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Preface

In the present decade, the complexity of the ASIC and FPGA design has grown
rapidly. Due to that there is need of the intelligent and complex devices, and hence
the FPGA prototyping area has evolved during this decade.

Major FPGA vendors such as XILINX and Altera (Intel FPGA) have come up
with the complex FPGAs which are required for design and realization of the
system on chip (SOC). During this decade, the era of miniaturization has lot many
challenges. The major challenges are to design and deliver the intelligent products
for lesser cost, high speed, less area, and less power.

Under such circumstances for the idea or product feasibility, the complex
FPGAs are used and the complexity of FPGA architecture has grown in the past
decade. Even the multiple FPGA designs are used to validate the complex SOCs.
For easy understanding of the FPGA designs and ASIC prototyping using FPGAs,
this book is organized. This book covers the design for the lower gate count to
higher gate count designs. Even this book is written in such a way that it can give
information about the VHDL, synthesis, FPGAs, and ASIC prototyping.

Chapter 1 of this book discusses the evolution of the logic design, need of HDL,
and differences between the VHDL and other higher level languages, and even this
chapter describes about the different modeling styles using VHDL.

Chapter 2 of this book describes about the basic combinational elements and
their use in the design. Even this chapter describes how to write synthesizable RTL
using the VHDL constructs. This chapter is useful for the beginners to understand
about the basic VHDL constructs and the synthesis outcome of few low gate count
designs.

Chapter 3 discusses the key VHDL constructs such as processes, signals, and
variables, when else, with select, if-then-else and case. Even this chapter covers the
practical scenarios and use of these constructs.

Chapter 4 describes the how to write an efficient RTL using VHDL. Even this
chapter covers the design for the combinational logic such as multibit adders,
multiplexers, decoders, and encoders. The synthesis for the RTL design using
VHDL is covered with the detailed explanation and practical scenarios.
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Chapter 5 covers the sequential design scenarios and the RTL using VHDL for
the latches and flip-flops. Even this chapter covers the BCD counters, binary
counters, gray counters, ring counters, Johnson counters and the RTL design and
synthesis for the same. This chapter has information about the timing parameters
and timing analysis for the synchronous sequential designs. This chapter even gives
information about the basics of asynchronous and multiple clock domain designs
and the issues like metastability and how to overcome those during design cycle.

Chapter 6 covers the PLD-based designs and the detail practical-oriented
examples and scenarios for the design using SPLDs, CPLDs, and FPGAs. This
chapter covers the XILINX and ALTERA (Intel) FPGA architectures and their use
in the design and prototyping. The vendor-specific design guidelines are covered in
this chapter.

Chapter 7 covers the VHDL constructs and the use of VHDL for the verification
and simulation of the design. This chapter is useful to understand the test benches
and how to simulate the design for early detection of bugs. Even this chapter covers
the practical issues in the design verification using practical scenarios and
examples.

Chapter 8 covers the design and coding guidelines for the PLD-based designs.
How to use the VHDL for the efficient design is explained in detail with the
practical scenarios and synthesizable VHDL constructs. This chapter covers tech-
niques such as grouping, parallel and concurrent logic, logic duplications, and
resource sharing. Even this chapter covers the low-power basics as clock gating and
clock enabling.

Chapter 9 covers the complex designs such as multipliers, barrel shifters, arbiters
and the processor logic as ALU, and the other basic protocols. This chapter is useful
to understand the synthesis issues in the complex designs and how to overcome
those using the techniques described in Chap. 7.

Chapter 10 discusses the finite state machines (FSMs) using the VHDL. The
Moore and Mealy machines and their use to code the sequence detectors and
counters are described in this chapter. Even the FSM synthesis issues and how to
improve the design performance are discussed with the practical scenarios. Even
this chapter covers the FSM synthesis guidelines and FSM optimization techniques
used while prototyping ASICs using the complex FPGAs.

Chapter 11 covers VIVADO based design flow and case study using VIVADO
for the design implementation. The case study of FIFO is covered in this chapter.

Chapters 1–11 are organized in such a way that it covers the small gate count
RTL using VHDL to the complex design using VHDL with the meaningful sce-
narios. This book is useful for the beginners, RTL design engineers, and profes-
sionals. I hope that this book can give you the excellent understanding of VHDL
constructs and use of VHDL in ASIC prototyping!

Pune, India Vaibbhav Taraate
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Chapter 1
Introduction to HDL

Abstract This chapter discusses the digital logic design evolution and the basic
ASIC design flow. The chapter describes the necessity of ASIC SOC prototype.
The comparison of ASIC and FPGA implementation is described in this chapter.
The chapter even discusses the need of HDL and VHDL different modeling styles
using the small gate count example. This chapter is useful to the HDL beginners to
understand about the difference between high-level language and HDL modeling
styles.

Keywords ASIC � FPGA � HDL � Prototype � C � C++ � Concurrent �
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1.1 History of HDL

The invention of CMOS logic during 1963 has made integration of logic cells very
easy and it was predicted by Intel’s cofounder Gordon Moore that the density of the
logic cells for the same silicon area will get doubled for every 18–24 months. What
we call as Moore’s law!

How Moore’s prediction was right that experience engineers can get with the
complex VLSI-based ASIC chip designs. In the present decade, the chip area has
shrunk enough, and process technology node on which foundries are working is
14 nm and chip has billions of cells for small silicon die size. With the evolutions in
the design and manufacturing technologies, most of the designs are implemented
using Very-High-Speed Integrate Circuit Hardware Description Language
(VHSICHDL) or using Verilog. We are focusing on the VHDL as hardware
description language. The evolution in the EDA industry has opened up new effi-
cient pathways for the design engineers to complete the milestones in less time.
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Table 1.1 describes the various hardware description languages (HDLs) and
their standard with the description.

1.2 System and Logic Design Abstractions

As shown in Fig. 1.1, most of the designs have various abstraction levels. The
design approach can be top-down or bottom-up. The implementation team takes
decision about the right approach depending on the design complexity and the

Table 1.1 Hardware description language and evolution

HDL Description Application Standard

AHDL Analog hardware description
language

Open source and used for analog
verification

1980

Verilog-AMS Verilog for analog and mixed
signals

Open standard and used for the mix
of digital and analog simulation

Derived
from IEEE
1364

VHDL-AMS VHDL for analog and mixed
signals

Standard language for both the
analog and digital mixed signal
simulations

IEEE
1076.1-2007

ABEL Advanced Boolean
expression language

Used for the PLD-based design None

System C The high-level abstraction
language for the hardware
designs

It uses the C++ classes for higher
level behavioral and transaction-level
modeling(TLM) for describing
hardware at system level

IEEE
1666-2011

System
Verilog

Superset of Verilog Used to address the system-level
design and verification

IEEE
1800-2012

Verilog Widely used hardware
description language (HDL)

Used for the design and verification
of digital logic

IEEE
1364-2005

VHDL Very-high-speed integrated
circuit (HSIC) hardware
description language (HDL)

Use for the design and verification of
digital logic

IEEE
1076-2008

Functional Design

Architecture

Micro-architecture

RTL Design

Gate Level Design

Switch level Design

Bottom Up 
Approach

Top Down 
Approach

Fig. 1.1 Design abstractions
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availability of design resources. Most of the complex designs are using the
top-down approach instead of bottom-up approach.

The design is described as functional model initially, and the architecture and
microarchitecture of the design are described by understanding the functional
design specifications. Architecture design involves the estimation of the memory
processor logic and throughput with associative glue logic and functional design
requirements. Architecture design is in the form of functional blocks and represents
the functionality of design in the block diagram form.

The microarchitecture is a detailed representation of every architecture block,
and it describes the block and sub-block level details, interface and pin connections,
and hierarchical design details. The information about synchronous or asyn-
chronous designs and clock and reset trees is also described in the microarchitecture
document.

RTL stands for register transfer level. RTL design uses microarchitecture as
reference design document and can be efficiently coded using VHDL for the
required design functionality. The efficient design and coding guidelines at this
stage play an important role and efficient RTL can reduce the overall time
requirement during the implementation phase. The outcome of RTL design is
gate-level netlist. Gate-level netlist is output from the RTL design stage after
performing RTL synthesis and it is a representation of the functional design in the
form of combinational and sequential logic cells.

Finally, the switch-level design is the abstraction used at the layout to represent
the design in the form of CMOS switches—PMOS, NMOS.

1.3 ASIC Prototyping

ASIC prototyping is also called as FPGA prototyping or SOC prototyping. ASIC is
an application-specific integrated circuit, FPGA is field programmable gate array,
and SOC is system-on-a-chip. If we consider the past one decade, then due to
availability of high logic density FPGAs the ASIC prototyping using FPGA area
have has been evolved. The main goal is to validate the firmware, software, and
hardware of SOC using high-end available FPGAs. ASIC designs can be proto-
typed by using suitable FPGAs, and it reduces the delivery time, budget, and even
the product launch targets in the market. For million logic gate SOCs, the ASIC
prototyping using FPGA is used to design and prove the prototype and it reduces
the risk while manufacturing of ASICs.
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As the process node has shrunk to 14 nm and even will shrink to less than 10
nm, the complexity of design, the design risk, and the development time has
increased. The main challenge for every organization is to develop the lower cost
products with improved design functionality in small silicon area. In such scenario,
the designers are facing the development and verification challenges. Under such
circumstances, the high-end FPGAs can be used to prototype the ASIC function-
ality and it reduces the overall risk. The verified and implemented design on
high-end FPGAs can be resynthesized using standard cell ASIC using the same
RTL, constraints, and scripts. There are many EDA tools available to port an FPGA
prototype on structured ASICs. This really reduces the overall risk in ASIC design
and saves money and time to market for the product.

Following are key advantages of ASIC prototyping using FPGAs

1. The shrinking process node and chip geometries involve the investment in
millions of dollars in the early stage of design. Using FPGAs, the investment
risk reduces.

2. Due to the uncontrolled market conditions, there is risk involved in the design
and development of products. FPGA prototype reduces such risk as the product
specifications and design can be validated depending on the functional
requirements or changes.

3. FPGA prototyping is efficient as the bugs, those were not detected in simulation,
can be addressed and covered during prototyping.

4. Full-system verification using FPGA prototype can detect the functional bugs in
the early stage of design cycle.

5. FPGA prototyping saves the millions of dollar of EDA tool cost and even it
saves the millions of dollar engineering efforts before ASIC tape-out.

6. As design using FPGA can be migrated using the EDA tool chains onto the
ASICs, it saves the time to market the product with intended functionality.

7. Multiple IPs can be integrated and design functionality can be verified and
tested and that speed up the design cycle.

8. Most of the cases the hardware software portioning is visualized at higher
abstraction level. The hardware software codesign can be evaluated at the
hardware level and it is more important milestone in overall design cycle. So the
ASIC prototyping can be useful in tweaking of the architecture. If there is
additional design overhead in the hardware, then the design architecture can be
changed by pushing few blocks in software and vice versa. This will give the
more efficient architecture and design.
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The Table 1.2 gives information about the pros and cons of FPGA and ASIC.
There is always confusion between the prototype and the migration. The ASIC

prototyping is basically the design or validation of idea to check for the early
functional and feasibility of new designs. The design migration from ASIC to
FPGA involves the flow from RTL design to implementation and may be useful in
the upgradation of design with additional features.

Following are the key points need to be considered during ASIC prototyping and
design migration using high-end FPGA.

1. Use the universal prototype board as it saves the time of almost four months to
twelve months for the high-speed prototyping board development.

Table 1.2 Comparison of FPGA with ASIC implementation

FPGA Hard copy Structured ASIC Standard cell ASIC

NRE, mask
and EDA
tools

Up to a
few
thousand
US$, so
the overall
cost is low

Couple of hundred
thousand US$ for
FPGA conversion
and masks. So the
overall cost is
moderate

A couple of hundred
thousand US$ for
interconnect/meta-one
masks so the overall
cost is moderate

A million US$
depending on the
design
functionality. So
the cost is high

Unit price High Medium-low Medium-low Low

Time to
volume

Immediate Almost around 8–
10 weeks. The
additional
conversion time
may require for
other structured
ASIC products

Almost around
8–10 weeks. The
additional conversion
time may require for
other structured ASIC
products

Almost around
18 weeks +
conversion time of
another 18 weeks

Engineering
resources
and cost

Minimum Minimal from
developers but
other structured
product may
require the
additional
engineering
resources

Nominal but for the
other structured ASIC
products may require
the additional
engagement of the
resources

High as most of the
work requires the
development from
scratch and
requires good
support from the
backend team

FPGA
prototype
correlation

Same
device

For hard
copy-structured
ASIC: Nearly
identical—Same
logic elements,
process, analog
components, and
packages

It depends upon the
type of IP used and the
functionality.
Same RTL but
potentially different
libraries, process,
analog, and packages

Same RTL but
potentially
different libraries,
process, analog,
and packages
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2. Choose the FPGA device depending on the functionality and gate count. It is not
possible to fit whole ASIC into single FPGA even if we use the high-end
families of ALTERA or XILINX FPGAs. So the practical solution is use of
multiple FPGAs. But the real issue is the design partitioning and the inter-
communication between multiple FPGAs. If the design is well defined and
partitioned properly, then the manual partitioning into multiple FPGA can give
the efficient results. If the design has complex functionality, then the use of
automatic partitioning can play efficient role and can create the efficient
prototype.

3. As the design library for ASIC and FPGA is totally different, the key challenge
is to map the primitives. So it is essential to map the directly instantiated
primitives during synthesis and during the implementation level. That is at the
post-synthesis, all the primitives from ASIC library need to be remapped for
getting the FPGA prototype.

4. High-end FPGA may have 1000–1500 pins and if one FPGA is used for pro-
totype, then there are limited issues in the pin assignment and pin interface. But
if IO pins required more than the pins available in one FPGA, then the real issue
is due to multiple FPGA interfaces and connectivity. The issue can be resolved
by using the partitioning with the signal multiplexing. This will ensure the
efficient design partitioning and efficient design prototype.

5. Implementation of single clock domain design prototype is easy using FPGAs.
But if the design has more than one clock that is multiple clock domains, then it
is quite difficult to use the clock gating and other clock-generation techniques
during prototype. So the migration of ASIC design into FPGA needs more
efforts and sophisticated solutions. One of the efficient solutions is to convert the
designs into smaller design units clocked by the global clock source.

6. The memory models used in the FPGA are different as compared to ASIC. So it
is essential to use the proper strategy during memory mapping. Most of the time,
the synthesized memory models required are not available. Under such scenario,
the best possible solution is to use the prototyping board with the required
specific memory device.

7. The full functional testing and debugging is one of the main challenges in the
ASIC prototyping. During this phase, it is essential to use the debugging plat-
form which can give the visibility of the results such as speed and functional
testing results.

The ASIC prototyping is achieved by using industry’s standard leading tools
such as Design Compiler FPGA. The design compiler is industry’s leading EDA
tool which is used to get best optimal synthesis result and best timing for the FPGA
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synthesis. The basic flow for the ASIC prototyping is shown in Fig. 1.2, and in the
subsequent chapters, we will discuss the FPGA based designs and key steps, to
achieve the efficient ASIC prototype using XILINX/Altera FPGA.

1.4 Integrated Circuit Design and Methodologies

With the evolution of VLSI design technology, the designs are becoming more and
more complex and SOC-based design is feasible in shorter design cycle time. The
demand of the customers is to avail the product in the shorter span of time is
possible due to efficient design flow. The design needs to be evolved from speci-
fication stage to final layout. The use of EDA tools with the suitable features has

Fig. 1.2 ASIC prototype flow
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made it possible to have the bug-free designs with proven functionality. The design
flow is shown in Fig. 1.3, and it consists of the three major phases to generate the
gate-level netlist.

1.4.1 RTL Coding

Functional design is described in the document form using the architecture and
microarchitecture. Architecture and microarchitecture design is the functional rep-
resentation of the design in the block and sub-block levels. This design document
includes the block level interfaces, timing and logic blocks. The RTL design using
VHDL uses the microarchitecture document as reference document to code the
design. RTL designer uses the suitable design and coding guidelines while

VHDL RTL Design

Synthesis

Func onal 
Verifica on 

Design Constraints

Physical Design

Coverage 
goals met?

Constraints 
Met?

NO

NO

YES

YES

Fig. 1.3 Simulation and synthesis flow
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implementing the RTL design. An efficient RTL design always plays important role
during implementation cycle. During this, designer describes the block-level and
top-level functionality using an efficient VHDL RTL.

1.4.2 Functional Verification

After completion of an efficient VHDL RTL for the given design specifications; the
design functionality is verified by using industry standard simulator. Pre-synthesis
simulation is without any delays and during this the focus is to verify the func-
tionality of design. But common practice in the industry is to verify the function-
ality by writing the testbench. The testbench forces the stimulus of signals to the
design and monitors the output from the design. In the present scenario, automation
in the verification flow and new verification methodologies has evolved and used to
verify the complex design functionality in the shorter span of time using the proper
resources. The role of verification engineer is to test the functional mismatches
between the expected output and actual output. If functional mismatch is found
during simulation, then it needs to be rectified before moving to the synthesis
step. Functional verification is iterative process unless and until design meets the
required functionality.

1.4.3 Synthesis

When the functional requirements of the design are met, the next step is synthesis to
perform the RTL synthesis for the design. Synthesis tool uses the RTL VHDL code,
design constraints, and libraries as inputs to generate the gate-level netlist as an
output. Synthesis is iterative process until the design constraints are met. The
primary design constraints are area, speed, and power. If the design constraints are
not met then the synthesis tool performs more optimization on the RTL design.
After the optimization if it has observed that the constraints are not met then it
becomes compulsory to modify RTL code or tweak the microarchitecture. The
synthesizer tool generates the area, speed, and power reports and gate-level netlist
as an output.

1.4.4 Physical Design

It involves the floor planning of design, power planning, place and route, clock tree
synthesis, post-layout verification, static timing analysis, and generation of GDSII
for an ASIC design. This step is out of scope for the subsequent discussions!
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1.5 Programming Language Verses HDL

Most of the engineers have familiarity with the programming languages such as C
and C++. The most important point is to understand the differences between the
programming language and the HDL. Table 1.3 illustrates the key differences
between the programming language and HDL.

1.5.1 VHDL Evolution and Popularity

Very-high-speed integrated circuit hardware description language used to describe
the hardware is also called as the programing language. It is used to describe the
hardware for the programmable logic devices and the integrated circuit designs. The
design automation flow using VHDL RTL plays crucial role while implementing
the designs for high-end PLDs and ASICs.

To document the behavior of the ASICs, the VHDL was introduced by US
Department of Defense. The initial version of VHDL was named as IEEE
1076-1987 standards and has wide variety of the data types. But this was not

Table 1.3 Programming language verses HDL

Parameters Programming language (C or C++) HDL

Instructions Understands only sequential constructs Understands both the sequential and
concurrent constructs

Description
style

Description of program is always
behavioral model. To code the
behavior, programmer uses analytical,
algorithmic, or logical thinking!

Description using HDL is register
transfer level (RTL). To describe the
functionality of electronic circuit, the
designer should have knowledge and
understanding of the hardware circuits

Resources
and usage

While writing program in C or C++,
the programmer will never consider
the use of resources or area. Even most
of the time programmer does not care
about the use of memory and the speed
for the program

While describing the electronic circuits
using the HDLs, the designer needs to
consider the area, speed, and power
requirements. The use of memory and
resources for the PLD-based designs is
the important parameter needs to be
understood by the designer

Application Used as programming language to
describe the functionality. The user is
programmer. It is a mix of assembly
and high-level language

Used to design an electronic circuit.
The user is designer.

Time
constructs

It does not support the notion of time It supports the time constructs and the
notion of time

Flow
constructs

It supports the data flow in the
sequential manner

It supports the data and control flow
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enough to describe the behavior of the hardware and later updated with the mul-
tivalued logic (nine-valued logic) using IEEE std_logic_1164.all package.
The IEEE 1076-1993 standard has made the syntax more consistent to describe the
behavior of the hardware functionality and concurrency. To resolve the restrictions
on the port mapping rules, the minor changes carried out during year 2000–2002
and even the class structure of C++ introduced in the standard. During June 2006,
the new standard for the VHDL was introduced and it is backward compatible with
all the older standards. During February 2008, technical committee of Accellera
approved VHDL 4.0 and it is called as VHDL-2008. During the same year
Accellera released the IEEE standard 1076-2008 and the standard was published
during year 2009.

Table 1.4 describes the various VHDL revisions and the relevant description for
the respective revisions.

Following are the key reasons for which VHDL is popular in the semiconductor
industry.

1. Used to describe the synthesizable logic designs and used for the simulation of
the logic design.

2. VHDL is not case-sensitive language and it is easy to interpret in the context of
logic design.

3. VHDL supports parallelism due to the concurrent constructs.
4. VHDL supports the sequential statements to describe the RTL designs.
5. VHDL supports the notion of time and file input and output handling and thus

used for the simulation of the described design.
6. VHDL code is translated into the real digital logic using the gates and nets

(wires) and very user friendly to design the PLD/ASIC-based designs.
7. VHDL supports the synthesizable and non-synthesizable constructs.
8. VHDL descriptions are described by using the electronic design automation

(EDA) tools. The popular EDA tools used for PLD-based applications are
Xilinx ISE series, Altera Quartus II and Mentor Graphics ModelSim or

Table 1.4 VHDL IEEE standard and revisions

Revision
year

IEEE standard Description

1987 IEEE 1076-1987 First standard for the language from the United States of Air Force

1993 IEEE 1076-1993 The most widely used version with the EDA tool support

2000 IEEE 1076-2000 Minor additions in the 1076-1993 standard and support for the
protected type

2002 IEEE 1076-2002 Minor additions in the 1076-2000 standard and support for the
buffer ports

2008 IEEE 1076-2008 The standard supports the use of external names
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QuestaSim. The ASIC EDA tools are Synopsys DC, PT, and IC compilers and
Cadence SOC Encounter.

VHDL Description consists of the following:

Note The configuration, component declarations, and the packages will be used
according to the design requirements and will be discussed in the subsequent
chapters.

The template shown in Fig. 1.4 describes the VHDL code structure with the
relevant and required explanation in the respective boxes.

As described in Table 1.5 the VHDL supports nine-valued logic using
STD_LOGIC and used to model or to describe the digital logic designs. Table 1.5
describes the nine-valued logic and the description for the respective logic level.

