
Fernanda Kastensmidt · Paolo Rech
 Editors

FPGAs and Parallel
Architectures
for Aerospace
Applications
Soft Errors and Fault-Tolerant Design

 FPGAs and Parallel Architectures
for Aerospace Applications

 Fernanda Kastensmidt • Paolo Rech
 Editors

 FPGAs and Parallel
Architectures for Aerospace
Applications
 Soft Errors and Fault-Tolerant Design

 ISBN 978-3-319-14351-4 ISBN 978-3-319-14352-1 (eBook)
 DOI 10.1007/978-3-319-14352-1

 Library of Congress Control Number: 2015945021

 Springer Cham Heidelberg New York Dordrecht London
 © Springer International Publishing Switzerland 2016
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

 Editors
 Fernanda Kastensmidt
 Instituto de Informatica
 Federal University of Rio Grande do Sul
 Porto Alegre, Rio Grande do Sul , Brazil

 Paolo Rech
 Instituto de Informática
 Federal University of Rio Grande do Sul
 Porto Alegre , Rio Grande do Sul , Brazil

www.springer.com

v

Part I Introduction

 1 Radiation Effects and Fault Tolerance Techniques
for FPGAs and GPUs ... 3
 Fernanda Kastensmidt and Paolo Rech

Part II Applications

 2 Brazilian Nano-satellite with Reconfigurable SOC
GNSS Receiver Tracking Capability .. 21
 Glauberto L. A. Albuquerque , Manoel J. M. Carvalho ,
and Carlos Valderrama

 3 Overview and Investigation of SEU Detection
and Recovery Approaches for FPGA-Based
Heterogeneous Systems.. 33
 Ediz Cetin , Oliver Diessel , Tuo Li , Jude A. Ambrose ,
 Thomas Fisk , Sri Parameswaran , and Andrew G. Dempster

Part III SRAM-Based FPGAs

 4 A Fault Injection technique oriented to SRAM-FPGAs..................... 49
 H. Guzmán-Miranda , J. Barrientos-Rojas , and M. A. Aguirre

 5 A Fault Injection System for Measuring Soft
Processor Design Sensitivity on Virtex-5 FPGAs 61
 Nathan A. Harward , Michael R. Gardiner ,
 Luke W. Hsiao , and Michael J. Wirthlin

 6 A Power-Aware Adaptive FDIR Framework
Using Heterogeneous System-on-Chip Modules 75
 Shane T. Fleming , David B. Thomas , and Felix Winterstein

 Contents

vi

 7 Hybrid Configuration Scrubbing for Xilinx 7-Series FPGAs 91
 Michael Wirthlin and Alex Harding

 8 Power Analysis in nMR Systems in SRAM- Based FPGAs 103
 Jimmy Tarrillo and Fernanda Lima Kastensmidt

 9 Fault-Tolerant Manager Core for Dynamic
Partial Reconfiguration in FPGAs ... 121
 Lucas A. Tambara , Jimmy Tarrillo , Fernanda L. Kastensmidt ,
and Luca Sterpone

 10 Multiple Fault Injection Platform for SRAM- Based
FPGA Based on Ground-Level Radiation Experiments 135
 Jorge Tonfat , Jimmy Tarrillo , Lucas Tambara ,
 Fernanda Lima Kastensmidt , and Ricardo Reis

Part IV Flash-Based FPGAs

 11 Radiation Effects in 65 nm Flash-Based Field
Programmable Gate Array ... 155
 Jih-Jong Wang , Nadia Rezzak , Durwyn DSilva , Chang-Kai Huang ,
 Stephen Varela , Victor Nguyen , Gregory Bakker , John McCollum ,
 Frank Hawley , and Esmat Hamdy

 12 Using C-Slow Retiming in Safety Critical
and Low Power Applications .. 175
 Tobias Strauch

 13 Improving the Implementation of EDAC Functions
in Radiation-Hardened FPGAs .. 189
 Carlos Colodro-Conde and Rafael Toledo-Moreo

 14 Neutron-Induced Single Event Effect
in Mixed-Signal Flash-Based FPGA... 201
 Lucas A. Tambara , Marcelo S. Lubaszewski , Tiago R. Balen ,
 Paolo Rech , Fernanda L. Kastensmidt , and Christopher Frost

Part V Embedded Processors in System-on-Chips

 15 Mitigating Soft Errors in Processors Cores Embedded
in System-on Programmable-Chips ... 219
 Stefano Esposito and Massimo Violante

 16 Soft Error Mitigation in Soft-Core Processors 239
 Antonio Martínez-Álvarez , Sergio Cuenca-Asensi ,
and Felipe Restrepo-Calle

Contents

vii

 17 Reducing Implicit Overheads of Soft Error Mitigation
Techniques Using Selective Hardening .. 259
 Felipe Restrepo-Calle , Sergio Cuenca-Asensi ,
and Antonio Martínez-Álvarez

 18 Overhead Reduction in Data-Flow Software- Based
Fault Tolerance Techniques ... 279
 Eduardo Chielle , Fernanda Lima Kastensmidt ,
and Sergio Cuenca-Asensi

 19 Fault-Tolerance Techniques for Soft-Core Processors
Using the Trace Interface .. 293
 Luis Entrena , Almudena Lindoso , Marta Portela-Garcia ,
 Luis Parra , Boyang Du , Matteo Sonza Reorda ,
and Luca Sterpone

Part VI Parallel Architectures and GPUs

 20 Soft-Error Effects on Graphics Processing Units 309
 Paolo Rech , Daniel Oliveira , Philippe Navaux , and Luigi Carro

Contents

 Part I
 Introduction

3© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_1

Chapter 1
Radiation Effects and Fault Tolerance
Techniques for FPGAs and GPUs

Fernanda Kastensmidt and Paolo Rech

Abstract  This book introduces the concepts of soft errors in FPGAs and GPUs.
The chapters cover radiation effects in FPGAs, fault-tolerant techniques for FPGAs,
use of COTS FPGAs in aerospace applications, experimental data of FPGAs under
radiation, FPGA embedded processors under radiation, and fault injection in
FPGAs. Since dedicated parallel processing architectures such as GPUs have
become more desirable in aerospace applications due to high computational power,
GPU analysis under radiation is also discussed.

1.1  �Introduction

Field Programmable Gate Array (FPGA) components are very attractive for aero-
space applications, as well for many applications at ground level that require a high
level of reliability, as automotive, bank servers, processing farms, and others. The
high amount of resources available in programmable logic devices can be applied to
add flexibility to the on-board computer in satellites and to the automotive industry,
for example. As FPGAs can be configured in the field, design updates can be per-
formed until very late in the development process. In addition, new applications and
features can be configured after a satellite is launched, or updated in hash environ-
ments. Modern FPGAs are System-on-Chip (SoC) composed of variety of soft and
hard processors, embedded DSP and memories and a large number of complex
configurable logic blocks able to customized to implement the user’s design.

Graphics Processing Units (GPUs), traditionally employed to accelerate graph-
ics rendering in personal computers or portable devices. In multimedia applications
reliability is not a concern as the probability of failure is pretty low and a given
number of errors are tolerated, as human eye could not distinguish them.
Nevertheless, lately GPUs start to be employed also in applications in which
reliability matters. Thanks to their efficiency, computing capabilities, and low power

F. Kastensmidt (*) • P. Rech
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
e-mail: fglima@inf.ufrgs.br; prech@inf.ufrgs.br

mailto:fglima@inf.ufrgs.br
mailto:prech@inf.ufrgs.br

4

consumption compare to traditional CPUs, GPUs are in fact part of projects in the
aerospace and automotive field. GPUs parallel capabilities could be exploited to
compress images on satellites, to limit the bandwidth required to send them to
ground. Additionally, GPUs are used to implement the Advanced Driver Assistance
Systems (ADAS) that helps the driver to avoid accidents. Finally, GPUs are heavily
employed as accelerators in High Performance Computing (HPC) centers. A large
HPC center has thousands of GPUs that work in parallel, increasing significantly
the probability of having at least one GPU corrupted by radiation.

Unfortunately both FPGAs and GPUs have been found to be very sensitive to
radiation, mainly as they are fabricated in nanometric process technologies. It is
fundamental to experimentally measure the soft error rate of the available resources,
as well as the output error rate of specific applications, to evaluate if they meet the
project reliability requirements. The experimental characterization of those pro-
grammable components and GPU are mandatory to sustain its applicability under
transient faults. The test methodology and characterization of FPGAs and GPUs
under radiation is needed to appropriate select and evaluate fault tolerant techniques
to make those components more resilient to radiation. Radiation experiments,
although complex and costly, are the only known and certified way to precisely
measure the probability of failure in modern integrated circuits.

1.2  �Radiation Effects

Integrated circuits operating in radiation environment are sensitive to transient
faults caused by the interaction of ionizing particles with silicon. A particle is con-
sidered ionizing if it has the capability of dividing a quite atom into ions. Ionizing
radiation generates failures in electronic devices as the deposited charge may per-
turb a transistor state. The charge may be deposited directly (if the ionizing particle
is charged) or indirectly. Neutrons impact, for instance, generates secondary parti-
cles (alpha particles, ions, protons), which are charged and then may perturb a tran-
sistor. The interaction of the ionizing particles with the transistors may provoke
transient and permanent effects depending on the location and amount of charge
transferred (directly or indirectly) to the material as a consequence of the particle
collision with the silicon.

The effects that are caused by a single event interaction are called Single Event
Effects (SEE) and they can be transient or permanent [1]. When the SEE has a tran-
sient behavior, it is called a Soft Error, as the device is not permanently damaged.
Examples of Soft Errors are Single Event Upset (SEU) and Single Event Transient
(SET). An SEU is a bit-flip that occurs when the ionizing particle hitting a transistor
of a memory cell deposits enough change to revert the state of the cell. The memory
cell still works perfectly in the sense that a write or read operation is performed
normally, but the stored information is corrupted. When the ionizing particle hits a
logic cell, it generates a voltage spike that, if latched, leads to a SET. Again, the
logic cell is not damaged in the sense that a new operation will eventually be

F. Kastensmidt and P. Rech

5

correctly performed. It is worth noting that the fact of being Soft does not reduce the
severity of radiation-induced errors. On the contrary, the propriety of being transient
and stochastic makes Soft Errors extremely hard to be identified and corrected.
A permanent fault in a memory cell simply marks the cell as unused, while the pos-
sibility of having SEU makes the whole memory array as possible faulty. It is worth
noting that with the shrink of transistor dimensions it is possible, for one single
impinging particle, to interact with more than one transistor, generating a Multiple
Cell Upset (MCU) in memory arrays. If the corrupted bits belong to the same mem-
ory word the MCU is called Multiple Bit Upset (MBU). MBU are particularly criti-
cal as they undermine the effectiveness of Error Correcting Codes (ECC). Figure 1.1
exemplifies SEU, MBU and SET in integrated circuits.

Radiation can generate also permanent faults as Single Event Latchup (SEL),
Single Event Gate Rupture (SEGR), or Single Event Burnout (SEB). Finally, the
accumulation of particle interactions causes an effect named Total Ionizing Dose
(TID) and it represents degradation in the performance of the transistors as it modi-
fies the threshold voltage and leakage current.

The radiation environment is composed of various particles generated by sun and
stars activity [2]. The space is full of galactic cosmic rays, which are heavy ions
produced by explosion of supernovas or collisions among celestial bodies. The
atoms released, wondering around the universe, loses protons or electrons and, thus,
gain charge. Interacting with the magnetic fields of planets and stars those ions are
accelerated, reaching energies in the order of GeV. The sun produces a flux of pro-
tons and electrons, which reach the earth with low energies as they do not have
sufficient time to be accelerated.

The particles can be classified as two major types: (1) energetic particles such as
neutrons, electrons, protons and heavy ions, and (2) electromagnetic radiation (pho-
tons), which can be X-ray, gamma ray, or ultraviolet light. The main sources of
energetic particles that contribute to radiation effects are protons and electrons
trapped in the Van Allen belts, heavy ions trapped in the magnetosphere, galactic
cosmic rays and solar flares. The charged particles interact with the silicon atoms
causing excitation and ionization of atomic electrons.

Fig. 1.1  SEU and MBU in the sequential logic and SET in the combinational logic

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

6

At the ground level, neutrons are the most frequent cause of upset. Neutrons
are created by cosmic ion interactions with the oxygen and nitrogen in the
upper atmosphere. It is worth noting that while the solar wind is trapped in the
Van Allen belts due to its low energy, galactic cosmic rays are so energetic to
pass the belts and hit the upper level of the terrestrial atmosphere. The neutron
flux is strongly dependent on key parameters such as altitude, latitude and
longitude. There are high-energy neutrons that interact with the material gen-
erating free electron hole pairs and low energy neutrons. Those neutrons inter-
act with a certain type of Boron present in semiconductor material creating
others particles. Alpha particles are secondary types of particles emitted from
interactions with radioactive impurities present in the device itself or in the
packaging materials and they are the greatest concern. Materials aim to minimize
the emission of alpha particles. However, it does not eliminate the problem
completely.

As an energetic particle traverses the material of interest for instance a reverse-
biased n+/p junction, it deposits energy along its path, as detailed explained in [3].
This energy is measured as a linear energy transfer (LET), which is defined as the
amount of energy deposited per unit of distance traveled, normalized to the materi-
al's density. It is usually expressed in MeV-cm2/mg. The total number of charges is
proportional to the LET of the incoming particle. Depending on the fabrication
details and the electrical characteristics of each sensitive node such as resistance
and capacitance, different amplitude and duration of the transient voltage pulse are
generated.

1.3  �Soft Errors in FPGAs

Field-Programmable Gate Arrays (FPGAs) are configurable integrated circuit based
on a high logic density regular structure, which can be customizable by the end user
to realize different designs. The FPGA architecture is based on an array of logic
blocks and interconnections customizable by programmable switches. Several dif-
ferent programming technologies are used to implement the programmable switches.
There are three types of such programmable switch technologies currently in use:
SRAM, where the programmable switch is usually a pass transistor or multiplexer
controlled by the state of a SRAM bit (SRAM based FPGAs); Antifuse, when an
electrically programmable switch forms a low resistance path between two metal
layers (Antifuse based FPGAs); and EPROM, EEPROM or FLASH cell, where the
switch is a floating gate transistor that can be turned off by injecting charge onto the
floating gate.

Customizations based on SRAM are volatile. This means that SRAM-based
FPGAs can be reprogrammed as many times as necessary at the work site and
that they loose their contents information when the memories are not con-
nected to the power supply. The antifuse customizations are non-volatile, so

F. Kastensmidt and P. Rech

7

they hold the customizable content even when not connected to the power
supply and they can be programmed just once. Each FPGA has a particular
architecture. Programmable logic companies such as Xilinx, MicroSemi,
Aeroflex (licensed for Quicklogic FPGAs), Atmel and Honeywell (licensed
for Atmel FPGAs) offer radiation tolerant FPGA families. Each company uses
different mitigation techniques to better take into account the architecture
characteristics.

1.3.1  �Single Event Effects on SRAM-Based FPGAs

The SRAM-based FPGA is composed of an array of configurable logic blocks
(CLB), a complex routing architecture, an array of embedded memories (Block
RAM), an array of digital signal processing components (DSP) and a set of control
and management logic. The CLBs are composed of Look-up Table (LUT) that
implements the combinational logic, and flip-flops (DFF) that implements the
sequential elements. The routing architecture can be very complex and composed of
millions of pre-defined wires that can be configured by multiplexers and switches to
build the desirable routing.

The configuration of all CLBs, routing, Block RAMs, DSP blocks and IO blocks
is done by a set of configuration memory bits called bitstream. According to the size
of the FPGA device, the bitstream can contain millions of bits. The memory bits that
store the bitstream inside the FPGA is composed of SRAM memory cells, so they
are reprogrammable and volatile. When an SEE occurs in the configuration memory
bit of an SRAM-based FPGA, it can provoke a bit-flip. This bit-flip can change the
configuration of a routing connection or the configuration of a LUT or flip-flop in
the CLB. This can lead to catastrophic effects in the designed circuit, since an SEE
may change its functionality.

SEE in the configuration memory bits of an SRAM-based FPGA has a persis-
tent effect and it can only be corrected when a new bitstream is loaded to the
FPGA [4]. In the combinational logic, the effect of an SEE is related to a persis-
tent fault (zero or one) in one or more configuration bits of a LUT. Figure 1.2
exemplifies an SEU occurrence in a LUT configuration bit and in a bit controlling
a routing connection. SEE in the routing architecture can connect or disconnect a
wire in the matrix. This is also a persistent effect and its effect can be a modifica-
tion in the mapped circuit, as a logic change or a short circuit in the combinational
logic implemented by the FPGA. It can take a great number of clock cycles before
the persistent error is detected and recovery actions are initiated, as the load of a
faulty-free bitstream. During this time, the error can propagate to the rest of the
system.

Bit-flips can also occur in the flip-flop of the CLB used to implement the user's
sequential logic. In this case, the bit-flip has a transient effect and the next load of
the flip-flop will correct it.

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

8

1.3.2  �Single Event Effects on Flash-Based FPGAs

Flash-based FPGAs have a reconfigurable array composed of VersaTiles and routing
resources that are programmable by turning ON or OFF switches implemented by
floating gate (FG) transistors (NMOS transistor with a stacked gate) [5]. The FG
switch circuit is a set of two NMOS transistors: (1) a sense transistor to program the
floating gate and sense the current during the threshold voltage measurement and
(2) a switch transistor to turn ON or OFF a data-path in the FPGA (Fig. 1.3). The
two transistors share the same control gate and floating gate. The threshold voltage
is determined by the stored charge in the FG. Figure 1.3 illustrates VersaTiles used
to implement some common logic gates. The VersaTiles are connected through a
four-level hierarchy of routing resources: ultra-fast local resources; efficient long-
line resources; high-speed, very-long-line resources; and the high-performance
VersaNet networks.

Each VersaTile can implement any 3-input logic functions, which is functionally
equivalent to a 3-inputs Lookup Table (3-LUT). But it is important to highlight that
the electrical implementation of the VersaTile is totally different than the electrical

Fig. 1.2  Example of an SEU occurrence in a LUT and in the routing of an SRAM-based FPGA

F. Kastensmidt and P. Rech

9

implementation of a Lookup Table (LUT). Hence, the VersaTile may have a different
electrical behavior to variability effects with respect to a 3-inputs LUT. The
VersaTile can also implement a latch with clear and reset, or D flip-flop with clear
or reset, or enable D flip-flop with clear and reset by using the logic gate transistors
and feedback paths inside the VersaTile block. For each configuration in the
VersaTile block, the number of FG switches and transistors in the critical path
changes. Single Event Transient (SET) pulses can hit the drain of the transistor at
OFF state as presented in Fig. 1.3 provoking a transient pulse in the configuration
switches. Or it can hit the sensitive nodes of the transistors in the VersaTile provok-
ing SET or bit-flip according to the customization of the tile (Fig. 1.4). Chapter 11
is focused on the evaluation of radiation-induced error in 65 nm Flash-Based
FPGAs. Chapter 14 gives an overview of the effects induced by neutrons in Mixed-
Signal Flash-based FPGAs.

Word

Floating Gate Switch In

Switching

Switch Out

Sensing

Fig. 1.3  SET in the
Flash-based FPGA
programmable switch

Fig. 1.4  SET and SEU in the Flash-based FPGA VersaTile

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://dx.doi.org/10.1007/978-3-319-14352-1_11
http://dx.doi.org/10.1007/978-3-319-14352-1_14

10

1.3.3  �Single Event Effects on Antifuse-Based FPGAs

Antifuse-based FPGAs consists of a regular matrix composed of combinational
(C-cells) and sequential (R-cells) surrounding by regular routing channels. All the
customizations of the routing and the C-cells and R-cells are done by an antifuse
element (programmable switch). Results from radiation ground testing have shown
that programmable switches either based on ONO (oxide-nitride-oxide) or MIM
(metal- insulator-metal) technology are tolerant to ionization and total dose effect
[6]. Therefore, the customizable routing is not sensitive to SEU, only combinational
logic and the flip-flops used to implement the design user sequential logic are sensi-
tive to SEE.

Another well known antifuse-based FPGA is from Aeroflex and QuickLogic. Its
architecture is composed of a regular matrix of configurable logic cells used to
implement the combinational logic and flip-flops, surrounding by a regular routing
matrix. Programmable switches called ViaLink connector are used to do all the
customizations.

In order to summarize the SEU and SET effects in FPGAs, Table 1.1 shows the
susceptible parts of the architectures and classifies the effects as transient or persis-
tent, when it is needed reconfiguration to correct the fault.

1.4  �Soft Errors on GPUs

Graphics Processing Units are complex parallel computing systems that dispose of
large memory structures as L2 and L1 caches or register files, efficient Arithmetic
Logic Units (ALU), and tasks schedulers and dispatchers.

Radiation can produce Single Event Upset as well as Multiple Bit Upset in the
memory structures of a GPU. If radiation corrupts a register the process using that
register for computation is likely to produce a wrong output. The peculiarity of
being parallel makes errors in the caches to be more critical for GPUs than for tra-
ditional CPUs. In fact, the L1 cache is shared among all the parallel processes in a
Steaming Multiprocessor (SM) while the L1 is shared among all the SMs. So, an
error in the L1 cache may, in the worst case, propagate to all the parallel processes
assigned to the struck SM. Similarly, an error in the L2 cache may affect all the
processes running on the GPU [7].

Table 1.1  Summary of SEU and SET effects in FPGAs

FPGA

SEU/SET in the logic of
the configuration basic
block Routing connections

Configurable
switches

SRAM-based persistent persistent persistent
Flash-based transient no no
Antifuse-based transient no no

F. Kastensmidt and P. Rech

11

When the impinging particle hit a logic gate, it may produce a Single Event
Transient. As for SEU, the criticality and the overall effect on the output of a SET
depends on the struck node. If the SET affects a logic gate inside a single core, the
thread assigned to that core for computation will probably produce a single failure
in the output. However, if the SET corrupts the parallel processes scheduler or
dispatcher, it could affect the computation of several processes, as well as induce an
application crash or system hang [8].

To have an exhaustive evaluation of GPU sensitivity is it then not sufficient to
measure the radiation sensitivity of the single resources like memories or logic
gates. It is also necessary to analyze how those resources are used in computation.
To do so, radiation experiments can be performed on a representative set of applica-
tions, to have sufficient data to extend to other algorithms. An alternative is to cal-
culate the program Architectural Vulnerability Factor (AVF), i.e. the probability for
the corrupted resource to generate an output failure, as done in [9]. Chapter 20
details the possible radiation effect on GPUs and presents possible way to evaluate
GPUs behaviors under radiation.

1.5  �Fault Tolerance Techniques

Fault-tolerance is defined as a set of techniques to provide a service capable of ful-
filling the system function in spite of (a limited number of) faults. Fault-tolerance
on semiconductor devices has been meaningful since upsets were first experienced
in space applications several years ago. Since then, the interest in studying fault-
tolerant techniques in order to keep integrated circuits (ICs) operational in such
hostile environment has increased, driven by all possible applications of radiation
tolerant circuits, such as space missions, satellites, high-energy physics experiments
and others. Spacecraft systems include a large variety of analog and digital compo-
nents that are potentially sensitive to radiation and therefore fault-tolerant techniques
must be used to ensure reliability.

1.5.1  �Resilience Techniques for FPGAs

Different fault tolerance techniques can be applied to FPGAs according to their type
of configuration technology, architecture and target operating environment.
Techniques can be implemented by the user at hardware description language
(HDL) before the design is synthesized into the FPGA. In this book, authors focus
on techniques that can be applied by the user at the HDL design.

The main techniques are either based on spatial redundancy or temporal redun-
dancy [10]. Spatial redundancy is based on the replication of n times the original
module building n identical redundant modules, where outputs are merged into a
majority voter. Usually n is an odd number. The voter decides de correct output by

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://dx.doi.org/10.1007/978-3-319-14352-1_20

12

choosing the majority of the equal output values. The most common case of
n-modular redundancy (nMR) is when n is equal to 3, where it is called Triple
Modular Redundancy (TMR). In this case, a majority voter is used that is able to
vote out 2 out of 3 values that are fault free. The TMR can be implemented in dif-
ferent ways by using large grain TMR, or breaking into small blocks and adding
extra voters. There is local TMR when only the flip-flops are triplicated, or global
TMR, also known as XTMR, where all the combinational and sequential logic is
triplicated. Also Diverse TMR (DTMR) can be used, where each redundant module
may present a different architecture implementation.

When dealing with the routing, different techniques can be chosen to increase or
decrease fan-out, delay and set of connections, which may have a different impact
in the SEE sensitivity. In addition, for those FPGAs programmable by SRAM,
reconfiguration is mandatory to correct upsets in the configuration bitstream. The
continuously blind full reconfiguration is called scrubbing and it is responsible to
fully reconfigure the FPGA by a golden bitstream. Partial reconfiguration can also
be used.

For embedded processors, one can use different mitigations based on software
redundancy, or processor redundancy like lock-step and recomputation. Software-
based fault tolerance techniques exploit information redundancy, control flow anal-
ysis and comparisons to detect errors during the program execution. For that
purpose, software-based techniques use additional instructions in the code area,
either to recompute instructions or to store and to check suitable information in
memory elements. In the past years, tools have been implemented to automatically
insert such instructions into C or assembly code, reducing significantly the harden-
ing costs.

Time redundancy is based on capturing a value twice or three times in time to
vote out a transient fault. The values are shifted by a delay [11]. The idea is to be
able to capture 2 out of 3 upset free values to be able to mask the fault.

Each of these techniques can protect SEU or SET, or both, as shown in Table 1.2
and they will be addressed in the chapters of this book.

Very often, System-on-Chip (SoC) implemented in FPGAs use a set of the forehead
mentioned mitigation techniques. Chapters 2 and 3 present a System on Chip (SoC)

Table 1.2  List of mitigation techniques that can be applied by the user in designs targeting FPGAs

Mitigation technique Abstraction level SET SEU

Local TMR HDL X
Global TMR or XTMR HDL X X
Large grain TMR HDL X X
Diverse TMR (DTMR) HDL X X
Voter insertion HDL X X
Reliability-oriented place and route algorithm FPGA Flow X X
Temporal redundancy HDL X
Embedded processor redundancy HDL/software-based X X
Scrubbing/partial reconfiguration System X

F. Kastensmidt and P. Rech

http://dx.doi.org/10.1007/978-3-319-14352-1_2
http://dx.doi.org/10.1007/978-3-319-14352-1_3

13

designs using SRAM-based FPGA with embedded processor cores for satellite applica-
tions where a set of mitigation techniques is employed. Chapter 6 details a failure
detection, isolation, and recovery framework that takes advantage of the resources avail-
able in heterogeneous systems. Chapter 7 proposes a novel scrubbing strategy for the
configuration memory of FPGAs. Chapter 8 evaluates the power requirements of
n-modular redundancy, Chapter 9 presents a fault-tolerant manager core for dynamic
partial reconfiguration in FPGAs. Chapter 12 proposes the use of C-Slow retiming for
safety-critical applications. Chapter 13 proposes a more efficient implementation of
EDAC function in Radiation-Hardened FPGAs. Chapter 15 presents hardening tech-
niques for embedded processors, while Chaps. 16 and 19 propose hardening techniques
for soft-core processors. Chapters 17 and 18 study how to reduce the overheads of
common hardening solutions for circuits and processors.

1.5.2  �Resilience Techniques for GPUs

As GPUs were initially designed to accelerate graphic rendering, the reliability
research on GPUs is in its infancy. Most of the available GPUs does not offer any
reliability solutions, preferring performances to fault tolerance. Only lately some of
the GPUs produced for the High Performance Computing market include Error
Correcting Codes in their major memory structures (L1 and L2 caches and internal
registers). The available ECC is a Single Error Correction Double Error Detection
(SECDED) one. It is then capable of correcting SEU and only detecting
MBU. Experimentally, it was measured that about 30 % of the radiation induced
failures in modern GPUs memory structures are actually multiple failures. Thanks
to memory interleaving (i.e. logic bits belonging to the same word are physically
separated), only the 5 % of errors are multiple errors affecting bits in the same word.
Moreover, an MBU with more than 2 bits corrupted was never observed experimen-
tally. Thus, the SECDED ECC seems sufficient to guarantee high reliability.
Nevertheless, logic resources are computing structures and schedulers are left
unprotected and internal flip-flops and queues are not covered by ECC. As a result,
the ECC may not guarantee high levels of reliability [12].

Lately, some software-based hardening solutions for parallel codes have been
proposed. The basic idea is to try to duplicate the parallel tasks to identify failures
or to add coding-encoding procedures to detect and, eventually, correct, failures.
Duplication With Comparison (DWC) is extremely easily implemented in a GPU,
as the whole programming philosophy of the device is voted to parallelism [12].
Even if DWC seems promising and efficient to detect errors, it introduces a non-
negligible computing overhead. As a result, redundancy may be non applicable to
HPC applications or embedded systems with strict power consumption constraints.
It is also essential to duplicate wisely the parallel processes, avoiding threads
belonging to the same domain to be executed on the same Streaming Multiprocessor,
as they would share the same cache. An error in a shared location will then propagate
to both copies and remain undetected. Another hardening philosophy applied to
parallel codes is the Algorithm Based Fault Tolerance (ABFT) one. ABFT is based

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://dx.doi.org/10.1007/978-3-319-14352-1_6
http://dx.doi.org/10.1007/978-3-319-14352-1_7
http://dx.doi.org/10.1007/978-3-319-14352-1_8
http://dx.doi.org/10.1007/978-3-319-14352-1_9
http://dx.doi.org/10.1007/978-3-319-14352-1_12
http://dx.doi.org/10.1007/978-3-319-14352-1_13
http://dx.doi.org/10.1007/978-3-319-14352-1_15
http://dx.doi.org/10.1007/978-3-319-14352-1_16
http://dx.doi.org/10.1007/978-3-319-14352-1_19
http://dx.doi.org/10.1007/978-3-319-14352-1_17
http://dx.doi.org/10.1007/978-3-319-14352-1_18

14

on the encoding of input data, the modification of the algorithm to be executed on
coded data and, finally, the decoding of the output with error detection and correc-
tion. ABFT is algorithm-specific, and requires great algorithm analysis and code
implementations efforts to be implemented. At the moment, the only algorithms for
which an ABFT strategy is available are matrix multiplication and Fast Fourier
Transform [7, 13]. Chapter 20 provides an overview of the available hardening
strategies to apply to modern parallel processors.

1.6  �Characterizing FPGAs and GPUs Radiation Sensitivity

1.6.1  �Fault Injection

In FPGAs, one very important step of the design flow is the validation of the fault
tolerance technique that is usually done by fault injection. The original bitstream
configured into the FPGA can be modified by a circuit or a tool in the computer by
flipping one of the bits of bitstream, one at a time. This flip emulates a SEU in the
configuration memory cells. The output of the design under test (DUT) can be con-
stantly monitored to analyze the effect of the injected fault into the design. If an
error is detected, this means that the fault tolerant technique implemented is not
robust for that specific fault (SEU) in that target configuration memory bit.

It is possible to inject faults in all the configuration bits and to analyze the most critical
parts of the design [14]. This can help to guide designers in early stages of the development
process to choose the most appropriated fault tolerant design, even before any radiation
ground testing. The entire fault injection campaign can spend from few hours to days
depending on the amount of bits that are going to be flipped and the connection to the fault
injection control circuit. When the entire system (fault injection control+DUT+golden
designs) is implemented at the hardware level (board), avoiding the communication with
the computer, the process is speeded up in orders of magnitude.

Chapters 4 and 5 present some techniques for fault injection in SRAM-based
FPGAs. Chapter 10 presents a fault injection framework that reproduce multiple
and accumulation of upsets collected from real radiation experiments.

However, fault injection on GPUs has several limitations. Only few resources of
the GPU are accessible by the user and to access those resources to inject fault it is
necessary to change the flow of the algorithm, introducing artificial behavior. There
is one fault injector for GPU available, the GPU-Qin [15], which allows the user to
insert faults only on instantiated values.

1.6.2  �Radiation Test Methodologies to Predict and Measure
SER in FPGAs and GPUs

The test of FPGAs under radiation depends on a test plan developed for each type of
FPGA and design architecture. Here we will detail the radiation test for SRAM-
based FPGAs. There are two types of tests: the static test and the dynamic test.
The static test can be done in SRAM-based FPGAs for instance, where the experiment

F. Kastensmidt and P. Rech

http://dx.doi.org/10.1007/978-3-319-14352-1_20
http://dx.doi.org/10.1007/978-3-319-14352-1_4
http://dx.doi.org/10.1007/978-3-319-14352-1_5
http://dx.doi.org/10.1007/978-3-319-14352-1_10

15

consists on configuring the FPGA with a golden bitstream containing the test-design
and then constantly read back the FPGA configuration memory with the Xilinx
iMPACT tool through the JTAG interface. In the experiment control computer, the
golden bitstream is compared against the readback bitstream. If differences are
found, the FPGA is reconfigured with the golden bitstream and the differences are
stored in the computer. Faults are defined as any bit-flip in the configuration memory
detected by the readback procedure. In this case, it is possible to calculate the upset
rate in the configuration memory bits for that specific particle flux.

The cross-section per bit shows the sensitive area of a device and it is used to
compare radiation sensitivity between devices. It is calculated as defined in Eq. 1.1.

	
s SEU bit

SEU

neutron bits

N

N- =
´F 	

(1.1)

Where NSEU is the number of SEU in the configuration memory bits, Φneutron is the
neutron fluence and Nbits is the number of bits of the device. The fluence is measured
by neutron per cm2, and it is calculated by multiplying the neutron flux by the time
the device has been exposed to that flux.

The dynamic test analyzes the design output mapped into the FPGA. In this case,
the expected error rate is much lower than the static test. In case of SRAM-based
FPGAs, based on the Xilinx Reliability Report [16], in average it is necessary 20
upsets in the configuration memory bits to provoke one error in the design output.
This relation may of course vary according to the logic density, mapping, routing
and the chosen architecture for the design. In case of using redundancy such as
TMR or n-MR, the number of accumulated upsets in the bitstream without provok-
ing functional error can increase significantly. In case of Flash-based FPGAs and
antifuse based FPGAs, the soft error rate comes from the susceptibility of the con-
figurable logic to the SET and SEU (bit-flips) only as the programmable cells (anti-
fuse and flash cells) are normally not susceptible to transient upsets.

The static test of GPUs follows the same philosophy as the FPGA one. Basically a
known pattern is loaded into the main memory structures of the device and then read
back. There is not a special port to access the memory structures, so the test should be
engineered to take advantage of normal GPU processes to write the pattern and read
it back. The dynamic test of a GPU requires the selection of proper benchmarks to run
on the device. It is worth noting that for being useful the benchmark must be represen-
tative of a given workload of application. Otherwise results would be valid only for the
particular configuration tested. Normally the benchmark is executed with a pre
selected input vector and results are checked with a pre computed golden copy of the
output. When a mismatch is detected, it should be counted as an error. To evaluate
the cross section it is necessary to evaluate the fluence hitting the device only when the
code is being executed, and not during results check. Alternatively, one can calculate
the cross section diving the observed error rate (errors/s) by the average flux provided
by the facility during the test (particles/(cm2 s)).

There are only few facilities in the world that provides good fluxes and spectrum
of energies to ease the scale of experimental result to the expected natural error rate.
Examples of neutron facilities are LANSCE, in Los Alamos, NM, USA, TSL,
Uppsala, Sweden, TRIUMF, Vancouver, Canada, and ISIS, Didcot, UK.

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

16

In this book results were gathered from experiments performed at Los Alamos
National Laboratory’s (LANL) Los Alamos Neutron Science Center (LANSCE)
Irradiation of Chips and Electronics House II and in the VESUVIO beam line in
ISIS, Rutherford Appleton Laboratories, Didcot, UK. As shown in [17], both of
these facilities provide a white neutron source that emulates the energy spectrum of
the atmospheric neutron flux. The ISIS spectrum has a lower component of high-
energy neutrons with respect to the LANSCE and the terrestrial one. The relation-
ship between neutron energy and modern devices cross section is still an open
question. Nevertheless, ISIS beam has been empirically demonstrated to be suitable
to mimic the LANSCE one and the terrestrial radiation environment [17].

Figures 1.5 and 1.6 show the setup of experiments under neutron at ISIS Facility
in United Kingdom and Los Alamos, respectively, composed of many different
types of FPGAs and GPU performed in parallel.

Fig. 1.5  Neutron experiment Setup in ISIS for FPGAs and GPUs

Fig. 1.6  Neutron experiment Setup in Los Alamos for FPGAs and GPUs

F. Kastensmidt and P. Rech

17

References

	 1.	Nicolaidis M (2011) Soft errors in modern electronic systems. Springer, New York, p 318
	 2.	Stassinopolous EG, Raymond JP (1988) The space radiation environment for electronics. Proc

IEEE 76:1423–1442
	 3.	Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in

digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602
	 4.	Kastensmidt FL, Reis R, Carro L (2006) Fault-tolerance techniques for SRAM-based FPGAs

(frontiers in electronic testing). Springer, New York
	 5.	Microsemi. ProASIC3, IGLOO and SmartFusion flash family FPGAs datasheet. www.

microsemi.com
	 6.	Rezgui S, Louris P, Sharmin R (2010) SEE characterization of the new RTAX-DSP (RTAX-D)

antifuse-based FPGA. IEEE Trans Nucl Sci 57(6):3537–3546
	 7.	Rech P, Aguiar C, Frost C, Carro L (2013) An efficient and experimentally tuned software-

based hardening strategy for matrix multiplication on GPUs. IEEE Trans Nucl Sci
60(4):2797–2804

	 8.	Rech P, Pilla L, Navaux POA, Carro L (2014) Impact of GPUs parallelism management on
safety-critical and HPC applications reliability. In: Proceeding IEEE international conference
on dependable systems and networks (DSN), June 2014, pp 455–466

	 9.	Mukherjee SS, Emer J, Reinhardt SK (2005) The soft error problem: an architectural perspec-
tive. In: High-performance computer architecture, 2005. HPCA-11. 11th international sympo-
sium on, 12–16 Feb 2005, pp 243–247

	10.	Schrimpf RD, Fleetwood DM (2004) Radiation effects and soft errors in integrated circuits and
electronic devices. Word Scientific, Singapore

	11.	Anghel L, Alexandrescu D, Nicolaidis M (2000) Evaluation of a soft error tolerance technique
based on time and/or space redundancy. In: The Proceedings of symposium on integrated cir-
cuits and systems design, SBCCI, 13, pp 237–242

	12.	Oliveira DAG, Rech P, Pilla LL, Navaux POA, Carro L (2014) GPGPUs ECC efficiency and
efficacy. In: International symposium on defect and fault tolerance in VLSI and nanotechnol-
ogy systems

	13.	Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Sonza Reorda M, Carro L (2014) Software-
based hardening strategies for neutron sensitive FFT algorithms on GPUs. IEEE Trans Nucl
Sci 61(4):1874–1880

	14.	Sterpone L, Violante M (2007) A new partial reconfiguration-based fault-injection system to
evaluate SEU effects in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(4):965–970

	15.	Fang B, Pattabiraman K, Ripeanu M, Gurumurthi S (2014) GPU-Qin: A methodology for
evaluating the error resilience of GPGPU applications. In: Proceedings of the IEEE interna-
tional symposium on performance analysis of systems and software (ISPASS)

	16.	Xilinx, Inc. (2013) Device reliability report third quarter 2013. http://www.xilinx.com/
support/documentation/user_guides/ug116.pdf

	17.	Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A,
Andreani C, Gorini G, Pietropaolo A, Cargarilli G, Pontarelli S, Frost C (2007) A new hard-
ware/software platform and a new 1/E neutron source for soft error studies: testing FPGAs at
the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

1  Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs

http://www.microsemi.com/
http://www.microsemi.com/
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf

 Part II
 Applications

21© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_2

Chapter 2
Brazilian Nano-satellite with Reconfigurable
SOC GNSS Receiver Tracking Capability

Glauberto L.A. Albuquerque, Manoel J.M. Carvalho, and Carlos Valderrama

Abstract  This paper presents a flexible architecture for a GPS receiver using
Partial Reconfiguration (PR) on a System on Chip (SoC) device consisting on an
FPGA and two ARM cores. With built-in error-correction techniques offered by
modern SOCs, this device meets the requirements of a Brazilian nanosatellite for
CONASAT constellation. This receiver benefits from PR, thereby increasing system
performance, hardware sharing, and power consumption optimization, among oth-
ers. Additionally, all the advantages favor in-orbit reconfiguration. The proposed
architecture, as requested, uses COTS components.

2.1  �Introduction

CubeSats became an affordable alternative for space missions of emerging coun-
tries [1] and even for developed ones. Indeed, the CubeSat specification makes pos-
sible to decrease launching costs and development time of small satellites. This
specification, which began in 1999 from collaboration between the California
Polytechnic State University and the Stanford University, has helped universities
around the world developing science and space exploration. Although CubeSats
were primarily intended for use with educational purposes, nowadays there are
commercial, military and interplanetary space missions using this technology, as a
valuable alternative for many space mission profiles [2–4].

G.L.A. Albuquerque (*)
Barreira do Inferno Launch Center—CLBI, Parnamirim, Brazil
e-mail: glauberto@engineer.com

M.J.M. Carvalho
CRN—Centro Regional do Nordeste, Instituto Nacional de Pesquisas Espaciais—INPE,
Natal, Brazil
e-mail: manoel@crn.inpe.br

C. Valderrama
SEMi—Electronics and Microelectronics Department, University of Mons, Mons, Belgium
e-mail: carlos.valderrama@umons.ac

mailto:glauberto@engineer.com
mailto:manoel@crn.inpe.br
mailto:carlos.valderrama@umons.ac

22

Advances in electronics and MEMS combined with techniques such as Software
Defined Radio (SDR) and Digital Signal Processing (DSP) have contributed to
reduce costs while facilitating their development. In particular, Field Programmable
Gate Arrays (FPGAs) has proven to be a cost effective tool for the development of
projects in different areas beyond SDR. In addition to the reconfiguration flexibility,
its main advantage over other devices is their low power consumption [5]. Indeed,
this is a very important attribute for space applications. In orbit, a satellite can easily
get energy from solar panels and batteries, but at the cost of adding extra weight to
the structure. Thus, to reduce the total volume, satellites must be designed from
devices with reduced size and low power consumption.

Apart from specificities of each space mission profile, all satellite payload con-
tain some kind of communication link and navigation control, for which Global
Navigation Satellite System (GNSS) receivers are envisioned nowadays.
Additionally, such sub-systems must be robust and reliable to operate in hostile
environments without failure. Regarding this concern, the Partial Dynamic
Reconfiguration (PDR) capability of FPGAs could be an additional attribute for
space applications [6, 7]. This procedure, not only allows adaptable payload in
orbit, but also offers a certain degree of radiation tolerance (e.g. faulty system re-
initialization, replacement and upgrade).

This paper proposes a low cost GPS receiver architecture based on FPGA SoC
COTS to meet the requirements of CONASAT satellites. This receiver intends to
take advantage of modern FPGA-based SoC and Partial Reconfiguration techniques
for use in space applications and mission recovering.

2.2  �CONASAT

2.2.1  �CONASAT Project

CONASAT is a project based on a nanosatellites constellation funded by INPE,
Brazil’s National Institute for Space Research. Its main mission is to collect envi-
ronmental data from thousands of DCPs (Data Collection Platforms) distributed
throughout the Brazilian territory and its seacoast. This constellation will replace
the former SCD1 and SCD2 satellites, still active, although they have already
exceeded their design life.

Some relevant guidelines concerning the CONASAT project are [8]:

•	 To develop expertise in the field of space missions, especially on
nano-satellites;

•	 It must satisfy the lowest possible cost for an acceptable level of reliability and
mid-term life-time of 5 years;

•	 It must use COTS components and commercial subsystems as much as possible;
•	 It must provide such a flexible and modular platform that could be adopted by

subsequent generations of satellites of the constellation;

G.L.A. Albuquerque et al.

23

•	 CONASAT satellites must be CubeSat compliant;
•	 It must generate opportunities for Brazilian technology industry.

CONASAT will be the spatial segment of the Brazilian System for Environmental
Data Collection (SBCDA). Brazil already produces its own DCPs and some parts of
a CONASAT satellite. As much as possible, other parts of the satellite should be
produced by Brazilian experts. For instance, the current communication protocol
between DCPs and satellites will be modified to allow bidirectional data exchange.

CONASAT satellites will use Low Earth Orbits (LEO—altitudes from 500 to
800 km). Thus, satellites will not be over the Brazilian territory all the time. Downtime
will then be occupied by other applications or services. For instance, it is planned to
extend SBCDA services for monitoring fishing boats. In these cases, it’s desirable to
have CONASAT parts implemented on reconfigurable hardware supporting tasks on
demand. Regarding radiation tolerance, it is important to note that the satellite orbit,
at an altitude of about 600 km, belongs to a region with low ions density.

2.2.2  �The CONASAT Satellite Architecture

Generic architecture of the satellite, shown in Fig. 2.1, is not remarkable compared to
others. It consists on a full redundancy of all major subsystems, including the Power
Management one. Thus, it can be considered as having two satellites within one
mechanical infrastructure. This choice intends to increase overall system reliability
due to the fact that the design guidelines of CONASAT allow the use of COTS com-
ponents. Another reason is the MTBF (Mean Time Between Failures) of CubeSat
parts readily available on the market. They are not prepared for a midterm lifetime.

The Redundancy Control subsystem decides which sub-system to activate each
time. The Attitude Control subsystem includes a magnetorquer (iMTQ), stellar
gyroscope, 3-Axis gyroscope, star tracker and reaction wheels. This satellite also
uses a GNSS Receiver (GPS receiver, in this case) to simplify orbital prediction.
The use of multiple sensors obeys to the principle of achieving maximal reliability.
However, while the combined use of sensors increases its efficiency. On the other
side it also raises the weight of the satellite and its power consumption. Moreover,

Fig. 2.1  CONASAT functional architecture (adapted from [8])

2  Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking…

24

the processing capability of the GPS receiver must be adapted to the orbital veloci-
ties. Therefore, the way of space GPS receivers handle data must be carefully
adapted. The Communication Subsystem is just composed by an UHF uplink and
S-Band downlink. It is responsible to retransmit to ground stations data received
from DCPs. The Power and Attitude Control subsystems have in-orbit so special-
ized tasks which cannot take other responsibilities.

The GPS Receiver is the only subsystem whose functionality should be modified
in orbit, on demand, to accomplish a particularly required task. For that reason, this
receiver must be built based on a software platform. Moreover, due to the require-
ments of performance and power, this flexibility must be supported by reconfigu-
rable hardware. However, there is no such a device on the market, an “on-orbit
reconfigurable GPS receiver for Cubesats”. With an optimal choice of the FPGA
device, unused logic elements could provide added functionality or even, when the
receiver is idle, could also be possible to share the entire platform. This would
reduce the physical size and the number of electronic devices, with favorable effects
on energy consumption and the satellite’s overall weight.

2.3  �Software GNSS Receivers Architecture

As we saw above, the software-based approach for a GNSS receiver was a natural
choice in terms of design, especially because, in the case of a GPS, signals from the
GPS satellites constellation use digital modulation (BPSK). Taking this into consid-
eration, the assembly of a GPS Receiver (or other GNSS System), despite some
difficulties, is not an unattainable task [9]. Because of the dominance of GPS in this
domain, the remainder of this paper will consider the GPS as a reference to explain
the proposed architecture.

According to the chipset used in the design we can identify two approaches:
hardware or software receivers. Hardware receivers use ASIC devices to accom-
plish all tracking and navigation tasks. Those commercially available have limited
or no applicability in aeronautics or spatial domain. In software receivers, signal
processing tasks are programmable, by using a GPP (General Purpose Processor),
DSP, GPU, or even reconfigurable hardware (FPGA). Sometimes, developers work
with a combination of these devices [10–12].

We can see the GPS receiver basic architecture in Fig. 2.2. Although the different
types of GNSS receivers available are tailored to the different target applications, all
these basic architectures include the same functional blocks.

After the Antenna, required to amplify and filter the incoming radio signal, the
Front-End is responsible for down-conversion and digitalization of this analog signal.
The Baseband Processing block acquires and monitors each incoming signal to calcu-
late its own position and speed. For each tracked satellite it is required to have one of
these blocks. Thus, it extracts observable and navigation data from each processed
channel. Theoretically, up to 12 GPS satellites can be tracked at the same time, but to
calculate its position the receiver only needs four of them. After correctly tracking the
signals, the measurement data obtained are sent to the Application Processing block.

G.L.A. Albuquerque et al.

25

This block uses the information from the tracking loops for different purposes. Typical
applications are: ionosphere parameters monitoring, DGPS (Differential Global
Positioning System) calculation, static and kinematic surveying.

The processing time of the Baseband Processing determines two categories of
receivers: real-time and post processing. In post processing, the baseband informa-
tion is used to obtain correlations between the incoming signals and an internal
replica, used as reference. This produces intermediate data stored to be further pro-
cessed in batch mode by complementary algorithms. Thus, the receiver is not able
to locate the position in real-time. That delay is critical for orbital speed navigation,
implying additional power processing and control over tracking algorithms.

Baseband Processing includes all the algorithms to find and follow a visible GPS
signal, through the synchronization with a known PRN code, and remove errors, as
best as possible. This process is built around the principle of signal correlation: the
incoming signal is repeatedly correlated with a replica of the expected PRN code,
which is known a priori. Its functional structure is depicted in Fig. 2.3. To extract a
valid significance from the correlation, the local replica is generated in the receiver

Fig. 2.2  Generic GPS receiver architecture [13]

Fig. 2.3  Baseband signal processing [13]

2  Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking…

26

taking into account the signal carrier phase, code delay, Doppler frequency, and
PRN code [12]. To obtain maximum correlation, the DLL and PLL blocks are in
charge of follow the code and carrier delay, respectively.

2.4  �Hardware Design

2.4.1  �The Front-End

Even for software GNSS receivers, most of front-end modules are ASIC devices.
On the market there are dozens of options, even a reconfigurable alternative has
recently emerged [14]. Brazilian scientists have used the GP2000 chipset to build a
GPS receiver for sounding rockets [15]. Moreover, as demonstrated in [16], the
GP2000 chipset is sufficiently radiation-proof for use in LEO without major modi-
fications. However, many other GPS receivers for space applications are based on
the GP2015 front-end, for instance, those produced by DLR and Surrey Technologies
[17, 18]. So, the GP2015 family can be considered as a certified choice.

2.4.2  �Baseband Processing Module

Although the GP2015 front-end module is a good choice for this receiver, the use of
the other chips of the family will lead us to a hardware receiver; losing all the advan-
tages of the software approach in terms of algorithm flexibility and associated data
processing efficiency.

The GP2015 front-end at a sampling frequency of 5.71 MHz provides 2-bit sam-
ples. The bandwidth required by the sample data rate is:

	 fs Msamples s= 5 71. / 	 (2.1)

	
N bits sign magnitudeSamples = ()2 /

	 (2.2)

	
BW N Mbpss Samples= * =f 11 42.

	 (2.3)

This bandwidth can be easily achieved with modern FPGA transceivers of up to
1 Gbps and, if necessary (e.g. Doppler removal) incoming data can be oversampled.

A generic tracking channel is depicted in Fig. 2.4. This channel, composed of
accumulators and carrier/code generation units, requires around 1.5 k logic ele-
ments on a single FPGA [9]. Remaining modules, acquisition and tracking loops,
will take 3 and 6 k logic elements, respectively. Since most of operations are binary,
random SEU have not major influence on the final correlation.

Modern FPGAs can provide more that 100k logic elements. This is enough to
contain a GPS receiver with ten parallel baseband signal processing units. This can
be extended by introducing pipeline techniques to share single tracking channels.

G.L.A. Albuquerque et al.

27

For instance, operating at 200 MHz with an 11.42 MHz sample clock, a given chan-
nel can track up to 16 GPS satellites at a time. However, CONASAT imposes orbital
velocities, thus parallel tracking channels are better suited.

In the case that power consumption is not a constraint, GPPs, DSPs and GPUs,
have enough power processing to build real-time receivers. However, when looking
for balance of power processing and low power consumption, FPGA are a better
choice. If necessary, additional tracking channels may even become available on
demand by using the DPR technique (Dynamic Partial Reconfiguration). Moreover,
DPR alone can also be used to mitigate SEU, as in [7, 19, 20], or even combined
with TMR as in [21, 22]. As will be shown later, those alternatives have also been
considered to meet the requirements of our proposal.

2.4.3  �Application Processing Module

Application tasks must be quickly created to support the specifics of a particular
mission. This adaptability is a key requirement to ensure the multiplicity of applica-
tion cases and the sustainability of such a platform. ARM microprocessors appears

Fig. 2.4  Generic digital receiver channel block diagram

2  Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking…

28

as a software processing module in different commercial GPS receivers [17, 18]
with the added value of Linux OS. In FPGA there are also softcores like, for
instance, NIOS, but not powerful enough for additional tasks. There is also the
hardened version of the LEON processor. However, modern SOC FPGAs provide
dual core ARM processors on the same package and the possibility to apply some
fault mitigation and correction techniques such as in [23]. Although, to assure reli-
ability of the overall system, some radiation hardened devices must still be used.
This requirement particularly applies to the memory device, which must keep pro-
tected critical data for both, the FPGA and the processors. In addition, preserved
application software or reconfiguration data are used when needed or to replace
faulty modules.

2.4.4  �SEU Mitigation in COTS FPGA and SOC

Radiation hardened devices, combined with Single Event Upset (SEU) error mitiga-
tion and CRC, is an important requirement not always supported by FPGAs. Looking
at the market of new devices, we found modern ones with built-in SEU error mitiga-
tion based on CRC method. This on-chip error detection performs the following
operations without any impact on the fitting performance of the device [23]:

•	 Auto-detection of CRC errors;
•	 Optional CRC error and identification in user mode;
•	 Testing of error detection functions by deliberately injecting errors through the

JTAG interface.

At the same family of chip there is a SOC device. This device includes high
speed transceivers and dual core ARM processors.

Apart of internal mitigation of SEUs, aluminum shielded is included in
CONASAT design. According to [24] a 1 mm thick aluminum box absorbs approxi-
mately 6000 rad.

2.4.5  �Proposed Architecture

As we can see in the Fig. 2.5, the architecture is designed to take advantage of
all built-in circuits and Partial Reconfiguration in order to achieve a reliable
receiver to be used in spatial applications. This architecture is better than the
proposed in [25] in terms of power consumption. Literature survey has showed
that high-end FPGAs have a huge throughput advantage over high performance
DSP processors for certain types of signal processing applications. FPGAs use
highly flexible architectures which can be of greatest advantage over regular
DSP processors [26].

G.L.A. Albuquerque et al.

29

The one-chip architecture also take advantages in terms of radiation protection
since the area of silicon components are obviously smaller than any other architec-
ture with two or more devices.

The overall architecture is seen in Fig. 2.5. The Config Controller is responsible
to verify all parts of the algorithm are working correctly. It is also responsible for
the FPGA reconfiguration, error recovering or to change the application. After criti-
cal errors not recovered by the built-in CRC control, the Config Controller is able to
restart the receiver. To improve reliability of the overall system this part of software
is designed using the TMR technique. The two ARM cores in the SOC so the sys-
tem (HPS block) could take advantages of the dual CPU fault tolerance techniques
[27]. Critical parts of the software code are stored in a radiation hardened memory.

2.4.6  �Improving Cold Start Time

The Doppler Removal module we see in Fig. 2.3 is responsible to correct inaccura-
cies in the apparent Doppler frequency of the satellite and “zero-beat” the signal.
A Doppler shift is the change in frequency of a wave (or other periodic event) for an
observer moving relative to its source. If we take the relative motion between the
GPS satellite, with orbital speed of 3.9 km/s, and a car, assuming at 40 m/s (150 km/h)
traveling over the Equator (greatest Earth rotational speed: about 460 m/s) we could
reach, at a maximum, 1.3 km/s, which is equivalent to a Doppler shift of ±6.8 kHz. If
we replace the car by a LEO satellite, with orbital speed up to 9 km/s, this generates
a significant Doppler frequency shift amounting to ±45 kHz.

Fig. 2.5  Proposed architecture

2  Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking…

30

On Cold Start mode, when no prior information about Doppler shift, the incom-
ing signal is first stripped of its Doppler frequency, and then correlated with one (or
more) PRN code replicas generated locally (according to the current estimation of
code delay). When the receiver does not have a good estimation of the initial
Doppler, the receiver must correlate the signal with a range of all possible Doppler
shifts. Once all Doppler and code shifts have been composed, the peak magnitude is
compared to a predefined carrier-to-noise threshold to determine if a GPS satellite
has been located. This method consumes fewer hardware resources, but increases
the cold start time.

On the ground, a GPS receiver can see a given satellite for several hours. In space
applications the visibility time is, in most cases, less than 50 min. Besides that rela-
tive motion speed between each GPS satellite and CONASAT changes very quickly,
so the receiver must improve the cold start time in order fix a navigational solution.

In this architecture each GPS channel is responsible to track a specific PRN code.
Once an entire PRN code is transmitted in 1 ms, the accumulation period is typically
between 1 and 20 ms. With a sample data of 5.71 MHz and, for instance, a clock
system of 400 MHz, we could make about 70 times the correlation with the same
data. In each time slice the generated code is created with different Doppler shifts.
With this strategy, the time to track the first GPS satellite signal decreases to some
milliseconds.

PR is a useful technique to implement this architecture because after Cold Start
all unnecessary FPGA’s resources could be released to another application. PR also
allows to create an optimal Sleeping Mode, when the CONASAT has no visibility
over Brazilian territory and only critical data and applications must be preserved.
The receiver could benefits from PR in other phases of the receiver operation since
some parts of the hardware resources could run specialized algorithms under certain
conditions and thus, this resource can be released when becomes not needed
anymore.

2.5  �Market Options

Looking at the market of GNSS spaceborne receivers most of available devices
have a mass of some kilograms and power consumption of tens of watts. These
receivers are not suitable for nanosatellites. Some are constructed with COTS com-
ponents and can be used in space missions within a low radiation orbit. In [28], we
can find a detailed list of spaceborne receivers available on the market. This list was
published in 2008 but currently it has no significant changes because performances
of new products are very similar to old ones. Other alternatives are the dedicated
chips used in Cubesat products. However, some experiences with such miniaturized
ASCI receivers fail to provide valid navigation fixes [29, 30]. None of these receiv-
ers in the market could be reconfigurable in-orbit to perform a completely different
application.

G.L.A. Albuquerque et al.

31

2.6  �Conclusions

With the proposed architecture, CONASAT could take advantage of COTS compo-
nents in order to accelerate design process and decrease costs. This device, using PR
presents high level of adaptability. This electronic framework could be used to
develop other applications under SDR techniques. One of natural improvement to
this receiver is include GALILEO tracking channels.

References

	 1.	Woellert K, Ehrenreund P, Ricco AJ, Hertzfeld H (2010) Cubesats: cost-effective science and
technology platforms for emerging and developing nations. Adv Space Res 47:678–679

	 2.	Taraba M et al (2009) Boeing’s CubeSat TestBed 1 attitude determination design and on-orbit
experience. In: Proceedings of the 23rd annual AIAA/USU conference on small satellites

	 3.	Weeks D, Marley AB, London III J (2009) SMDC-ONE: an army nanosatellite technology
demonstration. In: Proceedings of the 23rd annual AIAA/USU conference on small satellites

	 4.	Staehle RL, Anderson B, Betts B, Blaney D, Chow C, Friedman L, Hemmati H, Jones D,
Klesh A, Liewer P, Lazio J, Lo M, Mouroulis P, Murphy N, Pingree PJ, Puig-Suari J, Svitek T,
Williams A, Wilson T (2012) Interplanetary CubeSats: opening the solar system to a broad
community at lower cost. In: Final report on NIAC phase 1 to NASA Office of the Chief
Technologist, Jet Propulsion Laboratory, 2012. (Submitted to Journal of Small Satellites.
http://www.nasa.gov/pdf/716078main_Staehle_2011_PhI_CubeSat.pdf)

	 5.	Choi S et al (2003) Energy-efficient signal processing using FPGAs. In: Proceedings of the
2003 ACM/SIGDA eleventh international symposium on field programmable gate arrays.
ACM

	 6.	Savani VG, Mecwan AI, Gajjar NP (2011) Dynamic partial reconfiguration of FPGA for SEU
mitigation and area efficiency. Int J Adv Technol 2(2):285–291

	 7.	Zhang J, Guan Y, Mao C (2013) Optimal partial reconfiguration for permanent fault recovery
on SRAM-based FPGAs in space mission. Adv Mech Eng

	 8.	 INPE (2011) Constelação de nano satélites para coleta de dados ambientais: documento
de descrição da missão DDM. http://www.crn2.inpe.br/conasat1/Documentos/gerais/
Documento%20de%20Descri%E7%E3o%20da%20Miss%E3o%20%28Equipe%20
CONASAT%29.pdf

	 9.	Shapiro AM (2010) FPGA-based real-time GPS receiver. Dissertations, Cornell University
	10.	Hobiger T et al (2010) A GPU based real-time GPS software receiver. GPS Sol 14(2):

207–216
	11.	O’Hanlon B et al (2011) CASES: a smart, compact GPS software receiver for space weather

monitoring. In: Proceedings of the ION GNSS meeting
	12.	Dovis F et al (2001) On the tracking performance of a Galileo/GPS receiver based on hybrid

FPGA/DSP board. In: Proceedings of the 18th international technical meeting of the satellite
division of institute of navigation (ION GNSS 2005)

	13.	ESA Navipedia (2014) Generic receiver description. http://www.navipedia.net/index.php/
Generic_Receiver_Description#Receiver_overview. Accessed 22 June 2014

	14.	Noroozi A (2013) A reconfigurable GPS/Galileo receiver front-end for space applications.
Dissertations and Theses, Delft University of Technology, Netherlands. Web. 12 June 2014

	15.	Francisco M, Albuquerque G, Rapôso T (2011) A GPS receiver for use in sounding rockets. In:
20th symposium on European rocket and balloon programmes and related research, vol 700

	16.	Unwin MJ, Oldfield MK, Underwood CI, Harboe-Sorensen R (1998) In: Proceedings of the
11th international technical meeting of the satellite division of the Institute of Navigation
(ION-GPS-1998), Nashville, 15–18 Sep 1998, pp 1983–198

2  Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking…

http://www.nasa.gov/pdf/716078main_Staehle_2011_PhI_CubeSat.pdf
http://www.crn2.inpe.br/conasat1/Documentos/gerais/Documento de Descri%E7%E3o da Miss%E3o (Equipe CONASAT).pdf
http://www.crn2.inpe.br/conasat1/Documentos/gerais/Documento de Descri%E7%E3o da Miss%E3o (Equipe CONASAT).pdf
http://www.crn2.inpe.br/conasat1/Documentos/gerais/Documento de Descri%E7%E3o da Miss%E3o (Equipe CONASAT).pdf
http://www.navipedia.net/index.php/Generic_Receiver_Description#Receiver_overview
http://www.navipedia.net/index.php/Generic_Receiver_Description#Receiver_overview

32

	17.	Markgraf M et al (2001) A low cost GPS system for real-time tracking of sounding rockets.
European space agency-publications-ESA SP 471, pp 495–502

	18.	Underwood C et al (2004) Radiation testing campaign for a new miniaturised space GPS
receiver. In: IEEE radiation effects data workshop, July 22, Atlanta, USA, pp 120–124

	19.	Graczyk R et al (2012) Dynamic partial FPGA reconfiguration in space applications. In:
Photonics applications in astronomy, communications, industry, and high-energy physics
experiments 2012. International Society for Optics and Photonics

	20.	Jan K, Straka M, Kotasek Z (2012) Methodology for increasing reliability of FPGA design via
partial reconfiguration. In: The first workshop on manufacturable and dependable multicore
architectures at nanoscale (MEDIAN’12), Annecy

	21.	Azambuja JR, Sousa F, Rosa L, Kastensmidt FL (2009) Evaluating large grain TMR and selec-
tive partial reconfiguration for soft error mitigation in SRAM-based FPGAs. In: On-line test-
ing symposium, IOLTS 2009, pp 101–106

	22.	Pilotto C, Azambuja JR, Kastensmidt FL (2008) Synchronizing triple modular redundant
designs in dynamic partial reconguration applications. In: SBCCI ’08: Proceedings of the 21st
annual symposium on integrated circuits and system design. ACM, New York, pp 199–204

	23.	Altera Corporation (2012) SEU mitigation for cyclone V devices. http://www.altera.com/lit-
erature/hb/cyclone-v/cv_52008.pdf. Accessed 2 May 2014

	24.	Wertz JR, Larson WJ (1999) Space mission analysis and design. Kluwer Academic, Dordrecht
	25.	Bedmutha ND, Biraris PN, Shah JP (2013) A low cost GNSS software receiver design with

SEE mitigation approach for microsatellites. In: Space science and communication
(IconSpace), 2013 IEEE International Conference on IEEE

	26.	Hayim A, Knieser M, Rizkalla M (2010) DSPs/FPGAs comparative study for power consump-
tion, noise cancellation, and real time high speed applications. J Softw Eng Appl 3(4):391

	27.	Ferlini F et al. (2012) Non-intrusive fault tolerance in soft processors through circuit duplica-
tion. In: Proceedings of the 2012, 13th Latin American test workshop (LATW), IEEE, 2012

	28.	Montenbruck O (2008) GNSS receivers for space applications. Lecture. In: ACES and future
GNSS-based earth observation and navigation

	29.	Hoyt R, Voronka N, Newton T, Barnes I, Shepherd J, Frank SS, Slostad J, Jaroux B, Twiggs R
(2007) Early results of the multi-application survivable tether (MAST) space tether experi-
ment; SSC07-VII-8/048; 21st annual AIAA/USU conference on small satellites, 13–16 Aug
2007, Logan, UT, USA

	30.	Scholz A, König F, Fröhlich S, Piepenbrock J (2009) Flight results of the COMPASS-1
Mission. http://www.raumfahrt.fh-aachen.de/compass-1/download/COMPASS-1%20Flight%
20Results.pdf

G.L.A. Albuquerque et al.

http://www.altera.com/literature/hb/cyclone-v/cv_52008.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_52008.pdf
http://www.raumfahrt.fh-aachen.de/compass-1/download/COMPASS-1 Flight Results.pdf
http://www.raumfahrt.fh-aachen.de/compass-1/download/COMPASS-1 Flight Results.pdf

33© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_3

 Chapter 3
 Overview and Investigation of SEU Detection
and Recovery Approaches for FPGA-Based
Heterogeneous Systems

 Ediz Cetin , Oliver Diessel , Tuo Li , Jude A. Ambrose , Thomas Fisk ,
 Sri Parameswaran , and Andrew G. Dempster

 Abstract Growing international interest in the development of space missions
based on low-cost nano-/microsatellites demands new approaches to the design of
reliable, low-cost, reconfi gurable digital processing platforms. To meet these require-
ments, future systems will need to include application-specifi c processors to handle
control-dominated tasks and hardware accelerators to cope with data- intensive
workloads. Commercial-Off-The-Shelf (COTS) Field-Programmable Gate Arrays
(FPGAs) provide an ideal platform for meeting these requirements with application-
specifi c processors implemented as soft cores along with hardware accelerators on
FPGA fabric. However, the main challenge to deploying reconfi gurable systems in
space is mitigating the impact of radiation-induced Single Event Upsets (SEUs).
In considering the design of such heterogeneous systems, we present a survey of
techniques commonly employed to guard against soft errors in application- specifi c
processors that are conventionally targeted at ASICs and assess their suitability to
FPGA implementation when partial reconfi guration is used to deal with SEUs in logic
circuits. Finally, we report on the development of the RUSH payload, to be deployed
on the UNSW-EC0 CubeSat due for launch in 2016, to test our design approach.

3.1 Introduction

 The low-cost, nano-/microsatellite (1–50 kg) segment, primarily based on the
CubeSat standard and with applications in science, Earth Observation (EO) and
reconnaissance, is expected to experience between 16.8 % and 23.4 % compound

 E. Cetin (*) • T. Fisk • A. G. Dempster
 Australian Centre for Space Engineering Research, School of Electrical Engineering
and Telecommunications , UNSW Australia , Sydney , NSW , Australia
 e-mail: e.cetin@unsw.edu.au; t.fi sk@unsw.edu.au; a.dempster@unsw.edu.au

 O. Diessel • T. Li • J. A. Ambrose • S. Parameswaran
 School of Computer Science and Engineering, UNSW Australia , Sydney , NSW , Australia
 e-mail: odiessel@cse.unsw.edu.au; tuol@cse.unsw.edu.au; ajangelo@cse.unsw.edu.au;
sridevan@cse.unsw.edu.au

mailto:e.cetin@unsw.edu.au
mailto:t.fisk@unsw.edu.au
mailto:a.dempster@unsw.edu.au
mailto:odiessel@cse.unsw.edu.au
mailto:tuol@cse.unsw.edu.au
mailto:ajangelo@cse.unsw.edu.au
mailto:sridevan@cse.unsw.edu.au

34

annual growth over the period 2013–2020 [1]. This burgeoning international interest
in the development of satellite-based space missions demands new approaches to
the design of reliable , low - cost , reconfi gurable digital processing platforms.

 To meet these requirements, future space systems will need to include application-
specifi c processors to handle control-dominated tasks and hardware accelerators to
cope with data-intensive workloads. Some of these applications include secure and
reliable communications, attitude determination and control, guidance, navigation
and control as well as on-board image and Synthetic Aperture Radar (SAR) data
processing and compression. Implementing these systems as Application-Specifi c
Integrated Circuits (ASICs) is not viable due to their high cost, long lead times, and
infl exibility. The implementation devices most suited to meeting these requirements
are Commercial-Off-The-Shelf (COTS) Field-Programmable Gate Arrays (FPGAs)
with application-specifi c processors implemented as soft cores along with hardware
accelerators on FPGA fabric. FPGAs, like custom hardware chips, provide the means
for implementing custom processors and accelerators, they can also be reconfi gured
on demand to perform new or different functions, and have signifi cantly lower lead
times and associated costs. Furthermore, by reusing the same device to implement an
architectural variation, FPGA reconfi guration can be exploited to reduce mission-
critical parameters, such as the system’s size, mass and power requirements, which
must be kept as small as possible. The main challenge to deploying a reconfi gurable
system in space, however, is radiation-induced Single Event Upsets (SEUs) [2].

 An SEU occurs when deposited charge causes a change of state in dynamic
circuit elements. In FPGAs, SEUs can modify not just the memory elements storing
application data but also the confi guration memory implementing the application
circuits. Techniques for mitigating confi guration memory errors are of crucial
importance and are the subject of ongoing study.

 As part of our research activity into rapid recovery from SEUs in reconfi gurable
hardware [3 , 4], we are currently developing a payload for the University of New
South Wales—Educational CubeSat Zero (UNSW-EC0) CubeSat as part of the
European QB50 project to be launched in 2016 [5]. The RUSH (Rapid recovery
from SEUs in Reconfi gurable Hardware) payload will enable us to carry out in-situ
fl ight testing of various FPGA-based rapid SEU detection and recovery approaches
and compare them with vendor-specifi c tools such as the Soft Error Mitigation
(SEM) controller from Xilinx [6].

 This chapter considers heterogeneous systems consisting of application-specifi c
processors and hardware accelerators implemented on FPGAs, and investigates the
suitability of various circuit- and processor-based SEU detection and mitigation
approaches with a view to fi nal deployment on the UNSW-EC0 CubeSat RUSH
payload.

 The chapter is organized as follows: Sect. 3.2 provides an overview of
Application-Specifi c Instruction-set Processor (ASIP) soft-error mitigation
approaches and assesses their suitability for FPGA-based implementations. Sect.
 3.3 provides details of approaches for rapid recovery from FPGA confi guration
memory upsets and discusses how these approaches could be applied to ASIPs and
hardware accelerators. The RUSH payload and experiment are detailed in Sect. 3.4 ,
while concluding remarks are given in Sect. 3.5 .

E. Cetin et al.

35

3.2 ASIP Soft-Error Mitigation

 Application-Specifi c Instruction-set Processors (ASIPs) are processors that are
tailored by analyzing the characteristics of the specifi c application(s) that will
be executed in the ASIPs [7]. ASIPs are typically used in embedded systems, where
properties such as area, power, and performance are critical. An ASIP can be tailored
by including custom instructions to improve performance, or by removing unneces-
sary components based on the mapped application(s) to reduce power, or by adding
custom components to improve reliability. In contrast, General-Purpose Processors
(GPPs) are designed to support a wide range of applications, and are not therefore
customized for a particular set of applications. As embedded systems are commonly
used in safety-critical applications such as aerospace, automotive, medical elec-
tronics, etc., maintaining the system’s reliability is of great importance.

 ASIPs are typically implemented in standard cells (such as ASICs), where
radiation- induced soft errors mainly impact on sequential logic. For example, the
register fi le and on-chip memory are the vulnerable parts of ASIPs implemented as
ASICs, whereas the circuits themselves, such as the adder circuit, remain largely
unaffected. However, when an ASIP is implemented in an FPGA device, the entire
circuit is implemented in confi guration memory, including the combinational circuit
elements and the component interconnections. Since SRAM-based FPGA fabrics
are susceptible to radiation-induced SEUs, the functionality of FPGA-based ASIPs
can be affected, and unless they are corrected, confi guration memory SEUs have the
appearance of permanent errors in ASICs.

 Techniques are therefore needed to detect and recover from SEUs that corrupt the
confi guration memory of FPGAs implementing ASIP circuits. In the following we
survey approaches that have been studied in the context of protecting architectural
state such as registers and instruction memory. These processor-level soft-error coun-
termeasures can be grouped into two major categories: hardware (Sect. 3.2.1) and
software (Sect. 3.2.2) based approaches. We present and elaborate a few representa-
tive genres of techniques in both categories that could also be adopted in FPGA imple-
mentations of ASIPs. The fundamental idea behind these techniques is to add
redundancy into the system with regards to the architectural state. The techniques are
compared with the literature on SEU mitigation for soft FPGA-based GPPs in Sect.
 3.2.3 . Note that since Error-Correcting Codes (ECC) are well established for storage
elements such as the register fi le and memory, in this discussion we focus on the entire
processor or the execution of instructions in the datapath pipeline. For each genre, we
introduce the concept, system impact, and applicability to FPGA implementation.

3.2.1 Hardware-Based Soft Error Mitigation Approaches

 Instruction Space Triple Modular Redundancy

 Instruction space triple modular redundancy (space-TMR) adds two redundant
instruction executions in parallel with the usual instruction execution, and recovers
the error by selecting the result in majority with minimal overhead on processor

3 Overview and Investigation of SEU Detection and Recovery Approaches…

36

performance. Theoretically, N -MR is able to detect errors when N = 2 by comparing
two results from two modules, and recover errors when N = 3 by performing majority
voting with three results from three modules.

 Since ASIPs are typically implemented using pipelined datapaths, each pipeline
stage or indeed the entire pipeline can be triplicated based on the cost constraints
such as area, power, and performance (delay). Fig. 3.1 depicts an example for space-
TMR where the EXecution pipeline stage (EX) is triplicated, and the three outputs
are passed to a voter, before the fi nal commit of the instruction at the Write-Back
(WB) stage. The other stages could be triplicated as well to achieve better reliability,
however this would incur additional area and power overheads. The impact of the
approach on the processor architecture is to triplicate hardware components that
execute the instructions i.e. the EX unit and to add a majority voting hardware unit.
Thus, the main impact is hardware complexity, which leads to additional area and
power costs. The additional hardware complexity is slightly more than twice that of
the EX unit.

 Considering FPGA implementations, instruction space-TMR is applicable to soft
processors for which the RTL description of the processor is available so that the
required modifi cations to the architecture can be made. However, modifying the
architecture is infeasible for hard-core processors and commercially acquired soft
processors for which the RTL is generally not provided.

 Instruction Time Triple Modular Redundancy

 Instruction time-TMR triplicates the execution of an instruction in a temporal
manner. The redundant executions are generated by re-issuing the instruction two
additional times. The result of the instruction is committed after majority voting on

IF

EX

WB

Original Pipeline

IF

EX EXEX

Vote

WB

Reliable Pipeline

 Fig. 3.1 Instruction space-TMR

E. Cetin et al.

37

the three results. For example, the work in [8] locks the Program Counter (PC) and
executes the same instruction three times starting from the Instruction Fetch (IF)
stage. In the fi rst two executions, the output of the instruction is saved without
committing at the WB stage. In the last execution, the three outputs are voted upon
and then committed at the WB stage.

 Since the one datapath is involved in re-executing the instructions, time-TMR
can reduce errors that affect the architectural state of a processor, but does not
specifi cally guard against, nor aid in the detection of confi guration memory errors
affecting the processor circuits.

 The major architectural impact of instruction time-TMR is the logic to handle
re-issuing of the instruction, temporary storage to hold the results before majority
voting, and the majority-voting unit. The additional hardware is insignifi cant in
comparison to instruction space-TMR. However, the performance of the processor
is decreased by a factor of 3, due to the additional issues per instruction.

 The applicability of instruction time-TMR to FPGA implementation is similar to
that for space-TMR. For hard and commercial soft IP, adding the re-issue logic,
the temporary storage and majority voter are infeasible. For soft processors for
which the RTL is available, the approach could be used.

 Instruction Checkpoint Recovery

 Instruction Checkpoint Recovery (CR) is a recovery-only solution to soft errors or
transient faults. Performing CR at each instruction within a basic block [9] allows
the processor to save a subset of the architectural state as a backup. These preserved
values can be used to re-write/restore the architectural state that was modifi ed by the
basic block (this process is called rollback or restoration), when an error is detected
at the end of the block. Generally, instruction CR ensures that the execution of the
program is backed up and can be recovered periodically.

 For example, the original instruction ADD R2 , R3 , R4 adds the values of register
 R3 and R4 in the register fi le and writes the result into register R2 . With CR enhance-
ment, this instruction will fi rst save the current value of R2 into a specialized reli-
able storage unit before committing the new value at the WB stage. Similarly, all the
instructions in the current basic block that modify the values of the register fi le or
data memory are enhanced to store the current values before being committed. If an
SEU is detected at the end of the basic block, an interrupt is triggered to execute
specialized rollback instructions that fetch the previous values from storage to write
them back into the corresponding locations of the register fi le or data memory. It is
worth noting that comparisons (branch instructions) are customized to trigger roll-
backs internally when errors are detected.

 A variety of detection techniques can be applied with CR. One possibility is a
control-fl ow based detection technique [10]. In this work, a compile-time signature
of every basic block of the program is calculated by performing an XOR of the
machine code (however more advanced encoding techniques could be applied as
well). These signatures are then inserted into the corresponding basic blocks.

3 Overview and Investigation of SEU Detection and Recovery Approaches…

38

At runtime, specialized hardware calculates a signature for the executed instructions.
At the end of each basic block specialized hardware in branch instructions is used to
compare the compile-time and runtime signatures. A mismatch of the signatures
indicates the presence of an SEU in the instruction stream or the processor pipeline.

 Instruction CR augments the architecture of the processor with: a checkpoint
buffer, logic for managing the update of the checkpoint buffer i.e. reading architec-
tural states and writing to the checkpoint buffer, and logic for fl ushing the pipeline
and rewriting architectural states. The detection method imposes additional archi-
tectural modifi cations. There are similar limitations to the application of this tech-
nique to FPGA-based ASIPs as for the previous two approaches.

3.2.2 Software-Based Soft Error Mitigation Approaches

 Software-Implemented Error Recovery

 Software-Implemented Error Recovery (SIER) is a solely software-based approach.
Following TMR principles, SIER triplicates each instruction to allow majority
voting as the program is executed [11]. Each instruction copy uses different regis-
ters and different memory locations so as to not interfere with the others. As all
instructions are processed using the original hardware the processor architecture
does not need to be modifi ed. For example, instruction ADD R2 , R3 , R4 is trans-
formed to three instructions ADD R2 , R3 , R4 , ADD R2 ′, R3 ′, R4 ′, and ADD R2 ″,
 R3 ″, R4 ″. Where R2 , R2 ′ and R2 ″ are the different registers representing the same
variable in the program. These three instructions are executed sequentially. An extra
segment of code is inserted after these three instructions are executed to vote on
the value of R2 at runtime. SIER can therefore protect architectural state, but not
processor circuitry.

 SIER necessitates modifi cation of the compiler backend e.g., to perform register
allocation. The voting segment can be added directly into the program. The SIER
program code length is at least three times that of the original code, but the processor
hardware is not modifi ed. Applying SIER to FPGA implementations is feasible
since SIER does not modify the processor architecture. However, memory costs
might increase due to the increased code size.

 Profi le-Guided Code Transformation

 Profi le-Guided Code Transformation (PGCT) alters the software code based on an
analysis of the program. The program is profi led to understand the dependencies
between instructions, liveliness of variables/registers, and the execution frequency
of instructions to determine the vulnerability of each instruction. The transforma-
tions include loop unrolling and data type reassignment [12]. By transforming the
code, the variables that are estimated to be vulnerable to soft errors are enhanced (to
reduce their chance of corruption). For example, considering instruction ADD R2 ,

E. Cetin et al.

39

 R3 , R4 , decreasing the time period that a variable/register (e.g., R2 or R3 or R4)
spends in more vulnerable sequential logic (e.g., register fi le) and increasing the
time period that it spends in less vulnerable sequential logic (such as memory with
ECC) can increase the reliability of that variable. Hence, by applying these transfor-
mations, the vulnerability of the program can be reduced by up to 90 %, as reported
in [12]. However, as with instruction time-TMR and SIER, PGCT does not afford
any additional protection to processor circuitry.

 PGCT induces no hardware complexity cost. However, the code size might
change and the resultant performance can be degraded as well. To implement PGCT,
the compiler backend must be modifi ed to allow the transformation. In addition,
knowledge of the processor architecture is needed to perform the vulnerability anal-
ysis. For example, to calculate the vulnerability of an instruction, the area and logic
type of the hardware components occupied by that instruction are used. This tech-
nique is applicable to FPGAs since no hardware modifi cations are needed. However
the increase in code size may affect the memory requirement.

3.2.3 Discussion

 Table 3.1 summarizes the processor-level techniques discussed in this section. The
techniques of column 1 are evaluated with respect to the characteristics of columns
2–4. Overall, the hardware-based techniques induce considerable area overheads,
whereas the software-based ones result in execution time and instruction space
penalties. With regard to FPGA applicability, most of the hardware-based tech-
niques require the baseline processor architecture to be transparent and described in
RTL, while software-based techniques simply require more memory.

 SEU mitigation in soft FPGA-based GPPs has been studied extensively—we
outline some representative examples of the work. [13] and [14] studied Dual
Modular Redundancy (DMR) at the processor level, operating Leon2 [13] and
MicroBlaze (MB) [14] in lock step, and performing checkpointing and recovery to
correct datapath memory errors. Confi guration memory errors were corrected by

 Table 3.1 Summary of processor-level SEU mitigation techniques

 Technique Hardware impact Software impact Performance impact

 S-TMR Signifi cant (>3×) None Critical path can be
impacted by voters

 T-TMR Insignifi cant None Signifi cant (>3×)
 CR Dependent on number

of states and storage type
 Insignifi cant
(rollback routine)

 Insignifi cant

 SIER None (memory for
additional code lines)

 Signifi cant (>3×) Signifi cant (>3×)

 PGCT None (memory for
additional code lines)

 Dependent on code Dependent on
transformations

3 Overview and Investigation of SEU Detection and Recovery Approaches…

40

scrubbing and partial reconfi guration, respectively. [15] used TMR to protect MBs
and synchronized the register state after partial reconfi guration to correct confi gura-
tion memory errors. [16] have employed DMR at the IF and EX stages of an
OpenRISC processor; instruction execution is stalled, the faulty stage is reconfi g-
ured, and the instruction is re-executed when an error is detected. The work to date
has tended to focus on mitigation techniques and reported the impact on area and
performance. In contrast, our research goals are to achieve specifi ed performance
criteria (area, speed and power) while meeting recovery time guarantees.

