors to deliver faster,
cheaper circuits with ever-increasing functionality. A more serious issue than increasing impact
due to interconnect delay, is the impact of process variation. With technology at 40 nm and the
shift towards sub-10 nm by 2018 (Semiconductor Industry Association 2005), variability in device
characteristics now represents a major challenge in delivering next-generation SoC systems, includ-
ing FPGAs. With other problems it has been possible to adopt the worst case and then use other
approaches to overcome the limitations, but with process variation, questions arise about the reasons
for investing in next-generation scaling.
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