1. Library declaration IEEE
2. Package declaration for the required IEEE library

STD_LOGIC_1164.all using ‘USE’
3. Entity declaration to describe the input and output interface
4. Architecture declaration to describe the functionality
5. Component: The instance used to describe the logic functionality

is called as component. The component is associated with the
‘entity architecture’ pair. For example for the half adder
description: xor_gate, and_gate are treated as components.

6. Configuration: to define the linkage between the entity
and architecture and components. Configuration is used
for binding of all the components specified in the architecture
with the entity, and will be discussed in the subsequent chapters

7. Package : It is basically subprogram or procedures for the
reuse. Declared by using the keyword ‘USE’ with the
package name. Package consists of the multiple objects
and is visible for the architecture functional description

1.5 Programming Language Verses HDL 13



Fig. 1.4 VHDL code structure template
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1.6 Design Description Using VHDL

In the practical scenarios, the VHDL is categorized into three different kinds of
coding descriptions. The different styles of coding description are structural,
behavioral, and synthesizable RTL. Figure 1.5 shows the truth table, schematic, and
logic structure realization for half adder. The half-adder functionality is described
by using the different modeling styles in this section.

1.6.1 Structural Design

Structural design defines a data structure of the design and it is described in the form
of logic gates (logic components) using the proper net connectivity. Structural design
is mainly the instantiation of different small complexity digital logic blocks or design
components. It is basically design connection of small modules to realize moderate
complex logic. Example 1.1 describes the structural code style for the half adder.

Fig. 1.5 Half-adder logic circuit

Table 1.5 Nine-valued logic Character Value description

‘U’ Uninitialized value

‘X’ Strong unknown value

‘0’ Strong logic zero

‘1’ Strong logic one

‘Z’ High impedance

‘W’ Weak unknown logic value

‘L’ Weak logic zero

‘H’ Weak logic one

‘–’ Don’t care
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Note Structural style description is the digital logic in the form of components and
their interconnections. Each component has its own ports and the directions. In this
it is assumed that the pre compiled components XOR_gate, AND_gate are available
in the work library.

1.6.2 Behavior Design

In the behavior style of VHDL, the functionality is coded from the truth table of the
design. It is assumed that the design is black box with the inputs and outputs. The
main intention of designer is to map the functionality at output according to the
required set of inputs (Example 1.2).

Example 1.1 Structural style for the half adder
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Note Behavior style of the VHDL description is the logic design in the form of
behavior and not in the terms of the components or netlist.

1.6.3 Synthesizable RTL Design

Synthesizable RTL code is used in the practical environment to describe the
functionality of design using synthesizable constructs. The RTL code style is
high-level description of functionality using synthesizable constructs. The RTL
coding style is treated as design description between the structural and behavioral

Example 1.2 Behavior style of the VHDL code for half adder
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model. For the combinational design, the design which results in the synthesizable
netlist is treated as RTL description. For the sequential designs, the
register-to-register timing path-based logic is treated as synthesizable RTL
(Example 1.3).
Note RTL description or the data flow can be interchangeably used for the com-
binational logic designs. For the sequential logic description, the register-to-register
(reg to reg) path results in the netlist and treated as register transfer level
(RTL) description.

Although all above three representations generate the logic shown in Fig. 1.6, it
is recommended to use the RTL design. RTL design is always synthesizable and
uses all the synthesizable constructs. Many times for the small gate count (area)

Example 1.3 Synthesizable RTL of VHDL code for half adder
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designs the data flow and RTL representations can be interchangeably used.
Figure 1.6 describes the hardware inference for the half-adder using the XOR and
AND logic gates.

1.7 Key VHDL Highlights and Constructs

VHDL has synthesizable and non-synthesizable constructs, the synthesizable
constructs are used to describe the functionality of the design. This section dis-
cusses on the key VHDL highlights and frequently used VHDL constructs to
describe the hardware.

1. VHDL is different from the software languages as it is used to describe the
hardware. VHDL supports wide varieties of data types.

2. VHDL supports concurrent (parallel) execution of statements and even
sequential execution of statements.

3. VHDL supports assignments to the signals and variables and these assignments
will be discussed in the subsequent chapters.

4. VHDL supports the declaration of input, output, and bidirectional ports. VHDL
supports file handling.

5. VHDL supports nine-valued logic using the STD_LOGIC.
6. VHDL supports the sequential execution of the statements inside the process

block.

VHDL supports synthesizable constructs as well as non-synthesizable con-
structs. The template shown below describes key VHDL constructs used to describe
most of the logic designs.

Fig. 1.6 Synthesized logic
for half adder
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1.8 Summary

As discussed earlier, the following are few points to summarize the chapter.

1. VHDL is not a case-sensitive language and used for design and verification of
digital logic circuits.

2. VHDL is efficient hardware description language to describe the design func-
tionality and supports the nine-valued logic using STD_LOGIC.

3. Although there are different description styles, practically designer uses the RTL
coding style to describe the intended design functionality.

4. VHDL supports concurrent and sequential constructs.
5. VHDL uses entity to describe the pin-out of the design.
6. VHDL uses in, out, inout, and buffer as ports.
7. VHDL uses the process as concurrent statement. Process is used to describe the

design functionality for combinational or sequential design.
8. VHDL uses the architecture to define the design functionality.
9. Single entity can have single or multiple architectures.
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Chapter 2
Basic Logic Circuits and VHDL
Description

Abstract This chapter describes the overview of various combinational logic
elements. The chapter is organized in such a way that reader will be able to
understand the concept of synthesizable RTL for the logic gates and small gate
count combinational designs using synthesizable VHDL constructs. This chapter
describes the basic logic gates, adders, gray-to-binary and binary-to-gray code
converters. This chapter also covers the key practical concepts while designing by
using the combinational logic elements.

Keywords RTL � Synthesis � AND � NOT � OR � NOR � XOR � XNOR �
Tri-state � Bus � Truth table � Combinational � Code converter � Adder � Gray �
Binary � ALU � Critical path � Arithmetic operations � Logic minimization �
Nine-valued logic � De Morgan’s theorem

“We cannot solve our problems with the same think-
ing we used when we created them.” ----- Albert 
Einstein

Like a C or C++ programmer don’t apply the log-
ic. Design the combinational logic by using the 
HDL

Learn the VHDL constructs and imagine the syn-
thesizable designs and RTL designs using VHDL! 

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_2
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2.1 Introduction to Combinational Logic

Combinational logic is implemented by the logic gates, and in the combinational
logic, output is the function of present input. The goal of designer is always to
implement the logic using minimum number of logic gates or logic cells.
Minimization techniques are K-map, Boolean algebra, Shannon’s expansion theo-
rems, and hyperplanes.

The conventional design technique using the Boolean algebra can be used for
better understanding of the design functionality. The familiarity of the De Morgan’s
theorem and logic minimization technique can play an important role while coding
for the design functionality. The De Morgan’s theorem states that

1. Bubbled OR is equal to NAND.
2. Bubbled AND is equal to NOR.

The NOR and NAND gates are universal logic elements and used to design the
digital circuit functionality. NOR and NAND can be used as universal logic cells.
Figure 2.1 gives more explanation about the De Morgan’s Theorem.

The thought process of designer should be such that the design should have the
optimal performance with lesser area density. The area minimization techniques
play an important role in the design of combinational logic or functions. In the
present scenario, designs are very complex; the design functionality is described
using the hardware description language as VHDL or Verilog. The subsequent
section focuses on the use of VHDL RTL to describe the combinational design.
Figure 2.2 illustrates the different types of combinational logic elements. This
chapter discusses the basic combinational logic elements used to design the logic
circuits.

The complex combinational logic circuits are discussed in the subsequent
chapters.

Fig. 2.1 De Morgan’s
theorems
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2.2 Logic Gates and Synthesizable RTL Using VHDL

This section discusses about the logic gates and the synthesizable VHDL RTL. In
this section, the key VHDL constructs to describe the basic combinational logic
gates are discussed.

To have a good understanding of VHDL, let us discuss on the key VHDL
terminologies used to describe the combinational logic. Let us make our life simpler
by understanding the logical operators as shown in Table 2.1.

Fig. 2.2 Combinational logic elements

Table 2.1 Logical operators

Logical
operators

Operator description VHDL description

NOT/not Used as negation or to complement the input or
signal

y_out <= NOT(a_in);

OR/or To perform logical OR operation y_out <= a_in OR b_in;

NOR/nor To perform logical NOR operation y_out <= a_in NOR b_in;

AND/and To perform logical AND operation y_out <= a_in AND b_in;

NAND/nand To perform logical NAND operation y_out <= a_in NAND
b_in;

XOR/xor To perform logical XOR operation y_out <= a_in XOR b_in;

XNOR/xnor To perform logical XNOR operation y_out <= a_in XNOR
b_in;
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In the subsequent section, the logic design is described by using the concurrent
process statement and if-then-else constructs.

2.2.1 NOT or Invert Logic

NOT logic complements the input. Not logic is also called as inverter or comple-
ment logic. Synthesizable RTL is shown in Example 2.1. The truth table of NOT
logic is shown in Table 2.2.

Note Operator (<=) is used for the port or signal assignment. On the other hand,
concurrent construct ‘process’ is used to infer both combinational and sequential
logic by using the required VHDL constructs.

Example 2.1 Synthesizable VHDL code for NOT logic
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The use of the STD_LOGIC is nine-valued logic, and for the NOT function it is
described below.

Input U X 0 1 Z W L H –

Output U X 1 0 X X 1 0 X

Synthesis result for the NOT logic is shown in Fig. 2.3; input port of not logic
gate is named as ‘a_in’ and output as ‘y_out’.

The implementation of NOT using universal NAND and NOR logic gate is
shown in Fig. 2.4.

Table 2.2 Truth table for
NOT logic

a_in y_out

0 1

1 0

Fig. 2.3 Synthesis result for
the NOT logic

Fig. 2.4 NOT gate
implementation using
universal logic gates
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2.2.2 Two-Input OR Logic

OR logic generates output as logical ‘1’ when one of the inputs is logical ‘1’.
Synthesis result is shown in Example 2.2. The truth table of OR logic is shown

in Table 2.3.

NoteWhile describing the design functionality, make sure that all the input ports are
listed in the sensitivity list. Missing required signal from sensitivity list will create
simulation and synthesis mismatch and will be discussed in the subsequent chapters.

Example 2.2 Synthesizable VHDL code for two-input OR logic

Table 2.3 Truth table for
two-input OR logic

a_in b_in y_out

0 0 0

0 1 1

1 0 1

1 1 1
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Synthesis result for the OR logic is shown in Fig. 2.5, input ports of OR logic
gate are named as ‘a_in’ and ‘b_in’ and output as ‘y_out’.

Using universal logic gates the implementation of OR gate is shown in Fig. 2.6.

2.2.3 Two-Input NOR Logic

NOR logic is opposite or complement of the OR logic. Synthesizable RTL is shown
in Example 2.3. The truth table of NOR logic is shown in Table 2.4.

Synthesis result for the NOR logic is shown in Fig. 2.7; input ports of NOR
logic gates are named as ‘a_in’ and ‘b_in’ and output as ‘y_out’.

Two-input NOR gate implementation using universal logic gates is shown in
Fig. 2.8.

Fig. 2.5 Synthesis result for
two-input OR logic

Fig. 2.6 OR gate
implementation using
universal gates

Fig. 2.7 Synthesized
two-input NOR logic
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Example 2.3 Synthesizable VHDL code for NOR logic

Fig. 2.8 NOR gate
implementation using
universal gates

Table 2.4 Truth table for
two-input NOR logic

a_in b_in y_out

0 0 1

0 1 0

1 0 0

1 1 0
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2.2.4 Two-Input AND Logic

AND logic generates an output as logical ‘1’ when both the inputs ‘a_in’ and ‘b_in’
are logical ‘1’. Synthesizable RTL is shown in Example 2.4. The truth table of
AND logic is shown in Table 2.5.

Note AND gate is visualized as a series of two switches and used in programmable
logic devices (PLD) as one of the elements to realize the required logic.
Programmable AND plane can be created by using the AND logic gates with
programmable inputs.

Example 2.4 Synthesizable VHDL code for AND logic

Table 2.5 Truth table for
two-input AND logic

a_in b_in y_out

0 0 0

0 1 0

1 0 0

1 1 1
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Synthesized two-input AND logic is shown in Fig. 2.9; input ports of AND logic
gate are named as ‘a_in’ and ‘b_in’ and output as ‘y_out’.

Two-input AND gate implementation using minimum number of universal gates
is shown in Fig. 2.10.

2.2.5 Two-Input NAND Logic

NAND logic is opposite or complement of the AND logic. Synthesizable RTL is
shown in Example 2.5. The truth table of NAND logic is shown in Table 2.6

Fig. 2.10 AND gate
implementation using
universal gates

Fig. 2.9 Synthesis result for
two-input AND logic

Table 2.6 Truth table for
two-input NAND logic

a_in b_in y_out

0 0 1

0 1 1

1 0 1

1 1 0
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Note NAND logic is also treated as universal logic. By using NAND logic, all
possible logic functions can be realized. NAND logic is used to implement the
storage elements like latches or flip-flops and also to realize combinational functions.

Synthesis result for the NAND logic is shown in Fig. 2.11; input ports of NAND
logic gate are named as ‘a_in’ and ‘b_in’ and output as ‘y_out’.

As stated earlier, NAND is universal gate, and implementation of NAND using
NOR is shown in Fig. 2.12.

Fig. 2.11 Synthesis result for the result for the two-input NAND logic

Example 2.5 Synthesizable VHDL RTL for two-input NAND logic
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2.2.6 Two-Input XOR Logic

Two-input XOR is called as exclusive OR logic and generates output as logical ‘1’
when both inputs are not equal. Synthesizable RTL is shown in Example 2.6. The
truth table of XOR logic is shown in Table 2.7.

Fig. 2.12 Implementation of NAND using universal gates

-- VHDL RTL for two input XOR

library ieee;
use ieee.std_logic_1164.all;

en ty xor_logic_gate is 
port( a_in: in std_logic;

b_in: in std_logic; 
y_out: out std_logic

);
end xor_logic_gate;

architecture arch_xor of xor_logic_gate is 
begin

process(a_in, b_in) 
begin

if (a_in/=b_in) then 
y_out <= '1';

else
y_out <= '0';

end if; 

end process;

end arch_xor;

Entity is the pin out of the 
design named as 
xor_logic_gate that has three 
ports.
Input ports are declared as
‘a_in’ and ‘b_in’

Output port is declared as
‘y_out’

Architecture of the 
xor_logic_gate is named 
as arch_xor

Architecture describes 
the relationship between 
the inputs and output.

The procedural block
‘Process’ is always sensitive 
to the changes specified in the 
sensitivity list.
For any changes in the 
inputs ’a_in’ or b_in the 
process gets invoked.

For the inputs, a_in is not 
equal to b_in output y_out = ‘1’
 otherwise output y_out = ‘0’

For data flow model replace 
process block by using y_out 
<= a_in xor b_in;

Example 2.6 Synthesizable VHDL code for two-input XOR logic
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Note XOR gate can be implemented by using two-input NAND gates. The number
of two-input NAND gates required to implement two-input XOR gate are equal to
4. XOR gates are used to implement arithmetic operations like addition and sub-
traction. The implementation using minimum number of NAND gates is shown in
Fig. 2.13.

Synthesis result for the two-input XOR logic is shown in Fig. 2.14; input ports
of XOR logic gate are named as ‘a_in’ and ‘b_in’ and output as ‘y_out’.

If XOR cell or gate is not available in the library, then XOR logic is realized
using AND-OR-Invert or by using minimum number of NAND gates.

XOR gate implementation using the universal gates is shown in Fig. 2.15.

Table 2.7 Truth table for
two-input XOR logic

a_in b_in y_out

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 2.13 XOR gate implementation using NAND

Fig. 2.14 Synthesis result for the two-input XOR logic
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2.2.7 Two-Input XNOR Logic

Two-input XNOR is called as exclusive NOR logic and generates output as logical
‘1’ when two inputs are equal. XNOR is opposite or complement of XOR logic.
Synthesizable RTL for XNOR is shown in Example 2.7. The truth table of XNOR
logic is shown in Table 2.8.

Synthesis result for the XNOR logic is shown in Fig. 2.16; input ports of XNOR
logic gate are named as ‘a_in’ and ‘b_in’ and output as ‘y_out’.

If XNOR cell is not available in the library, then XNOR logic is realized by
using Invert-AND-OR or by using minimum number of NAND or NOR gates.

The implementation of XNOR logic using universal gates is shown in Fig. 2.17.
In the practical scenario, the XOR and XNOR gates are used in the parity

detection to detect for the even or odd parity. The subsequent chapter focuses on the
complex designs and the synthesis. The even parity detector is shown in Fig. 2.18
and uses the XOR and XNOR gates to generate active high value at the output for
even number of 1’s in the input.

The odd parity checker to detect for odd number of 1’s in the string is shown in
Fig. 2.19. For odd number of 1’s, it generates the active high output. As shown in
figure, it uses three XOR gates.

Fig. 2.15 XOR implementation using universal logic gates
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-- VHDL RTL for two input XNOR

library ieee;
use ieee.std_logic_1164.all;

en ty xnor_logic_gate is 
port( a_in: in std_logic;

b_in: in std_logic; 
y_out: out std_logic

);
end xnor_logic_gate;

architecture arch_xnor of xnor_logic_gate is 
begin

process(a_in, b_in) 
begin

if (a_in=b_in) then 
y_out <= '1';

else
y_out <= '0';

end if;

end process;

end arch_xnor;

Entity is the pin out of the design
named as xnor_logic_gate 
that has three ports.

Input ports are declared as
‘a_in’ and ‘b_in’
Output port is declared as
‘y_out’

Architecture of the 
xnor_logic_gate is named 
as arch_xnor
Architecture describes the 
relationship between the 
inputs and output.
The procedural block
‘Process’ is always sensitive 
to the changes specified in 
the sensitivity list.

For any changes in the 
inputs ’a_in’ or b_in the 
process gets invoked.

For the inputs, a_in is equal 
to b_in output y_out= ‘1’ 
otherwise output y_out = ‘0’
For data flow model replace 
process block by using 
y_out <= a_in xnor b_in;

Example 2.7 Synthesizable VHDL code for XNOR logic

Table 2.8 Truth table for
XNOR logic

a_in b_in y_out

0 0 1

0 1 0

1 0 0

1 1 1

Fig. 2.16 Synthesis result for the XNOR logic
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2.2.8 Tri-State Logic

Tri state has three logic states: logical ‘0’, logical ‘1’, and high impedance ‘z’.
Synthesizable RTL is shown in Example 2.8. The truth table of tri-state logic is
shown in Table 2.9.

Fig. 2.17 XNOR implementation using universal logic gates

Fig. 2.18 Even-parity checker

Fig. 2.19 Odd-parity checker
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Note Avoid use of tri-state logic while developing the RTL. Tri state is difficult to
test. Instead of tri-state logic, it is recommended to use multiplexers to develop the
logic with enable.

Example 2.8 Synthesizable VHDL code for tri-state bus logic

Table 2.9 Truth table for
tri-state logic

Enable data_in data_out

1 0000 0000

1 1111 1111

0 xxxx zzzz
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Synthesis result for the tri-state logic is shown in Fig. 2.20; input port of tri-state
logic is named as ‘data_in’, enable input as ‘enable’, and output as ‘data_out’.

2.3 Adder

Arithmetic operations like addition and subtraction play an important role in the
efficient design of processor logic. Arithmetic and Logical Unit (ALU) of any
processor is designed to perform the addition, subtraction, increment, and decre-
ment operations. The arithmetic designs to be described by the RTL VHDL code to
achieve the optimal area and to have less critical path. This section describes the
important logic blocks to perform arithmetic operations with the synthesizable
VHDL RTL description.

Adders are used to perform the binary addition of two binary numbers. Adders
are used for signed or unsigned addition operations.

2.3.1 Half Adder

Half adder has two one-bit inputs ‘a_in’, ‘b-in’ and generates two one-bit outputs
‘sum_out’ and ‘carry_out’, where ‘sum_out’ is summation or addition output and
‘carry_out’ is carry output. Table 2.10 is the truth table for half adder, and RTL is
described in Example 2.9.

Fig. 2.20 Synthesis result for the tri-state logic

Table 2.10 Truth table for
half adder

a_in b_in sum_out carry_out

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
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Note Half adders are used as basic component to perform the addition. Full adder
logic circuits are designed using the instantiation of half adders as components.

Synthesis result for the half adder is shown in Fig. 2.21; input ports of half adder
are named as ‘a_in’ and ‘b_in’ and output as ‘sum_out’, ‘carry_out’.

Example 2.9 Synthesizable RTL code for half adder

Fig. 2.21 Synthesis result for the half adder
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2.3.2 Full Adder

Full adders are used to perform addition on three one-bit binary inputs.
Consider three, one-bit binary numbers named as ‘a_in’, ‘b_in’, ‘c_in’ and

one-bit binary outputs as ‘sum_out’, ‘carry_out’. Table 2.11 is the truth table for
full adder and RTL is described in Example 2.10.

Note Full adder consumes more area, so it is highly recommended to implement the
adder logic using multiplexers. Subtraction can be performed by using 2’s com-
plement addition.

Example 2.10 Synthesizable VHDL code for full adder
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Synthesis result for the full adder is shown in Fig. 2.22; input ports of full adder
are named as ‘a_in’, ‘b_in’, and ‘c_in’ and output as ‘sum_out’, ‘carry_out’.

In the practical design scenarios, the multiplexers (MUX) can be used to
implement the addition and subtraction operations. MUX is universal logic and
discussed in the Chap. 4. The realization of the full adder is shown in the following
figure. As shown in Fig. 2.23 by using 2:1 MUX, the logic is realized. The concept
of using MUX to realize Boolean functions or logic gates is important to understand
the PLD-based designs. Readers are encouraged to implement the logic of all the
basic combinational elements using minimum number of 2:1 MUX.

Table 2.11 Truth table for full adder

c_in a_in b_in sum_out carry_out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Fig. 2.22 Synthesized full adder
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2.4 Code Converters

This section deals with the commonly used code converters in the design. As name
itself indicates, the code converters are used to convert the code from one number
system to another number system. In the practical scenarios, binary-to-gray and
gray-to-binary converters are used.

2.4.1 Binary-to-Gray Code Converter

Base of binary number system is 2, for any multibit binary number one or more
than one bit changes at a time. In gray code, only one bit changes at a time. if we
compare two successive gray codes.

The RTL description of 4-bit binary-to-gray code conversion is described in
Example 2.11.

Fig. 2.23 Realization of full adder using MUX
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Note Gray codes are used in the multiple clock domain designs to transfer the
control information from one of the clock domains to another clock domain.