 In soft ASIPs targeted at FPGAs, the instruction time-TMR and software-based
mitigation approaches do not guard against confi guration memory errors because
they do not provide any redundancy in the processing hardware. Currently, we
therefore focus on spatial-TMR and outline our approach to recovering from con-
fi guration memory errors in the next section.

3.3 Rapid Recovery from FPGA Confi guration
Memory Upsets

 The confi guration memory of COTS FPGAs, being implemented in SRAM, is as
prone to corruption due to radiation as the memory elements (FFs and BRAMs) of
user circuits. Therefore, when COTS FPGAs are used in radiation prone environ-
ments, it is necessary to provide protection from radiation and/or methods for
detecting and recovering from radiation-induced confi guration memory errors.
Moreover, in time critical applications, it is also desirable to detect and recover from
errors very quickly.

 There are two principal methods for detecting and recovering from confi guration
memory SEUs in COTS FPGAs. The fi rst, direct method, typically referred to as
scrubbing, involves scanning the confi guration memory checking for upsets either
via ECC associated with individual confi guration memory frames, or by comparison
with a golden reference stored off-chip in protected memory. Any elements that
have been modifi ed are refreshed in the course of the scan. FPGA vendors, such as
Xilinx, provide in-built components to perform this function [6]. An alternative,
indirect method, involves checking the behavior of the user circuit, and reloading
the circuit confi guration if the circuit no longer behaves as expected [4 , 17]. In the
latter case, TMR is typically employed to identify the module in error, and Dynamic
Partial Reconfi guration (DPR) is used to reconfi gure the erroneous unit. Built-in
self-tests could also be employed to check correct functioning of the user circuits.

 The scrubbing technique is usually deployed as a background process that oper-
ates periodically. There can therefore be a considerable delay between errors occur-
ring and them being detected and corrected—on average, a delay corresponding to
half the complete confi guration delay can be expected. The TMR-based approach,
on the other hand, is able to detect errors in the unit that is affected by checking for
repeated errors. If the module that is triplicated is acyclic, then the occurrence of
repeated errors in the same unit suggests its confi guration memory is corrupted
since transient errors affecting the datapath only give rise to isolated errors [4].

E. Cetin et al.

41

A threshold of 3–5 errors on successive clock cycles could be used to detect an
error. Of course, if the module includes feedback paths, then even a transient error
can lead to recycling of the erroneous value, and potentially give rise to multiple
errors at the output. In any case, when the TMR-based approach determines that a
unit is in error, it can trigger a partial reconfi guration of that unit, which can there-
fore be expected to incur less delay in correcting the error and require less energy
than scrubbing since partial reconfi guration is only triggered when it is needed
and the size of the unit is typically small compared to that of the complete confi gu-
ration memory.

 Regardless of the detection and confi guration memory correction method used,
thought must also be given to recovering the state of the affected user circuits. This
detail is less comprehensively studied in the literature. When scrubbing is used, the
designer needs to employ additional mechanisms, such as TMR and/or checkpointing,
in the user circuit to recover the state. TMR-based approaches rely on checking each
feedback state [18] or on waiting until the circuit enters a known state before resyn-
chronizing the constituent modules of a TMR component [19]. In [4], as suggested
by [20], the circuit to be protected is partitioned into acyclic components with each
feedback edge being voted upon (see Fig. 3.2). After a module is reconfi gured, its
state is resynchronized with that of its siblings when the inputs to the module
(including any feedback edges that have been voted upon) have emerged as outputs.
The latency of the component therefore determines the resynchronization delay.

 As outlined in the previous section, we propose using spatial-TMR to protect
ASIPs for which the RTL description is available. It is relatively straightforward to

M
od

ul
e

1

M
od

ul
e

2

M
od

ul
e

3

Triplicated
Component

Voter/Reconfiguration
Request & Resync.

Feedback Output

Downstream
Logic

Upstream
Logic

Feedback Output

Input

ICAP R
ec

on
fig

ur
at

io
n

C
on

tr
ol

Off-chip
Partial

bit-stream
storage

Token Ring
Reconfiguration
Control Network

FPGA

 Fig. 3.2 Partial reconfi guration-based recovery from confi guration memory SEU errors

3 Overview and Investigation of SEU Detection and Recovery Approaches…

42

then triplicate any single stage of a pipelined architecture whereby the pipeline
register contents are voted upon. For example, triplicating just the EXecute stage
(as depicted in Fig. 3.1) involves instantiating three copies of the ALU and the result
(EX/WB pipeline) registers. The contents of the result registers are voted upon, and
the majority value is then again used as a singular value to access memory or to be
written back to the register fi le. This scheme allows transient errors in any single EX
unit to be overwritten. Since the EX stage is invariably acyclic in structure, when
any one unit is found to be in error over successive clock cycles, it is more likely that
this has been caused by a confi guration memory upset than for it to have been
caused by successive datapath SEUs. A partial reconfi guration of that unit is then
triggered. While the unit is being reconfi gured, its two siblings continue to operate
and the voter continues to check that they agree. After the partial reconfi guration of
the erroneous unit has been completed, the output of the reconfi gured unit can once
again be expected to agree with that of its siblings after the next instruction is
executed and its result is registered.

 The same approach can be used to protect the instruction decode, register fetch,
and register writeback logic after an ALU or memory load instruction. The on-chip
control logic for off-chip memory accesses on instruction fetches, loads and stores
can also be triplicated. Since off-chip memory is readily protected with ECC,
 triplicating the storage as well should not be necessary except in the most sensitive
of applications.

 For the above approach to be applicable, each component that is to be protected
must be partitioned into acyclic sub-components. This is also a requirement of any
extraneous accelerator or glue logic that is to be protected. Some means of coordi-
nating the requests for reconfi guration between many voters and the reconfi guration
controller also needs to be implemented. In [3], we outlined and assessed a token-
ring architecture we use to implement a Reconfi guration Control Network (RCN)
for this purpose (Fig. 3.2). The resulting system is resilient to radiation-induced
errors as long as these errors don’t re-occur at time intervals that are shorter than the
time needed to recover from each error (comprised of the time to detect the
configuration memory error, communicate the reconfi guration request, perform
the partial reconfi guration, and resynchronize the reconfi gured module). In [4] we
found that the delay in recovering from an error is dominated by the time needed to
perform the partial reconfi guration, which, in turn, was determined by the perfor-
mance of the off-chip memory access and the internal confi guration control circuits.
The minimum expected inter-error period therefore determines the maximum
component size we can use for reliable operation [3 , 4].

3.4 The QB50 RUSH Payload and Experiment

 The QB50 project, funded through the European Union Framework Programme 7
(FP7) and overseen by the Von Karman Institute (VKI) in Belgium, is a planned
network of around 50, 2U and 3U CubeSats due to launch in 2016 into Low Earth

E. Cetin et al.

43

Orbit (LEO) that aims to provide a temporal and spatial image of the largely unex-
plored lower thermosphere. The individual CubeSats of the QB50 mission are being
developed by various universities around the world compliant with the QB50
requirements [21] and are expected to carry one of the three VKI sensor payloads.

 RUSH is one of three payloads that are currently under development for the
UNSW-EC0 QB50 CubeSat. The primary objective of this payload is to demon-
strate and validate new approaches to rapidly recovering from SEUs in reconfi gu-
rable hardware. The experimental goals of the payload are:

• Demonstrate and validate the partial reconfi guration approach to rapidly recovering
from SEUs in reconfi gurable hardware.

• Compare reconfi guration time and power consumption of scrubbing with partial
reconfi guration approach.

• Map SEU event occurrences in the thermosphere.
• Demonstrate in-orbit reconfi guration.

 The block diagram of the RUSH payload is shown in Fig. 3.3 . As can be observed
from Fig. 3.3 , at the heart of the RUSH payload design is a Xilinx Artix 7 XC7A200T
FPGA, chosen for its high logic density to power consumption ratio. The FPGA is
connected to a fl ash memory device that stores the base confi gurations for the

Xilinx Artix-7 FPGA

C
onfiguration
C

ontrol IO
U

A
R

T

Flash ControllerSpare IO

CLKINJTAG

Microsemi
SmartFusion

SOC U
A

R
T

0
C

onfiguration
C

ontrol IO

JTAGUART1

S
P

I
I2C

Spare IO
Power

Control IO

Flash Interface

Configuration
Flash

Flash
Interface

UART

Spare IO
Connector

Debug
LEDs

Power
Regulation

Power
Control IO

GPIOs

5V
0

CubeSat
System

Bus

5V
0

I2C
S

P
I

SPI
Flash

SPI

I2C

5V0

GPIOS

GPIOs

100MHz
OscillatorExternal Program/

Debug Connectors

JTAGUART_DEBUG

UART JTAG CLKIN

 Fig. 3.3 RUSH payload block diagram

3 Overview and Investigation of SEU Detection and Recovery Approaches…

44

FPGA, as well as the partial bitstreams of the modules that can be partially recon-
fi gured via DPR. The FPGA is connected via a UART interface to a Microcontroller
Unit (MCU) that acts as an interface between the FPGA and the UNSW-EC0
CubeSat system bus, and communicates with the On-Board Computer (OBC) via
the I2C interface. The MCU also oversees the overall operation of the RUSH pay-
load and controls the power-up/down of the FPGA, as well as logging SEU detec-
tion and recovery statistics and the power usage. To fulfi l the requirements for the
MCU in the proposed design, a Microsemi SmartFusion 2 System-On-Chip (SoC)
was selected. Furthermore, since the SoC is based on non-volatile FLASH memory
it is resilient to SEUs [22]. A small number of additional components provide
ancillary functions such as providing regulated power, clock sources, programming
interfaces and status indicators.

 The primary objective of the RUSH experiment is to test and validate new
approaches to rapidly recovering from soft errors in reconfi gurable hardware involv-
ing accelerator logic and soft ASIPs and to compare the performance of the approach
with that of the Xilinx SEM controller [6]. To this end, two essentially identical
confi gurations are being developed. One confi guration will employ the partial
reconfi guration method outlined in Sect. 3.3 and depicted in Fig. 3.2 to guard against
and recover from soft errors in user logic and confi guration memory, and the other
confi guration will utilize the SEM controller to continuously scan and scrub the
FPGA confi guration memory. To enable comparison of SEU susceptibility and
recovery, the two confi gurations comprise essentially the same circuitry, but the
SEM confi guration will not partially reconfi gure its triplicated components.

 The experiment will play a vital role in testing the susceptibility of Artix-7
FPGAs in LEO, and will demonstrate the use of dynamic partial reconfi guration on
an FPGA in space. The design will be composed of two base components: a Portable
Instruction Set Architecture (PISA)-based Advanced Encryption Standard (AES)
custom processor with triplicated execution units, and a Block Adaptive Quantization
(BAQ) circuit, chosen for its utilization of all FPGA resource types (LUTs, FFs,
DSPs, and BRAMs). These base components will be replicated to fi ll the FPGA
area, thereby creating the largest possible surface for SEUs to be detected.

 Within the thermosphere (<400 km orbit) we do not expect more than one error
per 1,000 s of FPGA operation on average. Nevertheless, the triplicated components
of the test circuits will be sized (see Sect. 3.3) so that error recovery can be achieved
within 10 ms to counteract rapid bursts of errors. This component size implies that
we may have on the order of 100 voters to manage using the RCN. Based on the
experimental results of a previous implementation of the RCN [4], we can therefore
expect a communications latency on the order of 100 μs and an overall reconfi gura-
tion control latency of under 1 ms. We intend experimentally assessing the avail-
ability of the DPR-based confi guration by comparison with the performance of
SEM controller-based confi guration that will be able to identify the precise bits that
were affected when it was in operation. These will then be assessed on the ground
for their sensitivity.

 During the experiment SEU events will be logged by the MCU and the time,
location, and time to recover will be transmitted to Earth when UNSW-EC0 passes

E. Cetin et al.

45

over any of the ground stations available for the QB50 mission. Due to power
limitations of the UNSW-EC0, the RUSH experiment will not run continuously.
To deal with this, the available uptime will be evenly distributed between the two
confi gurations. Furthermore, the activity of both confi gurations will be scheduled
such that they occur at similar times and locations.

3.5 Conclusions

 We have argued for the need to support soft ASIPs and logic in COTS FPGAs for
future low-cost space missions. We have surveyed techniques commonly employed to
guard against soft errors in ASIPs targeted at ASICs, where the processor state is sus-
ceptible to corruption and assessed the applicability of these techniques to ASIPs
implemented on FPGAs. We have outlined an experiment that is to be conducted as
part of the QB50 mission in 2016 involving an off-the-shelf Xilinx Artix-7 FPGA that
will be fl own into a low Earth orbit. As part of the experiment we will trial approaches
to protecting soft processor and logic circuits that are expected to result in quicker
recovery and lower power consumption than standard techniques. Our experiment
will also help to gauge the susceptibility of modern high-density COTS FPGAs to
SEUs in the thermosphere. If our methods prove to be benefi cial, we aim to refi ne and
generalize them to provide a low-cost, rapid development platform for protecting
FPGA-based processor and logic systems against radiation-induced soft errors.

 References

 1. SpaceWorks (2013) Nano/Microsatellite market assessment. bit.ly/17p9M5F
 2. Asadi H, Tahoori MB, Mullins B, Kaeli D, Granlund K (2007) Soft error susceptibility analysis

of SRAM-based FPGAs in high-performance information systems. IEEE Trans Nucl Sci
54(6):2714–2726

 3. Cetin E, Diessel O, Lingkan G, Lai V (2013) Towards bounded error recovery time in FPGA-
based TMR circuits using dynamic partial reconfi guration. In: Proceedings of the 23rd inter-
national conference on fi eld programmable logic and applications (FPL), 2013, pp 1–4

 4. Cetin E, Diessel O, Lingkan G, Lai V (2014) Reconfi guration network design for SEU recovery
in FPGAs. In: Proceedings of the 2014 IEEE international symposium on circuits and systems
(ISCAS), 2014, pp 1524–1527

 5. QB50 Project Description https://www.qb50.eu/index.php/project-description-obj
 6. LogiCORE IP soft error mitigation controller v4.1 product guide, Xilinx App. Note PG036 2014
 7. Praet JV, Goossens G, Lanneer D, Man HD (1994) Instruction set defi nition and instruction

selection for ASIPs. In: Proceedings of the 7th international symposium on high-level synthesis,
IEEE Computer Society Press, 1994, pp 11–16

 8. Tuo L, Shafi que M, Ambrose JA, Rehman S, Henkel J, Parameswaran S (2013) RASTER:
runtime adaptive spatial/temporal error resiliency for embedded processors. In: Proceedings of
the 2013 50th ACM / EDAC / IEEE design automation conference (DAC), 2013, pp 1–7

 9. Tuo L, Ragel R, Parameswaran S (2012) Reli: hardware/software checkpoint and recovery
scheme for embedded processors. In: Proceedings of the design, automation & test in Europe
conference & exhibition (DATE), 2012, pp 875–880

3 Overview and Investigation of SEU Detection and Recovery Approaches…

http://bit.ly/17p9M5F
https://www.qb50.eu/index.php/project-description-obj

46

 10. Ragel RG, Parameswaran S (2006) IMPRES: integrated monitoring for processor reliability
and security. In: Proceedings of the 2006 43rd ACM/IEEE design automation conference,
2006, pp 502–505

 11. Reis GA, Chang J, August DI (2007) Automatic instruction-level software-only recovery.
IEEE Micro 27(1):36–47

 12. Rehman S, Shafi que M, Kriebel F, Henkel J (2011) Reliable software for unreliable hardware:
embedded code generation aiming at reliability. In: Proceedings of the 9th international
conference on hardware/software codesign and system synthesis (CODES+ISSS), 2011,
pp 237–246

 13. Reorda MS, Violante M, Meinhardt C, Reis R (2009) A low-cost SEE mitigation solution for
soft-processors embedded in systems on pogrammable chips. In: Proceedings of the design,
automation & test in Europe conference & exhibition (DATE ’09), 2009, pp 352–357

 14. Hung-Manh P, Pillement S, Piestrak SJ (2013) Low-overhead fault-tolerance technique for a
dynamically reconfi gurable softcore processor. IEEE Trans Comput 62(6):1179–1192

 15. Ichinomiya Y, Tanoue S, Amagasaki M, Iida M, Kuga M, Sueyoshi T (2010) Improving the
robustness of a softcore processor against SEUs by using TMR and partial reconfi guration. In:
Proceedings of the 2010 18th IEEE annual international symposium on fi eld-programmable
custom computing machines (FCCM), 2010, pp 47–54

 16. Vavousis A, Apostolakis A, Psarakis M (2013) A Fault tolerant approach for FPGA embedded
processors based on runtime partial reconfi guration. J Electron Test 29(6):805–823

 17. Bolchini C, Miele A, Santambrogio MD (2007) TMR and partial dynamic reconfi guration to
mitigate SEU faults in FPGAs. In: Proceedings of the 22nd IEEE international symposium
on defect and fault-tolerance in VLSI systems, DFT ’07, 2007, pp 87–95

 18. Carmichael C (2001) Triple modular redundancy design techniques for Virtex FPGAs.
Technical report, Xilinx Corp., XAPP197 (v1.0)

 19. Pilotto C, Azambuja JR, Kastensmidt FL (2008) Synchronizing triple modular redundant
designs in dynamic partial reconfi guration applications. In: Proceedings of the 21st annual
symposium on integrated circuits and system design, ACM, 2008, pp 199–204

 20. Johnson JM, Wirthlin MJ (2010) Voter insertion algorithms for FPGA designs using triple
modular redundancy. In: Proceedings of the 18th annual ACM/SIGDA international symposium
on fi eld programmable gate arrays, ACM, 2010, pp 249–258

 21. VKI, QB50 System requirements and recommendations and interface control document, Issue
3, VKI, 2013

 22. Microsemi Corp., SmartFusion customisable system-on-chip (cSoC) (2013) http://www.actel.
com/documents/SmartFusion_DS.PDF

E. Cetin et al.

http://www.actel.com/documents/SmartFusion_DS.PDF
http://www.actel.com/documents/SmartFusion_DS.PDF

 Part III
 SRAM-Based FPGAs

49© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_4

 Chapter 4
 A Fault Injection technique oriented
to SRAM-FPGAs

 H. Guzmán-Miranda , J. Barrientos-Rojas , and M. A. Aguirre

 Abstract Fault injection is an accepted method for emulating the effect of ionizing
radiation on digital electronic circuits. It can be oriented either to ASIC designs or
to SRAM-FPGA designs. When the target device is an SRAM-FPGA the injection
has to be assessed both in the functional plane and in the confi guration plane. It has
been demonstrated that the classical protections oriented to the functional structure
are not enough, so the confi guration plane has to be analyzed, in the same way. This
paper describes the adaption of the FT-UNSHADES2 platform as a fault injection
system that tests faults in the confi guration plane. The mechanism that assesses the
effect of faults in the confi guration is read-modify-write, in cycles of inject and
repair, based on partial reconfi guration.

 In this paper the authors categorize that there are four types of possible faults in
the FPGA that should be considered: unrelated, non-damage, outer-propagated and
inner-propagated. Faults in the unrelated and non-damage confi guration bits are
affordable and can be fi xed using scrubbing techniques. The damage and propa-
gated faults propagate from the confi guration plane to the current data processed
and a complete scrubbing followed by a master reset should be asserted to recover
the functional behavior of the device.

 Other result found is the relationship between the faults in the functional observ-
ability and the confi guration bits. A result that only can be found if the injection
system can distinguish between the faults over the above mentioned planes.

4.1 Introduction

 SRAM-FPGAs are digital electronic devices that provide an attractive solution to
many aerospace applications [1]. They introduce certain fl exibility to the airborne
systems and space payloads which allow the actualization and improvement of
the electronic subsystems, and also deal with the possible obsolescence of their
components [2].

 H. Guzmán-Miranda (*) • J. Barrientos-Rojas • M. A. Aguirre
 Departamento de Ingeniería Electrónica , Escuela Superior de Ingeniería,
Universidad de Sevilla , c/ Camino de los Descubrimientos s/n , Sevilla 41092 , Spain
 e-mail: hipolito@gie.esi.us.es

mailto:hipolito@gie.esi.us.es

50

 The main drawback of this kind of devices is their extreme sensitivity to ionizing
radiation due to the huge quantity of memory cells that compound their structure
and the large critical area exposed.

 Faults in confi guration bits (CB) react in a different way than faults in user
registers. While faults in user registers are treated as transient anomalous values
that produce corrupted states in the cadence of the circuit, faults in the confi guration
bits have to be treated as structural modifi cations which remain permanent until the
confi guration is overwritten or repaired. Classical protections introduced in the
design structure, like Triple Modular Redundancy (TMR) [3 , 4] are still insuffi cient,
because confi guration faults can affect simultaneously to circuits belonging to
several clock domains, or propagate the fault to user logic.

 Errors in the confi guration are much more probable than the user register ones,
due to the abundance of sensitive points. They can be detected by means of a com-
plete Readback of the device, in the same way than a normal SRAM-memory [5].

 However, the number of CBs related to a particular design is a small fraction of
the total CBs. Xilinx has developed a special mitigation method based on the so
called Soft Error Mitigation (SEM) core [6]. It combines with an option in the
 bitgen application known as “essential bits”. This option generates two fi les that
determine the CBs that are related to the design. Essential bits are obtained by
means of a static analysis of the design; this analysis calculates those CBs that are
related to the implementation of the design, regardless of their actual value, and are
strictly part of the confi guration of any element of the FPGA. LUTs, BRAM
contents and FF contents are not included in this fi le.

 We take the advantage of this option for the adaption of the FT-UNSHADES2
tool to the injection of faults oriented to the essential bits. We will characterize the
tool with a small example.

 The rest of the paper is organized as follows: A general introduction about how
the fault injection procedures are, when an SRAM FPGA is the user platform. In the
third section the FT-UNSHADES2 system is described and also the skills imple-
mented in the system to target the FPGA as object of injection and fi nally a case of
study is introduced to show the system behavior.

4.2 Fault Injection in SRAM-FPGA

4.2.1 Fault Injection Oriented to User Registers

 SRAM-FPGAs are a very attractive solution for fault injection tasks when the
designer wants to analyze how the design structure treats the faults: where the weak-
est elements are and how the protections work within the circuit structure. There are
several proposals in the literature for platforms that develop this concept. Basically
they consist of the implementation of a mechanism that produces one or several
spontaneous changes in the content of implemented registers (WHERE) at any
clock cycle of the execution workload (WHEN), and if there is a predefi ned method

H. Guzmán-Miranda et al.

51

of injection (HOW). The most important characteristic of this procedure is that the
injection is performed over the circuit registers, or registers instantiated due to the
high level description of sequential statements. A good survey can be found in [6].

 A very well-known system based on this approach is “Autonomous Emulation”
system [7], that make use of any kind of SRAM-FPGA, instrument each register the
circuit for being tested and make a fast emulation of the system in fault. The plat-
form ASTERICS [8] is another example of how to inject faults reconfi guring.

4.2.2 Fault Injection Over the Confi guration Plane

 Another category that is completely different (but almost always confusing) is those
platforms that are dedicated to study the proper SRAM-FPGA as the target device.
This problem is completely different because the SEE can impact not only on the
instantiated registers but also in the confi guration bits of the elements that are
related to the design [9 , 10]. The consequences of SEE are totally different than in
the former category because the faults remain in the confi guration bit over time and
will only be removed when the confi guration is overwritten. During the time that
the fault is active the fault can be propagated to the user logic and then the processed
state becomes corrupted.

 Overwriting the state of the confi guration is done periodically, and the timing is
known as scrubbing period, so the time between reconfi gurations is the vulnerable
time. In a scrubbing cycle, the confi guration is overwritten “softly”, in such a way
that the current state represented by the content of the memory elements of the
FPGA remains untouched. This method by itself does not detect if the state of
the design is currently corrupted or not, and the scrubbing process takes extra and
undesired power due to the internal commutations of the transistors. One goal of the
design is to optimize time and power consumption.

 Mitigation with scrubbing is not enough, because data remains already corrupted
after the soft reconfi guration, so it is necessary to introduce another mitigation tech-
nique, in this case, focused on the repairing of data.

 Several platforms have been created, mainly for the measurement of the global
sensitivity of a design to SEE in a particular FPGA device. The main goal consists
in studying the design behavior when the device is confi gured, and then reconfi gure
it in a blind manner. The number of errors found versus the number of injections is
considered as a measurement of how reliable, running in this device, the circuit
is. This is a very ineffi cient mechanism due to the large amount of confi guration bits
unrelated to the design. These bits are sensitive from the point of view of the device,
but most of them are not, considering the confi gured action. Many of the injections
can be saved if we can distinguish between the related bits and the unrelated.

 Few platforms have been developed to test designs running on the SRAM-FPGA
(e.g. FLIPPER tool) [11 – 15], and few correct approaches have been addressed
because a platform is needed for the exact device that is going to be fl own in the
fi nal application. One solution is to study the design as a hard macro of the design,

4 A Fault Injection technique oriented to SRAM-FPGAs

52

a part of the identical confi guration that will integrate the fi nal device. This is a
method to migrate the design within the same technology.

4.2.3 Static vs. Time Zero Analysis

 There are approaches that provide information about the reliability of the design just
by studying the possible related bits. This is done by software tools like STAR [13]
and the Xilinx bitgen routines for essential bits determination [16]. The former goes
ahead, because it provides rules for a new placement that diminishes the number of
critical confi guration bits: the RORA tool [18].

 Static analysis provides information regardless of whether a particular resource
is used or not in the execution of the design. Of course this is the best situation but
when the user has to take actions for reducing the number of critical resources the
situation is not clear, as there is not idea about the sensitivity of each zone of the
circuit to make it more reliable. One possible solution is the use of the SRAM-
FPGA executing the design with a representative application workload. The
confi guration is modifi ed in the clock cycle zero and the effect of the fault is
recorded during the workload if there is any propagation path.

 If any critical point is not detected, either its effect remains latent within the
circuit or the resources are not well stimulated by the workload [5].

 Time zero analysis is less restrictive and more realistic than the static one.
It identifi es the part of the circuit that can propagate faults. It consists of injecting
the fault before the execution of the circuit is started. Normally it starts with a reset
assertion and if the circuit is modifi ed by the fault in the confi guration, the fault is
propagated during the workload to any primary output. Platforms watch this
sequence of values and detect any anomaly or wrong value. If this is done, the injec-
tion is representative of an error rate for a specifi c implementation of the circuit and
workload.

 There are few but well known platforms described in the literature. All of them
are devoted to the study of fault injection rates injecting using several techniques
and internal resources of the Xilinx FPGA.

 Again the next step is to provide rules for a new and more reliable implementa-
tion. The work should be done iteratively to minimize the criticality of the imple-
mentation. Next section will present the option of dynamic injection. The idea is to
open the injection to any clock cycle of the workload.

4.3 FT-UNSHADES2 in FPGA Mode

 Authors intentionally have omitted the platform FT-UNSHADES2 [17]. This plat-
form traditionally has been described and classifi ed in the set of tools dedicated to
test SEE oriented to inject faults in the user registers that belong to the custom logic,

H. Guzmán-Miranda et al.

53

but in this section we are going to describe the adaptation of the tool to the test of
designs implemented in FPGAs, so the injection procedures are produced over the
 confi guration bits , instead of the user registers of the FPGA.

 The principle of the method is essentially the same: use partial reconfi guration to
read, modify and write a particular frame of the confi guration map where the CB is
allocated. The identifi cation of the injection point provides a rich information about
the reliability of the design, or some critical parts of it (Fig. 4.1).

 The adaptation of one method, called ASIC mode, to the other, called FPGA
mode, is at API level. Very low level commands are basically the same. The struc-
ture of the system is still based on two identical FPGAs running in parallel, synchro-
nized, both receiving the same sequence of stimuli, and only one of them receiving
the injections. The comparison is cycle by cycle at the primary outputs. This proce-
dure is performed repeatedly, always with a known starting state at cycle 1. Every
execution of the workload is called run . At each run one or several injections are
performed selecting the target registers (WHERE and HOW) and clock cycles
(WHEN) to inject.

 The effect of a fault can be inspected either by on line comparison with the
primary outputs coming from the twin FPGAs (error faults) or by reading the
internal state of all the registers of both FPGAs and comparing their values one to
one. This method detects the internal latent faults.

 In ASIC mode the faults are injected only in user registers, faults can be compen-
sated through functional structures, so they can be repaired if the circuit is prepared
to. At every injection cycle, the signal reset is asserted in order to initialize the
registers content.

 In FPGA mode the faults are injected in CBs. The abundance or possible target
bits (tens of millions) makes the problem very diffi cult to deal with if there is no
previous selection of these CBs. Xilinx has provided a tool very similar to STAR
that extracts the CBs that are related to the actual implementation of the design. The
rest of CBs are unrelated and should not affect to the design behavior if they receive
a bit fl ip. The tool provides in fact two fi les, one marking the bits that are related and

 Fig. 4.1 Hardware for
injection model

4 A Fault Injection technique oriented to SRAM-FPGAs

54

other with the theoretical value of those confi guration bits. These fi les are part of a
mechanism of on-line repairing of the SEE in the confi guration plane. Xilinx has
developed this procedure for Virtex 5, 6 and 7 families.

 FT-UNSHADES2 has taken these fi les as reference for the FPGA mode for a
technique based on inject and repair cycles. The points of injection are determined
by the essential bits fi le and these bits are the ones attacked. The method is based on
the idea that when a CB is attacked, this change of value will not affect another
confi guration bit, otherwise the technique is not strictly valid, because the effect of
a fault would remain present in the FPGA after a reset. The attack model is described
then, as follows:

 1. Selection of the confi guration bit and clock cycle that will be attacked (WHERE
and WHEN).

 2. Initial reset, and execute the application until the injection instant.
 3. Using partial reconfi guration, the frame that corresponds to the CB is retrieved

from the FPGA
 4. (alt) this step can be substituted by the theoretical value coming from the .ebc fi le.
 5. Write the opposite value in the desired CB
 6. Resume the execution and compare primary output values.
 7. While execution, compare with Gold theoretical values.
 8. If a discrepancy is found or end of run is reached, repair the CB, following the

step 3.

 This mode is repeated in many execution runs following the procedure estab-
lished in the method of injection selected. If time zero is selected, then the injection
is produced just at the beginning of the experiment. If time is a variable, then the
system is driven to any clock cycle following the programmed selection pattern
(Fig. 4.2).

 The user can proceed to send a complete confi guration at any certain number of
injections in order to refresh it and erase any unexpected lateral effect.

 Also the system allows avoiding the step 7 and studying possible accumulated
effects.

 Fig. 4.2 Dynamic injection execution model. (a) Time zero injection (b) Variable time injection

H. Guzmán-Miranda et al.

55

 The most important difference between this system and other developments is
the consideration of the time as variable. It is very important to dedicate effort to the
elaboration of the test vectors, because they must be representative of the real appli-
cation, in order to make the results of the test more realistic and valuable.

 The second advantage of the current platform is that the designer can compare
between how the faults behave in the same framework from the point of view of
ASIC mode and FPGA mode, and compare both. This is especially interesting,
because in normal fl ight, the faults are detected using a specifi c detection circuit and
monitored at any primary output.

 The current system is based on Virtex 5 technology, and all the transactions are
performed through the SelectMap port in parallel mode.

4.4 A Case of Study

 This chapter will explain a case of study that characterizes the system. All the results
come from the FT-UNSHADES2 platform. We have developed a set of examples to
characterize the process. The examples b01 , b13 , b20 and keccak sponge function,
the former are complex circuits taken from the ITC99 benchmark suite and the latter
is part of a cryptocodec found in internet. All of them are examples that have avail-
able the high level description code with a stimuli set. In the case of keccak example
we have used two different sets of vectors to show the dependence of the observ-
ability on the application.

 Previous to the experimental activity a study about the essential bits has been
performed. For a blind attack, a complete sweep of all the used frames and all the
confi guration bits has been performed injecting in a blind way, say, if they are in the
subset of essential bits or not. Then the essential bits were attacked. All the critical
bits were detected in both subsets matching almost perfectly, with the unique differ-
ence of several bits in some frames of the blind sweep, corresponding to the LUTs
and FF contents, that are not part of the essential bits. This experiment was per-
formed over b01 and b13 circuits.

 The results of these previous experiments confi rm that the essential bits are a
good subset for an effective fault injection campaign, as promised by Xilinx.
However there are user memories that are not included in the essential bits subset.
These bits should be added to those bits that are critical.

 The fi rst analysis has been performed to compare static analysis versus dynamic
analysis. This experience pursues to compare the basic injection process. The
number of injection points is given by the essential bits static analysis generated
from the bitgen tool. In our examples set, the target device is XCV5FX70T, con-
taining 18,936,096 bits.

 For all the benchmarks, the fi rst cycle is the assertion of the reset signal. This
vector erases the possible functional value stored in previous execution runs and
starts the current one from a known state (Table 4.1).

4 A Fault Injection technique oriented to SRAM-FPGAs

56

 The pair workload/circuit is fi rstly tested as “ASIC mode” in order to test the
fault propagation capabilities of each benchmark. The keccak example is used twice
with different input vector databases. One is a single frame of data, and the second
comprises ten frames (Table 4.2).

 This experiment shows how the circuit structures propagate the faults. B01, B13
and keccak are examples that provide a high level of observability of faults, because
they can be easily propagated to the primary outputs. It is very important to test, for
each design-stimuli pair, their respective fault propagation capacity. Attacking the
user registers, it is possible to measure this effect.

 The keccak example shows that there is a dependence with how the stimuli set
helps this propagation.

 The next table shows the examples injecting only over those frames and confi gu-
ration bits that belong to the CLBs. The injection technique implemented is the
previously described inject and repair one. Table 4.3 shows the results for Time Zero
experiment:

 For comparison, the same experiment has been made but randomly selecting the
injection cycle . A small decrease of the percentage of detected faults is expected,
due to faults that could not have enough clock cycles to propagate to the outputs.
Table 4.4 shows this effect with a smaller percentage of errors in all the examples.
This situation is much more realistic than the previous one.

 Benchmark Registers Workload Essential bits

 b01 10 245 3,216
 b13 66 7,640 14,572
 b20 434 10,933 475,230
 keccak1 1,683 856 622,168
 keccak10 1,683 8,798 622,168

 Table 4.1 Characterization
of each benchmark

 Benchmark Inject. Errors Percentage Time (s)

 b01 10,000 7,666 76.6 5
 b13 10,000 8,072 80.7 42
 b20 100,000 16,105 16.1 428
 keccak1 50,000 45,421 90.8 27
 keccak10 50,000 46,420 92.0 239

 Table 4.2 ASIC mode results

 Benchmark Inject. Errors Percentage Time (s)

 b01 10,000 6,765 67.6 25
 b13 10,000 5,960 59.6 426
 b20 200,000 1,525 0.75 4,840
 keccak1 622,168 40,578 6.52 3,637
 keccak10 622,168 49,190 7.91 30,896

 Table 4.3 FPGA mode in
time zero

H. Guzmán-Miranda et al.

57

 The keccak10 experiment is performed about three times per confi guration bit.
This shows that the experiment becomes similar to the time zero one. As the
percentage shows, the time zero will be an upper bound of the real experiment,
more pessimistic than the random time experiment.

 The fi rst conclusion is that not all the essential bits present errors. That means
that the essential bit set is compounded by two subsets: the fi rst one, is the critical
ones, where faults introduce errors in the processing data and are detected at the
outputs affecting to the processed data. The second is related to those bits whose
error produces perturbations only in the propagation time of the connections, so
they only change the parasitic capacitances of the wires. They are diffi cult to detect,
but easy to prevent. In fact the critical ones are the candidates of being measured
and if possible, mitigated. They give the real vulnerability degree of the design
running in the current FPGA. The fi rst group needs to be repaired using any logical
mitigation technology plus the necessary scrubbing process to erase the errors.

 These results also show that the FPGA mode is strongly related to the ASIC
mode. The global observability of a design shows the propagation capacity of a
particular design to the detection mechanism, that in these examples are simply the
primary outputs. The experiments over B01, B13 and keccak circuits have high
controllability and observability so it is expected that faults have an easy propaga-
tion to primary outputs. However B20 has a bad architecture for propagating faults.
These numbers do not show that there is a high difference between the time zero
experiment and dynamic experiment, but they show that the capacity of a design to
propagate the perturbation is a very important measurement of its behavior.

4.5 Conclusions

 This paper presents, for the fi rst time, a fl exible platform that is ready to perform
fault injection over designs that are synthesized specifi cally for FPGA. The paper
discusses the differences between the ASIC and FPGA modes, where there is a
connection between them. Also this paper shows the procedure for the robustness
assessment of a design, and how to implement the design in one device and translate
it to another that belongs to the same family. It is also shown the infl uence of the
workload in the processing data, showing that the workload has to be representative
of the fi nal functionality. This paper shows how different models of SEU tests can
offer results depending on the timing scheme of the study.

 Benchmark Inject. Errors Percentage Time (s)

 b01 10,000 6,275 62.7 26
 b13 10,000 5,366 53.6 440
 b20 200,000 1,239 0.60 4,937
 keccak1 1,000,000 49,131 4.91 5,936
 keccak10 2,000,000 153,612 7.68 99,671

 Table 4.4 FPGA mode in
random time

4 A Fault Injection technique oriented to SRAM-FPGAs

58

 Further work will study larger and more complex designs where new conclusions
can be extracted.

 Acknowledgments The authors would like to thank Junta de Andalucía, Spain for funding the
EDELWEISS: Design of a Highly Effi cient Intra-Satellite Wireless Communications System
project (reference P11-TIC-7095), the European Space Agency for funding the FT-UNSHADES2
project (reference PI-0072/2010), and Luis Sanz for his help and insight with the mass processing
of the fault injection results.

 References

 1. Heiner J, Sellers B, Wirthlin MJ, Kalb J (2009) FPGA partial reconfi guration via confi guration
scrubbing. In: Proceedings of the fi eld programmable logic conference 2009, PL‘09, pp 99–104

 2. Guzman-Miranda H, Sterpone L, Violante M, Aguirre MA, Gutierrez-Rizo M (2011) Coping
with the obsolescence of safety- or mission-critical embedded systems using FPGAs. IEEE
Trans Ind Electron 58(3):814–821

 3. Rollins N, Wirthlin M, Caffrey M, Graham P (2003) Evaluating TMR techniques in the
presence of single event upsets. In: Proceedings for the 6th annual international conference
on military and aerospace programmable logic devices (MAPLD) Washington, DC, NASA
Offi ce of Logic Design, AIAA, Sept 2003, p P63

 4. Wirthlin M, Johnson E, Rollins N, Caffrey M, Graham P (2003) The reliability of FPGA
circuit designs in the presence of radiation induced confi guration upsets. In: Proceedings of the
2003 IEEE symposium on fi eld-programmable custom computing machines, 9–11 Apr 2003,
pp 133–142

 5. Quinn HM, Black DA, Robinson WH, Buchner SP (2013) Fault simulation and emulation
tools to augment radiation-hardness assurance testing. IEEE Trans Nucl Sci 54(1):252–261

 6. Morgan K, Caffrey M, Graham P, Johnson E, Pratt B, Wirthlin M (2013) SEU-induced persis-
tent error propagation in FPGAs. IEEE Trans Nucl Sci 60(3):2119–2142

 7. Lopez-Ongil C, Garcia-Valderas M, Portela-Garcia M, Entrena L (2007) Autonomous fault
emulation: a new FPGA-based acceleration system for hardness evaluation. IEEE Trans Nucl
Sci 54(1):252–261

 8. Velazco R, Mansour W, Pancher F, Costa Marques G (2011) ASTERICS—a platform for the
simulation of radiation effects on processors by fault injection. Open access paper: https://
www.rd-access.eu/edatools/system/fi les/_edaTools/ubooth_submission/2011/209.pdf

 9. Bernardi P, Sonza Reorda M, Sterpone L, Violante M (2004) On the evaluation of SEU sensi-
tiveness in SRAM-based FPGAs. In: Proceedings of the international on-line testing sympo-
sium (IOLTS), 2004, pp 115–120

 10. Lima F, Carmichael C, Fabula J, Padovani R, Reis R (2001) A Fault injection analysis of Virtex
FPGA TMR design methodology. In: IEEE European conference on radiation and its effect on
component and systems, 2001, pp 275–282

 11. Nazar GL, Carro L (2012) Fast single-FPGA fault injection platform. Defect and fault toler-
ance in VLSI and nanotechnology systems (DFT), 2012 IEEE international symposium on,
3–5 Oct 2012, pp 152–157

 12. Bolchini C, Castro F, Miele A (2009) A Fault analysis and classifi er framework for reliability-
aware SRAM-based FPGA systems. In: Proceedings of the international symposium on defect
and fault tolerance in VLSI and nanotechnology systems (DFT), 2009, pp 173–181

 13. Sterpone L, Violante M, Rezgui S (2006) An analysis based on fault injection of hardening
techniques for SRAM-based FPGAs. IEEE Trans Nucl Sci 53(4):2054–2059

 14. Sterpone L, Violante M (2007) A new partial reconfi guration-based fault-injection system to
evaluate SEU effects in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(4):965–970

H. Guzmán-Miranda et al.

https://www.rd-access.eu/edatools/system/files/_edaTools/ubooth_submission/2011/209.pdf
https://www.rd-access.eu/edatools/system/files/_edaTools/ubooth_submission/2011/209.pdf

59

 15. Alderighi M, et al (2007) Evaluation of single event upset mitigation schemes for SRAM
based FPGAs using the FLIPPER fault injection platform. In: Proceedings of the 2007 inter-
national symposium defect and fault tolerance in VLSI systems, Rome, Italy, Sept 2007,
pp 105–113

 16. Xilinx App note Xapp 538. April 2012
 17. Mogollon JM, Guzman-Miranda H, Napoles J, Barrientos J, Aguirre MA (2011)

FTUNSHADES2: A novel platform for early evaluation of robustness against SEE. Radiation
and Its effects on components and systems (RADECS), 2011 12th European conference on,
19–23 Sept 2011, pp 169–174

 18. Sterpone L, Aguirre M, Tombs J, Guzmán-Miranda H (2008) On the design of tunable fault
tolerant circuits on SRAM-based FPGAs for safety critical applications. Proceeding of the
design automation and test in Europe conference DATE 2008. Munich, Germany. 2008,
pp 336–341

4 A Fault Injection technique oriented to SRAM-FPGAs

61© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_5

 Chapter 5
 A Fault Injection System for Measuring
Soft Processor Design Sensitivity
on Virtex-5 FPGAs

 Nathan A. Harward , Michael R. Gardiner , Luke W. Hsiao ,
and Michael J. Wirthlin

 Abstract This paper presents an FPGA fault injection system, a methodology for
soft processor fault injection, and fault injection experimental results for MicroBlaze
and LEON3 soft processor designs. The Xilinx Radiation Test Consortium—Virtex
5 Fault Injector (XRTC-V5FI) was built to evaluate the confi guration memory sen-
sitivity of soft processor designs. To overcome some of the challenges of soft pro-
cessor fault injection, we designed the XRTC-V5FI to be fast, fl exible, and to fully
cover all confi guration memory bits. The minimum time to inject a full bitstream is
28 minutes and the individual fault injection can be as fast as 49 μS. The LEON3
has 81.3 % more sensitive bits than the MicroBlaze, yet when normalized by the
number of used slices, the MicroBlaze is 26.2 % more sensitive than the LEON3.

5.1 Introduction

 Operating microelectronic devices in high radiation environments greatly increases
their potential to malfunction. Energized ions colliding with sensitive logic regions
within a microelectronic device can change the state of the circuit [1]. When a col-
lision event modifi es the state of a memory bit or fl ip-fl op, this is known as a soft
error or a single event upset (SEU).

 Protection against SEUs is commonly achieved through the use of radiation-
hardened components. However, these components are expensive and lag several
generations behind standard commercial components due to high development and

 N. A. Harward (*) • M. R. Gardiner • L. W. Hsiao • M. J. Wirthlin
 Department of Electrical and Computer Engineering , NSF Center for High Performance
Reconfi gurable Computing (CHREC), Brigham Young University , Provo , UT , USA
 e-mail: nateharward@ieee.org; mikegardiner@byu.edu; lukehsiao@byu.edu;
wirthlin@byu.edu

mailto:nateharward@ieee.org
mailto:mikegardiner@byu.edu
mailto:lukehsiao@byu.edu
mailto:wirthlin@byu.edu

62

testing costs and limited production volume [1]. Field Programmable Gate Arrays
(FPGAs) provide a computing platform which is a suitable and fl exible alternative
to radiation-hardened computers. FPGA reconfi gurability allows design upgrades
and corrections after a space launch, and the same FPGA can be reused for new
designs.

 SRAM-based FPGAs use static random-access memory (SRAM) to hold the
FPGA confi guration and their SRAM is vulnerable to SEUs. A change to a con-
fi guration memory bit can affect the function of a look-up table (LUT) or the rout-
ing between nodes, and cause failure in the user design. One example of such
failure is illustrated in Figs. 5.1 , 5.2 , 5.3 and 5.4 . Figure 5.1 shows the confi gura-
tion memory that defi nes a simple circuit within an FPGA and Figure 5.2 shows
the routing and logic result of that memory as an AND gate with two inputs. Figure
 5.3 shows an SEU routing one of the inputs away from the AND gate and Figure
 5.4 shows an SEU changing the AND gate into an XOR gate. The confi guration
memory on an FPGA can be protected from SEUs with memory scrubbing and/or
error detection and correction (EDAC) techniques [2]. FPGA fault-tolerant design
techniques such as triple modular redundancy (TMR) can also be employed to
detect and mitigate SEUs.

 FPGA fault injection is an emulation-based method for discovering which of the
confi guration bits in a design are sensitive to upset. It can help identify specifi c
system failure modes and determine design vulnerabilities. To determine which
confi guration bits are sensitive, each bit is changed one by one to emulate an SEU
while the design outputs are compared with outputs from a golden model or set of
expected outputs. Each changed bit is restored when the next bit is changed to emu-
late an SEU. When an output mismatch is observed, the fault injector logs the
changed bit as a sensitive bit. FPGA fault injection does not completely evaluate the
reliability of a design, as it does not test all FPGA components and hard logic.
FPGA fault injection does not emulate single event transients (SETs) or multi-bit
errors (MBUs).

 Fig. 5.1 Confi guration
memory

N.A. Harward et al.

63

 Fig. 5.2 Routing and logic
result of confi guration
memory

 Fig. 5.3 Upset in routing

 Fig. 5.4 Upset in logic

5 A Fault Injection System for Measuring Soft Processor Design Sensitivity…

64

5.2 Related Works

 The need for reliable FPGAs in space environments has motivated the development
of FPGA fault injection platforms [2]. Over the years, many notable fault injection
tools and platforms were created [3 – 5]. Johnson et al. used a SLAAC-1V testbed
which housed three Virtex (XCV1000) FPGAs [6]. The SLAAC-1V injector was
able to test all confi guration bits at high speeds and predict where upsets can occur.
Alderighi et al. [7] created the FLIPPER fault-injection platform which used a sin-
gle Virtex-II Pro (XC2VP20) motherboard test fi xture that could also be used for
radiation tests. Rather than test all confi guration bits, they used a probabilistic
model to determine design sensitivity. Sterpone et al. [8] used a Virtex-II Pro
(XCV2P30) FPGA with an embedded PowerPC microprocessor. Using an internal
confi guration access port (ICAP), a timing unit, and having the test design internal
to the test FPGA, the fault injector operated at very high speeds.

 Cieslewski et al. [9] used JTAG to improve fault injector portability with their
Simple Portable FPGA Fault Injector (SPFFI). They have also compensated for the
speed bottleneck of JTAG by designing SPFFI to only fault inject bits that are rep-
resentative of a region of interest and/or fault inject random locations. Similar to the
FLIPPER, they probabilistically determine design sensitivity. Guzman-Miranda
et al. [10] have designed their FT-UNSHADES2 fault injection platform to obtain
high-speed fault injection and full coverage. They used a standard Xilinx mother-
board: the ML-510 with a Virtex-5 (XC5VFX130T). They can test custom-made
daughtercards, which interface with the motherboard via PCI-Express. To maxi-
mize fault injection speed, FT-UNSHADES2 utilizes the SelectMAP interface.
Their test design can work with a signifi cant 512 bits of virtual input/output ports.

 Starting with Virtex-6, Spartan-6, and 7-Series Xilinx FPGAs, Xilinx has releases
a proprietary IP core called the Soft Error Mitigation (SEM) Core. The SEM Core
is instantiated with the user design and uses the ICAP to detect, correct, and classify
soft errors in the confi guration memory of an FPGA device [11 , 12]. While these
fault injectors vary in technologies and methods used, they all have offered invalu-
able insight into how FPGA designs can be protected from SEUs.

5.3 XRTC Virtex-5 Fault Injector (XRTC-V5FI)

 In conjunction with the Xilinx Radiation Test Consortium (XRTC), we built an
FPGA fault injection system for testing digital FPGA circuits. Our main objectives
in building this system were to achieve high customization and full bitstream cover-
age at a high fault injection rate. Because it takes a long time to complete fault injec-
tion on a full bitstream, we had to have a fast fault injector to increase the number
of experiments completed. Also, a highly customizable system lets us conduct a
larger variety of experiments and try different methodologies.

N.A. Harward et al.

65

5.3.1 Architecture

 The XRTC-V5FI fault injector (Fig. 5.5) is built using the XRTC motherboard, a test
FPGA daughtercard, a non-volatile programmable read-only memory (PROM) card,
and a host computer. The XRTC motherboard is also commonly used as a test fi xture
for radiation beam testing for other research projects. The test design is placed on the
design under test (DUT) FPGA which is on the test daughtercard. The daughtercard
allows us to run tests for both commercial and space-grade Virtex-5 FPGAs.

 The XRTC motherboard has two service FPGAs (shown in Fig. 5.6) called the
Confi guration Monitor (Confi gMon) and the Functional Monitor (FuncMon). For
our fault injection application, the Confi gMon performs scrubbing and readback
and is responsible for confi guring the DUT (pulsing PROG) and performing fault
injection on the DUT (via SelectMAP), and logging sensitivity data for download.
The FuncMon provides clock and reset signals, controls the fault injection sequence,
compares design outputs, and signals the Confi gMon when an error occurs. The
FuncMon and Confi gMon communicate directly with each other using a 16-bit
wide Common Interconnect Bus (CI-Bus). The test design data is held on a PROM
card plugged directly into the motherboard. This card contains the DUT golden
bitstream fi le and the DUT mask bitstream fi le. The mask fi le is used to differentiate
between the confi guration bits used for logic, shift register LUTs (SRLs), and
LUTRAM inside of confi gurable logic blocks (CLBs). The Confi gMon reads test
design data from PROM card for fast confi guration. The host PC computer com-
municates with both the Confi gMon and the FuncMon service FPGAs using RS-232

 Fig. 5.5 Picture of (a) XRTC motherboard, (b) V5QV daughtercard, and (c) PROM memory card

5 A Fault Injection System for Measuring Soft Processor Design Sensitivity…

66

to initialize the system for fault injection, issue commands, and monitor the status
and log data. The DUT FPGA receives its clock and reset signals from the FuncMon,
and design outputs (145 signals) are sent from the DUT into the FuncMon for com-
parison. A high level illustration of the system is shown in Fig. 5.6 .

 The test FPGA for all the experiments described in this paper is the Virtex-5QV
(V5QV). It is a 65-nm radiation-hardened by design (RHBD) FPGA manufactured
by Xilinx, and it is qualifi ed for space application [13]. The V5QV has 49,227,552
confi guration bits, 34,087,072 of which are used for function and routing. There are
also approximately 10.9 million bits used for block RAM (BRAM) and 4 million
bits used for “testability and diagnostic reasons” [14]. For our experiments, we con-
sider only the sensitivity of the bits used for function and routing.

5.3.2 Attributes

 One major objective was to design our system to maximize fault injection speed.
The current baseline time for a full bitstream fault injection campaign is 28 min.
Design execution time and error recovery methods add additional time to the cam-
paign. Each individual fault injection takes at least 49.1 μS. The Confi gMon confi g-
ures and performs fault injection on the DUT via the SelectMAP port. The
SelectMAP data port is 8-bits wide, and uses a 33 MHz clock. The XRTC-V5FI was
designed to accurately measure confi guration sensitivity by completely covering all
34.1 million confi guration bits that control function and routing. The remaining
14.9 million bits in the bitstream are skipped.

 Additionally, we have required that fault injection campaigns must be customiz-
able. The FuncMon FPGA can be tailored for each design, allowing us to adjust the
design execution time, test stimuli, fault injection procedure, and golden model.
When comparing the design outputs, the FuncMon not only provides us with auto-
matic error detection and recovery, but can also classify errors, determine faulty bit
locations (e.g. a TMR voter error detection output), or other customizations based
on the experiment. The host computer can request a snapshot of the faulty outputs
if desired.

XRTC Motherboard

ConfigMon

FuncMon

Daughtercard

DUT

PROM
Card

SelectMAP

DUT IO

CI-Bus 16

145

8

USB

USB

Direct

Host PC

 Fig. 5.6 High level view of XRTC-V5FI components

N.A. Harward et al.

67

5.3.3 Methodology

 Our experiments are built by placing two copies of the test design inside of the DUT
FPGA. The outputs of each copy are assigned to 72 bits of the 145-bit signal that is
outputted to the FuncMon. These outputs are then compared with each other at the
end of a run cycle, and any mismatches are reported as errors. Alternatively, we
could have had a golden model in the FuncMon and compared its outputs with a
copy of the test design in the DUT, but we decided on the previous strategy to avoid
any possible timing issues from comparing outputs from separate FPGAs.

 Below is the fault injection loop procedure used for our experiments. This proce-
dure is also shown with the diagram in Fig. 5.7 .

 1. The Confi gMon FPGA toggles the bit in the DUT FPGA’s confi guration
memory.

 2. The DUT is reset and its clock is enabled. The DUT is given time to load memo-
ries, execute software, and allow any errors to propagate through to its outputs.

 3. The DUT’s clock is stopped, and the outputs from both copies of the test design
are compared with each other.

 4. If an error is detected, the FuncMon signals the Confi gMon to record and log the
error with the error’s location and type.

 (a) For reset recovery experiments only, the confi guration memory bit is restored
and this process is repeated to determine if the error remained. The error is
recorded as either recovered or unrecovered.

 (b) If a Single Event Functional Interrupt (SEFI) error (functional error inde-
pendent of the test design) [15] is detected, the error is recorded, the DUT is
fully reconfi gured, and fault injection resumes at the next bit.

 Fig. 5.7 Diagram showing the fault injection procedure

5 A Fault Injection System for Measuring Soft Processor Design Sensitivity…

68

 5. If the design contains a soft processor, we fully reconfi gure the DUT after each
detected output error to ensure the full recovery of memories.

 6. The faulty bit is restored as the next bit is toggled.

 At the beginning of a fault injection campaign, the host will reconfi gure the service
FPGAs and load the bitstream for the DUT FPGA onto the PROM card. The host
will setup the Confi gMon with the correct parameters for fault injection, and test
that the system is setup correctly. The host then commands the FuncMon to sequen-
tially perform fault injection with a user-specifi ed number of bits. The FuncMon
will then run the fault injection procedure described above for each bit by issuing
commands to the Confi gMon, waiting for the user-specifi ed design execution time
for each injected fault, and reporting results. The FuncMon reports the number of
bits injected while the host ensures that errors are recovered and retrieves logged
faults from the Confi gMon. The host keeps a database of errors with location and
type, allowing for later analysis of the data.

5.4 Soft Processor Fault Injection

 A soft processor is an implementation of a processor architecture that can be cus-
tomized by the user for use on an FPGA. The key advantage soft processors offer to
their users over standard microprocessors is the ability to optimize the hardware
design for a particular application using FPGA resources. The reconfi gurability of
soft processors is also advantageous in that it allows the design to be updated when-
ever new features are desired, granting the processors relative immunity to obsoles-
cence and enabling changes even when the FPGA has been deployed in a remote or
harsh environment.

 With a rise in the use of soft processors in harsh environments, a detailed under-
standing of soft processor reliability and failure modes is becoming indispensable.
Using fault injection, we can test the confi guration memory sensitivity of soft pro-
cessors on FPGAs in an effort to understand their reliability and evaluate soft pro-
cessor mitigation strategies and recovery methods. However, fault injection for soft
processors involves grappling with a number of challenges unique to these designs.
First, the reliability of a soft processor system depends not only on the specifi c
hardware modules and features of the processor included in the system, but also on
the software application the processor is executing. Since different software pro-
grams exercise a processor’s functional units and memory in different ways, one
software program may result in a different confi guration memory sensitivity than
another. A second challenge in soft processor fault injection is handling errors that
propagate into memories. If an error from an injected fault propagates into a FPGA
memory resource such as BRAM, LUTRAM, or an SRL, the error can persist in the
memory even after a full system reset. Without special memory scrubbing or a full
reconfi guration to repair the error, subsequent confi guration bits may be deemed
sensitive when a fault injection on a previous confi guration bit was the real cause of the

N.A. Harward et al.

69

error. A third challenge in conducting fault injection experiments on soft processors
is choosing a design runtime long enough to ensure that any bootloader code has
completed and the desired software application is executing while also choosing a
runtime short enough to minimize overall test time.

5.4.1 Soft Processors Used

 For our fault injection experiments, we have used two of the most popular soft
processor models: the MicroBlaze soft processor from Xilinx [16] and the LEON3
soft processor from Aerofl ex Gaisler [17]. These experiments were run using identical
embedded software applications and similar soft processor confi gurations, although
there are still signifi cant differences between the processor architectures.

 The MicroBlaze is a 32-bit reduced instruction set computer (RISC) soft proces-
sor proprietary to Xilinx, built and optimized for use solely on Xilinx FPGAs [16].
It has a full Harvard architecture with separate data and instruction memory buses.
The MicroBlaze is highly customizable, and Xilinx has produced a large number of
compatible IP modules and libraries to use with it.

 The LEON3 is an open-source 32-bit RISC soft processor from Aerofl ex Gaisler
[18]. It is based on the SPARC V8 architecture and supports a variety of operating
systems such as Linux, RTEMS, and VxWorks. A ROM peripheral provided with
the processor is used to decompress an application program stored in the ROM and
loads it into processor main memory when no debugger is used. The bootloader
code which performs this function is generated automatically by the LEON3 soft-
ware tools and is stored in the ROM along with the compressed application code.
A fault-tolerant version of the LEON3, the LEON3-FT, is commercially available
from Aerofl ex Gaisler as well.

5.4.2 Soft Processor Test Designs

 For both the MicroBlaze and the LEON3, version 13.2 of the Xilinx tool fl ow was
used to generate a bitstream. A simple Towers of Hanoi C program was compiled
and run on each platform. Neither processor used an operating system for this test.
No FPUs, MMUs, debug modules, or caches were enabled. All program memory
was stored in the standard BRAM peripherals that came with the IP libraries for
each processor. The MicroBlaze used an 8 KB BRAM while the LEON3 used a
32 KB BRAM. The LEON3 also included an additional 15 KB ROM to hold its
bootloader code and a compressed version of the Towers of Hanoi program, which
is copied into the RAM on startup by the bootloader. Each design ran on a 50 MHz
clock input (supplied by the FuncMon) and was given 16,921 clock cycles to load
and execute code memory. For each experiment, full reconfi guration was used to

5 A Fault Injection System for Measuring Soft Processor Design Sensitivity…

70

recover from reported errors to restore memories. Table 5.1 highlights some of the
differences between the two processor confi gurations.

 The processor outputs selected for the comparison between the DUT and golden
versions of each soft processor design were chosen from each processor’s bus sig-
nals governing memory access. From these outputs, we can determine if the faults
affect the processor state in terms of the executed instructions and the calculated
results being saved to memory. This strategy does not cover all possible design
errors and would need to be adjusted for designs that interact with peripherals or use
very little data memory.

 For the MicroBlaze design, we observe the lower 16 bits of the address and data
lines for both the data memory (dlmb) and the instruction memory (ilmb). We also
monitor the memory enable and write enable nets. For the LEON3, we observe
similar signals within the AMBA High-Performance Bus (AHB) Master In (ahbmi)
and Slave In (ahbsi) signals from the ahbmi signal we observe the full 32-bit read
data line and a 2-bit transaction response signal coming in from the bus slaves. From
the ahbsi signal we observe the full 32-bit write data line and the lowest 6 bits of the
address line coming out from the processor, which is the bus master.

5.5 Test Results and Analysis

 The soft processors are duplicated and placed on the DUT FPGA. Figure 5.8 shows
the layout of the MicroBlaze and LEON3 designs that were generated using Xilinx
FPGA Editor software. The LEON3 is a larger design, occupying 2.28× the number
of slices that the MicroBlaze occupies. Experiments were conducted to test for raw
sensitivity and reset-recoverability. Result data was analyzed to determine the nor-
malized sensitivity of a design, to compare the sensitive bit set of the design with
the essential bit set generated by the Xilinx tools, and to determine a design’s con-
fi guration memory error rates.

 Table 5.1 Comparison of confi guration features used for experiments

 MicroBlaze LEON3

 Version 8.20.a GRLIB Release 1.3.4-b4140
 5 Stage Pipeline 7 Stage Pipeline
 No Register Windows 8 Register Windows
 32-bit Multiplier 32-bit Multiplier
 No Divider 32-bit Divider
 Barrel Shifter No Barrel Shifter
 Pattern Comparator No Pattern Comparator
 2 BRAMS 16 BRAMS
 Data and instruction LMB buses Single AHB Bus

N.A. Harward et al.

71

5.5.1 Raw and Normalized Sensitivity

 The raw sensitivity and resource utilization numbers for the MicroBlaze and LEON3
test cases are given in Tables 5.2 and 5.3 . The LEON3 is both a larger design and
had a larger number of sensitive bits than the MicroBlaze. The per-processor sensi-
tivity is 51,946 errors for the MicroBlaze and 94,189 errors for the LEON3 design.

 To compare the normalized design sensitivity, we use the following equation:

Normalized Sensitivity

Sensitivity

Utilization

Total Slices
= =

()(()

()()

Sensitive Bits

Total Bits Used Slices
 (5.1)

 The normalized sensitivity results are listed in Table 5.4 . The normalized sensi-
tivity of the MicroBlaze is 26 % greater than the normalized sensitivity of the

 Fig. 5.8 A layout for visual
comparison of MicroBlaze
and LEON3 designs
(Generated with Xilinx FPGA
Editor)

 Table 5.2 Resource utilization

 Design Slices Total LUTs LUTs as logic LUTs as RAM Registers BRAMs

 MicroBlaze 1,029 2,493 2,190 128 1,601 4
 LEON3 2,354 6,919 6,789 24 2,803 32

 Table 5.3 Raw sensitivity
results

 Design Sensitive bits Sensitivity (%)

 MicroBlaze 103,893 0.305
 LEON3 188,378 0.553

5 A Fault Injection System for Measuring Soft Processor Design Sensitivity…

72

LEON3. We believe that the higher sensitivity of the MicroBlaze is due to how the
two processors are made. The MicroBlaze, by default, is optimized for Xilinx
FPGAs and uses LUTRAM and SRL primitives [16]. The LEON3 is for the most
part FPGA architecture-independent, except for the primitives it uses to construct
its Input/Output Blocks (IOBs), clock management devices, and memories, which
are chosen through generics in its HDL code. Because more of the LEON3 design
is synthesized than the MicroBlaze, this could result in less functional density and
thus less sensitivity to upsets.

 The static results from V5QV Single Event Effect (SEE) testing give an error rate
of fi ve static upsets per year for this FPGA’s confi guration memory [14]. Using this
error rate, we would estimate a uniprocessor MicroBlaze design to have a mean
time to confi guration-induced failure (MTTCIF) of 131.24 years in GEO, and a
small uniprocessor LEON3 design to have a MTTCIF of 72.38 years. It is important
to keep in mind that this error rate does not include BRAMs or other user memories,
and it does not account for Digital Clock Managers (DCMs), DSP48Es, Multi-
Gigabit Transceivers (MGTs), and other non-CLB elements.

5.5.2 Reset Recovery Experiment

 A system-wide reset can be a simple recovery technique for FPGA designs, how-
ever it does not always allow recovery of soft processor designs. When errors propa-
gate into design memories, they can persist after a system reset. The goal of the
reset-recovery experiment is to identify which confi guration bits cannot be recov-
ered. This experiment requires an additional step in our fault injection procedure
where the fault-injected bit is corrected, the test design is reset, and the design out-
puts are again checked for errors. Table 5.5 shows how many unrecovered errors
were found in each design. In the MicroBlaze design, about 1 in 7 sensitive bits
were not recoverable by reset. In the LEON3, 1 in 429 were not recoverable. The
LEON3 has a much better reset-recovery rate than the MicroBlaze design. We
believe this is due to the bootstrap loader sequence that the LEON3 uses. When the
reset is asserted, the LEON3 in effect scrubs its own program memory.

 Table 5.4 Total errors normalized over resources utilized

 Design
 Errors per
slice

 Errors per logic
LUT

 Errors per
register

 Normalized sensitivity
(%)

 MicroBlaze 100.97 47.44 64.89 6.07
 LEON3 80.02 27.75 67.21 4.81

 Table 5.5 Sensitive bits that
were not recoverable by reset

 Design Sensitive bits Unrecovered errors

 MicroBlaze 104,001 14,271 (13.72 %)
 LEON3 188,653 440 (0.28 %)

N.A. Harward et al.

73

5.6 Conclusion

 We have injected fi ve billion bits over thousands of hours of testing to develop a
unique Virtex-5 fault injection system. The fault injector was created with the XRTC
motherboard and used to test the MicroBlaze and LEON3 soft-processors. The sys-
tem performs fault injection successively on all confi guration bits that control FPGA
function and routing at a speed of 49.1 μS per bit. Our initial soft processor test
results were shown, as well as processor reset recovery data. We found that the
LEON3 has a lower normalized sensitivity and a higher reset-recovery rate than the
MicroBlaze.

 Future work with the fault injection system will focus on using the system to
conduct experiments on soft processor designs. Fault injection experiments of the
ARM Cortex-M0 and OpenRISC soft processors are underway, and other soft pro-
cessors will be considered. In addition to performing experiments to determine the
raw sensitivity of these processors, we will implement SEU mitigation and recovery
techniques into the processor designs of the fault injection system and evaluate the
effectiveness of each of these techniques in reducing design sensitivity. Using the
data gathered from these tests, we will create reliability estimation tools and develop
a model for estimating soft processor confi guration sensitivity. These tests and tools
will enable engineers to more fully understand the reliability tradeoffs in the use of
soft processors, speeding up the design process, and allowing engineers to more
accurately predict soft processor reliability in a variety of harsh environments.

 Acknowledgments This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1265957. We also acknowledge the Xilinx Radiation Test Consortium
(XRTC) and members for support and use of XRTC test hardware.

 References

 1. Dodd PE, Massengill LW (2003) Basic mechanisms and modeling of single-event upset in
digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602

 2. De Kastensmidt LFG, Neuberger G, Hentschke RF, Carro L, de Reis LRA (2002) Designing
fault-tolerant techniques for SRAM-based FPGAs. IEEE Des Test Comput 21(6):552–562.
doi: 10.1109/MDT.2004.85

 3. Mansour W, Velazco R (2013) An automated SEU fault-injection method and tool for HDL-
based designs. IEEE Trans Nucl Sci 60(4):2728–2733. doi: 10.1109/TNS.2013.2267097

 4. Nazar G, Carro L (2012) Fast single-FPGA fault injection platform. In: Defect and fault toler-
ance in VLSI and nanotechnology systems (DFT), 2012 IEEE international symposium on,
pp 152–157. doi: 10.1109/DFT.2012.6378216

 5. Lima F, Carmichael C, Fabula J, Padovani R, Reis R (2001) A fault injection analysis of Virtex
FPGA TMR design methodology. In: 6th European conference on radiation and Its effects on
components and systems, IEEE (2001), pp 275–282. doi: 10.1109/RADECS.2001.1159293

 6. Johnson E, Wirthlin MJ, Caffrey M (2002) Single-event upset simulation on an FPGA. In:
Proceedings of the international conference on engineering of reconfi gurable systems and
algorithms (ERSA), CSREA Press, 2002, pp 68–73

5 A Fault Injection System for Measuring Soft Processor Design Sensitivity…

http://dx.doi.org/10.1109/MDT.2004.85
http://dx.doi.org/10.1109/TNS.2013.2267097
http://dx.doi.org/10.1109/DFT.2012.6378216
http://dx.doi.org/10.1109/RADECS.2001.1159293

74

 7. Alderighi M, Casini F, d’Angelo S, Mancini M, Pastore S, Sechi GR (2007) Evaluation of
single event upset mitigation schemes for SRAM based FPGAs using the FLIPPER fault injec-
tion platform. In: Proceedings of the 22nd IEEE international symposium on defect and fault-
tolerance in VLSI systems, DFT’07, IEEE Computer Society, Washington, DC, USA,
pp 105–113. doi: 10.1109/DFT.2007.45

 8. Sterpone L, Violante M (2007) A new partial reconfi guration-based fault-injection system to
evaluate SEU effects in SRAM-based FPGAs. IEEE Trans Nucl Sci 54(4):965–970.
doi: 10.1109/TNS.2007.904080

 9. Cieslewski G, George AD (2009) SPFFI: Simple portable FPGA fault injector. In: Proceedings
of military and aerospace programmable logic devices conference (MAPLD)

 10. Guzmán-Miranda H, Nápoles J, Mogollón J, Barrientos J, Sanz L, Aguirre M (2012)
FT-UNSHADES2: a platform for early evaluation of ASIC and FPGA dependability using
partial reconfi guration. La Sociedad de Arquitectura y Tecnologa de Computadores

 11. LogiCORE IP soft error mitigation controller (2011) UG764 (v2.1)
 12. Schumacher P (2012) SEU emulation environment. WP414 (v1.0)
 13. Wang Y (2011) Recommendations for managing the confi guration of the RHBD Virtex- 5QV.

In: Proceedings of military and aerospace programmable logic devices (MAPLD)
 14. Swift G, Carmichael C, Allen G, Madias G, Miller E, Monreal R et al (2011) Compendium of

XRTC radiation results on all single-event effects observed in the Virtex-5QV. In: Proceedings
of NASA military and aerospace programmable logic devices (MAPLD)

 15. White D (2011) Considerations surrounding single event effects in FPGAs, ASICs, and
processors. WP402 (v1.0.1)

 16. MicroBlaze Processor Reference Guide, Embedded Development Kit EDK 13.2 (2011).
UG081 (v13.2)

 17. Aerofl ex gaisler LEON3 processor. http://www.gaisler.com/index.php/products/processors/
leon3

 18. Learn MW (2011) Evaluation of soft-core processors on a Xilinx Virtex-5 fi eld programmable
gate array. Sandia National Laboratories, Sandia Report No. SAND2011-2733, Apr 2011

N.A. Harward et al.

http://dx.doi.org/10.1109/DFT.2007.45
http://dx.doi.org/10.1109/TNS.2007.904080
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3

75© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_6

Chapter 6
A Power-Aware Adaptive FDIR Framework
Using Heterogeneous System-on-Chip
Modules

Shane T. Fleming, David B. Thomas, and Felix Winterstein

Abstract  Reconfigurable field-programmable gate arrays (FPGAs) offer high
processing rates at low power consumption and flexibility through reconfiguration
which makes them widely-used devices in embedded systems today. Spacecrafts are
highly constrained embedded systems with an increasing demand for high process-
ing throughput. Hence, leveraging the power/energy efficiency and flexibility of
reprogrammable FPGAs in space-borne processors is of great interest to the space
sector. However, SRAM-based FPGAs in space applications are particularly suscep-
tible to radiation effects as single event upsets (SEUs) in the configuration memory
can cause the reconfiguration of the chip and an undesired modification of the cir-
cuit. Traditionally, this problem is addressed by fault detecting and scrubbing, i.e.
repeated reprogramming of the configuration bitstream. A major disadvantage of
this technique is the considerable down-time of the processing system during repro-
gramming which can lead to the loss of payload data or even affect critical onboard
control tasks. This work proposes a novel fault detection, isolation and recovery
(FDIR) framework that optimizes the worst case response, power consumption and
availability of the processing system together. Our FDIR scheme and fault handling
is transparent to the payload application as the system autonomously ensures nearly
full availability of the payload processor at all times. A key feature of our technique
is the explicit use of commercial-off-the-shelf heterogeneous systems such as
Xilinx’s Zynq or Altera’s Cyclone V system-on-chip devices, which tightly couple
FPGA fabric with embedded hard processor cores. This chapter describes the cur-
rent implementation of our FDIR framework. We present experiment results
obtained under fault injection and demonstrate that our framework ensures nearly
full availability, whereas the conventional scrubbing approach can degrade to 20 %

S.T. Fleming (*) • D.B. Thomas
Circuits and System Group, Imperial College London, London, UK
e-mail: shane.fleming06@imperial.ac.uk; d.thomas1@imperial.ac.uk

F. Winterstein
European Space Agency, Robert-Bosch-Straße 5, Darmstadt 64293, Germany
e-mail: felix.winterstein@esa.int

mailto:shane.fleming06@imperial.ac.uk
mailto:d.thomas1@imperial.ac.uk
mailto:felix.winterstein@esa.int

76

availability for high fault rates. An in-orbit demonstration and validation of the
proposed technique will follow during an experiment campaign onboard OPS-SAT,
a European Space Agency satellite mission set to launch in 2016.

Reconfigurable field-programmable gate arrays (FPGAs) offer high processing
throughput at low power consumption and flexibility through reconfiguration which
makes them widely-used devices in embedded systems with high processing
demand today. However, SRAM-based FPGAs are particularly susceptible to the
radiation effects of space applications because single event upsets (SEUs) in the
configuration memory can cause a reconfiguration of the device and hence an unde-
sired modification of the circuit. This problem is usually addressed by adding spa-
tial redundancy, i.e. duplicating or triplicating the processing units in the FPGA
fabric, in combination with scrubbing, i.e. reprogramming the configuration bit-
stream after a fault has been detected [1]. Repair via scrubbing potentially causes
considerable down-time of the processing system [2] which can lead to the loss of
payload data or affect onboard control tasks. This work addresses this issue and
focuses on maximizing the availability of the onboard processing system. In par-
ticular, we consider the system availability as a third performance metric alongside
the processing through-put and power/energy consumption.

This work describes a novel fault detection, isolation, and recovery (FDIR) strat-
egy for onboard satellite payloads which utilizes commercial-off-the-shelf (COTS)
reconfigurable FPGAs. Our scheme leverages heterogeneous systems-on-chips
(SoCs), such as Xilinx’s Zynq chip [3] or Altera’s Cyclone V SoC modules [4],
which comprise of a tightly coupled reconfigurable hardware and hard-wired pro-
cessor cores. These SoCs embed one or multiple hard processor cores alongside
programmable FPGA logic, enabling low latency and power-efficient communica-
tion between these two computing devices. Compared to the FPGA fabric, we con-
sider the hard-wired cores to be more reliable with respect to radiation-induced
SEUs for which standard fault mitigation techniques can be applied; for this reason
these cores are assigned the role of a hypervisor being in charge of fault detection
and scrubbing in the fabric. We define Quality-of-Service (QoS) as the rate at which
payload data is processed, for example this could be the frame or pixel rate of an
image processing application. A novelty of the proposed concept is that the adaptive
framework aims to maintain a constant processing rate of the QoS application dur-
ing repair of the FPGA configuration memory. To this end, the system is rolled back
to the last known acceptable state and the hardware task is migrated to software
running on a hard processor core when a fault is detected in the hardware. The task
is then continued in a software thread while the FPGA device is reprogrammed, and
once scrubbing is completed the task is migrated back to hardware.

Our rollback and repair can be very effectively applied to applications where its
internal state is regularly reset to a known state, such as image processing applications.
This reset interval also sets the amount of rollback time required since the computation
will have to start over from the last point where the state was reset. The work presented
in this chapter contains a case study with a HW/SW application that performs K-means
clustering on frames of a video. In this example processing each video frame takes a

S.T. Fleming et al.

77

variable amount of time and may require multiple iterations of the algorithm, which
means that the reset interval can vary depending on how long each frame takes to pro-
cess. Many common onboard processing tasks stem from signal and image processing
[1, 5–7] or data compression [6, 8, 9] applications which are normally stream-based.
This type of applications have therefore been the primary focus of our work to date.

Besides the optimization of system availability, our FDIR framework also
ensures that constraints on the power consumption are maintained. Such constraints
could possibly become violated when the payload task is migrated to software and
the core frequency is ramped up in order to meet the QoS requirement. The adaptive
frequency scaling will use online power monitoring to dynamically trade-off and
manage the QoS and power constraints during system runtime.

This chapter describes our FDIR framework implemented on a Xilinx Zynq
device and presents experiment results obtained under fault injection. This work
represents a precursor system for a subsequent implementation in the payload com-
puter on-board the OPS-SAT satellite [10]. OPS-SAT is a nano-satellite which is
devoted to demonstrating novel mission concepts that arise when more powerful
computers are available on satellites. The OPS-SAT mission is led by the European
Space Agency (ESA) and is set to launch in 2016. OPS-SAT is the first spacecraft
that flies COTS Altera Cyclone V SoCs built on 28 nm technology. The hardware is
not space qualified and hence our experiment setup focuses on very high SEU-
induced fault rates. In summary, our contributions are:

• We present a novel FDIR scheme for FPGA-based space-borne processors. The
scheme autonomously migrates processing tasks between the reprogrammable
logic and hard processor cores, so as to maximize the availability of the process-
ing system in the presence of SEU-induced faults.

• We extend the FDIR framework by utilizing frequency scaling to create an adap-
tive, fine-grain optimization of power consumption and processing throughput.

• We present measurements of the system availability, power consumption and
processing throughput for different fault rates. We demonstrate that our tech-
nique maintains nearly full availability even under harsh conditions where faults
occur as frequently as up to once per second.

• We compare our results to ‘traditional’ fault handling approaches based on fault
detection and scrubbing.

Section 6.1 discusses related work and highlights the differences to previous
work. Section 6.2 describes our adaptive FDIR framework. Section 6.3 briefly
outlines our benchmark application. We present experiments in Sects. 6.5 and 6.6
concludes the paper.

6.1  �Related Work

Repairing the configuration memory of reconfigurable SRAM-based FPGAs in
high-radiation environments is usually based on scrubbing, i.e. periodic rewriting of
the FPGA configuration memory, while faults in the form of radiation-induced bit

6  A Power-Aware Adaptive FDIR Framework…

78

flips in the configuration memory are detected by including redundant modules and
comparators or majority voters in the circuit. A common approach is to use triple
modular redundancy (TMR) at the netlist level in combination with periodic scrub-
bing of the entire configuration memory [11]. The drawbacks of this strategy are
large overheads in terms of chip area and power consumption, and long scrubbing
times, especially for large COTS FPGAs. In addition to blind scrubbing at a fixed
rate, the time spent for repair can be reduced by triggered scrubbing which is per-
formed only if a fault has been detected.

Instead of adding spatial redundancy at netlist level, alternative approaches
implement a module replication at coarse-grained unit level. Azambuja et al. [12]
describe an approach where faulty modules are detected with unit-level TMR and
repaired with selective partial scrubbing using dynamic partial reconfiguration
(DPR). Their approach is notable in that it further reduces the scrubbing time and
energy spent in the repair process compared to the netlist-level TMR approach [11]
while keeping the resource overhead similar. Nazar et al. [2] propose an alternative
approach to reduce the scrubbing time by leveraging DPR and applying the repair
only to critical configuration bits that are used by the logic configuration and by
determining the optimal starting point for the scrubbing process.

Several recent approaches address a reduction of the resource overhead in terms
of chip area and power consumption caused by the redundancy scheme, in particular
TMR. Jacobs et al. [13] propose a framework that, instead of using TMR by default,
can adapt the amount of redundancy needed according to the degree of required
protection and changing failure rates using DPR. The authors integrate three redun-
dancy schemes in their framework: TMR with voting, self-checking pairs (module
duplication with comparison, DWC [14]), and a high-performance mode without
module-level replication. Siegle et al. [1] present a comprehensive framework that
allows the designer to select and analyze different redundancy and repair schemes:
netlist-level TMR with scrubbing, no redundancy, duplication with comparison, and
module-level TMR with partial scrubbing to speed up repair. In line with this work
they focus on maximizing the availability of the processing system. However, we
completely abandon the expensive TMR approach and propose a reliable onboard
processor based on the more economic DWC strategy which involves hard on-chip
processor cores in addition to SRAM-configurable logic.

Ilias et al. [7] propose an FDIR strategy which is similar to this work in that it
uses DWC and migrates the processing task to embedded hard PowerPCs during
scrubbing. The hard processor core has a smaller cross section and is less suscepti-
ble to radiation-induced faults than the reconfigurable logic. The authors demon-
strate their framework with a finite impulse response (FIR) filter application and
report a 40 % area reduction compared to a standard TMR implementation at the
cost of a reduction in the processing throughput. This work builds on the same basic
idea, but we extend the approach to address the drawback of a drop in processing
rate by adding an adaptive frequency scaling. The adaptive availability optimization
is a distinguishing feature of the proposed technique compared to the FDIR
approaches discussed above. Additionally, we include a fine-grain online optimiza-
tion of the power consumption.

S.T. Fleming et al.

79

Re-synchronization of state-dependent logic after repair is a crucial task in the
fault mitigation strategies discussed above. We choose a checkpoint and rollback
approach [15] where the system is rolled back to the last known acceptable state
before the task migration. This approach works particularly well for processing
tasks that can be split into small independent chunks, such as stream-based process-
ing tasks. The hardware/software task migration and slicing of the processing task
is more difficult to implement for other types of applications which exhibit many
dependencies between the processed data items. However, many typical onboard
processing tasks, such as image of signal processing applications, are stream-based
which makes this approach applicable to a wide range of onboard processing
applications.

6.2  �A Workload-Adaptive FDIR Framework

Our management system is divided into two main components: the fault recovery
system (FRS), used to manage the repair of the system once a fault has been
detected; and the adaptive management system (AMS), which dynamically moni-
tors the processing progress of the system and scales the performance while still
meeting power constraints. The AMS is built upon previous work known as the
Heterogeneous Heartbeats which is a framework for adaptive reconfigurable SoCs
and is discussed in subsection 6.2.2. This section discusses the implementation
details of the FRS, then outlines the Heterogeneous Heartbeats framework, and
finally discusses the details of the adaptation management system.

6.2.1  �Fault Recovery Management System

The goal of the fault recovery system (FRS) is to detect and recover from errors that
arise in the system’s hardware task. Figure 6.1 shows a flowchart of both the recov-
ery process and task execution indicating whether each stage is executed in the hard
processor system (PS) or within the programmable logic (PL). To demonstrate this
an image processing case study is presented, where frames of an input video are
iteratively processed. At the start of each iteration the PS is responsible for captur-
ing the frame data and storing it into memory accessible by both the PS and the
PL. It then checks to see if PL is fully configured and that the HW task and its
duplicate are available. If available, they are sent a signal indicating that the input
frame is present in memory and that they can start processing; however, if not then
a software version of the task is started instead.