Synthesis result for the binary to gray code converter is shown in Fig. 2.24.

Example 2.11 Synthesizable VHDL code for 4-bit binary-to-gray code converter

Fig. 2.24 Synthesis result for the 4-bit binary-to-gray converter
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2.4.2 Gray-to-Binary Code Converter

Gray-to-binary code converter is reverse of that of binary-to-gray, and the RTL
description of 4-bit gray-to-binary code conversion is described in Example 2.12.

Note Gray codes are used in the gray counter implementation and also in the error
correcting mechanism.

Synthesis result for the 4-bit gray to binary code converter is shown in Fig. 2.25.

Example 2.12 Synthesizable VHDL code for 4-bit gray-to-binary code converter
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2.5 Summary

As discussed already in this chapter, following are important points need to be
considered while implementing combinational logic design using VHDL.

1. Use minimum area by using least number of logic gates;
2. NAND and NOR are universal logic gates and used to implement any combi-

national or sequential logic;
3. Use all the required signals in the sensitivity to avoid simulation and synthesis

mismatch;
4. Avoid the usage of tri-state logic and implement the logic required using

multiplexers with proper enable circuit.
5. Use less number of adders in design. Adders can be implemented using

multiplexers;
6. Subtraction can be implemented using 2’s complement addition;
7. MUX can be used as universal logic to realize logic functions;
8. Parity can be checked by using the proper cascading of XOR and XNOR gates;
9. Gray codes are unique cyclic codes and can be used as error correcting codes.

Fig. 2.25 Synthesis result for the 4-bit gray-to-binary converter
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Chapter 3
VHDL and Key Important Constructs

Abstract This chapter discusses the key important VHDL constructs. VHDL a is
hardware description language and consists of many powerful concurrent and
sequential constructs. The key concurrent and sequential constructs are used to
describe the design functionality to generate intended hardware. These constructs
include process, when else, with select, if then else case, signal and variable dec-
larations and assignments. Even this chapter discusses the important constructs like
wait, wait on, wait for, wait until, for loop, and while loop. This chapter is useful for
RTL design engineers to understand the VHDL coding styles and synthesizable
VHDL. This chapter covers the practical illustrations for every construct. The
explanation is given for every synthesizable VHDL code with the synthesis results.
This can be useful while working in the FPGA as well as ASIC design domains.

Keywords Concurrent � Sequential � RTL � Assignment � When else � With
select � If then else � Case � Process � Nested statements � While � For � Loop �
Signal � Variable � Tri-state � MUX � Flip-flop � Latch � Constructs �
Architecture � Configuration � Multiple processes � Multiple architectures

As discussed in previous chapters, every VHDL code has one entity and at least one
architecture. The major focus of this chapter is to get familiar with the important
VHDL constructs. The main objective of design engineer is to write an efficient RTL
using the suitable VHDL constructs. Most of the time, due to use of inappropriate

“Logic will get you from A to B. Imagination 
will take you everywhere.”  --- Albert Einstein

To write an efficient RTL using VHDL, it is essenƟal to 
understand about the VHDL constructs. 

VHDL has both concurrent and sequenƟal constructs. So 
let us understand the VHDL constructs.  

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_3
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VHDL constructs, it yields in the wrong design. It is essential to use the required
constructs to avoid the simulation and synthesis mismatch in the design.

To avoid the simulation and synthesis mismatch, it is essential to use the
appropriate VHDL constructs, and it is mandatory to follow the important rules
while writing VHDL code. To implement the desired intended design functionality,
the following section will play an important role. The following section will discuss
about the VHDL programming paradigm, the key statements, and the important
rules while coding using VHDL.

3.1 VHDL Design Paradigm

VHDL design paradigm has five different entities: entity declaration, package
declaration, configuration declaration, architecture, and package body declaration.
Among them, entity, package, and configuration declarations are visible in the
VHDL library and hence called as the main or primary design units. VHDL library
is the storage area of host environment for compiled design unit.

As the architecture and package body declarations are not visible within library,
they are treated as secondary design units. Every design has entity–architecture pair;
entity provides port information, and architecture provides the functionality of design.

The packages are used to have the global information. The package and package
body contain subprogram and data types which need to be used for other designs.
The package body consists of the subprogram declarations, and it should have the
same name as that of package.

1. Entity Declaration: As discussed earlier, entity provides the port information,
that is the interface of the design to any other design or module for the com-
munication is provided by the entity declaration. The entity declaration is used
to communicate with the other design units in the same environment. The
interface required for communication includes input, output, bidirectional sig-
nals and parameterized generic declarations.

2. Design Architecture: It is used to describe the functionality of design.
Every VHDL code should have at least one architecture. Architecture is con-
current construct, and if VHDL code has multiple architectures, then the con-
figuration can be used to bind entity with the architecture. In most of the
practical scenario, it is required to have multiple versions of RTL design, and
hence multiple architectures can be used.

3. Configuration: It is used to bind entity with one of the architecture. Single
configuration statement can be used to define the binding of multiple entity–
architecture pairs throughout the design hierarchy.

4. Package: If few data types need to be used throughout the multiple design units,
then package is used. It consists of the global data types, subprograms, and
constants.

5. Package Body: Package body is associated with the package declaration, and
the name of package body should be same as that of package declaration.
Package body consists of functions, procedure, and subprogram.
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The description of sequential logic and use of package using VHDL is shown in
Example 3.1. The synthesis result for the sequential logic using package is shown in
Fig. 3.1.

In the practical scenario, every design should have the list of comments, and
these comments are used to identify the functionality of design, design engineer,
primary resources, secondary resources, date of creation, version of the design, etc.
Every organization has their own methods to maintain the versions of design.

package pckg_name is
subtype nibble is bit_vector ( 3 downto 0);

end;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
use work.pckg_name.all;

entity design_logic is
port ( clk, reset_n : in boolean;

s0_in : in bit;
s1_in : in bit;
d3_in : in nibble;
d2_in : in nibble;
d1_in : in nibble;
d0_in : in nibble;
q_out : out nibble );

end design_logic;

architecture arch_design of design_logic is

signal reg_sig : nibble;
signal select_sig : bit_vector ( 1 downto 0);

begin
select_sig <= s0_in & s1_in;

process ( clk, reset_n)
begin

if ( reset_n) then 
reg_sig <= "0000";

elsif ( clk and clk'event ) then 
case ( select_sig) is
when b"00" => reg_sig <= d0_in;
when b"01" => reg_sig <= d1_in;
when b"10" => reg_sig <= d2_in;
when b"11" => reg_sig <= d3_in;

end case;
end if;

end process;
q_out <= reg_sig;

end arch_design;

Package declara on

Declara on of Library and 
use of package using ‘use’ 
clause.

En ty declara on using the 
required data types for the 
input and output.

Func onal defini on using 
‘architecture’ and internal 
signal defini ons.

Use of concurrent statement 
process and sequen al 
statement ‘if-then-else’ and 
‘case’ to define the behavior 
of design. 

Example 3.1 Synthesizable VHDL of sequential design logic
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Following are few key comments need to be used at the start of every VHDL
design. The comments can be optional but they improves readability.

Fig. 3.1 Synthesis result for the sequential design logic

--------------------------------------------------------------------------------
---------------------------------- 
-- Company Name:  
-- Design Engineer:  
-- Design Name:  
-- Module Name:     
-- Project Name:  
-- Design Date:     
-- Target technology:  
-- Design Version:  
-- Description:  
-- Additional Comments:  
-- ------------------------------------------------------------------------------
----------------------------------
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3.2 Multiple Architectures and Configuration

The description of combinational logic using multiple architecture definitions is
shown in Example 3.2. The synthesis result for the combinational logic for multiple
architecture design is shown in Fig. 3.2. The last architecture is coupled with entity

--multiple architecture definitions
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity design_mult_arch is

port ( s_in : in std_logic;
a_in  : in std_logic;

b_in  : in std_logic;
y_out : out std_logic);

end design_mult_arch;

architecture arch_design_1 of design_mult_arch is

begin 

y_out <= a_in xor b_in xor s_in;

end arch_design_1;

architecture arch_design of design_mult_arch is

begin 

y_out <= a_in and b_in and s_in;

end arch_design;

Architecture defines the 
func onality of design as 
three input ‘xor’ gate.

Architecture is named as 
‘arch_design_1’ and has
inputs ‘a_in, b_in, s_in’.

Architecture defines the 
func onality of design as 
three input ‘and’ gate.

Architecture is named as 
‘arch_design’ and has
inputs ‘a_in, b_in, s_in’.

Example 3.2 Synthesizable VHDL using multiple architecture

Fig. 3.2 Synthesis result for multiple architecture VHDL
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to generate the gate-level netlist. Configuration can be used to bind the required
architecture with the entity.

3.2.1 Multiple Architecture and Configuration

The description of combinational logic using multiple architectures and the use of
configuration is shown in Example 3.3. The synthesis result for the combinational
logic using configuration is shown in Fig. 1.3. Using configuration, the first

--multiple architecture definitions and configuration 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity conf_mult_arch is

port ( s_in : in std_logic;
a_in  : in std_logic;

b_in  : in std_logic;
y_out : out std_logic);

end conf_mult_arch;

architecture arch_design_1 of conf_mult_arch is

begin 

y_out <= a_in xor b_in xor s_in;

end arch_design_1;

architecture arch_design of conf_mult_arch is

begin 

y_out <= a_in and b_in and s_in;

end arch_design;

configuration conf_arch1 of conf_mult_arch is

For arch_design_1

End For;

end conf_arch1;

Architecture defines the 
func onality of design as 
three input ‘xor’ gate.

Architecture is named as 
‘arch_design_1’ and has 
inputs ‘a_in, b_in, s_in’.

Architecture defines the 
func onality of design as 
three input ‘and’ gate.

Architecture is named as 
‘arch_design’ and has
inputs ‘a_in, b_in, s_in’.

The architecture 
‘arch_design_1’ is coupled 
with en ty using configura on

Example 3.3 Synthesizable VHDL and use of configuration
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architecture declared is coupled with entity, and hence it generates the gate-level
netlist using the assignments declared in the first architecture.

3.3 Objects and Data Types

Data objects are used to pass the information in the design. The information can be
passed from one point to another point. Every data object has a collection of value
set, and all possible values are defined in the value set. The key VHDL data types
and objects are shown in Table 3.1.

Physical, floating point, and access data types are not supported by synthesizer.

3.3.1 Scalar Data Types

The enumeration, integer, physical, and floating point data types are considered the
scalar data types.

Fig. 3.3 Synthesis result for the configuration

Table 3.1 Data types and
data objects

Data types Data objects

Scalar types Constants

Enumerated Variables

Integer Signal

Physical File

Real

Composite type

Array

Record

Access (pointers)
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3.3.1.1 Enumerated Data Types

These are used to define the user-defined values, and each value is treated as an
identifier. The syntax of enumerated data type is given below.

In the above syntax, ‘enum_data_type’ is identifier that is name of the enu-
merated data type; ‘enum_data_value’ is identifier, character or literal.

For example,

The tool assigns the numeric value to each ‘fsm_state’ according to the order in
which the enumerated values are declared. In the above case, for the binary value,
s0 = 00, s1 = 01, s2 = 10, s3 = 11.

3.3.1.2 Integer Data Types

These are used to define the range of integer numbers. If the range is not specified,
then according to VHDL IEEE standard, the default range of (2−31 + 1) to (231 − 1)
is used. The syntax is shown below.

In the above syntax, ‘type_name’ is identifier, that is, the name of the integer
data type; integer_range is the range of the integer definition.

For example,

3.3.1.3 Physical Data Types

These are used to define the required physical parameters for the design. Time is
only physical data type which is predefined in the VHDL standard. Other physical
parameters required in the design need to be declared by using physical data type.

type enum_data_type is (enum_data_value { 
enum_data_value});

type type_name is range integer_range

type type_name is range integer_range

type count_value is range 0 to 7;
type count_value is range 7 downto 0;

type fsm_state is (s0,s1,s2,s3);
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In the above syntax, ‘type_name’ is identifier, that is, name of the physical data
type; integer_range is the range of the integer definition.

For example,

3.3.1.4 Real Data Type

These data types are used to define the real value for the required variable in the
VHDL design. The minimum range according to the VHDL standard is (−1.0E38
to 1.0E38).

Consider the following example,

3.3.2 Composite Data Types

These are used while modeling the memory elements. These data types are mainly
arrays, records.

type data_type is range 0 to 32;

Values

Bit ;
Nibble = 4Bit;
Byte =8 Bit;
Word = 16 Bit;
Double_word = 32Bit;

End Values

architecture real_data of data_type is
begin
process ( input1)
variable tmp : real;

begin
A_tmp := 2  ;                        -- illegal

A_tmp := 5ns  ;                    -- illegal
A_tmp := 1.5;                        -- legal 
A_tmp := 1.5 E 15;               -- legal

end process;
end architecture;
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3.3.2.1 Arrays

The array declarations as single dimensional or two dimensional are used to group
the elements of same type into the design object. The synthesis tool supports the
array declaration of single or two dimensional. The range may be unconstrained in
the declaration, and then the range can be constrained when array is used in the
design. These are generally used in the modeling of memories (RAM or ROM).

The syntax for one-dimensional array is as follows:

type name_array is array ( range) of data_type;
The example is shown below.

In the above example, the array of 8 entries from ‘0 to 7’ is declared and named
as data_bus. Inside the process, the ‘tmp1’ is declared as of type ‘bit’ which is the
type of array declared. Using the bit select, the tmp value is assigned to ‘tmp1’.

3.3.2.2 Records

These are used to group the data elements of different types into the VHDL object.
While modeling the data packets, record types can be used. Record is a set of values
of same or different types of elements.

The example is shown below.

type data_bus  is array ( 0 to 7) of bit;

architecture arch_array of array_design is 

begin

process ( input1)

variable tmp1 : bit;
variable  tmp : data_bus;

begin

tmp1 := data_bus(7);

end process;

end arch_array;
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3.3.3 Data Objects

The four main types of objects in VHDL are constants, variables, signals, and files.
The objects are used to communicate in the design, and every object has its own
scope. If object is defined in the package, then it is available to all the designs in the
same design environment. If the data object is declared in the entity, then it is
available to the architecture associated with that entity only. If the data object is
defined in the architecture, then it is available to the architecture only. If data object
is declared in the process, then it is local to the process only and available to all the
statements inside the process.

3.3.4 Constants

These types of data objects are used to hold the constant value of specified type.
The value of data object constant cannot be changed once it is declared.

The syntax to declare the constant is given below.

For example,

constant data_bus:  integer:=8;

3.3.4.1 Variable

These types of data objects are used to hold the single value from the values of the
specified type. They are mainly used to hold the temporary value within the process
and hence local to the process. The variables are updated immediately without any
delta delay.

The syntax is shown below.

Following are few examples of variable declaration.
Variable opcode:  bit_vector(7 down to 0):=00000000; 

type floating point is ;
record

sign: std_logic;
fraction : unsigned ( 7 downto 0);

exponent : unsigned ( 0 to 7);
end record;

constant constant_name:  type_name [:=value];

Variable  variable_name:  type_name [:=value];
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In the above declaration, the variable is named as ‘opcode’ and assigned to value
‘00000000’.

3.3.4.2 Signal

These types of data objects are used to communicate between the VHDL compo-
nents, and they are used to hold the present and future values. The signals are
updated after delta delay at the end of the process.

The syntax is shown below.

Following are few examples of signal declaration:

Signal ready:  bit ;
ready <= ‘1’ after 10 ns;

In the above declaration, the signal is named as ‘ready’ and assigned to value ‘1’
after 10 nano second (ns) time duration.

3.3.4.3 File

These types of data objects are used to communicate with the host environment.
Files can be opened for reading and writing. File objects are not supported by
synthesis tool. Using the procedures, the read from and write to file is possible. The
file can be opened by using file_open() and can be closed by using file_close(). This
will be discussed in more detail in the next subsequent chapters.

3.4 Signal Assignments

Signal is used to represent the module interface and is global to the architecture.
The interface between the concurrent and sequential statements can be achieved by
using signals. Signal assignments can be concurrent or sequential assignments. The
concurrent signals assignments can be conditional, selective. The sequential signal
assignments are unconditional and hence treated as simple assignments.

While executing the sequential signal assignments inside the process, the
right-hand side (RHS) side expression is evaluated, and event is scheduled

Signal signal_name:  type_name [:=value];

signal <= expression [after desired delay];

60 3 VHDL and Key Important Constructs



depending on the delay to change the value of the signal. At the end of the process
or at the process suspension, the value of signal is updated.

If the same signal has multiple assignments inside the process, then the syn-
thesizer considers the last assignment as effective assignment. For example,

In the above code as y_out is assigned twice with different functionality, and it
infers the hardware as ‘AND’ of ‘a_in, b_in’ as the last assignment is effective. So
the main important point in the signal assignment is the updating of signal value.
All the signals inside the process hold the previous or old value, and all the signal
assignments become effective when process suspends, that is, at the end of the
process.

3.4.1 Signal Assignments Example

The description of combinational logic using signal assignments is shown in
Example 3.4. The synthesis result for the combinational logic using signal
assignments is shown in Fig. 3.4. Signals are updated at the end of the process, and
hence for the shown example it generates the parallel logic using the assignment
statements.

3.5 Variable Assignment

Variables are used to hold the intermediate results within the process. The variables
can be declared by using keyword ‘variable.’ At the initialization phase during the
simulation, the initial value is given to variable. Variable assignment statements are
used inside the process, and it replaces the current value of variable with the
evaluated new value. The ‘variable’ is declared by using following syntax.

process ( a_in, b_in)
begin 

y_out <= a_in xor b_in;
y_out <= a_in and b_in ;
end process; 

variable := expression;
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--signal assignments
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity signal_assignment is 

port ( a_in, b_in, c_in, d_in, e_in : in std_logic;
y1_out , y2_out : out std_logic);

end signal_assignment;

architecture arch_signal of signal_assignment is

signal signal_1, signal_2 : std_logic;

begin

signal_1 <= a_in xor b_in;

process ( c_in, signal_1, signal_2)

begin

y1_out <= not signal_2;
signal_2 <= signal_1 xor c_in;

end process;

y2_out <= not (e_in xor d_in );

end arch_signal;

Architecture defines 
the func onality of 
design.

Signals are declared 
to establish the 
communica on.

Signals are described 
using ‘signal’ keyword
and of type ‘std_logic’ 

Signals are updated 
at the end of the process 
a er delta delay.

Example 3.4 Synthesizable VHDL using signal assignments

Fig. 3.4 Synthesis result for signal assignment
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The expression can contain signals, literals, and variables. Variable assignments
are executed immediately in zero simulation time, and hence variable assignments
cannot be delayed.

3.5.1 Variable Assignments Example

The description of combinational logic using variable assignments is shown in
Example 3.5. The synthesis result for the combinational logic using variable
assignments is shown in Fig. 3.5. Variables are updated immediately, and hence for
the shown example it generates the cascade logic using the assignment statements.

--variable assignments

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity variable_assignment is 

port ( a_in, b_in, c_in, d_in, e_in : in std_logic;
y1_out , y2_out : out std_logic);

end variable_assignment;

architecture arch_variable of variable_assignment is

begin

process ( a_in, b_in, c_in, d_in, e_in) 
variable  variable_1, variable_2, variable_3, variable_4: std_logic; 
begin

variable_1 := a_in xor b_in; 
variable_2 := variable_1 xor c_in;
y1_out <= not variable_2;
variable_3 := not (variable_2 xor e_in );
variable_4 := not (variable_2 xor d_in );
y2_out <= variable_4;

end process;

end arch_variable;

Architecture defines 
the func onality of 
design.
Variables are declared
to establish the
communica on.
Variables  are declared
using ‘varibale’ keyword
and of type ‘std_logic’
Variables are updated
instant immediately.

Example 3.5 Synthesizable VHDL using variable assignments
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The difference between the signal and variable assignments is given in
Table 3.2.

3.6 Concurrent Constructs

VHDL is one of the powerful HDLs and consists of rich set of statements. VHDL
consists of concurrent and sequential statements.

The important and essential concurrent statements are architecture, process,
concurrent signal assignments, component instantiation, procedure calls. These
statements are executed simultaneously.

3.6.1 When Else

The ‘when else’ is conditional signal assignment statement. The described func-
tionality using such kind of statement is equivalent to the conditional ‘if’ statement.
The syntax of ‘when else’ is shown below.

When the Boolean condition is true, then the value of the first expression is
assigned to the output or signal. When the condition is false, then the expression

Fig. 3.5 Synthesis result for variable assignment

Table 3.2 Signal versus variable

Signal assignments Variable assignments

Signals are updated when the process execution
suspends, Signals are global to architecture

Variables those are not local to the process are
updated immediately, and the event is not
scheduled

In the signal assignment, delay can be specified Variable assignments cannot be delayed

To the same signal inside the process if multiple
assignments are used, then the last assignment is
effective

Many assignments to the same variable are
effective

output port name or signal <= [expression when condition 
else ...] expression;
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corresponding to the ‘else’ clause is assigned to output or signal. The conditional
assignment statement is concurrent statement and hence can be used in the archi-
tecture. The major use of this kind of concurrent statement is to assign the values to
the signal or to the output port.

The description of combinational logic using concurrent ‘when else’ construct is
shown in Example 3.6. The synthesis result for the combinational logic using ‘when
else’ is shown in Fig. 3.6. When else is a concurrent statement, and it generates the
multiplexing logic.

--Combinational logic using when else

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity combo_logic is

port ( enable_in : in std_logic;
a_in  : in std_logic;

b_in  : in std_logic;
y_out : out std_logic);

end combo_logic;

architecture arch_combo of combo_logic is

begin 

y_out <= ( b_in and a_in)  when (enable_in = '1')
else ( b_in xor a_in);

end arch_combo;

Architecture defines 
the func onality of 
design.
When-else is concurrent
statement.
When ‘enable_in’ is 
true ‘y_out’ is equal 
to ‘a_in and b_in’.
When ‘enable_in’ is 
false ‘y_out’ is equal 
to ‘a_in xor b_in’.

Example 3.6 Synthesizable VHDL using when-else

Fig. 3.6 Synthesis result for combo logic using when-else
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3.6.2 With Select

The ‘with select’ is a selected signal assignment statement. It is used to select one of
the expressions depending on the condition. This kind of expression uses only
single condition to select between multiple options. This kind of statements can be
considered as functional equivalent of the ‘case’ statement. The syntax of ‘with
select’ statement is shown below.

The signal or output is assigned to one of the expressions. All the values
specified in the select expression or condition need to be covered. The final option
may be using keyword ‘others’. While using the ‘with select’ statement, it is
essential to take care that the option values should not overlap each other. If ‘others’
option is not used, then all the option values should be covered.

The description of combinational logic using ‘with select’ construct is shown in
Example 3.7. The synthesis result for the combinational logic using ‘with select’
construct is shown in Fig. 3.7. The ‘with select’ is concurrent construct, and it
results into multiplexing logic depending on the specified conditions and
expressions.

3.6.3 Process

Process is concurrent statement; multiple processes can be described within the
architecture, and all the processes executes concurrently. Process can appear any
where inside the architecture body and sequence of statements need to be included
within ‘begin’ and ‘end process.’ Process name or label is optional while writing
VHDL code. The structure of process declaration is shown below.

with select_condition/expression select
signal <= expression_1 when option_1,
.
;
;

expression_n when option_n,
[expression when others];

[Label:] process [(sensitivity_list)]
[type declarations]
[constant declarations]
[variable declarations]
[subprogram declarations]

begin
sequential statements
end process [name optional];
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Following are important points need to be considered while describing func-
tionality using process statement.

1. The process is declared using keyword ‘process’ and ends with ‘end process.’
2. The name or label to any process is optional.
3. Every process is sensitive to list of inputs or signals. The list of inputs or signals

is called as sensitivity list.

--Combinational logic using with select

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity combo_logic_select is

port ( enable_in : in std_logic;
a_in  : in std_logic;
b_in  : in std_logic;

y_out : out std_logic);
end combo_logic_select;

architecture arch_combo of combo_logic_select is

begin 
with ( enable_in ) select 
y_out <= ( b_in nand a_in)  when  '1',

( b_in nor  a_in)  when  '0';      

end arch_combo;

Architecture defines 
the func onality of 
design.
With-select is concurrent
statement.
When ‘enable_in’ is 
true ‘y_out’ is equal 
to ‘a_in nand b_in’.
When ‘enable_in’ is 
false ‘y_out’ is equal 
to ‘a_in nor b_in’.

Example 3.7 Synthesizable VHDL using with-select

Fig. 3.7 Synthesis result for combo logic using with-select
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4. The sequence of statements inside the process is executed sequentially and starts
with the keyword ‘begin.’ Between the ‘process’ and ‘begin’ keyword, the
types, constants, variables, functions, and procedures which are local to the
process can be declared.

5. Inside process, the signal declaration is not allowed and even concurrent
statements are not allowed.

6. Process can be invoked by event on any signal specified in the sensitivity list.
7. In VHDL, ‘end process’ does not mean the end of process execution; the

process is executed in the indefinite loop.
8. For missing sensitivity list, the process must have the wait statement to suspend

and to activate the process depending on the event or true condition.
9. To avoid the simulation and synthesis mismatch, it is recommended to specify

all the required signals in the sensitivity list of process.

The description of combinational logic using multiple concurrent processes is
shown in Example 3.8. The synthesis result for the combinational logic using
multiple processes is shown in Fig. 3.8. Multiple process constructs executes
concurrently. The statements inside the process execute sequentially.

--Combinational logic using multiple processes.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity multi_process is

port ( enable_in_0 : in std_logic;
enable_in_1 : in std_logic;

a_in  : in std_logic;
b_in  : in std_logic;

c_in : in std_logic;
d_in  : in std_logic;
e_in  : in std_logic;

f_in  : in std_logic;
y_out : out std_logic;
y1_out: out std_logic);

end multi_process;

En ty defines the input
and output ports. 
The input and output 
ports are declared 
and of ‘std_logic’ 
type. 
The pin out of design 
is created using the 
input and output 
ports. 

Example 3.8 Synthesizable VHDL using multiple processes
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3.7 Sequential Constructs

The key important sequential statements are ‘if then else,’ ‘case,’ ‘block,’ ‘next,’
and ‘loop,’ and these are executed sequentially as they appear within the subpro-
gram or process. The following section focuses on the key sequential constructs and

--functional definition using multiple processes.

architecture arch_multi_process of multi_process is

begin 

P1: process ( enable_in_0, a_in, b_in, c_in, d_in)

begin

if ( enable_in_0 ='1') then 

y_out <= b_in xor a_in;

else

y_out <= d_in xor c_in;

end if;

end process;

P2: process ( enable_in_1, a_in, b_in, e_in, f_in)

begin

if ( enable_in_1 ='1') then 

y1_out <= e_in xor f_in;

else

y1_out <= b_in xor a_in;

end if;

end process;

end arch_multi_process;

Process named as 
‘P1’ and is sensiƟve 
to the inputs ‘ena-
ble_in_0, a_in, b_in, 
c_in, d_in’. 
For  true value on 
‘enable_in_0’ , the 
‘y_out is equal to xor 
of ‘a_in, b_in’
For  false value on 
‘enable_in_0’ , the 
‘y_out is equal to xor 
of ‘c_in, d_in’

Process named as 
‘P2’ and is sensiƟve 
to the inputs ‘ena-
ble_in_1, a_in, b_in, 
e_in, f_in’. 
For  true value on 
‘enable_in_1’ , the 
‘y1_out is equal to 
xor of ‘e_in, f_in’
For  false value on 
‘enable_in_0’ , the 
‘y1_out is equal to 
xor of ‘a_in, b_in’

Example 3.8 (continued)
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other constructs like ‘NEXT,’ ‘BLOCK,’ and ‘Assert’ will be discussed in the next
subsequent chapters.

3.7.1 If Then Else

It is a sequential statement and is used inside the process. It is used to select one or
more statements for execution depending on the specified condition. Condition
specified in the Boolean expression is evaluated as true or false. For the true
condition, the statements specified after ‘if’ keyword are executed. For the false
condition, the sequence of statements after ‘else’ clause is executed. The syntax of
‘if then else’ is shown below.

The description of tri-state logic using ‘if then else’ construct is shown in
Example 3.9. The synthesis result for the tri-state logic is shown in Fig. 3.9. ‘If then
else’ is sequential construct and is used inside the process statement.

Fig. 3.8 Synthesis result for combinational design using concurrent processes

if condition then 
Sequence of statements
else 
Sequence of statements
end if;
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--tri state buffer using if-then-else construct.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity tri_state_logic is

port ( enable_in : in std_logic;
a_in  : in std_logic;

b_in  : in std_logic;
y_out : out std_logic);

end tri_state_logic;

architecture arch_tri_state of tri_state_logic is

begin 

process ( enable_in, a_in, b_in)

begin

if ( enable_in ='1') then 

y_out <= b_in and a_in;

else

y_out <= 'Z';

end if;

end process;

end arch_tri_state;

Process is sensi ve to 
the inputs ‘enable_in, 
a_in, b_in’. 
For  true value on 
‘enable_in’ , the 
‘y_out is equal to and 
of ‘a_in, b_in’
For false value on 
‘enable_in’, the 
‘y_out is equal to 
high impedance.

Example 3.9 Synthesizable VHDL of tri-state logic

Fig. 3.9 Synthesis result for tri-state logic using if-then-else construct
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The description of two-to-one multiplexer using ‘if then else’ construct is shown
in Example 3.10. The synthesis result for the two-to-one multiplexer is shown in
Fig. 3.10. ‘If then else’ construct generates multiplexer.

--Two to one mux using if-then-else construct.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity mux_logic is

port ( enable_in : in std_logic;
a_in  : in std_logic;
b_in  : in std_logic;

y_out : out std_logic);
end mux_logic;

architecture arch_mux of mux_logic is

begin 

process ( enable_in, a_in, b_in)

begin

if ( enable_in ='1') then 

y_out <= b_in;

else

y_out <= a_in;

end if;

end process;

end arch_mux;

Process is sensiƟve to 
the inputs ‘enable_in, 
a_in, b_in’. 
For  true value on 
‘enable_in’ , the 
‘y_out is equal to 
 ‘b_in’
For false value on 
‘enable_in’, the 
‘y_out is equal to 
‘a_in’.

Example 3.10 Synthesizable VHDL using if-then-else
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3.7.2 Nested If Then Else

It is a sequential statement and is used inside the process. It is used to select one or
more statements for execution depending on the specified condition. Condition
specified in the Boolean expression is evaluated as true or false. For the true condition,
the statements specified after ‘if’ keyword are executed. For the false condition, the
sequence of statements after ‘else if’ clause is executed, and if none of the condition is
matched then the sequence of statements after ‘else’ clause will be executed. It infers
the priority logic; the syntax of nested ‘if-then-else’ is shown below.

The description of four-to-one multiplexer using nested ‘if then else’ construct is
shown in Example 3.11. The synthesis result for the four-to-one multiplexer is
shown in Fig. 3.11. Nested ‘if then else’ construct generates priority logic in case of
four-to-one multiplexer.

Fig. 3.10 Synthesis result for MUX using if-then-else construct

if condition then 
Sequence of statements
[elsif condition then 
Sequence of statements...]
[else 
Sequence of statements]
end if;

Fig. 3.11 Synthesis result for nested if-then-else construct
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--Four to one mux using nested if-then-else construct.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity nested_if_mux is

port (     sel_in : in std_logic_vector ( 1 downto 0);
data_in  : in std_logic_vector (3 downto 0);
y_out : out std_logic);

end nested_if_mux;

architecture arch_mux_nested_if of nested_if_mux is

begin 

process ( sel_in, data_in)

begin

if ( sel_in ="00") then 

y_out <= data_in(0);

elsif ( sel_in ="01") then 

y_out <= data_in(1);

elsif ( sel_in ="10") then 

y_out <= data_in(2);

else

y_out <= data_in (3);

end if;

end process;

end arch_mux_nested_if;

Process is sensiƟve to 
the inputs ‘sel_in, data_in’. 

The funcƟonality is 
defined to generate 
four to one mulƟplexer
using nested 
if-then-else construct. 
Depending on the 
status of select lines, 
one of the input is 
assigned to output. 

All the statements inside
process are executed
sequenƟally. 

Example 3.11 Synthesizable VHDL of four-to-one MUX using nested if-then-else
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3.7.3 Case

It is a sequential statement and used inside the process. It is used to select one of the
statements specified based on the value of expression. The expression may or may
not be Boolean and can be character array, variables, and signals. When there is
large number of alternatives to generate the required output, the ‘case’ statement is
useful. It generates the parallel logic. The case statement syntax is shown below and
consists of several ‘when’ clauses with one or more options. The expression value
is compared with the option. If the expression value is equal to the option specified,
then the sequence of statements specified after => symbol are executed. The ‘when
others’ must be the last option.

The description of two-to-one multiplexer using ‘case’ construct is shown in
Example 3.12. The synthesis result for the two-to-one multiplexer is shown in
Fig. 3.12. The ‘case’ construct generates parallel logic in the case of two-to-one
multiplexer.

case conditional expression is
when condition_1 =>
Sequence of statements
when condition_n =>
Sequence of statement
[when others =>
Sequence of statements]
end case;

Fig. 3.12 Synthesis result for MUX logic using case construct
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3.8 Modeling Sequential Logic

In the sequential logic, an output is a function of the present input and the past
output, and hence it has memory or storage capacity. VHDL constructs like process,
‘if then else,’ and ‘case’ can be efficiently used to write synthesizable RTL for
sequential logic elements. The key elements are register or flip-flop (edge triggered)
and latch (level sensitive). These can be efficiently modeled for the intended design
functionality using the VHDL constructs. The following section discusses the key
concepts for modeling sequential logic. The details of sequential logic design will
be discussed in few subsequent chapters.

--Two to one mux using ‘case’  construct.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity mux_logic_case is

port ( enable_in : in std_logic;
a_in  : in std_logic;

b_in  : in std_logic;
y_out : out std_logic);

end mux_logic_case;

architecture arch_mux of mux_logic_case is

begin 

process ( enable_in, a_in, b_in)

begin

case (enable_in) is

when '0' => y_out <= a_in;
when '1' => y_out <= b_in;

end case;

end process;

end arch_mux;

Process is sensi ve to 
the inputs ‘enable_in, 
a_in, b_in’. 
The func onality is 
defined to generate 
two to one multiplexer
using ‘case’.
Depending on the 
status of enable_in, 
one of the inputs is 
assigned to output. 
All the statements inside
process are executed
sequen ally. 

Example 3.12 Synthesizable VHDL using case
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3.8.1 Four-Bit Register

The description of four-bit register using ‘if then else’ construct is shown in
Example 3.13. The synthesis result for the four-bit register having asynchronous
reset and positive edge-triggered clock is shown in Fig. 3.13. ‘If-then-else’ con-
struct generates multiplexer, but as the else clause is missing in the nested ‘if then
else’ construct it generates the sequential logic which is triggered on the rising edge
of clock due to use of ‘clk=‘1’’ and clk‘event’.

--Four bit register using ‘if-then-else’

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity register_4bit is

port (     clk, reset : in std_logic;
data_in  : in std_logic_vector (3 downto 0);
y_out : out std_logic_vector (3 downto 0));

end register_4bit;

architecture arch_register_4bit of register_4bit is

begin 

process ( clk, reset)

begin

if ( reset = '1') then 

y_out <= "0000";

elsif ( clk='1' and clk'event) then
y_out <= data_in;

end if;

end process;

end arch_register_4bit;

Process is sensi ve to 
the inputs ‘clk, reset’
The func onality is 
defined to generate 
four bit register using  
‘if’.-then-else
For ‘reset=1’ output 
‘y_out’ is equal to 
“0000”.
For rising edge of clk 
signal ‘data_in’ is assigned
to ‘y_out’.

Example 3.13 Synthesizable VHDL of four-bit register
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3.8.2 Four-Bit Latch

The description of four-bit latch using ‘if then else’ construct is shown in Example
3.14. The synthesis result for the four-bit positive level sensitive latch is shown in
Fig. 3.14. ‘If then else’ construct generates multiplexer but as the else clause is
missing in the nested ‘if then else’ construct, it generates the sequential logic which
is positive level sensitive.

3.9 Wait Statements

For the process declaration without any sensitivity list, the process body must
contain at least one ‘wait’ statement. ‘Wait’ statement inside process body is used to
suspend the process execution. Even the ‘wait’ statement inside process body is
used to activate the suspended process depending on the specified condition. When
the condition specified in the ‘wait’ statement is met, the sequence of statements are
executed until it encounters another ‘wait’ statement. One or more than one ‘wait’
statement can be used inside the process. Few important wait statement syntax are
shown below.

3.9.1 Wait On

The ‘wait on’ statement needs to be used inside the process having empty sensi-
tivity list. The syntax of ‘wait on’ is shown below.

Fig. 3.13 Synthesis result for edge triggered logic

wait on sensitivity list;
wait for time expression;
wait until conditional expression;

wait on sensitivity list;
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Now consider the following VHDL code,

--Four bit level sensitive latch using ‘if-then-else’

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity latch_4bit is

port (     enable_in, reset_in : in std_logic;
data_in  : in std_logic_vector (3 downto 0);
y_out : out std_logic_vector (3 downto 0));

end latch_4bit;

architecture arch_latch_4bit of latch_4bit is

begin 

process ( enable_in, reset_in, data_in)

begin

if ( reset_in = '1') then 

y_out <= "0000";

elsif ( enable_in ='1') then
y_out <= data_in;

end if;

end process;

end arch_latch_4bit;

Process is sensi ve to 
the inputs ‘enable_in, 
reset_in, data_in’
The func onality is 
defined to generate 
four bit latch using  
‘if’.-then-else
For ‘reset_in=1’ output
‘y_out’ is equal to 
“0000”.
For ac ve high value 
on ‘enable_in’ input 
‘data_in’ is assigned 
to ‘y_out’.

Example 3.14 Synthesizable VHDL of four-bit latch

process
begin
y_out <= a_in xor b_in xor c_in;
wait on a_in, b_in, c_in;
end 
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As shown in the above VHDL code, for any event on either ‘a_in, b_in, c_in’, the
process is executed and generates the combinational logic. To generate the combi-
national logic, only one ‘wait’ statement should be present inside the ‘process.’

3.9.2 Wait For

It is used to suspend the specified process execution for the given time duration.
The syntax of ‘wait for’ is shown below.

If we use the statement in the process, then the process is suspended for the 5
nano second (ns) time duration. The syntax to wait for 5 nano second is shown
below.

Fig. 3.14 Synthesis result for sequential logic

wait for time expression;

wait for 5ns;
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3.9.3 Wait Until

This statement is used inside the ‘process’ having empty sensitivity list. The process
is suspended until the specified condition is true. The process is activated when the
conditional expression is true. The ‘wait until’ is used to infer the synchronous
sequential logic. Most of the time, the ‘wait until clk=‘1’’ is used, and it should be
the first statement inside the process. By using the ‘wait until,’ sequential logic with
asynchronous reset cannot be inferred.

The description of sequential logic using ‘wait until’ construct is shown in
Example 3.15. The synthesis result for the sequential logic having synchronous

--sequential logic using ‘wait-until’

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity sequential_logic is

port (     clk, reset_in : in std_logic;
data_in  : in std_logic_vector (3 downto 0);
y_out : out std_logic_vector (3 downto 0));

end sequential_logic;

architecture arch_sequential_logic of sequential_logic is

begin 

process 

begin

wait until ( clk = '1');

if ( reset_in ='1') then

y_out <= "0000";

else
y_out <= data_in;

end if;

end process;

end arch_sequential_logic;

Process doesn’t have 
any sensi vity list.

The func onality is 
defined to generate 
four bit register using  
‘if’.-then-else

For ac ve high value 
on ‘clk’ input executes
‘if-then-else’ statement.

For ‘reset_in=1’ output
‘y_out’ is equal to 
“0000”.

For ‘reset_in=0’ output
‘y_out’ is equal to 
data_in.

Example 3.15 Synthesizable VHDL using wait until construct
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reset and positive edge-triggered clock is shown in Fig. 3.15. ‘If-then-else’ con-
struct generates multiplexer and is used inside the ‘wait until (clk=‘1’)’. So it infers
the sequential logic which is positive edge-triggered.

3.10 Loops

Loops are used when the repeated execution of sequence of statements is required.
Simple ‘loop’ statement is indefinite execution of sequence of statements. In the
‘for loop,’ the sequence of statements executed depends on the count value. In the
‘while’ loop, the sequence of statement is executed until specified condition is false.
While writing synthesizable code, only ‘for loop’ is used as the number of loop
iterations is fixed.

3.10.1 Loop

The syntax of ‘loop’ statement is shown below.

The loop label is optional, and the statements within the ‘loop’ body are
repeatedly executed unlimited times. It is essential to use the ‘exit’ statement to end
the execution.

Fig. 3.15 Synthesis result for sequential logic using wait until construct

[label:] loop
Sequence of Statements
end loop [label];
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3.10.2 While Loop

It is a conditional loop statement, and the syntax is shown below.

Before the execution of the loop, the condition is evaluated. For the true con-
dition, the sequence of statements inside loop body is executed and control is
transferred to beginning of the loop. When the condition evaluated becomes false,
the loop execution terminates. Under such circumstances, the statements that follow
the ‘end loop’ clause are executed.

3.10.3 For Loop

For the fixed number of times for the repeated execution of statements, the ‘for
loop’ is used. The syntax is shown below.

The label is optional, and the loop consists of the count value. The sequence of
statements inside loop body is executed when the count is in the specified range.
After the completion of every iteration, the count value is assigned to the next value
specified in the range. The ascending range is specified by keyword ‘to’ and the
descending range is specified by keyword ‘downto.’

The description of parity generator using ‘for’ loop is shown in Example 3.16.
The synthesis result for the parity generator is shown in Fig. 3.16. The inferred gate
level netlist is a combinational logic and consists of four-input XOR library cell.

[label:] while condition loop
Sequence of Statements
end loop [label];

[label:] for cout in range loop
Sequence of Statements
end loop [label];
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Fig. 3.16 Synthesis result for parity generator using loop

--Parity Generator using For loop

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity parity_generator is

port (     data_in  : in std_logic_vector (3 downto 0);
y_out : out std_logic);

end parity_generator;

architecture arch_parity_generator of parity_generator is

begin 

process (data_in)

variable temp_q_out : std_logic;

begin

temp_q_out := '0';

for count in 0 to 3 loop

temp_q_out := temp_q_out xor data_in (count);

end loop;

y_out <= temp_q_out;

end process;

end arch_parity_generator;

Process is sensi ve to 
data_in.
The for loop executes 
four mes. 
The func onality to 
generate the parity is 
declared by using 
xor’.

Example 3.16 Synthesizable VHDL of parity generator

84 3 VHDL and Key Important Constructs



3.11 Summary

As discussed in this chapter, following are key important points to summarize the
chapter

1. VHDL supports concurrent and sequential statements, and VHDL is
case-insensitive language.

2. VHDL code should have one entity and at least one architecture.
3. In the multiple architecture code, the last architecture is coupled with the entity

to generate the synthesis result.
4. Architecture is concurrent statement and used to define the functionality of

design.
5. Concurrent statements like ‘when else’ and ‘with select’ are used inside the

architecture. These statements can not be used inside ‘process’.
6. Process is concurrent statement, and VHDL architecture consists of one or

more than one processes.
7. All the statements inside process are executed sequentially.
8. It is essential to use all the required signals in the sensitivity list of process.
9. If the sensitivity list is missing, then to suspend and activate the process, wait

statement need to be used.
10. Sequential statements like ‘if then else’, ‘case’ are used inside the process.

These are used to define the combinational design or sequential design
functionality.

11. Sequential logic element as register can be inferred using ‘wait until’ or
‘clk=’1’ and clk’event’.

12. If ‘else’ clause is eliminated in the if-then-else statement, then it infers storage
element either latch or flip-flop depending on the use of the construct.

13. Loops are used for repetitive statement execution. Only the ‘for loop’ generates
synthesizable result.

14. Signals are updated after delta delay at the end of the process.
15. Variables are updated immediately and local to the process.
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Chapter 4
Combinational Logic Design Using VHDL
Constructs

Abstract This chapter discusses the RTL coding and synthesis using VHDL for
the key combinational arithmetic resources such as adders, subtractors, multipliers,
and comparators. This chapter is useful for the beginners to understand about the
use of the concurrent and sequential VHDL constructs such as process, if then else,
case, and their use in the design of combinational logic. Even this chapter discusses
the code converters, data selectors as multiplexers, decoders, and encoders. This
chapter is organized in such a way that it covers simple logic design and gate delay
concepts to the priority logic design. This chapter concludes with the summary.