Both the hardware task and its duplicate process their data in lock step, and every
time they complete a frame their outputs are compared. If there is no difference in
the output then we assume that no error has occurred and the process continues as
normal. However if a difference is detected between the outputs of the hardware

6  A Power-Aware Adaptive FDIR Framework…

80

tasks then we assume that an error has occurred and an exception is thrown. This
exception triggers the FRS, running on the PS, to start reconfiguring the FPGA
fabric. While the reconfiguration process is occurring the same input frame is then
recomputed, however this time a software instance of the task is used instead of a
hardware instance. Once the frame has been successfully processed the computation
of the next frame is started in software until the hardware has been reprogrammed
and validated.

6.2.2  �Heterogeneous Heartbeats

Heterogeneous Heartbeats is the basis for the satellites adaptive management system.
It aims to facilitate chip level adaptation, focusing on systems contained within a
single package, such as the Altera SoC or Xilinx Zynq devices. The Heterogeneous
Heartbeats framework is an enhanced version of preliminary work presented in
[16]. In the development of such systems it is becoming increasingly common to
use large collections of intellectual property (IP) packages, all with different char-
acteristics from different locations, such as IP vendors or generated via high-level
synthesis (HLS) tools. As the amount and variety of IP increases the interactions
between sub components become increasingly complex potentially increasing the
run time dynamics of the system. These dynamics make it difficult to statically
optimize and tune parameters to meet constraints such as temperature, power, or
frame rate offline and necessitates the need for online adaptive approaches.
Heterogeneous Heartbeats extends the Heartbeats Application Programming
Interface (API) [17], a standardized interface to monitor task progress, by allowing
the seamless addition of both hardware (FPGA) resident heartbeat producers and
heartbeat consumer.

The Heterogeneous Heartbeats framework considers three separate portions:
sensors, adaptive engines, and actuators. Sensors collect data on the current state of
the system, examples could be the applications progress via the Heartbeats API or a

Fig. 6.1  Flowchart of the FDIR scrubbing system

S.T. Fleming et al.

81

devices power consumption; these are heartbeat producers. Adaptive engines use the
collected sensor data and predictions on how changes in the system will alter future
sensor readings to make decisions on how the system should alter its behavior; these
are heartbeat consumers. Actuators change the behavior of the system, examples
could be the frequency multiplier value in the phase locked loop (PLL) for the
systems clock or the cache replacement policies.

The Heartbeats API is used as the basis for the interaction between the heartbeat
producers (sensors) and the heartbeat consumers (adaptive engines). Application
developers use the Heartbeats API by first calling an initialization function at the
start of their application. This function sets up a publicly available heartbeat record
that can be generated and accessed by either software or hardware, where individual
heartbeat entries are stored and the goals of the application are set. The goals of the
application are expressed in terms of the sensors that the application is interested in.
For example in a video processing application one goal might be to maintain a
particular frame rate and power consumption, so this would require the availability
of a timer and a power monitor on the sensor side.

A heartbeat function is then called at important milestones of the applications
progress. This function is used to create a sensor stamped heartbeat which are then
saved as an entry in the publicly available heartbeat record. In our image processing
example this would mean that the sensor stamps would be a timestamp from an
internal or external system clock, and a power stamp from a power monitoring unit.
Further operations are then provided for external heartbeat consumer applications to
query the heartbeat record. These functions perform operations such as, fetch the
current heartrate, fetch the history of the last n heartbeats, fetch the average heart-
rate, and fetch applications goals.

On the other side of the adaptive engines is the actuator portion. These are meth-
ods that cause changes in the systems behavior. Examples are the frequency of the
PS or hardware tasks in the PL, the cache replacement policy, or what version of a
particular algorithm is running.

6.2.3  �Adaptation Management System

The adaptive management system (AMS) dynamically tries to maintain an overall
system goal while subject to certain constraints. In this particular case, the goal of
the AMS is to maintain a particular QoS deadline (frame rate) while using as little
power as possible and always ensuring that a system-wide power constraint is met.
This adaptation needs to be performed in two cases: as the application workload
varies, and while the FRS is repairing faults in the system. Figure 6.2 shows both the
controller’s architecture in (a) and (b), and algorithmic flow in (c). In (a) and (b) we
can see that the deviation of the application’s ideal heartrate and the current heart-
rate are turned into an error signal which is used to drive the controller. This is the
signal that the controller will attempt to minimize in the presence of disturbances.

When the system is being repaired due to faults the structure of system
dramatically changes along with its behavior. In control theory an approach known

6  A Power-Aware Adaptive FDIR Framework…

a

b

c

Fig. 6.2  Diagram to show the QoS adaptation controller setup with; (a) architecture view where
the controller is configured to scale the clock frequency of FPGA resident hardware tasks during
normal, error free operation; (b) architecture view where the controller is configured to scale the
hard Processor Systems (PS) clock frequency when errors are detected in hardware; and (c) algo-
rithmic view showing the flow of the execution and reconfiguration of the controller

83

as gain scheduling, where a suitable linear controller is selected depending on the
current operating region of the controller, is used to handle such non-linear effects.
We adopt a similar approach here, adapting the controller and scheduling different
models and parameters based on the current configuration of the system. The pro-
cess of adapting the controller can be divided up into three coarse stages, labeled in
Fig. 6.2c, below is a description of each stage.

	1.	 Initially the control algorithm determines whether the application is currently
running within hardware or software.

2. Based on this information the parameters and state of the controller are sched-
uled, the parameters and control models are selected depending on whether the
application is resident in hardware or software.

	3.	 Finally the control action is executed and a new frequency is calculated. This is
then used to update the clock controllers for both the software and the hardware
systems.

This preliminary work uses a simple heuristic to control the various components
of the system; however work is underway to develop a more sophisticated controller
where each control action consists of the following stages. Firstly, a learning algo-
rithm takes the error signal and generates a performance scaling factor, which is the
multiple of the current heartbeat that we require in the future to maintain our
QoS. Secondly, this is fed into a model that determines the frequency required to
achieve the required increase or decrease in performance. Thirdly, the new fre-
quency value is fed into another model that is used to determine the predicted power
consumption that the change in frequency will cause. Finally, this predicted power
consumption is used along with the current power consumption to determine if the
power constraint will be satisfied. If the power constraint is not satisfied then the
controller will iteratively search to find the next highest frequency value that will
give the best performance, while still meeting the constraint.

6.3  �Benchmark Applications

We demonstrate the adaptive FDIR system using a benchmark application which
processes image data from the high-resolution camera onboard the satellite. A soft-
ware implementation and an FPGA implementation are uploaded onto the SoC,
while the FDIR system automatically schedules the execution of either the software
or the hardware task. The following briefly describes our benchmark application.

6.3.1  �K-Means Clustering

A common remote sensing application is the creation of maps of vegetation type or
land cover, for instance used in crops/forestation monitoring such as the objective of
Planet Labs dove fleet [18]. A central component of these image processing systems

6  A Power-Aware Adaptive FDIR Framework…

84

is the unsupervised classification of image data based on the pixel values. K-means
clustering is among the most popular machine learning techniques for assigning
observation (in this case pixels) to classes (clusters). Clustering is also often used
for analyzing multi- and hyperspectral imagery. K-means algorithms partition the
D-dimensional point set X x xN= ¼{ }1, , into clusters {S1, … , Sk} where k is pro-
vided as a parameter. The goal is to find the optimal partitioning which minimizes
the objective function given in (6.1) where µi is the geometric center (centroid) of Si.

	

J S xi
i

K

x S
j i

j i

{ }() = -
= Î
åå

1

2m
	

(6.1)

Finding optimal solutions to this problem is NP-hard [19]. A popular heuristic ver-
sion, known as Lloyd’s Algorithm uses an iterative refinement scheme which, for
every data point, computes the nearest cluster center based on the smallest squared
Euclidean distance to it and then updates each cluster center position according to
the data points assigned to it.

Clustering produces an output image with each pixel assigned to a cluster. Apart
from classification, clustering provides a locally optimal solution to color quantiza-
tion which results in a reduction of the data volume as a pixel can be represented
with log2(K) bits in the new image. Remote sensing systems including a cluster
analysis of satellite imagery usually perform the clustering offline after reception of
the original image by the ground station. In this experiment we perform the cluster-
ing step onboard and benefit from the data volume reduction prior to downlinking
telemetry. We use a software implementation of Lloyd’s algorithm for K-means
clustering in C++ and an FPGA implementation in VHDL which builds on the work
described in [20].

6.4  �Experiments

Our measurements focus on three sub-experiments:

• A ‘naive’ fault recovery mechanism where the task only runs in hardware and the
entire system is stalled while the hard processing system performs scrubbing of
the fabric’s configuration memory. This is the traditional approach to fault miti-
gation for FPGAs and is used as the base line comparison with the second and
third experiment where the task is automatically migrated to software so as to
maintain the availability of the payload processor.

• The second experiment then includes the use of the FRS to migrate the task from
software to hardware while the recovery process is taking place, demonstrating
that the availability of the system can be improved through the use of the hetero-
geneous platform. We compare the FRS-based fault handling on the basis of
system availability and processed blocks per time interval.

S.T. Fleming et al.

85

• Finally, we combine the FRS with the AMS to automatically manage the QoS
deadline and power constraints and to demonstrate that fault tolerance is achieved
while maintaining a particular QoS via frequency scaling. The AMS controller
monitors the instantaneous power consumption and adapts the frequency accord-
ing to the allowable power budget.

For the in-orbit experiment, all three sub-experiments are packaged up in a single
image which is uploaded onto the onboard SoC. A thread running on the PS is in
charge of scheduling the three experiment phases. The payload processor requires
access to a high-resolution camera in order to retrieve input data for the image
processing benchmark applications. In addition to the processed image data,
the experiment setup collects downlinks information about the system availability
(i.e. down-time during scrubbing and violation of QoS deadlines), the number and
time stamps of faults that occurred, the selected frequency scalar values, and the
power consumption (drawn from online power monitoring sensors) as well as
several status indicators such as the presence of permanent circuit failures (e.g. due
to latch-ups in the reconfigurable logic) and fault statistics.

6.4.1  �Prototype Test Setup

The prototype system used for the measurements presented in this paper was devel-
oped on a Xilinx ZC702 Zynq development board, a very similar device to the
Altera Cyclone V SoC used in the payload onboard OPS-SAT. Like the Cyclone V
SoC this device contains a dual core ARM processing system (PS) tightly coupled
to an FPGA fabric (PL) in a single package. Two identical K-means clustering IP
cores were implemented using the Xilinx Vivado HLS high-level synthesis tool.
The clustering cores are placed in the PL and connected to PS via various AXI bus-
ses. The output of the identical clustering cores are compared and an error flagged
if their outputs do not match. In order to configure and control the IP cores from the
PS their AXI locations were memory mapped and Linux drivers were developed.
A configuration bit stream was then generated for use in both the initial configuration
of the device, and for reprogramming the device during repair.

Petalinux, developed by Xilinx, is the Linux kernel running within the PS and on
top of this OpenCV is used to manage the image data sent to the device and check
the for errors in the output. Getting data from the PS to the clustering cores required
a portion of the DDR memory to be reserved, input frames were obtained in OpenCV
and were then passed to this reserved memory. AXI masters within the clustering
cores were then used to fetch the input frame without any intervention from the PS,
the same AXI masters were then used to send the output to different reserved mem-
ory location that can be read by the OpenCV application. In order to reconfigure the
hardware during repair drivers provided by Xilinx allowed us to write the bitstream
to a device file xdevcfg, which connects to the PCAP and allows us to reconfigure
the PL from within the embedded Linux environment.

6  A Power-Aware Adaptive FDIR Framework…

86

For the current implementation of the FRS & AMS system a preliminary
frequency controller is used where we distinguish between two states: the state
where the task has been migrated to the PS and the state where the task is running
in the PL . Each state is given a high frequency and a low frequency respectively.
Future work plans to explore more sophisticated controllers that scale the frequency
of both hardware and software separately in order to meet constraints. To change the
frequency of the PS the System Level Control Registers (SLCR) was used, where
the clock multiplier values for the PS clocks PLL can be edited.

6.4.2  �Experiment Setting

For each experiment stock ESA/NASA footage of Earth from a low earth orbit was
streamed into the Zynq device over a network connection. OpenCV then sent the
frames of this video to the reserved memory where the hardware could access them.
In order to emulate SEU-induced faults, a separate software thread running on the
PS randomly injects faults by corrupting a bit from one of the hardware blocks’
output. This causes a discrepancy between the outputs of the two cores which causes
the fault detection to trigger initiating the repair process. The application is instru-
mented with the heartbeats API, a power monitor, and timers and each of the three
fault handling methods above is tested for a certain number of frames at a various
error rates. For each experiment three metrics are evaluated:

• The availability AV of the system is defined as

	

AV
t

t t
up

up down

=
+

	

(6.2)

• where tup is the amount of time that the systems objective task is active, and tdown
is the time spent during repair after a fault occurred.

• The heartrate of the system which is generated using the Heterogeneous Heart-beats
API and represents the processing performance. In this case we use the heartrate to
measure the QoS of the system in terms of image blocks processed per second.

• The power consumption of the system which is measured using the inbuilt
ZC702 development board power monitoring, allowing us to measure the power
consumed from the PS and PL portions of the device separately.

6.5  �Results

In Fig. 6.3 we examine the availability of the two recovery systems under different
fault rates. Firstly, we observe that the average availability of the naive system,
where the entire system stalls during repair, is always lower than the availability of

S.T. Fleming et al.

87

the FRS system where the task is migrated to the PS when a fault occurs. At high
error rates the gap between the average FRS availability and that of the conventional
approach becomes increasingly large. This runaway effect is due to an increased
probability of errors occurring during the repair process causing the system to make
less and less progress. This problem potentially becomes increasingly significant as
the recovery time increases due to larger configuration memories in larger FPGA
devices, increasing the need for more intelligent scrubbing techniques that make use
of partial reconfiguration as pointed out in [1].

Secondly, we show the worst case availability of the different recovery systems.
Critical onboard processing tasks can require hard task completion deadlines and
hence we consider the worst case metric as ultimately more important for mission
criticality. It can be seen from the graph that for the naive implementation the worst
case availability deteriorates to values below 0.2, while with our FRS the worst case
availability remains at nearly 100 % and is never lower than the average availability
of the naive case.

Figure 6.4 shows how the worst case performance of the different systems change
as the error rate is increased. In a similar fashion to the availability, we can see that the
worst case heartrate for the naive recovery method performs poorly, the FRS improves
this by ensuring that a certain level of QoS can always be maintained no matter what
the current error rate is. However, maintaining this level of QoS is not free: In Fig. 6.5
we observe an increased power consumption of the FRS. This increased power con-
sumption can be significantly improved through combining the FRS with the AMS
which is used to scale the frequency of the PS only when it is required because a task
has been assigned to it. Figure 6.4 also shows that, when we combine the FRS with
the AMS, we are able to obtain a higher worst case heartrate than using the FRS alone,
and Fig. 6.5 demonstrates that there is a comparable power consumption to the naive
implementation and significant saving over using the FRS alone.

Fig. 6.3  Average and worst case availability of the conventional fault recovery (naive), task migration
(FRS), and combined task migration and adaptive frequency scaling (FRS & AMS) systems

6  A Power-Aware Adaptive FDIR Framework…

88

Fig. 6.4  Average heartrate (QoS) achieved by the conventional fault recovery (naive), task migra-
tion (FRS), and combined task migration and adaptive frequency scaling (FRS & AMS) systems

Fig. 6.5  Instantaneous power consumption of the conventional fault recovery (naive), FRS, and
FRS & AMS systems

6.6  �Conclusion and Outlook

We present a prototype implementation of a novel FDIR scheme for FPGA-based
space-borne processors that will undergo an in-orbit test and validation campaign
onboard the ESA OPS-SAT satellite, set to launch in 2016. A distinguishing feature
of our technique is the autonomous migration of processing tasks between the

S.T. Fleming et al.

89

reprogrammable logic and hard processor cores in heterogeneous SoCs, which
maximizes the availability of the processing system in the presence of SEU-induced
faults and required scrubbing of the programmable logic. Our measurement results
show that, under all conditions, our task migration technique maintains nearly full
availability of the processor at all times. We compare the availability results to the
mean and worst-case availability of a conventional fault detection and repair
approach which is degraded to 20 % in the worst case in scenarios with frequently
occurring SEU-induced faults. In addition, our FDIR framework features frequency
scaling for an adaptive, fine-grain optimization of power consumption and processing
throughput.

There are three major directions we plan to explore in future work. Firstly, we
will investigate more sophisticated controller implementations for the adaptive
power and throughput management. Our current prototype implementation switches
between high and low clock frequency according to the current state of the task
migration. More complex controllers provide a better quality of the frequency
adaptation at the expense of an increased inherent power and resource consumption,
and we plan to explore this trade-off in future work.

Our task migration effectively mitigates the degradation of the system availability
during FPGA repair. However, high-throughput applications may still experience a
significant drop in heartrate when the task is migrated to software, which is espe-
cially true as the recovery time increases due to larger FPGA devices being
repaired. Partial reconfiguration combined with a more fine-grain error detection
and localization will lead to faster recovery times. Hence, we plan to integrate
partial reconfiguration into our FDIR framework.

A third aspect of future work is to maintain the operability of the onboard proces-
sor in the presence permanent faults caused by radiation-induced latch-ups by lever-
aging the reprogrammability of SRAM-based FPGAs. Over time parts of the FPGA
configuration memory may become permanently damaged, especially when COTS
FPGAs are used in long-lasting missions. We plan to address this issue by storing
multiple pre-mapped copies of the same circuit which will allow us to ‘re-place’ the
circuit around the damaged area.

References

	 1.	Siegle F, Vladimirova T, Emam O, Ilstad J (2013) Adaptive FDIR framework for payload data
processing systems using reconfigurable FPGAs. In: Proceedings of the NASA/ESA confer-
ence on adaptive hardware and systems (AHS), Torino, June 2013, pp 15–22

	 2.	Nazar G, Santos L, Carro L (2013) Accelerated FPGA repair through shifted scrubbing. In:
Proceedings of the 23rd international conference on field programmable logic and applications
(FPL), Sept 2013, pp 1–6

	 3.	Xilinx Zynq-7000 All Programmable SoC. http://www.xilinx.com/products/silicon-devices/
soc/zynq-7000.html

	 4.	Altera Cyclone V SoC Overview. http://www.altera.com/devices/processor/soc-fpga/cyclone-
v-soc/overview/cyclone-v-soc-overview.html

6  A Power-Aware Adaptive FDIR Framework…

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.altera.com/devices/processor/soc-fpga/cyclone-v-soc/overview/cyclone-v-soc-overview.html
http://www.altera.com/devices/processor/soc-fpga/cyclone-v-soc/overview/cyclone-v-soc-overview.html

90

	 5.	Yuhaniz S, Vladimirova T, Sweeting M (2005) Embedded intelligent imaging on-board small
satellites. In: Srikanthan T, Xue J, Chang C-H (eds) Advances in computer systems architec-
ture, ser. Lecture notes in computer science, vol 3740. Springer, Berlin, pp 90–103

	 6.	Trautner R, (2011) ESA’s roadmap for next generation payload data processors. In: Proceedings
of the international space system engineering conference (DASIA), Malta, May 2011, pp 1–5

	 7.	 Ilias A, Papadimitriou K, Dollas A (2010) Combining duplication, partial reconfiguration and
software for on-line error diagnosis and recovery in SRAM-based FPGAs. In: Proceedings of
the 18th IEEE annual international symposium on field-programmable custom computing
machines (FCCM), May 2010, pp 73–76

8. Yeh P-S, Armbruster P, Kiely A, Masschelein B, Moury G, Schaefer C, Thiebaut C (2005) The
new CCSDS image compression recommendation. In: Proceedings of the IEEE aerospace
conference, March 2005, pp 4138–4145

	 9.	Cabral M, Trautner R, Vitulli R, Monteleone C (2010) Efficient data compression for space-
craft including planetary probes. IPPW-7 S/C incl

	10.	OPS-SAT ESA Operations. http://www.esa.int/OurActivities/Operations/OPS-SAT
	11.	Carmichael C, Tseng C (2009) Correcting single-event upsets in Virtex-4 FPGA configuration

memory. Xilinx Inc., Tech. Rep., Oct 2009
	12.	Azambuja J, Sousa F, Rosa L, Kastensmidt F (2009) Evaluating large grain TMR and selective

partial reconfiguration for soft error mitigation in SRAM-based FPGAs. In: Proceedings of the
15th IEEE international on-line testing symposium (IOLTS), June 2009, pp 101–106

	13.	Jacobs A, George A, Cieslewski G (2009) Reconfigurable fault tolerance: a framework for
environmentally adaptive fault mitigation in space. In: Proceedings of the international confer-
ence on field programmable logic and application (FPL), Aug 2009, pp 199–204

	14.	Johnson J, Howes W, Wirthlin M, McMurtrey D, Caffrey M, Graham P, Morgan K (2008)
Using duplication with compare for on-line error detection in FPGA-based designs. In:
Proceedings of the IEEE aerospace conference, March 2008, pp 1–11

15. Elnozahy ENM, Alvisi L, Wang Y-M, Johnson DB (2002) A survey of rollback-recovery pro-
tocols in message-passing systems. ACM Comput Surv 34(3):375–408

	16.	Fleming S, Thomas D (2013) FPGA based control for real time systems. In: Proceedings of the
23rd international conference on field programmable logic and applications (FPL), Sept 2013,
pp 1–2

	17.	Hoffmann H, Eastep J, Santambrogio MD, Miller JE, Agarwal A (2010) Application heart-
beats: a generic interface for specifying program performance and goals in autonomous com-
puting environments. In: Proceedings of the 7th international conference on autonomic
computing. ACM, 2010, pp 79–88

18. Marshall W, Boshuizen C (2013) Planet labs remote sensing satellite system. In: Proceedings
of the AIAA/USU conference on small satellites, pre-conference: CubeSat developers’ work-
shop, SSC13-WK-15. 2013

	19.	Drineas P, Frieze A, Kannan R, Vempala S, Vinay V (2004) Clustering large graphs via the
singular value decomposition. Mach Learn 56(1–3):9–33

20. Winterstein F, Bayliss S, Constantinides G (2013) FPGA-based K-means clustering using
tree-based data structures. In: Proceedings of the 23rd international conference on field
programmable logic and applications (FPL), 2013, pp 1–6

S.T. Fleming et al.

http://www.esa.int/OurActivities/Operations/OPS-SAT

91© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_7

 Chapter 7
 Hybrid Confi guration Scrubbing for Xilinx
7-Series FPGAs

 Michael Wirthlin and Alex Harding

 Abstract Confi guration memory scrubbing is an essential component of any
 reliable FPGA-based system used in harsh radiation environments like space.
Confi guration scrubbing involves the periodic writing of confi guration data onto the
FPGA to repair confi guration upsets that occur within the FPGA due to high-energy
ionizing radiation. Confi guration scrubbing typically requires external memory and
hardware to manage the scrubbing process. This paper presents a novel confi gura-
tion scrubber for the Xilinx 7-Series FPGAs that requires less external circuitry than
traditional scrubbers by exploiting the on-chip Frame ECC and internal scan capa-
bility. By exploiting the on-chip features, this scrubber operates faster than tradi-
tional scrubbers and with less external hardware. The effectiveness of this scrubber
was validated with a radiation test at the Los Alamos Neutron Scattering Center
(LANSCE). This scrubber will be used on a Xilinx 7-Series based space processor
and a high-energy physics experiment.

7.1 Introduction

 FPGAs are increasingly used in non-traditional applications such as harsh environ-
ments and in safety critical systems. There has been great interest in using reprogram-
mable FPGAs within spacecraft to perform computationally demanding tasks such as
remote sensing [1 , 2]. The use of reconfi gurable FPGAs within a spacecraft allows the
use of application-specifi c hardware in place of programmable processors. The ability
to customize the datapath within an FPGA to an application- specifi c computation
allows the FPGA to perform many operations faster and more effi ciently than the use
of traditional programmable processors.

 In addition to improved computational effi ciency, the use of SRAM-based
FPGAs within a spacecraft allows the programmable hardware to perform any
user- specifi ed operation. Unlike application-specifi c integrated circuits (ASICs),

 M. Wirthlin (*) • A. Harding
 Department of Electrical and Computer Engineering , NSF Center for High-Performance
Reconfi gurable Computing (CHREC), Brigham Young University , Provo , UT 84602 , USA
 e-mail: wirthlin@ee.byu.edu; zaren171@gmail.com

mailto:wirthlin@ee.byu.edu
mailto:zaren171@gmail.com

92

FPGAs can be confi gured after the spacecraft has been launched. This fl exibility
allows the same FPGA resources to be used for multiple instruments, missions, or
changing spacecraft objectives. Errors in an FPGA design can be resolved by fi xing
the incorrect design and reconfi guring the FPGA with an updated confi guration bit-
stream. Further, custom circuit designs can be created to avoid FPGA resources that
have failed during the course of the spacecraft mission.

 While the use of FPGAs within a spacecraft several advantages over conven-
tional computing methods, SRAM-based FPGAs are sensitive to the radiation
found in most satellite orbits. FPGAs are sensitive to both heavy ion and proton
induced single event upsets (SEUs) [3 , 4]. Single-event upsets in the FPGA affect
the user design fl ip-fl ops, the FPGA confi guration bitstream, and any hidden FPGA
registers, latches, or internal state. Upsets within the FPGA confi guration bitstream
are especially troublesome as they change the behavior of the circuit. Such upsets
may change the contents of look-up tables, routing, or other design-specifi c
functionality.

 There is an active research community investigating the effects of radiation on
FPGAs and developing methods to mitigate against these effects. There has been
signifi cant progress over the last decade in the understanding and development of
FPGA technology that is resistant to and tolerant of the effects of radiation. The
success of these efforts has facilitated the use of FPGAs in a number of existing
spacecraft systems.

 The most common way to operate FPGAs in a radiation environment is to pro-
vide both active SEU mitigation and confi guration scrubbing. Triple-modular redun-
dancy (TMR) is the most common method of providing structural redundancy and
involves triplicating circuit resources and inserting voters to choose the correct
result [5]. TMR provides protection against all single-bit failures and many multi- bit
failures. Confi guration scrubbing involves the periodic writing of confi guration data
into the confi guration memory to repair radiation-induced upsets. Although confi gu-
ration scrubbing does not mitigate against the effects of SEUs, it prevents the build-
up of multiple upsets that could break the effectiveness of a SEU mitigation technique
such as TMR. Together, TMR and confi guration scrubbing have been shown to
provide a reliable approach for using FPGAs in radiation environments [6].

 There have been many different scrubbing techniques introduced to perform this
important function. Confi guration scrubbers typically involve external memory
storage to hold the “golden” confi guration memory and external circuitry to access
the memory, read the confi guration, compare the confi guration with the golden, and
if necessary, write the updated confi guration. The scrubber presented in this paper
performs the same function as traditional scrubbers but does so with much less
external hardware. This scrubber exploits the built-in features of the Xilinx 7-Series
FPGA to provide internal scrubbing for single-bit upsets and external scrubbing for
multi-bit upsets. A low resource JTAG interface is used to perform the external scrub-
bing functions. The contributions of this paper include a novel multi-level approach
for performing confi guration scrubbing, a low-resource scrubbing architecture, and
a methodology for verifying the scrubber in a radiation beam.

M. Wirthlin and A. Harding

93

7.2 Confi guration Scrubbing

 Memory scrubbing is a common technique used in space systems and other systems
with high reliability requirements to preserve the integrity of dense memory compo-
nents. Most memory systems used in such environments support error correction
coding (ECC) to correct errors that invariably occur. Error correction logic is typi-
cally used to correct data during a memory read. If the state of a memory word has
been corrupted, the error correction logic recognizes the error and computes the
correct word value. In most systems, the state of the internal word is not corrected—
only the value read from the memory is correct. To fi x the internal state of the
memory word, the corrected value must be written back into the memory. Memory
scrubbing is typically used to repair upset words and to prevent the buildup of errors
that would break the ECC code. Memory scrubbing involves periodically reading
each address of memory and writing the result back into memory. The rate of scrub-
bing is set to meet a system-level mean-time between failure specifi cation [7].

 This scrubbing process is also used for the confi guration memory of SRAM- based
FPGAs operating in a radiation environment. Using the confi guration interface, the
correct confi guration data is written into the FPGA during operation. Confi guration
scrubbing is typically implemented by exploiting the partial reconfi guration capa-
bility of the FPGA. Confi guration data is written into the FPGA at a fi xed period to
correct confi guration upsets and prevents the build-up of upsets within the device.
Because the confi guration logic is glitch-free, the circuit will continue to operate
correctly while confi guration scrubbing takes place.

 To perform FPGA scrubbing, the confi guration data is typically read in sequential
order from start to fi nish. As discrete blocks of confi guration data are read, the scrub-
bing system compares this data against a golden data set or a golden confi guration
check code such as a cyclic redundancy check (CRC). If a discrepancy is found
between the confi guration data within the device and the golden confi guration data,
the scrubbing system will repair the corrupted data by writing the correct, golden
data into the FPGA (see Fig. 7.1). If there is no discrepancy between the confi gura-
tion data and the golden data, the scrubber moves on to the next set of data. Once the
scrubber has reached the end of the confi guration data, the process is repeated again
from the beginning. This process of reading confi guration data and repairing upsets
that are found in the data continues indefi nitely to preserve the confi guration data.

 The system architecture of a typical confi guration scrubber is shown in Fig. 7.2 .
Most scrubbing systems include a non-volatile memory to store the golden confi gu-
ration memory. In addition, many confi guration scrubbers include a custom circuit to
perform the confi guration readback, compare, and confi guration repair. This external
scrubbing hardware is often implemented within a radiation tolerant anti- fuse FPGA
or a radiation-hardened ASIC to provide reliable scrubbing in the presence of
radiation.

 There are many variations to this standard scrubbing architecture. An impor-
tant characteristic of scrubbers is whether the scrubbing is performed “blind” or

7 Hybrid Confi guration Scrubbing for Xilinx 7-Series FPGAs

94

not [8]. A blind scrubber will continuously write confi guration frames into the
FPGA without reading the data or determining whether an error was present in the
confi guration frame. Blind scrubbers are simple to implement and very fast. The
disadvantage of blind scrubbers is that they do not provide feedback on the upsets
in the confi guration memory. Many scrubbers employ confi guration readback to
read the state of each confi guration frame. The confi guration frames are compared
against a “golden” confi guration codebook (using ECC or a direct comparison).
Readback scrubbers are more complex and are slower than blind scrubbers.
Readback scrubbers, however, provide real-time confi guration upset data and
can be used to monitor the radiation environment and the radiation response of
the FPGA.

 Fig. 7.1 Scrubbing example. (a) The device is read frame by frame, progressing from left to right.
(b) A radiation strike cause an upset in the FPGA confi guration memory. (c) As the scrubber pro-
gresses through the device it eventually will fi nd the frame with the error and fi xes it. (d) After the
frame is scrubbed the error is gone

 Fig. 7.2 Typical organization
of an FPGA scrubber

M. Wirthlin and A. Harding

95

7.3 Xilinx 7-Series Confi guration

 The Xilinx 7-Series FPGA provides a number of novel features that facilitate the
ability to create unique confi guration scrubbing approaches. This section will
summarize the key confi guration mechanisms of this FPGA family and discuss how
these features are used in the multi-layer scrubber described in this paper.

 The lowest granularity of confi guration for 7-series FPGAs is the confi guration
“frame”. For the 7-series FPGA, each frame is 101 words of 32-bits each (3,232 bits
per frame) [9]. The middle word (word 50) of each confi guration frame contains an
ECC word (see Fig. 7.3) that provides single-bit error correction and double-bit
detection (SECDED). A memory check is performed on a frame when it is read
back using the confi guration readback mechanism.

 Dedicated (non-confi gurable) logic is built into the FPGA to compute a check
word for each frame during confi guration readback. This logic compares the check
word with the internal frame ECC word and determines whether the frame is error
free, contains a single error, or multi-bit error. The FRAME ECCE2 primitive allows
a user design to monitor the status of this internal error checking (see Fig. 7.4). This
block provides the user design with the location of the last frame checked (FAR or
Frame Address Register), signals indicating the status of the last frame check

 Fig. 7.3 7-Series
confi guration frame

 Fig. 7.4 FRAME_ECCE2 primitive

7 Hybrid Confi guration Scrubbing for Xilinx 7-Series FPGAs

96

(ECCERRORSINGLE for single-bit errors, ECCERROR for multi-bit errors, and
CRCERROR for CRC errors), and the location of the error for single-bit errors
(SYNBIT and SYNWORD).

 Because of the limitations of the ECC code, some multi-bit errors (odd errors of
three bits or more) within a frame may not be detected by the FRAME ECCE2
block. To detect this condition, a global CRC is provided for the entire set of frames.
This CRC is recomputed during each full scan of the confi guration memory and
compared against an internal global CRC. If a multi-bit error occurs that is not
detected by the individual frame ECC, the recomputed CRC will differ from the
global CRC signifying that an undetected error exists somewhere in the confi gura-
tion memory.

 Confi guration frames are organized into different “blocks”. Block 0 confi gura-
tion frames are used to defi ne the function of the logic, I/O, routing, DSPs, etc.
Block 1 confi guration frames are used for defi ning the initial contents of the BRAM
and other undocumented blocks exist to perform proprietary functions. Typically,
only Block 0 confi guration frames are scrubbed—these frames are essential for the
proper operation of the circuit operating in the FPGA. Confi guration scrubbing is
not needed for the BRAM as BRAM contents can be protected by the built-in
BRAM ECC logic or other well-known memory protection schemes.

 An important feature of the confi guration logic within Xilinx 7-Series FP-GAs is
an “Internal Scan” function that provides built-in self-scrubbing. Dedicated logic
within the FPGA can be confi gured to continuously read confi guration frames in
Block 0 in sequential order and repair single-bit upsets within the frame (using the
internal FRAME ECCE2 logic). This internal scan operates quickly and can complete
a full scan of the Kintex7 325 device in 30 ms.

 Xilinx offers an intellectual property (IP) block called the “Soft Error Mitigation”
(SEM) core to facilitate easy use of these 7-series confi guration features [10]. This
block provides a number of useful features for controlling the confi guration and
scrubbing including fault-injection, external communication and control via a
UART, and several modes of operation. To repair multi-bit errors, the “Correction
by Replace” mode is used. This mode reads confi guration frames from an external
memory much like the scrubbing architecture shown in Fig. 7.2 .

7.4 Hybrid Scrubbing Architecture

 As described earlier, the internal confi guration scan and Frame ECC can only repair
single-bit upsets and external mechanisms are required to repair intra-frame multi-
bit upsets. Results from radiation testing on the 28-nm Kintex7 FPGA suggest
that intra-frame multi-bit upsets account for 9.9 % of the events observed [11].
This suggests that the internal scrubbing mechanism will be able to fi x 90.1 % of the
events and external mechanisms are needed for the other events.

 The hybrid scrubbing architecture presented in this paper supplements the built-
 in confi guration mechanisms of the 7-Series FPGA (inner layer) with an outer,

M. Wirthlin and A. Harding

97

external scrubber operating on a remote host (see Fig. 7.5). A low-cost, low-
bandwidth JTAG connection is used to communicate between the two scrubbing
layers. The internal scrubber performs a continuous scan of the FPGA Block 0 frames
and repairs all single-bit upsets as described in Sect. 7.3 . The internal scrubber
reports all single-bit upsets and indicates when any multi-bit upset occurs or when a
global CRC error is found.

 The FPGA communicates to the external scrubbing manager through JTAG
registers within the FPGA. The FPGA design instances “BSCAN” primitives within
the FPGA logic to provide the single-bit upset information, multi-bit upset informa-
tion, and CRC errors. The host communicates with the internal scrubbing system
through these JTAG registers.

 The Kintex-7 KC705 development board used for this work contains a Digilent
JTAG-USB surface mount programming module [12] to facilitate communication
between the FPGA and the host through the JTAG port. This module contains an
API that allows the user to write host programs for user-specifi c communication.
A library of JTAG communication routines were created to support the scrubbing
specifi c communication described above.

 The fl ow-chart of the hybrid confi guration scrubber is shown in Fig. 7.6 . The
internal self-scan confi guration scrubber continuously reads confi guration frames
and computes a syndrome for the readback frame. The syndrome is compared with
the internal ECC word of the frame to determine whether there is an error or not.
If there is no error, the frame address register is incremented and the process of
frame readback and compare continues with the next frame. If there is an error, an
error handling process is initiated (described in the next paragraph). This process
continues through all Block 0 frames of the confi guration bitstream. After scanning
the all Block 0 frames, the process repeats with the fi rst frame in the confi guration.

 If an error is found during a frame compare, the continuous frame scan halts.
If a single-bit error is found, the internal ECC circuitry computes the location of the
error and toggles the upset bit (see Fig. 7.4 for the signals provided by the FRAME
ECCE2 primitive during an error condition). The internal scan unit then writes the
corrected frame back into the confi guration memory. If a multi-bit error is found
(i.e., ECCERRORSINGLE = false), a message is sent over JTAG to the host using
the internal boundary scan primitive. This message contains the frame number of

 Fig. 7.5 Dual-layer
confi guration scrubbing:
Internal scan and external
host (via JTAG)

7 Hybrid Confi guration Scrubbing for Xilinx 7-Series FPGAs

98

the upset frame and instructs the host to reconfi gure the frame remotely. The host
then performs a full frame reconfi gure over JTAG of the upset frame. After confi g-
uring the frame, the internal scan process continues.

 During this process of internal confi guration scan, a global CRC is computed for
the full bitstream. At the end of the scan, the computed CRC is compared against
the known good CRC value. If the CRC computed during the scan does not match
the internal CRC, the CRCERROR signal is asserted. If this signal occurs without
any ECC errors, an undetected multi-bit upset has occurred. Since no ECC error
was asserted during the scan, the scrubbing system does not know the location of
upset frame. In this situation, the scrubber will confi gure (scrub) every frame to
restore the proper confi guration value.

 The internal scan scrubber completes a full scan with no errors in 30 ms or 1.3 μs
per frame. The external JTAG scrubber can confi gure a full device in 115 s or 5 ms
per frame. A full reconfi guration for a CRC error requires over 2 min using the
JTAG SMT1 module.

7.5 Radiation Test

 The hybrid scrubbing approach described in the previous section was verifi ed in a
radiation test in September 2013 at the Los Alamos Neutron Scattering Center
(LANSCE). The hybrid scrubber was implemented on a Kintex-7 KC705 Evaluation
board with a Kintex-7 325 device. The FPGA was confi gured with a design that
contained the internal scrubber, the JTAG interface to the external scrubber, and a
large design full of counters and block memories to consume most of the logic

 Fig. 7.6 Hybrid scrubber
fl ow chart

M. Wirthlin and A. Harding

99

resources. Triple modular redundancy was employed to mitigate against temporary
confi guration upsets. A block diagram of design is shown in Fig. 7.7 .

 The Kintex-7 device was placed in the radiation path of the neutron beam to
verify the operation of the scrubber. The FPGA was confi gured with the design
shown in Fig. 7.7 . The scrubber was enabled and the scrubber behavior was moni-
tored over JTAG through a remote host. The scrubber reported single-bit errors,
multi-bit errors, CRC errors, and the location of these errors. In addition to scrub-
bing events, the system reported errors with circuit functionality (BRAM upsets,
TMR upsets, etc.). A photograph of the radiation test setup is shown in Fig. 7.8 .

 Fig. 7.7 The hybrid
scrubbing architecture:
Host + JTAG + internal scan

 Fig. 7.8 Radiation test of the hybrid scrubber on the KC705 evaluation board (the board is in the
 lower right corner)

7 Hybrid Confi guration Scrubbing for Xilinx 7-Series FPGAs

100

 During the testing the scrubber was able to correct all events encountered.
Table 7.1 shows the results of the radiation testing. From this table it can be seen
that the internal scrubbing mechanism fi xed 80 % of all upsets that occurred within
the FPGA confi guration. Only one fi fth of the events required the JTAG connection
for recovery. No CRC errors were observed during the test (CRC errors are due to
multi-bit errors that are not caught by the internal Frame ECC block).

 One challenge that was encountered when validating this hybrid approach was
handling the built-in frame ECC update feature of the internal scrubber. To support
partial reconfi guration of the confi guration memory, the internal scan will recom-
pute the ECC word of each confi guration frame anytime external reconfi guration
occurs. While this feature is very helpful in making sure that the ECC words and
global CRC match the actual contents of the confi guration frame, it introduced a
unique problem in the radiation beam. When a multi-bit upset was reported by the
FRAME ECCE2 block, the external scrubber responds by reconfi guring the upset
confi guration frame. This external confi guration triggers the internal scan unit to
recompute the ECC words of each frame and global CRC (it assumes that the recon-
fi guration is due to new data being confi gured onto the device). The problem with
this ECC update feature is that it computes the incorrect ECC word when it evalu-
ates frames that have upsets—rather than fi xing the upsets, it assumes the frame is
valid and updates the ECC word to refl ect the “new” data. This built-in ECC update
feature was disabled to prevent incorrect ECC words from being computed.

7.6 Conclusion and Future Work

 This paper describes a robust scrubbing architecture for the Xilinx 7-Series FPGA
that requires limited external hardware resources. The scrubber exploits the internal
scan scrubbing capability of the FPGA architecture to quickly handle single-bit
upsets and adds a slow, external scrubber to handle multi-bit upsets and CRC errors.
The external scrubber relies on the slower JTAG interface for communication and
confi guration data transfer. Although slower than external scrubbers, this interface
requires fewer resources than other confi guration alternatives.

 This confi guration scrubber is being evaluated for use in a number of space mis-
sions using the 7-Series device. Additional radiation testing on the 7-Series device
and on the hybrid scrubber is scheduled to further validate its functionality. In addi-
tion, this scrubber is being considered for several high-energy physics experiments
in which FPGAs are used with a high and constant radiation environment. In par-
ticular, this scrubber is being prepared for use in the Liquid Argon Calorimeter
(LAr) of the ATLAS experiment at CERN [13].

 Table 7.1 Event types Event type Count % of Errors

 Single-bit 758 80.5
 Multi-bit 183 19.5

M. Wirthlin and A. Harding

101

 This work is currently being extended to support the Xilinx ZYNQ family of
system-on-chip processors. The ZYNQ architecture combines dual ARM processor
cores with 7-Series FPGA logic. This hybrid processor, FPGA architecture intro-
duces a new way to access the confi guration port called the “PCAP”. This style of
hybrid scrubbing can be adapted by replacing the JTAG interface with the
PCAP. This PCAP hybrid scrubber is being developed for the CHREC Space
Processor (CSP), a cube-sat space processing board currently being planned for two
space missions.

 Acknowledgment This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1265957.

 References

 1. Caffrey M (2002) A space-based reconfi gurable radio. In Plaks TP, Athanas PM (eds)
Proceedings of the international conference on engineering of reconfi gurable systems and
algorithms (ERSA), June 2002, CSREA Press, pp 49–53

 2. Caffrey M, Morgan K, Roussel-Dupre D, Robinson S, Nelson A, Salazar A, Wirthlin M,
Howes W, Richins D (2009) On-orbit fl ight results from the reconfi gurable cibola fl ight experi-
ment satellite (CFESat). In 17th IEEE symposium on fi eld programmable custom computing
machines, 2009. FCCM ’09, pp 3–10

 3. Fuller E, Caffrey M, Blain P, Carmichael C, Khalsa N, Salazar A (1999) Radiation test results
of the Virtex FPGA and ZBT SRAM for space based reconfi gurable computing. In MAPLD
proceedings, Sept 1999

 4. Quinn HM, Graham PS, Morgan K, Baker ZK, Caffrey MP, Smith DA, Bell R (2012) On-orbit
results for the Xilinx Virtex-4 FPGA. Technical report. Los Alamos National Laboratory
(LANL), New Mexico

 5. Sterpone L, Violante M (2005) Analysis of the robustness of the TMR architecture in SRAM-
based FPGAs. IEEE Trans Nucl Sci 52(5):1545–1549

 6. Ostler PS, Caffrey MP, Gibelyou DS, Graham PS, Morgan KS, Pratt BH, Quinn HM, Wirthlin
MJ (2009) SRAM FPGA reliability analysis for harsh radiation environments. IEEE Trans
Nucl Sci 56(6):3519–3526

 7. Saleh AM, Serrano JJ, Patel JH (1990) Reliability of scrubbing recovery-techniques for
memory systems. IEEE Trans Reliab 39(1):114–122

 8. Berg M, Poivey C, Petrick D, Espinosa D, Lesea A, LaBel KA, Friendlich M, Kim H, Phan A
(2008) Effectiveness of internal versus external SEU scrubbing mitigation strategies in a
Xilinx FPGA: design, test, and analysis. IEEE Trans Nucl Sci 55(4):2259–2266

 9. Xilinx corporation. 7 series FPGA confi guration user guide. UG470 (v1.7), 22 Oct 2013
 10. Xilinx. LogiCORE IP Soft Error Mitigation Controller v4.0. PG036 19 June 2013
 11. Wirthlin M, Lee D, Swift G, Quinn H (2014) A method and case study on identifying physi-

cally adjacent multi-cell upsets using 28nm interleaved and SECDED-protected arrays. IEEE
Trans Nucl Sci 61(6):3080–3087

 12. Digilent. JTAG SMT1 programming module for Xilinx FPGAs. 10 June 2011
 13. Wirthlin M, Takai H, Harding A (2014) Soft error rate estimations of the Kintex-7 FPGA

within the ATLAS liquid argon (LAr) calorimeter. IOP Sci J Instrum 9(1), C01025

7 Hybrid Confi guration Scrubbing for Xilinx 7-Series FPGAs

103© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_8

Chapter 8
Power Analysis in nMR Systems
in SRAM-Based FPGAs

Jimmy Tarrillo and Fernanda Lima Kastensmidt

Abstract  Triple Modular redundancy technique is mostly used to mask transient
faults in circuits operating in dependable systems. The generalization of this tech-
nique (known as nMR) allows the use of more than three redundant copies of the
circuit to increase the reliability under multiple faults. The main drawback of nMR
is its high power consumption, which usually implies in n times the power con-
sumption of a single circuit. In this work, we present a mathematical model that
predicts the power consumption overhead based on the power characteristics of the
basic module. We estimate power consumption in some case-study circuits pro-
tected by nMR in a commercial SRAM-based FPGA and compare to a proposed
model that estimates power consumption penalty. Results demonstrate that nMR
can be implemented with low power overhead in FPGAs and therefore it is a suit-
able technique for most applications synthesized into this type of programmable
devices that need to cope with massive multiple faults.

8.1  �Introduction

Aerospace and automotive applications require very complex electronic devices to
control and process information with high reliability [1, 2]. In order to reach high
reliability and also availability capabilities, systems may use redundant schemes
such as multiple modular redundancies (nMR) to mask faults. nMR uses n redun-
dant modules running in parallel and requires the use of a voter to select the correct
outputs [3]. The most common nMR implementation is when n = 3, known as triple
modular redundancy (TMR). In TMR, 2 out of 3 modules must work properly to
provide the correct result chosen by the voter.

J. Tarrillo (*)
e-mail: jtarrillo@utec.edu.pe

F.L. Kastensmidt
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
e-mail: fglima@inf.ufrgs.br

mailto:jtarrillo@utec.edu.pe
mailto:fglima@inf.ufrgs.br

104

When considering implementing an entire system into a single chip, Field
Programmable Gate Arrays (FPGAs) customized by SRAM cells are very attractive
due to their high capability of design integration, low NRE cost and reconfigurabil-
ity. However, due to its high device integration and high number of memory cells,
FPGAs can be vulnerable to radiation effects such as soft errors. Soft errors may
occur due to the interaction of secondary particles generated by neutron in the atmo-
sphere with the silicon resulting temporally charging or discharging of sensitive
transistor nodes. Designs are configured into SRAM-based FPGAs by loading mil-
lions of bits into the configuration memory bitstream. These SRAM memory cells
are susceptible to soft errors such as Single Event Upsets (SEU) or bit-flips [4]. The
number of faults needed to provoke an error in design output may vary from
20 accumulated faults or more according to the design masking factor capability
[5]. In order to cope with SEU in SRAM-based FPGAs, it is required to have designs
able to mask upsets, and to correct the accumulated upsets from time to time by
reloading the correct (faulty-free) configuration bitstream into the FPGA.

TMR is efficient to mask single errors but it cannot cope with multiple bit upsets
that provoke multiple errors in the outputs. Considering that according to the tech-
nological trend, FPGAs have more and more probability of having multiple faults
[6–8], the use of nMR may be an attractive solution at design level on systems inte-
grated into a single FPGA as presented in [9]. However, the main drawback of using
a higher number of multiple redundant modules is the power consumption. FPGAs
are designed to have a suitable size configurable matrix that can fit many types of
designs projected by the user. So, the amount of transistors of a FPGA is the same
for all implemented designs, and the static power consumption is almost indepen-
dent to the implemented design [10]. Moreover, despite being used 100 % of logic
blocks and user flip-flops, about 35 % of the static power is dissipated in the unused
transistors of unused interconnect switches [11]. The dynamic power of the custom-
ized design is the one that plays the main difference among designs but it represents
a small overhead in the majority of the cases.

In this chapter, we present a generic model to estimate the power penalty in nMR
designs synthesized into SRAM-based FPGA. The goal is to use the model to help
to predict in early stages of the design process the power overhead when using
nMR. The target FPGA family in this section is Virtex-5 from Xilinx [12], but this
work can be extended to other families of the same fabricant. We discuss the pro-
posal model in terms of number of redundancies (n) in the nMR technique, the rela-
tion between static and dynamic power (r) and the size of the FPGA matrix. Then,
we provide a power consumption analysis of a synthetic circuit (chain of adders),
and a microprocessor (running a matrix multiplication application) using nMR,
where n varies from 3 to 7. All implemented designs were synthesized into different
sizes of Virtex-5 SRAM-based FPGAs. Comparisons between the power consump-
tion estimated by XPower tool and the model are presented. The model can guide
designers to predict the impact of a design protected by nMR in SRAM-based
FPGAs. And the low overhead power results may impulse designers to use more
often nMR in high reliability applications when using SRAM-based FPGAs.

J. Tarrillo and F.L. Kastensmidt

105

8.2  �Modeling Power Consumption in SRAM-Based FPGAs

Total power consumption (PTOT) is composed by static power PSTAT and dynamic
power PDYN defined by Eq. 8.1.

	 P P PTOT STAT DYN= + 	 (8.1)

In CMOS devices, the static power is linearly related to the voltage level (VCC), and
to the leakage current of the device (ICC), as defined in Eq. 8.2. The leakage current
of the device is the sum of the transistor leakage currents, which depends of the
voltage and operational temperature of the transistor.

	 P V ISTAT CC CC= ´ 	 (8.2)

On the other hand, the dynamic power is related to the switching activity of transis-
tors, and the capacitance and voltage level that powers the device, as defined in the
Eq. 8.3. Notice that if all transistors are powered with the same voltage level VCC
and the same frequency, the Eq. 8.3 can also be written as Eq. 8.4

	
P C fVDYN

i

n

i i CC=
=
å

1

2a
	

(8.3)

where:

n = number of toggling nodes
αi = switching activity
Ci = load capacitance of the node i
f = clock frequency
VCC = transistor source voltage

	
P fV CDYN CC

i

n

i i=
=
å2

1

a
	

(8.4)

Both Eqs. 8.2 and 8.4 are valid for designs implemented as ASIC or into FPGAs.
However, the total power consumption of a design depends on the specific design
characteristics of target circuit. In ASIC, the number of transistors is optimized for
area and performance and interconnections are implemented directly by metal
traces. Consequently, the static power consumption is designed to be as minimum as
possible, and the dynamic power is the main contributor for the total power con-
sumption. On the other hand, SRAM-based FPGA devices are composed by fix
number of transistors, which comprise the arrangement of logical blocks, configu-
rable interconnects and special blocks as internal RAMs and DSP modules. These
elements are the key of the versatility, which is the main feature of the SRAM-based
FPGA, but also all these resources are the cause of extra static power consumption.

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

106

As it is well known, the same design implemented in ASIC and into a FPGA
using the same process technology will has much less power consumption when
implemented as ASIC [10]. Moreover, it is expected that in ASIC implementations,
the power overhead caused by the use of redundant modules to be increased in the
same factor of the number of redundancies. In case of FPGAs, this proportion may
not be true due to the fact that the static power play an important task in the total
power consumption.

Aiming to minimize static power in FPGA, vendors offer devices with different
number of configurable resources for every family. For example, in case of Virtex-5
LXT, the number of slices (each one contains 4 LUTs and 4 flip-flops) for LX20T,
LX30T, LX50T, LX85T, LX110T, LX155T, LX220T, LX330T are 3,120, 4,800,
7,200, 12,960, 17,280, 24,320, 24,560 and 51,840 respectively [11]. In addition, to
have a better optimization of power consumption, FPGAs use diverse supply volt-
age lines for powering their internal components [13] as presented in the Table 8.1.

In order to determine the static power of a FPGA device, it is possible to calcu-
late it by multiplying the typical quiescent supply current at 85° junction tempera-
ture (Tj) with the correspondent voltage supply [13]. In order to determine the total
power consumption, a tool provided by Xilinx called XPower can be used. It con-
siders the current and power consumption for each voltage line, since different
FPGA families have multi voltage power line for internal core, input/output pins,
and other elements. XPower is an accurate power estimation tool because it relies in
the libraries from the vendor with specific technology and fabric information used
in the target FPGA. Static power results are presented in Fig. 8.1, where PCCINTq,
PCCAUXq and PCCOq are the static power consumption in lines VCCINT, VCCAUX and VCCO
respectively. Note that the size of the device impacts drastically the static power
consumption PCCINTq that powers the internal configurable elements.

8.2.1  �Power Considerations for nMR FPGA Implementation

Modular redundancy may be implemented considering the replication of the input
and outputs pins, or only replying the internal logic as shown in Fig. 8.2. Since all
the transistors of the FPGA are turned on independently to the design synthesized
into the configurable matrix, it is expected that the static power (PSTAT) of a design is
almost constant when compared to the total power consumed of the device.

Table 8.1  Maximum and recommended voltage levels in supply voltage lines of Virtex-5 FPGA
(65 nm) [13]

Symbol Description
Absolute maximum
voltages (V)

Performance
impact

VCCINT Internal supply voltage relative to GND −0.5 to 1.1 0.95–1.05
VCCAUX Auxiliary supply voltage relative to GND −0.5 to 3.0 2.375–2.625
VCCO Output drivers supply voltage relative to GND −0.5 to 3.75 1.14–3.45
VBATT Key memory battery backup supply −0.5 to 4.05 1.0–3.6

J. Tarrillo and F.L. Kastensmidt

107

In order to have an estimative of the power overhead of an nMR system imple-
mented in a SRAM-based FPGA, we assume that the use of n modules will mainly
impact the dynamic power component (PDYN), and consequently the power
consumed by the original module can be defined by:

	 P P PSTAT DYN1 = + 	 (8.5)

In the case of all inputs and outputs are replied as shown in Fig. 8.2a, the total power
consumed by an nMR circuit can be approximated by Eq. 8.6. Note that we are not
considering the impact of the power consumption of the voter, since ideally, the
voter is very small compared to the redundant module.

Hence, the total power consumed by the nMR circuit (Pn) when inputs and out-
puts are replicated can be approximated defined by Eq. 8.6. Note that we are not
considering the impact of the power consumption of the voter, since ideally, the
voter is very small compared to the redundant module.

Fig. 8.1  Typical static power consumption for LX Virtex-5 FPGAs by supply line calculated from
the typical quiescent supply current values according to [13] and XPOWER tool

Fig. 8.2  Possibilities for
modular redundancy. (a)
Replaying only internal logic.
(b) Replaying also input and
outputs

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

108

	 P P n Pn STAT DYN» + × 	 (8.6)

Consequently, the power overhead (POV-IO) of an nMR circuit implemented in an
SRAM-based FPGA which replies all input and outputs as in Fig. 8.2a can be
defined by:

	
P

P

P

P n P

P POV IO
n STAT DYN

STAT DYN
_ = =

+ ×
+1 	

(8.7)

Note that the corners of POV_IO are determined by the relation between dynamic and
static power consumption, as shown:

• If P P PSTAT DYN OV IO� Þ »_ 1
• If P P P nSTAT DYN OV IO� Þ »_

In other words, the minimum power overhead is obtained, when dynamic power
is very low compared to the static power. On the other hand, the maximum power
overhead is the number of redundancies n, for designs in which the dynamic power
is very high compared to the static power.

Considering r as the proportion between dynamic and static power of the original
module, the Eq. 8.7 can be rewritten as

	
P

P

P

n r

rOV IO
n

- = =
× +
+1

1

1 	
(8.8)

where r = PDYN/PSTAT, of the original module.
Following the same logic, we can model the expected power overhead POV-int of

nMR when only the functional logic block is replicated as depicted in Fig. 8.2b. In
such case, we subtract from the Eq. 8.8 the power consumed by the replicated input
and outputs ports (PDYN−IO) as follows:

	
P

n r n P P

rOV
DYN IO STAT

-
-=

× + - -() ×
+int

1 1

1 	
(8.9)

We can also rewrite the Eq. 8.9 as a function of POV−IO

	
P P

n

r
P POV OV IO DYN IO STAT- - -= -

-()
+

×int

1

1 	
(8.10)

Hence, the power overhead of an nMR system which replicates all input and outputs
POV−IO can be predicted by the Eq. 8.9, and by the Eq. 8.10 when only the internal
logic blocks are replicated. Both equations are based on the number of redundan-
cies, and the dynamic and static power rate characteristics of the original module.

However, the number of modular redundancies is limited by the amount of
available resources into the target FPGA. Hence, designers may have two different

J. Tarrillo and F.L. Kastensmidt

109

project scenarios: when the original FPGA has enough available sources to
implement n redundant modules and when it does not and a larger FPGA device of
the family must be used.

• Option 1: target FPGA is capable to implement the nMR technique
In this case, the FPGA part is the same independently of the number of the
redundant modules selected, consequently the PSTAT is almost constant for all n
cases. The power overhead model presented in Eq. 8.8 is plotted in Fig. 8.3, for
six different values of r (ratio between dynamic and static power) and for n
redundant modules. Notice that for designs with r < 0.5 (PDYN < 0.5 PSTAT), the
power overhead is very low: for example, for 11 redundancy modules and r = 0.5,
the expected overhead P11/P1 = 4.33 times larger. Such overhead is considerable
very much lower than in the case of an ASIC implementation, when nMR with
11 redundant modules would present an expected overhead in power consump-
tion of approximately 11 times larger power.

• Option 2: target FPGA is not capable to implement the nMR technique
If the resources required to implement more redundant modules are not avail-
able in the original target FPGA device, a larger FPGA must be selected to fit
the n redundancies. In such case, r will be different according to the FPGA
selected. Considering FPGAs belonging to the same family product, the main
difference will be the number of configurable logics available in the device, and
consequently, PSTAT will be greater for larger FPGAs. Since r is equal to PDYN/
PSTAT, it is expected that the power overhead will increase more smoothly as
presented in Fig. 8.4.

Fig. 8.3  nMR power overhead penalties as function of the number of redundant modules n, and
the ratio r between dynamic and static power considering the Eq. 8.8

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

110

8.3  �Estimating Power in Case-Study Circuits Implemented
in SRAM-Based FPGA

In order to analyze the power overhead in nMR designs and compare it with the
proposed model, we estimate the dynamic and static power consumption using
XPower Xilinx tool [14] for two case study circuits synthesized into Virtex-5 family
FPGAs [12]. The first case study circuit is a miniMIPS soft-processor [15] running
a 6 × 6 matrix multiplication. The last one is a chain of adders implemented by only
LUTs and flip-flop slices (no DSP blocks are considered). Although it does not
represent a typical application circuit, this circuit allows the exploration of corner
case due its high switch activity representing a very high r.

8.3.1  �Case-Study Circuit 1: MiniMIPS

MiniMIPS is a soft-core version of MIPS 32-bit microprocessor. The nMR system
was implemented in four different versions: n = 1 (the original module), n = 3, n = 5
and n = 7, where each miniMIPS runs a 6 × 6 matrix multiplication algorithm and
results are delivered in 12 bits. The system uses the SAv as voter as shown in
Fig. 8.5.

Table 8.2 shows the synthesis results for Virtex-5 LX50T, Virtex-5 LX30T and
Virtex-5 LX20T FPGA in terms of occupation resources. As shown, if we are look-
ing for the smallest device of Virtex-5 LX family, Virtex-5 LX20T can only be

Fig. 8.4  Example of different expected power overheads depending on the target FPGA device
capable of implementing the selected nMR considering the Eq. 8.8. Since sizeFPGA1 > sizeF-
PGA2 > sizeFPGA3, then PSTAT1 > PSTAT2 > PSTAT3, and r1 < r2 < r3

J. Tarrillo and F.L. Kastensmidt

111

implemented tree modular redundancies. If we need to use 4MR system, the smallest
FPGA is Virtex-5 LX30T. If we have a Virtex-5 LX50T, it is possible to implement
until seven redundancies (7MR). The SAv voter uses 0.30 and 0.21 % of available
LUTs and flip-flops in a Virtex-5 LX50T. These values are very small compared
with the size of the original module.

Figure 8.6 shows the dynamic and static power distribution for each case obtained
from XPower tool. Notice that static power is constant for all the cases as the FPGA
has the same size for all nMR and frequencies, while the dynamic power increases
with the number of redundant modules n and the frequency.

Considering the Option 1, we analyze the effect of power consumption in the
nMR designs of miniMIPS. For our analyzes propose, we present in Table 8.3 total
power consumed for the processor running at 25, 33, 50 and 66 Mhz estimated by
the XPower, the r obtained using the XPower results, the power overhead POV−inter
obtained by XPower and by the model defined in Eq. 8.10, and the error of the
model proposed respect to XPower results. We highlight that r values are far lower
than one, and consequently we expect that power overhead will be low as shown in
Fig. 8.3. According to Table 8.3, the highest overhead obtained by XPower is 1.57
times the higher power of the original module, for the 7MR working at 66 Mhz
(r = 0.217). As shown, the overhead obtained from the Eq. 8.10 is very close to
results obtained from XPower tool. Notice that the maximum error is 6.54 % for
f = 66 Mhz and n = 7, and lower errors are obtained for lower r and n values. Results
of power overhead obtained from XPower tool and the model proposed in Eq. 8.10
are plotted in Fig. 8.7.

Fig. 8.5  Diagram of 7MR
16-bit adders for power test

Table 8.2  Resources used by miniMIPS-nMR in three Virtex-5 devices

n

Virtex-5 LX50T Virtex-5 LX30T Virtex-5 LX20T

LUTs
(%)

Reg.
(%)

BRAM
(%)

LUTs
(%)

Reg.
(%)

BRAM
(%)

LUTs
(%)

Reg.
(%)

BRAM
(%)

1 12.18 5.21 5 18.27 7.81 8.3 28.10 12.02 5
3 34.17 15.83 15 51.26 23.75 25 79.53 36.54 15
4 – – – 68.36 31.36 33.3 – – –
5 56.88 26.34 25 – – – – – –
7 79.76 36.85 35 – – – – – –

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

112

Now, considering the Option 2, we analyze the effect of power in the nMR
designs of the miniMIPS when the target FPGA is not capable to implement the
selected nMR cases and a larger FPGA is selected. Aiming the use of the maximum
resources in each device, the FPGAs selected were V5LX20T, V5LX30T and
V5LX20T. Similar to previous case, Fig. 8.8 shows the power distribution for all
nMR circuits implemented. Note that in this case, the static power is not constant for
all nMR as the FPGA device changes and n increases, but we can observe that the
main contribution of the power comes also from the static power.

Table 8.4 shows the resources used by nMR implementation for n = 3, 4, 5 and 7,
and their power characteristics in Table 8.4. The highest power overhead obtained
by XPower is 1.42 times the higher power of the original module, for the 7MR
working at 66 Mhz (r = 0.178). As expected in Fig. 8.4, larger FPGAs have lower r
values, and consequently the power overhead increases smoothly. About the error,
notice that Eq. 8.10 is pessimistic for all cases. According to the results, the
maximum error is always lower than 5 %. Figure 8.9 shows the power overhead
obtained from XPower tool for all implemented circuits in three selected devices.

8.3.2  �Case-Study Circuit 2: Adders Chain

Considering Eqs. 8.8 and 8.10, a large power overhead is reached when dynamic
power is very high too. Since dynamic power is related to the switching activity, any
circuit switching a large number of flip-flops and LUTs can be considered as a bad
case from the point of view of power overhead.

A synthetic adder chain circuit composes by 190 16-bit adders was selected to
explore the power overhead of a circuit with high dynamic power consumption.

Fig. 8.6  Measured static and dynamic power using XPower of a miniMIPS processor imple-
mented using three different nMR (n = 3, n = 5 and n = 7) synthesized into the same XC5VLX50T
FPGA

J. Tarrillo and F.L. Kastensmidt

113

Ta
bl

e
8.

3 
Po

w
er

 c
on

su
m

pt
io

n
es

tim
at

ed
 b

y
X

Po
w

er
 a

nd
 b

y
th

e
m

od
el

 p
ro

po
se

d
in

 th
e

E
q.

 8
.1

0
fo

r
th

e
m

in
iM

IP
S-

nM
R

 r
un

ni
ng

 a
t 2

5,
 3

3,
 5

0
an

d
66

 M
hz

 in

X
C

5V
L

X
50

T
 F

PG
A

n

25
 M

hz
33

 M
hz

50
 M

hz
66

 M
hz

X
Po

w
er

E
q.

 8
.1

0
X

Po
w

er
E

q.
 8

.1
0

X
Po

w
er

E
q.

 8
.1

0
X

Po
w

er
E

q.
 8

.1
0

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

1
38

2
1

1
0

38
7

1
1

0
39

5
1

1
0

40
8

1
1

0
3

42
1

1.
10

1.
11

0.
24

43
4

1.
12

1.
13

0.
69

46
1

1.
17

1.
17

0
48

6
1.

19
1.

23
2.

88
5

46
5

1.
22

1.
21

0.
65

48
8

1.
26

1.
26

0.
20

53
2

1.
35

1.
33

0.
94

57
7

1.
41

1.
45

2.
60

7
49

5
1.

30
1.

31
1.

41
52

4
1.

35
1.

35
2.

48
58

3
1.

48
1.

50
1.

72
64

2
1.

57
1.

68
6.

54
r

0.
05

5
–

0.
06

9
–

0.
09

1
–

0.
12

7
–

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

114

Then, the nMR system analyzed is composed by seven adder chain circuit (basic
module) working with a SAv as shown in Fig. 8.10. The number of redundancies and
adders aimed to use the more amount of resources of a Virtex-5 LX50T considering
a dedicated placement. Each module has the same inputs sourced by a generator pat-
tern based on a 32-bit LFSR to guarantee a high and random switching activity. The
switching activity file (vsd file) was created using the post routing model.

Table 8.5 shows the synthesis results for Virtex-5 LX50T FPGA for 3, 5 and 7
redundancies. The total power and power overhead estimated by XPower and by the

Fig. 8.7  Power overhead of nMR of miniMIPS obtained by XPower (XP) and by the proposed
model from Eq. 8.10 for XC5VLX50T FPGA

Fig. 8.8  Measured static and dynamic power using XPower of a miniMIPS processor imple-
mented using three different nMR synthesized into the three different FPGAs (XC5VLX20T,
XC5VLX30T, XC5VLX50T)

J. Tarrillo and F.L. Kastensmidt

115

Ta
bl

e
8.

4 
Po

w
er

 c
on

su
m

pt
io

n
es

tim
at

ed
 b

y
X

Po
w

er
 a

nd
 b

y
th

e
m

od
el

 p
ro

po
se

d
in

 t
he

 E
q.

 8
.1

0
fo

r
th

e
m

in
iM

IP
S-

nM
R

 r
un

ni
ng

 a
t

25
 a

nd
 3

3
M

hz
, 5

0
an

d
66

 M
hz

 in
 X

C
5V

L
X

30
T

 a
nd

 X
C

5V
L

X
20

T
 F

PG
A

s
(O

pt
io

n
2)

n

25
 M

hz
33

 M
hz

50
 M

hz
66

 M
hz

X
Po

w
er

E
q.

 8
.9

X
Po

w
er

E
q.

 8
.9

X
Po

w
er

E
q.

 8
.9

X
Po

w
er

E
q.

 8
.9

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

V
5L

X
30

T
1

26
8

1
1

0
27

2
1

1
0

28
1

1
1

0
29

2
1

1
0

3
30

7
1.

15
1.

16
−

0.
98

31
9

1.
17

1.
18

−
0.

94
34

4
1.

22
1.

24
−

1.
46

36
8

1.
26

1.
3

−
3.

27
4

32
9

1.
23

1.
24

−
0.

61
34

6
1.

27
1.

28
−

0.
29

38
0

1.
35

1.
35

−
0.

79
41

5
1.

42
1.

45
−

2.
17

r
0.

08
5

–
0.

10
1

–
0.

13
8

–
0.

17
8

–
V

5L
X

30
T

1
21

3
1

1
0

21
8

1
1

0
27

7
1

1
0

23
6

1
1

0
3

24
8

1.
16

1.
19

−
2.

02
26

0
1.

19
1.

23
−

3.
08

28
3

1.
25

1.
30

−
4.

24
30

7
1.

3
1.

36
−

4.
89

r
0.

10
4

–
0.

13
0

–
0.

17
6

–
0.

22
3

–

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

116

Fig. 8.9  Power overhead of nMR of miniMIPS obtained by XPower (XP) and by the proposed
model from the Eq. 8.10 synthesized into the different FPGA Virtex-5 devices (XC5VLX20T,
XC5VLX30T, XC5VLX50T)

Fig. 8.10  Diagram of 7MR 16-bit adders used in the power analysis

Table 8.5  Resources used by adder chains nMR in Virtex-5 LX50T FPGA

n LUTs (%) Reg. (%) BRAM (%)

1 10.56 10.83 0
3 32.48 32.23 0
5 53.60 54.84 0
7 74.96 76.62 0
SAv   0.72   0.86 0

proposed model presented in Eq. 8.10, running at 25, 50, 100 and 200 Mhz are
presented in Table 8.6. The maximum operational frequency is 260 MHz, and the
average static power (obtained from XPower tool) is 211.6 mW. Using the dynamic

J. Tarrillo and F.L. Kastensmidt

117

Ta
bl

e
8.

6 
Po

w
er

 c
on

su
m

pt
io

n
es

tim
at

ed
 b

y
X

Po
w

er
 a

nd
 b

y
th

e
m

od
el

 p
ro

po
se

d
in

 th
e

E
q.

 8
.1

0
fo

r
th

e
A

dd
er

 c
ha

in
 n

M
R

 r
un

ni
ng

 a
t 2

5,
 5

0,
 1

00
 a

nd
 2

00
 M

hz

in
 X

C
5V

L
X

50
T

 F
PG

A

n

25
 M

hz
50

 M
hz

10
0

M
hz

20
0

M
hz

X
Po

w
er

E
q.

 8
.9

X
Po

w
er

E
q.

 8
.9

X
Po

w
er

E
q.

 8
.9

X
Po

w
er

E
q.

 8
.9

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

P T
O

T

(m
W

)
P O

V
P O

V
-i

nt

E
rr

or

(%
)

1
49

8
1

1
0

56
2

1
1

0
68

4
1

1
0

93
1

1
1

0
3

60
8

1.
22

1.
21

1.
23

76
2

1.
36

1.
35

0.
27

1,
06

8
1.

56
11

.5
5

0.
90

1,
67

8
1.

80
1.

79
0.

44
5

70
6

1.
42

1.
41

0.
41

95
3

1.
70

1.
71

−
0.

52
1,

44
0

2.
11

2.
09

0.
50

2,
41

2
2.

59
2.

59
0.

08
7

80
3

1.
61

1.
62

−
0.

33
1,

13
2

20
.2

2.
06

−
2.

11
1,

78
7

2.
61

2.
64

−
1.

13
3,

09
4

3.
32

3.
38

−
1.

80
r

0.
15

3
0.

29
7

0.
57

2
–

1.
12

0
–

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

118

and static power consumption obtained from XPower Tool, the r values for 7MR are
0.153, 0.297, 0.572, and 1.121, for the system running at 25, 50, 100 and 200 Mhz
respectively. We want to highlight that although replicating seven times the original
circuit, using almost the totality of LUTs and flip-flops of the FPGA and having a
high switching activity, the higher r that we got is 1.120 with a power overhead of
3.32. We interpret these results as the fact that for common circuits, the penalty for
using n modular redundancies in SRAM-based FPGA is much lower than n.

Powers overhead estimated by XPower and by the Eq. 8.10 are plotted in
Fig. 8.11, and Table 8.6 also presents error of the model respect to XPower results.
We can notice the good accuracy of the model. According to the results, the Eq. 8.10
estimate the power overhead with a maximum of error of 2.11 %.

8.4  �Conclusions

In this work, the authors analyze the effect on power overhead due to the implemen-
tation of n modular redundancy (nMR) designs in SRAM-based FPGAs. A generic
model of the power overhead that considers the rate between dynamic and static
power consumption (r) of the original module and the number of redundancies is
introduced. As case studies, two designs were chosen: miniMIPS processor and
adders chain running to different frequencies. Results show that the power overhead
when using nMR increases in a much lower proportion than the number of redun-
dancies, and consequently the use of nMR may be a suitable fault tolerant technique
for designs implemented in SRAM-based FPGAs to cope with multiple faults. The
model to predict the power overhead presented a good agreement with XPower
results. Future works will consider including the DSP and other special features in
the model and application in other FPGA families.

Fig. 8.11  Power overhead of nMR of adder chains obtained by XPower (XP) and by the proposed
model (Mod) from Eq. 8.10 for Virtex-5 LX50T FPGA

J. Tarrillo and F.L. Kastensmidt

119

References

	 1.	Story C (2010) Xcell50 FPGA on Mars. Nat Chem 2(3):147
	 2.	Quinn H, Graham P, Morgan K, Baker Z, Caffrey M, Smith D, Wirthlin M, Bell R (2013)

Flight experience of the Xilinx Virtex-4. IEEE Trans Nucl Sci 60(4):2682–2690
	 3.	 Instrument N (2008) Redundant system basic concepts. 1–3
	 4.	Baumann R (2005) Radiation-induced soft errors in advanced semiconductor technologies.

IEEE Trans Device Mater Reliab 5(3):305–316
	 5.	Chapman AK (2010) SEU strategies for Virtex-5 devices. XILINX 864:1–16
	 6.	Quinn HM, Graham PS, Wirthlin MJ, Pratt B, Morgan KS, Caffrey MP, Krone JB (2009) A

test methodology for determining space readiness of Xilinx SRAM-based FPGA devices and
designs. IEEE Trans Instrum Meas 58(10):3380–3395

	 7.	Taniguchi H, Yahagi Y, Shimbo K, Toba T (2010) Impact of scaling on neutron-induced soft
error in SRAMs from a 250 nm to a 22 nm design rule. IEEE Trans Electron Devices 57(7):
1527–1538

	 8.	Raine M, Hubert G, Gaillardin M, Artola L, Paillet P, Girard S, Sauvestre J, Bournel A (2011)
Impact of the radial ionization profile on SEE prediction for SOI transistors and SRAMs
beyond the 32-nm technological node. IEEE Trans Nucl Sci 58(3):840–847

	 9.	Tarrillo J, Kastensmidt FL, Rech P, Frost C, Valderrama C (2014) Neutron cross-section of
N-modular redundancy technique in SRAM-based FPGAs. IEEE Trans Nucl Sci 61(4):
1558–1566

	10.	Kuon I, Member S, Rose J, Member S (2007) Measuring the gap between FPGAs and ASICs.
IEEE Trans Comput Aided Des Integr Circuits Syst 26(2):203–215

	11.	Tuan T, Lai B (2003) Leakage power analysis of a 90nm FPGA. In: Proceedings of the IEEE
Custom Integrated Circuits Conference, pp 57–60

	12.	Xilinx (2009) Virtex-5 family overview, DS100 (v5.0). Xilinx
	13.	Xilinx (2010) Virtex-5 FPGA data sheet: dc and switching characteristics, DS202. Xilinx
	14.	Xilinx (2011) Xilinx power tools tutorial, UG733 (v13.1). Xilinx
	15.	Hangout L, Jan S (2009) The minimips project. www.opencores.org

8  Power Analysis in nMR Systems in SRAM-Based FPGAs

http://www.opencores.org/

121© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_9

Chapter 9
Fault-Tolerant Manager Core for Dynamic
Partial Reconfiguration in FPGAs

Lucas A. Tambara, Jimmy Tarrillo, Fernanda L. Kastensmidt,
and Luca Sterpone

Abstract  Critical applications must rely on fault-tolerant systems in order to guar-
antee an error-free execution since the cost of a system fault can be paid in terms of
millions of dollars or, even worse, in terms of human lives. In this context, Dynamic
Partial Reconfiguration (DPR) enables a more optimized and reliable usage of state-
of-the-art Xilinx SRAM-based Field Programmable Gate Arrays (FPGA) resources
over space and time. DPR techniques make use of the Internal Configuration Access
Port (ICAP), an internal FPGA interface that allows changing on the fly the func-
tionality of a portion of its logic. Unfortunately, a standard DPR flow requires the
use of at least a microprocessor (MicroBlaze, PowerPC or ARM), extra memories
due to the microprocessor and several peripherals, which results in dense and com-
plex designs that may be easily corrupted by radiation incidence. This chapter pres-
ents a generic DPR manager core that has been optimized to provide high reliability.
Results are shown in terms of performance, resources utilization and fault tolerance
capability, which reinforce its advantages over traditional solutions.

9.1  �Introduction

System designs operating in high-reliability applications, such as particles accelera-
tors, aircrafts and satellites require minimal probabilities of a fault affecting the system
output. Moreover, in recent years, many Commercial Off-The-Shelf (COTS) products
have been employed in these critical areas. The Large Hadron Collider (LHC) is a
clear example. There are several areas of LHC in which are used commercial

L.A. Tambara (*) • J. Tarrillo • F.L. Kastensmidt
Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
e-mail: latambara@inf.ufrgs.br; jtarrillo@inf.ufrgs.br; fglima@inf.ufrgs.br

L. Sterpone
Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
e-mail: luca.sterpone@polito.it

mailto:latambara@inf.ufrgs.br
mailto:jtarrillo@inf.ufrgs.br
mailto:fglima@inf.ufrgs.br
mailto:luca.sterpone@polito.it

122

electronics devices not specifically designed to be radiation-tolerant [1]. Moreover,
adopting COTS brings benefits to the project as they include low-cost hardware and
software, and they are widely available in the commercial market. On the other hand,
COTS are not specially developed for highly reliable applications, which mean that
engineer systems with such devices with the same level of reliability as a custom-
designed fault tolerant system is a major challenge. In this scenario, reconfigurable
architectures such as Xilinx SRAM-based FPGAs have gained more and more atten-
tion over the past years.

State-of-the-art Xilinx SRAM-based FPGAs (in this chapter, shortened to only
FPGAs) present a set of features that are relevant for systems operating in high-
reliability applications, such as flexibility, high performance and fast time-to-
market. Moreover, as fabricated with the latest semiconductor manufacturing
processes, modern FPGAs are high-density chips that integrate an uprising number
of functionalities with reduced voltage threshold and higher frequencies operation
[2]. Such advances have the drawback of significantly reducing the COTS FPGAs
reliability by making them more susceptible to faults caused by radiation.

One of the major reliability concerns for FPGA is Soft Errors, which are tran-
sient faults provoked by the interaction of ionizing particles with the device PN
junction. This upset temporally charges or discharges circuit nodes, generating tran-
sient voltage pulses that can be interpreted as internal signals, thus provoking an
erroneous result [3]. When a fault changes the state of an SRAM cell, this event is
referred as Single Event Upsets (SEU). Once SRAM-based FPGAs are composed
of millions of SRAM cells to store their configuration [3], they are very susceptible
to SEU and Multiple Bits Upsets (MBU) [4]. SEUs and MBUs in configuration
memory bits have a persistent effect and can only be corrected by reconfiguring the
FPGA.

The integration of COTS FPGAs in critical systems may then require hardening
techniques able to mitigate SEU effects, especially if the device is employed in
radiation harsh environments. To ensure the correct functionally of the design
implemented into an FPGA, it is mandatory to mask and eventually correct radiation-
induced SEUs and MBUs. Two well-known techniques are the use of a global Triple
Modular Redundancy (TMR) to mask SEUs and the use of reconfiguration of the
FPGA’s bitstream to correct SEUs in its configuration memory bits.

The reconfiguration process is one of the most important steps to ensure that
SEUs are not going to accumulate in the SRAM memory cells, and they will be cor-
rected in an expected required repair time. Most of FPGAs from Xilinx offer the
capability of partially change the configuration (i.e. functionality) of the device on
the fly. This process is known as Partial Reconfiguration [5] or Dynamic Partial
Reconfiguration (DPR) when it is done at run-time and it is performed internally
through the Internal Configuration Access Port (ICAP). DPR has been often
employed in several types of applications, such as multimedia, avionics, aerospace
and other intelligent systems [6–9], either for change the functionality of a system
or to fix faults within it. Concerning fault tolerance, a DPR scheme helps to extend
the lifetime of a system by periodically rewriting parts of its bitstream in order to
avoid the accumulation of multiple SEU.

L.A. Tambara et al.

123

In order to increase the fault tolerance of a system, a DPR manager core must be
highly reliable and with high performance to be able to reconfigure the FPGA
within minimal time. Furthermore, solutions based on complex microprocessors,
such as MicroBlaze, PowerPC and ARM are not suitable for safety-critical applica-
tions as they are too complex and require a lot of peripherals and memory, which
may result in an extremely susceptible DPR control system. In this chapter, we pres-
ent a novel DPR Manager (DPRM) fault-tolerant core against SEUs. The core uses
a dedicated control flow design implemented in hardware to control the ICAP inter-
face. For this reason, the DPRM core is optimized for area and performance. The
proposed DPRM fault-tolerant core was evaluated in a Xilinx Virtex-5 LX50T
FPGA through fault injection, where thousands of SEUs were injected into the
SRAM cells to predict the behavior of the proposed DPRM under multiple faults.

This chapter is organized as follow. Section 9.2 presents the classical DPR
approach with a brief description of the ICAP interface, the configuration bitstream
organization and the DPR implementation in Virtex-5 FPGAs. Section 9.3 presents
the architecture of the DPRM and its fault-tolerant version. Section 9.4 presents the
DPRM implementation and the obtained results for performance and fault toler-
ance. Finally, Sect. 9.5 concludes this chapter.

9.2  �Classical DPR Approach

The functionality of an FPGA is defined by a unique configuration data set called
bitstream that is stored in its internal configuration memory. Since the configuration
memory of the Xilinx’s FPGAs is volatile, the bitstream is usually loaded from an
external non-volatile memory when the FPGA is powered up. A configuration bit-
stream can be loaded by using serial (Master/Slave, Serial Peripheral Interface—
SPI) or parallel (SelectMAP, Byte Peripheral Interface—BPI) modes [10].

The dynamic partial reconfiguration capability in FPGAs aims at changing the
FPGA design by loading partial bitstreams, typically stored in a Flash memory,
through any available configuration port, i.e. Slave SelectMAP, Slave Serial, JTAG,
or ICAP (which is, in fact, an internal representation of the SelectMAP interface)
[11]. The most common port nowadays to perform the DPR is the ICAP due to its
flexibility of access inside the chip.

Figure 9.1 illustrates the ICAP interface. It is worth mention that the data bus is
selectable among 8, 16 or 32 bits. According to [10], in a Virtex-5 FPGA the ICAP
interface can run up to a clock frequency of 100 MHz.

The configuration bitstream structure is shown in Fig. 9.2. In the Virtex-5 family,
the smallest group of configuration bits is composed of 1,312 bits and is it known as
Frame. The number of Frames in a bitstream depends on the size and type of the
resources existing in the reconfigurable region.