Keywords Propagation delay � Glitch � Cascade logic � Priority logic � Parallel
logic � Adders � Subtractors � Multipliers � Code converter � BCD � Excess-3 �
Seven_segment �MUX � Decoder � Encoder � Priority_logic � Case � If-then-else �
Process � Sensitivity � Memory � RTL � Area � Speed � Synthesis

As discussed in the previous chapter, the VHDL has rich set of concurrent and
sequential statements. The HDL can be used to design combinational and sequential
logic. The designer can choose the constructs efficiently to generate the intended

“It is the supreme art of the teacher to awaken 
joy in creative expression and 
knowledge.”  --- Albert Einstein

 Try to use the VHDL sequen al and concurrent 
construct to design the combina onal logic.   

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_4
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design functionality. In the combinational design, the output of digital circuit is
dependent on the present input and the logic does not have the storage. This chapter
focuses on the key combinational design elements such as adders, subtractors,
multiplier, comparator, and code converters. Even this chapter discusses the data
selectors as multiplexers, decoders, and encoders. The discussion in this chapter is
important for the design of complex logic and even for the synthesis of the complex
design. The VHDL synthesizable RTL is described and covered with the synthesis
results and the description about the functionality of the design.

4.1 Combinational Logic and Delays

The amount of time required for the signal to travel from the input of logic gate to
the output is called as propagation delay. Effectively, it is the amount of time
required for output to reflect the changes after change in one or more than one input.
The propagation delay is represented by tpd. The propagation delay of logic gate can
have maximum or minimum value, and in the practical scenario every digital logic
has the propagation delay. For the minimum gate count digital logic, the propa-
gation delay is shorter, but for the high gate density logic propagation delay can be
higher. For the complement logic (inverter), the propagation delay is shown in
Fig. 4.1.

Fig. 4.1 Example of propagation delay
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The propagation delay for the various paths can be different, and it is essential to
consider the longest delay path in the design while computing the delay. Due to
different path delays, the design can be prone to glitches.

Glitch in the design results into unwanted output in the digital circuit. Even the
glitch propagation can result in the wrong output and it affects on the output of
subsequent stage. The unpredicted output in the design results into the unintended
design behavior.

Figure 4.2 shows information about the glitch in the design.
As shown in the above example, when ‘a_in=1,’ the output ‘y_out’ is logic ‘1’.

But when an input ‘a_in’ transits from logic ‘1’ to logic ‘0’, then due to the
propagation delay of the OR gate, the output ‘y_out’ stays in the logic ‘0’ level and
both inputs of OR gate are treated as logic ‘0’ for the duration of the propagation
delay time. In this example, the delay of OR gate is considered as zero. Glitches can
be avoided by using the latches or flip-flops as timed circuit elements. The speed of
the design is dependent on the delay of the logic gates, and hence, propagation
delay is treated as one of the most important parameter in the design of the logic
circuits.

4.1.1 Cascade Combinational Logic

When multiple numbers of logic elements are cascaded, then the overall propa-
gation delay is the addition of the individual gate propagation delay. This generates
cumulative effect and slows down the speed of digital logic. If the circuit has all the
combinational elements, then the timing path is called as the combinational path.
Considering Fig. 4.3, in this example, three XOR logic gates are cascaded, and
hence, the overall propagation delay of combinational path is 3*tpd. The propa-
gation delay of each XOR gate is ‘tpd.’ If we consider every logic gate has prop-
agation delay of ‘1 ns,’ then the overall propagation delay is 3 ns.

Fig. 4.2 Example of glitch in the digital circuit
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4.1.2 Parallel Combinational Logic

If we consider Fig. 4.4, then the overall propagation delay is 2*tpd. If every XOR
gate has delay of 1 ns, then the overall propagation delay of this logic is 2 ns. At
the inputs, the two XOR gates are parallel and perform the operation concurrently.
Hence, parallel logic has shorter delay as compare to cascade logic.

4.2 Arithmetic Circuits

The key arithmetic logic circuit elements are adders, subtractors, multipliers, and
dividers. These elements can be described efficiently using the concurrent and
sequential constructs. While prototyping care needs to be taken that, the synthesis
result should have lesser area and least data path delay. If target technology is
ASIC, then during synthesis, these elements are implemented using the standard
cells, and if the target technology is programmable ASIC (FPGA), then these
elements can be implemented using LUTs or the dedicated arithmetic resources. In
most of the practical design scenarios, it is observed that adder consumes more area

Fig. 4.3 Example of cascade combinational logic

Fig. 4.4 Example of the parallel logic
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as compare to the multiplexers. This section discusses the efficient RTL using
VHDL for multibit adders, subtractors, and multipliers.

Consider the design to perform the two operations: ‘a_in+b_in’ and ‘a_in-b_in.’
The addition operation is performed when op_code is equal to logic ‘0’, and
subtraction operation is performed when op_code is logic ‘1’. This can be repre-
sented by the following logic diagram. As shown in the logic diagram, the sub-
traction is performed by using 2’s complement of b_in. Hence subtraction
(a_in-b_in = a_in + b_in +1) operation uses the same resources and this technique is
called as resource sharing.

4.2.1 Multibit Adder

If we consider any processor, then the adders are used to perform the addition or
subtraction operations. For 8-bit processor, the ALU can consist of 8-bit adder. The
subtraction operation can be implemented as 2’s complement addition. There are
many efficient techniques to reduce the area, and these techniques are resource
sharing, optimization, and grouping and will be discussed in the next subsequent
chapters. This section describes the multibit adder–subtractor RTL using VHDL.

The RTL description of 8-bit synthesizable adder using VHDL is shown in
Example 4.1, and the synthesis result is shown in Fig. 4.5.

As shown in the above figure, the 8-bit adder is implemented using two 8-bit half
adders, and the overall propagation delay of combinational logic is 2*tpd. If the
standard cell is available as full adder, then 8-bit adder can be implemented using
the 8 full adders.

Fig. 4.5 Synthesis result of 8-bit adder
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4.2.2 Multibit Adder–Subtractor

As discussed in the previous section, the adders and subtractors are used to design
the arithmetic operations in the design. As processor performs only one operation at

--8-Bit adder

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_bit.all;

entity adder_8bit is 

port ( a_in : in std_logic_vector ( 7 downto 0);

b_in : in std_logic_vector ( 7 downto 0);

carry_in : in std_logic;

sum_out : out std_logic_vector ( 7 downto 0);

carry_out : out std_logic);

end adder_8bit;

architecture arch_adder_8bit of adder_8bit is

signal temp_result : std_logic_vector ( 8 downto 0);

signal temp_sig1, temp_sig2, temp_sig3 : std_logic_vector (8 downto 0 );

begin                                              

temp_sig1 <= '0' &a_in;

temp_sig2 <= '0' &b_in;

temp_sig3 <= "00000000" &carry_in;  

temp_result <= (temp_sig1) + (temp_sig2) + (temp_sig3); 

sum_out <= temp_result (7 downto 0);

carry_out <= temp_result (8);      

end arch_adder_8bit;

Architecture defines the 
func onality of design.
The code generates 
parallel logic using signal 
assignment statements. 
The ‘temp_result’ holds 
the intermediate result. 
The size of ‘temp_result’
is declared as 9-bit and it 
is of std_logic type. 
The ‘sum_out’ is 8-bit 
output and is assigned 
from temp_result(7 
downto 0).
The ‘carry_out’ is single 
bit and is assigned from 
temp_result(8).

Example 4.1 Synthesizable RTL of 8-bit adder
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a time, the synthesizer uses the adders to perform the subtraction. The subtraction is
performed using 2’s complement addition. The 8-bit adder–subtractor RTL using
VHDL is shown in Example 4.2, and the synthesis result is shown in Fig. 4.6

--8-Bit adder subtractor 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_bit.all;

entity adder_sub_8bit is 

port ( a_in : in std_logic_vector ( 7 downto 0);

b_in : in std_logic_vector ( 7 downto 0);

carry_in : in std_logic;

op_code : in std_logic; 

sum_out : out std_logic_vector ( 7 downto 0);

carry_out : out std_logic);

end adder_sub_8bit;

architecture arch_adder_sub_8bit of adder_sub_8bit is

signal temp_result : std_logic_vector ( 8 downto 0);

signal temp_sig1, temp_sig2, temp_sig3 : std_logic_vector (8 downto 0 );

begin                  

temp_sig1 <= '0' &a_in;

temp_sig2 <= '0' &b_in;

temp_sig3 <= "00000000" & carry_in;  

temp_result <= ((temp_sig1) + (temp_sig2) + (temp_sig3)) 

when (op_code ='1') else 

((temp_sig1) - (temp_sig2) - (temp_sig3)); 

sum_out <= temp_result (7 downto 0);

carry_out <= temp_result (8);      

end arch_adder_sub_8bit;

Architecture defines the 
func onality of design.
The code generates 
parallel logic using signal 
assignment statements. 
The ‘temp_result’ holds 
the intermediate result. 
The size of ‘temp_result’
is declared as 9-bit and it 
is of std_logic type. 
The ‘sum_out’ is 8-bit 
output and is assigned 
from temp_result(7 
downto 0).
The ‘carry_out’ is single 
bit and is assigned from 
temp_result(8).
For ‘op_code=1’ it 
performs the addi on 
opera on and for 
‘op_code=0’ it performs 
the subtrac on. 

Example 4.2 Synthesizable RTL of 8-bit adder–subtractor
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As shown in the synthesis result, it uses four half adders of 8 bit and multi-
plexing logic to select the output from adder or subtractor depending on the status
of opcode. The logic inferred can be minimized using the resource sharing and is
discussed in Chap. 8.

4.2.3 Multiplier

Multipliers are used in the digital signal processing applications. It is the require-
ment that multiplier should have lesser area and higher speed. This will reduce the
overall combinational delay. The multiplication is perfumed using operator ‘*’.
There are different types of multiplication algorithms can be used in the design of
digital circuit, and one of the best algorithms is Booth multiplier. This section
discusses the basic 8-bit multiplier using VHDL operator ‘*’. The RTL is described
in Example 4.3, and the synthesis result is shown in Fig. 4.7.

Fig. 4.6 Synthesis result of 8-bit adder–subtractor

Fig. 4.7 Synthesis result of 8-bit multiplier
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4.2.4 Comparators

The comparators are used to compare the magnitude of two numbers. If both
numbers are having same magnitude, then it generates an output ‘equal_out’ to
logic ‘1’; if a_in is less as compare to b_in, then it generates an output ‘greater_out’
equal to logic ‘1’; and if a_in is less as compare to b_in, then it generates an output
‘less_out’ equal to logic ‘1’. The RTL using VHDL is shown in Example 4.4, and
the synthesis result is shown in Fig. 4.8.

--8 bit multiplier

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_bit.all;

entity multiplier_8bit is 

port ( a_in : in std_logic_vector ( 7 downto 0);

b_in : in std_logic_vector ( 7 downto 0);

result_out : out std_logic_vector ( 15 downto 0));

end multiplier_8bit;

architecture arch_multiplier_8bit of multiplier_8bit is

begin

process ( a_in , b_in ) 

begin

result_out <= a_in * b_in; 

end process;     

end arch_multiplier_8bit;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘a_in’, and ‘b_in’. Any 
event on one of the 
signal executes the 
process.
The ‘result_out’ is 16 bit 
and the mul plica on of 
‘a_in’  and ‘b_in’ is 
assigned to ‘result_out’. 

Example 4.3 Synthesizable RTL of 8-bit multiplier
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--8 bit comparator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity comparator_8bit is 

port ( a_in : in std_logic_vector (7 downto 0);

b_in : in std_logic_vector (7 downto 0);

equal_out : out std_logic;

less_out : out std_logic;

greater_out : out std_logic);

end comparator_8bit;

architecture arch_comparator of comparator_8bit is

begin

equal_out <= '1' when (a_in = b_in) else '0';

less_out <= '1' when (a_in < b_in) else '0';

greater_out <= '1' when (a_in > b_in) else '0';

end arch_comparator ; 

Architecture defines the 
func onality of design.
The code generates 
parallel logic using signal 
assignments. 
Signal assignments are 
con nuous in nature and 
for (a_in = b_in) it 
generates binary ‘1’ at 
‘equal_out’. 
For (a_in > b_in) it 
generates binary ‘1’ at 
‘greater_out’.
For (a_in < b_in) it 
generates binary ‘1’ at 
‘lessl_out’.

Example 4.4 Synthesizable VHDL code of 8-bit comparator
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As shown in the above synthesis result, it infers the parallel logic using the
comparator elements, for this design it uses three 8-bit comparators. The RTL code
can be modified by using the ‘if then else’ construct to reduce the area of the design.

The RTL using if then else construct VHDL is shown in Example 4.5, and the
equivalent synthesis result is shown in Fig. 4.9.

As shown in the synthesis result, it uses more number of multipliers and less
number of comparators to generate the comparison results; hence, there is area
reduction. In the PLD based designs the multiplexing logic occupies the lesser area.

Fig. 4.8 Synthesis result of 8-bit comparator

Fig. 4.9 Synthesis result of 8-bit comparator using if-then-else
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--8  bit comparator using if-then-else

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity comparator_8bit is 

port ( a_in : in std_logic_vector (7 downto 0);

b_in : in std_logic_vector (7 downto 0);

equal_out : out std_logic;

less_out : out std_logic;

greater_out : out std_logic);

end comparator_8bit;

architecture arch_comparator of comparator_8bit is

begin

process ( a_in, b_in )

begin  

equal_out <= '0';

less_out <= '0';

greater_out <= '0';

if ( a_in = b_in ) then

equal_out <= '1';

elsif ( a_in > b_in ) then

greater_out <='1';

else 

less_out <='1';

end if;

end process;

end arch_comparator ; 

Architecture defines the 
func onality of design.
The code generates 
parallel logic using signal 
assignments. 
Nested If-then-else  is 
used inside the process. 
Process is sensi ve to 
input ‘a_in’ and ‘b_in’. 
For (a_in = b_in) it 
generates binary ‘1’ at 
‘equal_out’. 
For (a_in > b_in) it 
generates binary ‘1’ at 
‘greater_out’.
For (a_in < b_in) it 
generates binary ‘1’ at 
‘less_out’.

Example 4.5 Synthesizable VHDL for the 8-bit comparator
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4.3 Code Converter

In many applications, the code converters are used. The code converters are used to
convert one form of code into another form. For example, binary-to-gray code
converter converts the binary number into the gray, and BCD-to-Excess-3 code
converter converts the binary number into the Excess-3. In the similar way, the
BCD-to-seven-segment decoder is used to convert the BCD code into the equiva-
lent seven-segment representation.

The gray codes are used in the multiple clock domain designs as only one bit
changes in the two successive gray codes. Seven-segment code representations are
used to display the BCD number on the seven-segment display.

4.3.1 Binary-to-Excess-3 Code Converter

As the name indicates, the Excess-3 code can be generated by adding binary ‘0011’
in the binary number. The RTL using VHDL is shown in Example 4.6, and the
synthesis result is shown in Fig. 4.10.

As shown in the synthesis result, the hardware inferred is parallel and combi-
national in nature. The BCD-to-Excess-3 code can be implemented by using the
addition operator by adding the value ‘0011’ in the respective input. The modified
architecture is shown below, and the synthesis result for the modified architecture is
shown in Fig. 4.11.

architecture arch1_bin_to_excess3 of binary_to_excess3 is 

begin  

  excesss3_out <= bin_in + "0011" 

;end arch1_bin_to_excess3; 
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--Binary to Excess 3 code converter 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity binary_to_excess3 is 

port ( bin_in : in std_logic_vector (3 downto 0);

excesss3_out : out std_logic_vector (3 downto 0));

end binary_to_excess3;

architecture arch_bin_to_excess3 of binary_to_excess3 is

begin

process ( bin_in )

begin  

case ( bin_in) is 

when "0000" => excesss3_out <= "0011";

when "0001" => excesss3_out <= "0100";

when "0010" => excesss3_out <= "0101";

when "0011" => excesss3_out <= "0110";

when "0100" => excesss3_out <= "0111";

when "0101" => excesss3_out <= "1000";

when "0110" => excesss3_out <= "1001";

when "0111" => excesss3_out <= "1010";

when "1000" => excesss3_out <= "1011";

when "1001" => excesss3_out <= "1100";

when "1010" => excesss3_out <= "1101";

when "1011" => excesss3_out <= "1110";

when "1100" => excesss3_out <= "1111";

when "1101" => excesss3_out <= "0000";

when "1110" => excesss3_out <= "0001";

when others => excesss3_out <= "0010";

end case; 

end process;

end arch_bin_to_excess3; 

Architecture defines the 
func onality of design.
The code generates 
parallel logic using case 
construct. 
Process is sensi ve to 
input ‘bin_in’ .
Depending on the binary 
code at ‘bin_in’ it 
generates the equivalent 
‘Excess 3’ code at output 
‘ excess3_out’. 

Example 4.6 Synthesizable RTL for binary-to-excess-3 code converter
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4.3.2 BCD-to-Seven-Segment Decoder

The given BCD number can be converted using the BCD-to-seven-segment
decoder and can be used in the system design to display the result. The RTL for the
BCD-to-seven-segment decoder is described in Example 4.7, and the synthesis
result is shown in Fig. 4.12. It is assumed that zero at the ‘seg_out’ enables the
segment.

Fig. 4.10 Synthesis result for binary-to-excess-3 code converter

Fig. 4.11 Synthesis result for binary-to-excess-3 code converter using addition operator
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--BCD to Seven Segment Decoder

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity seven_segment_decoder is

port (bcd_in : in std_logic_vector(3 downto 0);

seg_out : out std_logic_vector(6 downto 0));

end seven_segment_decoder;

architecture arch_decoder of seven_segment_decoder is

begin

with (bcd_in) select

seg_out<= " 1000000" when "0000";

                 " 1111001" when "0001";

                 " 0100100" when "0010";

                 " 1110000" when "0011";

                 " 0011001" when "0100";

                 " 0010010" when "0101";

                 " 0000010" when "0110";

                 " 1111000" when "0111";

                 " 0000000" when "1000";

                 " 0010000" when "1001";

                 "-------" when others;
end  arch_decoder ;

Architecture defines the 
func onality of design.

The code generates 
parallel logic using 
concurrent assignment
statement. 
For the 4-bit ‘bcd_in’
input it generates the 
equivalent seven 
segment code.

Example 4.7 Synthesizable VHDL RTL of BCD-to-seven-segment decoder
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4.4 Multiplexers

Multiplexers are used to select one of the inputs from many. Multiplexers are also
called as universal logic, and terminology used in the practical world is MUX. By
using the suitable multiplexers, any of the combinational logic function can be
realized. Multiplexers are used as selection logic in ASIC and FPGA-based designs.
Multiplexer consumes lesser area as compare to adders, and most of the time,
multiplexers are used to implement arithmetic components such as adders and
subtractors.

The block diagram of n:1 MUX is shown in Fig. 4.13, and it consists of ‘n’ input
lines, ‘m’ select lines, and one output line. Input lines are denoted by ‘i(0), i(1), …,
i(n − 1)’; select lines by ‘s(0), s(1), …, s(m − 1)’; and output line by ‘y’.

As shown in Fig. 4.13, multiplexer has ‘n’ input lines, ‘m’ select lines, and
single output line. Relation between the input lines and select lines is given by
n = 2m. For example, for 4:1 MUX, input lines are four so m = log2n, that is select
lines are equal to two.

Let us consider 4:1 MUX having four input lines ‘a_in(0) to a_in(3),’ two select
lines ‘sel_in(0) to sel_in(1),’ and single output line ‘y_out,’ at a time instance the
information on one of the input line is available on the output and is shown in
Fig. 4.14.

Fig. 4.12 Synthesis result of BCD-to-seven-segment decoder
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Fig. 4.13 Block diagram of n:1 MUX

Fig. 4.14 Timing sequence of 4:1 MUX
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4.4.1 Multiplexer as Universal Logic

As discussed earlier, multiplexer is treated as universal logic as all types of com-
binational logic functions can be realized using MUX.

The logic realization of NOT gate using single 2:1 MUX is shown in Fig. 4.15.
As shown in Fig. 4.15, the a_in is used as select input, and when it is logic ‘0’,

the output y_out is logic ‘1’. When a_in is logic ‘1’, the output y_out is logic ‘0’.
Figure 4.16 shows the realization of two-input XOR logic using the 2:1 MUX.
As shown in Fig. 4.16, a_in is used as select line of 2:1 MUX, the output y_out

is equal to b_in for a_in is equal to logic ‘0’. For a_in is equal to logic ‘1’, the
output y_out of 2:1 MUX is complement of b_in. In this, it is assumed that NOT
gate is realized using 2:1 MUX. So to implement XOR logic, two tow to one
multiplexers are required. The concept of realizing logic using MUX is used in the
design of configurable or programmable logic and will be discussed in the subse-
quent chapters.

The implementation of 2-input OR gate is shown in Fig. 4.17, and as shown, it
uses the single MUX to realize the OR logic.

As shown in Fig. 4.17, a_in is used as select line of 2:1 MUX, the output y_out
is equal to b_in for the a_in is equal to logic ‘0’. For a_in is equal to logic ‘1’, the
output y_out of 2:1 MUX is logic ‘1’. Readers can implement the AND, XNOR,
NOR, and NAND logics using minimum number of multiplexers.

Fig. 4.15 NOT logic realization using 2:1 MUX

Fig. 4.16 XOR realization using 2:1 MUX
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4.4.1.1 2:1 MUX

A 2:1 MUX has two input lines, one select line, and one output line. When ‘sel_in’
input is logical ‘0’, output ‘y_out’ is assigned to ‘a_in’ and input ‘b_in’ is assigned
to ‘y_out’ for ‘sel_in’ equal to logical ‘1’. Table 4.1 describes the truth table of 2:1
MUX, and implementation using logic gates is represented in Fig. 4.18.

The RTL for the 2:1 MUX using ‘if then else’ construct is shown in
Example 4.8, and the synthesis result is shown in Fig. 4.19.

Note If then else is used to infer the multiplexer. If-else clause is eliminated, then it
infers latches.

Fig. 4.17 OR logic realization using 2:1 MUX

Table 4.1 Truth table for 2:1 MUX

sel_in y_out

0 a_in

1 b_in

Fig. 4.18 2:1 MUX as universal logic cell
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--mux 2 to1 using if then else
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity mux_2to1 is 

port ( a_in : in std_logic;

b_in : in std_logic;

sel_in : in std_logic;

y_out : out std_logic);

end mux_2to1;

architecture arch_mux_2to1 of mux_2to1 is

begin

P1:  process ( a_in, b_in, sel_in)  

begin

if ( sel_in ='1') then

y_out <= b_in;

else

y_out <= a_in;

end if;

end process;

end arch_mux_2to1;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘a_in’, ‘b_in’ and ‘sel_in’. 
Any event on one of the 
signal invokes the 
process. 
If-then-else is sequen al 
statement and used 
inside the process. 
For true ‘sel_in’ 
condi on the input ‘b_in’ 
is assigned to ‘y_out’. 
For false ‘sel_in’ 
condi on the input ‘a_in’ 
is assigned to ‘y_out’

Example 4.8 Synthesizable VHDL RTL for 2:1 MUX
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The reason for using MUX as universal logic is because it is easy to understand
and is simple to implement. Figure 4.20 describes how 2:1 MUX is used to
implement the two-input XOR logic gate. Consider XOR logic gate has two inputs
‘a’, ‘b’ and output ‘y’. The implementation of two-input XOR logic gate using 2:1
MUX is shown in Fig. 4.20.

Let us discuss the other ways to describe the 2:1 MUX. There are different ways
in which 2:1 MUX can be described. It can be described by using ‘if then else’ or
by using ‘case’ construct. The VHDL RTL of 2:1 MUX using ‘case’ construct is
shown in Example 4.9, and the synthesis result is shown in Fig. 4.21.

4.4.1.2 4:1 MUX Using Nested ‘If Then Else’

The 4:1 MUX has four input lines and single output line. The 4:1 MUX has two
select line and is used to select one of the inputs at a time. The truth table of 4:1
MUX is shown in Table 4.2, and Example 4.10 describes the synthesizable RTL
for 4:1 MUX.

Fig. 4.19 Synthesized 2:1 MUX. Note A 2:1 multiplexer symbolic representation is used to
describe the implementation of higher complexity multiplexers. Multiplexer is treated as universal
logic. Using multiplexers, all possible combinational logic can be realized

Fig. 4.20 Two-input XOR
logic using 2:1 MUX
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An equivalent synthesis result for the 4:1 MUX described in the above example
is shown in Fig. 4.22. As shown in Fig. 4.22, input ‘a_in(0)’ has highest priority as
compare to other inputs. Input ‘a_in(3)’ has least priority.

--mux 2 to1 using case

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity mux_2to1_case is 

port ( a_in : in std_logic;

b_in : in std_logic;

sel_in : in std_logic;

y_out : out std_logic);

end mux_2to1_case;

architecture arch_mux_2to1 of mux_2to1_case is

begin

P1:  process ( a_in, b_in, sel_in) 

begin

case (sel_in) is

when '0'      => y_out <= a_in;

when others => y_out <= b_in;

end case;

end process;

end arch_mux_2to1;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘a_in’, ‘b_in’ and ‘sel_in’. 
Any event on one of the 
signal invokes the 
process. 
Case  is sequen al 
statement and used 
inside the process. 
For true ‘sel_in’ 
condi on the input ‘b_in’ 
is assigned to ‘y_out’. 
For false ‘sel_in’ 
condi on the input ‘a_in’ 
is assigned to ‘y_out’

Example 4.9 Synthesizable VHDL RTL for 2:1 MUX using ‘case’
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4.4.1.3 4:1 MUX Using ‘Case’ Construct

The 4:1 MUX is described by using the ‘case’ sequential construct, and it is
described in Example 4.11. The synthesis result is shown in Fig. 4.23. As shown in
the figure, ‘case’ construct generates the parallel logic (Example 4.11).

4.5 Decoders

Decoder has ‘n’ select lines or input lines and ‘m’ output lines and is used to
generate either active high output or active low output. The relation between select
lines and output lines is given by m = 2n. Depending on the logic status on ‘n’ input
lines, at a time one of the output lines goes high or low.

If we consider the decoder having two select lines ‘sel_in(0) and sel_in(1)’ and
four output lines ‘y_out(0) to y_out(3),’ then depending on the status of select
inputs, one of the output lines goes high and is shown in Fig. 4.24.

4.5.1 3 Line to 8 Decoder with Enable Using ‘Case’

Figure 4.25 shows 3:8 decoder; X2, X1, and X0 are select inputs, and Y0 to Y7 are
active high output lines.

The truth table of 3:8 decoder is shown in Table 4.3. For the decoder having
active high output, at a time one of the output lines is active high.

Fig. 4.21 Synthesis result of 2:1 MUX using ‘case’ construct. Note ‘if then else’ generates
priority logic, and ‘case’ generates parallel logic. It is recommended to use ‘case’ statement to
describe MUX and decoders. It is recommended to use ‘if then else’ to describe priority logic

Table 4.2 Truth table of 4:1
MUX

sel_in(1) sel_in(0) y_out

0 0 a_in(0)

0 1 a_in(1)

1 0 a_in(2)

1 1 a_in(3)
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-then-else'

--mux 4 to1 using nested if-then-else

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity mux_4to1 is 

port ( a_in : in std_logic_vector ( 3 downto 0);

sel_in : in std_logic_vector (1 downto 0);

y_out : out std_logic);

end mux_4to1;

architecture arch_mux_4to1 of mux_4to1 is

begin

P1:  process ( a_in,sel_in)  

begin

if ( sel_in ="00") then 

y_out <= a_in (0);

elsif ( sel_in ="01") then

y_out <= a_in (1);

elsif ( sel_in ="10") then

y_out <= a_in (2);

else

y_out <= a_in (3);

end if; 

end process;

end arch_mux_4to1;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘a_in’, and ‘sel_in’. Any 
event on one of the 
signal invokes the 
process. 
Nested if-then-else is 
used inside the process.   
Depending on the 
‘sel_in’ codi on one of 
the input is assigned to 
output ‘y_out’. 
Nested if-the-else infers 
the priority logic. 
In this ‘a_in(0)’ has 
highest priority and 
input ‘a_in(3) has the 
least priority among the 
inputs. 

Example 4.10 Synthesizable VHDL RTL of 4:1 MUX using nested ‘if-then-else’
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Fig. 4.22 Synthesized 4:1 MUX priority logic

Fig. 4.23 Synthesis result for 4:1 MUX using ‘case’
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--mux 4 to1 using case 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity mux_4to1_case is 

port ( a_in : in std_logic_vector ( 3 downto 0);

sel_in : in std_logic_vector (1 downto 0);

y_out : out std_logic);

end mux_4to1_case;

architecture arch_mux_4to1_case of mux_4to1_case is

begin

P1:  process ( a_in,sel_in)  

begin

case (sel_in) is 

when "00" => y_out <= a_in (0);

when "01" => y_out <= a_in (1);

when "10" => y_out <= a_in (2);

when others => y_out <= a_in (3);

end case; 

end process;

end arch_mux_4to1_case;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘a_in’, and ‘sel_in’. Any 
event on one of the 
signal invokes the 
process. 
Case  is used inside the 
process.   
Depending on the 
‘sel_in’ condi on one of 
the input is assigned to 
output ‘y_out’. 
Case generates the 
parallel logic. 
The last condi on in the 
case is defined by using 
when others keyword.  

Example 4.11 Synthesizable VHDL RTL using ‘case’
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Table 4.3 is the truth table of 3:8 decoder without the enable input. The truth
table described aboveholds good for the decoder with active high enable ‘en=1.’
When ‘en=0,’ decoder is disabled and itgenerates an output ‘Y=00000000.’ For
decoder having active high enable input the gate levelrepresentation (Fig. 4.25) can
be modified by using four input AND gates.

The RTL description by using synthesizable VHDL constructs for 3:8 decoder
having active low enable input and active low output lines is shown in Example 4.13.

--Decoder 3 to 8 using case
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity decoder_3to8 is

port ( sel_in : in std_logic_vector ( 2 downto 0);

enable_in : in std_logic;

y_out : out std_logic_vector ( 7 downto 0));

end decoder_3to8;

architecture arch_decoder_3to8 of decoder_3to8 is

begin

process ( sel_in, enable_in)

begin

if ( enable_in='1') then

y_out <= "11111111";

else

case ( sel_in) is

when "000" => y_out <= "11111110";

when "001" => y_out <= "11111101";

when "010" => y_out <= "11111011";

when "011" => y_out <= "11110111";

when "100" => y_out <= "11101111";

when "101" => y_out <= "11011111";

when "110" => y_out <= "10111111";

when "111" => y_out <= "01111111";

when others => null;

end case;

end if; 

end process;

end arch_decoder_3to8;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘sel_in’, and ‘enable_in’. 
Any event on one of the 
signal invokes the 
process. 
If-then-else is sequen al 
statement and used 
inside the process. 
For true ‘enable_in’ 
condi on all output lines 
assigned to logic ‘1’. 
For ‘enable_in’ ac ve 
low input decoder is 
enabled and one of the 
output line is ac ve low. 
The described code 
generates parallel logic.

Example 4.12 Synthesizable RTL of 3:8 decoder using ‘case’
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4.5.2 2 Line to 4 Decoder with Enable Using ‘Case’

The 2 line to 4 or (2:4) decoder has two select inputs ‘sel_in (1), sel_in(0),’ enable
input ‘enable_in,’ and four output lines ‘y_out(0) to y_out(3).’ The truth table and
equivalent representation are shown in Table 4.4

The synthesizable VHDL RTL is described in Example 4.14, and the equivalent
hardware inferred is shown in Fig. 4.26 (Examples 4.14).

Fig. 4.24 Timing sequence of 2:4 decoder

Fig. 4.25 Gate-level
representation of 3:8 decoder

4.5 Decoders 115



4.6 Encoders

The function of an encoder is the reverse of the decoder. Encoder has ‘n’ input lines
and ‘m’ output lines, and the relation between input lines and output lines is given
by n = 2m. For example, consider 4:2 encoder. The number of input lines is n = 4
and output lines is m = 2.

If we consider the encoder having two output lines ‘y_out(1) and y_out(0)’ and
four input lines ‘sel_in(0) to sel_in(3),’ then depending on the status of select
inputs, output is generated the timing sequence and is shown in Fig. 4.27.

The truth table is described in Table 4.5.
The VHDL RTL description for 4:2 encoder is described in Example 4.16.

The VHDL RTL infers the hardware as shown in Fig. 4.28 (Example 4.16).

4.6.1 Priority Encoders

Priority encoders are used in the practical applications and have ‘n’ input lines and
‘m’ output lines, and the relation between input lines and output lines is given by
n = 2m. For example, consider 4:2 priority encoder. The number of input lines is

Table 4.4 Truth table for 2:4 decoder

enable_in sel_in(1) sel_in(0) y_out(3) y_out(2) y_out(1) y_out(0)

0 0 0 0 0 0 1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 1 1 1 0 0 0

1 X X 0 0 0 0

Table 4.3 Truth table for 3:8 decoder

X2 X1 X0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Note In the practical applications, decoders are used to select one of the memories or input–output
device at a time. To enable the expansion of decoder, decoder always has either active high enable
or active low enable
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--Decoder 2 to 4 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity decoder_2to4 is 

port ( sel_in : in std_logic_vector (1 downto 0);

enable_in : in std_logic; 

y_out : out std_logic_vector ( 3 downto 0));

end decoder_2to4;

architecture arch_decoder_2to4 of decoder_2to4 is 

begin

P1:  process ( enable_in, sel_in)  

begin

if (enable_in ='1') then

y_out <= "0000" ;

else 

case (sel_in) is

when "00" => y_out <= "0001" ;

when "01" => y_out <= "0010" ;

when "10" => y_out <= "0100" ;

when "11" => y_out <= "1000" ;

when others => null;

end case; 

end if; 

end process;

end arch_decoder_2to4;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘enable_in’, and ‘sel_in’. 
Any event on one of the 
signal invokes the 
process. 
Case  is used inside the 
process.   For ac ve low 
value on ‘enable_in’ 
input the case statement 
is executed. 
Depending on the 
‘sel_in’ condi on one of 
the output line goes high 
at a me. 
Case generates the 
parallel logic. 
The last condi on in the 
case is defined by using 
when others keyword.  

Example 4.13 Synthesizable VHDL RTL for 2:4 decoder
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--Encoder 4to2 using if-then-else
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity encoder_4to2 is

port ( sel_in : in std_logic_vector ( 3 downto 0);

enable_in : in std_logic;

y_out : out std_logic_vector ( 1 downto 0));

end encoder_4to2;

architecture arch_encoder_4to2 of encoder_4to2 is

begin

process ( sel_in, enable_in)

begin

if ( enable_in='1') then

y_out <= "00";

else

if ( sel_in ="1000") then 

y_out <= "11";

elsif ( sel_in ="0100") then

y_out <= "10";

elsif ( sel_in ="0010") then

y_out <= "01";

else 

y_out <= "00";

end if;

end if; 

end process;

end arch_encoder_4to2;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘sel_in’, and ‘enable_in’. 
Any event on one of the 
signal invokes the 
process. 
If-then-else is sequen al 
statement and used 
inside the process. 
For true ‘enable_in’ 
condi on all output lines 
assigned to logic ‘0’. 
For ‘enable_in’ ac ve 
low , encoder is enabled 
and depending on the 
priority of signal the two  
bit output is generated 
at ‘y_out’. 
The described code 
generates priority logic, 
Input ‘sel_in(3)’ has 
highest priority and 
‘sel_in(0)’ has the least 
priority. 
If more than one input 
line is ac ve this logic 
will not be able to assign 
the priority output. 

Example 4.14 Synthesizable VHDL RTL for 4:2 encoder
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n = 4 and output lines is m = 2. The truth table is described in Table 4.6. The input
sel_in(3) has highest priority, and the sel_ in[0] has lowest priority, where ‘X’
indicates the don’t care.

The VHDL RTL description for 4:2 priority encoder is described in
Example 4.18. The VHDL RTL infers the hardware as shown in Fig. 4.29.

Fig. 4.26 2:4 decoder with active low enable input
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Fig. 4.27 Timing sequence of 4:2 encoder

Fig. 4.28 Synthesis result of 4:2 encoder

Table 4.5 Truth table for 4:2 encoder

sel_in(3) sel_in(2) sel_in(1) sel_in(0) y_out(1) y_out(0)

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

Table 4.6 Truth table for 4:2 priority encoder

sel_in(3) sel_in(2) sel_in(1) sel_in(0) y_out(1) y_out(0)

1 X X X 1 1

0 1 X X 1 0

0 0 1 X 0 1

0 0 0 1 0 0
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--Encoder 4to2 using if-then-else

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity encoder_4to2 is

port ( sel_in : in std_logic_vector ( 3 downto 0);

enable_in : in std_logic;

y_out : out std_logic_vector ( 1 downto 0));

end encoder_4to2;

architecture arch_encoder_4to2 of encoder_4to2 is

begin

process ( sel_in, enable_in)

begin

if ( enable_in='1') then

y_out <= "00";

else

if ( sel_in(3) ='1') then 

y_out <= "11";

elsif ( sel_in(2) ='1') then

y_out <= "10";

elsif ( sel_in(1) ='1') then

y_out <= "01";

else 

y_out <= "00";

end if;

end if; 

end process;

end arch_encoder_4to2;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘sel_in’, and ‘enable_in’. 
Any event on one of the 
signal invokes the 
process. 
If-then-else is sequen al 
statement and used 
inside the process. 
For true ‘enable_in’ 
condi on all output lines 
assigned to logic ‘0’. 
For ‘enable_in’ ac ve 
low , encoder is enabled 
and depending on the 
priority of signal the two  
bit output is generated 
at ‘y_out’. 
The described code 
generates priority logic, 
Input ‘sel_in(3)’ has 
highest priority and 
‘sel_in(0)’ has the least 
priority. 

Example 4.15 Synthesizable VHDL RTL for 4:2 priority encoder
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4.7 Summary

As discussed in this chapter, the combinational logic using VHDL can be efficiently
implemented using the concurrent and sequential VHDL constructs and following
are key points to summarize.

1. Multiplexer is universal logic and used to design any combinational
functionality.

2. The propagation delay of cascade logic is more as compare to parallel logic.
3. Signal assignments execute concurrently. Adder consumes more area as com-

pare to multiplexers.
4. The process is concurrent statement, and all the processes inside the architec-

ture execute in parallel.
5. ‘If then else’ generates the 2:1 MUX, and ‘nested if’ generates the priority

logic.
6. ‘case’ is used to model the parallel logic and used inside the process.
7. ‘when others’ condition in the ‘case’ is used to describe the non-specified

conditions in the design functionality.
8. The synthesis tool ignores the sensitivity list specified in the process blocks.
9. Decoders are used to select one of the memories or input–output device at a

time.
10. Priority encoders are used in the design of interrupt control logic, and logic can

be described by using nested ‘if else then.’

Fig. 4.29 Synthesized 4:2 priority encoder logic. Note In the practical applications, encoders are
used to design the control logic. As ‘case’ generates the parallel logic and ‘if then else’ generates
the priority logic, ‘case’ is used to describe the behavior of encoder. ‘If else’ is used to describe the
behavior of priority encoder. Priority encoders can be used to sense the level sensitive interrupts
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Chapter 5
Sequential Logic Design

Abstract This chapter describes the practical understanding about the sequential
logic designs. RTL coding using VHDL is described in detail with the practical
scenarios and concepts. The VHDL RTL for the flip-flops, latches, various coun-
ters, and shift registers is covered with the synthesis results and explanations. Even
this chapter describes the timing parameters for the sequential logic and the max-
imum frequency calculation for the design. The practical do’s and don’ts are
explained with the meaningful diagrams and timing sequences. This chapter is
useful for the ASIC and FPGA designers while coding for the sequential logic. This
chapter also covers the asynchronous sequential circuits and issues like metasta-
bility in the design. How to overcome the metastability is explained with mean-
ingful example and design scenarios.

Keywords Latch � Flip-flop � D flip-flop � Toggle flip-flop � Edge-triggered �
Level sensitive � Asynchronous � Synchronous � Toggle � Cumulative delay � Up–
down � Shift register � Ripple � Johnson � Ring � Metastability � Synchronous
clear � Asynchronous clear � Synchronous preset � Asynchronous preset �
Maximum frequency � Setup time � Hold time � Clock to q delay � Level syn-
chronizer � BCD counters � Gray counters � Timing paths � Register-to-register
path � Combinational path � Input-to-register path � Register-to-output path �
Multiple clock domain designs

“ Learn from yesterday, live for today, hope for 

tomorrow. The important thing is not to stop 

questioning.”  --- Albert Einstein

Try to revise the fundamentals and design the efficient

sequential design using the VHDL Constructs.

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_5
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5.1 Sequential Logic

Sequential logic is described as the digital logic whose output is the function of
present input and past output. So the sequential logic holds the binary data.
Sequential logic elements are latches and flip-flops and used as logic elements to
design the sequential logic for the given design functionality. For the RTL design
engineer, it is essential to understand the efficient RTL design for clock-based logic
circuits. The sequential logic is used to hold the larger amount of data in the
complex designs. The logic is triggered on the active edge of the clock. The chapter
discusses the efficient VHDL RTL to describe the required functionality of the
sequential logic. In the practical applications, it is always essential to describe the
logic circuit which can be triggered either on the positive edge of clock or on the
negative edge of clock. It is always expected that the designed circuit should
generate the stable output for finite duration of clock period. Figure 5.1 describes
the basic sequential logic triggered on the positive edge of clock. The output from
the logic is the function of a present input and the past output.

Even the sequential logic can be classified as synchronous design and asyn-
chronous design. In the synchronous design, all the registers in the design are
triggered by the same clock sources. In the asynchronous design, the output of least
significant bit (LSB) register is used as clock input to the next register. Even the
design that uses the different clock sources of the same or different frequency is
called asynchronous designs or multiple clock domain designs.

Figure 5.2 shows the synchronous design where all the registers in the design are
triggered by the same clock source. Hence, the overall propagation delay to update
the output is ‘tpd.’ If every flip-flop has delay of ‘tpd,’ then the overall frequency is
dependent on the ‘tpd,’ combinational delay ‘tcombo,’ and setup time ‘tsu’ of the
register.

For the synchronous design, the ‘clk_1’ and ‘clk_2’ are triggered at the same time
instant and there is no phase difference between the ‘clk_1’ and ‘clk_2.’ So the clock
skew is zero between ‘clk_1’ and ‘clk_2,’ and hence, both clocks will arrive at the
same time instance at the ‘clk’ input of register. It is assumed that wire delays are zero.

The ‘clk_1’ and ‘clk_2’ waveforms are shown in Fig. 5.3 and generated from the
same clock source ‘clk.’ Here assumption is the wire or net delay is zero.

The asynchronous sequential design is shown in the following Fig. 5.4. As
shown in the figure, the output of LSB flip-flop is used to drive the clock of the next
subsequent flip-flop; hence, the overall propagation delay is the cumulative effect.

Fig. 5.1 Basic sequential
logic
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For four-stage counter, the overall propagation delay is four times the propagation
delay of flip-flop. If every flip-flop has the propagation delay of 1 ns, then the
overall propagation delay is 4 ns.

These kinds of logic circuits are called asynchronous logic. Figure 5.4 shows the
asynchronous ripple counter using JK flip-flop, where every JK flip-flop acts as
toggle flip-flop. In the practical ASIC design scenarios, the D flip-flops are used to
design the sequential logic. The sequential logic in this chapter is described by
using the D flip-flops. The timing sequence for the 4-bit ripple counter is shown in
the Fig. 5.5.

The multiple clock domain design is also treated as asynchronous design and
shown in Fig. 5.6. As shown in Fig. 5.6, the two different modules are triggered by
the clock sources ‘clk_1’ and ‘clk_2.’ respectively. If clock frequency is same or

Fig. 5.2 Synchronous sequential logic

Fig. 5.3 Timing sequence for synchronous clock generation

Fig. 5.4 Asynchronous four-bit counter
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different, the ‘clk_1’ and ‘clk_2’ might have the phase difference while triggering
the register. Due to the phase difference between the ‘clk_1’ and ‘clk_2,’ both clock
domain logics are not triggered at the same time. Hence, it is recommended to use
the multiple clock domain design concepts while establishing the communication
between clock domain 1 and clock domain 2. Few techniques are discussed in the
next subsequent chapter.

The clock generation using two different clock sources with the phase difference
or clock skew is shown in Fig. 5.7. As shown the clocks are skewed with respect to
each other.

5.1.1 Metastability and Timing Parameters
for the Sequential Logic

If the timing parameters in the design are violated, then the flip-flop goes into the
metastable state. The main timing parameters in the design are flip-flop propagation

Fig. 5.5 Timing sequence for asynchronous counter

Fig. 5.6 Multiple clock domain design
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delay (tpd), setup time (tsu), and hold time (th). The timing parameters of the D
flip-flop are shown in Fig. 5.8.