In order to perform DPR, Xilinx’s proposed flow is handled by an embedded
soft-core microprocessor, such as MicroBlaze or hard-core processors as PowerPC
or ARM that uses an instance of OPB-HWICAP, XPS-HWICAP or AXI-HWICAP

9  Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs

124

cores to control the ICAP [10]. Although these cores provide flexibility access to the
ICAP when combined with a microprocessor. However, it is worth mention that
they require buffers, ICAP control capabilities, and an external memory controller.
Together, these components introduce extra area and time overhead and make the
HWICAP interfaces totally dependent of the referred processors. Consequently,
such HWICAP cores do not provide the best solution for systems that require effi-
cient use of the ICAP in terms of performance and fault tolerance.

The most adopted DPR architecture is illustrated in Fig. 9.3: the processor com-
mands the memory controller (1) to load a bitstream from an external memory (2
and 3) to BRAM; then, when required, the processor transfers a chosen bitstream
from the BRAM to the ICAP controller (4) to implement the selected reconfigurable
module (5). In this way, the data bus is used during reconfiguration process to trans-
port the configuration bits from the BRAM or a memory controller to the ICAP
controller.

The reconfiguration process is started by sending the synchronization command
5599AA66’h to the ICAP input (I, in Fig. 9.3). This word makes ICAP output (O, in
Fig. 9.3) changes from 9F’h to DF’h, which means that the component is synchro-
nized. During all the time the ICAP output status DF’h, the FPGA loads new
configuration frames. When configuration data is sent, the bitstream contains a

Fig. 9.2  Configuration bitstream structure

Fig. 9.1  ICAP primitive description

L.A. Tambara et al.

125

desynchronization word, which is 000000B0’h. When ICAP receives this word, its
output status changes to 9F’h, indicating that the component is desynchronized, and
the configuration ended.

Several ICAP controllers have been proposed aiming to perform DPR [6–9,
12–21]. Few of them focus to be fault-tolerant [12, 13]. Most are focused to improve
resource utilization efficiency over time [6–9, 14–21]. The use of Direct Memory
Access (DMA) was proposed by Claus et al. in [6] and by Bhandari et al. in [18] to
increase the bitstream throughput through preloading partial bitstreams from a
Compact Flash (CF) memory to a DDR SDRAM during system setup. Liu et al.
proposed a similar approach in [17], where authors made use of the internal FPGA’s
Block RAM (BRAM) as cache memory together with externals DDR SDRAM and
CF. Lai and Diessel presented in [20] a similar approach as the one that is presented
in this article, once they developed both ICAP controller and memory interface.
Finally, the work reported by Lamonnier et al. in [14] resembles our proposed archi-
tecture and the one in [20] regarding the fact that they do not employ buffers and
avoid the use of microprocessors. Except the works presented in [14] and [21], all
the aforementioned designs require the use of a processor to manage the DPR pro-
cess through a data bus and a memory controller, which increases the system com-
plexity and consequently, the susceptibility of it.

Bayar and A. Yurdakul presented a rather different approach in [21]. They made
use of the Parallel Configuration Access Port (PCAP) to perform DPR through the
SelectMAP port and using the internal BRAM to store the partial configuration
bitstreams. A variation of PCAP known as cPCAP [22] considers a decompression
mechanism to store bigger bitstreams in a compressed format into BRAM. The
cPCAP implementation in [22] uses 324 slices (Spartan-3 FPGA), and its recon-
figuration speed reaches 50 MB/s. Although there is no data bus in this approach,
the reconfiguration capability of the modules is bounded by BRAM availability.

The problem of most of the mentioned DPR controller is that they are based on
complex microprocessors with several peripherals and BRAM. These characteris-
tics make the controllers too large and vulnerable to SEU.

Fig. 9.3  Classical DPR
implementation approach
showing that a
microprocessor controls all
the time both memory and
ICAP

9  Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs

126

9.3  �Proposed DPR Manager Core

9.3.1  �DPRM Architecture

The first contribution of this work is to propose a fault-tolerant high-performance
DPR Manager core IP (DPRM). The developed DPRM supports dynamic partial
reconfiguration by providing low-level hardware services such as storage/retrieval
of configuration bits between memory and ICAP, relieving any (hardware or soft-
ware) controller unit of monitoring the configuration task. This way, DPRM aims to
serve as an interface between a system and its reconfigurable logic. The proposed
DPRM is based on a specific control flow design and not in a microprocessor to
limit the SEU occurrence and produce a more efficient reconfiguration. Moreover,
it mainly differs from previous works in two points. First, no data bus (OPB, PLB
or AXI) is necessary to transport partial configuration bits. The second difference is
in terms of memory usage. The user has the choice of selecting the amount of
desired BRAM (if any). The versatility of our solution allows the user to create its
own memory driver and plug it to the DPRM for using with different memories or
boards. Our proposed architecture is implemented with a Triple Modular Redundancy
(TMR) scheme of the DPRM and a special placement of its Majority Voters (MV)
to guarantee high reliability. The second contribution of this work is a memory
controller capable of interfacing with a BPI Flash memory without the need of any
processor.

Figure 9.4 shows the connections of our DPRM architecture. Our proposed
DRPM frees the main control unit (generally a microprocessor) of performing the
DPR task. As aforementioned in previous sections, if a data bus is used along with
a processor, the configuration bitstream has to pass through it. The DPRM frees the
data bus of transporting the bitstream. Figure 9.5 details the interface signals and
components of the DPRM core. Internally, the Unit Interface (UI) interacts with
three different modules: the Controller (an FSM or a microprocessor), the Data
Manager (DM), and the ICAP Control (IC).

Fig. 9.4  Connections of the
DRPM core

L.A. Tambara et al.

127

To start the DPR process, the bitstream memory address is placed on the First
Address bus (Fad), and the Start signal is triggered. Throughout the reconfiguration
process, the Busy signal remains asserted, and the Irq output is used to indicate
when the configuration ends. Once the external memory address is registered into
the UI module and the start signal is asserted, the DM module reads the reconfigura-
tion bitstream from the External Memory through the Memory Control unit. This unit
implements the interface with the external memory to retrieve all data. This way,
bitstream words are transported from the memory control unit to the ICAP input bus
(data). The following signals are used to control the memory block:

• Fad: bitstream address;
• RD: read signal;
• Ready: data on output bus is valid.

The memory control unit can make use of internal BRAM to improve the partial
configuration speed. However, a tradeoff between configuration speed, resources
and fault tolerance will exist. Our proposed architecture allows the following
scenarios according to the use of buffer elements:

	1.	 No buffer is used. This case is used when the lightest hardware is required. When
no buffer is implemented, the data output of the external memory is connected
(if possible) directly to the ICAP data lines. This approach depends on the external
memory architecture, and consequently, the reconfiguration speed is strongly
dependent on the memory. Since external devices usually are slower than inter-
nal FPGA elements, this approach represents the slowest configuration option.
However, this is the most fault-tolerant option due to the no use of BRAMs,
which is known as the most sensitive elements of and FPGA [23].

	2.	 Buffer is used. Two scenarios are possible under this option. The first one, when
the required partial configuration bitstream is known, it can be preloaded into
BRAM early and later sent into the ICAP when needed, reaching the highest

Fig. 9.5  DRPM block diagram

9  Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs

128

configuration speed. A second scenario is possible when the partial bitstream
required is not known in advance; it can be brought into BRAM right after the
reconfiguration process is requested, but the configuration speed will be slower
than the previous case. Notice that the amount of BRAMs used is proportional to
the biggest bitstream and thus, if there are not enough BRAMs to store the bit-
stream, it can be loaded in chunks, yielding the slowest configuration speed. This
will be the most vulnerable scenario, as typically BRAM cells are more suscep-
tible than the configuration memory cells [23]. Fault tolerance will be addressed
in more details along the next subsection.

In this work, as the focus is to have a high level of fault tolerance, we imple-
mented a version with no buffering that interfaced a BPI Flash memory which can
be read with a simple address/read-enable interface in 2-byte words.

When the BRAM resources selected are not enough to load a complete bitstream,
the number of transfers from external memory to the BRAM expressing the bit-
stream size in bytes, can be computed as:

	

N ceil
Size

Size
bitstream

buffer
1 =

æ

è
çç

ö

ø
÷÷

	

(9.1)

We name t1 as the time employed to read one data unit from the external device;
for the BPI Flash, one data unit is 2 bytes whereas for the Compact Flash it is 512
bytes. In addition, we name t2 as the memory handshaking time when starting a new
read after inactivity. Finally, we denote N2 as the number of times a new read trans-
action is initiated by the FPGA after inactivity with the external device; this value
will depend on the buffer size and particular memory constraints. The overall time
used to retrieve the partial bitstream from outside into the FPGA can be
modelled as:

	 t t N t NMem FPGA- = +(.) (.)1 1 2 2 	 (9.2)

When using BRAM buffering, the time employed to send the bitstream to the
ICAP is only determined by the frequency at which the BRAM is read and cannot
be higher than 100 MHz due to ICAP’s limitations. The time to send one 32-bit
word from BRAM to the ICAP is, therefore:

	
t

MHzBRAM ICAP- =
1

100 	
(9.3)

The reconfiguration time for the no-buffering scenario is given by Eq. 9.4. Since
the operating frequency of the external device is usually much less than 100 MHz,
the second term in the equation mentioned above only adds a minor effect on the
overall time.

	
t t

Size
trec Mem FPGA

bitstream
BRAM ICAP1 4

= + æ

è
ç

ö

ø
÷- -.

	
(9.4)

L.A. Tambara et al.

129

In the case BRAM buffering is used, pre-loading is possible, thus allowing to
decrease tMem−BRAM to zero when executing the reconfiguration. This scenario is given
by Eq. 9.5. Maximum reconfiguration speed is obtained with this configuration.

	
t

Size
trec

bitstream
BRAM ICAP2 4

= -.
	

(9.5)

9.3.2  �Fault-Tolerant DPRM

The DPRM circuit is susceptible to SEU as it is implemented in the FPGA fabric.
An SEU occurring within its circuitry can cause the circuit to output incorrect data or
cause the circuit to fail. A DPRM failure may have severe repercussions on the entire
implemented circuit as a faulty DPRM may incorrectly rewrite configuration bits.
It is then fundamental to implement a reliable and SEU-immune DPRM module.

Three different mitigation strategies were applied to add fault tolerance to the
plain DPRM module.

The first fault-tolerant version is using a single DPRM with its output signals
triplicated (DPRM TMR-Sig). These triplicated signals are the ones that control the
ICAP.

The second fault-tolerant version is a TMR version of the DPRM module (TMR-
DPRM), as it is shown in Fig. 9.6. In the TMR-DPRM, the original circuit is tripli-
cated by adding two extra copies of the original circuit. The three copies of the TMR
approach operate in parallel, and the copies outputs are delivered to majority voters.
If an error happens in one of the copies, two of them will continue to operate

Fig. 9.6  TMR-DRPM block diagram

9  Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs

130

correctly and the majority voter can correctly mask the output of the faulty module.
The majority voters are placed bit-a-bit, which totalizes 84 MV.

A third fault-tolerant version was designed aiming at reducing the probability of
a failure occurring in one of them. An optimization was proposed based on a special
placement (TMR-DPRM-SP). The goal was to place the majority voters as closer as
possible to the output ports, like the ICAP interface. In this way, the critical non-
triplicated paths after the MV outputs are reduced. It is worth mention that the
TMR-DPRM does not have any special placement of the majority voters.

9.4  �Test Setup and Fault Injection Results

The case-study reconfigurable module is a simple counter, which uses 12,818 con-
figuration bytes. The DRPM was implemented in a Xilinx Virtex-5 LX50T. A
PicoBlaze embedded processor running at 50 MHz was used to support the DPRM,
and a BPI Flash memory was used to store the configuration bitstreams. Moreover,
the memory controller did not use any BRAM. Thus the configuration speed
depends on the external memory access time Eq. 9.4.

Table 9.1 shows the synthesis and performance results obtained for both DPRM
and TMR-DPRM.

Area wise, compared to Xilinx’s proposed DPR flow, DPRM has a reduced ratio
from 6.4 to 17 times [15]. Comparing to other fault-tolerant ICAP controllers,
TMR-DPRM has a reduced area ranging from 2.1 times [13] to 2.6 times [12].

Regarding configuration speed, DPRM presents an improvement of 1.3 times
when comparing to OPB-HWICAP [15]. However, in comparison with PLB-
HWICAP [15] and other fault-tolerant ICAP controllers [12, 13], the present TMR-
DPRM setup has a lower performance. The reason is that the present setup does not
use any memory to increase the performance, like BRAM, a microprocessor with
cache-enabled or Direct Memory Access feature. Aiming to prove that the DPRM
module is able to achieve a higher performance, a preliminary work was performed
implementing the DPRM core with BRAM as buffers and an SD Flash memory as
external memory in a Virtex-6 LX240T device. First results show a resource usage

Table 9.1  Synthesis and performance results obtained for the TMR-DPRM setup

Version Block
External
memory type

Resources Max. freq.
(MHz)Flip-flops LUTs BRAM

DPRM system DPRM core –  � 8   18 0 600.2
Memory
control

BPI Flash 111 135 0 291.3

Processor –   76 144 1 162.7
TMR-DPRM
system

DPRM core –   24   88 0 600.1
Memory
control

BPI Flash 111 135 0 291.2

Processor –   76 144 1 160.9

L.A. Tambara et al.

131

of 247 flip-flops, 662 LUTs and 5 BRAM. The achieved configuration speed was
about 253 MB/s. If the same conditions were held at 100 MHz, the configuration
speed reached would be 384.29 MB/s, which is closer to the highest possible (400
MB/s) and, for example, 1.1 times faster than the solution presented in [13].

A fault injection campaign was performed with the purpose of evaluating the
DPRM behavior under multiple faults. The fault injection campaign was done by
flipping random configuration bits in the area where different versions of the DPRM
are mapped. A set of 2,000 fault injection campaigns was performed. Each cam-
paign injects single to multiple faults: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 to 100
accumulated faults. All errors occurred in the DPRM outputs were computed.

Once the number of errors due to fault injection is computed, it is possible to
calculate the Mean Time Between Failures (MTBF) of the system. MTBF can be
defined as the average time (in hours) between two radiation-induced failures within
the device. By definition, the MTBF is evaluated as:

	

MTBF
number of errors

total of injected upsets static

=
æ

è
ç

ö

ø
÷ ×

é ()

1

s
ëë
ê

ù

û
ú × flux

	

(9.6)

where number of errors is the number of observed errors in the design output, total
of injected upsets is the total number of injected upsets in the design during the fault
injection campaigns, σstatic is the sensitive area to upsets (measured static cross sec-
tion for Virtex-5 devices is 6.70 × 10−15 cm2 from [23]) and flux is the average neu-
tron flux at sea level (about 13 n/(cm2·h)) [24].

Figure 9.7 shows the obtained results in terms of MTBF. From the results, it is
possible to observe that the use of TMR presented a significant improvement in reli-
ability. The TMR-DPRM showed a fault tolerance 2.5 higher than the unmitigated
design. However, with regard to the TMR-DPRM-SP design, it showed a very sig-
nificant improvement in terms of fault tolerance, achieving a fault tolerance 4.1
times higher than the unmitigated design and 1.67 when comparing with the TMR-
DPRM design. For the sake of comparison, the fault tolerance improvement
(unmitigated design versus mitigated design) of the work presented in [12] was of
1.5 times. Authors did not present results about fault tolerance in [13].

0.00E+00

5.00E+16

1.00E+17

1.50E+17

2.00E+17

M
T

B
F

 (h
o

u
rs

)

DPRM

DPRM TMR-Sig

TMR-DPRM

TMR-DPRM-SP

Fig. 9.7  MTBF calculated from fault injection campaign in Virtex-5 FPGA with several DPRM
cores

9  Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs

132

9.5  �Conclusions and Future Work

This chapter presented a new DPRM module to perform DPR in an easier, more
efficient and more fault-tolerant way when compared to the traditional workflow.
The versatility of the proposed DPRM module enables us to retrieve bitstream from
a BPI Flash, as well as other types of external memories. The selection of the unit
(an FSM or a processor) to control the DPRM and number of BRAM to increment
the reconfiguration speed is also configurable by the user.

In this work, the DPRM setup was implemented in a Virtex-5 LX50T with a BPI
Flash memory controller. This memory controller does not consider the use of
BRAM in the control, resulting in the usage of only 111 flip-flops, 135 LUTs and a
reconfiguration speed of 6.5 MB/s. However, a version using an SD memory con-
troller and BRAM as buffers was implemented to prove the possibility to achieve a
performance closer to the highest possible (384.29 MB/s).

References

	 1.	Roed K, Brugger M, Kramer D, Peronnard P, Pignard C, Spiezia G, Thornton A (2012) Method
for measuring mixed field radiation levels relevant for SEEs at the LHC. IEEE Trans Nucl Sci
59(4):1040–1047

	 2.	 ITRS (2014) International technology roadmap for semiconductors: 2013 edition [Online].
http://www.itrs.net/

	 3.	Dodd PE, Massengill LW (2003) Basic mechanism and modeling of single-event upset in
digital microelectronics. IEEE Trans Nucl Sci 50(3):583–602

4. Quinn H, Morgan K, Graham P, Krone J, Caffrey M (2007) Static proton and heavy ion testing
of the Xilinx Virtex-5 device. In: Proceedings of the IEEE radiation effects data workshop,
July 2007, pp 177–184

	 5.	Xilinx (2010) Partial reconfiguration user guide. UG702 (v 12.1), 3 May 2010
	 6.	Claus C, Ahmed R, Altenried F, Stechele W (2010) Towards rapid dynamic partial reconfigu-

ration in video-dased driver assistance systems. In: Reconfigurable computing: architectures,
tools and applications. Springer, Berlin, pp 55–67

	 7.	Psarakis M, Apostolakis A (2012) Fault tolerant FPGA processor based on runtime reconfigu-
rable modules. In: Proceedings of the 17th IEEE European test symposium, Annecy, France,
May 2012, pp 1–6

8. Viswanathan V, Nakache B, Ben Atitallah R, Nakache M, Dekeyser JL (2012) Dynamic recon-
figuration of modular I/O IP cores for avionic applications. In: Proceedings of the international
conference on reconfigurable computing and FPGAs, Mexico, Dec 2012, pp 1–6

9. Echanobe J, del Campo I, Finker R, Basterretxea K (2012) Dynamic partial reconfiguration in
embedded systems for intelligent environments. In: Proceedings of the 8th international con-
ference on intelligent environments, June 2012, pp 109–113

	10.	Xilinx (2012) Virtex-5 FPGA configuration user guide. UG191 (v. 3.11), 19 Oct 2012
	11.	Xilinx (2012) Partial reconfiguration of Xilinx FPGAs using ISE design suite. WP374 (v. 1.2),

30 May 2012
12. Heiner J, Collins N, Wirthlin M (2008) Fault tolerant ICAP controller for high-reliable internal

scrubbing. In: Proceedings of the IEEE aerospace conference, March 2008, pp 1–10
	13.	Ebrahim A, Benkrid K, Iturbe X, Hong C (2012) A novel high-performance fault-tolerant

ICAP controller. In: Proceedings of the NASA/ESA conference on adaptive hardware and
systems, June 2012, pp 259–263

L.A. Tambara et al.

http://www.itrs.net/

133

	14.	Lamonnier S, Thoris M, Ambielle M (2012) Accelerate partial reconfiguration with a 100%
hardware solution. Xcell J 79:44–49

15. Claus C, Muller FH, Zeppenfeld J, Stechele W (2007) A new framework to accelerate Virtex-II
Pro dynamic partial self-reconfiguration. In: Proceedings of the IEEE international parallel
and distributed processing symposium, Long Beach, March 2007, pp 1–7

16. Claus C, Zhang B, Stechele W, Braun L, Hubner M, Becker J (2008) A multi-platform control-
ler allowing for maximum dynamic partial reconfiguration throughput. In: Proceedings of the
international conference on field programmable logic and applications, Sept 2008,
pp 535–538

17. Liu M, Kuehn W, Zhonghai L, Jantsch A (2009) Run-time partial reconfiguration speed inves-
tigation and architectural design space exploration. In: Proceedings of the international confer-
ence on field programmable logic and applications, Sept 2009, pp 498–502

	18.	Bhandari S, Subbaraman S, Pujari S, Cancare F, Bruschi F, Santambrogio MD, Grassi PR
(2012) High speed dynamic partial reconfiguration for real time multimedia signal processing.
In: Proceedings of the 15th Euromicro conference on digital system design, Sept 2012,
pp 319–326

19. Hubner M, Gohringer D, Noguera J, Becker J (2012) Fast dynamic and partial reconfiguration
data path with low hardware overhead on Xilinx FPGAs. In: Proceedings of the IEEE interna-
tional parallel & distributed, workshops and PhD forum, April 2010, pp 1–8

	20.	Lai V, Diessel O (2009) ICAP-I: a reusable interface for the internal reconfiguration of Xilinx
FPGAs. In: Proceedings of the international conference on field-programmable technology,
Sydney, Dec 2009, pp 357–360

	21.	Bayar S, Yurdakul A (2008) Dynamic partial self-reconfiguration on Spartan-III FPGAs via a
Parallel Configuration Access Port (PCAP). In: Proceedings of the HiPEAC workshop on
reconfigurable computing, Goteborg

	22.	Bayar S, Yurdakul A (2008) Self-reconfiguration on Spartan-III FPGAs with compressed
partial bitstreams via a parallel configuration access port (cPCAP) core. In: Proceedings of the
Ph.D. research in microelectronics and electronics, Istanbul, June 2008, pp 137–140

	23.	Xilinx (2014) Device reliability report—first quarter 2014. UG116 (v. 9.8), 18 March 2014
24. JEDEC (2006) Measurement and reporting of alpha particle and terrestrial cosmic ray-induced

soft errors in semiconductor devices JEDEC standard, Tech. Rep. JESD89A. http://www.
jedec.org/sites/default/files/docs/jesd89a.pdf

9  Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs

http://www.jedec.org/sites/default/files/docs/jesd89a.pdf
http://www.jedec.org/sites/default/files/docs/jesd89a.pdf

135© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_10

 Chapter 10
 Multiple Fault Injection Platform for SRAM-
Based FPGA Based on Ground-Level
Radiation Experiments

 Jorge Tonfat , Jimmy Tarrillo , Lucas Tambara , Fernanda Lima Kastensmidt ,
and Ricardo Reis

 Abstract Fault injection by emulation is a well-known method to analyze the
reliability of a circuit. SRAM-based FPGAs provide the hardware infrastructure to
implement fault injectors taking advantage of dynamic partial reconfi guration. This
chapter presents the details of a Multiple Fault Injection Platform and the analysis
of the configuration memory upsets of the FPGA. Results of fault injection
campaigns are presented and compared with accelerated ground-level radiation
experiments.

10.1 Introduction

 Field-Programmable Gate Arrays (FPGAs) nowadays are not only used for ASIC
prototyping but also to replace them in some ground-level and space applications.
SRAM-based FPGAs take advantage of the latest semiconductor fabrication pro-
cesses, allowing high-density logic integration. This scenario allows them to achieve
expected performance levels in a variety of applications. Moreover, the reconfi gu-
rability feature of SRAM-based FPGAs allows the same device to perform multiple
functionalities during its lifetime.

 These characteristics make SRAM-based FPGAs attractive to critical applica-
tions. But since confi guration bits are stored into volatile SRAM cells, radiation
effects can generate single or multiple bit-fl ips in the confi guration memory. Such
single event upsets (SEUs) or multiple bit upsets (MBUs) can induce functional
errors in the implemented design. In order to tolerate these faults, many techniques
were proposed in the literature. However, it is necessary to validate the effi ciency of
these techniques closest to the real effect as possible, but also considering the
controllability, observability and cost.

 Jimmy Tarrillo • Lucas Tambara • Ricardo Reis • J. Tonfat (*) • F. L. Kastensmidt
 Instituto de Informática , Universidade Federal do Rio Grande do Sul (UFRGS) ,
 Porto Alegre , Brazil
 e-mail: jorgetonfat@ieee.org; fglima@inf.ufrgs.br

mailto:jorgetonfat@ieee.org
mailto:fglima@inf.ufrgs.br

136

 Fault injection by emulation is an important method to predict in the early stages
of the design phase the susceptibility of the design under upsets. Emulation of SEUs
and MBUs by fl ipping the confi guration bits on an FPGA is an attractive technique
to evaluate the behavior of a design before it is working in radiation environments.
In addition, fault injectors can take advantage of partial reconfi guration capabilities
of FPGAs to reduce even more the time to inject upsets. The main goal of this
approach relies on the fact that it allows fast injection campaigns, once the circuit
under test (CUT) executes at the full FPGA speed and not on simulation speed.

 Moreover, the amount of injected faults per unit of time (upset rate) is higher
compared to radiation tests on particles accelerators because a bit-fl ip is directly
injected in the memory cell. The control of the test is also superior compared to a
radiation test, since a precise location is fl ipped (a known bit), which allows the user
to reproduce a real radiation test.

 The fault injection can be performed by an external or internal programmable
port of the FPGA. The internal confi guration access port (ICAP) [1] provides some
advantages such as the possibility to reconfi gure frame by frame without the neces-
sity of using input/output pins. The ICAP can be controlled by the SEU controller
macro [2] and an embedded soft-core as PicoBlaze; or by a specifi c control design
developed by the user [3]. SEUs can be injected in the bitstream in random loca-
tions, sequentially (every confi guration bit or confi guration control register is
fl ipped in sequential order), or user-defi ned.

10.2 Related Works

 Other fault injection platforms are available to inject SEU in SRAM-based FPGAs
as described in [4]. FLIPPER [5] that is targeted to Virtex-2 devices is one example.
It uses a scheme based on a control motherboard and a DUT board. The fault injec-
tor is implemented in the mother-board FPGA and a host PC. The DUT board
contains the target FPGA. The confi guration memory of this FPGA is modifi ed with
partial reconfi guration using an external confi guration port. In [6] the fault injector
and the DUT are implemented in the same FPGA and in order to inject faults a host
PC creates faulty bitstreams. FT-SHADES [7] and [8] are other examples of fault
injectors but in this case they use an internal injection approach using the ICAP to
inject single faults in the bitstream.

 With internal fault injection [7 – 9], we do not need to reconfi gure the entire
FPGA, so the fault injection speed is increased, but a problem arises. The quality of
the fault injection can be reduced by fault injection side-effects as shown in [9].
A fault injected in the confi guration memory can affect the fault injector itself.
So the fault injection can stop unexpectedly or even worst, the fault injector can
wrongly report that a fault is injected.

 In this work, we present a multiple fault injector platform able to emulate SEU
and MBU in the confi guration memory bits of an SRAM-based FPGA. Our goal is
to replicate the effects of radiation to validate protection techniques and improve the

J. Tonfat et al.

137

radiation test methodologies and test plans under accumulated multiple faults.
The proposed Fault Injection Platform uses the ICAP module to fl ip a confi guration
bit, and takes the bit location from an external database bank. The bit-fl ip locations
were taken from previous experiments in neutron radiation test from ISIS facilities
[10] and also generated by a MATLAB pseudo-random generator. During the fault
injection procedure, the fault injector takes the necessary actions to guarantee a correct
fault injection and minimize the side-effects improving the quality of the results.

10.3 Hardware Implementation of the Multiple Fault
Injection Platform

 The proposed Multiple Fault Injection Platform is composed of a single SRAM-
based FPGA, a fl ash-based external memory and a host computer. We use the
Digilent Genesys prototype board containing a Xilinx Virtex-5 FPGA, part
XC5VLX50T-FFG1136 and other resources. For our fault injection platform, we
use the external fl ash memory connected to the FPGA to store the bit-fl ip locations.
This memory stores the SEU locations database bank. A block diagram of the
Multiple Fault Injection Platform is shown in Fig. 10.1 .

 The FPGA contains the DUT (Design Under Test) and the fault injector. It is
well-known that internal injectors suffer from side-effects because an injected fault
can provoke an error on the injector itself. But to mitigate these effects, the fault
injector can avoid bit-fl ips in its confi guration bits.

 The fault injector is composed of an ICAP controller, a fl ash memory controller
and a PicoBlaze 8-bit soft processor.

 Fig. 10.1 Architecture of the Multiple Fault Injection Platform

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

138

 The main function of the PicoBlaze is to control the execution of the fault
injection campaign. The ICAP controller manages all the commands to read and
write frames from the confi guration memory using the ICAP. The ICAP is the inter-
face that enables access to the confi guration memory from an internal circuit in the
FPGA. With a suitable set of commands, we can modify the confi guration memory
without stopping the application running in the FPGA. This method is also known
as dynamic partial reconfi guration.

 In order to control the ICAP, we must understand the confi guration memory of
the FPGA and the way to read and write in this memory.

10.3.1 Organization of Virtex-5 FPGA Confi guration Memory

 The FPGA can be seen as a device with two layers. One is the logic layer that
includes all the user application resources such as the Confi gurable Logic Blocks
(CLB), the Block RAMs, I/O blocks, etc. The other is the confi guration layer that
comprises the confi guration memory and the associated access ports.

 Understanding the organization of the confi guration memory will allow us to
know the relation between confi guration bits and resources of the FPGA.

 The following information is based on the Virtex-5 Confi guration User Guide [1].
 The FPGA confi guration memory is composed of small memory segments called

 confi guration frames . So a confi guration frame is the smallest addressable segment
of the FPGA confi guration memory, and the frame size varies among FPGA fami-
lies. In the case of Virtex-5, it is composed of 41 words of 32 bits (1,312 bits).

 Each frame has a unique address that is related to the physical position in the
FPGA fl oorplan. Each frame address has fi ve fi elds. Each fi eld is described in
Table 10.1 and corresponds to the organization of the FPGA fl oorplan.

 Due to this organization, frame addresses are not consecutive. A graphical
description of the organization of the fl oorplan is shown in Fig. 10.2 .

 The fl oorplan is divided into two main regions: top and bottom. Each region is
organized in rows and columns. One frame has the height of a row, and the columns
are organized according to the type of resource (ex. CLB, BRAM, DSP, etc.). Each

 Table 10.1 Frame address fi eld descriptions

 Field Description

 Type Defi nes the type of frame. Can be a confi guration frame (type 0), BRAM
content (type 1) and other two types not well documented in the literature

 Top/bottom Defi nes the half (top or bottom) of the FPGA where the frame is located
 Row Defi nes the frame row. The row number increases from the middle of the

FPGA
 Column Defi nes the frame column. A column is defi ned by the type of resource

(ex. CLB, DSP, etc.)
 Frame in column Defi nes the frame position inside the column

J. Tonfat et al.

139

column contains a group of frames. The number of frames on each column depends
on the type of column as shown in Table 10.2 .

 Depending on the device selected, some of the frames in this organization are not
implemented. This case is common for IOB columns, where not all the rows of an
IOB column have the corresponding frames since the IOB resources depend on the
number of pins of the FPGA.

10.3.2 Methodology for a Fault Injection Campaign

 With the information about the organization of the confi guration memory and the
specifi c commands sequence to read and write frames, we can fl ip any bit of the
confi guration memory thus emulating the effect of an SEU.

 Fig. 10.2 Example of the organization of the confi guration memory of a Virtex-5 FPGA

 Table 10.2 Number of
frames per column

 Column type Number of frames

 CLB 36
 DSP 28
 Block RAM (confi guration) 30
 IOB 54
 CLK 4

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

140

 Figure 10.3 shows the procedure executed by the ICAP controller to inject one
fault into the confi guration memory. The only information needed to fl ip a bit is the
selected frame address and the selected bit inside this frame. This information
comes from the SEU database stored in the external memory and is managed by the
PicoBlaze soft processor. It is important to mention that this method can also
emulate intra-frame multiple bit-fl ips.

 Since the smallest segment of the confi guration memory is a frame, the ICAP
controller needs to read the entire frame and store it in a temporal buffer. Then the
selected bit(s) position(s) are fl ipped. Finally, the modifi ed frame is written back to
the confi guration memory. In order to verify the correct insertion of the fault, the
frame is read back again and compared to the modifi ed frame stored in the temporal
buffer. If differences are found between them, the ICAP controller reports a fault
injection error.

 Most of the time injection errors are due to the inexistence of the selected frame
address in the FPGA as mentioned in the previous section. This type of error injec-
tion does not interfere with our results since these missing frames cannot be fl ipped

 Fig. 10.3 Flow diagram of the procedure to inject one fault

J. Tonfat et al.

141

by real SEUs. The ICAP controller reports failed injections to take into account this
information when the fault campaign report is generated.

 So a complete fault injection is completed in 310 clock cycles. With a clock
frequency of 50 MHz, one injection is completed in 6.2 μs.

 The PicoBlaze manages the execution of a complete fault injection campaign.
The procedure is described in Fig. 10.4 . The procedure starts with the defi nition of
the parameters of the campaign. These parameters are the start memory position of
the SEU database, the fault injection rate and the defi nition of the fault-free area.

 Fig. 10.4 Flow diagram of the procedure to control a fault injection campaign

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

142

 The start memory position of the SEU database is the reference point to the
PicoBlaze in order to read consecutively from this point the bit-fl ip data stored in the
external memory. The fault injection rate defi nes the amount of faults injected per
time unit. This parameter can be used to emulate different radiation environments.

 The defi nition of the fault-free area is to protect the circuits that can interfere
with the execution of the fault injection campaign. For instance, the fault injector
area needs to be included in this protected area. This method minimizes the possi-
bility of a functional error in the fault injector itself that is one of the side-effects of
internal fault injection. Other circuits that can be included are, for example, the
circuit that controls the execution of the DUT. Since a functional error in this block
can generate a false functional error of the DUT, we must protect this block from
bit-fl ips. The fault-free areas need to be in agreement with the placement constraints
set during the design implementation phase.

 So when the fault injection campaign starts, each SEU position read from the
external memory is analyzed to determine if it is inside the fault-free area. When the
bit-fl ip position is inside the protected area, the bit-fl ip is not injected, and the next
SEU position is loaded. If not, the PicoBlaze commands the ICAP controller to
inject the corresponding fault.

 At the top level, the host PC is in charge of the execution of multiple fault
injection campaigns. The procedure is shown in Fig. 10.5 . The fi rst step is to set the
corresponding parameters.

 The fi rst parameter is the maximum time for a single fault injection campaign.
This time is variable and depends on the DUT and the fault injection rate. This set-
ting helps to determine when a fault injection campaign reaches an unknown state.

 The start memory position of the SEU database defi nes the starting point of the
fi rst fault injection campaign. The subsequent campaigns will start from the last
injected SEU position. In this way, we assure different SEU patterns for each fault
injection campaign.

 The fault injection rate and fault-free areas are also defi ned. These parameters
can be fi xed for all the fault injection campaigns or can be variable among campaigns
according to the user needs.

 When all parameters are set, the host PC confi gures the FPGA with the DUT and
the fault injector module through the JTAG interface and the fault injection
campaigns begins.

 To recognize the end of a fault injection campaign, it is necessary a DUT end
condition event. In our case, we want to test the maximum number of accumulated
faults that a design can tolerate before it starts to fail. When it reaches a certain
condition, the DUT sends a signal that is captured by the host computer. It also
receives the information of SEU positions injected and the information when a fault
injection has failed.

 The fault injector was implemented into the XC5VLX50T FPGA on the Genesys
Digilent board and the synthesis result is detailed in Table 10.3 .

J. Tonfat et al.

143

 Fig. 10.5 Flow diagram of the procedure to control multiple fault injection campaigns

 LUTs Registers Block RAMs

 PicoBlaze soft processor 147 76 1
 Flash memory controller 86 68 0
 ICAP controller 705 417 1
 Total 938 561 2

 Table 10.3 Resource
utilization of the fault injector

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

144

10.4 Methodology for Capturing and Modeling Single Bit
Upsets

 The injected faults are modeled mainly with two different approaches:

• By using a radiation database from previous radiation experiments.
• By using a computer generated database based on a pseudo-random generator

with a uniform distribution.

10.4.1 Modeling Using Data from Previous Ground-Level
Radiation Experiments

 The database is composed of multiple and accumulated faults in Virtex-5
FPGA. These faults were obtained from previous radiation experiments at ISIS
facilities of Rutherford Appleton Laboratory (Didcot, United Kingdom).

 During the tests, bit-fl ips in the confi guration memory were detected using a
readback procedure as described in Fig. 10.6 . It is important to mention that this
procedure logs bit-fl ips in the confi guration memory and the content of block
RAMs. So we use the mask fi le (generated by Xilinx tools) to fi lter our logs from
bit-fl ips in block RAMs and bit-fl ips due to shift registers or LUT RAMs used by
the DUT.

 Fig. 10.6 Procedure to capture bit-fl ips in the confi guration memory

J. Tonfat et al.

145

 Based on our knowledge of the FPGA confi guration memory and the readback
bitstream, we can precisely determine the frame address and bit position of each
SEU registered during the experiment. The location of the bit-fl ip is the information
needed by the fault injector to inject a bit-fl ip.

 We developed a software tool to automate this process. The tool takes the text
reports from the radiation experiments and creates the binary fi le for the external
fl ash memory automatically. Figure 10.7 shows a screenshot of the GUI of this tool.

 In our previous radiation experiments, more than 2,600 SEUs were identifi ed.
This information is stored in the external fl ash memory. In the case of the Genesys
board, it has a fl ash memory of 256 Mbit (organized as 16-bit by 16 Mbytes) for
non-volatile storage of FPGA confi guration fi les. We used three memory addresses
to store the information of each SEU. The fi rst two positions store the frame address
and the last position store the bit position inside the frame. So, up to fi ve million
SEUs can be stored in this memory.

10.4.2 Modeling SEUs Using Computer Generated Data

 Based on the analysis of the accumulated bit-fl ips obtained from radiation experi-
ments at ISIS, we also generate bit-fl ips locations that resemble the original ones.
We achieve this using MATLAB and a pseudo-random generator with a uniform

 Fig. 10.7 GUI of the tool to create SEU databases

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

146

distribution. Figure 10.8 shows a graphical comparison between collected bit-fl ips
and generated bit-fl ips. Each bar represents the number of accumulated bit-fl ips
per resource in the FPGA (ex. 1 CLB). The color scale is only for visualization
purposes. In the case of the Virtex-5 XC5VLX50T FPGA, the resources form a
matrix of 120 rows by 39 columns.

 The option to generate bit-fl ips is also included in the same tool that creates the
SEU database from radiation experiments.

10.5 Fault Injection Campaign Results and Comparisons

 In order to validate the fault injection platform, we have evaluated one case study
design. Then we have compared the fault injection results with the neutron radiation
experiments results.

 This design implements an N-modular redundancy (nMR) scheme as a technique
to tolerate multiple fault accumulation. The nMR is composed of n functionally
identical modules, which receive the same m -bits input and deliver p -bits output to
the Self-Adapted voter (SAv), Fig. 10.9 [11].

 The SAv receives n × p bits from all modules and generates the fault-free p -
output , n -error status fl ags (ESF), and a non-masked fault signal (NMF). In this
scheme, the system allows the accumulation of defective modules, until remaining
at least two modules without fault. The SAv is a majority voter, considering as
population fault-free modules.

 The implemented design is a 7-MR adder chain. The architecture is shown in
Fig. 10.10 . The criteria for selecting this design were the low logic masking of faults

 Fig. 10.8 Comparison of bit-fl ips from radiation experiments and MATLAB generated. (a) 50
ISIS bit-fl ips, (b) 50 MATLAB generated bit-fl ips

J. Tonfat et al.

147

and the ease to scale. This design has a control module to manage the input pattern
generator of the adder chains and to monitor the correct response of the 7-MR system.
When a functional error is detected, the control block sends error signals to the host
PC, and the fault injection campaign ends.

 Figure 10.11 shows the fi nal placement of the 7-MR adder chain and the fault
injector. The areas of the fault injector and the control module are included in the
fault-free area of the fault injector.

 The objective of the test is to determine if the fault injector can predict the toler-
ance of this design under neutron radiation. So the test reports the number of accu-
mulated faults needed to provoke the failure of each of the seven modules. The end
condition of the test is when only two correct modules remain.

Module 1

Module 2

Module 3

…..

Module n

S
A
v

m

p

p

p

Error status
flag (ESF)

I
n
p
u
t

output

m

m

m

p

p

Fault-free
output (FFO)

SRAM-based FPGA

Non-masked
fault (NMF)

MOD
1

MOD
2

MOD
3

MOD
n

 Fig. 10.9 nMR-based
technique with SAv voter

 Fig. 10.10 Block diagram of the adders chain DUT and the fault injector

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

148

 Figure 10.12 presents the results of the fault injection campaigns. We run 25
injection campaigns and it was injected an average of 98.33 faults per campaign.

 Figure 10.13 shows the results from the radiation experiment. Due to beam time
restrictions, we were able to run the test few times.

 And Fig. 10.14 shows the comparison between the results from fault injection
and radiation experiments. Both present similar average accumulated faults for each
of the faulty modules count.

10.6 Conclusions

 This work presents a multiple fault injection platform to evaluate accumulated SEU
effects in Virtex-5 FPGA. The platform uses bit-fl ip positions generated by a
pseudo-random generator or taken from a database composed of pre-collected real
bit-fl ips location detected from previous neutron accelerated experiments at ISIS
facilities. The fl ipped bits distribution of real radiation test and fault injector were
shown and analyzed. Also, the effects of accumulation SEUs on a design using real

 Fig. 10.11 Placement of the adders chain DUT and the fault injector

J. Tonfat et al.

149

 Fig. 10.12 Number of accumulated faults needed to provoke multiple faulty modules under fault
injection for the adder chain case-study

 Fig. 10.13 Number of accumulated faults needed to provoke multiple faulty modules under radia-
tion experiment for the adder chain case-study

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

150

radiation test and fault injection were tested. Results show the real capability of the
platform proposed to predict the effects of radiation in FPGA designs and mitigate
successfully the side-effects related to internal fault injectors.

 References

 1. Xilinx, UG191 (2012) Virtex-5 FPGA confi guration user guide, 19 Oct 2012
 2. Chapman K (2010) SEU strategies for Virtex-5 devices. XAPP864 v2.0
 3. Tarrillo J, Escobar FA, Lima Kastensmidt F, Valderrama C (2014) Dynamic partial reconfi gu-

ration manager. In: 2014 IEEE 5th Latin American symposium on circuits and systems
(LASCAS), 25–28 Feb 2014, pp 1–4

 4. Alexandrescu D, Sterpone L, Lopez-Ongil C (2014) Fault injection and fault tolerance meth-
odologies for assessing device robustness and mitigating against ionizing radiation. IN: 2014
19th IEEE European test symposium (ETS), 26–30 May 2014, pp 1–6

 5. Alderighi M, Casini F, Citterio M, D’Angelo S, Mancini M, Pastore S, Sechi GR, Sorrenti G
(2008) Using FLIPPER to predict irradiation results for VIRTEX 2 devices. In: Radiation and
its effects on components and systems (RADECS), pp 300–305

 6. Sterpone L, Violante M, Rezgui S (2006) An analysis based on fault injection of hardening
techniques for SRAM-based FPGAs. IEEE Trans Nucl Sci 53(4):2054–2059

 7. Guzman-Miranda H, Tombs JN, Aguirre MA (2008) FT-UNSHADES-uP: a platform for the
analysis and optimal hardening of embedded systems in radiation environments. In: IEEE
international symposium on industrial electronics, ISIE 2008, pp 2276–2281

 8. Nazar GL, Carro L (2012) Fast single-FPGA fault injection platform. In: 2012 IEEE interna-
tional symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFT),
3–5 Oct 2012, pp 152–157

 Fig. 10.14 Comparison between fault injection and radiation experiment results of adder chain
case study

J. Tonfat et al.

151

 9. Kretzschmar U, Astarloa A, Jimenez J, Garay M, Del Ser J (2014) Compact and fast fault
injection system for robustness measurements on SRAM-based FPGAs. IEEE Trans Ind
Electron 61(5):2493–2503

 10. Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A,
Andreani C, Gorini G, Pietropaolo A, Cardarilli G, Pontarelli S, Frost C (2007) A new hard-
ware/software platform and a new 1/E neutron source for soft error studies: testing FPGAs at
the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

 11. Tarrillo J, Rech P, Kastensmidt F, Valderrama C, Frost C (2013) Neutron cross-section of
N-modular redundancy technique in SRAM-based FPGAs. In: 2013 14th European confer-
ence on radiation and its effects on components and systems (RADECS). IEEE, Oxford,
pp 1–6

10 Multiple Fault Injection Platform for SRAM-Based FPGA Based on Ground-Level…

 Part IV
 Flash-Based FPGAs

155© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_11

 Chapter 11
 Radiation Effects in 65 nm Flash-Based
Field Programmable Gate Array

 Jih-Jong Wang , Nadia Rezzak , Durwyn DSilva , Chang-Kai Huang ,
 Stephen Varela , Victor Nguyen , Gregory Bakker , John McCollum ,
 Frank Hawley , and Esmat Hamdy

11.1 Introduction

 Since it was fi rst introduced, Flash-based FPGA had been well received by digital
designers in aerospace and high-reliability applications. Its popularity owes to,
unlike other commercially available FPGA based on antifuse or SRAM technolo-
gies, that the Flash-based FPGA has the unique advantage of being both non- volatile
and reprogrammable. It is advantageous to antifuse-based for programmability and
to SRAM-based for non-volatility. This characteristic warrantees small foot-print
and resiliency in hazardous operating environment, especially against bit-errors by
particle radiations.

 Its development has been successfully following footsteps of continuously scaled
CMOS technologies. Architecturally the fi rst product, 0.25 μm ProASIC, is simple.
It has tiles of user logic and embedded-SRAM blocks which have dual usage either
as two-port SRAM or FIFO. The second product, 0.22 μm ProASIC PLUS , is an
improved ProASIC with similar capability. The third product, 130 nm ProASIC3,
has many new and advanced features and it quickly replaces the previous FPGAs as
the main force to present day. The most signifi cant improvement in ProASIC3 is
using standard digital-CMOS power supply of 3.3 VDC to perform the in-system
programming. This is achieved by integrating a charge pump to provide high volt-
age on-chip for the programming. Also, the derived siblings, Igloo, Fusion, and
SmartFusion1, have special features of low-power operation, and embedded
Intellectual Properties (IPs) to provide wide spectrum of functions [1]. The intro-
duction of SmartFusion1 is a signifi cant milestone because it is the fi rst Flash-based

 J.-J. Wang (*) • N. Rezzak • D. DSilva • C.-K. Huang • S. Varela • V. Nguyen • G. Bakker
 J. McCollum • F. Hawley • E. Hamdy
 Microsemi SOC , San Jose , CA , USA
 e-mail: jih-jong.wang@microsemi.com

mailto:jih-jong.wang@microsemi.com

156

FPGA to be also an SOC. Indeed, it has and embedded hard-wired ARM Cotex-1
microcontroller to enable the full function of a digital system.

 Radiation-induced TID effects in Flash-based FPGA have been studied by
research groups [2 – 9]. These TID effects include Flash cell V T shift, propagation
delay degradation, power-supply current increase, FPGA function failure, and pro-
gramming failure. In general, all radiation-induced changes of parameters can be
related to known physical mechanisms: charge loss/gain in fl oating gate of irradi-
ated Flash cell, which can cause threshold-voltage shift [10]; leakage current
increase, timing skew and functional failures in CMOS transistors [11 , 12].

 The studies on single event effects (SEE) of Flash-based FPGA are abundant
[13 – 21], especially on heavy-ion induced single event transients (SET) in 130 nm
Flash-based FPGA. Even an SET-mitigation software package is available for
ProASIC3 users [19]. Beside the practical usage reason, there is a valid motivation
studying SET by using Flash-based FPGAs: fi rst the continuing decreasing transis-
tor sizes exacerbates the SET effects; second using Flash-based FPGA to study SET
is very convenient because it is reprogrammable but doesn’t have radiation-induced
confi guration upset which will plague the operation of SRAM-based FPGA.

 This chapter will focus on the radiation effects in 65 nm Flash-based FPGA-
SOC: The characteristics of this new Flash-based FPGA will be introduced; simi-
larities and differences between the Flash cell used in FPGA and Memory
applications will be highlighted; radiation tests results showing TID and SEE effects
will be presented and discussed. Qualitative models will be constructed to elucidate
how the physical mechanisms caused the observed radiation effects. Based on test
data, single event upsets on the Flash confi guration cell, fabric fl ip-fl op, and fabric
SRAMs are evaluated. A novel 3D-TCAD simulation generated SEU cross-sections
on fabric FF will be compared with the test data, and its usefulness in the future will
be contemplated.

11.2 Flash Confi guration Cell

 The Flash memory technology, meaning fl oating-gate (FG) technology here, had
been studied and published extensively in recent years. The motivation mainly was
driven by enormous commercial activities. Relevant knowledge such as device
physics, circuit design, programming system operation, and reliability can be found
in review literatures (e.g. see reference [22]). In this section, the Flash confi guration
cell in FPGA will be introduced and its references to Flash memory are often made.

 The Flash confi guration cell has similarities and differences when compared to a
Flash memory cell. Like a memory cell, it also uses fl oating-gate NMOS transistor
as the basic device to enable non-volatility. The physical mechanisms, in Write
mode, for both Program and Erase action, are the well-known channel Fowler-
Nordheim tunneling. However, its geometry is signifi cantly different from that of a
memory cell: the Flash cell enabling confi guring, named “sense” device, combines
with a Flash cell gating critical signals, named “switch” device, to form a twin

J.-J. Wang et al.

157

 structure shown in Fig. 11.1 . The fl oating and control gate are shared by sense and
switch devices. Note that the switch is the wider one for ease passing of signals.

 When a Flash-based FPGA is used in a system, during confi guration program-
ming and testing Write/Read is performed through the sense device, and during
normal operation Read is performed on the switch device. Figure 11.2 depicts a 2 × 2
array of Flash confi guration cells to illustrate these actions. It also shows that by
using the sense-switch construct in a single cell greatly simplifi es the design enabling
the FPGA operation while leaves the implementation of the Flash technology very
much the same as that of the Flash memory. Indeed, the sense devices are arranged
exactly the same as a typical NOR-Flash memory. The reason of using NOR archi-
tecture is that FPGA is performing normal operation function by reading code stored
in Flash cell in executed-in-place (XIP) mode. The drawback is that, in radiation
environments, NOR-Flash is more sensitive to TID effects than NAND [23].

 Similar to Flash-memory operation, Write action programs the Flash-
confi guration cell into one of the state of Erase or Program. The FG transistor of a
cell at the Erase state has a low threshold voltage (V t) and at Program state high V t .
Note that the V t measurement in Flash-confi guration cell can be performed on either
sense or switch device. Another difference, in FPGA the FG at Erase state is in the
depletion mode (Fig. 11.3) while in memory it is usually not programming Erase-
state into depletion mode.

 Finally, during normal operation switch device at Erase state is the On-state pass-
ing signals and Program state the Off-state isolating logic circuits from adverse
effects during operation. To pass robust signal, the switch device is designed to have
a large enough width and this makes the total area of a Flash-confi guration cell

Switch Sense

Gate

X X’

Y

Y’

Drain

Source Source

Drain

Source

Control Gate
Floating Gate

Program/Sense
Transistor

Switch Transistor

a b

c

 Fig. 11.1 (a) Layout of the Flash cell: each cell contains one switch and one sense FG transistor;
the control gate and FG are shared by both the switch and sense transistor. (b) Schematic showing
the cross-section of X-X′ cut. (c) Schematic showing the cross-section of Y-Y′ cut

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

 Fig. 11.2 Schematic of a 2 × 2 fl ash-cell array shows sense transistors arranged in typical NOR
Flash-memory architecture

 Fig. 11.3 Id-Vg plot of typical Program state and Erase state of a Flash confi guration cell in
65 nm Flash-based FPGA

159

large, approximately 35 μm 2 in area, and signifi cant larger than that of a Flash-
memory cell. This area difference will be refl ected in the difference between their
radiation effects to be discussed in the following sections.

11.3 Radiation Testing

 A device in SmartFusion2 family, coded M2S050, was radiation tested for total ion-
izing dose (TID) effects and single event effects (SEE). It is true silicon-on-chip
(SOC) device manufactured by United Microelectronics Corporation (UMC) using
65 nm wafer-fabrication technologies. Figure 11.4 shows its fl oor plan indicating
the location of each functional block. The device reliable Flash-based fabric logic
and SRAM, and embedded with an ARM ® Cortex™-M3 microprocessor together
with instruction cache and advanced security processing accelerators, digital signal
processing (DSP) blocks, eSRAM, eNVM, and industry-required high-performance
communication interfaces. SmartFusion2 also differentiates itself from FPGAs
using other confi guring technologies by low power capabilities, high reliability and
advanced security which is particularly important for military, aviation, communi-
cation and medical applications.

 Fig. 11.4 Plot shows fl oor plan of M2S050 device and the location of each functional block

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

160

 By no means can radiation effects, especially SEE, of an FPGA-SOC be
 completely tested at this moment. Here the focus is on the core confi gurable part of
FPGA designed by Microsemi, which is often referred as fabric. The extra embed-
ded IPs to make FPGA an SOC are hard-wired ASICs; their radiation tests, albeit
very important, will be investigated in the future and not in the scope of this
chapter.

 SmartFusion2 family is not designed for applications operated in harsh radiation
environments such as satellite operating in geosynchronous orbit. However, for
moderate radiation environments, e.g. in particle accelerator, it can be very attrac-
tive for its non-volatile confi guring ability and mild resistance to radiation effects.

 Test dies with transistor level devices as well as FPGA dies are co-manufactured
by wafer fabrication processes. Their purpose is to be tested standalone to facilitate
the understanding of radiation effects at the transistor level, and subsequently helps
to elucidate the radiation effects at the circuit and system levels.

11.3.1 Radiation Testing for TID Effects

 The radiation testing performed on test chips was conducted at Vanderbilt University
in Nashville, Tennessee, using ARACOR X-ray Irradiator. The testing on FPGA
was at defense microelectronics activity (DMEA) in McClellan, California, using
gamma ray irradiator. Both testing were performed at ambient temperature.

 On the test chip, the Flash cell are programmed and tested by an Agilent 4156
controlled by a laptop PC. The CMOS transistors are tested using the same hardware/
software. For propagation delay measurement, the design programmed in FPGA is a
long inverter-string with 7,200 stages. Electrical data are recorded over the entire
irradiation duration to fi nally more than 100 krad(SiO 2). The input signal is supplied
from a function generator and waveforms of the input/output signals are observed
and the propagation delay is recorded on the oscilloscope. The in-fl ux standby power-
supply currents I DD are monitored by an Agilent 6629 power supply and recorded by
the laptop PC.

11.3.2 Radiation Testing for Single Event Effects

 The test designs, illustrated in Fig. 11.5 : shift registers consisted of various stages
of confi gured fabric-fl ip-fl ops (FF) and fabric-SRAM blocks which include both
μSRAM and LSRAM types. Figure 11.6 depicts a fabric Logic Element from which
D-type FF with active low clear (DFN1C0) [24] is confi gured to be the testing target
for SEU. The test setup is illustrated in Fig. 11.7 where the function of each sub-
system is shown.

 Heavy-ion irradiations were performed on FPGA and conducted at two facilities:
10 MeV/n cocktail beam [25] was used in vacuum at 88-inch Cyclotron facility of

J.-J. Wang et al.

161

DUT Design
Inputs Outputs

DFF DFF DFF DFF DFF DFF DFF DFF

DFF DFF DFF DFF DFF DFF DFF DFF

200 FF Chain1

200 FF Chain 9

Math 18x18

Pattern Select

Math 18x18

Mux

18'b1 18'b1

LRAM
LRAM
LRAM

LRAM

Mux

uRAM

Port
A

Port
B

Port
C

Mux

DFF DFF

RGB

RGB

GB

 Fig. 11.5 Block diagram shows the FPGA design for radiation testing for SEU effects

 Fig. 11.6 Block diagram shows contents of Logic Element which includes FF, 4-input LUT and
Routing-Mux connections [1]

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

162

Lawrence Berkeley National Laboratory in Berkeley, California; 15 MeV/n beam
[26] was used in air at Cyclotron Center of Texas A&M University in College
Station, Texas. For testing SEL effect, FPGA is biased to maximum operating volt-
ages (nominal + 5 %) and tested at temperature up to 95 °C. Testing SEU effect is
under nominal operating bias at ambient temperature.

11.4 Radiation Test Results on TID Effects

 In this section the TID characteristics of the Flash cell and CMOS transistors used
in FPGA will be presented, and followed by TID effects on two key FPGA electrical
parameters which are propagation delay and standby power-supply current. It has
been established that, in Flash-based FPGA [2 – 5], these two parameters determine
the FPGA TID tolerance on the performance and power consumption. They degrade
signifi cantly before FPGA fails to function. These degradations owing to the rami-
fi cation of Flash cell and transistor TID effects will also be discussed.

11.4.1 TID Effects on Flash Cells

 In general TID effects on 65 nm Flash confi guration cell are neutralizing the charge
storage in the fl oating gate. As shown in Fig. 11.8 , where both sense and switch
device data are displayed, the Erase state V t shifts to higher and Program state lower
with TID. In principal these two states will fi nally neutralized by TID to a neutral
state. However, the transistor effects will be strong at high dose level and render the
V t measurement impractical. The mechanisms responsible for these V t shifts can be
found in published literatures [2 – 5 , 10].

Expected Data
Logic

Comparison

Controller

Device Under
Test (DUT)

Stimulus

Result DataReport Data to
User (Computer)

Interface

Control Stimulus
Interface

Radiation

Errors

Interface Board

User

Computer

Software

 Fig. 11.7 Block diagram illustrates the SEE testing setup and data fl ow

J.-J. Wang et al.

163

 Fig. 11.8 Pre- and post-irradiation Id-Vg characteristics of Flash cell at (a) Erase state showing
Vt increasing with TID, and (b) Program state Vt decreasing with TID

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

164

11.4.2 TID Effects on CMOS Transistors

 In normal operation the Read action applies a bias to the control gate of switch
devices. The circuit feeding the bias to the Flash cell contain thick oxide NMOSFET
because they also pass high voltage (>15 V) during Write. If the driving ability of
these high voltage devices is compromised, the bias on the switch will be degraded.
Figure 11.9 plots Id-Vg curves of pre- and post-irradiated high-voltage device.

 Fig. 11.9 Pre- and post-irradiation Id-Vg characteristics of high voltage NMOS device, with
W/L = 10/0.68, and Vds = 0.1 V: (a) On-state irradiation bias Vg = VDD and Vd = Vs = Vb = GND;
(b) Off-state irradiation bias Vd = VDD and Vg = Vs = Vb = GND

J.-J. Wang et al.

165

Two bias conditions exist during normal operation, on-state and off-state. The on-
state shows signifi cant radiation-induced V t shift and sub-threshold leakage current
while off-state only V t shift. Obviously the on-state has the worst case bias condi-
tion under irradiation.

 For comparison, the radiation effects of low-voltage NMOS transistor used for
logic functions are also tested and its irradiated I d -V g characteristics are illustrated
in Fig. 11.10 . Even irradiated under the worst case bias, there is no signifi cant radia-
tion effect on it.

 In the following two sub-sections, these radiation effects at the transistor level
will be used to elucidate the radiation effects on critical electrical parameters,
 propagation delay and standby power supply current, for FPGA function.

11.4.3 TID Effects on Propagation Delay

 The in-fl ux propagation delay measured on the inverter-string is shown in Fig. 11.11 .
The propagation delay reaches 10 % degradation after 24–29 krad(SiO 2); it reaches
100 % after approximately 70 krad(SiO 2). All parts remain functional after
100 krad(SiO 2).

 To relate TID effects on propagation delay to Flash cells, the signal path in
Fig. 11.12 shall be examined. For an inverter string confi gured in the FPGA, the two
V control_gate -biased switch devices in the signal path are at the Erase state to pass the
signal. The TID effects on a switch at the Erase state as shown in Fig. 11.5a increase

 Fig. 11.10 Pre- and post-irradiation IdVg characteristics of low voltage NMOSFET, with
W/L = 1/1 and Vds = 0.1 V, irradiated at on-state

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

166

its V t and decrease the driving strength. Consequently, the propagation delay in the
inverter string increases.

 High-voltage NMOS transistors also play an important role in the propagation
delay degradation. Referring to Fig. 11.12 again, the fi rst V control_bias is provided by
the V DD input through the multiplier (MUX) with the V DD input through M1 and
GND through M0. Indeed, during operation, the level shifter (LS) is confi gured to
connect V PP to X_outb and GND to X_out to pass V DD through the MUX, then M2,
to bias the fi rst Flash switch with V control_bias on its gate. Note that during operation
V DD and V PP are biased to 1.2 and 3.3 V respectively. Also, in this circuit, every
NMOS transistor to be biased by V PP has to sustain high voltage (>15 V) during
programming. Therefore aforementioned thick oxide NMOS transistor has to be
used on M0, M1 and M2.

 As indicated in Fig. 11.12a , the radiation effects of M1 and M2, being biased at
on-state, will increase their current drive and not degrade the propagation delay. On
the other hand, Fig. 11.12b indicates that M0, being biased at off-state, will be turned
on gradually by irradiation. Consequently, V DD passing M1 will be comprised lead-
ing to the degradation of V control_bias and subsequently degrades the propagation delay.

11.4.4 TID Effects on Standby Power-Supply Currents

 The radiation effect on static power supply currents is dominated by the core power
supply current I DDA ; hence it is the only component discussed here. Figure 11.13a
plots I DDA versus TID of the same three irradiated DUT as those mentioned in

 Fig. 11.11 Percentage of propagation-delay degradation versus TID at 10 krad(SiO 2)/min for
three DUT

J.-J. Wang et al.

 Fig. 11.12 Simplifi ed schematics of DUT design for TID testing, VPP = 3.3 V and VDD = 1.2 V

 Fig. 11.13 (a) IDDA versus TID at 10 krad(SiO 2)/min for three DUT. (b) Simplifi ed schematic
shows root-cause of radiation induced IDDA due to turning on programmed Flash switch which
originally isolates outputs of two drivers

168

previous sub-section. Initially the currents increase mildly but increase signifi cantly
suddenly when certain TID level is reached. All three DUT exhibit this threshold
behavior and their threshold total doses are all very close to 80 krad(SiO 2).

 This radiation-induced I DDA can also be explained by the radiation effects on the
Flash cell and high-voltage NMOS transistor. A simplifi ed schematic in Fig. 11.13b
aids to explain the Flash cell case. In an FPGA, a Flash cell is often connected as
this schematic, e.g. in a routing multiplier (routing MUX) made of Flash cells (see
Fig. 11.6), in which a Flash cell in Program-state isolates two drivers. Radiation
degrades the isolation and consequently induced current fl ows from the driver out-
put high to the driver output low. The case due to radiation effects of high-voltage
NMOS has been exposed previously. In Fig. 11.12 , the leakage due to M0 will con-
nect V DD , which is the power supply for I DDA , through M1 and M0 to GND, and
subsequently contributes to the increase of I DDA . Although not quantitatively proven,
it is believed that the Flash cell degradation caused driver contention is the domi-
nant effect. For two reason, there are more cases of Fig. 11.13b than Fig. 11.12 , and
the threshold behavior in Fig. 11.13a fi ts better to the model of driver contention by
Flash cell degrading to a certain level. Further analysis on this topic is beyond the
scope of this paper and will be presented in the future.

11.5 Radiation Test Results on Single Event Effects

 This section presents the results of fi rst phase of SEE testing. The SEL of the FPGA
is tested to prove its avionics worthy; SEU of the Flash cell is extracted from tests
targeted for fabric SEU; fabric FF and SRAM SEUs are tested for static data pattern
and dynamic patterns up to 10 MHz.

 3D-TCAD simulation is also performed to calculate the cross-section of fabric
FF and compared data with test results. The intention is using it to extend the boundary
by which heavy-ion testing can reach.

11.5.1 FPGA SEL

 The linear energy transfer (LET) threshold for SEL acquired by heavy-ion irradiated
FPGA, biased at maximum operating V DD and heated up to 95 °C, is above
15 MeV-cm 2 /mg. Indicating the FPGA is immune to neutron-induced SEL and suit-
able for avionics. Five DUT were tested with total fl uence on each DUT higher than
5 × 17 ions/cm 2 .

J.-J. Wang et al.

169

11.5.2 Flash-Cell SEU

 Here the SEU is defi ned as the single-event induced Flash-cell state fl ip: Program
state fl ip to Erase state, or Erase to Program. However, from user point of view only
fl ips causing functional failure will be detected. Therefore this is the Flash SEU
measured. FPGA programed with SEU testing designs for fabric FF and SRAM
were tested to not exceeding a TID limit, usually 10 krad(Si), to ensure performance
and functionality. With this restrain, every FPGA been heavy-ion irradiated so far
didn’t fail functionality. Based on this result, the standard SEU cross-section versus
LET plot of Flash cell at Erase state can be generated. Since the FPGA functionality
depends on the critical Flash cell at Erase state passing the critical signal, the number
of sampling bits has to be estimated from the programming architecture.

 The aggregate Flash-cell SEU rates of numerous tested FPGA are plotted as
cross section per fl ash cell versus LET. Figure 11.14 shows the data points. Each
point represents an irradiation run. Since no functional failure has ever been
observed, there is no SEU in the critical Flash cells. Therefore the cross section is
the inverse of the total fl uence on a critical Flash cell. In other words, the cross sec-
tion for each irradiated LET is smaller than the lowest boundary data on this plot.
For example, at the maximum tested LET of approximately 90 MeV-cm 2 /mg the
cross section is below 10 −13 cm 2 . For SEU of Flash cell at Program state, the correla-
tion between state fl ip and FPGA functionality is not easily established. But never-
theless, non-existence of functional failure after more than 50 runs indicates very
low SEU sensitivity for Program state too. In conclusion, these data practically
show Flash cell immune to SEU.

1.00E-15

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

0.00 20.00 40.00 60.00 80.00 100.00

Cr
os

s
Se

ct
io

n
(c

m
�)

LET (MeV-cm�/mg)

 Fig. 11.14 Plot of heavy-ion test results, it displays critical Flash-cell SEU cross-section versus
LET

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

170

11.5.3 Fabric-Embedded SRAM SEU

 Figures 11.15 and 11.16 show the SEU cross-section versus LET plot and Weibull
fi tting curves of fabric μSRAM and LSRAM respectively. Both SRAM cells have
LET TH of 0.85 MeV-cm 2 /mg. The saturated cross section for μSRAM and LSRAM
are 4.5 × 10 −9 cm 2 /bit and 3.0 × 10 −9 cm 2 /bit respectively. Using the Weibull fi tting
parameters and Crème 96, the upset rate for μSRAM and LSRAM is calculated, for
solar minimum and geosynchronous orbit with 100 mils aluminum shielding, to be
2.79 × 10 −8 upset/bit/day and 4 × 10 −8 upset/bit/day respectively.

11.5.4 Fabric Flip-Flop SEU

 Figure 11.17 shows the measured SEU cross-section as a function of LET for the
fabric FF, and the corresponding Weibull fi tting curve with threshold LET (LET TH)
0.74 MeV-cm 2 /mg and saturated cross section 1.0 × 10 −7 cm 2 /bit. The signal passing
through the shift registers are checkerboard data-pattern running at clock rates of 1,
3 and 10 MHz, and static data all-1 and all-0 patterns. Hundreds of errors are cap-
tured to gain a good confi dence level in results. Each data point represents an aver-
age of three test results. There is no observable frequency dependence; hence data
of different frequency are lumped together. Using the Weibull fi tting parameters and

 Fig. 11.15 Plot of heavy-ion test results, it displays SEU cross-section of μSRAM versus LET and
Weibull fi tting curve

J.-J. Wang et al.

171

 Fig. 11.16 Plot of heavy-ion test results, it displays SEU cross-section of LSRAM versus LET
and Weibull fi tting curve

 Fig. 11.17 Plot of heavy-ion test results, it displays SEU cross-section of fabric FF versus LET
and the corresponding Weibull fi tting curve

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

172

Crème 96, the upset rate is calculated, for solar minimum and geosynchronous orbit
with 100 mils aluminum shielding, to be 1.76 × 10 −7 upset/bit/day.

 3D TCAD simulations using Robust Chip Inc (RCI) tools are performed to com-
pare with test results. Figure 11.18a shows the 3D structure, which includes the

 Fig. 11.18 (a) Simulated 3D TCAD structure including the FF cell and a simplifi cation of the FF
surrounding cells (represented by added “source-ties”) existed in the real layout. (b) 3D-TCAD
simulation results compare to heavy-ion test

J.-J. Wang et al.

173

fabric FF cell and the relevant neighboring cells, referred to as “source-ties”. This
FF is confi gured to a master-slave edge-triggered D-type FF for SEU testing. Its
layout is more complex and with more transistors than a typical hardwired ASIC FF
because it can be confi gured to many variants.

 Extensive simulations follow to generate the cross-section as a function of
LET. The results for different states (blanket 1 and 0 patterns) of the FF cell are
plotted in Fig. 11.18b to compare with heavy-ion test results. The simulation results
show a good agreement with test data, especially data near LET TH .

11.6 Future Works

 For TID effects, the physical mechanisms causing the propagation delay degrada-
tion and power supply current increase, the V t shifts in the Flash cell and V t shifts
and sub-threshold leakages in the high-voltage NMOS transistors, will be modeled
in the context of SPICE simulation. Then quantitative investigations can be
 performed to reach the fi nally goal of predicting TID tolerance.

 For SEE effects, the next phase of heavy-ion testing will target IPs in which
MSS, SerDes and high-speed DDR interface are especially interested by FPGA
users. Also high-speed testing up to few 100 MHz on fabric logic and IO will be
performed to complete the evaluation.

 References

 1. http://www.microsemi.com
 2. Wang JJ, Samiee S, Chen HS, Huang CK, Cheung M, Borillo J, Sun SN, Cronquist B,

McCollum J (2004) Total ionizing dose effects on fl ash-based fi eld programmable gate array.
IEEE Trans Nucl Sci 51(6):3759–3766

 3. Wang JJ, Kuganesan G, Charest N, Cronquist B (2006) Biased-irradiation characteristics of
the fl oating gate switch in FPGA. In: 2006 IEEE radiation effects data workshop , Vedra Beach,
FL, pp 101–104

 4. Wang JJ, Charest N, Kuganesan G, Huang CK, Yip M, Chen HS, Borillo J, Samiee S, Dhaoui
F, Sun J, Rezgui S, McCollum J, Cronquiest B (2006) Investigating and modeling total ioniz-
ing dose and heavy ion effects in fl ash-based fi eld programmable gate array. In: Proceedings
of radiation effects on components and systems workshop, Athens, Greece

 5. Rezgui S, Wilcox E, Lee P, Carts M, LaBel K, Nguyen V, Telecco N, McCollum J (2012)
Investigation of low dose rate and bias conditions on the total dose tolerance of a CMOS fl ash-
based FPGA. IEEE Trans Nucl Sci 59(1):134–143

 6. Poivey C, Grandjean M, Guerre F (2011) Radiation characterization of microsemi ProASIC3
fl ash FPGA family. In: 2011 IEEE radiation effects data workshop , Las Vegas, NV, pp 92–96

 7. Tarrillo J, Azambuja J, Kastensmidt F, Fonseca E, Galhardo R, Goncalez O (2011) Analyzing
the effects of TID in an embedded system running in a fl ash-based FPGA. IEEE Trans Nucl
Sci 58(6):2855–2862

 8. Kastensmidt F, Fonseca E, Vaz R, Goncalez O, Chipana R, Wirth G (2011) TID in fl ash-based
FPGA: power supply-current rise and logic function mapping effects in propagation-delay
degradation. IEEE Trans Nucl Sci 58(4):1927–1934

11 Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array

http://www.microsemi.com/

174

 9. Rezzak N, Wang JJ, Huang CK, Nguyen V, Bakker G (2014) Total ionizing dose
 characterization of 65 nm fl ash-based FPGA. To be published in 2014 NSREC radiation
effects data workshop

 10. Snyder E et al (1989) Radiation response of fl oating gate EEPROM memory cells. IEEE Trans
Nucl Sci 36:2131–2139

 11. Oldham T, McLean F (2003) Total ionizing dose effects in MOS oxides and devices. IEEE
Trans Nucl Sci 50(3):483–498

 12. Barnaby H (2006) Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans
Nucl Sci 53(6):3103–3121

 13. Allen G, Swift G (2006) Single event effects test results for advanced fi eld programmable gate
arrays. In: 2006 IEEE radiation effects data workshop , Vedra Beach, FL, pp 115–120

 14. Rezgui R, Wang JJ, Chan Tung E, Cronquist B, McCollum J (2007) New methodologies for
SET characterization and mitigation in fl ash-based FPGAs. IEEE Trans Nucl Sci 54(6):
2512–2524

 15. Rezgui R, Wang JJ, Sun Y, Cronquist B, McCollum J (2008) Confi guration and routing effects
on the SET propagation in fl ash-based FPGAs. IEEE Trans Nucl Sci 55(6):3328–3335

 16. Battezzati N, Gerardin S, Manuzzato A, Paccagnella A, Rezgui S, Sterpone L, Violante M
(2008) On the evaluation of radiation-induced transient faults in fl ash-based FPGAs. In: 14th
IEEE international on-line testing symposium 2008, Washington, DC, pp 135–140

 17. Battezzati N, Gerardin S, Manuzzato A, Merodio D, Paccagnella A, Poivey C, Sterpone L,
Violante M (2009) Methodologies to study frequency-dependent single event effects sensitivity
in fl ash-based FPGAs. IEEE Trans Nucl Sci 56(6):3534–3541

 18. Sterpone L, Battezzati N, Ferlet-Cavrois V (2010) Analysis of SET propagation in fl ash-based
FPGAs by means of electrical pulse injection. IEEE Trans Nucl Sci 57(4):1820–1826

 19. Sterpone L, Battezzati N, Kastensmidt F, Chipana R (2011) An analytical model of propaga-
tion induced pulse broadening (PIPB) effects on single event transient in fl ash-based FPGAs.
IEEE Trans Nucl Sci 58(5):2333–2340

 20. Sterpone L, Du B (2014) Analysis and mitigation of single event effects on fl ash-based FPGAs.
In: 19th IEEE European test symposium, Paderborn, pp 1–6

 21. Rezzak N, Wang JJ, DSilva D, Huang CK, Varela S (2014) Single event effects characteriza-
tion in 65 nm fl ash-based FPGA-SOC. To be published in 2014 Proceedings of SEE
symposium

 22. Marotta G, Naso G, Savarese G (2008) Memory circuit technologies. In: Brewer J, Gill M
(eds) Nonvolatile memory technologies with emphasis on fl ash. IEEE, Piscataway

 23. Gerardin S, Bagatin M, Paccagnella A, Grurmann K, Gliem F, Oldham T, Irom F, Nguyen D
(2013) Radiation effects in fl ash memories. IEEE Trans Nucl Sci 6(3):1953–1969

 24. SmartFusion2 Macro Library. http://www.microsemi.com
 25. http://cyclotron.lbl.gov/base-rad-effects/heavy-ions/cocktails-and-ions
 26. http://cyclotron.tamu.edu/ref/LET_vs_Range_15.pdf

J.-J. Wang et al.

http://www.microsemi.com/
http://cyclotron.lbl.gov/base-rad-effects/heavy-ions/cocktails-and-ions
http://cyclotron.tamu.edu/ref/LET_vs_Range_15.pdf

175© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_12

 Chapter 12
 Using C-Slow Retiming in Safety Critical
and Low Power Applications

 Tobias Strauch

 Abstract This paper shows the usage of C-Slow Retiming (CSR) in safety critical
and low power applications. CSR executes C copies of a design by reusing the given
logic resources in a time sliced fashion. It is already used in the 1960s, for example
in the Barrel processors from the CDC 6000 series. Publications about this tech-
nique have been rare throughout the last decade. This paper shows that CSR offers
great benefi ts when used in safety critical and low power applications.

12.1 Introduction

 Safety critical applications use redundant designs and design state comparison
techniques to detect potential design misbehavior. An example is a motor control
circuit, where a malfunction could generate life threatening conditions. A full stop
and restart of an application is sometimes costly and should be avoided with an
on-the- fl y recovery mechanism.

 Another application for using redundant designs are the control systems of a
satellite. Single event upsets (SEUs) must be detected before they could endanger
costly missions in the orbit. It is benefi cial when the power consumption of the
redundant systems can also be reduced.

 C-Slow Retiming (CSR) provides C copies of a given design by inserting registers
and reusing the combinatorial logic in a time sliced fashion. The paper shows how
CSR can be used when redundant designs are needed.

 T. Strauch (*)
 R&D, EDAptix , Adelgundenstr. 5 , Munich 80538 , Germany
 e-mail: tobias@edaptix.com

mailto:tobias@edaptix.com

176

12.2 Background

 The ever increasing demands for higher performance and higher throughput of cores
have led to various techniques. [1] presents an effi cient retiming algorithm and in [2]
a retiming algorithm for FPGAs is shown. Retiming for wire pipelined SoC buses is
discussed in [3]. Automatic pipelining of designs is outlined in [4]. The pipelining
of sequential circuits with wave steering is shown in [5]. Leiserson et al. introduces
the concept of C-Slow Retiming (CSR) in [6]. [7] presents a formulation as a gen-
eral model for retiming and recycling, which also accepts an interpretation of the
CSR problem. The effects of CSR is presented on three different benchmarks in [8]
and the post-placements CRS for a microprocessor on an FPGA is shown in [9],
whereas [10] presents an abstraction algorithm for the verifi cation of generalized
C-slow designs. In recent publications, CSR is used to maximize the throughout-
area effi ciency in [11] and on simultaneous multithreading processors in [12].

12.3 Contribution and Paper Organization

 To the best of the author’s knowledge, power consumption (P) has not been consid-
ered in publications about C-Slow Retiming (CSR). Results are given for the P of
CSR-ed based designs on an FPGA.

 The paper demonstrates how to use CSR for single event upset (SEU) detection
and design state on-the-fl y recovery. The method is then further developed and opti-
mized to reduce area (FPGA utilization) and the P of the application. Results of two
32-bit processors on a low-cost FPGA are given.

 Section 12.3 outlines the CSR technology. In Sect. 12.5 the power consumption
of CSR-ed designs is discussed. A method to detect single event upsets is shown in
Sect. 12.6 and how the CSR algorithm can be adapted for that. The paper fi nishes
with results and a summary in the Sects. 12.7 and 12.8 .

12.4 C-Slow Retiming

12.4.1 Theory of CSR

 Figure 12.1a shows the basic structure of a sequential circuit with its combinatorial
logic (CL), in- and outputs and original registers (OR). In Fig. 12.1b , the CL is
sliced into three (C = 3) parts, and each original path has now two (C-1) additional
registers. This is the basic idea behind CSR. It results in C functionally independent
design copies which use the logic in a time sliced fashion. It shows how different
parts of the logic are used during different cycles. It now takes three micro-cycles to
achieve the same result as in one original cycle. In Fig. 12.1 , inputs and outputs are

T. Strauch

177

valid at the same time slice. The implemented register sets are called “C-Slow
Retiming Registers”, CRs. They are placed at different C-levels. Figure 12.1b shows
one basic rule of CSR. There are only paths between consecutive CRs and also from
the last CRs to the original register set and from the original register set to the fi rst
CRs.

 We defi ne the maximum frequency of the given design (Fig. 12.1a) as Fd and the
maximum frequency of a CSR-ed design (Fig. 12.1b) as Fcsr, whereas:

 Fcsr Fd C~ * (12.1)

 The individual cycle of a CSR-ed design is called a micro cycle. By generating
C independent copies of the design, all running—theoretically—at Fd, we can also
say that the system frequency Fsys is equal to Fcsr:

 Fsys Fcsr Fd C= ~ * (12.2)

 In theory, this could lead to an unlimited performance increase. Evidently this
cannot be done endlessly and register insertion becomes ineffi cient for higher C
again. The results section at the end of this paper shows examples for that.

12.4.2 CSR on RTL

 CSR clearly changes the behavior of the design and can only be fully utilized when
the CSR-ed core is embedded in a new logic environment. With the right wrapper
logic, the CSR-ed design then behaves exactly as the original core, but multiple and
functional independent versions are available. These modifi cations have a dramatic
impact on the design fl ow. It is of great advantage to have a solution on higher level
such as RTL. The CSR-ed version must be used as a new core in the design and veri-
fi cation process. A technique has been demonstrated, which automatically modifi es
the design to enable CSR on RTL by the author in [13]. The results given in this
paper are generated using this technology.

 Fig. 12.1 (a) Simplifi ed
design. (b) Applying CSR
technique

12 Using C-Slow Retiming in Safety Critical and Low Power Applications

178

12.4.3 Verifi cation of CSR Design Modifi cations

 It is non-trivial to verify the correctness of CSR based designs. Static timing analysis
(STA) can be used for that. When each C-level gets its own clock tree, only paths
from one C-level to the next one exist. Additional paths exist from the last C-level
to the original registers and from the original registers to the fi rst C-level. It can be
checked during a standalone design level synthesis and STA run, if additional paths
exist, which should not exist. The static analysis verifi es the correctness of the reg-
ister insertion process. The individual clocks can then be connected to a single clock
again.

12.5 Power Consumption of CSR-ed Designs

12.5.1 Overview

 Two (out of many) sources for power consumption (P) in digital designs are clock
tree activity and switching activity generated by combinatorial logic. When a design
is instantiated N-times, the number of resulting registers is N-times higher, but the
clock speed remains the same. When using CSR, the number of resulting registers
is less or roughly C-times higher. The difference is, that the clock speed must also
be C-times higher to achieve the same performance. This results in a higher P of the
clock tree in CSR-ed designs than the one of the alternative approach to instantiate
individual designs. This is also shown in the result section on two different
processors.

 It has been demonstrated that register insertion can reduce the P of a design. For
example Lim et al. use fl ip-fl ops with shifted-phase clocks in [14]. This looks simi-
lar to the CSR approach, although the register placement in the used CSR algorithm
is timing driven. The used CSR algorithm places registers at the end of each path
and then moves individual registers throughout the combinatorial logic until the
best timing is achieved (timing optimization process).

 In Fig. 12.2 the “CSR 4 P” line shows the relative P of one thread compared to
the P when running the thread on the original core (“1-line”). It starts with 71 % P
overhead at the beginning of the timing optimization process. This is due to the
facts, that the signals generate toggling activity when passing through the addi-
tional registers and that the higher register load (and clock frequency) generate a
higher clock tree P. The P overhead drops from 71 to 45 % during the timing opti-
mization process when a better register distribution throughout the logic—mainly
on the datapath—is reached. It can be argued, that this P reduction comes from the
fact that the number of longer logic paths is reduced and therefore the probability
to generate power consuming signal glitches is reduced. It was not successful to
combine this timing driven approach with power aware optimization techniques
(as in [14]).

T. Strauch

179

 In Fig. 12.2 the relative P of the clock tree compared to the P of the original
thread during the timing optimization process (“CT P”) is shown. The relative P of
the clock tree increases due to the rising number of registers when improving the
timing of an CSR-ed design. The line “CSR 1 P” shows the P of a single thread when
only identical threads are executed. This will be discussed in the next section.

 When CSR is used on an ASIC, it can be argued, that the smaller CSR-ed design
consumes less Iddq compared to the larger design of the alternative approach to
instantiate individual designs.

12.5.2 Using Both Clock Edges in CSR

 For completeness we will show the results of a special CSR approach with inverted
clock edges for every other C-level. This approach makes only sense when an even
number of design slices exists (C = 2, 4, …). The number of resulting design copies
will be half of the design slices C/2. The P numbers are presented in the result
section.