As shown in the figure, the data at the ‘D’ input should be stable for the duration
of setup and hold time. Data can change outside the widow of the setup and hold
time. If the data is not stable during the setup and hold time window, then the
flip-flop goes into the metastable state.

5.1.1.1 Setup Time

The amount of time for which the data at the flip-flop ‘D’ input should be stable
before arrival of the active edge of clock is called setup time.

5.1.1.2 Hold Time

The amount of time for which the data at the flip-flop ‘D’ input should be stable
after arrival of the active clock edge is called hold time.

Fig. 5.7 The clocks with the phase difference

Fig. 5.8 Timing parameters of flip-flop
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5.1.1.3 Propagation Delay of Flip-Flop

The amount of time required for the flip-flop to generate the valid output after
arrival of the active clock edge is called propagation delay of flip-flop. This is also
named as clock to output (q) delay.

As stated earlier if any of the timing parameter is violated then the flip-flop goes
into the metastable state. Consider the scenario described in Fig. 5.9.

As shown in Fig. 5.9, the register 0 is triggered by clock source ‘clk_1’ and the
register 1 is triggered by another clock source ‘clk_2,’ so due to the different arrival
time of the ‘clk_1’ and ‘clk_2,’ the register 1 goes into themetastable state. The timing
sequence is shown in Fig. 5.10. It is assumed that D input of register 0 is logic ‘1’.

As shown in Fig. 5.10, the d_in input of register 1 has changed during the rising
edge of the clk_2 and hence has the timing violation. Under such circumstances, the
output of register 1 goes into the metastable state.

To avoid the metastability, the two-stage level synchronizer can be used.
Figure 5.11 describes the use of the two-stage level synchronizer in the design to
solve the metastable issue.

As shown in Fig. 5.11, although register 1 goes into the metastable state on the
next rising edge of the clock ‘clk_2,’ the output ‘q_out’ is forced into the valid state.

Fig. 5.9 The design with metastable state

Fig. 5.10 Timing sequence with metastable output
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So by adding one more register in the output path, the metastability issue is elimi-
nated. Always, setup and hold parameters of the register 1 are violated. So during
synthesis, it is essential to disable the timing from ‘clk_1’ to register 1’s output
‘q1_out.’

The timing sequence for sampling of the ‘d_in’ using two-stage level syn-
chronizer is shown in Fig. 5.12.

5.2 D-Latches in the Design

Most of the time, the designer is confused while using the sequential elements
during the RTL design. The main sequential design elements are latch and flip-flop.
Latch is level sensitive, and flip-flop is edge-triggered. The following section gives
the information about the efficient RTL using VHDL for the positive and negative
level sensitive latch.

Fig. 5.11 Sampling d_in using two-stage level synchronizer

Fig. 5.12 The timing sequence using two-stage level synchronizer
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5.2.1 Positive Level Sensitive D-Latch

Latches are sensitive to the level. In the D-latch, D stands for the data input. The
latches are sensitive to either positive or negative level of clock or enable. Positive
level sensitive latch is shown in Fig. 5.13, and the truth table is described in
Table 5.1. As shown in Table 5.1 for latch enable (‘E’) is equal to positive level
(logical ‘1’) output Q is equal to data input ‘D’ else output remains in the previous
state (past output) and shown by Qn–1. The timing sequence is shown in Fig. 5.14.

From the timing sequence, it is clear that the output ‘Q’ is equal to data input ‘D’
during the time period for which enable input ‘E’ is equal to positive level. So
D-latch acts transparently during this period. During negative level (logical ‘0’) of
enable ‘E’, D-latch holds the previous value.

Now, the important point in your mind is how to describe the positive level
sensitive D-latch using VHDL. It is very simple to visualize and to describe.
Example 5.1 describes the RTL using VHDL for the positive level sensitive
D-Latch, and the synthesis result is shown in Fig. 5.15.

Fig. 5.13 Positive level sensitive D-latch

Table 5.1 Truth table for
positive level sensitive
D-latch

E D Q *Q

1 0 0 1

1 1 1 0

0 X Qn–1 *Qn–1

Fig. 5.14 Timing sequence for positive level sensitive D-latch
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17 

--positive level sensitive D latch

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_latch is

port ( d_in : in std_logic;

latch_enable : in std_logic;

q_out : out std_logic );

end d_latch;

architecture arch_d_latch of d_latch is

begin 

process ( d_in, latch_enable)

begin

if (latch_enable ='1') then

q_out <= d_in;

end if;

end process;

end arch_d_latch ;

Architecture defines 
the func onality of 
design.

Process is sensi ve to 
‘d_in’, and 
‘latch_enable’. Any 
event on one of the 
signal invokes the process. 

If-then-else is sequen al
statement and used  
inside the process. 

For true value of 
‘latch_enable’ condi on
the input ‘d_in’ is 
assigned to ‘q_out’. 

For false 
‘latch_enable’ condi on 
the previous output 
value is hold. As 
else clause is eliminated
it infers latch.  

Example 5.1 Synthesizable RTL for positive level sensitive D-latch
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5.2.2 Negative Level Sensitive D-Latch

The truth table of the negative level sensitive D-Latch is described in Table 5.2, and
it has active low or negative level sensitive latch enable (‘E’): data input ‘D’ and
output ‘Q.’

The equivalent gate-level representation is shown in Fig. 5.16. The latch acts
transparently on the negative level of ‘E’ and holds the data during the positive
level of ‘E’. The timing sequence is shown in Fig. 5.17.

The RTL using VHDL is shown in Example 5.2, and the synthesis result is
shown in Fig. 5.18.

Fig. 5.15 Positive level sensitive D-latch

Table 5.2 Truth table for negative level sensitive D-latch

E D Q *Q

0 0 0 1

0 1 1 0

1 X Qn–1 *Qn–1

Fig. 5.16 Negative level sensitive D-latch

Fig. 5.17 Timing sequence for negative level sensitive latch
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--Negative level sensitive D latch

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_latch is

port ( d_in : in std_logic;

latch_enable : in std_logic;

q_out : out std_logic );

end d_latch;

architecture arch_d_latch of d_latch is

begin 

process ( d_in, latch_enable)

begin

if (latch_enable ='0') then

q_out <= d_in;

end if;

end process;

end arch_d_latch ;

Architecture defines 
the func onality of 
design.

Process is sensi ve to 
‘d_in’, and 
‘latch_enable’. Any 
event on one of the 
signal invokes the process. 

If-then-else is sequen al
statement and 
used inside the process

For  false (logic 0) 
‘latch_enable’ condi on
 the input ‘d_in’ is 
assigned to ‘q_out’. 

For true (logic 1) 
‘latch_enable’ condi on
the previous value 
is hold at the output. 
As else clause is missing
it infers latch. 

Example 5.2 Synthesizable VHDLRTL for negative level sensitive D-latch

Fig. 5.18 Synthesis result for negative level sensitive latch
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--Negative enable D latch with asynchronous preset and clear.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_latch_pre_clr is

port ( d_in : in std_logic;

latch_enable : in std_logic;

preset_in : in std_logic;

clear_in : in std_logic;

q_out : out std_logic );

end d_latch_pre_clr;

architecture arch_d_latch of d_latch_pre_clr is

begin 

process ( d_in, latch_enable, preset_in, clear_in)

begin

if ( clear_in ='0') then

q_out <= '0';

elsif ( preset_in ='0') then

q_out <= '1';

elsif (latch_enable ='0') then

q_out <= d_in;

end if;

end process;

end arch_d_latch ;
.

Architecture defines 
the func onality of 
design.
Process is sensi ve to 
‘d_in’, ‘latch_enable’, 
‘preset_in’ and 
‘clear_in’. Any event 
on one of the signal 
invokes the process. 
If-then-else is sequen al
statement and 
used inside the process.

The ‘clear_in’ signal 
has the highest priority

The ‘preset_in has the 
second priority.

The ‘latch_enable’ has the  
last priority. For 
‘latch_enable’ is equal 
to logic ‘0’ the output 
q_out is equl to d_in.  

As else clause is eliminated 
it infers latch. 

Example 5.3 Negative enable D-latch using asynchronous preset and clear
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5.2.3 Negative Level Sensitive D-Latch with Preset
and Clear

The sequential elements can be described by incorporating the asynchronous or
synchronous preset and clear (reset) input signals. Depending on the design
requirements, the asynchronous preset, reset or synchronous preset or reset can be
used in the design. Asynchronous preset and clear inputs have no logic in data path,
whereas the synchronous preset or clear inputs have the combinational logic in the
data path. Asynchronous inputs can arrive irrespective of the active clock edge to
change the output of the sequential cell. But the synchronous inputs are sampled on
the active clock edge to make the changes in the output.

The RTL using VHDL is shown in Example 5.3. As shown described in the
example, the input ‘clear_in’ has the highest priority over the ‘preset_in’ and the
output assignment is irrespective of the ‘latch_enable.’ These kind of asynchronous
inputs gives the clean data path. The synthesis result is shown in Fig. 5.19, and it
infers the negative level sensitive D-latch with the asynchronous logic circuit at the
clear and preset inputs.

5.2.4 Positive Level Sensitive D-Latch with Asynchronous
Preset and Clear

The positive Level Sensitive D-latch with asynchronous preset and clear is
described in Example 5.4.

The synthesis result is shown in Fig. 5.20.

Fig. 5.19 Synthesis result for the negative level sensitive D-latch with asynchronous inputs
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_latch_pre_clr is

port ( d_in : in std_logic;

latch_enable : in std_logic;

preset_in : in std_logic;

clear_in : in std_logic;

q_out : out std_logic );

end d_latch_pre_clr;

architecture arch_d_latch of d_latch_pre_clr is

begin 

process ( d_in, latch_enable, preset_in, clear_in)

begin

if ( clear_in ='0') then

q_out <= '0';

elsif ( preset_in ='0') then

q_out <= '1';

elsif (latch_enable ='1') then

q_out <= d_in;

end if;

end process;

end arch_d_latch ;

Architecture defines 
the func onality of 
design.
Process is sensi ve 
to ‘d_in’, 
‘latch_enable’, ‘pre-
set_in’ and ‘clear_in’. 
Any event on one of 
the signal invokes 
the process. 
If-then-else is sequen al 
statement 
and used inside the 
process. 
The ‘clear_in’ signal 
has the highest priority.
The ‘preset_in has 
the second priority.
The ‘latch_enable’ 
has the last priority. 
For ‘latch_enable’ is 
equal to logic ‘1’ the 
output q_out is equl 
to d_in. 
As else clause is eliminated 
it infers latch. 

Example 5.4 Synthesizable VHDL RTL for the positive level sensitive D-latch with
asynchronous inputs
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5.3 Flip-Flop

Flip-flop is an edge-triggered logic circuit. It can be triggered either on positive
edge of clock or on negative edge of clock. Flip-flop can be realized by using
positive and negative level sensitive latches in cascade. Flip-flop is used as a
memory storage element. Flip-flops are set–reset (SR), JK, D, and toggle. In an
ASIC or FPGA design, the D flip-flop is used as a memory storage element, where
D stands for the data input. The subsequent section discusses on the positive and
negative edge-triggered flip-flop.

5.3.1 Positive Edge-Triggered D Flip-Flop

Positive edge-triggered D flip-flop is triggered on positive edge of clock.
Practically, there is no logic gate which can be triggered on edge! Positive edge
flip-flop is realized by using negative level sensitive latch followed by positive level
sensitive latch. The logic circuit for positive edge-triggered D flip-flop is shown in
Fig. 5.21.

The synthesizable RTL using VHDL is shown in the following Example 5.5.
The synthesis result is shown in Fig. 5.22.

Fig. 5.20 Synthesis result for positive level sensitive D-latch with asynchronous inputs

Fig. 5.21 Positive edge-triggered D flip-flop
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--positive Edge Triggered D flip-flop

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_flipflop is

port ( d_in : in std_logic;

clk : in std_logic;

q_out : out std_logic );

end d_flipflop;

architecture arch_d_flipflop of d_flipflop is

begin 

process ( d_in, clk)

begin

if (clk='1' and clk'event) then

q_out <= d_in;

end if;

end process;

end arch_d_flipflop ;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘d_in, ‘clk’. Any event on 
one of the signal invokes 
the process. 
If-then-else is sequen al 
statement and used inside
the process. 
For rising edge of clock 
the data input ‘d_in’ is assigned 
to ‘q_out’. 
Due to missing else clause 
it generated D flip-flop 
which is triggered on posi ve 
edge of clock. 

Example 5.5 Synthesizable VHDL RTL for positive edge-triggered D flip-flop

Fig. 5.22 Synthesis result for the positive edge-triggered flip-flop
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5.3.2 Negative Edge-Triggered D Flip-Flop

Negative edge-triggered D flip-flop is triggered on negative edge of clock. Negative
edge flip-flop is realized by using positive level sensitive latch followed by the
negative level sensitive latch. The logic circuit for negative edge-triggered D
flip-flop is shown in Fig. 5.23.

--Negative Edge Triggered D flip-flop

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_flipflop is

port ( d_in : in std_logic;

clk : in std_logic;

q_out : out std_logic );

end d_flipflop;

architecture arch_d_flipflop of d_flipflop is

begin 

process ( d_in, clk)

begin

if (clk='0' and clk'event) then

q_out <= d_in;

end if;

end process;

end arch_d_flipflop ;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘d_in, ‘clk’. Any event on 
one of the signal invokes 
the process. 
If-then-else is sequen al 
statement and used inside 
the process. 
For  falling  edge of clock 
the data input ‘d_in’ is assigned 
to ‘q_out’. 
Due to missing else clause 
it generated D flip-flop 
which is triggered on 
nega ve edge of clock. 

Example 5.6 Synthesizable VHDL RTL for negative edge-triggered flip-flop
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The synthesizable RTL using VHDL for the negative edge-triggered D flip-flop is
described in the following Example 5.6. The synthesis result is shown in Fig. 5.24.

5.4 Synchronous and Asynchronous Reset

There is always confusion while using asynchronous or synchronous reset for the
ASIC or FPGA designs. Synchronous reset signal is sampled on active clock edge
and the reset logic is part of the data path, whereas asynchronous signal is sampled
irrespective of active clock edge and logic is not a part of the data path or data input
logic. This section describes about the RTL using VHDL for D flip-flop using
asynchronous and synchronous resets.

5.4.1 D Flip-Flop with Asynchronous Reset

Asynchronous reset logic is not a part of data path and used to initialize flip-flop
irrespective of active clock edge and hence named as asynchronous reset. This
technique to initialize flip-flop is not recommended for internal reset signal gen-
eration as it is prone to glitches. Care needs to be taken by designer to synchronize

Fig. 5.23 Negative edge-triggered D flip-flop

Fig. 5.24 Synthesis result for the negative edge-triggered D flip-flop
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_flip_flop is

port ( d_in : in std_logic;

clk : in std_logic;

preset_in : in std_logic;

clear_in : in std_logic;

q_out : out std_logic );

end d_flip_flop;

architecture arch_d_flip_flop of d_flip_flop is

begin 

process ( d_in, clk, preset_in, clear_in)

begin

if ( clear_in ='0') then

q_out <= '0';

elsif ( preset_in ='0') then

q_out <= '1';

elsif (clk ='1' and clk'event) then

q_out <= d_in;

end if;

end process;

end arch_d_flip_flop ;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘d_in, ‘clk’, ‘preset_in’ 
and ‘clear_in’. Any 
event on one of the signal 
invokes the process. 
If-then-else is sequen al 
statement and used inside 
the process. 
The ‘clear_in’, ‘pre-
set_in’ are asynchronous 
inputs and they 
are ac ve low. The input 
‘clear_in’ has highest 
priority as compare to 
‘preset_in’. 
For rising edge of clock 
the data input ‘d_in’ is 
assigned to ‘q_out’. 
Due to missing else 
clause it generated D 
flip-flop which is trig-
gered on posi ve edge 
of clock. 

Example 5.7 D flip-flop with asynchronous active low clear input
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this reset signal internally to avoid the glitches. The internally synchronized reset
signal is applied to the storage elements. The reset deassertion is the main problem
in the asynchronous reset signals, and this problem can be overcome by using
two-stage level synchronizer. Level synchronizer avoids the race-around conditions
during reset deassertion.

Synthesizable RTL using VHDL is shown in Example 5.7 and uses active low
asynchronous reset signal ‘clear_in’ and preset signal ‘preset_in.’ The synthesis
result is shown in Fig. 5.25.

5.4.2 D Flip-Flop with Synchronous Reset

In synchronous reset, the reset logic is part of data input that is data path and reset
signal is sampled on the active clock edge. The synchronous reset does not have
issues of glitches or hazards, so this approach is best suited for the design. This
mechanism does not require the additional synchronization circuit.

The RTL using VHDL is described in Example 5.8 and uses active low syn-
chronous reset signal ‘clear_in’ and active low preset input ‘preset_in.’

In most of the practical applications, multiple asynchronous inputs are required.
Consider an application where it is required to load the input data when enable
input is active and it is essential to initialize register when reset signal is active and
valid. If both asynchronous inputs arrive at a time, then the output assignment
should be dependent on the priority of these signals.

The synthesis result for positive edge-triggered D flip-flop with synchronous
reset input is shown in Fig. 5.26. As shown in the figure, the ‘preset_in’ and
‘clear_in’ logic circuit is part of the data path. In this ‘clear_in’ has highest priority
as compare to ‘preset_in.’

Fig. 5.25 Synthesis result of D flip-flop with asynchronous active low reset input
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity d_flip_flop is

port ( d_in : in std_logic;

clk : in std_logic;

preset_in : in std_logic;

clear_in : in std_logic;

q_out : out std_logic );

end d_flip_flop;

architecture arch_d_flip_flop of d_flip_flop is

begin   

process ( d_in, clk, preset_in, clear_in)

begin

if (clk ='1' and clk'event) then 

if ( clear_in ='0') then

q_out <= '0';

elsif ( preset_in ='0') then

q_out <= '1';

else

q_out <= d_in;

end if;

end if; 

end process;

end arch_d_flip_flop ;

Architecture defines the 
func onality of design.
Process is sensi ve to 
‘d_in, ‘clk’, ‘preset_in’ 
and ‘clear_in’. Any event 
on one of the signal invokes 
the process. 
If-then-else is sequen al 
statement and used inside 
the process. 
The ‘clear_in’, ‘preset_in’ 
are synchronous inputs 
and they are ac ve low. 
The input ‘clear_in’ has 
highest priority as compare 
to ‘preset_in’. 
For rising edge of clock 
the data input ‘d_in’ is assigned 
to ‘q_out’. 
Due to missing else clause 
it generated D flip-flop 
which is triggered on posi ve 
edge of clock. 

Example 5.8 D flip-flop with active low synchronous reset input
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5.5 Sequential Circuit Timing

As discussed earlier, the sequential circuit has the timing parameters and they are
flip-flop propagation delay, setup time, and hold time. While designing sequential
logic, it is essential to take care that there should not be any timing violation.
Consider the simple scenario shown in Fig. 5.27.

As shown in the figure, the synchronous circuit has the timing path from register
1 to register 2. Practically, there can be timing paths. The path from the d_in to d
input of register 1 and called input-to-register path. The path from clock input
‘clk_2’ of register 2 to q_out is called register-to-output path, and the path from
‘clk_1’ of register 1 to the d input of register 2 is called register-to-register path.
The design can have input-to-output path also, and it is purely combinational. In the
above figure, there is no combinational path.

The maximum operating frequency for the design is dependent upon the
register-to-register path, and in the above figure, the data required time is Tclk − tsu.
That is, data should arrive at the d input of the register 2 before the setup time of the
register 2, where Tclk is the timing period of the clock. If we consider the data
arrival time, then data at the d input of the register 2 is arriving at the time duration
‘tpd + tcombo.’ So for positive slack, the required time minus arrival time should
have either zero or positive value.

Under such circumstances, there is no violation in the design and the clock time
period is given by Tclk − tsu = tpd + tcombo, that is, Tclk = tsu + tpd + tcombo. If the
setup time of flip-flop is 1 ns, combinational delay is 2 ns, and the propagation

Fig. 5.26 Synthesis result for D flip-flop with synchronous reset

Fig. 5.27 Synchronous circuit timing path
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delay of flip-flop is 2 ns, then the clock period is 5 ns. So the design operates at the
maximum frequency of 200 MHz.

The static timing analysis (STA) tool are used to find out the timing violation
and to perform the timing analysis for the design.

5.6 Synchronous Counters

If all the storage elements are triggered by the same source clock signal, then the
design is said to be synchronous. The advantage of synchronous design is that, the
overall propagation delay for the design is equal to the propagation delay of flip-flop
or storage element. STA is very easy for the synchronous logic, and even the
performance improvement is possible by using the pipelining. Most of the ASIC or
FPGA implementation uses the synchronous logic. This section describes the
synchronous counter design.

Four-bit binary counter is used to count from ‘0000’ to ‘1111,’ and the four-bit
BCD counter is used to count from the ‘0000’ to ‘1001.’ Figure 5.28 shows the
four-bit binary counter where every sequential logic stage is divided by two
counters.

Fig. 5.28 Four-bit binary counter
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As shown in Fig. 5.28, the counter has four output lines ‘QA, QB, QC, QD’
where ‘QA’ is LSB and ‘QD’ is MSB. The output at ‘QA’ toggles on every clock
pulse and hence divided by two. The output at ‘QB’ toggles for every two clock
cycles, and hence, it is divide by four, at ‘QC’ output toggles for every four clock
cycles and hence the output is divided by eight. Similarly, the output at ‘QD’
toggles for every eight clock cycles, and hence, output at ‘QD’ is divided by sixteen
of the input clock frequency. In the practical applications, counters are used as
clock divider network. Even counters are used in the frequency synthesizers to
generate variable frequency outputs.

5.6.1 Four-Bit Up Counter

Counters are used to generate the predefined or required count sequence on the
active edge of clock. In an ASIC or FPGA design, it is essential to write an efficient
RTL code for the clock divider network by using the synthesizable constructs.
Four-bit up counter is described by using synthesizable VHDL constructs. Counter
counts from ‘0000’ to ‘1111’ on the positive edge of the clock and wraps around to
‘0000’ on the next positive edge of the count. The counter described in Example 5.9
has active low asynchronous ‘reset_n’ input and when it is active low the status on
output line ‘q_out’ is ‘0000.’ During normal operation, ‘reset_n’ is active high.