12.5.3 P When Running Identical Threads

 In Fig. 12.2 we see how the P changes when applying the CSR algorithm (C = 4) on
a given example design and identical threads are executed (“CSR 1 P” line). In this
case the P of a single thread is in the range of 87–77 % of the P of the same thread
executed on the original design. It can be assumed that the clock tree P increase (due
to the higher clock speed) is less than the P reduction that comes with the register
insertion into the datapath.

 Fig. 12.2 Relative P of a CSR-ed design (C = 4) during timing optimization process

12 Using C-Slow Retiming in Safety Critical and Low Power Applications

180

 In the sequel of this paper we elaborate on CSR-ed designs with an identical
input stimuli for each design copy. We use processors to demonstrate the effective-
ness of the proposed method, but the method is not limited to processors only.
Nevertheless, we use the word “thread” synonym for the execution of a processor
program or execution of an algorithm on a digital design.

12.6 Detecting a Single Event Upset (SEU) Using CSR

12.6.1 Detecting an SEU with Standard CSR

 One way to detect a single event upset (SEU) is the duplication of a design (redun-
dancy) and to compare key registers and/or outputs. When an SEU occurs, at least
one design runs different and further actions can be taken. CSR supports this feature
when executing (a group of) identical threads. In Fig. 12.3 , all threads execute the
same algorithm (or program) and use the logic in a time shared fashion. Therefore
only a limited number of threads are affected when an SEU occurs. Multiple identi-
cal threads are most likely affected differently because each one of them is in a
different design state. When this difference affects the state of key registers, it can
be detected by a certain support logic.

 We applied this technique on two different processors. We added SEU detection
logic to the design and run identical threads on each processor. In both cases we
used the program counter and the data-bus access registers to detect different thread
behaviors. We were not able to detect an SEU when running the application on an
FPGA, but we used error injection techniques in simulation (as discussed by Braza
et al. in [15]) to verify the behavior.

 Based on empirical data we can assume that design duplication techniques using
CSR generate less registers and certainly need less combinatorial logic than the
alternative techniques using individual design instantiations. It can be argued, that
this reduced register and logic count (compared to multiple individual instantiations
of the design) also reduces the possibility to generate an SEU.

 Fig. 12.3 Comparing signal values at key registers to detect an SEU

T. Strauch

181

12.6.2 Recovery

 When an SEU is detected, safety critical designs can restart or execute predefi ned
software recovery routines. When using CSR, an on-the-fl y recovery is possible. In
Fig. 12.4 we see the CSR-ed design enhanced by the SEU detection circuit. When
C ≥ 3, the SEU detection circuit uses a majority decoder to detect the failing thread
by comparing the key register values of C identical threads. This is done every C
micro-cycles.

 A modifi ed write enable sequence then overwrites the specifi c Rn register associ-
ated with the failing thread. For the on-the-fl y recovery mechanism all other OR
which are not used for SEU detection (Fig. 12.4) must be enhanced by signal hold
(not enable) mechanism to overwrite the failing thread.

 The technique has been successfully simulated on RTL using a simple 1-out-of-3
majority decoder and an error injection mechanism. The result was a full design
on- the-fl y recovery. The area overhead of this approach is reported in the result
 section. This on-the-fl y recovery mechanism is almost impossible to achieve when
using the standard SEU detection concept of individual redundant design
implementations.

12.6.3 Reducing Shift Register Count

 Figure 12.5a shows a design after applying the CSR method. It can be seen that CSR
generates a high number of shift registers by adding registers to the feedback loop
of the original registers. Additional shift registers are generated on the paths through
the combinatorial logic. These shift registers contribute to the majority of area and
P increase.

 Fig. 12.4 On-the-fl y recovery

12 Using C-Slow Retiming in Safety Critical and Low Power Applications

182

 When identical threads are executed, the number of shift registers can be reduced
by using a modifi ed CSR algorithm. In this case the original registers are replaced
by a slightly enhanced logic, which is shown in Fig. 12.5b . Each original register is
now instantiated C times, they are called “Rn” (R1, R2, R3 in the example). A FSM
(same for all registers in the design) generates individual capture enable signals, so
that the Rns take over the incoming bit stream at different consecutive cycles. Also
the outputs of the Rns drive the combinatorial logic at different C-levels, so that
shift registers generated by consecutive CRs can be removed by connecting the
combinatorial logic with the relevant Rn. This has a positive impact on the overall
register count (area) and P of CSR-ed designs running identical threads. Empirical
data on two different processors is shown in the result section.

 An additional comparator logic (see Fig. 12.5b) continuously compares 2 regis-
ter values of the Rn registers. In case of a mismatch, the logic indicates that 2
threads run differently. This logic can be used for all original registers or only for
certain key registers (like the program counter for instance).

 At a certain timeslot (every C microcycles), all threads can be compared at the
same time. When C ≥ 3, an on-the-fl y recovery feature can be implemented by using
a majority decoder and a slightly enhanced FSM logic. The FSM then uses the write
enable signal to overwrite the Rns associated with a failing thread with the correct
value.

 This proposed method generates a system of redundant designs with SEU detec-
tion feature, a reduced area and a reduced P compared to a system using standard
CSR or compared to a system using the alternative approach of instantiating indi-
vidual designs. For more details see the result section. This method is particular
useful when implemented on area sensitive ASICs used in safety critical and low
power applications.

 Fig. 12.5 (a) Shift Registers generated by Register Feedback Loops and adjacent C-Slow
Retiming Registers (CRs). (b) CSR-ed design with SEU detection circuit and reduced set of
C-Slow-Retiming Registers (CRs)

T. Strauch

183

12.7 Results

 The numbers in this results section are based on two CPUs. The RTL code for the
ARM3 core (“Amber”, 32-bit RISC processor, 3-stage pipeline, ARM v2a) and the
OR1200 (“OR1000”, 32-bit scalar RISC, 5-stage pipeline, MMU, DSP capabilities,
TLB, instruction and data cache) can be found at [16]. The designs are implemented
on a Xilinx Spartan-6 LX16 (-2ftg256). The clock is generated externally. The algo-
rithm for CSR used in this paper is described in [13].

 The P of a design during the CSR timing optimization is shown in Fig. 12.2 . Two
scenarios are tested. In a standard scenario, different threads are executed. In an
alternative scenario, all threads execute the same program synchronously so that no
combinatorial logic switches between the individual threads.

 The P can be considered as relatively constant (Fig. 12.2) when moving the reg-
isters throughout the combinatorial logic. This was not expected. It was assumed,
that the pipelined logic reduces the P by reducing the number of net glitches as
shown in [14]. It can therefore be assumed, that the placement of additional registers
(CRs) to reduce P needs to be carefully chosen. The author was not successful to
combine this work with the technique demonstrated in [14].

 Table 12.1 shows the results of a CSR-ed ARM3 core. When multiplying the
functionality by C = 2 … 5, the number of registers increases up to 330 %. At the
same time, the number of occupied slices remains relatively stable. This indicates,
that the additional registers nicely fi t into the already used slices. In other words, you
have fi ve times the functionality with just an area overhead of 43 % when using CSR.

 The performance increases with each C step. Although it does not reach the per-
formance (200, 300, …, 500 %) of the alternative concept by implementing indi-
vidual processors (called “A” in the sequel of this section), it has a reasonably timing
of 6.234 ns. This is a performance increase of up to 293 % compared to a single core
implementation (“rel to 1”), but it only reaches 59 % (“rel to A”) of the performance
of A. Better results can be achieved with more advanced technologies like the Virtex
family, as can be seen in [13], and most likely in ASIC technologies.

 When a single core with 825 occupied slices can run at 18.250 ns, we can calcu-
late the performance per area (PpA) factor to 66.42 kHz/slice (Table 12.1). We can
see in the PpA column, that this factor increases by up to 205 % for C = 5. In other
words, when CSR can be used, more performance can be realized on a given size.
Nevertheless, increasing C becomes less effi cient for higher C.

 Table 12.1 Results for CSR-ed ARM3 core, part I

 C Registers Occupied slices Performance [ps] PpA

 1 670 rel to 1 825 rel to 1 18,250 rel to 1 rel to A 66.42
 2 1,683 251 % 1,015 123 % 11,850 154 % 77 % 125 %
 3 1,768 264 % 1,018 123 % 8,917 205 % 68 % 166 %
 4 2,091 312 % 1,029 125 % 7,210 253 % 63 % 203 %
 5 2,211 330 % 1,177 143 % 6,234 293 % 59 % 205 %

12 Using C-Slow Retiming in Safety Critical and Low Power Applications

184

 The P of the original ARM3 core is 22.1 mW, running at maximum speed
(18.250 ns). When instantiating individual ARM3 processors, the P multiplies
accordingly (see Table 12.2 , P column). We distinguish between running the same
program on all available designs or running different programs.

 When running the same program at the maximum possible speed, the P decreases
to 40 % compared to A. This is certainly due to the fact, that the maximum possible
speed is less than the one of A.

 Even when the CSR-ed core could be run at the theoretical possible speed (cycle
time = 18.250 ns/C), the P would only be in the range of 68–77 % of the A. The P
seams to be relatively constant and independent of C when running the same pro-
gram. We have already seen in Fig. 12.2 , that the P is relatively independent of the
CSR timing optimization process when moving registers throughout the combinato-
rial logic.

 These fi ndings show that CSR is great for safety critical applications (see
Sect. 12.6). By running the same program on C copies of a CSR-ed design/CPU,
you can decrease the area and power consumption at the same time, compared to
A. By removing the obsolete registers on the register feedback paths, the increase of
the occupied slices is only 13 % for C = 5 (See SEU column).

 The P changes relatively to the P of the A from 113 to 85 % when increasing C
and running different programs. When running the design at the theoretical possible
speed (18.250 ns/C), the P is around 147 % of the P of A. It turned out that this
number is relatively constant for different Cs. A CSR-ed design uses less registers
than A, but can run (theoretically) C times faster, which results in a higher P of the
clock tree than the one of A.

 Similar numbers can be found for the CSR-ed implementation of the OR1200
core. The relative number of registers increases to up to 329 % (Table 12.3) whereas
the number of occupied slices only reaches 137 % for C = 5. The performance
increase is less optimal over an increasing number of copies. This is due to the
already fast cycle time of the original core and the relatively slow technology
(Spartan 6). Better results can be reached on a more advanced technology (Virtex 5),
as reported in [13]. The P of the original core is 42.4 mW (Table 12.4). The P when
running the same or different programs and with increasing numbers of copies is
listed as well. When running the same thread and removing obsolete shift registers,
the area increase is only 11 %.

 Table 12.5 shows the P of the CSR-ed demo processors (C = 4) using inverted
clock edges on consecutive C-levels. With C = 4 it is only possible to run two

 Table 12.2 Results for the CSR-ed ARM3 core, part II

 C PD [mW] P same [mW] SEU P diff [mW]

 1 22.1 22.1 @ perf. @ max rel to 1 n.a. @ perf. @ max
 2 44.2 22.79 52 % 67 % 109 % 50.05 113 % 147 %
 3 66.3 35.00 53 % 77 % 109 % 66.72 101 % 148 %
 4 88.4 41.01 46 % 73 % 112 % 81.50 92 % 146 %
 5 110.5 43.91 40 % 68 % 113 % 94.27 85 % 146 %

T. Strauch

185

identical threads or two different threads. When the relevant numbers of Table 12.5
are compared with the one of Tables 12.2 and 12.6 , we see that this method gener-
ates more P on the ARM3, but less on the OR1200.

 Table 12.4 shows the area overhead of the CSR-ed demo processors (C = 3) when
an SEU detection or an SEU detection and recovery mechanism is used. CSR offers
in these cases the possibility to get an ARM3 (OR1200) implementation with SEU
detection logic with just 30 % (37 %) overhead compared to the original implemen-
tation. A comparison logic for all registers is used. If only key registers are com-
pared, the area overhead is reasonable lower. The additional area overhead when an
on-the-fl y recovery mechanism is added is minor (1–2 %). This is due to the fact
that the write enable signal nicely fi ts on the used FPGA technology.

 Table 12.3 Results for the CSR-ed OR1200 core, part I

 C Registers Occupied slices Performance [ps] PpA

 1 1,280 rel to 1 994 rel to 1 14,008 rel to 1 rel to A 71.82
 2 2,741 214 % 1,254 126 % 9,080 154 % 100 % 122 %
 3 3,573 279 % 1,335 134 % 7,127 197 % 85 % 146 %
 4 3,901 305 % 1,316 132 % 6,334 221 % 72 % 167 %
 5 4,210 329 % 1,361 137 % 5,973 235 % 61 % 171 %

 Table 12.4 Results when using SEU detection

 C = 3

 SEU detection SEU det. + recov.

 oc. slices rel to 1 (%) oc. slices rel to 1 (%)

 ARM3 1,073 130 1,087 132
 OR1200 1,361 137 1,373 138

 Table 12.5 Results when using different clock edges

 C = 4

 P 2 identical threads [mW] P 2 different threads [mW]

 @ perf. (%) @ max (%) @ perf. (%) @ max (%)

 ARM3 24.38 55 73 55.5 126 159
 OR1200 70.09 83 121 96.56 114 162

 Table 12.6 Results for the CSR-ed OR1200 core, Part II

 C PD [mW] P same [mW] SEU P diff [mW]

 1 42.4 42.4 @ perf. @ max rel to 1 n.a. @ perf. @ max
 2 84.8 43.55 51 % 67 % 108 % 126.50 149 % 193 %
 3 127.2 54.8 43 % 65 % 110 % 163.14 128 % 196 %
 4 169.6 64.18 38 % 68 % 110 % 174.71 103 % 186 %
 5 212 69.61 33 % 70 % 111 % 197.00 93 % 198 %

12 Using C-Slow Retiming in Safety Critical and Low Power Applications

186

 Table 12.7 shows the area overhead of the CSR-ed demo processors (C = 3) when
an SEU and recovery mechanism with reduced register count is used. The are over-
head could be reduced to only 27 % (ARM3) or 29 % (OR1200) of the single core
implementation. Also the P when running three identical threads is reduced to just
46 % when running the possible speed on the ARM3, and just 71 % of the P when
running the core at the theoretical maximal speed.

12.8 Summary

 C-Slow Retiming is known for running C copies of a design to increase the system
performance per area for a given design. This paper elaborates on running identical
threads and on using the resulting redundancy for SEU detection and design state
recovery. In order to further reduce the area and power consumption various meth-
ods are discussed.

 In general it can be said, that an individual thread runs always slower on an
CSR-ed design compared to its execution on the original design. The multithreaded
CSR solution needs less area but consumes roughly 40 % more power than the
alternative approach to instantiate individual designs. Whereas when identical
threads are executed, the power consumption is in favor of CSR because a thread
consumes 20 % less power on a CSR-ed design than on the original core implemen-
tation. This fact as well as the possibility to use a design state recovery mechanism
makes CSR ideal for safety critical and low power designs.

 Although this paper concentrates on running CSR-ed designs on FPGAs, it looks
promising to use this method also on ASICs and design implementations, where
SEU detection, design state recovery, power consumption and design area play an
important role.

 References

 1. Lin C, Zhou H (2006) An effi cient retiming algorithm under setup and hold constraints. In:
ACM/IEEE design automation conference (DAC) 2006, San Francisco, pp 945–950

 2. Singh D, Brown S (2002) Integrated retiming and placement for fi eld programmable gate
arrays. In: FPGA 2002, Monterey, CA, 24–26 Feb 2002, pp 67–76

 3. Lin C, Zhou H (2003) Retiming for wire pipelining in system-on-chip. In: ICCAD ‘03, San
Jose, 11–13 Nov 2003, p 215

 Table 12.7 Results when using Register Reduced CSR Version

 C = 3

 Red. SEU + recov. P 3 identical threads [mW]

 oc. slices rel to 1 (%) @ perf. (%) @ max (%)

 ARM3 1,045 127 30.2 46 71
 OR1200 1,278 129 49.7 39 63

T. Strauch

187

 4. Kroening D, Paul W (2001) Automated pipeline design. In: Proceedings of 38th ACM/IEEE
design automation conference (DAC 2001), Las Vegas, 18–22 June 2001, pp 810–815

 5. Macchiarulo L, Shu S, Marek-Sadowska M (2004) Pipelining sequential circuits with wave
steering. IEEE Trans Comput 53(9):1205–1210

 6. Leiserson C, Saxe J (1991) Retiming synchronous circuitry. Algorithmica 6(1):5–35
 7. Bufi stov D, Cortadella J, Kishinevsky M, Sapatnekar S (2007) A general model for perfor-

mance optimization of sequential systems. In: IEEE international conference on CAD, San
Jose, 4–8 Nov 2007, pp 362–369

 8. Weaver N, Wawrzynek J (2002) The effects of datapath placement and C-slow retiming on
three computational benchmarks. In: Proceedings of FCCM 2002, Napa, 24 April 2002,
pp 303–304

 9. Weaver N, Markovskiy Y, Patel Y, Wawrzynek J (2003) Post-placement C-slow retiming for
the Xilinx Virtex FPGA. In: FPGA 2003, Monterey, 23–25 Feb 2003

 10. Baumgartner J, Tripp A, Aziz A, Singhal V, Anderson F (2000) An abstraction algorithm for
the verifi cation of generalized C-slow designs. In: CAV 2000, LNCS 1855. Springer,
Heidelberg, pp 5–19

 11. Su M, Zhou L, Shi C (2007) Maximizing the throughput-are effi ciency of fully-parallel low-
density parity-check decoding with C-slow retiming and asynchronous deep pipelining. In:
ICCD 2007, Lake Tahoe, 7–10 Oct 2007, pp 636–643

 12. Afram M, Khan A, Sarfaraz M (2001) C-slow technique vs multiprocessor in designing low
area customized set processor for embedded applications. Int J Comput Appl 6(7)

 13. Strauch T (2013) Timing driven c-slow retiming on RTL for multicores on FPGAs. In:
ParaFPGA 2013, Munich, 10–13 Sept 2013. Available: www.edaptix.com/ParCo2013_
Strauch_CSR_RTL.pdf

 14. Lim H, Lee K, Cho Y, Chang N (2005) Flip-fl op insertion with shifted-phase clocks for FPGA
power reduction. In: ICCAD 2005, San Jose, 6–10 Nov 2005, pp 335–342

 15. Braza J, Gracia J, Blanc S, Gil D, Gil P (2008) Enhancement of fault injection techniques
based on modifi cation of VHDL code. IEEE Trans Very Large Scale Integr Syst 16(6):
693–706

 16. OpenCores, Stockholm, Sweden (2007) www.opencores.org/project

12 Using C-Slow Retiming in Safety Critical and Low Power Applications

http://www.edaptix.com/ParCo2013_Strauch_CSR_RTL.pdf
http://www.edaptix.com/ParCo2013_Strauch_CSR_RTL.pdf
http://www.opencores.org/project

189© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_13

Chapter 13
Improving the Implementation of EDAC
Functions in Radiation-Hardened FPGAs

Carlos Colodro-Conde and Rafael Toledo-Moreo

Abstract  Error Detection and Correction (EDAC) codes have been widely used
for protecting memories from single event upsets (SEU), which occur in environ-
ments with high levels of radiation or in deep submicron manufacturing technolo-
gies. This paper presents a novel synthesis algorithm that provides area-efficient
implementations of EDAC functions on FPGAs, where resource utilization usually
needs to be kept to a minimum in order to embrace more logic in a single die. The
algorithm under consideration has been tested selecting two models of radiation-
hardened FPGAs: one from the RT ProASIC3 series (flash-based) and another one
from the RTAX-S series (antifuse-based). The results show that, when compared to
the commercial synthesis tool provided by the vendor of the selected FPGA models,
the proposed algorithm reduces number of used combinational cells up to a 23.5 %,
while providing generally better timing performances (up to 23.6 % faster maxi-
mum path delays for the post-place and route implementations).

13.1  �Introduction

With the continuous downscaling of the VLSI fabrication technologies, radiation
induced errors have become a major concern in modern digital electronics. Even at
ground level, high-energy particles like neutrons coming from the cosmic back-
ground create undesired current pulses that may invert the value stored in a memory
element such as a flip-flop [1, 2]. This kind of errors, called single event upsets
(SEU), compromise the reliability of the systems if no action is taken to mitigate
them. In the space environment, outside the protection of the magnetosphere of the
Earth, SEUs become a critical concern because of the high radiation levels. SEUs
can have serious consequences for the spacecraft, including loss of information,
functional failure or loss of control [3].

Error detection and correction (EDAC) functions have proven to be an effective
way to protect computer systems against SEU [4–6]. Extra redundant bits or check

C. Colodro-Conde (*) • R. Toledo-Moreo
Department of Electronics and Computer Technology, Universidad Politécnica
de Cartagena, Cartagena, Spain
e-mail: carlos.colodro@upct.es; rafael.toledo@upct.es

mailto:carlos.colodro@upct.es
mailto:rafael.toledo@upct.es

190

bits are stored in memory along with the original information, so that it can be checked
at the time of reading whether there have been any alterations due to SEU. This pro-
cess is usually done by hardware, by means of dedicated EDAC core located between
the protected memory and the CPU that wants to access the data. Memory scrubbing,
either by hardware or software, is often used to improve reliability [7].

Among all the existing EDAC functions, the odd-weight column codes proposed
in [8] are extensively used in many applications, as a result of their SEC-DED
(single-error correction and double-error detection) capabilities and their relatively
low hardware needs [9–11]. The studies presented in this paper will focus on this
type of codes.

The main contribution of this paper consists on a custom synthesis algorithm,
specialized in the particular problem of many-input logic gates (i.e., gates with a
number of inputs much higher than the number of inputs per LUT of the target
FPGA). This algorithm is applied to EDAC encoders and decoders, which can be
seen as a set of many-input XOR gates. Each individual XOR gate is mapped into
FPGA LUTs in such a way that the area utilization and the length of the critical path
is minimized, which results in an overall improvement when the synthesized cir-
cuits are compared to those obtained by a commercial synthesis tool.

Most of the previous work about optimizing the implementation of EDAC has
been aimed to ASIC devices [5, 6, 9]. The optimization goal is usually the number
of transistors, which is required to be low so that die area is kept to a minimum.
Nonetheless, in some cases the speed of the resulting circuit is also considered.

In FPGA devices, as opposed to ASICs, one does not have the freedom to create
custom cells at layout level, so the optimization cannot be done following this
approach. Another difference is that the main parameters that determine area utiliza-
tion in FPGAs are usually the number of utilized LUTs and flip-flops, rather than
the number of transistors. In a 6-input LUT FPGA, the hardware cost of instantiat-
ing any logic function up to 6 inputs is virtually the same, while in ASICs the num-
ber of inputs of a gate makes a great difference. Because of these reasons, a specific
synthesis method was developed for this paper, with the focus on FPGA devices.

The paper is structured as follows. Section 13.2 explains the theory behind the
type of EDAC codes that will be the focus of our study. Section 13.3 describes the
proposed algorithm formally, including an example for illustrative purposes. Section
13.4 presents the results obtained with the proposed method, and compares those
results to the ones achieved by a commercial synthesis tool. Finally, Sect. 13.5
draws the main conclusions.

13.2  �SEC-DED EDAC Codes

According to coding theory [12], a SEC-DED EDAC code can be defined via its
parity-check matrix Hr n ijh´ = { } . This matrix has r rows and n r k= + columns,
being r the number of parity bits, k the number of data bits and n the codeword
length. The codeword m = { }mi is formed by concatenating the input data bits
d = { }di and the calculated check bits c = { }ci , and it is the one that is actually
stored in memory for protecting the original data.

C. Colodro-Conde and R. Toledo-Moreo

191

For calculating the bit i (1£ £i r) of the check bits c, one has to take the row i
from the H matrix and check the positions where hij = 1 , with 1£ £j k . These
positions indicate the elements of the data bits vector d that have to be XOR’ed
between themselves in order to obtain ci.

In most applications, the codeword m is saved in a memory which may suffer
from undesired bit alterations caused by SEU. When the data needs to be recovered,
the syndrome vector s = { }si has to be calculated in order to know if the codeword
has been altered. With SEC-DEC codes, the syndrome vector can be used to spot the
location of single-bit errors so that they can be corrected with a bit flip. If the
obtained syndrome is equal to 0, it means that the retrieved codeword is the same as
the one that was originally saved. If the syndrome is not equal to 0 and the parity of
the syndrome is even, a double-bit error flag can be raised.

For calculating the bit i (1£ £i r) of the syndrome vector s, one has to take the
row i from the H matrix and check the positions where hij = 1 , with 1£ £j n .
These positions indicate the elements of the codeword m which have to be XOR’ed
between themselves in order to obtain si.

Let us illustrate the procedure explained above with the following example H
matrix:

	

H =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1 	

(13.1)

The H matrix above represents the only odd-weight-column SEC-DEC code that
generates an 8-bit length codeword (n = 8) for a 4-bit data word (k = 4). In coding
theory, this is denoted as an (8, 4) code. For H under consideration, the check bits
shall be calculated as follows:

	

c d d d

c d d d

c d d d

c d d d

1 1 2 3

2 1 2 3

3 1 3 4

4 2 3 4

= Å Å
= Å Å
= Å Å
= Å Å 	

(13.2)

Assuming an input data vector d = []1011 and applying Eq. 13.2, the check bits
would be c = []0010 . The codeword, that is, the actual bits that will be saved in
memory would be m = []10110010 .

According to the procedure described previously, the syndrome shall be calcu-
lated with the following equations:

	

s m m m m

s m m m m

s m m m m

s m m m m

1 1 2 3 5

2 1 2 4 6

3 1 3 4 7

4 2 3 4 8

= Å Å Å
= Å Å Å
= Å Å Å
= Å Å Å 	

(13.3)

13  Improving the Implementation of EDAC Functions in Radiation-Hardened FPGAs

192

If neither the data bits or the check bits have been altered, the resulting syndrome
is s = []0000 , as expected. However, if we flip m3, for example, we would get
s = []1011 . By inspecting H, we can spot that the error occurred at d3, as s = []1011
matches with the third column of H.

13.3  �Description of the Algorithm

The purpose of the proposed algorithm is to synthesize a given many-input logic
gate in such a way that it allows an efficient implementation on the desired FPGA
technology.

It was explained in Sects. 13.1 and 13.2 that EDAC coders or decoders could be
seen as a set of r XOR gates, one per each check bit or syndrome bit. Therefore, this
algorithm can be used to synthesize EDAC functions by applying it for each one of
those defining gates.

One input of the algorithm is the logic function to implement. The other input is
the maximum number of inputs per LUT (K), which is used to model the target
FPGA. Other characteristics of the selected FPGA technology like the routing
architecture are not taken into account.

The input logic function has to be associative, so that it can be implemented with
a number of logic gates with K or less inputs, being K the maximum number of
inputs per LUT of the target FPGA technology. Additionally, the logic function
needs to be commutative so as to allow changing the order of the operands freely.
The XOR operation, in which the EDAC functions are based on, meet both proper-
ties. The same happens with the AND, OR and XNOR operations. If one wants to
implement an n-input NAND or NOR function, they have configure the algorithm
to select the non-negating equivalent (e.g., AND instead of NAND) for all the gates
of the circuit except the one at the output.

The output of the algorithm is the optimized netlist. In the current software
implementation of the algorithm, the resulting netlist can be given to the user in
three different ways. One possible way is a textual report from which the actual
circuit can be easily inferred. Another way is a graphical representation of the gen-
erated circuit, with all the gates and nets drawn. The last output format is a
technology-dependent VHDL source file, aimed to be added to the FPGA design
flow and integrated with other source files.

13.3.1  �Optimization Goals

The main optimization goal is the area occupation, which has to be kept as low as
possible. Less hardware not only allows more logic to be integrated in the same
FPGA, but it also improves reliability, as every component has an intrinsic rate of
failure [6]. Nevertheless, some effort is also put in optimizing processing speed.

C. Colodro-Conde and R. Toledo-Moreo

193

The area occupation can be calculated as the number of utilized LUTs. Other
specialized FPGA resources such embedded multipliers will be ignored as they can-
not be exploited for implementing generic logic gates.

For measuring processing speed, path delays will be considered instead of clock
periods, as the EDAC block will be a purely combinational circuit. A combinational
circuit is preferred in SEU-sensitive systems, because adding a memory element
like a flip-flop inside the EDAC block itself would require additional protecting
circuits as in TMR (Triple Modular Redundancy), thus worsening the area and
speed parameters. Nevertheless, if faster processing speeds are required, the
designer is free to manually add as many pipelining flip-flops as needed.

The resulting maximum path delay, which will determine the processing speed,
can only be obtained by the tools provided by the vendor of the target FPGA after
the synthesizing stage. Because of this reason, the parameter to minimize will not
be the maximum path delay itself. Instead, another variable which is directly related
to the maximum path delay will be considered, namely the maximum number of
LUTs that a path has to go through (from now on, levels). Each LUT adds a certain
delay to the path, as well as the nets used to connect two consecutive LUTs, so it can
be said that the levels are good estimators of the processing speed.

In summary, the algorithm will be designed to minimize both the number of
LUTs and the maximum level.

13.3.2  �Step-by-Step Procedure

A generic scenario is composed by a group of n signals, which may come from dif-
ferent gate levels. The objective is to merge all of these signals together using a
certain logic function and retrieve the result in a single output. The level of a signal
is defined as the number of gates that it has gone through, starting from level 0,
which corresponds to the output of a flip-flop. Given such scenario, the steps which
have to be followed in order to obtain the desired solution are the following:

	1.	 Take the K0 signals with lower level and connect them to a new logic gate of the
same kind than the target function. The value of K0 is given by Eq. 13.4.

	
K n K0 2 1 2= - -() +()mod()

	 (13.4)

	2.	 The output of the newly instantiated logic gate is assigned a level equal to the
maximum level of its inputs plus 1.

	3.	 Take all the unconnected signals (both the original inputs and the outputs of the
logic gates) and create a new gate for the K signals with lower level. Again, the
output of the newly instantiated logic gate is assigned a level equal to the maxi-
mum level of its inputs plus 1.

	4.	 Repeat Step 2 iteratively until there is only one output signal remaining.

13  Improving the Implementation of EDAC Functions in Radiation-Hardened FPGAs

194

The algorithm above minimizes the area utilization and the maximum path delay
of the implementation of any n -input logic gate, in terms of the number of utilized
LUTs and the maximum level. The resulting number of LUTs (or gates) can be eas-
ily calculated using the following formula:

	
num_LUTs =

-
-

é
ëê

ù
ûú

n

K

1

1 	
(13.5)

with n > 1 and K > 1 .
In the cases where the level of all the input signals is the same, the maximum

level can be calculated as follows:

	
max _level = []log nK 	 (13.6)

There is no simple mathematical expression for calculating the maximum level
when the input signals have different initial levels. In such cases, the easier way to
obtain the value of this parameter is to inspect the resulting circuit.

As an example, Fig. 13.1 shows the result of applying the proposed algorithm to
eight signals with different initial levels, for K = 4 . The output of the circuit is the
logic combination of all inputs, in this case, a XOR function. The resulting circuit
has a total of 3 gates or LUTs and a maximum level of 3.

13.4  �Results

In this section, the results of applying the algorithm described in Sect. 13.3.2 will be
compared to those obtained with a commercial synthesis tool, namely Synplify Pro
Microsemi Edition® [13]. This synthesizer is shipped along with Libero SoC and
Libero IDE, which are the software suites provided by Microsemi for designing
with their RT ProASIC3 [14] and RTAX-S [15] radiation-hardened FPGAs. Due to

Level 1

: input

: output

Level 0 Level 2 Level 3

Fig. 13.1  Example of application of the proposed algorithm

C. Colodro-Conde and R. Toledo-Moreo

195

compatibility issues, version I-2013.09 M-SP1 of Synplify will be used for the RT
ProASIC3 FPGAs, while version G-2012.09A-SP4 will be used for the less recent
RTAX-S models.

The two synthesis methods under study have been fed with the same input,
though expressed in different forms. For the proposed algorithm, the input logic
functions are provided as a set of vectors containing the level of each input signal.
This means that the steps described in Sect. 13.3 have to be applied separately to
each output of the EDAC function, as the algorithm can only handle one many-input
logic gate at a time. All the inputs will be considered to have a level equal to 0,
which means that they come directly from the outputs of a set of flip-flops, with no
additional combinational circuits in their way.

In the case of commercial synthesis tools such as Synplify, the input function is
usually specified with hardware description languages (HDLs) like VHDL or
Verilog. In this work, VHDL has been selected. The EDAC functions have been
defined in this language just as they appear in the equations, with no further manipu-
lations. For example, the EDAC decoder represented by Eq. 13.3 would be defined
as follows:

s(1) <= m(1) xor m(2) xor m(3) xor m(5);
s(2) <= m(1) xor m(2) xor m(4) xor m(6);
s(3) <= m(1) xor m(3) xor m(4) xor m(7);
s(4) <= m(2) xor m(3) xor m(4) xor m(8);

Signals m and s are connected to a set of flip-flops, which in turn are connected
to the input and output ports of the top level entity, so they are associated with physi-
cal pins of the FPGA. The existence of the flip-flops allows the placing tools to
make the circuits more compact, so the comparison of the maximum path delay is
more fair. Given that no registers have been instantiated between signals m and s,
the core of the circuit will remain purely combinational.

When a synthesis tool is given a piece of VHDL code like the one shown above,
it generates a netlist in EDIF format which is specific for the target technology. The
netlist defines a circuit that can only contain the components available in the target
FPGA, without specifying where they will be placed or how the connections will be
routed throughout the die. Those tasks are in charge of the place and route tools
provided by the FPGA vendor, in this case, Libero SoC and Libero IDE from
Microsemi.

The proposed algorithm produces a simplified circuit, but such circuit has to be
inserted somehow in the design flow, so that the place and route tools can finish imple-
menting it. One possible way is to generate an EDIF netlist, emulating a normal syn-
thesis tool. However, the authors chose to generate a technology-dependent VHDL
file, which is a VHDL file that includes specific libraries for the target technology and
only instantiates components that are present in such technology. Using this technique,
the generated VHDL cores can be easily integrated in larger designs by adding them
into the design flow just like any other HDL source file. If the VHDL file is defined
correctly, a commercial synthesis tool like Synplify will not modify the circuits defined
in those files. Instead, it will perform a direct translation from VHDL to EDIF.

13  Improving the Implementation of EDAC Functions in Radiation-Hardened FPGAs

196

One of the target FPGA models for this study will be an RT3P600L, from the
relatively recent Microsemi RT ProASIC3 family. The core of this FPGA consists
of a sea of 13,824 cells called VersaTiles. Each cell can be configured either as a
3-input LUT (C-cell), a D-flip-flop or a latch (R-cell), and they may be connected
between themselves through any of the four levels of routing hierarchy. In the case
of the present study, where the circuits will be purely combinational, all the used
cells will be configured as LUTs. Unlike other radiation-tolerant FPGAs, which use
antifuse programming technologies, devices in the RT ProASIC3 family use flash
cells to store configuration information. This fact worsens the tolerance to radiation,
but accelerates the development process and reduces its cost considerably.

The other FPGA model that will be selected for the tests is a RTAX250S, from
the Microsemi RTAX-S family. The high reliability against radiation of these anti-
fuse FPGAs makes them very popular for space applications. The RTAX architec-
ture comprises a sea of two types of logic modules: the combinatorial cell (C-cell)
and the register cell (R-cell). Each C-cell can implement a selection of more than
4,000 types of functions of up to 5 inputs, and they also contain carry logic for
implementing arithmetic operations efficiently. As in the RT ProASIC3, there are
four kinds of interconnecting lines, with different lengths and delays.

For dealing with EDAC functions, the synthesis tools need to instantiate a num-
ber of XOR gates of different size. The maximum number of inputs that a XOR gate
can have in the selected FPGA architecture is specified in the corresponding macro
library guide. For example, a RT ProASIC3 C-cell can implement either a 2-input
XOR or a 3-input XOR. The same happens with the RTAX-S C-cells, though it is
also possible to connect two adjacent C-cells through the dedicated carry logic in
order to obtain a 4-input XOR with the delay of a single cell. The effect of using this
feature or not will be analyzed later in this section by setting K = 3 or K = 4 for the
proposed algorithm (K = 3 would disable the instantiation of these XOR4
components).

Given the described setup, the post place and route implementation results for an
EDAC decoder are presented in Tables 13.1 and 13.2. The first one corresponds to
the results with the RT3P600L, while the latter refers to the RTAX250S. For each
table, three different EDAC functions taken from [8] have been tested. The area and
timing figures have been extracted from the reports generated by the place and route
tools. The maximum path delay is measured from the input to the output of the
EDAC entity.

Table 13.1  Post place and route implementations of a set of EDAC decoders in a RT3P600L
FPGA

EDAC function Synthesis method C-cells Max. level Max path delay (ns)

Hsiao (22, 16) Synplify Pro ME I-2013.09 M   29 3 5.207
Proposed algorithm (K = 3)   24 2 4.306

Hsiao (39, 32) Synplify Pro ME I-2013.09 M   58 4 6.030
Proposed algorithm (K = 3)   49 3 5.348

Hsiao (72, 64) Synplify Pro ME I-2013.09 M 116 5 7.980
Proposed algorithm (K = 3) 104 3 6.098

C. Colodro-Conde and R. Toledo-Moreo

197

All the synthesis, place and route tools have been configured to their default
parameters. It is worth mentioning that neither Synplify nor the proposed algorithm
can establish the optimization goal (area or speed) or the optimization effort of the
synthesis process. Synplify does allow to enable/disable the Resource sharing and
Retiming functionalities, but they have no effect over the application under study.

Attending to the results shown in Table 13.1, it is clear that the proposed algo-
rithm outperforms Synplify in terms of number of utilized C-cells, at least for the
RT ProASIC3. The reduction obtained with respect to Synplify is between 10.3 and
17.2 %. This means that the main objective of reducing the area utilization has been
accomplished.

It was said in Sect. 13.3.1 that the algorithm would also try to reduce the maxi-
mum path delay as much as possible by minimizing the maximum level (i.e., the
maximum number of gates that a path goes through). In all of the tested cases, the
proposed algorithm produces better results than Synplify in this sense, with differ-
ences between 11.3 and 23.6 % for the maximum path delay. The largest difference
in the maximum path delay occurs when the difference in the maximum level is also
the largest, as could be expected from the assumptions made in Sect. 13.3.1.
However, it should be noted that the maximum path delay depends heavily on the
performance of the place and route tools, in fact, it even depends on the random seed
that these tools start with. It was tested that the relative difference between the
smallest and largest maximum path delays obtained after 25 runs of the place and
route tools, with the same input netlist and different initial random seeds, was
around 10 %. Considering this number, we may conclude that the smallest timing
improvement obtained by the proposed algorithm (11.3 %) could be considered
significant, despite the indeterministic nature of the place and route tools.

After this first battery of tests, an analogous study was performed selecting the
RTAX-S FPGA. With the RT ProASIC3, the proposed algorithm was always con-
figured with K = 3 , meaning that it can only instantiate XOR gates up to 3 inputs,
each one of them corresponding to a C-cell. It was said in previous paragraphs that
the different architecture of the RTAX-S FPGAs also allows to implement a 4-input

Table 13.2  Post place and route implementations of a set of EDAC decoders in a RTAX250S
FPGA

EDAC function Synthesis method C-cells Max. level Max path delay (ns)

Hsiao (22, 16) Synplify Pro ME G-2012.09A   30 2 4.701
Proposed algorithm (K = 3)   24 2 4.929
Proposed algorithm (K = 4)   30 2 5.018

Hsiao (39, 32) Synplify Pro ME G-2012.09A   63 3 6.272
Proposed algorithm (K = 3)   49 3 5.884
Proposed algorithm (K = 4)   63 2 5.072

Hsiao (72, 64) Synplify Pro ME G-2012.09A 136 3 7.275
Proposed algorithm (K = 3) 104 3 6.746
Proposed algorithm (K = 4) 136 3 7.188

13  Improving the Implementation of EDAC Functions in Radiation-Hardened FPGAs

198

XOR with two C-cells with a delay similar to that of one single C-cell. In order to
study the effect of using this feature, the proposed algorithm was configured first
with K = 4 and then with K = 3 . By analyzing the synthesis reports generated by
Synplify, it was discovered that this tool always tries to take advantage of the two-
cell 4-input XORs (i.e., it acts as if it was set with K = 4).

Table 13.2 shows that both Synplify and the proposed algorithm (with K = 4)
produce the same results in terms of number of utilized C-cells for the
RTAX250S. This could be explained because Synplify uses a different algorithm for
this architecture of FPGA, now focusing on minimizing the area utilization of each
logic function that defines an output, which are processed independently. This
behaviour is exposed by the fact that every instantiated C-cell has a fan-out equal to
1. This is different than with the RT ProASIC3 FPGA, where Synplify treated the
input EDAC function as a whole, allowing to re-use some terms that are common to
two or more outputs of the circuit. If done correctly, this more elaborate approach
would theoretically allow to obtain smaller circuits with shorter critical paths, but
Synplify was not able to exploit this approach efficiently for the case of the EDAC
functions.

It is interesting to note that, even though Synplify has followed a similar approach
to that of the proposed algorithm, resulting in an equal number of C-cells, it has
obtained a higher maximum level for the Hsiao (39, 32) function. Besides revealing
a flaw of Synplify in the independent processing of outputs, this fact ultimately
results in a significantly larger maximum path delay, with a difference of 19.1 % for
this function. In the rest of the cases, the identical maximum level results in similar
maximum path delays, with differences below 6.5 % (recall that the performance of
the place and route tools also have a remarkable impact on this parameter).

It remains to be checked whether the fact of combining two C-cells to form a
4-input XOR is beneficial to the application under study. Table 13.2 demonstrates
that ignoring this feature (that is, setting K = 3) is more beneficial for the case of
the EDAC functions. This result is specially relevant because Synplify does not
allow to disable the use of combined C-cells. The difference in area utilization is
above 20 %, reaching 23.5 % for the largest tested function. In spite of using smaller
XOR gates, the maximum path delay is not significantly affected because the maxi-
mum level happens to be the same with K = 3 and K = 4 for the functions under
study. Note that not every possible input EDAC function would follow this property,
as can be deduced by applying Eq. 13.6.

13.5  �Conclusions

In this work, a new synthesis algorithm that improves the implementation of EDAC
codes in radiation-hardened FPGAs has been presented, and the results were com-
pared to those obtained by the commercial synthesis tool that ships with the soft-
ware suite provided by the vendor of the selected FPGA models.

C. Colodro-Conde and R. Toledo-Moreo

199

The proposed algorithm has proven to have less area utilization than Synplify for
all the tested cases, which include different input EDAC functions and target FPGAs
architectures. The reduction of the area utilization is substantial (up to 23.5 % for
the best case), and still, the speed of the inferred circuits is either maintained or
improved (up to a 23.6 %).

The results given in Sect. 13.4 reveal that there is a considerable margin for
improvement in the world of synthesis tools. In the case of the EDAC functions, the
authors discovered that processing each output separately in an optimal way (in
terms of number of instantiated LUTs and length of the critical path) can have a
positive impact on the entire circuits. Moreover, it was concluded that Synplify’s
default behaviour of using the 4-input XORs available in the RTAX-S macro library
is not beneficial for the implementation of EDAC functions.

In which each bit indicates one possible cause of an error, all the bits can be
OR’ed together in order to obtain a general error flag. Another example is a simple
parity check over a register, which can be based on a many-input XOR gate.

As future work, it would be interesting to investigate whether processing several
outputs jointly allows improving the results even further. A strategy similar to the
one followed by Synplify for the RT ProASIC3 may be used, consisting on re-using
some terms that are common to two or more outputs of the circuit. Given that
Synplify was not able to process the single outputs in an optimal way (see Table
13.2), it would not be surprising to discover that there is also room for improvement
when multiple-output functions are considered as a whole, instead of processing
each output separately.

Acknowledgments This work was supported by the Spanish Ministry of Educación, Cultura y
Deporte under the grant FPU12/05573, and by the Spanish Ministry of Economía project
AYA2012-39702-C02-02, in the frame of the activities of the Instrument Control Unit of the
Infrarred Instrument of the ESA Euclid Mission carried out by the Dept. of Electronics and
Computer Technology of the Universidad Politécnica de Cartagena.

References

	 1.	Chandra V, Aitken R (2008) Impact of technology and voltage scaling on the soft error suscep-
tibility in nanoscale CMOS. In: IEEE International Symposium on Defect and Fault Tolerance
of VLSI Systems, 2008. DFTVS’08, IEEE, Boston, pp 114–122. doi:10.1109/DFT.2008.50

2. Mahatme N, Jagannathan S, Loveless T, Massengill L, Bhuva B, Wen SJ, Wong R (2011)
Comparison of combinational and sequential error rates for a deep submicron process. IEEE
Trans Nucl Sci 58(6):2719–2725

3. Barth JL, Dyer CS, Stassinopoulos EG (2003) Space, atmospheric and terrestrial radiation
environments. IEEE Trans Nucl Sci 50(3):466–482

	 4.	Bentoutou Y (2012) A real time EDAC system for applications onboard earth observation
small satellites. IEEE Trans Aerosp Electron Syst 48(1):648–657. doi:10.1109/TAES.2012.
6129661

	 5.	Gao W, Simmons S (2003) A study on the VLSI implementation of ECC for embedded
DRAM. In: Canadian Conference on Electrical and Computer Engineering, 2003. IEEE
CCECE 2003, vol 1, pp 203–206. doi:10.1109/CCECE.2003.1226378

13  Improving the Implementation of EDAC Functions in Radiation-Hardened FPGAs

http://dx.doi.org/10.1109/DFT.2008.50
http://dx.doi.org/10.1109/TAES.2012.6129661
http://dx.doi.org/10.1109/TAES.2012.6129661
http://dx.doi.org/10.1109/CCECE.2003.1226378

200

	 6.	Hao L, Yu L (2008) A study on the hardware implementation of EDAC. In: Third International
Conference on Convergence and Hybrid Information Technology, 2008. ICCIT’08, vol 2,
pp 222–225. doi:10.1109/ICCIT.2008.14

7. Saleh A, Serrano J, Patel J (1990) Reliability of scrubbing recovery-techniques for memory
systems. IEEE Trans Reliab 39(1):114–122. doi:10.1109/24.52622

8. Hsiao M (1970) A class of optimal minimum odd-weight-column SEC-DED codes. IBM J Res
Dev 14(4):395–401. doi:10.1147/rd.144.0395

	 9.	Aymen F, Belgacem H, Chiraz K (2011) A new efficient self-checking hsiao SEC-DED mem-
ory error correcting code. In: 2011 International Conference on Microelectronics (ICM),
IEEE, Hammamet, pp 1–5. doi:10.1109/ICM.2011.6177346

10. Chen PY, Yeh YT, Chen CH, Yeh JC, Wu CW, Lee JS, Lin YC (2006) An enhanced EDAC
methodology for low power PSRAM. In: IEEE International Test Conference, 2006. ITC’06,
pp 1–10. doi:10.1109/TEST.2006.297689

11. Johansson R (1996) Two error-detecting and correcting circuits for space applications. In:
Proceedings of the Twenty-Sixth Annual International Symposium on Fault-Tolerant
Computing (FTCS‘96), FTCS‘96, IEEE Computer Society, Washington, DC, pp 436–439

	12.	Fujiwara E (2006) Code design for dependable systems: theory and practical applications.
Wiley, Hoboken

13. Synopsys: Synplify Pro ME. http://www.microsemi.com/products/fpga-soc/design-resources/
design-software/synplify-pro-me

14. Microsemi: radiation-tolerant ProASIC3 low power spaceflight flash fpgas with flash*freeze
technology. http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rt-proasic3

15. Microsemi: RTAX-S/SL and RTAX-DSP radiation-tolerant fpgas. http://www.microsemi.
com/products/fpga-soc/radtolerant-fpgas/rtax-s-sl

C. Colodro-Conde and R. Toledo-Moreo

http://dx.doi.org/10.1109/ICCIT.2008.14
http://dx.doi.org/10.1109/24.52622
http://dx.doi.org/10.1147/rd.144.0395
http://dx.doi.org/10.1109/ICM.2011.6177346
http://dx.doi.org/10.1109/TEST.2006.297689
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rt-proasic3
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtax-s-sl
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtax-s-sl

201© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_14

 Chapter 14
 Neutron-Induced Single Event Effect
in Mixed-Signal Flash-Based FPGA

 Lucas A. Tambara , Marcelo S. Lubaszewski , Tiago R. Balen , Paolo Rech ,
 Fernanda L. Kastensmidt , and Christopher Frost

 Abstract This chapter describes a neutron-induced Single Event Effect test in a
commercial Mixed-Signal Programmable System-on-Chip FPGA from Microsemi.
The main objective is to investigate the digital and analog parts reliability for
critical application projects. The case-study circuit is a data acquisition system that
uses analog blocks, buses and interfaces, embedded processor and programmable
digital data processing. Two different architectures using design diversity redun-
dancy were implemented, each one composed of specifi c redundant schemes. The
setup was exposed to a neutron source at the CCLRC Rutherford Appleton
Laboratory—ISIS in order to investigate the occurrence of SEE ranging from single
to bursts of errors. The results are important to characterize the device and to
demonstrate the importance of using design diversity redundancy to improve the
robustness of a system.

14.1 Introduction

 Recent advances in silicon technology have allowed the integration of complex
systems into a single chip. Embedded standard processor devices, dedicated pro-
cessing blocks, interfaces to various peripherals, on-chip bus structures, analog
blocks and even confi gurable logic arrays compose the most recent mixed-signal
System-on- Chip (SoC) devices [1]. Further commercial and aerospace market are
targeting more and more nowadays low power, cost, high integration and compu-
tational capability, which drives the growth of this type of programmable
mixed-signal SoC [2]. Such components can help board integration and it adds
confi gurability and fl exibility to the design project.

 L. A. Tambara (*) • M. S. Lubaszewski • T. R. Balen • P. Rech • F. L. Kastensmidt
 Instituto de Informática, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
 e-mail: latambara@inf.ufrgs.br; luba@ece.ufrgs.br; tiago.balen@ufrgs.br;
prech@inf.ufrgs.br; fglima@inf.ufrgs.br

 C. Frost
 Rutherford Appleton Laboratory—ISIS , Didcot , UK
 e-mail: c.d.frost@rl.ac.uk

mailto:latambara@inf.ufrgs.br
mailto:luba@ece.ufrgs.br
mailto:tiago.balen@ufrgs.br
mailto:prech@inf.ufrgs.br
mailto:fglima@inf.ufrgs.br
mailto:c.d.frost@rl.ac.uk

202

 Integrated circuits operating at ground level can be exposed to Single Event
Effects (SEE) effects induced by neutrons. Such neutrons are generated by the
collision of cosmic galactic rays with atoms in the atmosphere producing high-
energy neutrons. It is known that these high-energy neutrons can lead memory cells
to change their states, causing the appearance of Single Event Upset (SEU) [3],
especially in modern semiconductor electronics. In addition, transient effects can
also be observed in combinational and analog components known as Single Event
Transient (SET) pulses that vary in amplitude and time duration. To deal with these
transient effects, traditional techniques based on redundancy are used [4]. A very
successful example is the N Modular Redundancy (NMR). In the NMR, N copies of
the design are implemented and operate in tandem. Double Modular Redundancy
(DMR) is an example of NMR use for error detection, where two copies work in
parallel receiving the same inputs or copies, and the outputs are constantly compared
to detect errors.

 Neutron-induced SEU in commercial programmable mixed-signal SoC must be
investigated to analyze the chances of using those components in avionics and aero-
space applications. Such devices are composed of analog blocks, buses and inter-
faces, embedded processor and programmable digital array. This work presents
results from a neutron experiment at the CCLRC Rutherford Appleton Laboratory—
ISIS that characterizes the Flash-based SmartFusion SoC FPGA from Microsemi.
The goal is to analyze the errors signatures in the analog and digital parts and the
embedded processor.

 In addition, a redundant scheme is proposed to investigate the robustness and
detecting errors in the FPGA platform under neutrons. Neutrons reactions can
generate many secondary particles that may provoke multiple upsets. When dealing
with multiple transient effects or burst of errors, it is necessary to analyze the impact
of such multiple faults in a redundant design. If both copies are affected in the same
way, the output comparator may not be able to detect errors. However, if each
design copy in a redundant system is built with a distinct approach, the probability
of multiple faults affecting more than one copy and having the same effect is
reduced, since each system copy may have different levels of resilience associated
with diverse fault generation mechanisms and sources [5].

 For this reason, we developed as a case-study circuit a Design Diversity
Redundancy (DDR) scheme composed of a data acquisition system that uses analog
blocks, buses and interfaces, embedded processor and programmable digital data
processing. Each redundant copy is implemented in a distinct way using different
replicas and algorithms. Results show transient effects in the analog and digital
parts. A cross-section of the analog data acquisition is presented. These results are
important to characterize the device and to indicate the importance of using DDR to
improve the robustness of a system. Spice simulations were also performed to
enhance the understanding of the error mechanisms on the analog-to-digital
converters of the studied device.

L.A. Tambara et al.

203

14.2 SmartFusion Mixed-Signal SoC Platform

 There are many mixed-signal SoC platforms available in the market today. Examples
are: Zynq-7000, from Xilinx, which have beyond several peripherals, a dual
800 MHz 32-bit ARM Cortex-A9, a SRAM-based FPGA and a dual 12-bit analog-
to- digital converter [6]; Cyclone V, from Altera, which also have beyond several
peripherals, a dual 800 MHz 32-bit ARM Cortex-A9 and a SRAM-based FPGA [7];
PSOC from Cypress, and SmartFusion, from Microsemi [8]. Beyond these options,
there are also similar technologies, like the Field-Programmable Analog Arrays
(FPAAs) and the Multiprocessors SoCs (MPSoCs).

 Previous works have investigated either analog components or fl ash-based or
SRAM-based FPGAs separately, but not a mixed-signal SoC in the context of
neutron- induced SEE effects. The SmartFusion from Microsemi was chosen for this
fi rst work due to the existence of a programmable array in addition to a greater
number of standard embedded analog resources when compared to the others cited,
a processor and memories. The programmable array can add fl exibility to a system
using DDR because many implementations can be designed and tested in it, improv-
ing the redundant copies implementations.

 This device is composed of a Microcontroller Subsystem (MSS), with a 100 MHz
32-bit ARM Cortex-M3 and several peripherals and interfaces, like embedded
memories (eSRAM and eNVM) and buses (Advanced Peripheral Bus—APB and an
Advanced High-Performance Bus—AHB); a Flash-based Field Programmable
Gate Array (FPGA) based on ProASIC3 architecture; and an Analog Compute
Engine (ACE) with 8/10/12-bit successive approximation analog-to-digital convert-
ers (ADCs), 8/16/24-bit ΣΔ digital-to-analog converters (DACs), internal voltage
reference, active bipolar prescalers, voltage monitors, current monitors, temperature
monitors, voltage comparators and direct inputs. All the system was mounted using
a proprietary tool called Libero SoC [8] and confi gured to run at 10 MHz. Figure 14.1
shows the fl oorplanning of the A2F200-FG484 SoC.

14.3 Proposed Case-Study Approach Using Redundancy

 A case-study circuit composed of two redundant copies was developed, each one
using distinct analog parts, the Cortex-M3 processor and part of the FPGA matrix.

14.3.1 Mixed-Signal DUT with Design Diversity Redundancy
(DDR) Approach

 A data acquisition architecture using DDR was proposed as depicted in Fig. 14.2 .
In this case, the DDR design is applied in a DMR approach, here called DDR-DMR
approach. This scheme considers different system levels (software and hardware) to
build the system copies. The two system copies perform the same function, but are

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

204

 Fig. 14.1 SmartFusion fl oorplanning [8]

 Fig. 14.2 Redundant diversifi ed architecture proposed

L.A. Tambara et al.

205

implemented in different levels, as follows: a digital copy implemented by software
into the Cortex-M3 processor and a digital copy implemented by hardware into the
programmable FPGA array. Basically, the implementation includes a sequence of
analog-to-digital conversions and digital signal processing.

 Redundancy is a well-known approach frequently applied in modern digital
systems, which require a high level of reliability [9]. Design diversity redundancy
was widely discussed for the fi rst time in [5], where the use of different approaches
or architectures in order to generate a redundant scheme is an alternative to increase
the reliability of a system. To implement this technique, each circuit copy is imple-
mented with different technologies, algorithms or architecture. Then the basic idea
is that, with different implementations, one fault will probably cause different errors.

 However, past works have not addressed the challenging of using design diversity
redundancy (DDR), especially for error detection in complex mixed-signals systems,
where data must be acquired by analog blocks, specifi c buses needed to be used, and
the digital data must be processed and stored in specifi c units. In this case, all the paths
must be redundant to achieve minimal fault isolation. For example, the previous
works [10, 11] have shown Diversity Triple Modular Redundancy (DTMR) based on
a PSoC platform in order to show that such approach is a feasible technique for error
detection and to increase the reliability of some classes of state-of-art mixed-signals
circuits. However, in [11] the setup had shared resources between the redundant copies.
Moreover, the results of both works are based on hardware and fault simulation.

 In this context, the digital copy implemented by software was developed using
the standard libraries of C language and the proprietary Microsemi libraries respon-
sible for the microcontroller subsystem manipulation. The digital copy implemented
by hardware in the FPGA matrix uses a Finite State Machine (FSM) and a dedicated
data path designed in VHDL. Figure 14.3 illustrates the application architecture,
where an identical analog input signal is provided to the SmartFusion with the
DDR-DMR approach embedded. The data fl ow works as follows: fi rst, the analog
signal is received by the two ADCs and processed by the ACE; then, the converted
values are allocated in distinct AHB addresses; and fi nally, both Cortex-M3 and
FPGA get your respective value from the bus to process it.

 The FPGA and the Cortex-M3 were confi gured to run at 10 MHz and the analog
blocks were confi gured to run at 2.5 MHz. Both ADCs were set to work with a
 resolution of 12 bits and an internal voltage reference. A signifi cant difference
between the Cortex-M3 and the FPGA is the fact that the data acquisition in the
FPGA is continuous, which not happens in the Cortex-M3, where the acquisition is
periodic. To deal with this, a trigger was confi gured from the Cortex-M3 to the
FPGA in order to synchronize the data acquisition.

14.3.2 Complementary Digital Designs

 Two 1,000-stages shift registers were embedded into the FPGA array as a test circuit
to evaluate the neutron-induced SEU sensitivity of the programmable fl ash- based
array. Both circuits were set to have all their bits in 0 and run at 10 MHz, the same

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

206

clock of the other digital circuits and processor. A serialization circuit was also
implemented in the FPGA in order to provide a redundant data acquisition. All the
circuits were manually placed side by side within the FPGA array. Figure 14.3 illus-
trates all these complementary circuits together with the proposed setup.

14.4 Neutron Test Setup

 The test setup is composed of a motherboard and the Device Under Test (DUT)
board connected each other point-to-point. Both boards make use of an
A2F200-FG484 SmartFusion. All the collected data are transferred to a laptop
through a Universal Asynchronous Receiver Transmitter (UART) bus module
embedded in the motherboard and stored in .txt archives for posterior analysis.

 The motherboard has the follow circuits embedded: a power-on reset circuit to
ensure that the synchronous circuitry will start in a known state after the bring-up
(power-up and reprogramming cycle); a signal generator circuit through one of the
DACs available in the SmartFusion that is responsible to generate a periodical

 Fig. 14.3 DDR-DMR proposed architecture

L.A. Tambara et al.

207

10 Hz ramp signal with a Least Signifi cant Bit Voltage (Vlsb) of 5 mV and ampli-
tude range from 0 to 2.56 V; and a receptor circuit, responsible to perform the digital
data acquisition (shift registers data and converted data) from the DUT. The DUT
board composed of the SmartFusion under test has both mixed-signal and digital
designs described in Sect. 14.3 . The power-on reset circuit consists of two 17-bit
counters in cascade. The fi rst counter has the function to generate a delay to the
second counter, which generates the reset signal to the rest of the motherboard and
the DUT.

 The receptor circuit performs two functions. First, it receives the converted
values from the DUT and sends them to the UART module of the motherboard.
Second, the receptor circuit detects upsets in the shift registers through the follow
scheme: if a bit 1 is received, then the next 999 bits of each shift register are
analyzed and, at each bit 1 detected, a counter is incremented. If some upset is
detected in the shift registers of the DUT, the result of the counter is sent to the
UART module and then the data is recorded in the laptop.

 The device was tested in a neutron source located at the CCLRC Rutherford
Appleton Laboratory—ISIS (Didcot, UK). Neutrons are produced at ISIS by the
spallation process: a heavy-metal target (tungsten) is bombarded with pulses of
highly energetic protons, generating neutrons from the nuclei of the target atoms
[12]. The mean fl ux obtained from the source was 3.08 × 10 4 n/cm 2 /s for energies
above 10 MeV. Figure 14.4 shows the experiment setup mounted inside the
VESUVIO irradiation chamber at ISIS.

 Fig. 14.4 Experiment setup
mounted (the second from the
right to the left) in the
VESUVIO irradiation
chamber at ISIS facility. The
DUT is in the vertical
platform

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

208

14.5 Test Results

 The DUT setup occupies 94 % of the global resources available in the A2F200-FG484
SmartFusion device. Both processor Cortex-M3 and FPGA are running at 10 MHz,
and the analog blocks are confi gured to run at 2.5 MHz. Without taking into account
the interruptions that the software copy suffers, the observed delay between the
output of the Cortex-M3 and the FPGA is approximately 2 ms.

 Practical measurements were performed aiming to verify the reliability of the
SmartFusion in the context of SEU caused by neutrons. We exposed the device to
neutron particles at a mean fl ux of 3.08 × 10 4 n/cm 2 /s by 24 h.

14.5.1 Mixed-Signal Scheme with Diversity Redundancy
(DDR-DMR)

 Related to the ADCs, it was observed (Table 14.1) a mean cross-section of 8.18 × 10 −5
cm 2 for the ADC0 and 7.35 × 10 −5 cm 2 for the ADC1. These values are based on all
samples (converted values by the ADCs) recorded, including samples with SEU
effects and possible burst of errors. Figures 14.5 and 14.6 show examples of

 Table 14.1 Test results for the ADCs

 Time (h)
 Number of
samples

 Samples with errors (%)

 Flux (n/cm 2 /s)

 Cross section (cm 2)

 ADC0 ADC1 ADC0 ADC1

 06:00 399,492 1.69 2.35 3.07 × 10 4 5.52 × 10 −5 7.65 × 10 −5
 12:00 676,136 2.93 2.22 3.06 × 10 4 9.58 × 10 −5 7.25 × 10 −5
 18:00 413,746 2.65 2.19 3.08 × 10 4 8.61 × 10 −5 7.11 × 10 −5
 24:00 329,319 2.79 2.28 3.09 × 10 4 9.03 × 10 −5 7.38 × 10 −5

 Fig. 14.5 ADC0 samples examples

L.A. Tambara et al.

209

fault- free and faulty samples caused by SEU. Considering the DDR-DMR scheme,
it is possible to observe that the redundant copy that uses the ADC1, controlled by
the FPGA array, showed a better regular behavior than other redundant copy that
uses the ADC0, controlled by the Cortex-M3 processor. A possible justifi cation for
this behavior is in the fact that the continuous acquisition by the FPGA creates a
scenario of data oversampling, which it does not happen with the Cortex-M3. It is
important to mention that there were not observed negative peaks in the ADC1.

 From 1,818,693 redundant converted samples (from ADC0 and ADC1) collected
during the neutron test, no errors were observed in both ADCs at the same time.
This confi rms that using diversity redundancy we can detect faults in the ADCs data
path. For specifi c cases, a pass fi lter could also be used to fi lter out the transient
error, according to the application and expected data. Other solutions can be further
investigated.

 When the ADC topologies are investigated, it is well known that there are ADC
topologies more robust to radiation than others. For example, the ΣΔ ADC
 architecture has been proved to have a high level of radiation capability [13].
However, the ADCs of the SmartFusion are a switched-capacitor successive approx-
imation register (SAR) (Fig. 14.7) [8], which contain an expressive digital part that
can be easily upset by neutrons.

 There are two main possibilities for transient upset occurrence in those ADCs:

• As one can observe in Fig. 14.7a , the SAR ADC is based on a set of capacitors,
a DAC, a comparator and a sample and hold (S/H) circuit to acquire the input
voltage. One possibility is to have SEU occurrences in the output register of the
DAC or transient pulses in the comparator.

• Another possibility is related to the switched-capacitor array (Fig. 14.7b). If a
switch temporarily changes its state, the equivalent capacitance of the array will
also be temporarily modifi ed. Therefore, a charge redistribution process between
the branches will occur [14], affecting the fi nal converted value.

 Fig. 14.6 ADC1 samples examples

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

210

14.5.2 Simulation of a Charge Redistribution SAR-ADC

 In order to aid the understanding of the observed effects on the ADCs, Spice simula-
tions were performed. Because detailed information about the ADCs’ internal
architecture and technology are not available to the user, a 130 nm PTM (Predictive
Technology Model) [15] technology model was used in the simulations (performed
with HSpice software). For the sake of simplicity and better understanding, the
simulated circuit consists in the analog part of 4-bit charge redistribution SAR
ADC. Despite this simplifi cation, it is possible to extend the results to real convert-
ers, with higher resolutions. Figure 14.8 depicts the simulated circuit. The digital
circuit that controls the switches of the capacitor array is not shown.

 Fig. 14.7 Example of SAR architecture (a) and ADC switched-capacitor array architecture (b) [8]

 Fig. 14.8 Analog part of a 4-bit charge redistribution SAR ADC simulated in this work

L.A. Tambara et al.

211

 The charge redistribution SAR operates in three distinct phases to convert an
analog sample [16]. The fi rst step is the sample mode, in which all capacitors of the
array are connected to V in (analog input) through the switches S A and S 3 to S 00 (S B
connects the array to ground). This way, an equivalent capacitor of 2C = 1.6 pF
(in this case) is charged with the V in voltage. Then, the hold mode takes place: S B is
opened, S 3 to S 00 connect all the capacitors to ground and S A turns to V ref (converter’s
reference voltage). At the end of this process, a voltage equal to − V in is held at the
comparator input. These two modes naturally execute a sample-and-hold process.

 The conversion itself is performed in the third phase: the redistribution mode.
This mode starts by connecting the MSB (Most Signifi cant Bit) capacitor to V ref
through S 3 . This way, a capacitive divider with two equivalent capacitors of C = 0.8
pF is formed, in a way that the voltage of the comparator input is now V c = −
V in + V ref /2. The output of the comparator gives the value of bit B 3 and, depending on
its value, the control circuit decides the position of S 3 to the next redistribution steps
(if B 3 = 1, S 3 remains connected to V ref , otherwise it is grounded). The process is
repeated to the other capacitors, and the output of the comparator in each redistribu-
tion cycle (or the position of the switches at the end of the redistribution mode)
represents the digital converted value. Figure 14.9 shows the simulation of this
process, considering the evaluation of the MSB (B 3), for an input sample of 0.35 V
and a reference voltage of 0.8 V.

 The switches of the capacitor array may be implemented as transmission gates.
A Transmission Gate (TG) consists in the interconnection, in parallel, of a PMOS
and an NMOS transistor, which need complementary signals to control their states.

 Fig. 14.9 Simulation of sampling, hold and charge redistribution process (only bit B3), consider-
ing an input sample of 0.35 V and Vref = 0.8 V

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

212

For this reason, each transmission gate-based switch needs a digital control element,
which in the simplest case is a digital inverter. Figure 14.10 shows a transmission
gate controlled by a digital inverter. In this work, the sizing of the transistors of the
TGs is: L 1 = L 2 = 0.8 μm; W 1 = 8 μm, W 2 = 16 μm; L 3 = L 4 = 0.15 μm; W 3 = 0.8 μm,
W 4 = 0.4 μm. All the switches, except S B , are composed of two TGs with counter
phase controls to allow the connection to more than a single node.

 A single event transient may modify the digital value of the inverter output, thus,
affecting the control and the state of a given switch. Depending on the affected
switch, an erroneous charge redistribution process may occur. If the voltage under
comparison changes its value from positive to negative (or the opposite situation)
the comparator output may be fl ipped, and the control circuit may capture this value,
confi guring a bit-fl ip error in the conversion. Since the state of the switches in the
subsequent charge redistribution steps depends on the value of the former obtained
bits, a single error in one bit may propagate to the remaining of the conversion. This
may lead to multiple bit errors in the converted digital word.

 In these simulations, the injected SETs were modeled as current sources at the
sensitive nodes of the circuit, following the double exponential model [17].
Figure 14.11a shows the simulation result of an injected transient pulse on the out-
put of the control inverter of switch S 3 , during the evaluation of bit B 3 (redistribution

 Fig. 14.10 Analog
transmission gate controlled
by inverter gate

 Fig. 14.11 Simulated effect of an SET during the redistribution process: (a) at the switch S3, and
(b) at the drain of NMOS transistor of SB

L.A. Tambara et al.

213

mode; with V in = 0.35 V and V ref = 0.8 V). In this case, the transient current pulse
has a peak value of 10 mA and 850 ps width. This SET tends to temporarily and
partially disconnect the MSB capacitor from the V ref node, connecting it to ground
(partially discharging it). However, after the end of the current pulse, the capacitor
is fully reconnected to V ref and the effect on the output comparator disappears. This
way, a conversion error will occur only if the digital control circuit captures the
comparator output during the SET occurrence.

 However, depending on the affected node of the circuit, the effects may be more
severe. Figure 14.11b shows the simulation result of a SET injected at the drain of
the NMOS transistor of the S B switch (according to Fig. 14.8), during the redistribu-
tion mode. In this mode, switch S A is off, therefore the drain-bulk junction of the
NMOS transistor is reversed biased (in this case, the voltage of the comparator input
is positive). Therefore, the current pulse temporarily creates a current path to the
ground, discharging the capacitors. In this case, a transient pulse with 0.5 mA peak
and 550 ps width was suffi cient to discharge the affected node, and fl ip the compara-
tor output. When the SET effect vanishes and the current path to ground is inter-
rupted, the charge lost in this process is not replaced. Thus, the error at the
comparator output remains until the next redistribution step.

 The cumulative effect of an error during the charge redistribution process is
depicted in Fig. 14.12 , in which the equivalent circuit to each redistribution step is
shown. In this case, V in is 0.35 V and V ref = 0.8 V, and, since the resolution is 4 bits,
the LSB voltage is 0.05 V. Therefore, this sample must be converted to 0111
(Fig. 14.12a). However, due to an error in the fi rst redistribution cycle and its
propagating effect, the fi nal value of the converted data is 1,000 (Fig. 14.12b).

 Fig. 14.12 Equivalent circuits during the redistribution cycles in a 4-bit conversion, with V in = 0.35
V and V ref = 0.8 V: (a) normal operation and correct digital value, and (b) error in the MSB during
the redistribution process is propagated to the remaining of the conversion

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

214

This cumulative effect may explain the multiple bit errors observed during the
experiment (evidenced in Figs. 14.5 and 14.6).

 The performed simulations also help to explain another point that was observed
in the experimental data: the most of the larger deviations on the converted data
occurred near the voltage mid-range of the converter limits. Since at the fi rst redis-
tribution cycle the input voltage is compared to V ref /2, samples near this value
generate small voltages to be delivered to the comparator input. These low voltages
are prone to be easily disturbed by SEE, therefore, increasing the probability of an
observable error.

14.5.3 Complementary Digital Designs

 Related to the shift registers data, it was observed the occurrence of 9 single events,
6 multiple events and 5 bursts of errors. Once a serial transmission between the DUT
and the motherboard takes 880 ns to be completed, these bursts of errors may have
two sources. They can be due a SET in the FSM logic that performs the serialization
or to errors in the output blocks, e.g., registers and buffers. Figure 14.13 shows three
abstraction levels of the implemented shift registers. First, Fig. 14.13a shows the
shift register through block diagram. Second, in Fig. 14.13b shows how the synthesis
tool implemented each instance of the shift registers. Third, Fig. 14.13c shows the
 VersaTile architecture, which is the basic cell where each block of the Fig. 14.13b is
implemented. In this case, through the analysis of the VersaTile architecture is
possible to note that if a SET occurs in one instance of it, the state of a switch or
multiplexer may change, leading to a bit-fl ip in one of the shift registers.

14.6 Conclusions

 We performed a neutron-induced SEE test in the A2F200-FG484 SmatFusion SoC
at the ISIS facility located at the CCLRC Rutherford Appleton Laboratory.

 A design diversity redundancy scheme was implemented based on a data acqui-
sition system in order to make use of the main components of the SoC and to detect
single-events. Results indicate that the system is able to detect functional devia-
tions. Furthermore, a DDR scheme increases the degree of reliability since each
redundant module may have a different level of resilience.

 Spice simulations considering a charge redistribution ADC were performed.
Results allowed us to explain the error mechanisms and the origins of multiple bit
errors observed on the experimental data, concerning the analog-to-digital converters.

 Current activities of this research are focused on performing, beyond the fault
detection, a fault tolerant coverage scheme in the SmartFusion SoC. Other mixed-
signal platforms from other manufacturers are also under study to verify the appli-
cability of a DDR scheme in them.

L.A. Tambara et al.

215

 Fig. 14.13 (a) Shift register scheme implemented. (b) How the tool synthesized each instance of
(a). (c) VersaTile architecture

14 Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA

216

 References

 1. European Space Agency (2007) System-on-Chip (SoC) development [online]. http://www.esa.
int/TEC/Microelectronics

 2. Paschalidis NP (2002) Advanced system on a chip microelectronics for spacecraft and
science instruments. In: Proceedings of the IEEE Aerospace conference, vol 4, Big Sky,
pp 1993–2003

 3. Letaw JR, Normand E (1991) Guidelines for predicting single-event upsets in neutron environ-
ments. IEEE Trans Nucl Sci 38(6):1500–1506

 4. Anghel A, Alexandrescu D, Nicolaidis M (2000) Evaluation of a soft error tolerance technique
based on time and or hardware redundancy. In: Proceedings of the IEEE Integrated Circuits
and Systems Design, Manaus, pp 237–242

 5. Avizienis A, Kelly JPJ (1984) Fault tolerance by design diversity: concepts and experiments.
IEEE Comput 17(8):67–80

 6. Xilinx (2012) Zynq-7000 extensible processing platform [online]. http://www.xilinx.com/
products/silicon-devices/epp/zynq-7000

 7. Altera (2012) Cyclone V FPGAs [online]. http://www.altera.com/devices/fpga/cyclone-v-fpgas
 8. Actel (2011) SmartFusion customizable system-on-chip [online]. http://www.actel.com/docu-

ments/SmartFusion_DS.pdf
 9. Morgan KS, McMurtrey DL, Pratt BH, Wirthlin MJ (2007) A comparison of TMR with alter-

native fault tolerant design techniques for FPGAs. IEEE Trans Nucl Sci 54(6):2065–2072
 10. Hiari O, Sadeh W, Rawashdeh O (2012) Towards single-chip diversity TMR for automotive

applications. In: Proceedings of the IEEE international conference on electro/information
technology, Indianapolis, pp 1–6

 11. Borges GM, Gonçalves LF, Balen TR, Lubaszewski MS (2010) Diversity TMR: proof of
concept in a mixed-signal case. In: Proceedings of the IEEE Latin American Test Workshop,
Pule del Este, pp 1–6

 12. Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A,
Andreani C, Gorini G, Pietropaolo A, Cardarilli G, Pontarelli S, Frost C (2007) A new hard-
ware/software platform and a new 1/E neutron source for soft error studies: testing FPGAs at
the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

 13. Cortes FP, Carro L, Girardi A, Suzim A (2002) A A/D converter insensitive to SEU effects. In:
Proceedings of the 8th international On-Line Testing Workshop, Porto Alegre, pp 89–93

 14. Balen TR, Cardoso GS, Gonçalez OL, Lubaszewski MS (2011) Investigating the effects of
transient faults in programmable capacitor arrays. In: Proceedings of the 12th Latin American
Test Workshop, pp 1–6

 15. Nanoscale Integration and Modeling Group (2012) 130nm BSIM3 model card for bulk CMOS
[online]. http://ptm.asu.edu . Accessed Sept 2012

 16. Jespers PGA (2001) Integrated converters. Oxford University Press, Oxford
 17. Messenger GC (1982) Collection of charge on junction nodes from ion tracks. IEEE Trans

Nucl Sci 29(6):2024–2031

L.A. Tambara et al.

http://www.esa.int/TEC/Microelectronics
http://www.esa.int/TEC/Microelectronics
http://www.xilinx.com/products/silicon-devices/epp/zynq-7000
http://www.xilinx.com/products/silicon-devices/epp/zynq-7000
http://www.altera.com/devices/fpga/cyclone-v-fpgas
http://www.actel.com/documents/SmartFusion_DS.pdf
http://www.actel.com/documents/SmartFusion_DS.pdf
http://ptm.asu.edu/

 Part V
 Embedded Processors in System-on-Chips

219© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_15

Chapter 15
Mitigating Soft Errors in Processors Cores
Embedded in System-on Programmable-Chips

Stefano Esposito and Massimo Violante

Abstract  Newer generations of Field Programmable Gate Arrays (FPGAs) embed
advanced intellectual property (IP) cores, such as fast digital signal processors
(DSPs), memory blocks, and processors, which are implemented in dedicated parts
of the silicon, without consuming reconfigurable fabric that is left available for
system designers. The new class of devices combining firm computing cores along
with programmable fabric is often referred to as system-on-programmable-chip
(SoPC). Several application domains, like industrial control and automotive, where
computing intensive algorithms have to be performed in real-time by embedded
processors, already recognized the benefit of SoPCs. Space application domain may
benefit as well from SoPCs, provided that the problems specific to such application
domain are solved. In particular, being the SoPC devised for ground-based applica-
tions, the consequences of the interaction of ionizing radiations with SoPC silicon,
triggering effects like Total Ionizing Dose (TID) or Single Event Effects (SEE), are
of particular interest for designers willing to deploy SoPC in space. This chapter
first summarizes the effects of radiation in SoPC with particular emphasis on SEE
in the processor cores the device embeds. Then, it reports an overview of the tech-
niques to cope with them, looking in particular to Software Implementer Fault
Tolerance (SIFT) techniques. Finally, a novel architecture is proposed.

15.1  �Introduction

Newer generations of Field Programmable Gate Arrays (FPGAs) embed advanced
intellectual property (IP) cores, such as fast digital signal processors (DSPs),
memory blocks, and processors. The IPs are implemented in dedicated portions of
silicon (they are firm IP cores), and do not consume resources belonging to the
configurable fabric. Developers of embedded applications can therefore exploit the
computing capabilities of FPGAs configurable fabric to implement custom inter-
faces and/or dedicated hardware accelerators in combination with the versatility of

S. Esposito (*) • M. Violante
DAUIN—Politecnico di Torino, C.so Castelfidardo, 29, Torino 10129, Italy
e-mail: stefano.esposito@polito.it; massimo.violante@polito.it

mailto:stefano.esposito@polito.it
mailto:massimo.violante@polito.it

220

processors, all integrated in a single device known as system-on-programmable-
chip (SoPC) [1].

Several application domains already recognized the benefit of SoPCs, such as
industrial control applications, and automotive applications where computing inten-
sive algorithms (like for example image processing to recognize the features of an
object that should be manipulated by an handler, or to identify obstacles on the path
of a vehicle) have to be performed in real-time by embedded processors, which are
often connected to custom devices through suitably-designed hardware components.

Space application domain may benefit as well from SoPCs, provided that the
problems specific to such application domain are solved adequately. Space applica-
tions are deployed in radioactive environment where ionizing radiation interacts
with the silicon provoking a number of effects, such as total ionizing dose effects
(TID) and single event effects (SEEs) [2]. The IP cores SoPCs embed are typically
designed for ground applications where natural radiation is negligible hence they do
not include specific mechanisms to cope with radiation effects; as a result, IP-core
behavior can be affected significantly when deployed in space.

As far as embedded processors are considered, SEEs could be categorized as
follows (for the sake of this chapter TID effects and destructive events such as latch-
up are not taken into account):

• Persistent effect: SEEs alter the behavior of the processor core in such a way that
it no longer provides its service, i.e., it is no longer able to run software. This
effect, also known as Single Event Functional Interruption (SEFI), is provoked
by radiation hitting the control circuitry of the processor, such as the phased-
locked-loops (PLLs) responsible for clocking the core. This effect is persistent as
the processor is not able to recover its expected functionality autonomously, and
an external intervention is needed (e.g., reset or power cycle).

• Transient effect: SEEs alter the content of storage elements (either due to single
event upsets, SEUs, in memory elements such as registers, cache lines, or RAM
cells, or due to the propagation of SETs that are latched by memory elements)
that either store the data the processor manipulates (data error) or that control
the order in which the instructions of the program are executed (control-flow
error). These effects are transient as they can be removed by the processor auton-
omously during the execution of the program (e.g., an SEU in a variable is
removed as soon as a new correct value is loaded in the variable), or can be
detected and removed by running a suitable recovery action implemented by
software.

Given the above effects, suitable countermeasures are needed to deploy success-
fully SoPCs in space applications, depending on the mission requirements, and the
characteristics of the radioactive environment the mission aims at. In this chapter
we analyze Software Implemented Fault Tolerance (SIFT) solutions: after stating
the assumptions we use in the chapter, we discuss a behavioral model for SEE in
processor cores to set the basis for understanding the SIFT techniques available in
literature, which we summarize shortly. We then present a possible architecture to
cope with SEE in the processor core SoPCs embed, along with the description of a
use case. Finally, we draw some conclusions.

S. Esposito and M. Violante

221

15.2  �Assumptions

In this chapter we focus on SEE affecting the processor cores SoPCs embed, while
SEEs affecting the SoPC fabric are out of the scope of this chapter, as well as TID
effects and destructive effects.

Moreover, we assume that the system we are designing entails two computers:

• A platform computer responsible for supervising the operations of the space
application (e.g., management of telemetry and remote control communica-
tions), and for implementing the predefined recovery action when a payload
computer signals that an error is detected. This computer is assumed to be imple-
mented resorting to traditional space-grade components, which do not require
any of the techniques presented in this chapter.

• A payload computer responsible for running the actual application task, which is
implemented using a SoPC and that requires the hardening techniques presented
in this chapter. Cold stand-by redundancy is assumed for the payload computer:
one instance of the payload is powered and serves as primary payload, the
second instance is powered-off and serves as redundant payload. The application
program the payload implements is organized in three phases: acquisition phase,
during which the data to be processed are acquired through suitable input channel,
processing phase, during which the data are transformed according to an algo-
rithm, and the presentation phase during which the computed results are
committed through a suitable output channel.

15.3  �A Behavioral Fault Model for SEE in Processor Cores

To understand the concepts at the base of SIFT techniques it is worth analyzing the
effects of SEEs in a processor core by looking at their effects on the processor
behavior.

As far as persistent effects are considered, such as SEFI, as the processor core is
no longer able to execute software, it appears as unresponsive from the user point of
view. As a result, the processor behaves as it entered an endless loop.

As far as transient effects are considered, let’s analyze the information the
processor handles as suggested in [3]. By looking at this information, we can iden-
tify the following behavioral error models:

• Data error: it is defined as a logical error affecting the program data stored in the
processor core. Please note that this definition does not consider the location
where the data are actually stored: they may be stored either in the processor data
cache, or in its register file.

• Code error: it is defined as a logical error affecting one instruction of the pro-
gram’s code. The erroneous instruction may either be in the processor instruction
cache, or in the processor pipeline. Two types of code error can be defined.

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

222

–– Type 1: it is defined as a code error that modifies the operation the instruction
executes, not affecting the execution flow. Examples of this error model are
reported in Figs. 15.1 and 15.2.

–– Type 2: it is defined as a code error that modifies the expected program execu-
tion flow. Examples of this error models are reported in Figs. 15.3 and 15.4.

%% Error-free code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, R1

SUB R0, 1

BNZ LOOP

%% Erroneous code

MOV R0, 10

MOV R1, 1

LOOP: SUB R1, R1
SUB R0, 1

BNZ LOOP

Fig. 15.1  Code error of type 1. An ADD instruction is modified in a SUB instruction

%% Error-free code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, R1

SUB R0, 1

BNZ LOOP

%% Erroneous code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, [R1]
SUB R0, 1

BNZ LOOP

Fig. 15.2  Code error of type 1. The addressing mode of an ADD instruction is modified

%% Error-free code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, R1

SUB R0, 1

BNZ LOOP

%% Erroneous code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, R1

SUB R0, 1

BNZ elsewhere

Fig. 15.3  Code error of type 2. The target address of a branch is changed

%% Error-free code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, R1

SUB R0, 1

BNZ LOOP

%% Erroneous code

MOV R0, 10

MOV R1, 1

LOOP: ADD R1, R1

SUB R0, 1

BZ LOOP

Fig. 15.4  Code error of type 2. The branch condition of a conditional branch is changed

S. Esposito and M. Violante

223

15.4  �Error Detection Techniques

As far as persistent errors are considered, they can be detected resorting to monitoring
facilities that are independent from the processor core, which constantly monitors
the processor to identify whether it becomes unresponsive. For an extensive refer-
ence of these techniques the reader should refer to [4].

As far data and code errors are considered, Software Implemented Fault Tolerance
techniques can be used when hardware redundancy, entailing processor duplication/
triplication, is not applicable. This is typically the case of SoPCs where the proces-
sor core is embedded in the device and it cannot be replicated, unless the entire
SoPC is replicated.

SIFT techniques are a set of methods all having in common the goal of hardening
a processor against errors by modifying its software. SIFT techniques are subdi-
vided into two main categories:

• Data hardening techniques are a set of methods sharing the basic idea of pro-
tecting the data by duplicating both data and computations. Data handling tech-
niques are intended to cope with data errors and with code errors of type 1.

• Control flow check techniques are a set of methods sharing the goal of protecting
the processor against code errors of type 2, also known as Control Flow Errors
(CFE).

15.4.1  �Data Hardening Techniques

The duplication of computation introduced by these methods can be described at
different granularities:

• Instruction level duplication [5–7] entails the duplication of single instruction.
It can be implemented either at assembly level or at high level. Both solutions
usually employ special compilers to facilitate implementation. The basic scheme
is given in Fig. 15.5: both data and computations are duplicated and an error is
detected by comparing the replicas each time a read operation is performed. The
scheme can also applies to functions, in which case the prototype must be modi-
fied to allow replication of inputs and outputs. The main advantage of assembly
level instruction duplication is the ability to exploit instruction-level parallelism
implemented in modern architectures, but it also introduces code size and mem-
ory occupation overheads higher than high level instruction duplication [8].
Moreover, the latter can exploit special considerations like those used by the
authors of [9], allowing to reduce the number of instructions actually duplicated.

• Procedure level duplication basic idea is to duplicate call to a procedure rather
than each instruction in a program. In this approach, data to and from the
procedure are duplicated and an error is detected by comparing the replicas after
each read operation. Authors of [10] propose the Selective Procedure Call

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

224

Duplication technique, in which some procedures are modified to implement
instruction duplication, while others are left unmodified. In this approach:

–– A procedure with duplicated instructions can detect error, a procedure without
duplicated instructions must be called twice to detect errors.

–– A procedure without duplicated instructions cannot call a procedure with
duplicated instructions.

–– If a global variable is used in a procedure without duplicated instructions, the
global variable must be duplicated and a new version of the procedure must
be added which uses the duplicated global variable. This is in order to avoid
errors due to access to a global variable in two subsequent calls to the same
procedure.

• Program level duplication basic idea is to duplicate the whole computation.
Transient errors are detected by temporal redundancy, as for instance in a Virtual
Duplex System (VDS) scheme, represented in Fig. 15.6. The main drawback of
this solution is the overhead due to the repetition of tasks, but this overhead can
be mitigated by techniques exploiting multithreading [11] or multicore proces-
sors. In such technique two computations are executed in parallel, thus exploit-
ing spatial redundancy rather than time redundancy. VDS can also benefit from
Design Diversity techniques as proposed in [12, 13], both manual and automatic.

15.4.2  �Control Flow Check Techniques

In order to describe CFC techniques some important concepts must be introduced.
The first of such concepts is the Basic Block (BB). A BB is defined as a sequence of
instruction with one entry point and one exit point, meaning that no instruction of a

Fig. 15.5  High level instruction duplication

Fig. 15.6 VDS block diagram

S. Esposito and M. Violante

225

BB, except the first, can be the target of a jump instruction and no instruction of
a BB, except the last, can be a jump instruction. A program is composed of several
BBs and can be described by a Control Flow Graph (CFG). A CFG is an oriented
graph P={V, B} composed of a set of BBs V ={v1, v2, …, vn} and a set of branches
B = {bi1,j1, bi2,j2, …, bim,jm} connecting nodes as they are executed. For each BB vi are
defined a set of predecessors pred(vi) and a set of successors succ(vi) as:

	

v pred v b B

v succ v b B
k i ki

j i ij

Î Û Î

Î Û Î

()

()
	

Once the CFG of a program has been defined, executed branches can be classi-
fied as:

• Legal if the branch is in the CFG.
• Wrong if the branch is in the CFG but is taken unexpectedly.
• Illegal if the branch is not in the CFG.

Based on this classification, CFE can be classified in five types as suggested in [3]:

• Type 1 a wrong branch.
• Type 2 an illegal branch from the last instruction of a BB vi to the first instruction

of another BB vj not included in succ(vi).
• Type 3 an illegal branch from the last instruction of a BB to any instruction,

except the first, of any other BB.
• Type 4 an illegal branch from any instruction of a BB, except the last, to any

instruction of any other BB.
• Type 5 an illegal branch from any instruction of a BB to any instruction of the

same BB.

Many approaches have been proposed to address CFE detection. The basic idea
shared by all such techniques is that some check is added in order to grant that the
control flow executed up to the check is the correct one. This is achieved in different
ways, here are presented some of the main techniques.

�Path Identification

This solution was proposed in [14]. The CFG is partitioned in loop-free intervals and
to each interval is associated a table which in turn associates to the identifier of every
legal path entering the loop-free interval CIID a path predicate, i.e. a Boolean predicate
that must evaluate true at the beginning of the loop-free interval, and a next loop-free
interval identifier NIID. Checks are performed at loop-free interval level.

At the beginning of a loop-free interval the current path identifier RPI is used to
retrieve the correct row from the table. If RPI is not found in the table an error is
detected, else the path predicate is evaluated and an error is detected if it evaluates
to false. If the path predicate evaluates to true, NIID is compared to the id of the
current loop-free interval and an error is detected in case of mismatch. At the end of

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

226

described checks, RPI is initialized to 1 and it is then updated at the beginning of
each BB by multiplying it by the prime node identifier associated to the BB.

This technique is able to detect type 1, 2 and 3 CFEs, but it has a significant
memory-overhead (123.6 % in average) and a non-negligible performance overhead
(between 69.6 and 87 % in average). Moreover, detection at loop-free interval level
introduces error latency.

�ECCA

The Enhanced Control flow Checking using Assertion is an approach using asser-
tion in order to detect CFEs [15]. Two version of ECCA have been proposed, either
at high level, ECCA-HL, or at intermediate level ECCA-IL. While the first modifies
high level sources of the program, the second modifies an intermediate level, called
RTL, used by the GCC and exploits some characteristics of this level in order to
mitigate the performance overhead introduced by ECCA-HL.

Both versions perform a partitioning of the CFG, identifying some blocks, i.e.
sequences of BBs with one entry and one exit, and both versions use two assertions
called SET and TEST. Both versions assign to each block a Block identifier BID.
ECCA-HL uses the assertions to modify the value of a variable id, while ECCA-IL
works on two registers, r1 and r2. In both versions, the assertions are designed so that
if a CFE occurs, the SET assertion causes a divide-by-zero exception to be triggered
by the execution unit of the CPU, thus detecting the error. The SET and TEST asser-
tion for ECCA-HL are reported in Eq. 15.1, the SET assertions for ECCA-IL are in
Eq. 15.2 and the TEST assertions for ECCA-IL are in Eq. 15.3.

	

id
BID

id BID id

id NEXT id BID

=
´

= + -

(mod) (mod)

()

2

	

(15.1)

	

r r BID r BID

r
BID
r

r

1 1 2

1
1

1

1

2 1

= - ´ -

=
+
+

() ()

()
	

(15.2)

	

r r BID NEXT

r r BID NEXT
1 1 1

2 1 2

= - ´
= - ´
()

() 	
(15.3)

�YACCA

The Yet Another Control flow Check using Assertion solution uses assertions to
check for the correctness of the current control flow [16, 17]. To each BB vi are
assigned two identifiers I1i associated with the beginning of the BB and I2i

S. Esposito and M. Violante

227

associated with its end. A code variable is updated through a TEST assertion at the
beginning of each BB so that after the assertion code is equal to I1i. At the end of the
same BB, a SET assertion modifies again the code variable so that after the asser-
tion, code is equal to I2i. The TEST assertion at the beginning of a BB vi verifies
that code is equal to the I2j of a BB v pred vj iÎ () . The SET assertion at the end of
a BB vi verifies that the code variable is equal to I1i. In both assertions, the code
variable is updated as follows

	 code code M M= Å(&)1 2 	

M1 and M2 are both constants computed at compile time. M1 depends on
pred(vi), while M2 depends on both the expected value for code and pred(vi). Their
definition is different for the TEST and SET assertion, and are both reported in the
following equations, first for the TEST assertion, then for the SET assertion

	

M I V I

M I M I

M

j v pred v
j

j v pred v
j

j i

j i j i

1 2 2

2 2 1 1

= Å

= Å
Î Î

(&) ()

(&)

: () : ()

11 1

2 1 2

=
= ÅM I Ii i 	

YACCA is able to detect all faults of type 1,2,3 and 4. It also has a performance
overhead lower than ECCA-HL, since its assertions do not use multiplications and
divisions. The drawback is the addition of conditional branches that might be target
of CFE. This can be avoided by moving the check at the end of the program, at the
cost of introducing some error latency.

15.4.3  �Fault Tolerance

The techniques discussed so far are only capable of detecting a fault. To actually
implement fault tolerance in the system, some other measure must be taken. Main
techniques all share a basic idea that is Design Diversity [18].

Design diversity implies the development of two or more versions of the same
program in such a way that they cannot incur in common mode faults. Design diver-
sity usually prescribe that the different versions of the program are also designed
differently, for instance using different algorithms to perform the same task and
implemented differently, possibly by different programmers using different meth-
odologies and different compilers. The different versions produced are called vari-
ants. In the following, some of the main techniques exploiting design diversity are
briefly described.

• N-version programming [19, 20]. In this approach, several (N) variants of a pro-
gram are produced and run in parallel in the system. At fixed points in execution,

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

228

each version saves a state vector, called c-vector, and a decider compares all the
c-vectors looking for a consensus. This method has been used in several applica-
tions [21–26].

• Temporal Redundancy. The main approach exploiting the concept of temporal
redundancy is the Virtual Duplex System, already mentioned and represented in
Fig. 15.6. In [11] a kind of VDS is used in which two versions are used to detect
an error and a third version is used to recover.

• Recovery Block [20]. Several variants are produced, but at any given time only one
is running in the system. A decider is in charge of performing an acceptance test on
the outputs of the active variant. If the acceptance test is failed, the decider selects
one of the alternate and executes it starting from a safe state previously saved from
the active variant. Many methods exist to design the acceptance test [27].

• Algorithm Based Fault Tolerance [28, 29]. This method uses mathematical
proprieties of the algorithm implemented in the system to perform both detec-
tion and recovery. The first method proposed was used to implement fault toler-
ant matrices operations and then a method was introduced to implement fault
tolerant FFT.

15.4.4  �Hybrid Methods

Besides the methods described so far in this section, which are purely software,
several methods have been proposed to implement fault tolerance through a coop-
eration of hardware and software. This is achieved chiefly by adding special
purpose hardware to the system called a watchdog [30]. Watchdogs are used to
control the system behavior and to detect error situations. There are several kinds of
watchdogs, the simpler ones are essentially timers triggering an interrupt when the
CPU fails to reset them or if the watchdog does not perceive any activity on the
system bus within a given timeout. The system can then recover through the inter-
rupt service routine associated to the watchdog interrupt. More complex watchdogs
are properly called watchdog processors and can implement several techniques.
These are used to implement CFC techniques via an external hardware, thus reliev-
ing the CPU from the task of checking for CFEs. Several techniques have been
proposed using watchdogs timers or watchdog processors using assertions or
memory access checks or signatures [4, 31–33].

15.5  �Dealing with SEE in Processors Cores in SoPCs

We propose a reference architecture targeting both the persistent and the transient
effects provoked by SEEs, and in particular:

• Persistent effects: As persistent effects (e.g., SEFIs) inhibit the capability of
processor cores to run programs, a watchdog [30] is needed that sits beside the

S. Esposito and M. Violante

229

processor and that is capable to operate autonomously. The watchdog is
responsible to recognize that the processor no longer executes the program, and
to initiate the predefined recovery action. Moreover, the watchdog implements
advanced features to support the detection of data and control-flow errors, as
detailed in the following section.

• Transient effects: redundancy is proposed to deal with transient effects, and in
particular:

–– Instruction redundancy is employed to detect data errors by replicating each
computation twice and comparing the two results. In case of mismatch indi-
cating a transient error is detected, the predefined recovery action is initiated.
In our architecture we propose to adopt program-level redundancy, as detailed
in the following section. As far as error detection is concerned, the watchdog
includes a memory comparison feature that is responsible for comparing the
results produced by the redundant execution and for signaling mismatches to
the platform computer.

–– Control-flow checking is employed to identify whether SEEs corrupted the
expected sequence of instructions composing the program. Instructions are
inserted in the program to communicate with the watchdog; each
communication instruction transmits to the watchdog a pre-computed key-
word that is function of the location of the instruction in the program control-
flow graph [34]. The watchdog checks whether the expected sequence of
keywords defined on the basis of the program control-flow graph is received;
in case an unknown sequence or an out-of-sequence keyword is received, the
predefined recovery action is initiated.

The proposed architecture for the SoPC-based payload computer is schematized
in Fig. 15.7. The payload computer is composed of a SoPC and an off-chip memory
(I/O interfaces that may be needed for specific applications are not shown here for
the sake of simplicity). The SoPC embeds one processor IP core including its own
memory (e.g., the L1/L2 cache memory, if any, and possibly SRAM memory for
small-footprint applications), and the configurable fabric, where some resources are
used to implement the watchdog. The interface between the processor core and the
watchdog is a low-speed bus such as the AMBA peripheral bus (APB) or general
purpose I/O (GPIO). Although this appears a limitation to the monitoring capabili-
ties of the watchdog, it must be underlined that in SoPCs the interface between the
processor and its memory is seldom accessible. Therefore, it is not possible to
directly observe the processor bus as proposed for example in [35].

The watchdog features a second interface that connects it directly to the external
memory. This interface is exploited to access the two copies of the computed results,
to provide a hardware-implemented consistency check of results. Upon error detec-
tion, the watchdog signals the platform computer the need for initiating the
predefined recovery action through the Error Detection Interrupt line.

In our architecture the payload computer is designed adopting cold stand-by
sparing to mitigate the risk of unavailability due to permanent failures. The platform

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

230

Fig. 15.7  Reference architecture

computer manages the switch between primary payload and the redundant payload
according to the Finite State Machine shown in Fig. 15.8, which illustrates the
predefined recovery action. The payload computer can be in one of three possible
states:

• Healthy state where the primary payload is powered on and the redundant is
powered off;

• Recovery state where the primary payload is off and the redundant is on
• Faulty where both payloads are powered off.

The system enters initially in the healthy state; each time a fault is detected, the
platform computer resets the payload. When the number of detected faults exceeds
a given threshold, the platform computer switches to the recovery state, powering
off the primary payload and powering up the redundant payload. In the recovery
state each detected fault leads to a payload reset, until a given threshold is reached,
which forces the system entering in the faulty state where both payloads are
powered off.

S. Esposito and M. Violante

231

15.5.1  �Watchdog Design for the SoPC

The watchdog our architecture adopts is implemented in the SoPC configurable
fabric, and its components are depicted in Fig. 15.9:

• Memory comparison feature: its purpose is to access the off-chip memory stor-
ing the results of the program the processor core executes to compare the outputs
of the two instances of the program. As program-level redundancy is exploited,
two identical instances of the program will be executed, producing two copies of
the output results. Upon completion of the two executions, the watchdog is trig-
gered to read from memory the two copies of the outputs and compare them.
In case of mismatch the Error Detection Interrupt is generated. To minimize the
duration of the memory comparison, the two program replicas compute two
32-bit signatures of their respective output results, which are compared through
the memory comparison feature.

• Processor interface: its purpose is to establish the communication between the
processor core and the watchdog, to receive the keywords used to trace the
control flow. The interface is composed of two channels, one for each replica of
the program obtained according to the program-level duplication.

Healthy

[Reset]/{i=0}
[Error detected && i < N]/{reset payload; i++}

Recovery

[Error detected && i > N]/{power off primary; power on secondary; i=0}

Faulty

[Error detected && i < N]/{reset payload; i++}

[Error detected && i > N]/{power off secondary}

Fig. 15.8  Recovery action concept

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

232

• Watchdog controller: its purpose is to orchestrate all the operations of the
watchdog components, and in particular:

–– It monitors the evolution of the Program Specific FSM as detailed in the
following.

–– Upon detecting the program completion, it triggers the Memory comparison
feature.

–– It keeps a counter to measure the time since the last reception of a keyword
from a program replica. In case a predefined threshold is reached the Error
Detection Interrupt is triggered.

• Program specific FSM: its purpose is to check the coherency of the keyword
sequence with the expected program execution flow.

All the components of the watchdog, but the Program specific FSM, are program-
independent, so they have to be designed once when the interfaces with the proces-
sor and the memory are selected. Conversely, the Program specific FSM is
synthesized ad-hoc, starting from the definition of the expected sequence of key-
words to be received from each program replica. In our current implementation each
keyword is an 8-bit unique identifier Ki defined by the programmer that is respon-
sible to partition the program in chunks, to assign a keyword to each program chunk,
and to place an instruction at the beginning of each program chunk to send the
associated keyword to the watchdog. During program execution, each program
replica sends to the watchdog a sequence {K0, K1, …., Kn} of keywords according
to the programmer decisions, being Kn the keyword indicating the program execu-
tion is completed. The Program specific FSM implements a finite state machine

Fig. 15.9  Architecture of the watchdog for SoPC

S. Esposito and M. Violante

233

whose states space is {Reset, K0, K1, …., Kn}, and where each state transition
happens either from Reset state to state K0, or from state Ki to K(i+1) % (n+1). Each time
a new keyword Ki

j is received from program replica j, the following operations are
performed:

• The Program specific FSM associated to the program replica makes a state tran-
sition reaching state Ke

j;
• The Watchdog controllers checks whether K Ki

j
e
j= . In case of mismatch the

Error Detection Interrupt is activated.

15.5.2  �Program-Level Duplication for the SoPC

The basic idea of program-level duplication is to execute twice the program the
computer implements, and to vote among the produced results. Transient SEEs
affecting the computer can be detected provided that:

• The program execution has no side effect on the input data it processes, so that it
can be repeated obtaining the same result.

• Each execution instance is independent from the other, i.e., the operations per-
formed by each instance cannot interfere with the outcomes of the other instance.

To fulfill the above requirements, the programmer could exploit the memory
protections features the adopted processor provides, which consists in either a hard-
ware memory protection unit, or a hardware memory management unit. Although
viable, this solution has some drawbacks:

• It lacks portability: being the protection mechanism processor-dependent, port-
ing the same application to different platforms may require substantial rework.

• It is error-prone: being the programmer responsible for memory protection, an
intensive validation is required to guarantee that the program is free of bugs
introduced when hand-coding the protection scheme.

To overcome the above drawback, a different solution can be exploited, which
resorts to a software layer, called hardware abstraction layer (HAL), between the
application software and the hardware, which provides memory protection services.
If the HAL exposes a well-define programming interface that the software exploits,
the application becomes hardware-independent, increasing its portability and reduc-
ing the development/validation costs:

• The HAL needs to be implemented and validated once for a given hardware
architecture. Then it can be reused as is, without the need for a new validation at
each new project, thus saving development/validation costs.

• When the application software has to be ported on new hardware architectures,
only the HAL must be adapted, thus minimizing development costs.

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

234

In our architecture we assume the availability of a HAL that provides the
following services:

• Memory partitioning. Each program instance is assigned to a dedicated memory
area. The memory areas assigned to the two instances are not overlapping. When
a program instance is executed, any attempt to access to memory area different
from the assigned one results in an Error Detection Interrupt.

• Resource partitioning. Each program instance is assigned to a dedicated I/O
area. The I/O areas assigned to the two instances are not overlapping. When a
program instance is executed, any attempt to access to I/O area different from the
assigned one results in an Error Detection Interrupt.

• Time partitioning. The processor time is divided in time slots, and each program
instance is assigned to a set of time slots. Each program instance is preempted
from the processor at the end of its time slot, thus guaranteeing to each program
instance a fair access policy to the processor.

Being the HAL a piece of software running on the same processor that runs the
application software, its execution can be affected by SEEs. However, due to the
nature of operations the HAL performs we can expect that any SEEs will lead to
effects detected by the watchdog our architecture exploits, an in particular:

• In case the SEE affects the memory-partitioning scheme by altering the configu-
ration of the memory protection unit or the memory management unit, we expect
a misalignment of the output memory areas produced by the two instances, lead-
ing to a error detection by means of the memory comparison feature the watch-
dog provides.

• In case the SEE affects the resource-partitioning scheme, we expect that an
incorrect sequence of keyword is sent to the watchdog, resulting in error
detection.

• In case the SEE affects the time partitioning, we expect that either one instance
is not timely scheduled, leading to a timeout in the watchdog, or incorrectly
scheduled, leading to a wrong keyword sequence issued to the watchdog, leading
again to error detection.

15.6  �A Use Case

To assess the proposed architecture, we considered a use case where a Zynq SoPC
device is used to build a payload computer for handling data coming from a camera
that captures 1024 × 1024 8-bit per pixel images. The application the payload com-
puter executes is a lossless compression software based on an algorithm developed
at the European Space Agency: the RICE compressor [36].

RICE compressor exploits the Rice coding that derives from Golomb codes.
In Golomb codes, a set of data is encoded by optimally finding a divisor for the
set, performing the division and encoding quotient and remainder of such division.

S. Esposito and M. Violante

235

The quotient is encoded in a particular way called unary encoding, while the
remainder is usually encoded in binary. In unary, a number is encoded as a sequence
of equal symbols, usually delimited by a different symbol. Rice codes are a subset
of Golomb codes where the divider is constrained to be a power of two. Even though
this limits the efficiency of the coding, since the divider can be sub-optimal, the
coding procedure requires less computational effort, since divisions by powers of
two can be easily implemented by shift operations. However, unary encoding is
only convenient for compression of an image if the number of bits it takes is less
than the number of bits one pixel is normally encoded on, plus the number of bits
needed to encode the remainder. For instance, if the original image is represented
with 8 bit per pixel, encoding 10 in unary would result in an overhead of 3 bits
instead of a reduction. The problem of avoiding a coding overhead that would result
in an encoded image bigger than the original one is solved in the RICE compress by
encoding the entropy of the image to be compressed. A measure of such entropy is
derived using a prediction scheme. The RICE algorithm exploits a static prediction
scheme where the value of a pixel is predicted to be the same as the one of the pixel
before in a sequential scan of the image. The algorithm works as follow:

	1.	 The image is subdivided in blocks of fixed length.
	2.	 The values in the block are checked:

	–	 If the values are all zero, the block is encoded in a special way to reduce size.
See [36] for details.

	–	 Otherwise the predictions for each pixel in the block is computed, the optimal
Rice divisor for the block is computed, and the block is encoded using Rice
coding with the identified divisor

We initially developed an implementation of the RICE compression algorithm in
C code for the Zynq SoPC, which account for 399 lines of C code. When compiled
for the Cortex A9 processor embedded in the Zynq SoPC, the application occupies
about 2 Mbytes for the input and output data buffers, and about 14 Kbytes for the
binary code.

We then implemented the proposed architecture adopting the PikeOS real-time
operating system as HAL, which satisfies the requirements we stated in the previous
section, and also guarantees a minimal area/performance footprint.

Using PikeOS, we developed a software architecture containing three partitions
(a partition identifies one program and its memory, resource and timing partitioning
definition):

• RICE instance 0, it is the first instance of the RICE compressor, which is assigned
to the core 0 of the Cortex A9 the Zynq includes.

• RICE instance 1, it is the second instance of the RICE compressor, which is
assigned to the core 1 of the Cortex A9 the Zynq includes.

• Coordinator, it is in charge or enabling the execution of the two instances of the
RICE program, and to communicate via the serial debug console the result of the
memory comparison when both RICE instances completed their task.

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

236

The RICE has been subdivided in 16 chunks, and the watchdog as been synthe-
sized to receive 16 couples of 8-bit keywords. The code of the two RICE instances
has been enriched with the instructions to communicate with the watchdog. As far
as the watchdog is concerned, its current implementation takes less than 2 % of the
Zynq device we used (Zynq 7Z020).

As expected, the proposed software architecture introduces some overhead with
respect to the initial implementation, and in particular:

• As far as the memory occupation is considered, the data memory is increased to
about 4 Mbytes as two instances of RICE are used. The code memory is increased
to about 35 Kbytes as two instances of the RICE code are placed in memory along
with the coordinator partitions and the PikeOS run-time software (scheduler,
memory manager, I/O manager, and inter-process communication manager).

• As far as the execution time is considered, as we exploit both the Cortex A9
cores inside the Zynq SoPC, we recorded a time overhead equal to about 25 % of
the execution time of the original RICE application. This figure accounts for the
rime needed to run the PikeOS run-time software, to send the keywords to the
watchdog during RICE execution, and to perform memory comparison at the end
of the execution of the application software.

We performed a preliminary analysis of the robustness of the proposed architec-
ture by injecting faults in the processor register file. The injected faults either trig-
gered the Error Detection Interrupt, or produced no visible effect (i.e., both the
instances of RICE produced the expected results), thus suggesting the robustness of
the proposed architecture.

15.7  �Conclusions

SoPCs are very appealing for space applications as they allow integrating an entire
system comprising high-performance processors and custom hardware accelerators
on a single device, thus contributing in saving mass, area, and power. However, in
order to deploy successfully SoPCs in space application, being these devices not
intended for being used in radioactive environments like space, suitable counter-
measures are needed to mitigate the effects of radiation-induced errors.

In this chapter we presented an overview of existing techniques for coping with
radiation-induced errors, focusing on soft errors affecting the processor cores the
SoPCs embed, and discussing a number of Software Implemented Fault Tolerance
techniques. Moreover, a novel architecture is presented specifically designed for the
processors embedded into SoPCs, which makes use of a combination of know tech-
niques: a custom watchdog is synthesized and mapped to the SoPC reconfigurable
fabric to cope with persistent SEE effects, while program-level instruction redun-
dancy is exploited to cope with data and code errors. An implementation of the
proposed architecture is finally discussed where an image compression algorithm
is implemented using the Cortex A9 processor a Zynq SoPC offers. From the

S. Esposito and M. Violante

237

experimental results we gathered, using the Sysgo PikeOS embedded hypervisor
are hardware abstraction layer, we observed a memory overhead of about 100 %, in
line with the expectation as we employ duplication, and a time overhead of about 25 %.

Acknowledgement  The work described in this chapter has been developed in the frame of the
project entitled “ECM2: Embedded Multi-Core systems for Mixed Criticality applications in
dynamic and changeable real-time environments” under the ARTEMIS Joint Undertaking action
number 621429.

References

1. Hamblen JO, Hall TS (2006) Using system-on-a-programmable-chip technology to design
embedded systems. Int J Comput Appl 13(6):142–152

2. Ma TP, Dressendorfer V (1989) Ionizing radiation effects in MOS devices and circuits. Wiley,
New York. ISBN 978-0-471-84893-6

3. Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M (2006) Software implemented
hardware fault tolerance. Springer, New York

4. Mahmood A, McCluskey EJ (1988) Concurrent error detection using watchdog processors—a
survey. IEEE Trans Comput 37(2):160–174

5. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M (1999) Soft-error detection
through software fault-tolerance techniques. International symposium on defect and fault
tolerance in VLSI systems, 1999, IEEE, pp 210–218

6. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M (2001) A source-to-source
compiler for generating dependable software. In: Proceedings of the first IEEE international
workshop on source code analysis and manipulation, 2001, IEEE, pp 33–42

7. Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Sonza Reorda M, Violante M (2000)
Experimentally evaluating an automatic approach for generating safety-critical software with
respect to transient errors. IEEE Trans Nucl Sci 47(6):2231–2236

8. Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by duplicated instructions in super-
scalar processors. IEEE Trans Reliab 51(1):63–75

	 9.	Benso A, Chiusano S, Prinetto P, Tagliaferri L(2000) A C/C++ source-to-source compiler for
dependable applications. In: Proceedings international conference on dependable systems and
networks, IEEE, pp 71–78

10. Oh N, McCluskey EJ (2002) Error detection by selective procedure call duplication for low
energy consumption. IEEE Trans Reliab 51(4):392–402

11. Reinhardt SK, Mukherjee SS (2000) Transient fault detection via simultaneous multithread-
ing. In: Proceedings of the 27th international symposium on computer architecture, pp 25–36

	12.	Echtle K, Hinz B, Nikolov T (1990) On hardware fault detection by divers software. In:
Proceedings of the 13th international conference on fault-tolerant systems and diagnostics,
Bulgarian Academy of Science

	13.	Engel H (1996) Data flow transformations to detect results which are corrupted by hardware
faults. In: Proceedings of the high-assurance systems engineering workshop, 1996, IEEE,
pp 279–285

	14.	Yau SS, Chen F-C (1980) An approach to concurrent control flow checking. IEEE Trans Softw
Eng 6(2):126–137

15. Alkhalifa Z, Nair VS, Krishnamurthy N, Abraham JA (1999) Design and evaluation of system-
level checks for on-line control flow error detection. IEEE Trans Parallel Distrib Syst
10(6):627–641

16. Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M (2003) Soft-error detection using
control flow assertions. In: Proceedings of the 18th IEEE international symposium on defect
and fault tolerance in VLSI systems, IEEE, pp 581–588

15  Mitigating Soft Errors in Processors Cores Embedded in System-on…

238

17. Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M (2005) Improved software-based
processor control-flow errors detection technique. In: Proceedings of the annual reliability and
maintainability symposium, IEEE, pp 583–589

18. Avizienis A, Laprie J-C (1986) Dependable computing: from concepts to design diversity.
Proc IEEE 74(5):629–638

	19.	Avizienis A et al (1985) The n-version approach to fault-tolerant software. IEEE Trans Softw
Eng 11(12):1491–1501

	20.	Randell B (1975) System structure for software fault tolerance. IEEE Trans Softw Eng
1(2):220–232

	21.	Price CE (1991) Fault tolerant avionics for the space shuttle. In: Proceedings of the 10th IEEE/
AIAA digital avionics systems conference, IEEE, pp 203–206

	22.	Briere D, Traverse P (1993) Airbus A320/A330/A340 electrical flight controls—a family of
fault-tolerant systems. In: Digest of papers of the twenty-third international symposium on
fault-tolerant computing, IEEE, pp 616–623

23. Riter R (1995) Modeling and testing a critical fault-tolerant multi-process system. In: Digest
of papers of the twenty-fifth international symposium on fault-tolerant computing, IEEE,
pp 516–521

	24.	Hagelin G (1998) Ericsson safety system for railway control. Software diversity in computer-
ized control systems, Springer, pp 11–21

	25.	Kantz H, Koza C (1995) The Elektra railway signaling system: field experience with an
actively replicated system with diversity. In: Digest of papers of the twenty-fifth international
symposium on fault-tolerant computing, IEEE, pp 453–458

26. Amendola A, Impagliazzo L, Marmo P, Mongardi G, Sartore G, Trasporti A (1996) Architecture
and safety requirements of the acc railway interlocking system. In: Proceedings of the IEEE
international computer performance and dependability symposium, IEEE, pp 21–29

	27.	Echtle K, Hinz B, Nikolov T (1990) On hardware fault detection by diverse software. In:
Proceedings of 13th international conference on fault-tolerant systems and diagnostics,
pp 362–367

28. Abraham JA, Huang K-H (1984) Algorithm-based fault tolerance for matrix operations. IEEE
Trans Comput 100(6):518–528

29. Abraham JA, Jou J-Y (1988) Fault-tolerant FFT networks. IEEE Trans Comput
37(5):548–561

30. Connet JR, Pasternak EJ, Wagner BD (1972) Software defenses in real-time control systems.
In: Digest of the 1972 international symposium on fault-tolerant computing, pp 94–99

31. Namjoo M, McCluskey EJ (1995) Watchdog processors and capability checking twenty-fifth
international symposium on fault-tolerant computing, highlights from twenty-five years,
IEEE, p 94

	32.	Saib S (1979) Distributed architectures for reliability. In: Proceedings of the AIAA computers
in aerospace conference II, Los Angeles

33. Mahmood A, Ersoz A, McCluskeym EJ (1985) Concurrent system-level error detection using
a watchdog processor. In: IEEE proceedings of the 15th international test conference

	34.	Allen FE (1970) Control flow analysis. SIGPLAN 5(7):1–19
35. Bernardi P, Bolzani LMV, Rebaudengo M, Sonza Reorda M, Rodríguez-Andina JJ, Violante

M (2006) A new hybrid fault detection technique for systems-on-a-chip. IEEE Trans Comput
55(2):185–198

36. Caleno M, Fertin D, Giulicchi L, Monteleone C (2007) On-board data reduction. ESA report
S2-EST-RP-XXXX, 5 Nov 2007

S. Esposito and M. Violante

239© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_16

 Chapter 16
 Soft Error Mitigation in Soft-Core Processors

 Antonio Martínez-Álvarez , Sergio Cuenca-Asensi , and Felipe Restrepo-Calle

 Abstract This chapter aims to present different approaches and techniques available
in literature regarding the fault mitigation on soft-core processors, with an especial
emphasis on those ones involving hardware/software hybrid-based solutions.

16.1 Introduction

 Every advance in lithography technology is usually followed by a technological
shrinking of electronic components which implies important improvements in
microprocessors, mainly the remarkable increase of their performance. Nevertheless,
this trend also reports adverse consequences mainly due to the narrower voltage
source level and noise margins; in fact, this induces electronic devices to be more
susceptible to transient faults induced by radiation [1 – 3] and fi nally having less reli-
able microprocessors. The term transient fault is used to defi ne intermittent faults
which are caused by external events, as those ones induced by radiation. Although
these faults do not provoke a permanent damage, they may cause incorrect circuit
behavior by: altering a signal transfer or altering a stored value [2]. In this way, it is
clear that these faults can affect seriously the behavior of a given system [4].

 This chapter is focused on the type of radiation-induced transient faults known as
 Single Event Upset (SEU), which is characterized by the logic state alteration of a sin-
gle memory element in the system [5]. SEUs were considered in the past as a concern
only for aerospace applications, where they are more frequent. However, in recent
decades, this problem has been extended to electronic circuits operating in the atmo-
sphere [6], and even at ground level [7], and thus, this issue have become a major
source of system failures. Summarizing, radiation-induced transient faults have become
a major source of system failures of electronic products even at ground level [6 , 8].

 A. Martínez-Álvarez (*) • S. Cuenca-Asensi
 Department of Computer Technology , University of Alicante , Alicante , Spain
 e-mail: amartinez@dtic.ua.es; sergio@dtic.ua.es

 F. Restrepo-Calle
 Department of Systems and Industrial Engineering , Universidad Nacional de Colombia ,
 Bogotá , Colombia
 e-mail: ferestrepoca@unal.edu.co

mailto:amartinez@dtic.ua.es
mailto:sergio@dtic.ua.es
mailto:ferestrepoca@unal.edu.co

240

16.1.1 The Necessity for Fault Mitigation

 The need to mitigate radiation-induced transient faults has become evident in sev-
eral reports published by technical committees around the world, which defi ne
detailed qualifi cation requirements that electronic components must meet for their
use. Some examples of which are among others:

• ESA PSS-01-609 (The Radiation Design Handbook) [9] for aerospace
application

• DO-254 (Design Assurance Guideline for Airborne Electronic Hardware) [10]
and IEC/TS 62396 (Process Management for Avionics — Atmospheric radiation
effects) [11] for avionics

• MIL-HSBK-817 (System Development Radiation Hardness Assurance) for
 military systems [12],

• AEC-Q100 (Stress Test Qualifi cation for Integrated Circuits) for automotive
industry [13]

16.1.2 Possible Approaches

 Three main different approaches to mitigate radiation-induced transient faults can
be distinguished: in one hand, we can implement several pure software or hardware
solutions, and in the other hand, we may select a hybrid hardware/software approach.
Of course, we are restricted to improve our system in those places where it is prac-
ticable in relation to the inherent technological restrictions of the system. For exam-
ple, we cannot apply hardware redundancy in the internal resources of a hard-core
processor, but we may, if possible, take advantage of external built-in or ad-hoc
hardware resources to improve reliability in some way. This chapter focuses in
those techniques and approaches regarding FPGA technology, the common sub-
strate to implement soft-cores.

16.2 FPGA as Technological Platform for Soft-Cores

 The present trend to integrate in the same encapsulated an ever increasing number
of different computing units and resources has coined the term of System on Chip
(SoC). The computing performance and functionalities is a growing tendency as
well. However, these chips, heterogeneous in nature, suppose a new challenge if we
are interested in designing a fault tolerant application. FPGA technology not only
offers a possible implementation resource of SoC, but also permits the exploration
of a rich design space focusing in fault tolerance systems.

 FPGA vendors offer three main technological implementations of these chips:
SRAM-based FPGA, Flash-based FPGA, and antifuse-based FPGA.

A. Martínez-Álvarez et al.

241

 SRAM-based FPGAs are currently the most demanded FPGA technology due
mainly to its performance, convenient costs, and its inherent reconfi guration capa-
bilities. Indeed, the confi guration memory is implemented as a SRAM memory, and
thus, it allows any number of reconfi gurations actions. Regarding fault sensibility,
however, this technology presents a serious drawback because of the low immunity
to radiation effects of the SRAM memory. Just take into account that a SEU affect-
ing a confi guration bit may modify logic functions, connections and may affect the
normal functioning of the system (SEFI). Bits from confi guration memory suppose
up to 95 % of the total bits susceptible suffering a SEU in a SRAM-based FPGA.
Accordingly, it is necessary to protect from SEEs not only the design, but also the
confi guration memory.

 Flash-based FPGAs have also the quality of being reconfi gurable in spite of
being based on a non-volatile type of memory. Moreover, the Flash cell presents
immunity to radiation caused by heavy ions.

 Antifuse-based FPGAs have the characteristic of being one-time programmable
devices, because they are confi gured by means of antifuses. However they present
immunity to SEEs.

 In the case of having Flash-based or Antifuse-based FPGA, it is only necessary
to protect from SEEs only the design, and no the confi guration memory as in the
case of SRAM-based FPGA.

16.2.1 Alternatives

 We can fi nd different possible alternatives of mitigating the radiation effects in an
FPGA-based system:

• Application of solutions based on the improvement of the fabrication technology
and the internal architecture by using radiation tolerant resources. These FPGA
chips are known as rad-hard FPGAs. Although cancelling the effects of SEUs,
these devices present less performance than non rad-hard FPGAs, have poorer
integration capabilities and are too costly in many cases. In fact, its use is com-
monly limited to mission critical systems. As examples of rad-hard FPGA we
can fi nd Actel RTAX FPGAs [14], and Xilinx Virtex-5QV [15].

• Some authors have presented system level approaches consisting in the applica-
tion of redundant devices using double or triple FPGAs together with majority
voters commanding the system output [16].

• Design level hardening by applying redundancy in the HDL (Hardware Description
Language) implementation of a system. Redundancy may be applied to harden
the user logic, embedded memories, multiplexors, registers, etc. [17]. With this
alternative, competitive commercial FPGAs can be used at a relative low cost. The
implementation can be either manual, which is more costly and more prone to
design errors, and automatic by mean of tools such as Mentor Precision Rad -
 Tolerant [18], Synopsys Synplify Pro [19] and Xilinx TMR Tool (XTMR) [20].

16 Soft Error Mitigation in Soft-Core Processors

242

• Recent works propose altering the task of place and route in the implementation
of an FPGA-based system in such a way to make the fi nal result more reliable
(e.g. lowering the multiple bits upsets in a given TMR module) [21 , 22].

• To minimize the problems related to the confi guration memory of SRAM-based
FPGAs, it is common using a periodic device reconfi guration or scrubbing . The
following two main fl avors of scrubbing come to scene:

 ◦ Bitstream scrubbing confi guration : reconfi guring the FPGA as a rate higher
than the expected fault frequency.

 ◦ Bitstream repair confi guration or advanced scrubbing : A read-back process
calculates the CRC of the bitstream at a certain rate and corrects it using partial
reconfi guration in case of mismatching CRCs [17].

 Other works to improve the fault tolerance in SRAM-based FPGAs can be con-
sulted in [17 , 23 – 26].

16.3 Hardware Approaches

 Among the protection techniques based on adding some kind of hardware redun-
dancy, we can distinguish two main approaches: those ones based on providing
systems with redundant information for protecting memories, and those ones based
on mitigating faults by means of custom modifi cations of the circuit logic, arranging
from a logic gate level, up to a system level architectural strategy.

16.3.1 Memory Protection Based on Information Redundancy

 Although memory protection is not under the scope of this chapter it is worth men-
tioning that these devices represent a ubiquitous resource in practically every mod-
ern computing system. Their inherent high integration density makes them
signifi cantly susceptible to ionizing particles causing SEEs , and therefore they are
the fi rst candidate to be protected when designing a fault tolerant system [27].

 Whereas permanent faults in memory can be solved by the so called Built - In Self -
 Repair techniques (BISR) [24], this procedure is not applicable to radiation- induced
transient faults. In those cases, Error Detection and Correction Codes (EDAC), that is,
information redundancy techniques to mask these faults must be applied (see [28 , 29]).

16.3.2 Memory Protection Using the Circuit Logic

 Several solutions based on the use of redundant hardware to protect the circuit logic
can be implemented. At the less possible level of actuation (transistor level), we can
fi nd proposals to harden the memory cells by design, whereas at a higher level, that

A. Martínez-Álvarez et al.

243

is, Logic Gate Level, Register Transfer Level (RTL) or even at system level, some
redundancy can also be applied during the system designing.

 At the Logic Gate Level, different circuit fl avors as: microprocessors, memo-
ries, ASICs or reprogrammable circuits among others, can be protected by replac-
ing the usual memory cells (SRAM cells, fl ip-fl ips, latches) by their respective
hardened versions. This task can be achieved by modifying the cell layout , as in the
case of scaling its VLSI design to increase the minimal necessary electric charge
(critical charge) to switch every gate node. Other approaches are based on harden-
ing the cell architecture/structure. As an example, the reference [30] presented a
hardened by design SRAM cell (Dual Interlocked Cell —DICE), which is tolerant
to any transient fault occurring in a single node. The main drawbacks of these
approaches consist in the overheads due to the increase of silicon area and the loss
of gate performance. Note that these techniques are not applicable to FPGA
technology.

 Working at RTL, the common strategies to accomplish the protection con consist
in replicating logic structures (or modules) from the circuitry to obtain redundancy.
Thus, we can have DMR (Double Modular Redundancy) to detect faults in the case
of mismatched results, or TMR (Triple Modular Redundant) for detection and cor-
rection capacities by using a majority voter [31]. More examples applying these
principles with a different granularity can be consulted in [16 , 32 , 33].

 Temporal redundancy can also be used to detect and mask transient faults. This
technique requires much less hardware modules for its implementation, and can be
implemented by either repeating a calculus in different time instants or [34 , 35], or
registering output data in different time instants without the need for repeat any
calculus [36 , 37].

 Although all presented techniques suppose effective ways of protecting the
memory by altering the logic circuitry, in many cases the generated overheads in
silicon area, power and performance are excessive and discourage the designer from
implementing them.

16.4 Software Approaches

 For those systems based on or having microprocessor parts, software redundancy
can be used to achieve fault tolerance. This strategy supposes logically the use of no
new hardware or any hardware modifi cation whereas permits a high level of fl exi-
bility when detecting or correcting transient or permanent faults at a relative low
cost of implementation (because it is possible to use COTS— Commercial Off - The
Shelf components).

 It is a fact that to obtain a fault tolerant system we have to detect and correct
faults. However these two tasks are easily decoupled because they can be imple-
mented independently. In addition, the relative low occurrence of faults makes the
correcting routines to be executed at a lower rate than detecting routines. This is the
reason why fault tolerance literature was centered from the beginning in optimizing
detecting techniques which are supposed to be executed continuously.

16 Soft Error Mitigation in Soft-Core Processors

244

 We can distinguish two types of effects of faults affecting the software executed
by a microprocessor-based system; those affecting the control fl ow of a program
(i.e. a fault changing the Program Counter or even an operation code at a given time
instant), and those affecting the data within a program. Several techniques exit to
face these two effects:

16.4.1 Techniques to Protect the Control Flow of a Program

 The so called Control Flow Errors or CFEs are those software errors driving the
processor to execute an unexpected instruction. Common testing control fl ow tech-
niques are based on splitting the program in its basic blocks and inspecting the
execution fl ow among them. A program basic block is a set of consecutive instruc-
tions without any jump or call instruction except possibly the last one in the set, and
without any instruction being the destination of an external jump or call instruction
with the exception of the fi rst instruction of the set. The control fl ow of a program
can be depicted using a Control Flow Graph (CFG), which is a directed graph with
nodes representing the basic blocks, and every transition representing the jumps
among basic blocks. Figure 16.1 shows the CFG of a hypothetical program having
fi ve basic blocks with a different number of instructions (I i).

 The basic of the techniques to protect the control fl ow are based on building the
CFG, and identifying univocally every node with a signature. In this way, at the very
end of every node execution the correctness of the signature is checked to detect a
fault. Techniques working in this way are known as Signature Monitoring
Techniques .

 There are fi ve different types of possible faults affecting a CFG. Note that the
fi rst four take place between different nodes, whereas the last one is about the
same node:

• Faults causing an illegal jump from the last instruction of a node up to the begin-
ning of another one.

• Faults causing a legal jump from the last instruction of a node up to the beginning
of an incorrect one.

Node 1: {I1,I2,I3,I4,I5}
Node 2: {I6,I7,I8}
Node 3: {I9,I10}
Node 4: {I11,I12,I13}
Node 5: {I14}

Node 1

Node 2

Node 5

Node 3

Node 4

 Fig. 16.1 Example of a control fl ow graph for ah hypothetical program

A. Martínez-Álvarez et al.

245

• Faults causing a jump from the last instruction of a node to any instruction of
another one with the exception of the fi rst one.

• Faults causing a jump from any instruction of a node except the last one, to any
instruction of another one with the exception of the fi rst one.

• Faults causing a jump from any instruction of given node except the last one, to
any instruction of the same node.

 There are several proposals for mitigating control fl ow faults depending on the
different use of resources involved, the induced overheads (mainly overheads in
time and program size) and the type of fault affection the CFG under consideration.
In [38] a quite exhaustive study of the most representative techniques can be
 consulted. Some of them merit being mentioned:

• In [39], a signature monitoring technique implemented using the multithreading
and multiprocessing capabilities of an operating system is presented.

• In [40], a technique known as Assertion for Control Flow Checking (ACFC) is
presented. It consists on assigning a bit from a special variable known as execu-
tion state to each node from the CFG. The bit corresponding to each node under
execution is set. When the program fi nishes, the execution state is compared with
a precalculated constant having bit set in those places matching a correct
execution.

• The so called Yet Another Control Flow Checking Approach (YACCA) is pre-
sented on [41]. In this technique, a pair of unique identifi ers is assigned to each
node from CFG, one for the input and the other one for the output. A special code
inserted in the program can detect faults in the control fl ow by making some
calculus taking into account the completed set of identifi ers.

• Control - Flow Checking by Software Signatures (CFCSS) is presented on [42]. It
consists in adding special instructions in the program at compile time to control
the fl ow between nodes, which are univocally identifi ed with a signature.
Signatures are calculated at runtime and compared with those precalculated at
compile time, and thus, a mismatch supposes the detection of a fault.

16.4.2 Techniques to Protect Data

 The classic approximation to solve the problem of mitigating faults affecting data is
known as N - versions programming [43]. It consists in replicating N times every
software piece of interest producing a given output and obtaining the correct value
by mean of a majority voter. This produces an increase up to 100(N − 1) % in area
and execution time. Different techniques have been proposed in literature aiming to
improve the mentioned overheads. They can be distinguished by their application
granularity that can be program, procedure or instruction.

16 Soft Error Mitigation in Soft-Core Processors

246

 Methods based on software redundancy at program level can follow three differ-
ent strategies:

• Temporal redundancy: In this case, the same program will be executed two times
at different instants. The last execution of the program will compare both outputs
to detect any fault. An example of this can be consulted on [44].

• Simultaneous execution: The increasing parallel resources of modern micropro-
cessors with multithreading and multiprocessing capabilities, permits the con-
current execution of different instances or versions of the same code, and thus,
the detection of faults reducing the execution time overhead.

• Data diversity: This technique consists in executing two programs having the
same functionality (and therefore a different implementation code) and diverse
input data. Both outputs are then compared to detect transient or permanent faults.
From a given program, the new version is commonly generated by multiplying by
a diversity factor k every variable and constant within the program. Depending on
 k value, each version of the program may use different hardware resources and
thus, may propagate the errors in different ways. As an example, Fig. 16.2 present
a given piece of code and its diversifi ed version generated by applying a diversity
factor k = − 2 . An example of this technique can be consulted on [45].

 Methods providing software redundancy at procedure level are based on the so
called Selective Procedure Call Duplication (SPCD) of the execution of some pro-
cedures [46] (a block of code that performs a single task and returns some values).
This technique duplicates the execution of each procedure from a set of procedures,
saves the respective outputs and provides by this way the error detection.
Re-computation is performed a third time if a discrepancy between the previous two
computations occurs. Figure 16.3 shows an example of this technique, where a
given procedure is called two times.

 Finally, software redundancy methods at instruction level are based on repeating
single instructions or a set of them in such a way that it is possible to detect and
correct errors. The proposal differs in the granularity of the software to be repli-
cated, which can be defi ned either at a high level language (e.g. C/C++) or at low
level (e.g. assembly code). Both of them try to reduce the inherent overheads in size
and execution time, as well as optimize the provided fault coverage.

Original version Diversified version

x = 1; y = 5; i = 0;

while (i<5) {

z = x + i * y;

i = i + 1;

}

i = 2 * z;

x = -2; y = -10; i = 0;

while (i>-10) {

z = x + i * y / (-2);

i = i + (-2);

}

i = (-4) * z / (-2);

 Fig. 16.2 Example of a program in its original and diversifi ed version with diversity factor k = − 2

A. Martínez-Álvarez et al.

247

 On [47], a method called Automatic Ruled Based Transformation (ARBT) is
presented. This method is based on the application of high-level instruction redun-
dancy following a set of rules which can be automatically applied to the software
[48] using a source-to-source compiler. The high-level code transformation makes
this technique independent from the microprocessor architecture. Detention capa-
bilities are provided by duplicating every variable from the program, and the
 insertion of consistency checkers at the end of a read operation. Figure 16.4 shows
an example of its application.

 On [46], the Error Detection by Duplicated Instruction (EDDI) is presented.
Redundancy at assembly instruction is proposed to reduce the code size and execu-
tion time overheads. In addition Instruction Level Parallelism (ILP) can be used in
superscalar processor to speed-up the execution (Fig. 16.5).

 Other well-known fault detection technique called SoftWare Implemented Fault
Tolerance (SWIFT) is presented on [49]. This technique also reduces the inherent
time and size overheads, by using ILP also on Very Long Instruction Word (VLIW)
architectures. This technique, based on EDDI + CFCSS, is implemented by inserting

int a, a1, b, c;
void A2() {
a = B(b);
a1 = B(b);
if (a <> a1)
error();

c = c + a;
}
int B(int b) {
int d;
d = 2 * b;

return d;
}

 Fig. 16.3 Example of which
applies software redundancy
at procedure level

Original code Modified code

int a,b;
a = b;

int a0, b0, a1, b1;
a0 = b0;
a1 = b1;
if (b0 != b1) error();

a = b + c; a0 = b0 + c0;

a1 = b1 + c1;

if ((b0 != b1) || (c0 != c1)) error();

 Fig. 16.4 ARBT application example to detect errors on every read operation

16 Soft Error Mitigation in Soft-Core Processors

248

 Fig. 16.5 EDDI example of a hardened block of code (right side) from its original version
(left side)

 Table 16.1 Comparative results when applying different software-based detecting techniques to
improve fault tolerance

 Proposal Granularity Architecture
 Code
overhead

 Data
overhead

 Execution
overhead

 Detected
faults (%)

 ARBT High-level Transputer T255,
8051, MC68040,
LEON

 ×5 ×2 ×3 63

 EDDI Low-level MIPS R10000 ISA-II ×1.5–×2 ×2 <×2 97
 CFCSS Low-level MIPS R4400 ISA-II ×1.2–×1.4 No data ×1.2–×1.7 96.9
 SWIFT Low-level VLIW ×2.4 No data ×1.4 100

appropriate assembly instruction at compile time in certain point of the program.
Other technique called SWIFT-R [50], improved SWIFT to prevent both detection
and correction capabilities. SWIFT-R uses TMR at an assembly level and provides
majority voters when necessary.

 It is a fact that as mentioned before, every software-based technique causes
unavoidable drawbacks regarding to time, code and data size overheads.

 To show an evidence of such variability, Table 16.1 presents results when com-
paring the different software-based hardening techniques (ARBT, EDDI, CFCSS,
and SWIFT) to detect faults. In other hand, Table 16.2 shows the same targets when
applying software-based recovering techniques (ARBT-FT, SWIFT-R) which are
focused con fault mitigation. Both tables present the fault coverage for each tech-
nique (in the last column), the different induced overheads, and the granularity of
the technique (which can be either low - level for instruction-based ones or high-level
for techniques having redundancy at C/C++ or procedural/functions).

A. Martínez-Álvarez et al.

249

 In direct relation with the above mentioned tables, we can conclude:

• Those methods performing its operation at a low-level of granularity, it is, at an
instruction or assembly level present less impact on the code and data sizes
overhead.

• The impact on execution time overhead is also lower in the case of using low-
level techniques.

• An improvement on performance can be obtained in the case using superscalar
and VLIW microprocessors.

16.5 Hybrid Approaches

 Among the different techniques aiming to increase the reliability of a microprocessor-
based system, which are commonly substantiated in the implementation of some
level of redundancy at pure software or hardware level, we can fi nd in literature the
so called hybrid approaches. They are defi ned by means of a hardware/software
implementation of different techniques using some level of redundancy in both soft-
ware and hardware, or the appropriate combination of using software redundancy
plus an external or internal hardware support.

 Regarding the motivation of using hybrid techniques to increase the fault toler-
ance of a microprocessor-based system, it is clear that the application of pure soft-
ware or pure hardware techniques suppose different drawbacks. Indeed, the inherent
variability when applying these pure techniques makes the election of the best tuple
(microprocessor system, fault tolerance technique) a really hard engineering prob-
lem to solve. Indeed, it is a question concerning to the optimization of a multi-
objective problem.

 Table 16.3 represents how variability of different parameters could affect the
election of the appropriate technique and thus elicits a non-trivial problem.

 In addition to all this, the application of some software techniques, may require
the addition of more microprocessor data or memory resources, and thus may
demand the change of the COTS or soft-core microprocessor device. Moreover,
pure software techniques may rapidly degrade the overall system performance,
especially if a low-performance microprocessor is used.

 Having all the previous considerations into account, the applicability of pure
software or hardware techniques is not feasible in many cases, especially in the

 Table 16.2 Comparative results when applying different software-based mitigation techniques to
improve fault tolerance

 Proposal Granularity Architecture
 Code
Overhead

 Data
overhead

 Execution
overhead

 Detected
faults (%)

 ARBT-FT High-level 8051 ×2 ×2–×3 ×2.5 99.5
 SWIFT-R Low-level VLIW No data No data ×1.9 97.27

16 Soft Error Mitigation in Soft-Core Processors

250

notable case of embedded-system scenario, where low-performance and low-power
processors are commonly objectives that can be as important as reliability. Indeed,
a solution representing an intermediate point in between pure software and hard-
ware techniques can be a suitable solution, that is, the use of a hybrid software/
hardware technique, combining protection in both scenarios and achieving the ade-
quate balance in every parameter from Table A.

 In the last years, several and very promising hybrid proposals have entered the
scene. On [51 , 52] a technique called CompileR Assisted Fault Tolerance (CRAFT)
is presented. This technique is based on a modifi cation of SWIFT technique [49]
where hardware redundancy is obtained by using RMT (Redundant Multi- Threading)
[53] in hardware structures. This technique presented three variations. The fi rst of
them combines SWIFT with a hardware structure that protects data loads from mem-
ory. The second one combines SWIFT with a hardware mechanism aiming to dupli-
cate and protect data on memory. The last one combines the two previous hardware
structures to provide protection for both, loading and storing events.

 On [54 , 55] a fault detection hybrid technique is presented. Its defi nition is based
on ARBT (Automatic Ruled Based Transformation) [34] to protect the code, and
YACC algorithm [41] to protect the control fl ow. The combination of both methods
is achieved by means of an external mechanism connected to the system bus and
assuring less computation effort, in such a way that it is possible to improve both the
program performance and the detection rate. Recently this technique has been
extended [56 , 57] to provide also fault mitigation by applying the code transforma-
tion rules proposed by Rebaudengo et al in [58].

 A new hybrid technique for detecting both SEUs and SETs is presented on [59 ,
 60]. It is based on code transformation rules that permit signature monitoring. On
the hardware side, an external hardware module is used. It consists in a watchdog
plus a decoder module which are intended for detecting control fl ow faults and veri-
fying data and addresses fl ow between processor and memory. A similar approach
is presented in [61], where in addition SMT (Simultaneous Multi - Threading) is used
to provide fault recovering by means of redundant execution of diverse copies of
each thread.

 Table 16.3 Relative a-priori impact of variability of different parameters when applying pure
software or hardware techniques to protect a microprocessor-based system

 Pure software techniques Pure hardware techniques

 Code size overhead ++
 Memory consumption + +
 Execution time +++ +
 Power consumption + +
 Area consumption ++
 Fault coverage + ++
 Non recurrent engineering
costs (NRE)

 + +++

 Budget + ++

A. Martínez-Álvarez et al.

251

 Other proposals defi ne an architecture for superscalar microprocessors to detect
and correct faults with a little impact on system performance [62].

 A partial protection of the register fi le of a microprocessor to fi nd the best trad-
eoff between reliability and power consumption is presented in [63].

 The presented hybrid solutions are still very specifi c and have no much fl exibility
to fi nd the best compromise between design constraints and reliability
requirements.

 Another new hybrid technique intended to protect both the data and the control-
fl ow of embedded applications is presented on [64]. On the software side, two dif-
ferent hardening techniques are confronted: SWIFT-R [49] which is based on
instruction replication and Procedural Replication (PR) [46] where the replication
unit is the procedure (function). On the hardware side, a dedicated hardware module
(CFC module) performs Control - Flow Checking (CFC) of the program execution.
This module accesses the internal resources of the microprocessor (μP) by means of
the available debug infrastructure which enables support for software debugging in
embedded system development (see Fig. 16.6).

 These resources can be easily reused for online monitoring in an inexpensive
way, because they are useless during normal operation. In addition, they provide
internal access to the processor without disturbing it and do not require any modifi -
cation neither to the hardware nor to the software so no performance penalties have
to be taken into account. Overheads incurred by this technique can be perfectly
assumable in low-cost systems. Both, SEUs and SETs fault can be mitigated using
this technique.

 Other hybrid approach to mitigate soft-errors which is based on low level auto-
matic refreshing of system confi guration registers by taking advantage of usual
microcontroller resources as programmable timers is presented on [65]. Results
demonstrate that SEU and SET effects can be effectively mitigated in interrupt-
driven applications. In direct relation with the criticality and the access frequency of
confi guration registers two hardening fl avors are proposed: static confi guration
hardening (devoted to the hardening of those peripheral confi guration registers
which remain unchanged during the whole program execution) and dynamic
 confi guration hardening (those processor or peripheral confi guration registers which
are occasionally modifi ed during program execution). Figures 16.7 and 16.8 show

µP CFC-
Module

Trace IF

 Fig. 16.6 System structure
hardened with a CFC-module

16 Soft Error Mitigation in Soft-Core Processors

252

Interrupt processingMain processing

Setup
configuration bits

Wait forever

Reset

REFRESH
Setup

configuration bits

Return from
interrupt

Hardening
Timer Interrupt

ISR n

ISR 2

ISR 1

Interrupt
handler

Return from
interrupt

Application
Interrupt 1

 Fig. 16.7 Static confi guration hardening in event-driven applications

Interrupt processingMain processing

Setup initial
configuration bits

Reset

REFRESH
- Majority voter
- Re-configure

Return from
interrupt

Hardening
Timer Interrupt

ISR n

ISR 2

ISR 1

Interrupt
handler

Return from
interrupt

Application
Interrupt 1

¿new
configuration?

Configure
Replicate conf.

Re-configure

Yes

No

Forever

 Fig. 16.8 Dynamic confi guration hardening in event-driven applications

the hardening scheme followed by each fl avor. In the fi rst case (Fig. 16.7), an
 Interrupt Service Routine (ISR) refreshes the confi guration bits of the system at a
given and modifi able frequency. In the second case (Fig. 16.8), the timer-driven
hardening routine does not know beforehand what value to refresh into the confi gu-
ration register, as this may vary during program execution. Dynamic hardening
requires the following actions. Firstly, the main algorithm writes the new confi gura-
tion data also into a protected (e.g. replicated) register every time it changes (copies
should be performed before proceeding to re-confi gure the system). Secondly, the
timer-driven hardening routine includes a majority voter to check correctness, and
fi nally, refreshes the confi guration data accordingly. As in the static case, the
 hardening interrupt service routine is triggered periodically.

 Table 16.4 shows a summary comparison between some of the reported hard-
ware/software hybrid techniques. Each result is taken from the referenced papers
from the fi rst column.

A. Martínez-Álvarez et al.

 Ta
bl

e
16

.4

 C
om

pa
ra

tiv
e

re
su

lts
 o

f
pr

es
en

te
d

hy
br

id
 m

iti
ga

tio
n

te
ch

ni
qu

es

 A
pp

ro
ac

h
 SW

 s
up

po
rt

 M

on
ito

re
d

bu
s

 L
at

en
cy

 C
as

e
st

ud
y

 O
ve

rh
ea

ds

 Fa
ul

ts

in
je

ct
ed

 E

rr
or

 d
et

ec
tio

n
 Pr

oc
es

so
r

 B
en

ch
m

ar
ks

 A

re
a

 T
im

e
 C

od
e

 [5
5]

 D

at
a

&
 c

tr
l

 M
em

or
y

bu
se

s
 L

ow

 Po
w

er
PC

 M

M
ul

t,
E

lli
p–

fi l
te

r,
L

Z
W

, V
ite

rb
i

 36
6

sl
ic

es

 2.
06

–2
.8

1
 2.

07
–3

.0
9

 SE
U

s
10

0K

 SE
U

: 9
0.

6–
95

.6
 %

 [5
9]

 D

at
a

&
 c

tr
l

 M
em

or
y

bu
se

s
 L

ow

 m
in

iM
IP

S
 B

ub
le

So
rt

,
M

M
ul

t
 15

 %

(1
28

 F
Fs

)
 2.

33
–2

.5
3

(c
tr

l.
on

ly

1.
33

–1
.6

0)

 3.
26

–3
.6

0
 SE

E
s

50
K

 SE

U
: 1

00
 %

 SE
T

: 1
00

 %

 [6
6]

 D

at
a

&
 c

tr
l

 M
em

or
y

bu
se

s
 L

ow

 m
in

iM
IP

S
 B

ub
le

So
rt

,
M

M
ul

t
 11

 %

 (c
tr

l.
on

ly

1.
08

–1
.3

4)

 2.
79

–2
.9

1
 SE

E
s

10
0K

 SE

U
: 1

00
 %

 SE

T
: 1

00
 %

 [6

7]

 D
at

a
&

 c
tr

l
 D

bg
./t

ra
ce

in

te
rf

ac
e

 H
ig

h
 L

E
O

N
,

A
R

M
7

 Fi
bb

on
ac

i,
E

lli
p–

fi l
te

r
 16

 %

 2.
00

 –

 SE
U

s
10

K

 SE
U

: 9
9

%

 SW
IF

T-
R

 +
 C

FC

[6
4]

 D

at
a

on
ly

 D

bg
./t

ra
ce

in

te
rf

ac
e

 L
ow

 Pi

co
bl

az
e

 M
M

ul
t,

PI
D

,
FI

R
 fi

lte
r

 43
5

ga
te

s
 2.

55
–2

.6
8

(c
tr

l.
on

ly
 1

)
 2.

37
–3

.0
2

 SE
E

s
13

0M

 SE
U

: 9
7.

72
–9

9.
31

 %

 11
9

FF
s

 SE
T

 9
9.

83
–9

9.
94

 %

 Pr
oc

. R
ep

.
(P

R
) +

 C
FC

 [
 64

]
 D

at
a

on
ly

 D

bg
./t

ra
ce

in

te
rf

ac
e

 M
ed

 (
da

ta
)

lo
w

 (
ct

rl
)

 Pi
co

bl
az

e
 M

M
ul

t,
PI

D
,

FI
R

 fi
lte

r
 43

5
ga

te
s

 1.
96

–2
.0

3
(c

tr
l.

on
ly

 1
)

 1.
07

–1
.6

5
 SE

E
s

13
0M

 SE

U
 9

8.
60

–9
9.

85
 %

 11

9
FF

s
 SE

T
 9

9.
89

–9
9.

98
 %

254

 As both techniques require no software modifi cations for control-fl ow error
detection, the execution time overhead is only due to their data hardening
 capabilities. When the SR (SWIFT-R) technique is used, the overhead is slightly
larger because it includes both detection and recovery. In contrast, code size over-
head is smaller or similar. Each approach differs in how the fault injection tech-
nique+ is implemented: [55] uses software-based fault injection, while [59 , 66 , 67]
inject faults directly in the VHDL signals from the code defi ning the soft-core
 microprocessor. Fault injection into every node of the fi nal synthesized netlist is
performed, considering the real delays as estimated by the synthesis tool. With
respect to error detection, the last two rows are close to 100 %, but the fault injection
experiments are much larger and more accurate.

16.6 Conclusion

 The very fi rst conclusion of this chapter has to do with the fact that choosing the
correct protection technique in between the several proposals presented (from pure
hardware or software schemes or by means of hybrid solutions) represents a priori
a diffi cult task involving several important tradeoffs.

 Experimental hybrid results make evidence of an important increase in the sys-
tem reliability, which is even superior to two orders of magnitude, in terms of miti-
gation of both SEUs and SETs. However, further studies may be taken into
consideration due to the inherent variability of the factors involved in fault detection
and/or mitigation, as well as the different nature and available resources for every
particular system.

 In addition, the unavoidable induced overheads should encourage and leads us to
the search of new improved techniques and approaches for mitigating soft-errors by
optimizing both, the harmful impact of these overheads while, and the fault
coverage.

 References

 1. Baumann RC (2005) Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Trans Device Mater Reliab 5:305–316. doi: 10.1109/TDMR.2005.853449

 2. Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of tech-
nology trends on the soft error rate of combinational logic. In: Proceedings of the international
conference on dependable systems and networks, IEEE Computer Society, pp 389–398.
doi: 10.1109/DSN.2002.1028924

 3. Benedetto JM, Eaton PH, Mavis DG, Gadlage M, Turfl inger T (2006) Digital single event
transient trends with technology node scaling. IEEE Trans Nucl Sci 53:3462–3465.
doi: 10.1109/TNS.2006.886044

 4. Perry F, Mackey L, Reis GA, Ligatti J, August DI, Walker D. (2007) Fault-tolerant typed
assembly language. In: Proceedings of the 2007 ACM SIGPLAN conference on programming
language design and implementation—PLDI’07. ACM Press, New York, p 42.
doi: 10.1145/1250734.1250741

A. Martínez-Álvarez et al.

http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/DSN.2002.1028924
http://dx.doi.org/10.1109/TNS.2006.886044
http://dx.doi.org/10.1145/1250734.1250741

255

 5. Karnik T, Hazucha P (2004) Characterization of soft errors caused by single event upsets
in CMOS processes. IEEE Trans Dependable Secure Comput 1:128–143. doi: 10.1109/
TDSC.2004.14

 6. Edwards R, Dyer C, Normand E (2004) Technical standard for atmospheric radiation single
event effects, (SEE) on avionics electronics. In: Proceedings of the 2004 IEEE radiation effects
data workshop (IEEE Cat. No. 04TH8774), IEEE, pp 1–5. doi: 10.1109/REDW.2004.1352895

 7. Barth JL, Dyer CS, Stassinopoulos EG (2003) Space, atmospheric, and terrestrial radiation
environments. IEEE Trans Nucl Sci 50:466–482. doi: 10.1109/TNS.2003.813131

 8. Michalak SE, Harris KW, Hengartner NW, Takala BE, Wender SA (2005) Predicting the num-
ber of fatal soft errors in Los Alamos national laboratory’s ASC Q supercomputer. IEEE Trans
Device Mater Reliab 5:329–335. doi: 10.1109/TDMR.2005.855685

 9. Agency ES (1993) The radiation design handbook ESA PSS-01-609. European Space Agency
technical report

 10. Fulton R (2014) Airborne electronic hardware design assurance: a practitioner’s guide to
RTCA/DO-254. CRC Press, Boca Raton

 11. Commission IE (2006) IEC/TS 62396-1. Technical report, International Electrotechnical
Commission

 12. Council AE (2003) Stress test qualifi cation for integrated circuits, AEC-Q100-Rev-F.2.
Technical report

 13. AEC-Q100 (1994) Stress test qualifi cation for integrated circuits for automotive industry
 14. Corporation A (2010) RTAX-S/SL and RTAX-DSP radiation-tolerant FPGAs. Data Sheet Rev 13
 15. Xilinx Inc. (2010) Radiation-hardened, space-grade Virtex-5QV FPGA data sheet: DC and

switching characteristics. Data sheet DS692 (v1.0.1)
 16. Kubalík P, Kubátová H (2008) Dependable design technique for system-on-chip. J Syst Archit

54:452–464. doi: 10.1016/j.sysarc.2007.09.003
 17. Kastensmidt FL, Carro L, Reis R (2006) Fault-tolerance techniques for SRAM-based FPGAs

(frontiers in electronic testing). Springer, Secaucus
 18. Mentor Graphics Corporation (2010) Advanced FPGA synthesis: precision rad-tolerant. Data

sheet 1028010
 19. Inc. S (2010) Synopsys FPGA synthesis synplify pro reference manual. Technical report, Actel

edition
 20. Xilinx Inc. (2009) Aerospace and defense: Xilinx TMRtool. Technical report
 21. Huang K, Yu H, Li X (2011) Cross-layer optimized placement and routing for FPGA soft error

mitigation. In: Proceedings of the 2011 design, automation test in Europe conference exhibi-
tion, IEEE, pp 1–6. doi: 10.1109/DATE.2011.5763018

 22. Sterpone L, Violante M (2006) A new reliability-oriented place and route algorithm for
SRAM-based FPGAs. IEEE Trans Comput 55:732–744. doi: 10.1109/TC.2006.82

 23. De Lima Kastensmidt FG, Neuberger G, Hentschke RF, Carro L, Reis R (2004) Designing
fault-tolerant techniques for SRAM-based FPGAs. IEEE Des Test Comput 21:552–562.
doi: 10.1109/MDT.2004.85

 24. Nicolaidis M, Achouri N, Boutobza S (2003) Dynamic data-bit memory built-in self-repair.
In: Proceedings of the international conference on computer aided design ICCAD-2003,
pp 588–594. doi: 10.1109/ICCAD.2003.1257870

 25. Lima F, Carro L, Reis R (2003) Designing fault tolerant systems into SRAM-based FPGAs. In:
Proceedings of the 2003 design automation conference (IEEE Cat. No. 03CH37451), IEEE,
pp 650–655. doi: 10.1109/DAC.2003.1219099

 26. De Lima FG, Cota E, Carro L, Lubaszewski M, Reis R, Velazco R, et al (2000) Designing a
radiation hardened 8051-like micro-controller. In: Proceedings of the 13th symposium on inte-
grated circuits and systems design (Cat. No. PR00843), IEEE Computer Society, pp 255–260.
doi: 10.1109/SBCCI.2000.876039

 27. Nicolaidis M (2001) Soft errors in modern electronic systems, vol 41. Chapter 8. Front
 electron testing, 1st edn. Springer, New York

 28. Neuberger G, de Lima Kastensmidt FG, Reis R (2005) An automatic technique for optimizing
Reed-Solomon codes to improve fault tolerance in memories. In :Proceedings of the IEEE Des
Test Comput 22:50–8. doi: 10.1109/MDT.2005.2

16 Soft Error Mitigation in Soft-Core Processors

http://dx.doi.org/10.1109/TDSC.2004.14
http://dx.doi.org/10.1109/TDSC.2004.14
http://dx.doi.org/10.1109/REDW.2004.1352895
http://dx.doi.org/10.1109/TNS.2003.813131
http://dx.doi.org/10.1109/TDMR.2005.855685
http://dx.doi.org/10.1016/j.sysarc.2007.09.003
http://dx.doi.org/10.1109/DATE.2011.5763018
http://dx.doi.org/10.1109/TC.2006.82
http://dx.doi.org/10.1109/MDT.2004.85
http://dx.doi.org/10.1109/ICCAD.2003.1257870
http://dx.doi.org/10.1109/DAC.2003.1219099
http://dx.doi.org/10.1109/SBCCI.2000.876039
http://dx.doi.org/10.1109/MDT.2005.2

256

 29. Hentschke R, Marques F, Lima F, Carro L, Susin A, Reis R (2002) Analyzing area and perfor-
mance penalty of protecting different digital modules with Hamming code and triple modular
redundancy. In: Proceedings of the 15th symposium on integrated circuits and systems design,
IEEE Computer Society, pp 95–100. doi: 10.1109/SBCCI.2002.1137643

 30. Calin T, Nicolaidis M, Velazco R (1996) Upset hardened memory design for submicron CMOS
technology. IEEE Trans Nucl Sci 43:2874–2878. doi: 10.1109/23.556880

 31. Von Neumann J (1956) Probabilistic logics and synthesis of reliable organisms from unreliable
components. In: Shannon C, McCarthy J (eds) Automata studies. Princeton University Press,
Princeton, pp 43–98

 32. Mahmood A, McCluskey EJ (1988) Concurrent error detection using watchdog processors—a
survey. IEEE Trans Comput 37:160–174. doi: 10.1109/12.2145

 33. Austin TM (1999) DIVA: a reliable substrate for deep submicron microarchitecture design. In:
Proceedings of the 32nd annual ACM/IEEE international symposium on microarchitecture,
MICRO-32, IEEE Computer Society, pp 196–207. doi: 10.1109/MICRO.1999.809458

 34. Reed IS, Solomon G (1960) Polynomial codes over certain fi nite fi elds. J Soc Ind Appl Math
8:300–304. doi: 10.1137/0108018

 35. Johnson BW (1989) Design and analysis of fault-tolerant systems for industrial applications.
In: Görke W, Sörensen H (eds) Fault-tolerant computer systems, vol 214, pp 57–73.
doi: 10.1007/978-3-642-75002-1_5

 36. Martínez-Álvarez A, Restrepo-Calle F, Vivas Tejuelo LA, Cuenca-Asensi S (2013) Fault tolerant
embedded systems design by multi-objective optimization. Expert Syst Appl 40:6813–6822

 37. Nicolaidis M (1999) Time redundancy based soft-error tolerance to rescue nanometer tech-
nologies. In: Proceedings of the 17th IEEE VLSI test symposium (Cat. No. PR00146), IEEE
Computer Society, pp 86–94. doi: 10.1109/VTEST.1999.766651

 38. Goloubeva O, Rebaudengo M, Reorda MS, Violante M (2006) Hardening the control fl ow. In:
Software-implemented hardware fault tolerance. Springer, New York, pp 63–116.
doi: 10.1007/0-387-32937-4

 39. Benso A, Carlo SD, Natale GD, Prinetto P, Tagliaferri L (2001) Control-fl ow checking via
regular expressions. In: Proceedings of the 10th Asian test symposium, IEEE, pp 299–303.
doi: 10.1109/ATS.2001.990300

 40. Hayes JP, Murray BT. (n.d.) Low-cost on-line fault detection using control fl ow assertions. In:
Proceedings of the 9th IEEE on-line test symposium 2003. IOLTS 2003, IEEE Computer
Society, pp 137–143. doi: 10.1109/OLT.2003.1214380

 41. Goloubeva O, Rebaudengo M, Reorda MS, Violante M (2003) Soft-error detection using con-
trol fl ow assertions. In: Proceedings of the 16th IEEE symposium Comput. Arith., IEEE
Computer Society, pp 581–588. doi: 10.1109/DFTVS.2003.1250158

 42. Oh N, Shirvani PP, McCluskey EJ (2002) Control-fl ow checking by software signatures. IEEE
Trans Reliab 51:111–122. doi: 10.1109/24.994926

 43. Avizienis A (1985) The N-version approach to fault-tolerant software. IEEE Trans Softw Eng
SE-11:1491–1501. doi: 10.1109/TSE.1985.231893

 44. Jochim M (2002) Detecting processor hardware faults by means of automatically generated
virtual duplex systems. In: Proceedings of the international conference on dependable systems
and networks, IEEE Computer Society, pp 399–408. doi: 10.1109/DSN.2002.1028925

 45. Oh N, Mitra S, McCluskey EJ (2002) ED/sup 4/I: error detection by diverse data and dupli-
cated instructions. IEEE Trans Comput 51:180–199. doi: 10.1109/12.980007

 46. Oh N, McCluskey EJ (2002) Error detection by selective procedure call duplication for low
energy consumption. IEEE Trans Reliab 51:392–402. doi: 10.1109/TR.2002.804735

 47. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M (1999) Soft-error detection
through software fault-tolerance techniques. In: Proceedings of the 1999 IEEE international
symposium on defect fault tolerance VLSI Systems, IEEE Computer Society, pp 210–218.
doi: 10.1109/DFTVS.1999.802887

 48. Rebaudengo M, Reorda MS, Violante M, Torchiano M (2001) A source-to-source compiler for
generating dependable software. In: Proceedings of the 1st IEEE international workshop on

A. Martínez-Álvarez et al.

http://dx.doi.org/10.1109/SBCCI.2002.1137643
http://dx.doi.org/10.1109/23.556880
http://dx.doi.org/10.1109/12.2145
http://dx.doi.org/10.1109/MICRO.1999.809458
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1007/978-3-642-75002-1_5
http://dx.doi.org/10.1109/VTEST.1999.766651
http://dx.doi.org/10.1007/0-387-32937-4
http://dx.doi.org/10.1109/ATS.2001.990300
http://dx.doi.org/10.1109/OLT.2003.1214380
http://dx.doi.org/10.1109/DFTVS.2003.1250158
http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1109/TSE.1985.231893
http://dx.doi.org/10.1109/DSN.2002.1028925
http://dx.doi.org/10.1109/12.980007
http://dx.doi.org/10.1109/TR.2002.804735
http://dx.doi.org/10.1109/DFTVS.1999.802887

257

source code analysis and manipulation, IEEE Computer Society, pp 33–42. doi: 10.1109/
SCAM.2001.972664

 49. Reis GA, Chang J, Vachharajani N, Rangan R, August DI (2005) SWIFT: software imple-
mented fault tolerance. In: Proceedings of the international symposium on code generation and
optimization, IEEE, pp 243–254. doi: 10.1109/CGO.2005.34

 50. Chang J, Reis GA, August DI (2006) Automatic instruction-level software-only recovery. In:
Proceedings of the international conference on dependable systems and networks, IEEE,
pp 83–92. doi: 10.1109/DSN.2006.15

 51. Reis GA, Chang J, Vachharajani N, Rangan R, August DI, Mukherjee SS (2005) Software-
controlled fault tolerance. ACM Trans Archit Code Optim 2:366–396.
doi: 10.1145/1113841.1113843

 52. Reis GA, Chang J, Vachharajani N, Rangan R, August DI, Mukherjee SS (2005) Design and
evaluation of hybrid fault-detection systems. In: Proceedings of the 32nd international sympo-
sium on computer architecture, IEEE, pp 148–159. doi: 10.1109/ISCA.2005.21

 53. Mukherjee SS, Kontz M, Reinhardt SK (2002) Detailed design and evaluation of redundant
multi-threading alternatives. In: Proceedings of the 29th annual International symposium on
computer architecture, IEEE Computer Society, pp 99–110. doi: 10.1109/ISCA.2002.1003566

 54. Bernardi P, Bolzani LMV, Rebaudengo M, Reorda MS, Vargas FL, Violante M (2006) A new
hybrid fault detection technique for systems-on-a-chip. IEEE Trans Comput 55:185–198.
doi: 10.1109/TC.2006.15

 55. Bernardi P, Sterpone L, Violante M, Portela-Garcia M (2006) Hybrid fault detection technique:
a case study on Virtex-II Pro’s PowerPC 405. IEEE Trans Nucl Sci 53:3550–3557. doi: 10.1109/
TNS.2006.886221

 56. Bernardi P, Bolzani Poehls L, Grosso M, Sonza RM (2010) A hybrid approach for detection
and correction of transient faults in SoCs. IEEE Trans Dependable Secure Comput 7:439–445.
doi: 10.1109/TDSC.2010.33

 57. Bernardi P, Bolzani L, Reorda MS (2007) A hybrid approach to fault detection and correction
in SoCs. In: Proceedings of the 13th IEEE international on-line test symposium (IOLTS 2007),
IEEE, pp 107–112. doi: 10.1109/IOLTS.2007.8

 58. Rebaudengo M, Reorda MS, Violante M, Nicolescu B, Velazco R (2002) Coping with SEUs/
SETs in microprocessors by means of low-cost solutions: a comparison study. IEEE Trans
Nucl Sci 49:1491–1495. doi: 10.1109/TNS.2002.1039689

 59. Azambuja JR, Lapolli Â, Rosa L, Kastensmidt FL (2011) Detecting SEEs in microprocessors
through a non-intrusive hybrid technique. IEEE Trans Nucl Sci 58:993–1000. doi: 10.1109/
TNS.2011.2109398

 60. Azambuja JR, Souza F, Rosa L, Kastensmidt F (2010) Non-intrusive hybrid signature-based
technique to detect SEU and set faults in microprocessors. In: Proceedings of the 11th
European conference on radiation and its effects on components and systems RADECS 2010,
Längenfeld

 61. Li X, Gaudiot J-L (2009) Tolerating radiation-induced transient faults in modern processors.
Int J Parallel Prog 38:85–116. doi: 10.1007/s10766-009-0114-9

 62. Scholzel M (2010) HW/SW co-detection of transient and permanent faults with fast recovery
in statically scheduled data paths. In: Proceedings of the 2010 design automation and test
in Europe conference exhibition (DATE 2010), IEEE, pp 723–728. doi: 10.1109/
DATE.2010.5456957

 63. Lee J, Shrivastava A (2010) A compiler-microarchitecture hybrid approach to soft error reduc-
tion for register fi les. IEEE Trans Comput Des Integr Circuits Syst 29:1018–1027. doi: 10.1109/
TCAD.2010.2049050

 64. Parra L, Lindoso A, Portela M, Entrena L, Restrepo-Calle F, Cuenca-Asensi S et al (2014)
Effi cient mitigation of data and control fl ow errors in microprocessors. IEEE Trans Nucl Sci
61:1590–1596. doi: 10.1109/TNS.2014.2310492

 65. Martínez-Álvarez A, Restrepo-Calle F, Cuenca-Asensi S, Reyneri LM, Lindoso A, Entrena L
(2012) A hybrid technique for soft error mitigation in interrupt-driven applications. In:

16 Soft Error Mitigation in Soft-Core Processors

http://dx.doi.org/10.1109/SCAM.2001.972664
http://dx.doi.org/10.1109/SCAM.2001.972664
http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1109/DSN.2006.15
http://dx.doi.org/10.1145/1113841.1113843
http://dx.doi.org/10.1109/ISCA.2005.21
http://dx.doi.org/10.1109/ISCA.2002.1003566
http://dx.doi.org/10.1109/TC.2006.15
http://dx.doi.org/10.1109/TNS.2006.886221
http://dx.doi.org/10.1109/TNS.2006.886221
http://dx.doi.org/10.1109/TDSC.2010.33
http://dx.doi.org/10.1109/IOLTS.2007.8
http://dx.doi.org/10.1109/TNS.2002.1039689
http://dx.doi.org/10.1109/TNS.2011.2109398
http://dx.doi.org/10.1109/TNS.2011.2109398
http://dx.doi.org/10.1007/s10766-009-0114-9
http://dx.doi.org/10.1109/DATE.2010.5456957
http://dx.doi.org/10.1109/DATE.2010.5456957
http://dx.doi.org/10.1109/TCAD.2010.2049050
http://dx.doi.org/10.1109/TCAD.2010.2049050
http://dx.doi.org/10.1109/TNS.2014.2310492

258

Proceedings of the 13th European conference on radiation and its effects components and
systems RADECS 2012, Biarritz

 66. Altieri M, Becker J, Kastensmidt FL (2013) HETA: hybrid error-detection technique using
assertions. IEEE Trans Nucl Sci 60:2805–2812. doi: 10.1109/TNS.2013.2246798

 67. Portela-Garcia M, Grosso M, Gallardo-Campos M, Sonza Reorda M, Entrena L, Garcia-
Valderas M et al (2012) On the use of embedded debug features for permanent and transient
fault resilience in microprocessors. Microprocess Microsyst 36:334–343. doi: 10.1016/j.
micpro.2012.02.013

A. Martínez-Álvarez et al.

http://dx.doi.org/10.1109/TNS.2013.2246798
http://dx.doi.org/10.1016/j.micpro.2012.02.013
http://dx.doi.org/10.1016/j.micpro.2012.02.013

259© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_17

 Chapter 17
 Reducing Implicit Overheads of Soft Error
Mitigation Techniques Using Selective
Hardening

 Felipe Restrepo-Calle , Sergio Cuenca-Asensi , and Antonio Martínez-Álvarez

 Abstract The use of COTS FPGAs as deployment platform of microprocessor
based systems represents an attractive alternative on aerospace applications, because
their programmability, performance and cost-effectiveness. However, traditional
hardening has a remarkable impact on resources and performance that limits their
applicability. Selective hardening, that is protecting only the design’s most error-
sensitive parts, reduces signifi cantly overheads keeping a reasonable reliability at
the same time. This chapter describes and illustrates, with experimental results, this
method and presents a hybrid strategy, called co-hardening, to leverage the benefi ts
of adopting selective hardening on both hardware and software.

17.1 Introduction

 During last decades, scientifi c and industrial concerns about radiation effects on
electronic components have increased signifi cantly. It is now well-known that these
effects can affect the components operation permanently (permanent faults) or
temporary (transient faults) [1]. In particular, transient faults, the so-called soft
errors, affect the component behavior temporarily, affecting digital signal transfers
on the circuit combinational logic (Single Event Transient—SET) or stored values
on the circuit sequential logic (Single Event Upset—SEU) [2].

 Commercial-Off-The-Shelf (COTS) electronic components (including FPGAs)
are highly sensitive to radiation-induced effects, particularly soft errors, which limit
their applicability in the near future. Consequently soft error mitigation has become

 F. Restrepo-Calle (*)
 Department of Systems and Industrial Engineering , Universidad Nacional de Colombia ,
 Bogotá , Colombia
 e-mail: ferestrepoca@unal.edu.co

 S. Cuenca-Asensi • A. Martínez-Álvarez
 Department of Computer Technology , University of Alicante , Alicante , Spain
 e-mail: sergio@dtic.ua.es; amartinez@dtic.ua.es

mailto:ferestrepoca@unal.edu.co
mailto:sergio@dtic.ua.es
mailto:amartinez@dtic.ua.es

260

a mandatory requirement for the system to leverage the important benefi ts provided
by the combination of COTS FPGAs and soft-cores.

 Besides costly technological solutions to cope with this problem, system design-
ers and researchers have proposed fault mitigation approaches based on the design
of the system. These are based on hardware [3], software [4], or hardware/software
[5] considerations. They are mainly aimed at designing fault detection/recovery
mechanisms by applying redundancy on hardware, software, time, information, etc.
[6]. In addition, FPGAs are excellent platforms to design and deploy fault-tolerant
soft core based systems taking into account that their plasticity (on both hardware
and software) permits to explore several trade-offs between hardware and software
protection strategies [7].

 Although many of the design-based approaches provide an effective solution to
the transient faults, in general, these techniques cause non-negligible overheads to
the systems. The impact of the hardware-based hardening approaches is mostly
related to the increase of used resources, power consumption, die size, design time,
and economic costs; whereas overheads of software-based hardening techniques are
associated with the increase of the execution time, data and code size of programs [8].
In either case, this may prevent the applicability and feasibility of this kind of
protection strategies in several application domains.

 Moreover, recent hybrid hardware/software approaches have shown promising
results in terms of fault detection/recovery rates. These techniques combine soft-
ware redundancy with additional hardware support [5 , 9 – 12]. However, the combi-
nation of fully implemented hardening techniques (hardware and software) could
result in an over-redundant design with some unacceptable features such as large
area and power costs, and disproportionate penalties in performance [13].

 In this context, it is necessary to propose reduced-overhead fault mitigation
schemes. Recent works pursuit to reduce the implicit overheads of the protection
mechanisms by applying them in a selective way. That is, on the hardware side,
adding protection only to the most vulnerable hardware parts [14], reducing the
performance degradation by applying partial redundant threading [15 , 16]; and on
the software side, protecting only specifi c parts of the program code or the micro-
processor architectural resources (reachable from the instruction set architecture—
ISA) by means of redundant software [17 , 18].

 This chapter presents an overview of selective hardening techniques based on
software and hardware. In addition, a methodology to apply these selective
approaches jointly is presented as well, which is called co - hardening . It applies the
co-design principles to design a customized hybrid strategy, which is based on the
combined, selective, and incremental application of software and hardware tech-
niques. In this way, this chapter will show how it is possible to design dependable
embedded systems with reduced overheads, which not only satisfy dependability
requirements and design constraints, but also avoid the excessive use of costly
protection mechanisms in terms of hardware and software.

 The rest of this chapter is organized as follows. Next section provides back-
ground information on selective hardening based on software and presents the

F. Restrepo-Calle et al.

261

selective fault tolerance approach called S-SWIFT-R. Section 17.3 focuses on
selective hardening approaches based on hardware. Section 17.4 presents the co-
hardening methodology. Finally, Sect. 17.5 summarizes some fi nal remarks and
suggests directions for future works.

17.2 Selective Hardening Based on Software

 Given the current rise of processor based systems and the need for dependable low-
cost solutions, several fault mitigation techniques based on redundant software have
been proposed. These techniques can be applied to both hard-cores and soft-cores
since in no case the modifi cation of the underlay hardware is needed. The so-called
 Software Implemented Hardware Fault Tolerance (SIHFT) [6] techniques are clas-
sifi ed in two main categories according to the type of error they pretend to detect/
correct: errors that may affect the program data [19]; or errors that may affect the
control fl ow execution [20]. However, as mentioned above, the main limitations of
this kind of approaches are the non-negligible overheads that they cause to the
system. In many cases the performance degradation and/or the increase of the
program code and data size affect severely the applicability of these proposals.

 To reduce these overheads, recent works have proposed the selective hardening
based on software [17 , 18 , 21 , 22]. Instead of fully applying the protection approach
to the program, several redundancy mechanisms are applied only to a selection of
the program code. This strategy is aimed at hardening specifi c critical subroutines
or a subset of the ISA-accessible microprocessor resources by means of redundant
software.

 Besides the overhead reduction, the main advantage offered by selective
software- based techniques is fl exibility. Designers are provided with a wide spec-
trum of alternatives, being able to explore deeply the design space on the software
side, taking into account factors such as code overhead, performance degradation,
and reliability level. In case that applying a particular set of hardening routines
results inconvenient according to the requirements of an application (e.g., maximum
execution time is exceeded), the technique can be applied partially depending on the
critical program resources or sections. In short, the designer is able to fi ne- tune a
tailored fault mitigation strategy based on software.

 A few works based on selective hardening on software propose the selective
instruction replication to guarantee the application-level correctness in multimedia
applications [21 , 22]. This kind of applications can tolerate, in some cases, an
execution which is not 100 % numerically correct, and the program results can still
appear to be correct from the user perspective [23]. In mission-critical systems, how-
ever, applications require the architecture-level correctness. More recent proposals
are working on that direction [17 , 18], applying selective hardening on software for
the detection and recovery of data-fl ow errors.

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

262

17.2.1 Selective SWIFT-R

 S-SWIFT-R stands for Selective - SoftWare Implemented Fault Tolerance - Recovery
[17]. It is based on the SWIFT-R technique [35], which is a software-only recovery
approach based on low-level instruction transformation rules (assembly code). This
fault tolerance technique addresses the protection of the data stored in the register
fi le, which is one of the most critical parts in processor-based applications. It inter-
twines three copies of the program and adds majority voting before critical instruc-
tions, based on the well-known Triple Modular Redundancy (TMR). In short,
SWIFT-R consists of the triplication of data and instructions, jointly with the inser-
tion of verifi cation points to check data consistency (by means of majority voters).
Based on this concept, S-SWIFT-R is a selective technique that allows applying the
protection to different register subsets from the microprocessor register fi le looking
for a reduction in the overheads, but keeping high fault coverage and offering more
fl exibility to designers.

 Figure 17.1 illustrates an example of a simple program (assembly code) hard-
ened using the original SWIFT-R. Note that two copies (e.g., s0′, s0″) are created
for each register, which are stored in other available registers from the processor
register fi le, i.e., unused registers in the program. Moreover, majority voters are
recovery procedures that compare the correspondence of at least two registers,
correcting the third copy if necessary (possibly corrupted).

 As can be seen 2n additional registers are necessary to fully implement SWIFT-R
(where n is the number of used registers by the non-hardened program). This fact
makes that SWIFT-R may not result suitable in many application domains where
limited processors are used. Furthermore, due to its fault recovery capabilities,
SWIFT-R produces high overheads that, regarding the application, can easily
surpass 3× the original code size and execution time.

Line Non-hardened code SWIFT-R code

1 main: LOAD s0, 00 main: LOAD s0, 00
2 Create s0 copies
3 LOAD s1, 2A LOAD s1, 2A
4 Create s1 copies
5 ADD s0, s1 ADD s0, s1
6 ADD s0’, s1’
7 ADD s0’’, s1’’
8 CALL incr CALL incr
9 Majority voter for s0
10 STORE s0, 00 STORE s0, 00
11 RETURN RETURN
12
13 incr: LOAD s2, 0F incr: LOAD s2, 0F
14 Create s2 copies
15 ADD s0, s2 ADD s0, s2
16 ADD s0’, s2’
17 ADD s0’’, s2’’
18 RETURN RETURN

 Fig. 17.1 Example of a simple program hardened using SWIFT-R

F. Restrepo-Calle et al.

263

 S-SWIFT-R proposes several improvements to the original technique to increase
its fl exibility and make it suitable for reduced-overhead embedded systems. As its
predecessor, it is applied by means of low-level instruction transformation rules, but
the strategy consists of applying software protection mechanisms only to some
selectively chosen registers from the microprocessor register fi le. Prior to this
selective proposal, the alternatives were only two, whether the use of the non-
hardened program or the use of the fully hardened version. Now design space is
enriched with several new possibilities, which offer more fl exibility to designers,
and facilitate to fi nd the best trade-offs among reliability, performance, and code
size. Furthermore, S-SWIFT-R can be useful in cases when is not possible to apply
SWIFT-R completely, for instance, due to the limitations of the microprocessor
(e.g., a low number of registers available in the register fi le, reduced space in pro-
gram memory, …), or high resources utilization in the program (e.g., if the non-
hardened code uses most registers available in the register fi le and, therefore, there
are not enough available registers to create the required redundant copies). In these
cases, it is possible to prioritize the registers depending of their impact of overheads
and/or reliability to protect only a subset of them.

 To implement this selective approach, the concept of Sphere of Replication
(SoR) [36] is used in a fl exible way. SoR defi nes the logic domain of redundant
execution, which means that the architectural resources located within it are con-
sidered to have redundant mechanisms; consequently, they are protected against
faults. Thus, the SoR delimits the protection coverage of hardening techniques.
Moving the borders of the SoR, it is possible to modify the protection level of dif-
ferent fault tolerance techniques by including or excluding various components
inside the sphere (i.e. different subsets of register fi le or memory subsystem).

 Instructions causing a data fl ow crossing through the sphere frontiers must be
handled in a special way. To do so, in S-SWIFT-R all instructions whose execution
imply a data fl ow crossing the borders of the SoR are classifi ed in a special manner.
In case only the register fi le is located inside the SoR, when an instruction causes
that some data enter inside the SoR (e.g., reading an input port, loading a value into
a register or reading a value from memory), it is classifi ed as inSoR . In contrast,
when an instruction provokes data to go out from the SoR (e.g., writing to an output
port, storing a value into the memory), it is classifi ed as outSoR . Otherwise, instruc-
tions whose execution do not imply a data fl ow (e.g., an unconditional branch) are
classifi ed as none .

 The algorithm to apply S-SWIFT-R to a given source code (assembly code) can
be summarized as follows:

 1. Defi ne the components to protect, i.e., these will be considered to be inside the
SoR.

 2. Classify each program instruction accordingly to the direction of the data fl ow it
provokes with regard to the SoR (inSoR , outSoR , none).

 3. Triplicate data the fi rst time that any data enter to the SoR. That is, for each
instruction classifi ed as inSoR , two additional copies of the data entering to the
sphere will be created. These redundant copies are created by copying the regis-
ter values, avoiding repeating memory or input port accesses.

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

264

 4. Triplicate instructions that perform any data operation (e.g., arithmetic, logic,
shift, rotation instructions). Notice that redundant instructions should operate
using register copies (replicated data).

 5. Insert majority voters and recovery procedures at several key points:

 (a) Before outSoR instructions: to verify the correctness of the data involved in
the instructions classifi ed as outSoR before their execution. This is necessary
to avoid erroneous data leaving the sphere, because once the data have left
the SoR, recovery will be not possible, and the corrupted data may cause a
system error.

 (b) Before the last operation prior to a conditional branch: this instructions may
alter the ALU fl ags (zero, carry, …). This verifi cation is necessary because if
a register value is corrupted, an operation using this register may produce an
erroneous resultant fl ag, and consequently, this may provoke an incorrect
branch somewhere in the program’s control fl ow graph after the conditional
branch execution.

 6. Release redundant registers (copies) if they are not needed anymore in the rest of
the program; otherwise, copies should be kept along the program execution.

 Contrarily to the original SWIFT-R that considers the whole register fi le included
in SoR, the selective version consists in moving out of the SoR the registers that are
not required to be protected, while some other registers remain within the SoR and,
consequently, code transformations are responsible for protecting only this subset
of registers. To illustrate the approach, Fig. 17.2 shows an example with different
versions of a basic program hardened using S-SWIFT-R applied to several register
subsets. Notice that the fully hardened version obtained by S-SWIFT-R, i.e., the
version with protection in all the used registers (‘s0 and s1 protected’), is the same
than the one obtained by the original SWIFT-R approach.

 As can be seen in Fig. 17.2 , in the version ‘register s1 protected’, only the s1
register is considered within the SoR. The instruction ADD s0, s1 (s0 = s0 + s1),

Non-hardened Protected register: s0 Protected register: s1 Protected registers: s0, s1
1 LOAD s0, 00 LOAD s0, 00 LOAD s0, 00 LOAD s0, 00

2 Create s0 copies Create s0 copies

3 LOAD s1, 2A LOAD s1, 2A LOAD s1, 2A LOAD s1, 2A

4 Create s1 copies Create s1 copies

5 Voter for s1

6 ADD s0, s1 ADD s0, s1 ADD s0, s1 ADD s0, s1

7 ADD s0’, s1 ADD s0’, s1’

8 ADD s0’’, s1 ADD s0’’, s1’’

9 Voter for s0 Voter for s0

10 Voter for s1 Voter for s1

11 STORE s0, (s1) STORE s0, (s1) STORE s0, (s1) STORE s0, (s1)

 Fig. 17.2 Example of hardened program using S-SWIFT-R (several versions)

F. Restrepo-Calle et al.

265

line 6, is classifi ed as outSoR since its execution provokes a data fl ow from inside
the SoR (s1) going outward (s0); therefore, a majority voter should be inserted to
verify the correctness of the value stored in s1, before it leaves the redundancy
domain.

 To show an example of the fl exibility of S-SWIFT-R, Fig. 17.3 presents the over-
head results for all the variations of the selective protection applied to a single test
program: Finite Impulse Response (FIR) fi lter running on a PicoBlaze soft-core.
Static code size overhead and execution time overhead are normalized with a base-
line built with the non-hardened version of the program. In X axis all software ver-
sions are represented. These are named with the number of the registers protected,
i.e. “0, 2” correspond to the version where only registers 0 and 2 are protected.

 Note that overheads increase incrementally when more registers are protected.
In this case, code overhead varies from 1.01× (in the “4” version) to 2.67× in the
fully protected version, and execution time overhead ranges from 1.01× (in the “4”
version) to 2.53× (in the SWIFT-R version).

 As a matter of fact, more resources (code lines, data, execution time) are required
when more protection is implemented (more registers are protected). However, it is
very important to note two additional considerations related to the contribution to
the overheads of each register when protected. Firstly, each register makes its
contribution to code overhead and execution time overhead independently. For
 example, the “0” version causes a considerable code overhead (1.36×) while its
execution time overhead is only 1.12×. Secondly, different registers make their
contribution to overheads in different manners. There are versions in which the
protection of some registers causes an almost negligible impact, such as in the “4”

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0 1 2 3 4
0,

 1
0,

 2
0,

 3
0,

 4
1,

 2
1,

 3
1,

 4
2,

 3
2,

 4
3,

 4
0,

 1
, 2

0,
 1

, 3
0,

 1
, 4

0,
 2

, 3
0,

 2
, 4

0,
 3

, 4
1,

 2
, 3

1,
 2

, 4
1,

 3
, 4

2,
 3

, 4
0,

 1
, 2

, 3
0,

 1
, 2

, 4
0,

 1
, 3

, 4
0,

 2
, 3

, 4
1,

 2
, 3

, 4
0,

 1
, 2

, 3
, 4

N
or

m
al

iz
ed

 o
ve

rh
ea

ds

Code overhead Execution time overhead

S-SWIFT-R

SWIFT-R

 Fig. 17.3 Normalized code size and execution time overheads using S-SWIFT-R for FIR code

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

266

version (code size and execution time overheads are both 1.01×), while there are
other versions in which the protection of only one register can provoke a high
impact, like in the “2” version (code overhead 1.61× and execution time over-
head 1.56×).

 To evaluate the fault coverage provided by S-SWIFT-R, a fault injection
campaign was carried out for each version of the system using FTUnshades (using
the real implementation of the different systems) [37]. For each hardened version of
the program, the fault injection campaign consisted of injecting 80,000 faults
(SEUs), emulating only one single fault per program execution. Each fault was
emulated by means of a single bit-fl ip in a randomly selected bit from the micro-
processor, including: register fi le (16-byte-wide registers), program counter, stack
pointer, ALU fl ags, and pipeline registers. Each fault was injected in a randomly
selected clock cycle from all the workload duration. Injected faults were classifi ed
according to their effect on the expected system behavior as follows:

• If the system completes its execution, and obtains the expected output, the mem-
ory element (bit) affected by the fault and, consequently the fault itself, are clas-
sifi ed as unnecessary for Architecturally Correct Execution —unACE.

• In case the fault was not detected/corrected and provokes the program terminates
with an erroneous output, this fault is called Silent Data Corruption —SDC.

• If the fault causes an abnormal program termination or an infi nite execution
loop, the fault is categorized as a Hang . Note that SDC and Hang are both unde-
sirable effects (categorized together as ACE faults).

 Figure 17.4 presents the fault classifi cation percentages obtained for each soft-
ware version in the fault injection experiments.

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

N
on

e 0 1 2 3 4

0,
 1

0,
 2

0,
 3

0,
 4

1,
 2

1,
 3

1,
 4

2,
 3

2,
 4

3,
 4

0,
 1

, 2

0,
 1

, 3

0,
 1

, 4

0,
 2

, 3

0,
 2

, 4

0,
 3

, 4

1,
 2

, 3

1,
 2

, 4

1,
 3

, 4

2,
 3

, 4

0,
 1

, 2
, 3

0,
 1

, 2
, 4

0,
 1

, 3
, 4

0,
 2

, 3
, 4

1,
 2

, 3
, 4

0,
 1

, 2
, 3

, 4

Pe
rc

en
ta

ge
 [%

]

unACE SDC Hang

S-SWIFT-R
SWIFT-RNon-hard

 Fig. 17.4 Fault classifi cation percentages for every selective hardened version of FIR

F. Restrepo-Calle et al.

267

 One can observe the remarkable increase in the fault coverage that it is obtained
using S-SWIFT-R considering the complete microprocessor. Fault coverage goes
from 74.50 to 92.17 % unACE faults. These results represent the percentages of
injected faults that do not provoke any undesirable behavior to the circuit operation.
However, this increase is even more notorious if we consider only the microprocessor
register fi le. In this case, fault coverage ranges between 79.19 and 99.26 % unACE.

 In addition, there are several intermediate-protected versions that might be suit-
able for many applications depending on the requirements. For example, when the
protection is applied to the registers 2 and 3 (“2, 3” version), fault coverage goes up
to 89.60 % unACE faults, which is remarkable taking into account that only two
registers are being hardened resulting in time and code overheads of 1.89× and
1.93× respectively. In the same manner that each register impacts the overheads
independently when it is protected, each register contributes apart to the fault cover-
age improvements. This can be seen, for instance in the “0” version, in which the
fault coverage is only 81.87 % unACE when only the register 0 is protected, whereas
protecting only the register 2, this percentage goes up to 87.78 % unACE (a 5.91 %
difference).

 In many cases, the selective protected versions can be better candidates for
systems where not only the fault coverage is important, but also the time execution.
Protecting all registers, using a software technique, could result in the best fault
coverage, but at the same time, it provokes the highest performance degradation.
Hence, overheads and fault coverage results have to be studied jointly, representing
several trade-offs among code size, performance, and fault coverage. This analysis
guides the design decisions to fi nd the solutions having the best reliability/overhead
compromise. For instance, the “1, 2, 4” version is an interesting choice, because it
offers both, high fault coverage (90.42 % unACE faults), and acceptable code size
and execution time overheads (1.97× and 2.07×, respectively).

 Moreover, it is worth mentioning that triplication of instructions imply the pro-
tection not only of the register data, but also of all datapaths where instructions pass
through. Replicas of instructions will pass all pipeline paths, so these are indirectly
protected as well. That is, the software protection not only covers the specifi ed
register subset but also many all components in the execution pipeline.

17.3 Selective Hardening Based on Hardware

 Hardware methods for soft-error mitigation are a common topic in fault tolerance
and there are a plethora of approaches in literature. These can be classifi ed in two
categories: technological-based techniques and design-based techniques. The fi rsts
involve especial fabrication processes that require a great effort and investment, and
consequently very few designs have adopted this approach. The second category is
related to apply time and hardware redundancy at architectural level, for example
Triple Modular Redundancy or hardened memory cells. These solutions offer a high
reliability but, when apply to FPGA devices, a full redesign of the fabric is needed.

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

268

This is the case of Xilinx Virtex5QV device [24] specifi cally conceived for the
space market. In Virtex5QV different design-based techniques have been used in
selected basic elements: dual-node latches in confi guration memory, triple modular
redundancy in confi guration and JTAG control logic, dual-node latches and tran-
sient fi lters in CLB user registers, embedded EDAC in integrated BlockRAM, etc….
The cost of these devices can be two orders of magnitude greater than its commercial-
grade counterpart.

 A less expensive approach is based on the application of hardware methods at
high-level, that is at the HDL design, to protect the basic blocks of the user design.
Among all methods Modular Redundancy has become a common practice at this
level, because its versatility to be applied at different granularities. However, the
MR technique presents some drawbacks because of its full hardware redundancy,
such as area and power dissipation. To avoid these overheads, selective insertion of
Triple Modular Redundancy has been proposed to protect only the nodes of the
circuit that present a bigger vulnerability to SEUs [14]. Other approach proposes an
automatic selective insertion of TMR, based on an iterative optimization method
that assures the minimum possible area, in terms of protected registers, while meet-
ing the reliability constrains specifi ed for the circuit [25]. Additionally to registers
and combinational logic, selective TMR has been also applied for redundancy of
wires to prevent the distorted signal from propagating to an output or a storage
element [26] and for protecting whole circuit sections that affect structures which
cause a persistent error [27].

 Apart to the hardening technique, the key point when TMR has to be selectively
applied is how to fi gure out what are critical spots in the design that need to be
protected. Authors have proposed several approaches, and at different levels, to
estimate the vulnerability of gates and fl ip-fl ops in a circuit. In [28] authors perform
an electrical analysis of the primitive cell library to determine gates susceptible to
single-event transients (SETs). Also simplifi ed electrical models have been used to
determine the gates with the highest soft error rate (SER) for hardening [29].

 Architectural Vulnerability Factor (AVF) is a metric widely spread for discrimi-
nating the most sensitive parts of a microprocessor [30]. In [31] AVF is estimated by
means of Register Transfer Level simulations to rank the control state elements of a
soft-core taking into account the high degree of architectural masking inherent in
modern microprocessors. Unlike methods that compute the AVF based on
 performance models, his method operates at RTL and is, therefore, more accurate.
Extensive fault injection campaign is the other approach to raise the accuracy of
estimations but at the cost of prohibitive experimentation times. To overcome this
problem specifi c FPGA based emulation tools has been developed. Using this kind
of tool, authors in [32 , 33] were able to rank the sensibility to SET and SEU of every
gate and fl ip-fl op of a PIC18 clone microprocessor during the execution of different
workloads. They conclude, in case of SEU, that some microprocessor areas should
be protected with independence of the application, meanwhile other parts of the
circuit depends of the workload. Specifi cally for the tested workloads, they observe
that hardening a 24 % of the fl ip-fl ops using TMR the failure rate obtained is lower
than 1 %.

F. Restrepo-Calle et al.

269

17.3.1 Selective TMR

 The selective hardening of specifi c microprocessor parts can be used as a stand-
alone technique or as a complement to the protection offered by other software
techniques. In the second case, there are two key points where the participation of
hardware techniques can signifi cantly improve the fault tolerance strategy. On the
one hand, the reduction of impact produced in performance due to protection of
both application data and control-fl ow. Although selectiveness in data protection
and its application at assembly level can alleviate the overheads problem, in the case
of control fl ow, the complexity of methods may yield a high overhead in execution
time. On the other hand, hardware redundancy allows a more effi cient protection of
control fl ow. In fact, the lack of clear criteria to prioritize the control fl ow of differ-
ent sections of code makes the selection infeasible and compels to protect all the
application. For example, the protection of the control fl ow of a specifi c function
does not guarantee its correct execution since an error in a previous section of code
can exclude this function from execution. Furthermore, the visibility and accessibility
to the micro-architectural registers involved in the control fl ow of applications
(i.e. Program Counter, ALU fl ags, etc…) may be limited by the microprocessor
instruction set (ISA). For instance, some microprocessors do not expose the Program
Counter and Status Register to the instruction set, and consequently the protection
code is unable to observe or modify them.

 As mentioned before, Triple Modular Redundancy is one of the most common
hardware methods and its selective application to FPGAs can generate an important
saving of scarce resources like fl ip-fl ops. To illustrate the benefi ts of selective pro-
tection we will analyze its application for mitigating the effect of SEUs in a
technology- independent clone of Xilinx picoBlaze-3 soft-core. The following six
versions of the soft core are evaluated:

• P0: Nonhardened
• P1: TMR in Program Counter (PC), Flags, and Stack Pointer (SP)
• P2: TMR in Pipeline registers
• P2f: TMR in Register fi le (only 5 registers)
• P3: TMR in PC, Flags, SP, and Pipeline
• P4: Full TMR protection PC, Flags, SP, Pipeline and Register File

 Figure 17.5 shows at a glance the different trade-offs, between reliability and
cost. During all the experiments the microprocessor executes the same workload:
a Proportional-Integral-Derivative controller (PID), and the setup is similar to that
described in Sect. 17.2.1 . On the left axis, the hardware cost of the micro is expressed
in terms of combinational logic and fl ip-fl ops reported a synthesis tool (Xilinx XST
v10.1). The left axis depicts the fault coverage of each version in terms of unACE
bits. These numbers are normalized with respect to the baseline version (P0). As can
be seen, the full protected version reaches to 100 % of fault coverage but increasing
the hardware cost up to 2.92× fl ip-fl ops and latches, and 1.93× combinational logic.
When selective TMR is applied (P1, P2 and P3) the cost rises moderately and

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

270

remains below 1.75× for fl ip-fl ops and 1.25× for combinational logic in all the
cases. From this coarse-grain exploration the contribution to reliability of every
register subset can be deduced. Flags, SP and PC contribute with an improvement
of 6.3 % meanwhile Pipeline registers only reach a 4 %. The larger increment, a
15.3 %, is produced when the fi ve register of the Register File used in the code
are protected. Figure 17.6 completes the study with a fi ne-grain exploration of

60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0
100.0

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

P0 P1 P2 P2f P3 P4

un
AC

E
fa

ul
ts

 p
er

ce
nt

ag
e

[%
]

N
or

m
al

iz
ed

 h
ar

dw
ar

e
co

st

Soft core versions

Normalized Xilinx primitives cost Normalized Flip-Flops/Latches cost

% unACE faults

 Fig. 17.5 Normalized hardware cost and percentage of unACE bits per soft core version

72%
74%
76%
78%
80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

N
on

e 0 1 2 3 4
0,

 1
0,

 2
0,

 3
0,

 4
1,

 2
1,

 3
1,

 4
2,

 3
2,

 4
3,

 4
0,

 1
, 2

0,
 1

, 3
0,

 1
, 4

0,
 2

, 3
0,

 2
, 4

0,
 3

, 4
1,

 2
, 3

1,
 2

, 4
1,

 3
, 4

2,
 3

, 4
0,

 1
, 2

, 3
0,

 1
, 2

, 4
0,

 1
, 3

, 4
0,

 2
, 3

, 4
1,

 2
, 3

, 4
0,

 1
, 2

, 3
, 4

[%
]

unACE SDC Hang

 Fig. 17.6 Fault classifi cation percentages for P1 version with different subsets of registers hardened

F. Restrepo-Calle et al.

271

these registers. In this P1 version incorporates S-TMR to different subsets of the
register. As can be seen, protecting only PC, SP, Flags and one additional register
(“3”) the coverage is above 90 %. With two additional registers (“0, 2”) the unACE
is 92.5 % and selecting “0, 2, 4” 94.6 %.

17.4 Co-hardening: Co-design of Selective Hardware/
Software Fault Mitigation Techniques

 Co - hardening is a methodology that tries to reduce protection overheads comple-
menting software mitigation techniques with hardware techniques in a selective
way. For this purpose it is necessary to perform a fi ne-grained exploration of the
design space by means of the selectively controlled application of protection
approaches on both sides: software and hardware. This controlled selectiveness
consists of protecting the most critical parts of the system on each side. Furthermore,
designers should choose where the protection will be applied, whether to software
or to hardware, taking into account that this selection will affect the system over-
heads in a different manner. In this way, designers are able to fi ne-tune a tailored
fault mitigation hybrid approach to achieve a dependable solution, which not only
best meets the design constraints and dependability requirements of the application,
but also avoids the excessive use of costly hardening artifacts.

 This strategy is especially useful in the design of critical soft-core based embed-
ded systems as they offer the necessary plasticity and fl exibility on both sides: hard-
ware and software. Thus, the fi nal deployment platform for the design could be an
ASIC or an FPGA. However, it should be noted that, in case of SRAM based
FPGAs, additional mechanisms are required for the protection of the confi guration
memory.

 The general co - hardening strategy may result in a large amount and concentra-
tion of possibilities which give the required fl exibility to designers, but at the same
time, it could complicate the design space exploration due to the same reasons.
In the majority of cases the exhaustive exploration of the different solutions is
impracticable in terms of time and costs of design, implementation, and evaluation.
This is especially true when selective/partial protection approaches are being
considered. Therefore, it is necessary to reduce the exploration area to converge
rapidly to an optimal solution in the design space. For this reason, the proposed co -
 hardening design fl ow is not based on an exhaustive exploration, but a design fl ow
directed by the application. In this way, the co - hardening prioritizes the fault miti-
gation based on software techniques and then, if necessary, the protection approach
is complemented with additional hardware mechanisms. Figure 17.7 illustrates the
 co- hardening design fl ow.

 The fi rst step is the specifi cation of system requirements. These include design
constraints and dependability requirements. In general, design constraints are
related to silicon area, performance, power consumption and hardware cost;
whereas, dependability parameters are concerned with fault detection/recovery rate,

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

272

reliability, availability, safety, security, and recovery time. As the design fl ow is
driven by the application, design decisions must be motivated taking into account
both, design constraints and dependability parameters.

 The adoption of several software fault mitigation techniques can determine a set
of suitable implementations of the software of the system. Software techniques can
be fully or selectively applied. At this point, every software version is functionally
equivalent to its original, with variations in the redundancy level, and possibly, in
the location of the protection. These software versions are then evaluated to estimate
the caused overheads in comparison to the non-hardened program in terms of code
size, data, and execution time. In addition, in case there was available a simulation-
based reliability evaluation tool, such as [34], it could be used to make preliminary
dependability analyses of the several versions.

 Based on the evaluation results, and according to the specifi cations, the best can-
didates are selected to be tested on the real microprocessor implementation. It is
necessary to evaluate the reliability offered by each hardware/software confi gura-
tion. To do so, evaluation tools such as fault emulation platforms based on FPGAs
might be used [37]. At this point, designers can explore several trade-offs among
code size, performance, and reliability. This software hardening process is iterative
because it could be required to fi ne-tune some of the program versions.

System requirements

Fault mitigation based
on software

Hardened
software assessment

Reliability evaluation

Fault mitigation based
on hardware

Hardened HW/SW
evaluation

Trade-offs analysis

S
o

ft
w

ar
e

h
ar

d
en

in
g

H
ar

d
w

ar
e

h
ar

d
en

in
g

 Fig. 17.7 Co-hardening
design fl ow

F. Restrepo-Calle et al.

273

 In case that still none of the evaluated confi gurations meets all the requirements,
the protection strategy must be complemented by applying hardware-based tech-
niques. Thus, designers should study suitable strategies to selectively protect the
hardware, specifi cally looking for protecting the most vulnerable parts of the design
and inserting redundancy selectively in those parts of the microprocessor where
software-based techniques cannot do it. As a result, a new parameter should be
considered within the trade-offs analysis: hardware cost (in terms of area, power
consumption, and economic costs).

 After combining the best candidates on the software side with the protected
versions of the hardware, the hybrid fault mitigation approach is then evaluated in
terms of reliability. The optimal point within the design space is not necessarily a
single point but may result in a set of suitable hardware/software confi gurations that
meet the application requirements in terms of design constraints and dependability.
At this point, designers have suffi cient information to select the best system con-
fi guration based on the trade-off analysis.

 The complete co-hardening process can be iterative. In case that as a result of the
trade-off analyses one fi nds that none of the hardware/software confi gurations fully
meet the system requirements. This means that the strategy still requires continuing
being fi ne-tuned.

17.4.1 Co-hardening Case Study: S-SWIFT-R + S-TMR

 As a case study, a hybrid fault mitigation strategy has been designed which com-
bines the S-SWIFT-R technique on the software side with S-TMR on the hardware
side. The target application is a FIR fi lter software (same as in Sect. 17.2) running
in an RTL version of Picoblaze (same as in Sect. 17.3). The original version of
microprocessor integrates a total of 197 fl ip-fl ops, therefore the number of different
hardware confi gurations for selective hardening are really big. For demonstrative
purposes only hardware confi gurations defi ned in Sect. 17.3 are considered (P0, P1,
P2, P3 and P4 versions). On the contrary, all the combinations of the fi ve ISA regis-
ters involved in the execution of FIR are taken into account.

 Figure 17.8 illustrates the fault classifi cation percentages obtained for each
selectively hardened version of the software running on versions P1, and P3 of the
processor. Each test campaign uses the same setup as in Sect. 17.2 . Results for P0
version can be seen in Fig. 17.4 , meanwhile P4 numbers are not showed because
100 % of injected faults were classifi ed as unACE, as expected.

 Consideration should be given to the fact that combining S-SWIFT-R with hard-
ware protection applied to only a few critical registers, such as PC, ALU Flags, and
SP (P1 version), reliability increases remarkably (up to 97.85 % unACE faults).
Furthermore, obtained results for the P2 microprocessor (not shown), indicate that
hardware redundancy on the pipeline does not improve the fault coverage of the
system considerably (in the best case, achieving 93.85 % unACE faults), even
though the amount of protected registers is by far higher than for the P1 microprocessor.

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

274

However, hardware protection in both sets of registers are complementary and,
therefore, the highest reliability levels are achieved by the P3 microprocessor (up to
99.52 % unACE faults), which brings together the hardware protection of both P1
and P2 versions.

 As can be seen, the reliability increases when hardened programs are combined
with protected hardware approaches. Nevertheless, the more hardware protection is
implemented, the higher hardware overheads are. This is an important restriction
that has to be considered in the co-hardening process.

 The information gathered in this case study, permits to represent several trade-
offs among performance, code size, reliability, and hardware cost. However, the
previous analysis is missing to consider the program time overhead caused by the
software technique. For this purpose it is necessary to take into account the metric
known as Mean Work To Failure—MWTF, which captures the trade-offs between
reliability and performance. Figure 17.9 , on the one hand, shows the MWTF of the
hybrid systems normalized to a baseline built with the non-hardened software/
hardware version (represented in logarithmic scale); and on the other hand, it also
depicts, in a secondary axis, the normalized hardware costs. Since the MWTF con-
stitutes the balance between reliability and performance, this fi gure permits to see at
a glance, the representation of several trade-offs among reliability, execution time
and hardware costs for each one of the systems. Again the full hardware-protected
microprocessor (P4) is not represented considering its high hardware cost over P0,
2.92× Flip-Flops and Latches, and 1.93× combinational logic.

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

N
on

e 0 1 2 3 4
0,

 1
0,

 2
0,

 3
0,

 4
1,

 2
1,

 3
1,

 4
2,

 3
2,

 4
3,

 4
0,

 1
, 2

0,
 1

, 3
0,

 1
, 4

0,
 2

, 3
0,

 2
, 4

0,
 3

, 4
1,

 2
, 3

1,
 2

, 4
1,

 3
, 4

2,
 3

, 4
0,

 1
, 2

, 3
0,

 1
, 2

, 4
0,

 1
, 3

, 4
0,

 2
, 3

, 4
1,

 2
, 3

, 4
0,

 1
, 2

, 3
, 4

N
on

e 0 1 2 3 F
0,

 1
0,

 2
0,

 3
0,

 4
1,

 2
1,

 3
1,

 4
2,

 3
2,

 4
3,

 4
0,

 1
, 2

0,
 1

, 3
0,

 1
, 4

0,
 2

, 3
0,

 2
, 4

0,
 3

, 4
1,

 2
, 3

1,
 2

, 4
1,

 3
, 4

2,
 3

, 4
0,

 1
, 2

, 3
0,

 1
, 2

, 4
0,

 1
, 3

, 4
0,

 2
, 3

, 4
1,

 2
, 3

, 4
0,

 1
, 2

, 3
, 4

P1: RTL PicoBlaze + PC + FLAGS + SP P3: RTL PicoBlaze + PC + Flags + SP + Pipeline

Pe
rc

en
ta

ge
 [%

]

unACE SDC Hang

 Fig. 17.8 Fault classifi cation percentages for every software version running on different
hardened microprocessors (P1 and P3)

F. Restrepo-Calle et al.

275

1,
0

1,
1

1,
2

1,
3

1,
4

1,
5

1,
6

1,
7

1,
8

11010
0

None
0
1
2
3
4

0, 1
0, 2
0, 3
0, 4
1, 2
1, 3
1, 4
2, 3
2, 4
3, 4

0, 1, 2
0, 1, 3
0, 1, 4
0, 2, 3
0, 2, 4
0, 3, 4
1, 2, 3
1, 2, 4
1, 3, 4
2, 3, 4

0, 1, 2, 3
0, 1, 2, 4
0, 1, 3, 4
0, 2, 3, 4
1, 2, 3, 4

0, 1, 2, 3, 4
None

0
1
2
3
4

0, 1
0, 2
0, 3
0, 4
1, 2
1, 3
1, 4
2, 3
2, 4
3, 4

0, 1, 2
0, 1, 3
0, 1, 4
0, 2, 3
0, 2, 4
0, 3, 4
1, 2, 3
1, 2, 4
1, 3, 4
2, 3, 4

0, 1, 2, 3
0, 1, 2, 4
0, 1, 3, 4
0, 2, 3, 4
1, 2, 3, 4

0, 1, 2, 3, 4

P0
: N

on
-h

ar
de

ne
d

RT
L

Pi
co

Bl
az

e
P1

: R
TL

 P
ic

oB
la

ze
 +

 P
C

+
FL

AG
S

+
SP

Normalized hardware cost

Normalized MWTF

Fl
ip

Fl
op

s/
La

tc
he

s
Xi

lin
x

pr
im

iti
ve

s
N

or
m

al
iz

ed
 M

W
TF

 F
ig

. 1
7.

9
 N

or
m

al
iz

ed
 M

W
T

F
an

d
no

rm
al

iz
ed

 h
ar

dw
ar

e
co

st
 b

y
ha

rd
w

ar
e/

so
ft

w
ar

e
co

nfi
 g

ur
at

io
n

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

276

 This fi gure clearly allows an in-deep study and exploration of the design space.
Notice that even though the most remarkable increases on the MWTF are for the
microprocessors running the software version with the “0, 1, 2, 3, 4” register subset
hardened with S-SWIFT-R, there is also a wide set of partially protected system
confi gurations that might result suitable for many applications. In this case study,
for instance, it might result as a suitable confi guration the system with the P1 micro-
processor and S-SWIFT-R applied to the register subset 0-1-2-3 on the software
side, because it offers a high increase in the mean work to failure (4.76 more than
the non-protected system) with low hardware costs. In some other applications, with
higher reliability requirements, the hardware cost should be increased, and the same
software version could be chosen jointly with the P3 microprocessor, which pres-
ents a normalized MWTF of 12.92. Moreover, the full protected software version
(0-1-2-3-4) running on the P3 microprocessor achieves a MWTF of 24.73 more
than the non-hardened system.

17.5 Conclusions

 Soft error mitigation is a key task in the development of reliable microprocessor
based systems. FPGAs represent an interesting alternative since its reconfi gurability
allows the modifi cation of the microarchitecture of the soft cores and the protection
of software running on it. However different refi nements of traditional fault tolerant
techniques are needed to cope with the inherent overheads produced by them.

 Selective hardening, that is the protection of selected hardware or software
components depending of their error sensitivity, was presented and several
approaches were reviewed. Results showed that high reliability can be reach at a
fraction of the cost if appropriate selection is performed. To illustrate the procedure
three techniques, one hardware-based (S-TMR), one software- based (S-SWIFT-R)
and a combination of them, were evaluated. Some results were analyzed to show the
possibilities and benefi ts of the methods. However, further research is needed to
design new metrics and procedures that allow and effi cient selection of the critical
parts, avoiding the excessive time consuming fault injection campaigns.

 Acknowledgment This work was funded in part by the Spanish Ministry of Education, Culture
and Sports with the project “Developing hybrid fault tolerance techniques for embedded micropro-
cessors” (PHB2012-0158-PC).

 References

 1. Baumann RC (2005) Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Trans Device Mater Reliab 5:305–316

 2. Karnik T, Hazucha P, Patel J (2004) Characterization of soft errors caused by single event
upsets in CMOS processes. IEEE Trans Dependable Secure Comput 1:128–143

F. Restrepo-Calle et al.

277

 3. Nicolaidis M (2005) Design for soft error mitigation. IEEE Trans Device Mater Reliab
5:405–418

 4. Oh N, McCluskey EJ (2002) Error detection by selective procedure call duplication for low
energy consumption. IEEE Trans Reliab 51:392–402

 5. Bernardi P, Poehls LMB, Grosso M, Reorda MS (2010) A hybrid approach for detection and
correction of transient faults in SoCs. IEEE Trans Dependable Secure Comput 7:439–445

 6. Goloubeva O, Rebaudengo M, Reorda MS, Violante M (2006) Software-implemented hard-
ware fault tolerance. Springer, New York

 7. Cuenca-Asensi S, Martínez-Álvarez A, Restrepo-Calle F, Palomo FR, Guzmán-Miranda H,
Aguirre MA (2011) Soft core based embedded systems in critical aerospace applications.
J Syst Archit 57:886–895

 8. Azambuja JR, Pagliarini S, Rosa L, Kastensmidt FL (2011) Exploring the limitations of
software- based techniques in SEE fault coverage. J Electron Test 27:541–550

 9. Azambuja JR, Lapolli Â, Rosa L, Kastensmidt FL (2011) Detecting SEEs in microprocessors
through a non-intrusive hybrid technique. IEEE Trans Nucl Sci 58:993–1000

 10. Hu J, Li F, Degalahal V, Kandemir M, Vijaykrishnan N, Irwin MJ (2009) Compiler-assisted
soft error detection under performance and energy constraints in embedded systems. ACM
Trans Embed Comput Syst 8:1–30

 11. Lee J, Shrivastava A (2010) A compiler-microarchitecture hybrid approach to soft error
reduction for register fi les. Comput Des 29:1018–1027

 12. Ragel RG, Parameswaran S (2011) A hybrid hardware–software technique to improve reli-
ability in embedded processors. ACM Trans Embed Comput Syst 10:1–16

 13. Cuenca-Asensi S, Martínez-Álvarez A, Restrepo-Calle F, Palomo FR, Guzmán-Miranda H,
Aguirre MA (2011) A novel co-design approach for soft errors mitigation in embedded systems.
IEEE Trans Nucl Sci 58:1059–1065

 14. Samudrala PK, Ramos J, Katkoori S (2004) Selective triple modular redundancy (STMR)
based single-event upset (SEU) tolerant synthesis for FPGAs. IEEE Trans Nucl Sci
51:2957–2969

 15. Reddy VK, Parthasarathy S, Rotenberg E (2006) Understanding prediction-based partial
redundant threading for low-overhead, high-coverage fault tolerance. ACM SIGPLAN Not
41:83–94

 16. Vera X, Abella J, Carretero J, González A (2010) Selective replication: a lightweight technique
for soft errors. ACM Trans Comput Syst 27:8:1–8:30

 17. Restrepo-Calle F, Martínez-Álvarez A, Cuenca-Asensi S, Jimeno-Morenilla A (2013) Selective
SWIFT-R. J Electron Test 29:825–838

 18. Chielle E, Azambuja JR, Barth RS, Almeida F, Kastensmidt FL (2013) Evaluating selective
redundancy in data-fl ow software-based techniques. IEEE Trans Nucl Sci 60:2768–2775

 19. Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by duplicated instructions in super-
scalar processors. IEEE Trans Reliab 51:63–75

 20. Oh N, Shirvani PP, McCluskey EJ (2002) Control-fl ow checking by software signatures. IEEE
Trans Reliab 51:111–122

 21. Cong J, Gururaj K (2011) Assuring application-level correctness against soft errors. In:
Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD),
pp 150–157

 22. Sundaram A, Aakel A, Lockhart D, Thaker D, Franklin D (2008) Effi cient fault tolerance in
multi-media applications through selective instruction replication. In: Proceedings of the 2008
workshop on radiation effects and fault tolerance in nanometer technologies, pp 339–346

 23. Yeh TY, Reinman G, Patel SJ, Faloutsos P (2009) Fool me twice: exploring and exploiting
error tolerance in physics-based animation. ACM Trans Graph 29:5:1–5:11

 24. Xilinx (2010) Radiation-hardened, space-grade Virtex-5QV FPGA data sheet: DC and switch-
ing characteristics, data sheet DS692 (v1.0.1), Xilinx Inc.

 25. Ruano O, Maestro JA, Reviriego P (2009) A methodology for automatic insertion of selective
TMR in digital circuits affected by SEUs. IEEE Trans Nucl Sci 56(4):2091–2102

17 Reducing Implicit Overheads of Soft Error Mitigation Techniques Using…

278

 26. Almukhaizim S, Makris Y (2008) Soft error mitigation through selective addition of
functionally redundant wires. IEEE Trans Reliab 57(1):23–31

 27. Pratt B, Caffrey M, Carroll JF, Graham P, Morgan K, Wirthlin M (2008) Fine-grain SEU miti-
gation for FPGAs using partial TMR. IEEE Trans Nucl Sci 55(4, pt. 1):2274–2280

 28. Mohanram K, Touba NA (2003) Partial error masking to reduce soft error failure rate in logic
circuits. In: Proceedings of the 18th IEEE international symposium on defect and fault toler-
ance in VLSI Systems (DFTS 03), IEEE CS Press, pp 433–440

 29. Nieuwland A, Jasarevic S, Jerin G (2006) Combinational logic soft error analysis and protec-
tion. In: 12th IEEE international on-line testing symposium (IOLTS 2006), Como, 10–12 July
2006

 30. Mukherjee SS, Weaver C, Emer J, Reinhardt SK, Austin T (2003) A systematic methodology
to compute the architectural vulnerability factors for a high-performance microprocessor.
In: International symposium on microarchitecture, pp 29–40

 31. Maniatakos M, Makris Y (2010) Workload-driven selective hardening of control state ele-
ments in modern microprocessors. In: Proceedings of the 28th VLSI test symposium (VTS
10), IEEE CS Press, pp 159–164

 32. Entrena L, Lindoso A, Valderas MG, Portela M, Ongil CL (2011) Analysis of SET effects in a
PIC microprocessor for selective hardening. IEEE Trans Nucl Sci 58(3):1078–1085

 33. Valderas M, Garcia MP, Lopez C, Entrena L (2010) Extensive SEU impact analysis of a PIC
microprocessor for selective hardening. IEEE Trans Nucl Sci 57(4):1986–1991

 34. Martínez-Álvarez A, Cuenca-Asensi S, Restrepo-Calle F, Palomo Pinto FR, Guzmán-Miranda
H, Aguirre MA (2012) Compiler-directed soft error mitigation for embedded systems. IEEE
Trans Dependable Secure Comput 9:159–172

 35. Reis GA, Chang J, August DI (2007) Automatic instruction-level software-only recovery.
IEEE Micro 27:36–47

 36. Reinhardt SK, Mukherjee SS (2000) Transient fault detection via simultaneous multithreading.
In: Proceedings of the 27th annual international symposium on computer architecture,
pp 25–36

 37. Napoles J, Guzman H, Aguirre M, Tombs J, Munoz F, Baena V, Torralba A, Franquelo L
(2007) Radiation environment emulation for VLSI designs a low cost platform based on xilinx
FPGAs. In: Proceedings of the IEEE international symposium on industrial electronics

F. Restrepo-Calle et al.

279© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_18

Chapter 18
Overhead Reduction in Data-Flow
Software-Based Fault Tolerance Techniques

Eduardo Chielle, Fernanda Lima Kastensmidt, and Sergio Cuenca-Asensi

Abstract  There is an increasing interest in aerospace industry to increment the
flexibility of the systems and reduce their cost. In this way, FPGAs offer several
advantages as low-cost platform to deploy customized systems. However, the use of
sub-micron technologies has increased their sensitivity to radiation-induced tran-
sient faults. Therefore, the mitigation of soft errors in systems based on soft-core
microprocessors has become a major concern not only in the case of configuration
memory protection, but also in the case of data and control-flow maintenance.
Software-based fault tolerance techniques represent a valid alternative to improve
the reliability in such systems at a reduced cost, but the associated time and memory
overheads can limit their applicability. This chapter provides different implementa-
tion alternatives of software-based techniques in order to reduce overheads while
keeping the reliability at the same level.

18.1  �Introduction

FPGAs are becoming increasingly attractive to aerospace applications by offering
simplicity, flexibility and low-cost [1]. On the same trend, the use of commercial
off-the-shelf (COTS) devices is an interesting low-cost alternative, which increases
the range of opportunities and markets in such applications [2, 3]. COTS FPGAs
offer the opportunity of design customized microprocessor-based systems at a

E. Chielle (*)
PGMICRO—Instituto de Informática, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
e-mail: echielle@inf.ufrgs.br

F.L. Kastensmidt
Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Brazil
e-mail: fglima@inf.ufrgs.br

S. Cuenca-Asensi
Computer Technology Department, University of Alicante, Alicante, Spain
e-mail: sergio@dtic.ua.es

mailto:echielle@inf.ufrgs.br
mailto:fglima@inf.ufrgs.br
mailto:sergio@dtic.ua.es

280

fraction of the cost of Rad-Hard devices. They also give the possibility to modify
the system after the launch to fix errors not detected during the design phase due
to their re-configurability capability [4]. Furthermore, they can achieve significant
performance improvements when compared to traditional approaches [5, 6].
However, similarly to other advanced devices, its reliability has decreased due to the
miniaturization of technologies [7], thus modern FPGAs are more susceptible to
transient faults. Such faults can be caused by energized particles present in space or
secondary particles such as alpha particles, generated by the interaction of neutron
and materials at ground level [8].

Transient ionization may occur when a single radiation ionizing particle strikes
the silicon creating a transient voltage pulse known as Single Event Effect (SEE).
This effect affects electronic circuits by modifying values stored in the sequential
logic, known as Single Event Upset (SEU), or by changing the function of a circuit
in the combinational logic, known as Single Event Transient (SET). Such faults may
lead the system to incorrectly execute an application. Consequently, to ensure reli-
ability against SEEs, the use of fault tolerance techniques is mandatory.

A big concern about vulnerabilities of systems implemented with FPGAs relies
on the configuration memory. The volatile memories of SRAM-based FPGAs make
them sensitive to transient faults. Flash-based FPGAs are more reliable than SRAM-
based ones and can be used to avoid the problems of the configuration memory [9].
However, in the case of microprocessor-based systems, other vulnerabilities should
be taken into account independently of the underlying technology. Transient faults
may affect the data or the control-flow of a running application. To ensure reliability
in such cases, two types of fault tolerance techniques can be used. The first one,
hardware-based techniques, relies on replicating or adding hardware modules,
while the second, software-based techniques, relies on adding instruction redun-
dancy and comparison to detect or correct errors.

Hardware-based techniques usually change the original microprocessor architec-
ture by adding logic redundancy, error correcting codes and majority voters. They
can also be based on hardware monitoring devices that exploit special purpose hard-
ware modules, called watchdog processors [10], to monitor memory accesses.
However, hardware-based techniques present significant overheads, like reduction
in the operating frequency, increase in area and power consumption and high design
and manufacture costs [11, 12].

Software-based techniques are a well-known approach to protect systems against
SEEs by modifying the program code without having to change the underlying
hardware. These techniques are non-intrusive and therefore provide high flexibility
and low development time and cost. Although software redundancy brings reliabil-
ity to the system, it requires extra processing time since more instructions are being
executed [13, 14]. Furthermore, a reliable program will require more area in mem-
ory since software redundancy is inserted [15, 16].

In this chapter we present a set of data-flow fault tolerance techniques that sig-
nificantly reduce the overheads and keep the data error detection rate at the same level
as state of the art techniques. The techniques are composed following a set of rules.

E. Chielle et al.

281

Thus, it is possible to automatically apply them to the program code. The chapter is
divided as follow: Sect. 18.2 presents an overview of the software-based fault toler-
ance. In this section, the concept of control and data-flow techniques is explained.
Section 18.3 illustrates a set of rules for data-flow techniques and some techniques
created based on such rules. The execution time and memory footprint as well as the
data error detection rate of those techniques are shown in Sect. 18.4. Finally, Sect. 18.5
draws some conclusions.

18.2  �Software-Based Fault-Tolerance

There are two types of soft errors that affect microprocessors-based systems: errors
in the control-flow and errors in the data-flow. A control-flow error occurs when
program flow in incorrectly followed, i.e., the error change the program flow. Data-
flow error refers to the soft error caused by a bit-flip in a storage device, such as a
register or a memory element. They affect the output of the program, but not its
execution. To protect against control and data-flow errors there are, respectively,
control-flow techniques [17–19] and data-flow techniques [20–22].

18.2.1  �Control-Flow Techniques

Control-flow techniques aim to detect incorrect branches during the program execution.
The code is divided in basic blocks, which are branch-free sequences of instructions
with no jumps into or out of the block except for the first and last instructions.
Figure 18.1 shows the basic blocks and the program flow of the code presented in
Table 18.1.

These techniques usually assign a unique signature to each basic block and some
protection to the program flow. The signature is assigned to a spare register and
checked at the end of the basic block. By doing so, they are able to detect incorrect
jumps in the program execution.

18.2.2  �Data-Flow Techniques

Data-flow techniques aim to detect faults affecting the data, i.e., the values stored in
registers and the memory. In order to do that, such techniques duplicate when
detecting and triplicate when correcting all the registers used by the application.
By duplicating registers, it is possible to detect data errors by comparing a register
with its replica. It is important to notice that every operation performed on a register
must also be performed on its replica in order to keep the program consistency.

18  Overhead Reduction in Data-Flow Software-Based Fault Tolerance Techniques

282

Fig. 18.1  Basic blocks and
program flow

Table 18.1  Basic blocks
division

BB0 main:
la $5,$LC0
lw $2,0($5)
lw $3,4($5)
jal function # $31 < - PC + 4

BB1 sw $4,8($5)
lw $2,12($5)
lw $3,16($5)
jal function

BB2 sw $4,20($5)
…

BB3 function:
li $4,0

BB4 func_loop
add $4,$4,$2
subu $3,$3,1
bgtz func_loop

BB5 jr $31 # PC < - $31

E. Chielle et al.

283

Table 18.2 shows an example of a code hardened by a data-flow technique. In the left
side, one can see the original code composed by five instructions, lines 1, 4, 9, 13 and
17. And the right side, shows the same code hardened. Registers $12, $13, $14 and
$15 are replicas of registers $2, $3, $4 and $5, respectively. The duplication of
the original instructions is presented in lines 2, 5, 10 and 14. In this technique,
checkers are inserted before stores and branches, checking the source registers, and
after any other instruction, checking the target register. Checkers are inserted in
lines 3, 6, 7, 8, 11, 12, 15 and 16.

It is possible to notice by the example that data-flow techniques present significant
overheads. The overheads caused by data-flow techniques are higher than the ones
caused by control-flow because they duplicate or triplicate the data and the opera-
tions performed over them and insert checkers to verify the consistence of the data,
while control-flow techniques only insert instructions to change and check the value
of signatures. If the application needs fault tolerance, but has performance or energy
constraints, data-flow techniques might not be applied. New data-flow techniques
with reduced overheads are desirable in such scenarios.

18.3  �Methodology and Implementation

A set of rules for data-flow protection is presented in Table 18.3. They are divided
in three types: global, duplication and checking rules. There is only one global rule
and it is applied for all techniques. It states that every register used by the program
has a spare register assign as replica. It makes duplication and checking possible.

Table 18.2  Example of a
data-flow technique

Original code Hardened code

1: lw $2,0($4) 1: lw $2,0($4)
2: lw $12,0($14)
3: bne $2,$12,error

4: sll $4,$2,1 4: sll $4,$2,1
5: sll $14,$2,1
6: bne $4,$12,error
7: bne $2,$12,error
8: bne $3,$13,error

9: sw $2,0($3) 9: sw $2,0($3)
10: sw $12,0($13)
11: bne $4,$14,error
12: bne $2,$12,error

13: sw $4,0($2) 13: sw $4,0($2)
14: sw $14,0($12)
15: bne $4,$14,error
16: bne $5,$15,error

17: ble $4,$5,$L2 17: ble $4,$5,$L2

18  Overhead Reduction in Data-Flow Software-Based Fault Tolerance Techniques

284

The duplication rules regard how the instructions are duplicated. They are applied
only when write operations in a register or memory are performed. Thus, branch
instructions are never duplicated. There are two possible duplication rules but
each technique can only use one. D1 duplicates all instructions except branches.
It includes stores which allow the use of unprotected memories since the original
value and its replica can be store in different positions in the memory. D2 duplicates
all instructions, except branches and stores. It is adequate when the memory is hard-
ened because there is no need for software redundancy in memory since the mem-
ory is already hardened. Thus, the overhead caused by the duplication and the
number of memory accesses are reduced.

The checking rules indicate when a register and its replica are compared. The aim
is to verify if an error has occurred. If the original register and its replica present the
different values, an error is reported. The techniques can have any possible combina-
tion of checking rules, from zero (no detection) to all. Theoretically, the more check-
ers are included in one technique, the more reliability is achieved. On the other hand,
the overhead is higher. That is the reason why we have not proposed a technique
using all the checking rules. The overhead would be bigger than the techniques
present in the literature and it would go against the purpose of this work.

Checking rule C1 states that a checker shall be placed before a register is read by
an instruction, excluding load/store and branches. The checker compares the values of
the register and its replica to detect a possible error. Regarding C2, a checker is inserted
right after a write operation is performed on a register. When C3 is used, the register
that contains the address in load instructions has to be checked before the load is per-
formed. C4 and C5 insert checkers before stores. C4 checks the register that contains
the datum and C5 checks the register that contains the address. Finally, C6 states that
the register has to be checked before it is used by a branch instruction.

From the rules, 17 techniques have been implemented and they are showed in
Table 18.4. Each technique consists of a combination of rules. Global rule G1 and

Table 18.3  Techniques and rules

Global rules (valid for all techniques)
G1 Each register used in the program has a spare register assigned as replica
Duplication rules (performing the same operation on the register’s replica)
D1 All instructions except branches
D2 All instructions, except branches and stores
Checking rules (compare the value of a register with its replica)
C1 Before each read on the register (except load/store and branch

instructions)
C2 After each write on the register
C3 Before loads, the register that contains the address
C4 Before stores, the register that contains the datum
C5 Before stores, the register that contains the address
C6 Before branches

E. Chielle et al.

285

one duplication rule (D1 or D2) are mandatory. Only one duplication rule can be
used by each technique. The checking rules are optional.

Three of the implemented techniques (VAR1, VAR2 and VAR3) belong to reference
[22]. According to the authors, VAR1 is based on [24], VAR4 is equivalent to EDDI
[23]. VAR0 and VAR0+ techniques do not detect errors, but they were implemented
because they show the minimum overhead possible when all the registers used by
the program are duplicated. In these techniques, no checking is done, only duplica-
tions. VAR1+ and VAR1++ are variations of VAR1. They use a different duplication
rule and VAR1++ implements fewer checking rules. The same can be said about
VAR2+ and VAR2++ with relation to VAR2 and VAR3+ and VAR3++ concerning
VAR3. They all have a different duplication rule and VAR2++ and VAR3++ uses
fewer checking rules than VAR2 and VAR3, respectively. By removing more check-
ing rules we get to VAR4 and VAR5 and applying the same concept stated before
we get techniques VAR4+, VAR4++, VAR5+ and VAR5++.

Table 18.5 exemplifies how the different techniques are applied to the program
code. In this regard, it was used a piece of code that permits to see the application
of all rules. It consists of five instructions: two loads, one add, one store and one
branch. They are presented under the original code, formatted as normal text.

Techniques that use D1 have no plus signal in the name and other ones, with one (+)
or two (++) plus signals, use D2. Techniques that have D1 as duplication rule, for
example VAR0, have all instructions that perform a write operation in a register or
memory, i.e., all instructions except branches, replicated using the registers replicas.
The techniques using D2, for example VAR0+, only duplicate the instructions that

Table 18.4  Techniques and
rules

Technique Duplication rule Checking rules

VAR0 D1 None
VAR0+ D2 None
VAR1 D1 C1, C3, C4, C5, C6
VAR1+ D2 C1, C3, C4, C5, C6
VAR1++ D2 C1, C3, C4, C5
VAR2 D1 C2, C4, C5, C6
VAR2+ D2 C2, C4, C5, C6
VAR2++ D2 C2, C4, C5
VAR3 D1 C3, C4, C5, C6
VAR3+ D2 C3, C4, C5, C6
VAR3++ D2 C3, C4, C5
VAR4 D1 C4, C5, C6
VAR4+ D2 C4, C5, C6
VAR4++ D2 C4, C5
VAR5 D1 C4, C6
VAR5+ D2 C4, C6
VAR5++ D2 C4

18  Overhead Reduction in Data-Flow Software-Based Fault Tolerance Techniques

286

Table 18.5  Application of the techniques

Original code VAR0 VAR0+ VAR1 VAR1+ VAR1++

lw $4,0($2) lw $4,0($2) lw $4,0($2) bne $2,$12,err bne $2,$12,err bne $2,$12,err

lw $5,4($2) lw $14,0($12) lw $14,0($12) lw $4,0($2) lw $4,0($2) lw $4,0($2)
add $3,$3,1 lw $5,4($2) lw $5,4($2) lw $14,0($12) lw $14,0($12) lw $14,0($12)
sw $4,0($5) lw $15,4($12) lw $15,4($12) bne $2,$12,err bne $2,$12,err bne $2,$12,err

ble $3,$6,loop add $3,$3,1 add $3,$3,1 lw $5,4($2) lw $5,4($2) lw $5,4($2)
add $13,$13,1 add $13,$13,1 lw $15,4($12) lw $15,4($12) lw $15,4($12)
sw $4,0($5) sw $4,0($5) bne $3,$13,err bne $3,$13,err bne $3,$13,err

sw $14,0($15) ble $3,$6,loop add $3,$3,1 add $3,$3,1 add $3,$3,1
ble $3,$6,loop add $13,$13,1 add $13,$13,1 add $13,$13,1

bne $4,$14,err bne $4,$14,err bne $4,$14,err

bne $5,$15,err bne $5,$15,err bne $5,$15,err

sw $4,0($5) sw $4,0($5) sw $4,0($5)
sw $14,0($15) bne $3,$13,err ble $3,$6,loop
bne $3,$13,err bne $6,$16,err

bne $6,$16,err ble $3,$6,loop
ble $3,$6,loop

VAR2 VAR2+ VAR2++ VAR3 VAR3+ VAR3++
lw $4,0($2) lw $4,0($2) lw $4,0($2) bne $2,$12,err bne $2,$12,err bne $2,$12,err

lw $14,0($12) lw $14,0($12) lw $14,0($12) lw $4,0($2) lw $4,0($2) lw $4,0($2)
bne $4,$14,err bne $4,$14,err bne $4,$14,err lw $14,0($12) lw $14,0($12) lw $14,0($12)
lw $5,4($2) lw $5,4($2) lw $5,4($2) bne $2,$12,err bne $2,$12,err bne $2,$12,err

lw $15,4($12) lw $15,4($12) lw $15,4($12) lw $5,4($2) lw $5,4($2) lw $5,4($2)
bne $5,$15,err bne $5,$15,err bne $5,$15,err lw $15,4($12) lw $15,4($12) lw $15,4($12)
add $3,$3,1 add $3,$3,1 add $3,$3,1 add $3,$3,1 add $3,$3,1 add $3,$3,1
add $13,$13,1 add $13,$13,1 add $13,$13,1 add $13,$13,1 add $13,$13,1 add $13,$13,1
bne $3,$13,err bne $3,$13,err bne $3,$13,err bne $4,$14,err bne $4,$14,err bne $4,$14,err

bne $4,$14,err bne $4,$14,err bne $4,$14,err bne $5,$15,err bne $5,$15,err bne $5,$15,err

bne $5,$15,err bne $5,$15,err bne $5,$15,err sw $4,0($5) sw $4,0($5) sw $4,0($5)
sw $4,0($5) sw $4,0($5) sw $4,0($5) sw $14,0($15) bne $3,$13,err ble $3,$6,loop
sw $14,0($15) bne $3,$13,err ble $3,$6,loop bne $3,$13,err bne $6,$16,err

bne $3,$13,err bne $6,$16,err bne $6,$16,err ble $3,$6,loop
bne $6,$16,err ble $3,$6,loop ble $3,$6,loop
ble $3,$6,loop
VAR4 VAR4+ VAR4++ VAR5 VAR5+ VAR5++
lw $4,0($2) lw $4,0($2) lw $4,0($2) lw $4,0($2) lw $4,0($2) lw $4,0($2)
lw $14,0($12) lw $14,0($12) lw $14,0($12) lw $14,0($12) lw $14,0($12) lw $14,0($12)
lw $5,4($2) lw $5,4($2) lw $5,4($2) lw $5,4($2) lw $5,4($2) lw $5,4($2)
lw $15,4($12) lw $15,4($12) lw $15,4($12) lw $15,4($12) lw $15,4($12) lw $15,4($12)
add $3,$3,1 add $3,$3,1 add $3,$3,1 add $3,$3,1 add $3,$3,1 add $3,$3,1
add $13,$13,1 add $13,$13,1 add $13,$13,1 add $13,$13,1 add $13,$13,1 add $13,$13,1
bne $4,$14,err bne $4,$14,err bne $4,$14,err bne $4,$14,err bne $4,$14,err bne $4,$14,err

bne $5,$15,err bne $5,$15,err bne $5,$15,err sw $4,0($5) sw $4,0($5) sw $4,0($5)

(continued)

E. Chielle et al.

287

perform a write operation in a register, i.e., all instructions but branches and stores are
duplicated. The instructions inserted by the duplication rules are presented in bold.

The instructions inserted by checking rules are presented in italic. In VAR1 and
VAR1+ we can see almost all checking rules being used, with the exception of C2.
The first and the second checkers are due to C3. The third one is because of C1.
Note that the same register is used twice by the instruction but it is only checked
once. This optimization is applied because there is no point on checking the same
register twice in a row. It would only increase even more the overheads. The fourth
and fifth checkers are related to C4 and C5, respectively. And the sixth and the sev-
enth are due to C6. VAR1++ has the all the checking rules that VAR1 and VAR1+
have but C6. VAR2 and VAR2+ use all the checking rules except for C1 and C3. The
first three checkers are related to C2. The fourth and the fifth are due to C4 and C5,
respectively. And the last two are because of C6. The only difference from VAR2
and VAR2+ to VAR2++ checking rules is that VAR2++ does not implement C6.
VAR3 and VAR3+ use C3, C4, C5 and C6. The first and the second checkers are due
to C3, the fourth and the fifth are due to C4 and C5, respectively, and the last two
checkers are due to C6. VAR3++ implements the same checking rules, except for
C6. VAR4 and VAR4+ use checking rules C4, C5, C6 and VAR4++ uses C4 and C5.
VAR5 and VAR5+ use C4 and C6 and VAR5++ uses only checking rule C4, which
checks the register that contains the datum in stores.

For example, let us see how VAR3 technique is applied. Firstly, we must assign
replicas to all registers used by the program. Thus, registers $12, $13, $14, $15 and
$16 are assign as replica of registers $2, $3, $4, $5 and $6, respectively. It works
the same for all techniques. VAR3 technique uses duplication rule D1. The dupli-
cations are inserted in lines 3, 6, 8 and 12 (bold lines). And the checking rules are
C3, C4, C5 and C6. So checks have to be inserted before loads, verifying the reg-
ister that contains the address (C3), before stores checking the registers that con-
tain the datum and the address (C4 and C5) and the registers used by branches
(C6). At the first and fourth lines, there are checking instructions regarding C3. At
lines 9 and 10, checks are made respecting C4 and C5, respectively. C6 is applied
at lines 13 and 14.

Now, if we look at VAR4++. The duplication rule is D2. So all the instructions,
except branches and stores are duplicated. It can be seen at lines 2, 4 and 6 (bold).
The checking rules consist of C4 and C5. They are applied at lines 7 and 8, respec-
tively (italic). If we compare VAR3 and VAR4++, we can see that VAR4++ clearly
presents a lower overhead but at a cost of less checking instructions.

Table 18.5  (continued)

Original code VAR0 VAR0+ VAR1 VAR1+ VAR1++

sw $4,0($5) sw $4,0($5) sw $4,0($5) sw $14,0($15) bne $3,$13,err ble $3,$6,loop
sw $14,0($15) bne $3,$13,err ble $3,$6,loop bne $3,$13,err bne $6,$16,err

bne $3,$13,err bne $6,$16,err bne $6,$16,err ble $3,$6,loop
bne $6,$16,err ble $3,$6,loop ble $3,$6,loop
ble $3,$6,loop

18  Overhead Reduction in Data-Flow Software-Based Fault Tolerance Techniques

288

18.4  �Results

To evaluate exactly how much the different techniques impact in the overheads and
error detection rate, we defined six programs to be used as benchmarks, tested the
overheads and submitted them to a fault injection campaign. The benchmarks con-
sist of a bubble sort, the Dijkstra’s algorithm, a matrix multiplication, the Run
Length Encoding (RLE), a summation and the TETRA Encryption Algorithm
(TEA2). They are hardened with all the techniques, totalizing 102 hardened ver-
sions. The hardening is done automatically using CFT-tool [25]. This tool modifies
the program’s assembly code in order to apply a selected technique.

The parameters measured in the tests are: the execution time, the memory foot-
print and the data error detection. The execution time and the memory footprint are
expressed by the relation between the value presented by the hardened program
hardened and the unhardened version. The data error detection rate is the percentage
of errors affecting the data-flow that are detected. Data errors are the errors that
affect the output of the program, but not its execution.

A total of 1,020,000 faults were injected (10,000 per hardened version and only
one per execution) by simulation at Register Transfer Level (RTL) using ModelSim
in the miniMIPS microprocessor. MiniMIPS is a 32 bits core based on MIPS I archi-
tecture. It has a pipeline of five stages and 32 general purpose registers. All mini-
MIPS instructions take five cycles to be executed and the peak throughput is one
instruction per cycle [26].

Faults are injected by forcing a bit-flip in the microprocessor’s internal signals.
Every signal of the microprocessor is considered. The fault duration was set to one
clock cycle in order to force its effect to hit the clock barrier of the flip-flops and
therefore increase the probability of an error. A golden execution (with no injected
faults) is executed. All the values of the PC during the execution are saved. Also, the
portion of the memory that contains the program output is saved. Then, the program
is submitted to faults and the values of the PC and the memory results of the pro-
gram under test are compared to the golden results. As we are using only techniques
developed to detect data-flow errors, only the errors that affected the data-flow are
considered. Faults causing control-flow errors (errors that changed the program
execution flow) are ignored, since they are not in the scope of this work. We also
discarded faults that were masked by the microprocessor logic because they do not
cause an error. The error is signaled when the result stored in the memory differs
from the expected one.

Figure 18.2 shows the averages execution time, memory footprint and error
detection rate for all techniques applied to the case-study applications. As one can
see, the average minimum overhead is 22 % for the execution time and 24 % for the
memory footprint (see VAR0+).

Techniques VAR1, VAR1+, VAR1++, VAR2, VAR2+ and VAR2++ present high
error detection rates but very high overheads. Similar error detection rates can be
obtained by techniques VAR3, VAR3+, VAR3++, VAR4, VAR4+ and VAR4++ with
the advantage of considerable lower overheads. It shows that after certain point,
checking instructions get saturated.

E. Chielle et al.

289

Considering only the baseline techniques, VAR3 presents the best results since it
has the same error detection rate that VAR1 and VAR2 and present smaller overheads.
By changing the duplication rule D1 of the VAR3 technique to D2, we create VAR3+
technique. This technique reduces the execution time overhead from 83 to 74 % and the
memory footprint overhead from 90 to 82 % and keep the same error detection rate as
VAR3. Comparing VAR3 with VAR4++, we can see a reduction of 40 % in the execu-
tion time overhead and of 35 % in the memory footprint overhead with a loss of 5 % in
the error detection rate. VAR4++ can be a better solution when constraints are more
restrictive or when using the technique combined with a control-flow technique.

18.5  �Conclusions

Software-based fault detection techniques are less costly than hardware-based ones
but they present time and memory overheads. Several data-flow techniques based on
a set of rules designed to search for different tradeoffs between reliability and exe-
cution time and between reliability and memory footprint have been presented.

Results show reduction of the overhead in the execution time from 83 to 74 %
and from 90 to 82 % in the memory footprint with no degradation of the detection
capabilities (VAR3 × VAR3+). With some reduction in the error detection rate the
overheads can go down to 34 % in the execution time and 39 % in the memory
footprint (VAR5++). In this chapter it was shown that there is still room to reduce
overheads without degrading the detection rate. It enables systems with more strict
constraints to get the benefits of software protection and also provides performance
improvements to systems that already use software-based fault tolerance techniques.
Furthermore, the presented techniques can be used together with selective hardening,
reducing even more the overheads.

Fig. 18.2  Averages execution time, memory footprint and data error detection for all techniques

18  Overhead Reduction in Data-Flow Software-Based Fault Tolerance Techniques

290

References

	 1.	Li Y, Li D, Wang Z (2000) A new approach to detect-mitigate-correct radiation-induced faults
for SRAM-based FPGAs in aerospace application. In: Proceedings of the IEEE national aero-
space and electronics conference

	 2.	Reyneri LM, Sansoè C, Passerone C, Speretta S, Tranchero M, Borri M, Del Corso D (2010)
Design solutions for modular satellite architectures. In: Aerospace technologies advance-
ments, Intech, Olajnica 19/2, 32000 Vukovar, Croatia (Chapter 9)

	 3.	Grillmayer G, Gsell J, Lepain A, Roser H, Hartling M, Wegmann T, Huber F (2003) ILSE—
first laboratory model of the small satellite program at the University of Stuttgart. In:
Proceedings of the 54th international astronautical congress, iAC-03-IAA.11.1.09, Bremen

	 4.	Abate F, Sterpone L, Violante M, Kastensmidt FL (2009) A study of the single event effects
impact on functional mapping within flash-based FPGAs. In: Proceedings of the design, auto-
mation & test in Europe conference & exhibition

	 5.	Smith GL, Torre L (2006) Techniques to enable FPGA based reconfigurable fault tolerant
space computing. In: IEEE aerospace conference

	 6.	Cuenca-Asensi S, Martínez-Álvarez A, Restrepo-Calle F, Palomo FR, Guzmán-Miranda H,
Aguirre MA (2011) Soft core based embedded systems in critical aerospace applications.
J Syst Archit 57(10):886–895

	 7.	Baumann R (2001) Soft errors in advanced semiconductor devices—part I: the three radiation
sources. IEEE Trans Device Mater Reliab 1(1):17–22

	 8.	 International technology roadmap for semiconductors, 2005 edn, Chapter design, 2005, pp 6–7
	 9.	Costenaro E, Violante M, Alexandrescu D (2011) A new IP core for fast error detection and

fault tolerance in COTS-based solid state mass memories. In: Proceedings of the IEEE 17th
international on-line testing symposium (IOLTS)

	10.	Mahmood A, McCluskey E (1988) Concurrent error detection using watchdog processors—a
survey. IEEE Trans Comput 37(2):160–174

	11.	Unsal OS, Koren I, Krishna CM (2002) Towards energy-aware software-based fault tolerance
in real-time systems. In: Proceedings of the international symposium on low power electronics
and design

	12.	Asensi SC, Alvarez AM, Calle FR, Palomo FR, Miranda HG, Aguirre MA (2011) A novel
co-design approach for soft errors mitigation in embedded systems. IEEE Trans Nucl Sci
58(3):1059–1065

	13.	Yao T, Zhou H, Fang M, Hu H (2013) low power consumption scheduling based on software
fault-tolerance. In: Proceedings of the 9th international conference on natural computation

	14.	Assayad I, Girault A, Kalla H (2011) Tradeoff exploration between reliability, power con-
sumption and execution time. In: Proceedings of the 30th international conference on com-
puter safety, reliability and security

	15.	Vogelsang T (2010) Understanding the energy consumption of dynamic random access memo-
ries. In: Proceedings of the 43rd annual IEEE/ACM international symposium on
microarchitecture

	16.	Li S, Lai EM-K, Absar MJ (2003) Minimizing embedded software power consumption
through reduction of data memory access. In: Proceedings of the 4th international conference
on information, communications & signal processing

	17.	Oh N, Shirvani PP, McCluskey EJ (2002) Control-flow checking by software signatures. IEEE
Trans Reliab 51(1):111–122

	18.	Mcfearin LD, Nair VSS (1995) Control-flow checking using assertions. In: Proceedings of the
IFIP international working conference dependable computing for critical applications (DCCA-
05), Urbana-Champaign, Sept 1995

	19.	Alkhalifa Z, Nair VSS, Krishnamurthy N, Abraham JA (1999) Design and evaluation of
system-level checks for on-line control flow error detection. IEEE Trans Parallel Distrib Syst
10(6):627–641

	20.	Azambuja JR, Lapolli A, Rosa L, Kastensmidt FL (2011) Detecting SEEs in microprocessors
through a non-intrusive hybrid technique. IEEE Trans Nucl Sci 58:993–1000

E. Chielle et al.

291

	21.	Oh N, Mitra S, McCluskey E (2002) ED4I: error detection by diverse data and duplicated
instructions. IEEE Trans Comput 51(2):180–199

	22.	Azambuja JR, Lapolli A, Altieri M, Kastensmidt FL (2011) Evaluating the efficiency of
software-only techniques to detect SEU and SET in microprocessors. In: Proceedings of the
IEEE Latin American symposium on circuits and systems

	23.	Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by duplicated instructions in super-
scalar processors. IEEE Trans Reliab 51(1):63–75

	24.	Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Reorda MS, Violante M (2000)
Experimentally evaluating an automatic approach for generating safety-critical software with
respect to transient errors. IEEE Trans Nucl Sci 47(6 part 3):2231–2236

	25.	Chielle E, Barth RS, Lapolli AC, Kastensmidt FL (2012) Configurable tool to protect proces-
sors against SEE by software-based detection techniques. In: Proceedings of the IEEE Latin
American symposium on circuits and systems

	26.	Hangout LMOSS, Jan S (2010) The minimips project [online]. Available http://www.opencores.
org/projects.cgi/web/minimips/overview

18  Overhead Reduction in Data-Flow Software-Based Fault Tolerance Techniques

http://www.opencores.org/projects.cgi/web/minimips/overview
http://www.opencores.org/projects.cgi/web/minimips/overview

293© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_19

 Chapter 19
 Fault-Tolerance Techniques for Soft-Core
Processors Using the Trace Interface

 Luis Entrena , Almudena Lindoso , Marta Portela-Garcia , Luis Parra ,
 Boyang Du , Matteo Sonza Reorda , and Luca Sterpone

 Abstract As microprocessors are increasingly used in safety-critical applications,
there is a growing demand for effective fault-tolerance techniques that can mitigate
the effects of soft errors while reducing intrusiveness and minimizing the impact on
performance and power consumption. To this purpose, approaches that are based on
monitoring the microprocessor operation through an external interface in a non-
intrusive manner have recently been proposed. In this paper we focus on the use of
the trace interface for on-line monitoring. This interface provides detailed informa-
tion about the instructions executed by the processor and can be reused to support
error detection and correction in several ways, including multi-processors in hard-
ware redundancy, time redundancy and control-fl ow checking.

19.1 Introduction

 Microprocessor-based digital systems are ubiquitous today. They are used in a wide
variety of applications, including safety-critical ones in sectors such as automotive,
aerospace, telecommunications or biomedical. In these fi elds of application, an
error in a microprocessor may produce a wrong computation result or losing the
control of a system with catastrophic consequences. At the same time, the evolution
of semiconductor technology has enabled the availability of microprocessors at very
low costs but has also increased the susceptibility to soft errors even at the ground
level. For all these reasons, there is a growing demand for effective fault-tolerance
techniques that can provide the required level of robustness for microprocessor-
based systems while reducing intrusiveness and minimizing the impact on perfor-
mance and power consumption.

 L. Entrena (*) • A. Lindoso • M. Portela-Garcia • L. Parra
 Electronic Technology Department , Universidad Carlos III de Madrid , Leganés , Spain
 e-mail: entrena@ing.uc3m.es; alindoso@ing.uc3m.es; mportela@ing.uc3m.es;
lparra@pa.uc3m.es

 B. Du • M. Sonza Reorda • L. Sterpone
 Control and Computer Engineering Department , Politecnico di Torino , Torino , Italy
 e-mail: boyang.du@polito.it; matteo.sonzareorda@polito.it; luca.sterpone@polito.it

mailto:entrena@ing.uc3m.es
mailto:alindoso@ing.uc3m.es
mailto:mportela@ing.uc3m.es
mailto:lparra@pa.uc3m.es
mailto:boyang.du@polito.it
mailto:matteo.sonzareorda@polito.it
mailto:luca.sterpone@polito.it

294

 Developing a microprocessor with the level of quality that is required for real
applications is a complex task that involves a large effort in both the hardware
design and the associated software tools. For this reason, COTS (Commercial-Off-
The-Shelf) components or existing soft-cores are usually preferred. In this case,
conventional hardware-based fault tolerance techniques cannot be used because the
hardware cannot generally be modifi ed.

 Software-based fault tolerance techniques have been widely studied and are
commonly used for COTS. They introduce redundancy in the code to detect or
correct errors. However, this typically produces a signifi cant performance decrease.
On the other hand, software-based approaches are limited because a processor often
contains many registers that cannot be directly accessed through software. This
limitation is particularly relevant to provide protection for control-fl ow errors.

 Alternatively, there is a growing interest in fault-tolerance techniques that moni-
tor the processor operation from outside in a non-intrusive manner. The monitor is
attached to a suitable interface from which it can observe the instruction and data
fl ows coming in and out the processor. Monitor modules are implemented in hard-
ware in order to match the processor speed. In the case of a soft core implemented
in a FPGA, the monitor can be included in the same FPGA to provide an integrated
solution [1].

 The obvious observation interface is the same interface the processor uses to
fetch instructions or store data, i.e., the memory buses. Approaches using this kind
of interface have been proposed in [2 – 4]. However, modern processors have other
interfaces that can be used for monitoring. As a matter of fact, monitoring capabili-
ties are crucial for system development and software debugging, and are increas-
ingly supported through On-Chip Debug (OCD) interfaces. As these interfaces are
useless during normal operation, they can be easily reused for on-line monitoring in
an inexpensive way. On the other hand, they can provide internal access to the
microprocessor without disturbing it.

 In this paper we focus on the use of the trace interface for on-line monitoring and
show the possible uses that such interface can have for on-line error detection. The
trace interface is a kind of OCD interface that is provided by many processors and
it is included in the Nexus standard (class 2, 3 and 4, [5]). As it is intended to obtain
traces of the instructions executed by a processor, it generally provides detailed
information of the processor operation. While the memory interface provides the
instruction fl ow at the fetch stage, the trace interface reports instructions after they
have been executed, so that errors that occur after the instruction has entered the
processor can be detected. Moreover, accessing to the instruction fl ow provided on
the fl y by the trace interface allows performing control fl ow checking, and thus
detecting possible faults changing the expected sequence of instruction execution.

 The remaining of the paper is as follows. Section 19.2 summarizes related work
in the fi eld of fault-tolerance for microprocessors. Section 19.3 introduces the trace
interface. Sections 19.4 and 19.5 describe several techniques that use the trace
 interface for error detection or correction. Finally, Sect. 19.6 shows the conclusions
of this work.

L. Entrena et al.

295

19.2 Related Work

 Techniques that detect and mitigate soft errors in microprocessors are commonly
divided in three categories [6]: hardware techniques, software techniques and hybrid
techniques. In all of them, two different types of errors are considered: errors that
affect the data fl ow and errors that affect the control fl ow.

 Hardware techniques use hardware modifi cations to achieve microprocessor’s
error detection. Due to the complexity and involved costs of microprocessor’s archi-
tectural changes, the most common approach consists in adding an external module to
the microprocessor to monitor its behavior. In the literature, such an external module
is referred to as a watchdog processor [7]. The observation capabilities of a watchdog
processor mainly depend on the available microprocessor’s connections. Watchdog
processors have easier access to control-fl ow information and related work mainly
focuses on this type of errors. Data observation depends on the architecture, the appli-
cation and the available connections and it is quite limited in this scenario.

 Watchdog processors can be active or passive. Active watchdog processors
execute a program concurrently with the microprocessor. Passive watchdog proces-
sors only compute simple operations related with the executed fl ow and compare
the result with the expected one. Passive watchdogs are smaller but require large
memory to store the expected result. Active watchdog processors increase error
coverage by increasing the processor complexity and the required area [8 , 9].
Increasing complexity of an active watchdog processor leads to an external added
architecture that could be similar in complexity to the microprocessor under test.

 Software techniques modify the software to mitigate errors. In this case, no addi-
tional hardware is required but the required software modifi cations enlarge the code
size leading to a performance decrease. Some techniques of this category can be
easily implemented because they can be introduced automatically as a set of rules at
the compilation step [10].

 Data-fl ow software-based techniques monitor the data correctness. In this cate-
gory, approaches are commonly split between duplication techniques and assertion
techniques. Duplication techniques duplicate computations at four different levels
of granularity: instruction, block of instructions, procedure or the entire program
[11 , 12]. Duplication creates a redundant data fl ow that can be checked to detect
errors. A granularity decrease produces an enlargement of both error latency and
execution time but code size is reduced. Data duplication techniques present high
error coverage in spite of performance decrease and memory overhead. Several
works propose techniques to reduce overheads by selecting for duplication only the
most critical information [13 , 14]. Assertion techniques introduce additional state-
ments in the code to test the validity and correctness of the data fl ow. The location
and contents of the statements are critical for the error coverage in this kind of
methods [15]. Assertion-based techniques are application-dependent, as both the
statement content and its location depend on the source code. In this case, the pro-
grammer knowledge and ability to fi nd the suitable locations and to check the proper
information are important.

19 Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface

296

 Control-Flow software-based techniques evaluate the correctness of the execu-
tion fl ow. An updated overview of the proposed techniques in the literature can be
found in [2]. This kind of techniques mostly uses signatures [16 , 17] or assertions
[18 , 19]. Control-fl ow techniques usually divide the code into branch-free blocks
(called Basic Blocks or BBs). When a signature method is utilized, a signature is
computed for each BB before execution. When execution takes place, the signature
of each BB is computed and compared with the expected one. Whenever a mismatch
occurs, an error is detected. Assertions can also be used to check the correct fl ow of
BBs. Implementations of any of the existing methods usually produce large over-
heads [20].

 Hybrid techniques present a trade-off between hardware and software tech-
niques. Several works have proposed different hybrid techniques for microproces-
sor error detection. Usually, external hardware modules are connected to the
memory bus interface to control both data and instructions that are sent through the
bus [2]. With this approach instructions are checked just before execution, and tech-
niques make sure the microprocessor is receiving data without errors. However,
complex microprocessors with several pipeline stages need additional observation
points to certify not only that instructions and data provided by the memories are
right but also that nothing have altered the information in the pipeline before the
execution stage.

 Hybrid techniques usually use software techniques for controlling the data-fl ow.
Even though the observation points can give information about data and instructions
separately, it is diffi cult to merge them into a single observation point. The common
approach is based on data storage and instruction re-execution.

 Existing hybrid techniques vary considerably. For example, in [2] the proposed
hybrid technique consists in a hardware module connected to the microprocessor’s
memory that monitors the microprocessor’s behavior and a hardened assertion-
based software technique. In [12] a reconfi guration approach is proposed. In this
case, every application program needs its own specifi c module that will require
reconfi guration when using the application. In [20], software is modifi ed to allow an
I-IP (Infrastructure IP) monitoring both data and control fl ow. In this approach,
software hardening includes special function calls whenever a basic block starts or
ends. In [3], a BB-based approach is proposed where block identifi ers or signatures
are sent to a watchdog processor that monitors the microprocessor behavior. The
watchdog processor computes the signature and checks the correctness of the
execution by comparing it with the expected result. Authors report full coverage but
this approach presents high overheads in both performance and area. Signatures
storage for comparison purposes also presents a drawback which is solved in [11]
with an assertion-based approach. However, this approach cannot be applied to
architectures with on-chip cache memory. In [14 , 17], several hybrid approaches are
evaluated which are based on selective hardening. Evaluation compares methods
regarding execution time, performance, memory overhead, fault detection capa-
bility, etc. In this case, the evaluated hybrid techniques are intrusive because they
require architectural changes in the microprocessor.

L. Entrena et al.

297

19.3 The Trace Interface

 Nowadays, most complex microprocessors include hardware modules for debug-
ging purposes. They are commonly referred as On-chip Debuggers (OCD). OCDs
provide software designers the capability to control the execution fl ow (step-by-step
execution, breakpoints) and data fl ow (access to internal resources such as register
contents or memory contents). The microprocessor’s OCD typically stores informa-
tion of the executed software in a circular buffer called the trace buffer, although the
trace interface can be directly accessed as well. The collected information varies
with the architecture. Typically, it contains the following data: program counter,
instruction register, arithmetic operations results, status fl ags, signals related to the
pipeline and memory accesses, etc.

 As an example, the LEON3 provides a 128-bit trace interface [21] that contains
the following fi elds:

• Program Counter (30 bits, word aligned)
• Opcode (32 bits)
• Load/Store parameters (32 bits)
• Time tag (30 bits)
• Control signals: multi-cycle instruction, instruction trap and error mode.

 The OCD collected information is sent to a host through a standard bus, such as
JTAG. Serial ports are used for simple debugging operations, while parallel ports
are used to support data intensive debug operations such as real-time tracing.
Embedded cores usually come along with modules for improved support of debug-
ging functions. Examples of these modules are the ARM Embedded Trace Macrocell
(ETM) [22], the Xilinx MicroBlaze™ Trace Core (XMTC) [23] or the LEON3
Debug Support Unit (DSU) [24].

 A complete set of OCD features are defi ned in the Nexus 5001 Forum™ standard
[25]. Nexus standard is quite popular among microprocessor’s manufacturers and
their features can also be found in microprocessors that are not Nexus compliant.

19.4 Execution Checking

 Fault detection in a given system is essentially a two-stage process: fi rst of all,
observing the outputs and/or the value of memory elements, and, after that, compar-
ing those values with the expected ones. Comparing just the outputs increases the
latency of fault detection and complicates the implementation of error correction
techniques. Therefore, the access to internal resources is desirable, or necessary in
many applications, depending on the system requirements. Usually, this task is very
diffi cult or requires of invasive mechanisms that can affect the normal behavior of
the circuit under test. However, as it has been explained in previous sections, in
modern microprocessors, the trace interface is a non-intrusive mechanism for
observing the values stored in internal resources.

19 Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface

298

 With respect to the comparison with the golden results, these data must be
available and two options are possible:

• Reference data to be compared are stored in some way in the system. This
approach is valid only for static applications where the results are always the
same. To ensure that no fault can affect the golden values is mandatory, what is
a very restrictive condition. Its implementation is limited by the memory capac-
ity of the system, although data compression techniques can be used to soft this
restriction.

• Reference data to be compared are also generated in the system. Generally, it can
be assumed that only one fault is going to affect the system at a time, and there-
fore, it is very unlikely that two or more execution replicas suffer a fault during
the same run.

 Depending on the chosen approach and the way to implement it, different solu-
tions are possible. The most suitable solution depends on the system requirements
since each possible approach involves different advantages and disadvantages. In [25],
an on-line fault detection technique based on using trace interface and the on- line
generation of reference data is presented. In this approach, the behavior of the
system during several executions of a critical task is compared by observing data
through the trace interface. A hardware module, called CPU Checker, connected to
the trace interface calculates, for each critical task, the signature of the generated
data. When the task replica has fi nished, the signatures are compared and a fault is
detected when they differ. Comparing only a signature instead of a set of data
reduces signifi cantly the memory requirements and the time spent in the compari-
son step.

 The CPU Checker architecture is shown in Fig. 19.1 . It contains n CPU Observer
modules, which are in charge of generating the signature for each replica of a given
task. Thus, n replicas of the task can be executed in parallel. A memory block is used

MISR

Obs
Ctrl

MISR

Obs
Ctrl

MISR

Watchdog

Memory
Start
Addr

End
Addr

Max
Time

Signature
CHECKER’s

CONTROLER

CPU Observer 2 CPU Observer nCPU Observer 1

CPU CheckerData Data DataError Error Error

Obs
Ctrl

WatchdogWatchdog

 Fig. 19.1 CPU-checker architecture

L. Entrena et al.

299

to store the instruction addresses (start and end addresses) of the critical task to be
checked, the maximum time needed to execute the task and the calculated signatures.
And fi nally, a Checker’s controller module manages the complete process. The
instruction addresses of the critical task are used to know when that task starts and
fi nishes, and thus, when the signature generation should start and end. The maximum
time parameter is used by a watchdog to detect a loss of sequence in the execution.

 This technique can be applied along to different system architectures and hard-
ening techniques:

• Time redundancy. The critical task is repeated at different instants of time by the
same microprocessor. This solution allows the detection of permanent and tran-
sient faults. In this case, the CPU Checker only requires one CPU Observer
module, since tasks are not executed in parallel.

• Hardware redundancy. It consists in using several microprocessors to repeat the
critical tasks. The number of CPU Observers depends on the numbers of extra
microprocessors. Typically one extra processor is enough for error detection,
while two extra processors are required for error correction. This method does
not degrade the performance as time redundancy but introduces high area
 overhead. However, in multi-core systems, this technique is applicable without
adding area overhead (see Fig. 19.2).

19.4.1 Experimental Results

 Fault injection campaigns over a LEON3 microprocessor have been performed to
study the effectiveness of this fault detection technique. In [25 , 26], stuck-at faults
and SEUs are evaluated. The experiments allow the analysis of the CPU Checker in
terms of necessary logic resources, latency and fault coverage.

uP2

D
BG

Data

Error

uP1

D
BG

uP3

D
BG Data

Data

Error

Error

CPU
Checker

 Fig. 19.2 Multi-core
architecture with the CPU
Checker to perform on-line
fault correction

19 Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface

300

 With respect to the logic resources, the area of the CPU Checker depends on the
number of critical tasks that could be executed simultaneously (number of required
CPU Observers), and on the number of critical tasks to observe, which directly
affects to the memory size. For example, for the case of two CPU Observers and fi ve
different critical tasks in a Virtex5 FPGA from Xilinx, the CPU Checker requires
416 FFs and 467 Look-up Tables (LUTs), what are minimal resources compared to
those required to implement a microprocessor.

 Latency depends on the granularity of the critical tasks to observe. The latency
would be minimal if every instruction is considered as a critical task. However, this
involves a high area overhead. The latency would be maximum if the complete
application is considered as the critical task, since then the faults are detected after
the second run. Furthermore, the hardening technique and chosen architecture also
affect the fault detection latency. Time redundancy involves high latencies, while
hardware and multicore architectures can be used in lockstep to reduce as much as
possible the latency.

 On the other hand, results are used to measure the fault detection capabilities depend-
ing on the part of the trace data that is observed. Fibonacci an elliptic fi lter applications
have been used as benchmarks. The experiments show the following results:

• Case 1: When the complete trace interface is taken into account for calculating
the signature, only 0.05 % of the errors are kept undetectable. However, false
detected errors are higher with respect to other options (~30 %). Besides, logic
resources are also higher.

• Case 2: When the information to observe consists on the opcode, the undetected data
increase up to 0.2–0.3 %, but the false detected errors decrease down to ~10 %.

• Case 3: When the information to observe consists on the opcode and the load/
store parameters the percentage of undetectable errors is on the same order as in
case 1 and the false detected errors is in the range of 15–20 %.

 False detected errors do not affect the system reliability although it may affect
system performance, depending on the action to be performed after fault detection.
For low error rates, the impact of some sporadic error recovery action is negligible.
For this reason, false detected errors are not considered as a main concern, being the
main objective to reduce as much as possible the number of undetected faults, which
does affect directly into the system reliability. Otherwise, the hardware module can
be hardened to reduce the chance of false errors.

19.5 Control-Flow Checking

 Control-fl ow checking targets the detection of errors that affect the control fl ow.
Control fl ow errors are generally very critical, as they may cause the processor to
hang indefi nitely. In this section, we describe specifi c techniques for control-fl ow
checking using the trace interface.

L. Entrena et al.

301

19.5.1 PC Prediction

 Errors in the Program Counter (PC) are generally critical, as they change the instruc-
tion execution fl ow. The PC prediction technique consists in predicting the next PC
value and comparing it with the actual PC value obtained at the trace interface for
the next executed instruction [27]. The next PC value can be predicted using the
address and the opcode of the current instruction. For a non-branch instruction, the
PC must be incremented by the size of the instruction. For an unconditional branch
instruction, the PC must be incremented by the branch offset. Finally, for a condi-
tional branch instruction, the PC must be incremented by the branch offset if the
branch is taken or by the size of the instruction if the branch is not taken. If these
conditions are not met, an error in the execution fl ow is detected.

 Subroutine calls can also be considered by implementing a Stack Replica, which
can be limited to few levels to save resources [28]. On a subroutine call, the return
address is stored in the Stack Replica. Then, when a return instruction is observed,
the predicted next PC value can be recovered from the Stack Replica and checked.

 This technique can only detect a subset of errors, such as those affecting the
program counter. However, a major property of this technique is that it does not
require reference data to compare with. Therefore, it can be implemented with very
few hardware resources.

19.5.2 Signature-Based Checking

 Several Control Flow Checking approaches have been proposed, which are based
on signature monitoring [6]. The basic idea is to divide the program into a set of
blocks (named basic blocks , or BBs), having only one entry-point and only one exit-
point: hence, all instructions in a BB are necessarily executed together, in their
order. Each basic block has an associated signature that is calculated at compile
time and stored in the system. During the execution phase, a run-time signature is
calculated and (at the end of the block execution) compared with the reference
signature, thus allowing to detect any error affecting the block execution fl ow.
Signature computation and comparison can be performed in different ways (e.g., in
hardware or software), characterized by different costs and invasiveness, as well as
detection capabilities.

 In [29] a method was proposed, which combines signature-based checking with
the usage of Debug and Trace features: control fl ow checking can be performed by
an external hardware module that monitors the sequence of instructions executed by
the processor through the trace interface and compares it with the reference sequence
of instructions to detect possible control fl ow errors. Experiments showed that a few
checks performed when a branch is executed and at the end of each basic block can
detect a high percentage of control fl ow errors.

19 Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface

302

 In particular, the following two checks can be implemented:

• Check # 1 : For every instruction, the external module checks whether the instruction
is a (conditional or unconditional) jump instruction or not; in the former case,
the new value of the PC must be either the address of the following instruction,
or the target one (for conditional branches; for unconditional ones, it must be the
target address); in the latter case, the new value of the PC must be the address of
the following instruction;

• Check # 2 : Each time the end of a BB is reached, the external module checks
whether the signature computed out of the machine codes of the instructions
executed during the BB matches a pre-computed one, which is stored in a table
inside the module itself.

 These checks can be effectively performed by just tracing the values hold by the
Program Counter and the Instruction Register.

 The major advantages of the proposed method lie fi rst of all in its low intrusive-
ness, since it does not require any change in the processor or in the software it runs;
moreover, the experimental results show that the method can detect a high percent-
age of control fl ow errors caused by bit fl ips in the processor internal fl ip fl ops.
Latency of fault detection is also very limited. The required external hardware
module is relatively small and is independent on the application software. Finally,
the method is effective even if the processor uses caches. The major limitation of
the method lies in the size of the table storing the signatures associated to the differ-
ent BBs composing the application code. Clearly, a trade-off can be made between
the size of this table and the achievable fault coverage, assuming that no check is
performed for BBs whose signature is not stored in the table.

 In [30] the same method is improved by allowing it to self-learn the required
information about the organization of the application code in BBs and the value of
the related signatures. In practice, the method does not require any signature pre-
computation out of the considered code: when the application is run, the monitor
starts tracing the instructions and each time it fi nds a BB, checks whether the proces-
sor already executed it, or not. In the former case, no check is performed, and the
signature of the BB is computed and stored in the table; in the latter case, the table is
accessed and the usual check is performed. Moreover, the external module may be
instructed to only store the signatures of a subset of the BBs; in this case it automati-
cally and dynamically selects the BBs to be stored in the table, e.g., according to the
frequency of their execution. In this way, no pre-processing of the application code
is required to compute the BB signatures, an optimal trade-off is achieved between
the table size and the obtained results and a higher fault coverage can be achieved.

19.5.3 Dual Control-Flow Monitoring

 An approach to check the control-fl ow without the need of additional information
for comparison consists in observing the control-fl ow at two different points. This
technique is called dual control-fl ow monitoring [31]. In this approach, the instruction

L. Entrena et al.

303

fl ow of the microprocessor is captured both upstream at the bus between the
memory and the microprocessor and downstream at the trace interface. The upstream
interface observes the address and opcode of each instruction at the cache bus or at
the system bus if no cache is used. The downstream interface observes the address
and opcode of each instruction at the trace interface, right after execution. If an error
corrupts the instruction fl ow within the processor, it can detected by comparing the
downstream instruction fl ow with the upstream instruction fl ow.

 Dual control-fl ow monitoring is quite effective in highly pipelined processors,
where instructions travel through the pipeline. An error which occurs in the PC or
the Instruction Register (IR) at any stage in the pipeline will fi nally be observed at
the trace interface and can be detected by comparing the trace interface output with
the memory address and instruction collected at the fetch stage.

 Note that errors in the PC at the fetch stage may not be detected with this
approach, as the fetch PC is issued by the processor. However, these errors can be
covered by using the PC prediction technique in combination with dual control-fl ow
monitoring.

 The monitor can also check the time tag and the trap and error fl ags provided by
the trace interface. The time tag is used as a watchdog to detect hang errors. The trap
and error fl ags can also be used to detect illegal traps caused by invalid instruction
or invalid memory addresses.

 The dual control-fl ow monitoring technique does not require additional informa-
tion for checking, because it compares incoming instructions with outcoming
instructions. Additionally, it does not affect performance. The area overhead due to
the monitor circuit may vary depending on the processor and the characteristics of
the interfaces.

19.5.4 Experimental Results

 The effectiveness of control-fl ow checking using an external hardware module
attached to the trace interface has been tested for several soft-core processors.
In [28], the PC prediction technique was tested for PicoBlaze processor. The results
show that this technique can detect between 40 and 50 % of the total errors, includ-
ing both SEUs and SETs. In particular, PC prediction makes a very good job at
detecting hang errors, i.e., errors that provoke abnormal program termination or an
infi nite loop. By combining this approach with software hardening, the percentage
of detected errors can typically reach 99 %.

 For more complex processors, the dual control-fl ow monitoring technique is
very effective. An extensive fault injection campaign has been performed for
LEON3 microprocessor using several code benchmarks. A hardened version of the
code was implemented with a duplication approach based in [11]. Injection of SEU
and SET were performed with AMUSE tool [32], which enables large fault injection
campaigns. Additional results can be found in [31].

19 Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface

304

 Tables 19.1 and 19.2 show the results for the fault injection campaigns of the
unhardened version and the hardened version respectively. For Tables 19.1 and
 19.2 , column 2 reports the number of injected faults, column 3 reports the number
of observed errors, columns 4 and 5 report SDC (Silent Data Corruption) and Hang
errors, respectively, and column 6 reports the detected errors. Both Tables 19.1 and
 19.2 report results regarding where the faults are located: row 2 reports results for
PC (Program Counter) and IR (Instruction Register), row 3 reports results for any
other register, and row 4 reports results for all registers (including PC and IR).
Finally, The last row reports the results for the SET experiments.

 These results demonstrate that this technique can detect all errors produced by
faults injected in the PC and IR registers for all stages. Even though they form just
a small portion of the total internal fl ip-fl ops in the processor (less than 20 % in
the case of a LEON3 using a minimal confi guration), they are usually very critical.
In fact, the results in [31] show that about 50 % of observable errors are produced
in these registers. On the other hand, these include all control-fl ow errors, according
to [16]. The dual control-fl ow monitor can also indirectly detect errors injected in
other registers, covering more than 70 % of the total observable errors.

 The signature monitoring approach described in Sect. 19.5.2 was experimentally
evaluated on a miniMIPS processor, assuming that a debug interface similar to the
one available in the LEON3 processor is available. The fault models defi ned in [18],
which specifi cally focus on the Control Flow Errors, were considered. Results show
that the method achieves 100 % fault coverage when the signature table is large
enough to store all BB signatures, and that the fault coverage decreases quite slowly
when the table size reduces. On the other side, the size of the external hardware
module performing the checks (not including the table) is limited to about 2 % of
the total size of the processor. Its complexity only slightly increases when the
improved method is implemented, while in this way very high fault coverage
fi gures can be achieved even with a table whose size allows storing the signatures
of a fraction of the total set of BBs.

 Table 19.1 Fault-injection results using unhardened software

 Elements
 Faults
injected (M)

 Errors
observed SDC Hang Errors detected

 PC & IR 4.8 1,643,534 0 0 1,643,534 (100 %)
 Other registers 20.9 1,571,582 752,826 98,816 719,940 (45.8 %)
 All registers 25.8 3,215,116 752,826 98,816 2,363,474 (73.5 %)
 SET 329.9 3,290,266 1,019,130 51,517 2,219,619 (67.5 %)

 Table 19.2 Fault-injection results using hardened software

 Elements
 Faults
injected (M)

 Errors
observed SDC Hang Errors detected

 PC & IR 10.4 3,092,329 0 0 3,092,329 (100 %)
 Other registers 45.2 3,161,890 254,560 192,728 2,714,918 (85.9 %)
 All registers 55.6 6,254,219 254,560 192,728 5,806,931 (92.9 %)
 SET 711 7,138,702 226,966 64,080 6,847,656 (95.2 %)

L. Entrena et al.

305

19.6 Conclusions

 This work presents a detailed analysis of the capabilities of the microprocessor’s
trace interface as a microprocessor observation point. The trace interface, which is
commonly found in many microprocessors, is a non-intrusive observation point that
provides quite useful information for microprocessor error detection. In addition,
observation is performed after instructions are executed and errors that occur in the
pipeline can be detected.

 Several strategies can be used to detect errors with the information provided by
the trace interface. All of them can provide high error detection coverage with
no intrusiveness. Techniques have been tested on different microprocessors
(miniMIPS, PicoBlaze and LEON3) which also demonstrate that trace interface can
be used effectively in a broad range of microprocessors.

 Acknowledgment This work was supported in part by the Spanish Government under project
PHB2012-0158-PC.

 References

 1. Aleksejev I, Jutman A, Devadze S, Odintsov S, Wenzel T (2012) FPGA-based synthetic instru-
mentation for board test. In: Proceedings of IEEE international test conference, Austin

 2. Azambuja JR, Altieri M, Becker J, Kastensmidt FL (2013) HETA: hybrid error-detection
technique using assertions. IEEE Trans Nucl Sci 60(4):2805–2812

 3. Azambuja JR, Pagliarini S, Altieri M, Kastensmidt FL, Hubner M, Becker J, Foucard G,
Velazco R (2012) A fault tolerant approach to detect transient faults in microprocessors based
on a non-intrusive reconfi gurable hardware. IEEE Trans Nucl Sci 59(4):1117–1124

 4. Azambuja JR, Lapolli A, Rosa L, Kastensmidt FL (2011) Detecting SEEs in microprocessors
through a non-intrusive hybrid technique. IEEE Trans Nucl Sci 58(3):993–1000

 5. The Nexus 5001 forum standard for a global embedded processor debug interface, IEEE-ISTO
5001–2003, 2003, ver. 2.0

 6. Nicolaidis M (ed) (2011) Soft errors in modern electronic systems. Springer, New York
 7. Mahmood A, McCluskey E (1988) Concurrent error-detection using watchdog processors.

IEEE Trans Comput 37(2):160–174
 8. Michel T, Leveugle R, Saucier G (1991) A new approach to control fl ow checking without

program modifi cation. In: Proceedings of the 21st FTCS-21, June 1991, pp 334–341
 9. Bergaoui S, Leveugle R (2009) IDSM: an improved control fl ow checking approach with

disjoint signature monitoring. In: Proceedings of the Conference on DCIS, Nov 2009,
pp 249–254

 10. Rebaudengo M, Reorda MS, Torchiano M, Violante M (1999) Soft-error detection through
software fault-tolerance techniques. In: International symposium on defect and fault tolerance
in VLSI systems, pp 210–218

 11. Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Sonza Reorda M, Violante M (2000)
Experimentally evaluating an automatic approach for generating safety-critical software with
respect to transient errors. IEEE Trans Nucl Sci 47(6):2231–2236

 12. Engel H (1997) Data fl ow transformations to detect results which are corrupted by hardware
faults. In: Proceedings of the IEEE high-assurance system engineering workshop,
pp 279–285

19 Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface

306

 13. Benso A, Chiusano S, Prinetto P, Tagliaferri L (2000) A C/C++ source-to source compiler for
dependable applications. In: Proceedings of the IEEE international conference on dependable
systems and networks, pp 71–78

 14. Nicolescu B, Velazco R (2003) Detecting soft errors by a purely software approach: method,
tools and experimental results. In: Design, automation and test in Europe conference and
exhibition, pp 57–62

 15. Hiller M (2000) Executable assertions for detecting data errors in embedded control systems.
In: Proceedings of the IEEE international conference on dependable systems and networks,
pp 24–33

 16. Vemu R, Gurumurthy S, Abraham JA (2007) ACCE: automatic correction of control-fl ow
errors. In: Proceedings of the international test conference, pp 1–10

 17. Chielle E, Azambuja JR, Barth RS, Almeida F, Kastensmidt FL (2013) Evaluating selective
redundancy in data-fl ow software-based technique. IEEE Trans Nucl Sci 60(4):2768–2775

 18. Alkhalifa Z, Nair VSS, Krishnamurthy N, Abraham JA (1999) Design and evaluation of
system- level checks for on-line control fl ow error detection. IEEE Trans Parallel Distrib Syst
10(6):627–641

 19. Vemu R, Abraham JA (2006) CEDA: control-fl ow error detection through assertions. In:
Proceedings of the 12th IEEE international on-line testing symposium, pp 151–158

 20. Mukherjee S, Weaver C, Emer J, Reinhardt S, Austin T (2003) A systematic methodology to
compute the architectural vulnerability factors for a high-performance microprocessor. In:
Proceedings of the 36th international symposium microarchitecture, Dec 2003, pp 29–40

 21. GRLIB IP core useŕs manual. ver. 1.0.22, Aerofl ex Gaisler, Jan 2010
 22. Embedded Trace Macrocell, ETMv1.0 to ETMv3.4, architecture specifi cation. ARM Limited,

2007
 23. Xilinx MicroBlaze™ Trace Core (XMTC) (v1.00c), Xilinx, 2009
 24. www.gaisler.com
 25. Portela-Garcia M, Grosso M, Gallardo-Campos M, Sonza Reorda M, Entrena L, Garcia-

Valderas M, Lopez-Ongil C (2012) On the use of embedded debug features for permanent and
transient fault resilience in microprocessors. Microprocess Microsyst 36(5):334–343

 26. Grosso M, Reorda MS, Portela-Garcia M, Garcia-Valderas M, Lopez-Ongil C, Entrena L
(2010) An on-line fault detection technique based on embedded debug features. In: Proceedings
of the 16th IEEE on-line testing symposium, pp 167–172

 27. Parra L, Lindoso A, Portela M, Entrena L, Grosso M, Reorda MS (2011) Control fl ow check-
ing through embedded debug interface. In: Proceedings of the 26th conference on design of
circuits and integrated systems, pp 339–343

 28. Parra L, Lindoso A, Portela M, Entrena L, Restrepo-Calle F, Cuenca-Asensi S, Martinez-
Alvarez A (2014) Effi cient mitigation of data and control fl ow errors in microprocessors. IEEE
Trans Nucl Sci 61(4):1590–1596

 29. Du B, Reorda MS, Sterpone L, Parra L, Lindoso A, Portela-Garcia M, Entrena L (2013)
Exploiting the debug interface to support on-line test of control fl ow errors. In: Proceedings of
the 19th IEEE on-line testing symposium (IOLTS), July 2013, pp 98–103

 30. Du B, Reorda MS, Sterpone L, Parra L, Lindoso A, Portela-Garcia M, Entrena L (2014) A new
solution to on-line detection of control fl ow errors. In: Proceedings of the 20th IEEE on-line
testing symposium (IOLTS), July 2014, pp 105–110

 31. Parra L, Lindoso A, Portela-Garcia M, Entrena L, Du B, Reorda MS, Sterpone L (2014) A new
hybrid nonintrusive error-detection technique using dual control-fl ow monitoring. IEEE Trans
Nucl Sci 61(6):3236–3243

 32. Entrena L, Garcia-Valderas M, Fernandez-Cardenal R, Lindoso A, Portela Garcia M, Lopez-
Ongil C (2012) Soft error sensitivity evaluation of microprocessors by multilevel emulation-
based fault injection. IEEE Trans Comput 61(3):313–322

L. Entrena et al.

http://www.gaisler.com/

 Part VI
 Parallel Architectures and GPUs

309© Springer International Publishing Switzerland 2016
F. Kastensmidt, P. Rech (eds.), FPGAs and Parallel Architectures
for Aerospace Applications, DOI 10.1007/978-3-319-14352-1_20

Chapter 20
Soft-Error Effects on Graphics
Processing Units

Paolo Rech, Daniel Oliveira, Philippe Navaux, and Luigi Carro

Abstract  Graphics Processing Units (GPUs) evolved from graphics-specific
devices to general-purpose computing accelerators that scientists use to run large-
scale simulations. Additionally, GPUs are very attractive for safety-critical applica-
tions that extensively use signal or image processing.

Unfortunately, while the performance and efficiency of GPUs are well estab-
lished, their resilience characteristics in a large-scale computing system and safety
critical-application have not been fully evaluated. The presence of complex sched-
uling circuitry, for instance, may significantly increase the parallel code error rate.
Moreover, the parallel architecture of GPUs introduces novel radiation experiment
challenges that need to be solved.

In this Chapter we present a detailed radiation test setup for GPUs, including
some recommendations for parallel devices experiments. We also present some
experimental results on the radiation sensitivity of modern GPUs, considering both
low-level static analysis and typical parallel application behaviors under radiation.

20.1  �Introduction

Graphics Processing Units (GPUs) are electronic devices designed to perform
high-performance stream processing and provide very high computational power
combined with low cost, reduced power consumption, and flexible development
platforms.

In order to achieve the proposed objective, GPUs manipulate a large number of
memory locations, and are typically able to execute several elementary tasks in
parallel at high speeds [1, 2]. Due to their highly parallel structure, GPUs are more
effective than general-purpose CPUs when large blocks of data need to be pro-
cessed in parallel. GPUs have then recently become popular not only for graphical
applications, but also in the High Performance Computing (HPC) market [3, 4].

P. Rech (*) • D. Oliveira • P. Navaux • L. Carro
Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
e-mail: prech@inf.ufrgs.br; dagoliveira@inf.ufrgs.br; navaux@inf.ufrgs.br; carro@inf.ufrgs.br

mailto:prech@inf.ufrgs.br
mailto:dagoliveira@inf.ufrgs.br
mailto:navaux@inf.ufrgs.br
mailto:carro@inf.ufrgs.br

310

Scientists have begun to take advantage of the unprecedented amount of parallelism
available in GPUs to expedite their scientific simulations and to derive scientific
insights more quickly. For example, Titan, the world’s second fastest supercom-
puter for open science in 2014, consists of 18,688 GPUs that scientists from various
domains such as astrophysics, fusion, climate, and combustion use routinely to run
large-scale simulations. Moreover, in some safety-critical applications, such as
automotive, avionics, space and biomedical, GPUs would be very suitable. As an
example, the Advanced Driver Assistance Systems (ADAS), which are increasingly
common in cars, make an extensive usage of images (or radar signals) coming from
external cameras and sensors to detect possible obstacles, triggering the breaks
automatically if necessary. Starting in 2015, only vehicles equipped with ADAS
will be eligible to receive the highest security level from Euro-NCAP [5], one of the
most authoritative car evaluation agencies in Europe. A Low-power System on Chip
including a GPU core, like the NVIDIA Tegra, is likely to be the computational core
of ADAS. Airbus is finalizing the ARAMIS project, aimed at integrating of all the
electronics required to implement the collision avoidance system into a single board
including a GPUs core [6]. Unfortunately, the European Aviation Security Agency
(EASA) does not accept multicores chips with more than two cores on an aircraft,
yet. The main reason for such a limitation on parallelism from EASA is that a stan-
dardize reliability evaluation protocol has not yet been developed. Our paper moves
on the direction of understanding the reliability of GPUs, giving novel insights on
their behaviors when exposed to ionizing radiation.

In both application scenarios (HPC and safety-critical embedded applications),
GPUs reliability is a major concern. As the newest GPUs are built with cutting-edge
technologies, offer a great amount of resources, and operate at extremely high fre-
quencies, they may be particularly susceptible to experience radiation-induced
errors, including those originating from the terrestrial neutron radiation environ-
ment [7, 8]. On safety-critical applications, the reliability qualification of GPUs is
essential to evaluate if the device is compliant with the project specifications.
Hardening techniques like Error Correction Codes (ECC), duplication with com-
parison, triplication, or Algorithm Based Fault Tolerance [9, 10] could eventually be
applied if the error rate of GPUs is found to exceed the reliability requirement.
Supercomputers are composed of thousands of devices that work in parallel and,
thus, the probability of having at least one radiation-induced corruption is very high.
Hardening strategies become mandatory even for HPC application with the specific
constraint to avoid the introduction of useless overhead. Evaluating precisely the
radiation-induced error rate of a code executed on a GPU is then of extreme impor-
tance as it allows to evaluate the trade-off between the hardening strategy detection/
correction capabilities and the introduced computational overhead.

An intense research discussion on GPUs radiation sensitivity has recently started
[11], focusing on the probability of caches and registers failures, tracking errors
propagation to the output [12–14] as well as devising software and architectural
techniques to harden GPU-based systems [15]. Most of the research done on GPU
reliability is based on fault-injection simulations [12, 13, 16], on field tests [14], or
radiation experiments [17, 18]. Experimental data presented in the later highlights

P. Rech et al.

311

that the corruption of resources shared among parallel threads like caches or critical
resources, such as the scheduler, may reduce the GPU reliability and generate a
large number of multiple errors in the output.

20.2  �GPUs Architecture and Radiation Vulnerability

Modern GPUs are divided into various computing units, named Streaming
Multiprocessors (SM), each of which has the ability to executing several threads in
parallel (see Fig. 20.1). Each basic computing unit (named CUDA core in NVIDIA
devices) in the SM executes one thread with dedicated registers, avoiding complex
resource sharing or the need of long pipelines [2].

It is the programmer’s task to divide the instantiated threads into a grid of blocks
when designing a kernel to be executed on a GPU. It is easy to modify the thread
distribution, as the block size and the grid size are both parameters that have to be
specified when launching a CUDA kernel to be executed on a GPU.

The number of blocks assigned to a Streaming Multiprocessor in the GPU will
depend on the number of registers, on the amount of shared memory available in the
SM, and on the resources required by each block to be executed. On GPUs built
with the Fermi architecture, like the ones used in the presented study, the number of
blocks assigned to a SM cannot exceed 8 while in Kepler devices up to 16 blocks
can be assigned to a SM.

Fig. 20.1  A representative CUDA-based GPU architecture, composed of an array of SMs that
share L2 cache and external DRAM. In the SM, warps are assigned to CUDA cores by two sched-
ulers. A thread has dedicated register files and shares with threads in the same SM a shared mem-
ory, L1 and instruction cache

20  Soft-Error Effects on Graphics Processing Units

312

Some blocks will be queued for later computation if the grid size exceeds the
number of blocks that can be dispatched among the SMs available in the GPU. Before
dispatching a queued block to the first SM that becomes available, the GPU’s block
scheduler needs to check if some SM completed the current block execution and, if
so, it transfers the results to the on-board DDR memories. The queued block is then
assigned to the SM, the input data is eventually read from the DDR, and, finally, the
queued block execution is triggered and synchronized [19].

GPUs with CUDA capabilities 2.0 or 3.5, as the vectors of this study, can execute
up to 64 and 192 parallel threads in an SM in a computing cycle, respectively. If the
block size exceeds 64 or 192, the execution of some threads will be delayed until the
computation of the preceding warps of the block has been completed. It is worth
noting that the next block to be treated will be assigned to the SM only when all
threads in the current block have been processed. Therefore, if the number of threads
in a block is not a multiple of 64, in the last cycle the SM will execute less than the
maximum amount of threads, wasting parallel capabilities.

Each SM disposes of two schedulers (see Fig. 20.1). At every instruction issue
time, the first scheduler issues one instruction for some warp with an odd ID and the
second scheduler issues one instruction for those with an even ID. When double-
precision floating-point instructions have to be executed, like in the codes analyzed
in this paper, the second scheduler cannot issue any instruction.

A parallel code to be executed on a GPU is typically composed of several inde-
pendent threads, all executing the same set of instructions on dedicated memory
location. Increasing the amount of threads brings then higher throughput to the
application. To do so, the programmer can choose either to increase the block size,
which will require more computational effort in each SM and delay the assignment
of the next blocks, or to increase the grid size, thus having more blocks to be dis-
patched. The GPU parallel management is strictly related to the chosen thread dis-
tribution. The scheduling and computational load required for blocks and warps
assignment, as well as resources distribution, are strictly related to the chosen grid
and block sizes, which is then likely to influence also the GPU radiation response.

When evaluating the radiation reliability of GPUs it essential to consider and
analyze the effects of different thread distributions in the GPU parallel management
and the consequent variation on the device cross section. Such an evaluation will
detect the distribution, in terms of grid size and block size, which offers lower cross
section and higher probability of completing computation correctly. For instance,
reducing the number of threads available while increasing the workload of each
thread lowers the dispatcher load, which is likely to reduce the GPU cross section,
but the recourses distribution, caches requirements, memory access latencies will be
affected by the changed threads complexity, with non-obvious effects on the
radiation-induced error rate.

There are a number of ways that neutron or ionizing particle in general strikes
perturb GPUs. A neutron may induce bit flips in memory elements as well as tran-
sient voltage spikes in logic computing resources or control circuitry. GPUs use
large caches and complex task schedulers to manage the parallelism on the system.
While task scheduling is performed in software as part of the operating system tasks

P. Rech et al.

313

on CPUs, GPUs have dedicated, hardware-based task schedulers internally. The
caches and schedulers are particularly critical for parallel processors and failures in
these areas can lead to multiple output errors or functional interruptions [17, 19].

A radiation strike leads to one of the following outcomes: (1) no effect on the
program output (the error is masked or corrupted data is not used), (2) Silent Data
Corruption (incorrect program output), (3) program crash, (4) system hang (the
GPU has to be rebooted to restore its functionality). Out of these outcomes, (2) is
harmful as it remains undetected and unpredictable, while (3) and (4) are to be
strictly avoided in safety-critical applications and in HPC, as they lead to loss of
functionality, performance penalties, and possible data loss.

From a radiation test point of view, the CUDA cores are isolated such that a
single radiation-induced event in one of them will only corrupt the thread assigned
to it. Threads that follow the corrupted one or assigned to CUDA cores near the
struck one will not be affected. Nevertheless, errors in the L1 cache or shared mem-
ory are likely to affect several threads in the SM, as all threads can access that data.
Similarly, errors in the L2 cache, shared among all SMs, are likely to affect several
blocks of threads. A radiation strike in one of the schedulers may lead to wrong task
assignments forcing threads to work on wrong data, to synchronization issues lead-
ing to incomplete results, or to conflicts or control flow errors that induce kernel
panic or crashes. Instantiating a higher number of parallel threads typically reduces
the code execution time but increases the scheduler strain required to manage exe-
cution and resource sharing. Imposing a higher scheduler strain (either on the warp
or block scheduler) has the drawback of increasing the probability of having the
scheduler affected by radiation [19].

Only the major storage structures of GPUs for HPC applications are protected
with Single Error Correction Double Error Detection (SECDED) Error-Correcting
Code (ECC) including device memory, L2 cache, instruction cache, register files,
shared memory, and L1 cache. However, some resources are left uncovered, e.g.,
logic, queues, the thread block scheduler, warp schedulers, instruction dispatch
units, and interconnect network. Unfortunately, the details of resilience support for
these structures are considered business-sensitive by vendors and, hence, unavail-
able. It’s worth noting that GPUs for embedded systems typically do not include any
reliability system.

20.3  �Experimental Setup

Radiation experiments were performed in the VESUVIO neutron facility at ISIS,
Rutherford Appleton Laboratories (RAL) in Didcot, UK and at LANSCE, Los
Alamos National Laboratory, Los Alamos, NM, USA (Fig. 20.2). Both these facili-
ties provide a neutron spectrum that has been demonstrated to be suitable for emu-
lating the atmospheric neutron flux [20]. The available neutron flux was of about
5 × 104n/(cm2 s) in VESUVIO and 5×106n/(cm2 s) for energies above 10 MeV.
Irradiation was performed at room temperature with normal incidence.

20  Soft-Error Effects on Graphics Processing Units

314

It is worth noting that the neutron flux the GPUs receive during radiation experi-
ments is 10 orders of magnitude higher than the atmospheric neutron flux (which,
according to the JEDEC standard, is of about 13 n/(cm2 h) at sea level). Experiments
should then be carefully designed to ensure that the probability of more than one
neutron generating a failure in a single code execution remains practically negligi-
ble. As a general advice, the observed error rates should be lower than 10−2 errors/
execution. The error rate can be lowered either by reducing the flux that reach the
device under test (for instance installing the GPU farther from the particles source)
or reducing the amount of data elaborated and workload. On a GPU it is typically
easy to design scalable tests. In fact, the homogenous structure of the device and
code allow the programmer to parametrize the number of instantiated parallel pro-
cesses and, consequently the workload.

Since a much lower neutron flux may hit a GPU in a realistic environment, it is
highly likely to not have more than one corruption during a single execution. We
can, therefore, scale the experimental data in the natural radioactive environment
without introducing artificial behaviors.

The beam was focused on a spot with a diameter of 2 cm plus 1 cm of penumbra.
The size of the spot is sufficient to uniformly irradiate the whole GPU chip, leaving
the on-board DDR and power circuitry of the GPU out of the beam. This is essential
for preventing neutron-induced errors on power switches to compromise the experi-
ment. Moreover, having the DDR memory out of the beam allowed us to use it as a
safe temporary storage for test results, as we will detail in the following.

The GPU can be fully controlled by a normal desktop-PC through a 2.5 GHz
PCI-Express bus. We put an extension of 20 cm to the PCI-Express so to prevent

Fig. 20.2 GPU radiation test setup inside the ICE House II at LANSCE, Los Alamos National
Laboratory, Los Alamos, NM, USA

P. Rech et al.

315

scattering neutrons to affect the PC functionalities (Fig. 20.2). The extension was
provided with fuses to prevent current spikes from the GPU to reach the PC moth-
erboard. Power was given to both the GPU and bus with current-controlled supplies
to further prevent neutrons-induced latchups from destroying the device. The
described test setup is low-cost, but very effective and gives precise data on the
radiation sensitivity of the GPU.

NVIDIA CUDA programming strategy allows integrating in a single application
both CPU and GPU codes. The key CUDA operations are thread synchronize, cuda-
malloc, and cudamemorycopy. The former is used to trigger the start of GPU execu-
tion, while the others are used to exchange data, allowing the CPU to access the
DDR available on the GPU board. The GPU can then be treated as a stand-alone
device that, once initialized, executes the provided instructions without the need of
external stimuli.

The role of the PC in this kind of test is just to initialize the board under test,
download the results, and check for mismatches when the test is finished. The
sequence of a generic test on a GPU can be detailed as follows:

	1.	 Initialization: the PC loads instructions and/or data on the GPU;
	2.	 Test: the PC triggers the GPU with the thread synchronize command. The GPU

actually executes the code while the PC is in idle state. When the test finishes,
the GPU loads the results in the DDR. In this step the GPU simply maintains
data when performing a static test for measuring the sensitivity of memory
elements;

	3.	 Readback: the PC, using cudamemorycopy operation, downloads from the GPU
DDR the experimental data and checks for mismatches.

Thanks to the extreme high frequency of both the PC and PCI-Express, steps 1
and 3 can be performed very quickly (order of milliseconds), making it very unlikely
for a neutron to generate an error during their execution. It is then possible to per-
form steps 1–3 continuously under radiation to gain a statistically significant amount
of data. This is particularly useful in neutron radiation test, as normally the beam
cannot be switched off easily. In fact, in most of the neutron accelerator facilities the
beam opening/closing procedure takes several seconds to be fully completed. In the
ISIS particular case, two concrete shutters are used to block the beam and the open-
ing or closing process takes about 1 min to be accomplished. It would be then rather
impractical to stop the beam before each test initialization or readback.

A software and a hardware watchdog were included in the setup. The software
watchdog monitors a time-stamp written by the application running on the GPU. If
the time-stamp is not updated in 10 s the GPU application is killed and launched
again. Such a watchdog is required to detect and manage radiation-induced program
crashes or control flow errors that prevent the GPU from completing the assigned
tasks (e.g., the GPU enters an infinite loop). The triggering of the software watch-
dog is counted as a Functional Interruption. The hardware watchdog is an Ethernet
controlled switch that performs a power cycle of the host computer if the host
computer itself does not acknowledge any ping requests in 10 min. The hardware
watchdog is necessary as radiation can corrupt the PCIe controller on the GPU

20  Soft-Error Effects on Graphics Processing Units

316

board as well, possibly causing the host computer to hang. Finally, it is worth noting
that the irradiated GPU should not be set as the primary graphic card of the control-
ling PC. This is because the operating system running on the PC will probably crash
if the primary graphic card experiences a latchup or a functional interruption, and a
manual power cycle of the PC will be necessary.

20.4  �Experimental Results

20.4.1  �Basic Structures Test

As a first characterization of the tested devices, the baseline tests to conduct are the
characterization of neutron-induced errors in the L1/shared memory, the L2 cache
when used with L1/shared, and also an adder that fully exercised the carry
functionality.

The Devices Under Test (DUTs) are three commercial-off-the-shelves Kepler K20
GPUs designed by NVIDIA in a 28 nm technology node. The K20 is among the cur-
rent highest performing NVIDIA GPUs, and acts as an accelerator in two of the ten
fastest supercomputers, including Titan. The DUT is composed of 15 SM, each of
which is divided in 192 CUDA cores. The K20 features a 706 MHz SM core clock,
1.25 MB L2 cache, a total of 832 KB in L1 cache, and a total of 3.25 MB of register
file storage. The K20 is equipped with a Single Error Correction Double Error
Detection (SECDED) ECC mechanism. Tests should be performed both having the
GPU Error Correction Code (ECC) disabled and enabled. By disabling error correc-
tion one is able to determine the base sensitivity of the cells without error correction.

As GPUs are used for massively parallel operations, it is necessary to implement
the test code so that it will properly distributed across the GPU, including the mem-
ory and compute infrastructure. The 64 KB of on-chip memory was configured for
all tests to maximize the amount of shared memory per SM. There is 48 KB of
shared memory and 16 KB of L1 cache in the on-chip memory on each SM. The
grid size is maximized to the number of SMs, which is 15 for the K20. The block
size is maximized to the number of CUDA cores, which is 192 for the K20. We
sized the test data so that memory was utilized to the maximum extent possible. In
practice, this meant almost filling the shared memory portion of on-chip memory,
but only filling about half of L2 cache. By using only half of L2, one is able to main-
tain one thread per core per kernel.

The configurable L1/shared memory cache test set an array of elements in shared
memory at the beginning of test execution. The instrumentation code that checks for
errors forces the array to remain resident in shared memory over a reasonably long
time and minimizes rewrites over possible errors in shared memory before they
were recorded.

The L2 cache test also uses L1/shared memory. The data in L2 were persistent
throughout the test, but the data in L1/shared were overwritten constantly. The test
read the array in L2 into shared, where the instrumentation code would check for

P. Rech et al.

317

correctness and correct errors. The read/check/correction cycle iterated many times
before the kernel ended. This keeps the array resident in L2 cache over a reasonably
long time and minimizes rewrites in L2.

Finally, the adder test is used to evaluate the add-carry circuit sensitivity. Only
add-carry, an increment, bit shifts and a NOT were used in this test.

Figure 20.3, taken from [21], shows the bit cross-sections for the caches (L2 and
Shared Memory/L1) and the adder. Only one error was observed in the adder test,
possibly not enough to build a significant statistic. On the contrary, all the other
experiments provided more than 100 errors each, which result in a good statistic.
While there are differences in sensitivities based on the type of memory and test
pattern, the differences are not large.

Other experiments, like the one proposed in [22] show a not negligible pattern
dependence on GPU memory structures. In particular, the L2 cross section for the
K20 depends on the written pattern. For the 0s pattern, the L2 cross section was
found to be approximately 40 % higher than that of the 1s pattern. This means that
L2 bits set to 0 are more likely to be corrupted by high-energy neutrons than bits set
to 1. The observed dependence on test pattern is due to the asymmetries intrinsic in

Fig. 20.3  Bit cross sections for three different test codes with four different test patterns [21]

20  Soft-Error Effects on Graphics Processing Units

318

the cache cell design. This specific result can be achieved only through radiation
experiments, and is fundamental to precisely evaluating the resilience of GPUs.

The test procedure described in the previous section allows also distinguishing
between Multiple Cells Upset (i.e., multiple errors generated by a single impinging
particle) and Multiple Bit Upset (i.e. multiple errors belonging to the same word
generated by a single impinging particle).

For this test two different devices were used: the K20 and the C2050. The C2050
belongs to the Fermi family, and was released 2 years earlier than the K20. As K20
is built in a 28 nm technology node while the C2050 in a 40 nm node the compari-
son among the two devices sensitivity to multiple errors is of particular interest. In
fact, we will check wherever the shrink of transistors dimension effectively increases
the probability of having multiple failures.

Figure 20.4 shows the percentage of events that were found to be MCU and
MBU (L1 test did not provide a statistically significant amount of multiple events
on the C2050 and is not included). Whenever more than one bit was found corrupted
during a test, an MCU was detected. If the corrupted bits belonged to the same
word, an MBU was counted. K20’s memory structures are about two times more
prone to experience multiple events than C2050’s. These results are very reasonable
given the small feature size, and many other microprocessor components have
higher MCU and MBU rates. For both generations of GPUs, the L2 cache is more
likely to experience multiple events, probably because of its dense and compact
design. There is no significant pattern dependence on multiple events probability.
The reported results are of extreme importance for the tuning of fault injectors as
they give the correct probability for multiple events occurrences.

The distinction between MBUs and MCUs is fundamental as it categorizes
whether a radiation-induced event could be corrected with the Single Error Correction
Double Error Detect (SECDED) ECC mechanism included in the K20 and C2050
devices. MCUs could occur as multiple single errors that would be correctable with

Fig. 20.4  Percentage of errors found to be MCU in the memory structures of K20 and C2050.
MBUs are those MCUs with more than one bit corrupted in the same word. C2050 L1 test (not
included in the picture) did not provide a statistically significant amount of failure [22]

P. Rech et al.

319

a SECDED ECC, whereas an MBU would be incorrigible. Then, even if about 33 %
of neutron-induced events are multiple events in the K20 L2 cache, only 6 % are
incorrigible MBUs. It is worth noting that no MBU with more than two bits cor-
rupted was detected in the experimental campaign. For the current GPU generation
it is reasonable to believe that the great majority of radiation-induced failures in the
memory structures of GPUs can be detected or corrected by the included ECC mech-
anism. Nevertheless the SECDED ECC may become insufficient if the observed
trend of increasing MBU occurrences from a GPU generation to the new one is
maintained.

20.4.2  �Dynamic Test

The memory structures and adder test discussed in the previous section give impor-
tant information on the static radiation response of GPUs. Nevertheless, to fully
evaluate the device reliability it is also essential to measure its dynamic behavior
under radiation. To do so, a code must me run on the device under test, and the code
results should be monitored. For the GPU dynamic test we provide a known input
to the device and, once computation is completed, results are compared to a pre-
computed golden copy. When a mismatch is detected a Silent Data Corruption
(SDC) occurred while when the GPU fails in providing an output a Functional
Interruption (FI) is counted.

There are several benchmarks that can be used for radiation test of GPUs. Most
of them are part of HPC code suites that are available on line, like Rodinia or
NAS. Here we present results obtained with Matrix Multiplication and FFT, which
are typical workloads for parallel devices.

As we will show in the following, the parallel architecture of GPUs is likely to
increase the number of elements found to be corrupted at the end of one computa-
tion. The observed multiple output errors have a significantly different origin than
the ones discussed for memory elements in the static test. When a parallel code is
executed, in fact, even a neutron-induced single failure may spread, especially when
it affects shared or critical resources.

Matrix Multiplication performs the multiplication of two 2,048 × 2,048 random
matrices (A and B) executing 2,048 × 2,048 parallel threads, each in charge of cal-
culating a single element of the resulting matrix following Eq. 20.1.

	
M i j A i k B k j

k

, , ,[] = []· []
=
å

1

2048

	
(20.1)

The experimentally obtained neutron-induced error rate of matrix multiplication
is 2.75 × 10−2 errors/execution. It’s worth noticing that input matrices where stored
in the DDR available on the GPU board, which were not irradiated. Output errors
are then produced by the corruption of GPU internal memory and logic resources.

We can further study experimental data analyzing the corrupted resulting matrix.
Figure 20.5 shows the percentage of faulty executions in which a single error or

20  Soft-Error Effects on Graphics Processing Units

320

multiple errors were detected on the output matrix. As it can be seen, single output
errors are detected in less than 43 % of the cases. This result is of extreme impor-
tance as it demonstrates that for modern GPUs the accredited assumption of having
just single radiation-induced output errors is no longer valid.

Figure 20.5 shows also the different error patterns we detected when multiple
errors affect the output matrix. In most of the cases, multiple errors are distributed
on a single row or column, while just in 8 % of the cases errors are randomly dis-
tributed (Fig. 20.6).

0

5

10

15

20

25

30 single

row

column

random

35

45

40

Output Errors Distribution

O
ut

pu
t E

rr
or

s
[%

]

SINGLE VS MULTIPLE ERRORS
Single Error [%] 42.29
Errors in a Row [%] 22.86
Errors in a Column [%] 26.85
Random Errors [%] 8.00

Fig. 20.5  Percentage of
single and multiple output
errors at the output of
2,048 × 2,048 matrices
multiplication executed on a
GPU [17]

Fig. 20.6  A basic butterfly
module used to update
two-by-two all the 64
elements composing the
FFT. Wk denotes a suitable
Nth root of unity [18]

P. Rech et al.

321

Errors on single row or column may be due to cache bits corruption. In fact, all
the threads in charge of calculating a row of matrix M (similar considerations can
be applied to column) take the same row of matrix A but different columns of matrix
B as input. To improve the code parallelism, the row of A is stored on the cache of
the multiprocessors where the considered threads are executed. Thus, if a bit of that
row is corrupted, all the correspondent elements in the row of M will be erroneous.
It is worth noticing that the threads in charge of calculating a row of M are not all
destined to the same multiprocessor, on the contrary, they are likely to be distributed
homogeneously among the 15 microprocessors to maintain a high level of parallel-
ism. During our experiments, in fact, we never observed a whole row of M cor-
rupted. Just some locations in some random locations inside the row were found to
be erroneous.

Randomly distributed errors are probably caused by scheduler failure. The
scheduler is in charge of designating the group of threads that has to be executed per
multiprocessor and of detecting if all the threads have completed computation after
the execution. If so, results are presented at the output and another group of threads
is executed in the correspondent multiprocessor. In the case of scheduler corruption,
the results may be presented even if some threads have not completed computation,
leading to wrong results. As shown in Fig. 20.3, just two locations of M were cor-
rupted in the majority of the cases in which randomly distributed errors occurred,
and it is very unlikely to have three or four wrong random locations, as this happens
on about 1.14 % and 0.57 % of the faulty computations, respectively. As we will
detail in the following sections, this information is essential to optimize the pro-
posed hardening strategy and tune its correction capability.

The Fast Fourier Transform parallel code tested implements 512 × 512 1D-FFTs
of 64-points each. The FFT input is composed of a 64 × 512 × 512 double precision
floating-point matrix for the real part and a 64 × 512 × 512 matrix for the imaginary
part. We choose to test relatively small FFTs (64-points) to limit the number of
iterations and ease the study of error propagation, while having 512 × 512 1D-FFTs
eases the gathering of a statistically significant amount of errors.

A thread acts like a butterfly module [23] updating the values of two floating-
point elements in the complex matrix using the values of two elements computed in
the previous iteration as inputs (see Fig. 20.1). The implemented algorithm is based
on the FT kernel of the NAS Parallel Benchmarks [24] implemented in C and ported
to the GPU architecture using CUDA. As represented in Fig. 20.2, each 64-points
1D FFT kernel is composed of six sequential iterations (log264 = 6) of a variant of
the Stockham FFT algorithm [25].

For all iterations, the GPU instantiates 512 × 512 parallel threads, grouped in
blocks of 512 threads each. A thread is in charge of evaluating the intermediate FFT
values on the assigned complex vector of size 64.

As a thread is in charge of updating two complex values, a radiation induced
error that prevents the thread from completing its execution or corrupts the thread
input data produces at least two output errors. Nevertheless, a single error in a thread
can be generated by the corruption of the internal register that stores the value of
just one of the two elements to update, or disturbing just one of the operations

20  Soft-Error Effects on Graphics Processing Units

322

needed to calculate the FFT. The thread can then complete its execution, allowing
the correct calculation of the second complex number. Single output errors occur in
the FFT only if such a single thread error occurs in the last iteration. This occurred
in just 1.63 % of the faulty executions for the real and in 4 % of the faulty executions
for the imaginary part [18].

The experimentally observed multiple error distributions are shown in Fig. 20.8.
It is worth noting that in most of the cases 64 or less output values were found cor-
rupted, and those locations belong to the same 64-point FFT. These errors patterns
are caused by error propagation from one iteration to the following ones in the same
64-points FFT, as represented in Fig. 20.7. As said, the amount of errors is likely to
double at each iteration, thus it is very unlikely to have an odd number of errors in
the output, and this is in agreement with experimental data (see Fig. 20.8).

The worst case for a 64-points FFT occurs when radiation affects a thread in its
first iteration. If a single error is produced in one thread in the first iteration, at each
of the following five iterations (there are six iterations in total) the number of errors
is doubled, and 25 = 32 errors appear in the output. A double thread error is pro-
duced when radiation prevents the thread from completing its execution generating
a functional interruption or corrupting the thread input. In this situation 64 output
errors are to be expected in the FFT. It is improbable to have between 32 and 64
errors in the output vector. In fact, as it is very unlikely to have two neutrons cor-
rupting the GPU in a single FFT execution, the only way of having more than 32
errors is to have a thread in the first iteration which generates two errors that spread
to 64 errors in the output.

Finally, only few executions experienced more than 64 errors in the output. This
rare situation occurs when radiation leads a SM to experience a functional interruption
preventing a whole warp of 32 threads or even a whole block of 512 threads from

Fig. 20.7  In each iteration a thread updates two-by-two all the 64 values of the FFT using the
basic butterfly module. Six iterations are necessary to complete the execution. If an operation in
one iteration is corrupted by radiation, two (or more) values will be wrongly updated, and the
number of errors doubles in the following iteration [18]

P. Rech et al.

323

completing their execution, possibly affecting more than one 64-points FFT outputs.
Those errors will then spread and a huge amount of errors are expected at the output.

A parallel code to be executed on a GPU is typically composed of several inde-
pendent threads, all executing the same set of instructions on dedicated memory
location. Increasing the amount of threads brings then higher throughput to the
application. To do so, the programmer can choose either to increase the block size,
which will require more computational effort in each SM and delay the assignment
of the next blocks, or to increase the grid size, thus having more blocks to be dis-
patched. The GPU parallel management is strictly related to the chosen thread dis-
tribution. The scheduling and computational load required for blocks and warps
assignment, as well as resources distribution, are strictly related to the chosen grid
and block sizes, which is then likely to influence also the GPU radiation response.
So, the threads distributions as well as the number of instantiated thread signifi-
cantly impact the radiation response of parallel devices. A detailed discussion on
GPU parallel management reliability is presented in [19].

20.5  �Conclusions

The spread of Graphics Processing Units in High Performance Computing and
Safety-Critical applications arises new radiation test challenges. Unlike program-
mable logic devices or traditional sequential CPUs, GPUs requires complex sched-
uling and parallel processes management. Those resources corruption is critical, as
various processes could be affected. Moreover, caches are shared among parallel
tasks to reduce memory latencies. An error in the cache becomes, then, even more
critical than in CPUs, as all the processes using the corrupted value are likely to
produce a wrong result.

Fig. 20.8  FFT real and imaginary multiple output errors FIT. Consequent distributions that were
never experimentally observed are grouped in the picture (it is the case of 9 to 11 errors, 20 and 21,
etc.) [18]

20  Soft-Error Effects on Graphics Processing Units

324

GPU vendors and designers are putting a lot of effort to reduce the radiation
sensitivity of their devices, mostly focusing on the main resources physical imple-
mentation. Nevertheless, the inner GPU structure makes the device very prone to be
corrupted. Moreover, as traditionally GPUs were employed in graphical or video
editing applications, their architecture is voted to performances and not to fault
tolerance. It becomes than hard, in the present moment, to introduce architectural
solution to reduce the impact of radiation on GPUs. It is more likely that novel
software-based hardening strategy will be designed to detect and, eventually, cor-
rect radiation induced failures without requiring hardware changes.

References

1. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU computing.
Proc IEEE 96(5):879–899

2. Lindholm E, Nickolls J, Oberman S, Montrym J (2008) NVIDIA tesla: a unified graphics and
computing architecture. IEEE MICRO 28(2):39–55

3. Kruger J, Westermann R (2003) Linear algebra operators for GPU implementation of numeri-
cal algorithms. ACM Trans Graph 22(3):908–916

4. Liepe J, Barnes C, Cule E, Erguler K, Kirk P, Toni T, Stumpf MPH (2012) ABC-SysBio—
approximate Bayesian computation in Python with GPU support. Bioinformatics 26(14):
1797–1799

5. Euro NCAP rating review, Report from the Ratings Group, June 2012. Available: http://www.
euroncap.com

6. Bender O (2014) ARAMIS—concepts to validate the safe application of multicore architec-
tures in the avionics domain, HiPEAC 2014. Available [online] http://www.across-project.eu/
workshop2013/121108_ARAMIS_Introduction_HiPEAC_WS_V3.pdf

7. Seifert N, Zhu X, Massengill LW (2002) Impact of scaling on soft-error rates in commercial
microprocessors. IEEE Trans Nucl Sci 46(6):3100–3106

8. Nguyen HT, Yagil Y, Seifert N, Reitsma M (2005) Chip-level soft error estimation method.
IEEE Trans Device Mater Reliab 5(3):365–381

9. Lerner MD (1988) Algorithm based fault tolerance in massively parallel systems. Department
of Computer Science, Columbia University, Tech. Rep., 1988

	10.	Mitra S (2012) System-level single-event effects. IEEE nuclear and space radiation effects
conference, NSREC 2012 short course

11. Bautista-Gomez L, Cappello F, Carro L, DeBardeleben N, Fang B, Gurumurthi S, Pattabiraman
K, Rech P, Reorda MS (2014) GPGPUs: how to combine high computational power with high
reliability. In: Proceedings of the IEEE design, automation and test in Europe (DATE), 2014,
Dresden

12. Shi G, Enos J, Showerman M, Kindratenko V (2009) On testing GPU memory for hard and
soft errors. In: Proceedings of the symposium on application accelerators in high-performance
computing (SAAHPC), 2009

13. Wang NJ, Quek J, Rafacz TM, Patel SJ (2004) Characterizing the effects of transient faults on
a high-performance processor pipeline. In: Proceedings of the IEEE international conference
on dependable systems and networks (DSN), 2004, pp 61–70

14. Haque IS, Pande VS (2010) Hard data on soft errors: a large-scale assessment of real-world
error rates in GPGPU. In: Proceedings of the IEEE/ACM international conference on cluster,
cloud and grid computing, 2010, pp 691–696

15. Sheaffer JW, Luebke DP, Skadron K (2007) A hardware redundancy and recovery mechanism
for reliable scientific computation on graphics processors. In: Proceedings of the ACM
SIGGRAPH symposium on graphics hardware (GH), 2007, pp 55–64

P. Rech et al.

http://www.euroncap.com/
http://www.euroncap.com/
http://www.across-project.eu/workshop2013/121108_ARAMIS_Introduction_HiPEAC_WS_V3.pdf
http://www.across-project.eu/workshop2013/121108_ARAMIS_Introduction_HiPEAC_WS_V3.pdf

325

16. Fang B, Pattabiraman K, Ripeanu M, Gurumurthi S (2014) GPU-Qin: a methodology for eval-
uating the error resilience of GPGPU applications. In: Proceedings of the IEEE international
symposium on performance analysis of systems and software (ISPASS), 2014

17. Rech P, Aguiar C, Frost C, Carro L (2013) An efficient and experimentally tuned software-
based hardening strategy for matrix multiplication on GPUs. IEEE Trans Nucl Sci 60(4):
2797–2804

18. Pilla LL, Rech P, Silvestri F, Frost C, Navaux POA, Sonza Reorda M, Carro L (2014) Software-
based hardening strategies for neutron sensitive FFT algorithms on GPUs. IEEE Trans Nucl
Sci 61(4):1874–1880

19. Rech P, Pilla L, Navaux POA, Carro L (2014) Impact of GPUs parallelism management on
safety-critical and HPC applications reliability. In: Proceeding IEEE international conference
on dependable systems and networks (DSN), June 2014, pp 455–466

20. Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A,
Andreani C, Gorini G, Pietropaolo A, Cargarilli G, Pontarelli S, Frost C (2007) A new hard-
ware/software platform and a new 1/e neutron source for soft error studies: testing FPGAs at
the ISIS facility. IEEE Trans Nucl Sci 54(4):1184–1189

21. Oliveira DAG, Rech P, Quinn HM, Fairbanks TD, Monroe L, Michalak SE, Anderson-Cook C,
Navaux POA, Carro L (2014) Modern GPUs radiation sensitivity evaluation and mitigation
through duplication with comparison. IEEE Trans Nucl Sci 61(6):3115–3123

22. Rech P, Carro L, Wang N, Tsai T, Hari SKS, Keckler SW (2014) Measuring the radiation reli-
ability of SRAM structures in GPUs designed for HPC. In: Proceedings of the IEEE SELSE 2014

23. Jou J-Y, Abraham JA (1988) Fault-tolerant FFT networks. IEEE Trans Comput 37(5):
548–561

24. Bailey D et al (1994) The NAS parallel benchmarks. RNR technical report RNR-94-007,
March 1994

	25.	Stockham TG (1966) High-speed convolution and correlation. Proceedings of the Spring Joint
Computer Conference, 1966, pp 229–233

20  Soft-Error Effects on Graphics Processing Units

	Contents
	Part I: Introduction
	Chapter 1: Radiation Effects and Fault Tolerance Techniques for FPGAs and GPUs
	1.1 Introduction
	1.2 Radiation Effects
	1.3 Soft Errors in FPGAs
	1.3.1 Single Event Effects on SRAM-Based FPGAs
	1.3.2 Single Event Effects on Flash-Based FPGAs
	1.3.3 Single Event Effects on Antifuse-Based FPGAs

	1.4 Soft Errors on GPUs
	1.5 Fault Tolerance Techniques
	1.5.1 Resilience Techniques for FPGAs
	1.5.2 Resilience Techniques for GPUs

	1.6 Characterizing FPGAs and GPUs Radiation Sensitivity
	1.6.1 Fault Injection
	1.6.2 Radiation Test Methodologies to Predict and Measure SER in FPGAs and GPUs

	References

	Part II: Applications
	Chapter 2: Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking Capability
	2.1 Introduction
	2.2 CONASAT
	2.2.1 CONASAT Project
	2.2.2 The CONASAT Satellite Architecture

	2.3 Software GNSS Receivers Architecture
	2.4 Hardware Design
	2.4.1 The Front-End
	2.4.2 Baseband Processing Module
	2.4.3 Application Processing Module
	2.4.4 SEU Mitigation in COTS FPGA and SOC
	2.4.5 Proposed Architecture
	2.4.6 Improving Cold Start Time

	2.5 Market Options
	2.6 Conclusions
	References

	Chapter 3: Overview and Investigation of SEU Detection and Recovery Approaches for FPGA-Based Heterogeneous Systems
	3.1 Introduction
	3.2 ASIP Soft-Error Mitigation
	3.2.1 Hardware-Based Soft Error Mitigation Approaches
	Instruction Space Triple Modular Redundancy
	 Instruction Time Triple Modular Redundancy
	 Instruction Checkpoint Recovery

	3.2.2 Software-Based Soft Error Mitigation Approaches
	Software-Implemented Error Recovery
	Profile-Guided Code Transformation

	3.2.3 Discussion

	3.3 Rapid Recovery from FPGA Configuration Memory Upsets
	3.4 The QB50 RUSH Payload and Experiment
	3.5 Conclusions
	References

	Part III: SRAM-Based FPGAs
	Chapter 4: A Fault Injection technique oriented to SRAM-FPGAs
	4.1 Introduction
	4.2 Fault Injection in SRAM-FPGA
	4.2.1 Fault Injection Oriented to User Registers
	4.2.2 Fault Injection Over the Configuration Plane
	4.2.3 Static vs. Time Zero Analysis

	4.3 FT-UNSHADES2 in FPGA Mode
	4.4 A Case of Study
	4.5 Conclusions
	References

	Chapter 5: A Fault Injection System for Measuring Soft Processor Design Sensitivity on Virtex-5 FPGAs
	5.1 Introduction
	5.2 Related Works
	5.3 XRTC Virtex-5 Fault Injector (XRTC-V5FI)
	5.3.1 Architecture
	5.3.2 Attributes
	5.3.3 Methodology

	5.4 Soft Processor Fault Injection
	5.4.1 Soft Processors Used
	5.4.2 Soft Processor Test Designs

	5.5 Test Results and Analysis
	5.5.1 Raw and Normalized Sensitivity
	5.5.2 Reset Recovery Experiment

	5.6 Conclusion
	References

	Chapter 6: A Power-Aware Adaptive FDIR Framework Using Heterogeneous System-on-Chip Modules
	6.1 Related Work
	6.2 A Workload-Adaptive FDIR Framework
	6.2.1 Fault Recovery Management System
	6.2.2 Heterogeneous Heartbeats
	6.2.3 Adaptation Management System

	6.3 Benchmark Applications
	6.3.1 K-Means Clustering

	6.4 Experiments
	6.4.1 Prototype Test Setup
	6.4.2 Experiment Setting

	6.5 Results
	6.6 Conclusion and Outlook
	References

	Chapter 7: Hybrid Configuration Scrubbing for Xilinx 7-Series FPGAs
	7.1 Introduction
	7.2 Configuration Scrubbing
	7.3 Xilinx 7-Series Configuration
	7.4 Hybrid Scrubbing Architecture
	7.5 Radiation Test
	7.6 Conclusion and Future Work
	References

	Chapter 8: Power Analysis in nMR Systems in SRAM-­Based FPGAs
	8.1 Introduction
	8.2 Modeling Power Consumption in SRAM-Based FPGAs
	8.2.1 Power Considerations for nMR FPGA Implementation

	8.3 Estimating Power in Case-Study Circuits Implemented in SRAM-Based FPGA
	8.3.1 Case-Study Circuit 1: MiniMIPS
	8.3.2 Case-Study Circuit 2: Adders Chain

	8.4 Conclusions
	References

	Chapter 9: Fault-Tolerant Manager Core for Dynamic Partial Reconfiguration in FPGAs
	9.1 Introduction
	9.2 Classical DPR Approach
	9.3 Proposed DPR Manager Core
	9.3.1 DPRM Architecture
	9.3.2 Fault-Tolerant DPRM

	9.4 Test Setup and Fault Injection Results
	9.5 Conclusions and Future Work
	References

	Chapter 10: Multiple Fault Injection Platform for SRAM-­Based FPGA Based on Ground-Level Radiation Experiments
	10.1 Introduction
	10.2 Related Works
	10.3 Hardware Implementation of the Multiple Fault Injection Platform
	10.3.1 Organization of Virtex-5 FPGA Configuration Memory
	10.3.2 Methodology for a Fault Injection Campaign

	10.4 Methodology for Capturing and Modeling Single Bit Upsets
	10.4.1 Modeling Using Data from Previous Ground-Level Radiation Experiments
	10.4.2 Modeling SEUs Using Computer Generated Data

	10.5 Fault Injection Campaign Results and Comparisons
	10.6 Conclusions
	References

	Part IV: Flash-Based FPGAs
	Chapter 11: Radiation Effects in 65 nm Flash-Based Field Programmable Gate Array
	11.1 Introduction
	11.2 Flash Configuration Cell
	11.3 Radiation Testing
	11.3.1 Radiation Testing for TID Effects
	11.3.2 Radiation Testing for Single Event Effects

	11.4 Radiation Test Results on TID Effects
	11.4.1 TID Effects on Flash Cells
	11.4.2 TID Effects on CMOS Transistors
	11.4.3 TID Effects on Propagation Delay
	11.4.4 TID Effects on Standby Power-Supply Currents

	11.5 Radiation Test Results on Single Event Effects
	11.5.1 FPGA SEL
	11.5.2 Flash-Cell SEU
	11.5.3 Fabric-Embedded SRAM SEU
	11.5.4 Fabric Flip-Flop SEU

	11.6 Future Works
	References

	Chapter 12: Using C-Slow Retiming in Safety Critical and Low Power Applications
	12.1 Introduction
	12.2 Background
	12.3 Contribution and Paper Organization
	12.4 C-Slow Retiming
	12.4.1 Theory of CSR
	12.4.2 CSR on RTL
	12.4.3 Verification of CSR Design Modifications

	12.5 Power Consumption of CSR-ed Designs
	12.5.1 Overview
	12.5.2 Using Both Clock Edges in CSR
	12.5.3 P When Running Identical Threads

	12.6 Detecting a Single Event Upset (SEU) Using CSR
	12.6.1 Detecting an SEU with Standard CSR
	12.6.2 Recovery
	12.6.3 Reducing Shift Register Count

	12.7 Results
	12.8 Summary
	References

	Chapter 13: Improving the Implementation of EDAC Functions in Radiation-Hardened FPGAs
	13.1 Introduction
	13.2 SEC-DED EDAC Codes
	13.3 Description of the Algorithm
	13.3.1 Optimization Goals
	13.3.2 Step-by-Step Procedure

	13.4 Results
	13.5 Conclusions
	References

	Chapter 14: Neutron-Induced Single Event Effect in Mixed-Signal Flash-Based FPGA
	14.1 Introduction
	14.2 SmartFusion Mixed-Signal SoC Platform
	14.3 Proposed Case-Study Approach Using Redundancy
	14.3.1 Mixed-Signal DUT with Design Diversity Redundancy (DDR) Approach
	14.3.2 Complementary Digital Designs

	14.4 Neutron Test Setup
	14.5 Test Results
	14.5.1 Mixed-Signal Scheme with Diversity Redundancy (DDR-DMR)
	14.5.2 Simulation of a Charge Redistribution SAR-ADC
	14.5.3 Complementary Digital Designs

	14.6 Conclusions
	References

	Part V: Embedded Processors in System-on-Chips
	Chapter 15: Mitigating Soft Errors in Processors Cores Embedded in System-on Programmable-Chips
	15.1 Introduction
	15.2 Assumptions
	15.3 A Behavioral Fault Model for SEE in Processor Cores
	15.4 Error Detection Techniques
	15.4.1 Data Hardening Techniques
	15.4.2 Control Flow Check Techniques
	Path Identification
	 ECCA
	 YACCA

	15.4.3 Fault Tolerance
	15.4.4 Hybrid Methods

	15.5 Dealing with SEE in Processors Cores in SoPCs
	15.5.1 Watchdog Design for the SoPC
	15.5.2 Program-Level Duplication for the SoPC

	15.6 A Use Case
	15.7 Conclusions
	References

	Chapter 16: Soft Error Mitigation in Soft-Core Processors
	16.1 Introduction
	16.1.1 The Necessity for Fault Mitigation
	16.1.2 Possible Approaches

	16.2 FPGA as Technological Platform for Soft-Cores
	16.2.1 Alternatives

	16.3 Hardware Approaches
	16.3.1 Memory Protection Based on Information Redundancy
	16.3.2 Memory Protection Using the Circuit Logic

	16.4 Software Approaches
	16.4.1 Techniques to Protect the Control Flow of a Program
	16.4.2 Techniques to Protect Data

	16.5 Hybrid Approaches
	16.6 Conclusion
	References

	Chapter 17: Reducing Implicit Overheads of Soft Error Mitigation Techniques Using Selective Hardening
	17.1 Introduction
	17.2 Selective Hardening Based on Software
	17.2.1 Selective SWIFT-R

	17.3 Selective Hardening Based on Hardware
	17.3.1 Selective TMR

	17.4 Co-hardening: Co-design of Selective Hardware/Software Fault Mitigation Techniques
	17.4.1 Co-hardening Case Study: S-SWIFT-R + S-TMR

	17.5 Conclusions
	References

	Chapter 18: Overhead Reduction in Data-Flow Software-­Based Fault Tolerance Techniques
	18.1 Introduction
	18.2 Software-Based Fault-Tolerance
	18.2.1 Control-Flow Techniques
	18.2.2 Data-Flow Techniques

	18.3 Methodology and Implementation
	18.4 Results
	18.5 Conclusions
	References

	Chapter 19: Fault-Tolerance Techniques for Soft-Core Processors Using the Trace Interface
	19.1 Introduction
	19.2 Related Work
	19.3 The Trace Interface
	19.4 Execution Checking
	19.4.1 Experimental Results

	19.5 Control-Flow Checking
	19.5.1 PC Prediction
	19.5.2 Signature-Based Checking
	19.5.3 Dual Control-Flow Monitoring
	19.5.4 Experimental Results

	19.6 Conclusions
	References

	Part VI: Parallel Architectures and GPUs
	Chapter 20: Soft-Error Effects on Graphics Processing Units
	20.1 Introduction
	20.2 GPUs Architecture and Radiation Vulnerability
	20.3 Experimental Setup
	20.4 Experimental Results
	20.4.1 Basic Structures Test
	20.4.2 Dynamic Test

	20.5 Conclusions
	References