The synthesis result is shown in Fig. 5.29 and as shown it has active low reset
input ‘reset_n.’ Output is indicated by the ‘q_out’ lines and positive edge-triggered
clock by ‘clk.’

Fig. 5.29 Synthesized four-bit up counter
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5.6.2 Four-Bit Down Counter

Four-bit down counter is described by using synthesizable VHDL constructs.
Counter counts from ‘1111’ to ‘0000’ and triggered on the positive edge of the
clock and wraps around to ‘1111’ on the next positive edge of the count after
reaching to count value ‘0000.’ The counter is described in Example 5.10. Counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity binary_up_counter is

port ( clk : in std_logic;
reset_n : in std_logic;
q_out : out std_logic_vector (3 downto 0) );

end binary_up_counter;

architecture arch_counter of binary_up_counter is

signal temp_count : std_logic_vector ( 3 downto 0);

begin 

process ( clk, reset_n )

begin

if ( reset_n ='0') then

temp_count <= "0000";

elsif (clk ='1' and clk'event) then 

temp_count <= temp_count + "0001";

end if;

end process;

q_out <= temp_count; 

end arch_counter ;

Architecture defines 
the func onality of 
design.

Process is sensi ve to 
‘clk’, ‘and ‘reset_n’. 
Any event on one of 
the signal invokes the 
process. 

If-then-else is sequen al 
statement and 
used inside the process. 

For logic ‘0’ ’reset_n’ 
condi on the output 
‘q_out’ is assigned to 
zero. During normal 
opera on ‘reset_n’ is 
ac ve high and counter 
increments.
Counter increments on 
posi ve edge of clock. 

Example 5.9 VHDLRTL for four-bit up counter
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has active low asynchronous ‘reset_n’ input, and when it is active low, the status on
output line ‘q_out’ is ‘000.’ During normal operation, ‘reset_n’ is active high.

The synthesis result is shown in Fig. 5.30 and as shown it has active low reset
input ‘reset_n.’ Output is indicated by the ‘q_out’ lines and positive edge-triggered
clock by ‘clk.’

44  
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity binary_down_counter is

port ( clk : in std_logic;
reset_n : in std_logic;
q_out : out std_logic_vector (3 downto 0) );

end binary_down_counter;

architecture arch_counter of binary_down_counter is

signal temp_count : std_logic_vector ( 3 downto 0);

begin 

process ( clk, reset_n )

begin

if ( reset_n ='0') then

temp_count <= "0000";

elsif (clk ='1' and clk'event) then 

temp_count <= temp_count -"0001";

end if;

end process;

q_out <= temp_count; 

end arch_counter ;

Architecture defines 
the func onality of 
design.
Process is sensi ve to 
‘clk’, ‘and ‘reset_n’. 
Any event on one of 
the signal invokes the 
process. 
If-then-else is sequen al 
statement and 
used inside the process. 
For logic ‘0’ ’reset_n’ 
condi on the output 
‘q_out’ is assigned to 
zero. During normal 
opera on ‘reset_n’ is 
ac ve high and counter 
decrements.
Counter decrements 
on posi ve edge of 
clock. 

Example 5.10 VHDLRTL for four-bit down counter
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5.6.3 BCD Up Counter

Four-bit BCD up counter can be described by using synthesizable VHDL con-
structs. Up counter counts from ‘0000’ to ‘1001’ and triggered on the active edge of
the clock and initializes to ‘0000’ on the next active edge of the count after reaching
to count value ‘1001.’ The timing sequence for the BCD up counter is shown in
Fig. 5.31. As shown in the timing sequence the BCD UP counter uses negative
edge triggered clock.

Figure 5.31 gives the information about the timing sequence for the up counting.
The counter can be designed as synchronous or asynchronous counter.

The counter described in Example 5.11 is presettable counter, and it has the
synchronous active high ‘load_en’ input to sample the four-bit value. The data input
is four-bit and indicated as ‘data_in.’ The ‘count_enable’ is used to enable the
counting on the rising edge of the clock.

Fig. 5.30 Synthesized four-bit down counter

Fig. 5.31 Four-bit BCD up counter
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bcd_up_counter is
port (data_in : in std_logic_vector (3 downto 0);
load_en, count_enable, clk, reset_in : in std_logic;
q_out : out std_logic_vector (3 downto 0));
end bcd_up_counter;

architecture arch_counter of bcd_up_counter is
signal sig_count : std_logic_vector (3 downto 0);
begin

process (clk, reset_in)
begin
if (reset_in ='1') then
sig_count <= (others => '0');
elsif rising_edge(clk) then
if (load_en = '1' ) then
sig_count <= data_in;
elsif (count_enable = '1') then
if (sig_count ="1010") then
sig_count <= (others => '0');

else
sig_count <= sig_count + '1';

end if; 
end if;
end if;
end process;

q_out<= sig_count;
end arch_counter;

Architecture defines 
the func onality of 
design.
Process is sensi ve to 
‘clk’, ‘and ‘reset_in’. 
Any event on one of 
the signal invokes the 
process. 
Nested If-then-else is 
sequen al statement 
and used inside the 
process. 
For logic ‘1’ ’reset_in’ 
condi on the input 
‘q_out’ is assigned to 
zero. During normal 
opera on ‘reset_in’ is 
ac ve low and counter 
increments. 
For ‘load_en’ is equal 
to logic ‘1’ ‘data_in’ is 
assigned to output 
q_out. 
Counter increments to 
the next value for 
‘count_enable=1’
Counter counts from 0 
to 9 and triggered on 
posi ve edge of clock. 

Example 5.11 VHDLRTL for BCD up counter
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Counter has active high asynchronous ‘reset_in’ input, and when it is active
high, the status on output line ‘q_out’ is ‘0000.’ During normal operation, ‘reset_in’
is active low.

The synthesis result is shown in Fig. 5.32 and has four-bit data input lines
‘data_in,’ active high ‘load_en,’ ‘count_enable,’ and active high reset input ‘re-
set_in.’ Four bit output is indicated by the ‘q_out’ lines and positive edge-triggered
clock by ‘clk.’

5.6.4 BCD Down Counter

Four-bit BCD down counter is described by using VHDL and uses the synthesiz-
able constructs. Down counter counts from ‘1001’ to ‘0000’ and triggered on the
positive edge of the clock and initializes to ‘1001’ on the next positive edge of the
count after reaching to count value ‘0000.’

The counter described in Example 5.12 is presettable counter, and it has the
synchronous active high ‘load_en’ input to sample the four-bit required value. The

Fig. 5.32 Synthesis result for BCD up counter

Fig. 5.33 Synthesis result for BCD down counter
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bcd_down_counter is
port (data_in : in std_logic_vector (3 downto 0);
load_en, count_enable, clk, reset_in : in std_logic;
q_out : out std_logic_vector (3 downto 0));
end bcd_down_counter;

architecture arch_counter of bcd_down_counter is
signal sig_count : std_logic_vector (3 downto 0);
begin

process (clk, reset_in)
begin
if (reset_in ='1') then
sig_count <= (others => '0');
elsif rising_edge(clk) then
if (load_en = '1' ) then
sig_count <= data_in;
elsif (count_enable = '1') then
if (sig_count ="0000") then
sig_count <= "1001";

else
sig_count <= sig_count - '1'; 

end if; 
end if;
end if;
end process;

q_out<= sig_count;
end arch_counter;

Architecture defines 
the func onality of 
design.
Process is sensi ve to 
‘clk’, ‘and ‘reset_in’. 
Any event on one of 
the signal invokes the 
process. 
Nested If-then-else is 
sequen al statement 
and used inside the 
process. 
For logic ‘1’ ’reset_in’ 
condi on the input 
‘q_out’ is assigned to 
zero. During normal 
opera on ‘reset_in’ is 
ac ve low and counter 
increments. 
For ‘load_en’ is equal 
to logic ‘1’ ‘data_in’ is 
assigned to output 
q_out. 
Counter decrements 
to the next value for 
‘count_enable=1’
Counter counts from 9 
to 0 and triggered on 
posi ve edge of clock. 

Example 5.12 Synthesizable VHDL RTL for the BCD down counter
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data input is four-bit and indicated as ‘data_in.’ The ‘count_enable’ is used to
enable the counting on the rising edge of the clock.

Counter has active high asynchronous ‘reset_in’ input, and when it is active
high, the status on output line ‘q_out’ is ‘0000.’ During normal operation, ‘reset_in’
is active low.

The synthesis result is shown in Fig. 5.33 and has four-bit data input lines
‘data_in,’ active high ‘load_en,’ ‘count_enable,’ and active high reset input ‘re-
set_in.’ Four bit output is indicated by the ‘q_out’ lines and positive edge-triggered
clock by ‘clk.’

5.6.5 BCD Up–Down Counter

BCD up–down counter can be designed by using the synthesizable VHDL con-
structs for counting depending on the status of the mode input. Mode input is used
to indicate up or down counting. Depending on the status of ‘up_down’ input, the
counter increments or decrements. For ‘up_down’ is equal to logic 1, it performs
the up counting; otherwise, it performs the down counting.

The counter described in Example 5.13 is presettable counter, and it has the
synchronous active high ‘load_en’ input to sample the four-bit data. The data input
is four-bit and indicated as ‘data_in.’ The ‘count_enable’ is used to enable the
counting on the rising edge of the clock.

Counter has active high asynchronous ‘reset_in’ input, and when it is active
high, the status on output line ‘q_out’ is ‘0000.’ During normal operation, ‘reset_in’
is active low.

The synthesis result is shown in Fig. 5.34 and has four-bit data input lines
‘data_in,’ active high ‘load_en,’ ‘count_enable,’ ‘up_down,’ and active low reset
input ‘reset_in.’ Four bit output is indicated by the ‘q_out’ lines and positive
edge-triggered clock by ‘clk.’

Fig. 5.34 Synthesis result for BCD up–down counter
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity bcd_up_down_counter is
port (data_in : in std_logic_vector (3 downto 0);
load_en, count_enable, up_down, clk, reset_in : in std_logic;
q_out : out std_logic_vector (3 downto 0));
end bcd_up_down_counter;
architecture arch_counter of bcd_up_down_counter is
signal sig_count : std_logic_vector (3 downto 0);
begin
process (clk, reset_in)
begin
if (reset_in ='1') then
sig_count <= (others => '0');
elsif rising_edge(clk) then
if (load_en = '1' ) then
sig_count <= data_in;
elsif (count_enable = '1') then
if (up_down ='0') then 
if (sig_count ="0000") then
sig_count <= "1001";
else
sig_count <= sig_count - '1'; 
end if; 

else
if (sig_count ="1010") then

sig_count <= "0000";
else
sig_count <= sig_count + '1';

end if; 
end if;  
end if;
end if;
end process;
q_out<= sig_count;
end arch_counter;

Architecture defines the 
func onality of design.
Process is sensi ve to ‘clk’, 
‘and ‘reset_in’. Any event on 
one of the signal invokes the 
process. 
Nested If-then-else is sequen al 
statement and used 
inside the process. 
For logic ‘1’ ’reset_in’ condi on 
the input ‘q_out’ is assigned 
to zero. During normal 
opera on ‘reset_in’ is 
ac ve low and counter increments.

For ‘load_en’ is equal to log-
ic ‘1’ ‘data_in’ is assigned to 
output q_out. 
Counter increments or decrements 
to the next value 
for ‘count_enable=1’
Depending on the status of 
up_down input counter increments 
or decrements. 
For up_down=’1’ the counter 
increments and for 
up_down=’0’ the counter 
decrements on the rising 
edge of clock.  

Example 5.13 Synthesizable VHDL RTL for the BCD up–down counter
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5.7 Gray Counter

Gray counters are used in the multiple clock domain designs as only one output bit
changes on the active clock edge. Gray codes are used in the design of synchro-
nizers. Gray counter is described in the example, and in this, only one bit is changing
on the active clock edge with reference to the previous output of the counter. In this,
active low reset input is ‘reset_n.’When ‘reset_n = 0,’ the output of counter ‘q_out’
is assigned to ‘000.’ During normal operation, ‘reset_n’ is active high.

The RTL using VHDL is described in Example 5.14, and the synthesis result is
shown in Fig. 5.35.

Fig. 5.35 Synthesis result of three-bit gray counter

Fig. 5.36 Ring counter internal structure
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library ieee;

use ieee.std_logic_1164.all;

en ty gray_counter is

port ( clk : in std_logic;

       reset_n : in std_logic;

q_out : out std_logic_vector (2 downto 0));

end gray_counter;

architecture arch_gray_counter of gray_counter is

signal tmp_sig : std_logic_vector (2 downto 0);

begin

process ( clk, reset_n)

begin 

if (reset_n='0') then

tmp_sig <= "000";

elsif (clk='1' and clk'event) then

case (tmp_sig) is

Architecture defines the 
func onality of design.
Process is sensi ve to ‘clk’, 
‘and ‘reset_n’. Any event on 
one of the signal invokes the 
process. 
Nested If-then-else is sequen al 
statement and used 
inside the process. 
For logic ‘0’ ’reset_n’ condi on 
the input ‘q_out’ is assigned 
to “000”. During 
normal opera on ‘reset_n’ is 
ac ve high and counter 
counts next value.

Example 5.14 Three-bit gray counter
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when "000" => tmp_sig <= "000";

when "001" => tmp_sig <= "001";

when "010" => tmp_sig <= "011";

when "011" => tmp_sig <= "010";

when "100" => tmp_sig <= "110";

when "101" => tmp_sig <= "111";

when "110" => tmp_sig <= "101";

when "111" => tmp_sig <= "100";

when others => tmp_sig <= null;

end case;

  end if;

end process;

q_out <= tmp_sig;

end arch_gray_counter;

‘Case’ construct is used to 
describe the design func onality. 
The design generates 
the three bit output 
count as gray code. 
The output is generated on 
output lines ‘q_out’. 

Example 5.14 (continued)
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5.8 Ring Counter

Ring counters are used in the practical applications to provide the predefined delay.
These counters are synchronous in nature and used in the practical applications such
as traffic light controller and timers to introduce the certain amount of predefined
delay. The internal logic structure using the D flip-flops for four-bit ring counter is
shown in Fig. 5.36; as shown, the output of the MSB flip-flop is fed back to the LSB
flip-flop input and the counter shifts the data on every active edge of clock signal.

The RTL using VHDL for the four-bit ring counter is described in Example 5.15,
and the counter has ‘set_in’ input to set the input initialization value of ‘1000’ and
works on the positive edge of clock signal (Example 5.15).

library ieee;
use ieee.std_logic_1164.all;

entity ring_counter is

generic (counter_size : integer := 4);
port (clk : in std_logic;
set_in : in std_logic;
reset_in : in std_logic;
q_out : out std_logic_vector(counter_size 1 downto 0));
end ring_counter;

architecture arch_ring of ring_counter is
signal temp_sig : std_logic_vector(counter_size
begin 

process(clk, reset_in, set_in)
begin
if (reset_in = '1') then
temp_sig <= (others => '0');
elsif (set_in ='1') then
temp_sig <= "1000";
elsif (clk='1' and clk'event) then
for k in 1 to (counter_size - 1) loop
temp_sig(k) <= temp_sig(k-1); 
end loop;
temp_sig(0) <= temp_sig(counter_size-1); 
end if;
end process;

q_out <= temp_sig;

end arch_ring;

Architecture defines the 
func onality of design.
Process is sensi ve to ‘clk’, 
‘set_in’ and ‘reset_in’. Any 
event on one of the signal 
invokes the process. 
Nested If-then-else is sequen al 
statement and used 
inside the process. 
For logic ‘1’ ’reset_in’ condi on 
the input ‘q_out’ is assigned 
to zero. During normal 
opera on ‘reset_in’ is 
ac ve low.
For ‘set_in’ is equal to logic 
‘1’ the value “1000” is assigned
to output q_out. 
Counter is basically the shi  
register with the output of 
LSB fed back to the input of 
MSB
These type of counters are 
used to generate the repeated 
sequence or used to 
insert the delay.  The coun ng 
sequence is 
1000,0100,0010,0001---

Example 5.15 VHDLRTL for four-bit ring counter
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The synthesis result for the ring counter is shown in Fig. 5.37. It uses the
additional logic for forcing the asynchronous set_in and reset_in inputs. The logic is
not the part of the data path but it is used to control the output of the ring counter.

5.9 Johnson Counter

The Johnson counter is the special type of synchronous counter and designed by
using the shift register. This type of counter is also called as twisted ring counter.
The internal structure for three-bit Johnson counter is shown in Fig. 5.38. In this
type of counter the complement output of LSB flip-flop is fed back to the input of
MSB.

The RTL using VHDL for four-bit Johnson counter is shown in Example 5.16.
The synthesized logic is shown in Fig. 5.39.

Fig. 5.37 Synthesis result for four-bit ring counter

Fig. 5.38 Three-bit Johnson counter
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library ieee;
use ieee.std_logic_1164.all;

entity johnson_counter is
generic (counter_size : integer := 4);
port (clk : in std_logic;
reset_in : in std_logic;
q_out : out std_logic_vector(counter_size-1 downto 0));
end johnson_counter;

architecture arch_johnson of johnson_counter is
signal temp_sig : std_logic_vector(counter_size -1 downto 0);
begin 

process(clk, reset_in)
begin
if reset_in = '1' then
temp_sig <= (others => '0');
elsif (clk='1' and clk'event) then
for k in 1 to (counter_size - 1) loop
temp_sig(k) <= temp_sig(k-1); 
end loop;
temp_sig(0) <= not temp_sig(counter_size-1); 
end if;
end process;

q_out <= temp_sig;

end arch_johnson;

Architecture defines the 
func onality of design.
Process is sensi ve to ‘clk’ 
and ‘reset_in’. Any event on 
one of the signal invokes the 
process. 
Nested If-then-else is sequen al 
statement and used 
inside the process. 
For logic ‘1’ ’reset_n’ condi on 
the input ‘q_out’ is assigned 
to zero. During normal 
opera on ‘reset_n’ is 
ac ve low.
Counter is basically the shi  
register with the complement 
output of LSB fed back 
to the input of MSB register.
These type of counters are 
used to generate the repeated 
sequence or used to 
insert the delay.  The coun ng 
sequence is 
1000,1100,1110,1111,0111,
0011,0001,0000--- 

Example 5.16 VHDLRTL for four-bit Johnson counter

Fig. 5.39 Synthesis result for four-bit Johnson counter
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5.10 Shift Registers

Shift registers are used in most of the practical applications to perform the shifting
or rotation operations on the active edge of clock. The shifter timing sequence with
reference to the positive edge of clock signal is shown in Fig. 5.40. As shown in the
timing sequence for every positive edge of the clock, the data from LSB shifts by
one bit to the next stage, and hence, for the four-bit shift register, it requires
four-clock latency to get the valid output data from MSB.

The RTL using VHDL for the Serial Input, Serial Output shift register (SISO) is
described in Example 5.17. As described in the example, the data ‘serial_in’ is
shifted on every clock edge to generate the serial output ‘serial_out.’ To generate
the valid serial output for any change on the serial input, the shift register needs four
clock pulses.

The synthesis result having four registers for the serial input, serial output shift
register is shown in Fig. 5.41.

Fig. 5.40 Timing sequence of shift register
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library ieee;  

use ieee.std_logic_1164.all; 

entity serialin_serialout is  

port(clk, serial_in : in std_logic;  

serial_out : out std_logic);  

end serialin_serialout; 

architecture arch_siso of serialin_serialout is  

signal tmp_sig : std_logic_vector(3 downto 0);  

begin  

process (clk)

 begin  

 if (clk='1' and clk'event) then  

 for i in 0 to 2 loop   

 tmp_sig (i+1) <= tmp_sig (i); end loop; 

tmp_sig (0) <= serial_in;

end if;

end process; 

serial_out <= tmp_sig (3); 

end arch_siso;

Architecture defines the 
func onality of design.
Process is sensi ve to ‘clk’ . 
Any event on the clock input 
invokes the process. 
If-then-else is sequen al 
statement and used inside 
the process. 
The synthesizable ‘for’ loop 
is used inside the process 
and it infers the hardware 
triggered on the posi ve 
edge of clock. 
The serial input is assigned 
to the input of  LSB register.
The logic infers the design 
with four registers triggered 
on the posi ve edge of the 
clock input. 

Example 5.17 VHDLRTL for serial input, serial output shift register
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5.10.1 Right and Left Shift Registers

Most of the practical application involves the use of right or left shift of the data.
Consider the protocol where requirement is to shift the string on the right side or on
the left side by one bit or by multiple bits. In such scenario, the bidirectional
(right/left) shift registers are used.

The RTL using VHDL is described in Example 5.18 for bidirectional shift
register, and the direction of data is controlled by ‘right_left’ input. For ‘right_
left = 1,’ the data is shifted toward the left side, and for the ‘right_left = 0,’ the data
is shifted toward the right side.

The synthesis result is shown in Fig. 5.42, and the direction of data transfer is
controlled by ‘right_left’ input. The synthesis result shown consists of four registers
with additional combinational logic to control, the data flow direction.

5.10.2 Parallel Input, Parallel Output (PIPO) Shift Register

In most of the processor design applications, the data needs to be transferred in
parallel. Consider the four-bit data bus communicating with the external peripheral.
If both processor and peripheral operate on the parallel data, then it is essential to
transfer the data using parallel input, parallel output logic.

Fig. 5.41 Synthesis result for four-bit shift register
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--Shi  right and shi  le  register

library ieee;

use ieee.std_logic_1164.all;

en ty shi _right_le _register is

port ( serial_in : in std_logic;

clk , right_le  , reset_in :  std_logic; 

q_out : out std_logic_vector ( 3 downto 0) );

end shi _right_le _Register;

architecture arch_register of shi _right_le _Register is

signal sig_tmp : std_logic_vector ( 3 downto 0);

begin   

process ( serial_in, clk, reset_in, right_le )

begin 

if (reset_in ='0') then sig_tmp <= "0000";

elsif ( clk='1' and clk'event) then 

if ( right_le  ='1') then

sig_tmp  <= serial_in & sig_tmp ( 3 downto 1);

else sig_tmp  <= sig_tmp ( 2 downto 0) & serial_in; 

end if; end if; end process; q_out<= sig_tmp; end arch_Register ;

Architecture defines the 
func onality of design.

Process is sensi ve to ‘clk’, 
‘reset_in’, ‘right_le ’ and 
‘serial_in’ . Any event on the 
clock input invokes the process. 

Nested  If-then-else is sequen al 
statement and used 
inside the process. 
For ‘right_le ’ equal to ‘1’ 
q_out is le  shi ed  and for 
‘right_shi  is equl to ‘0’ the 
q_out is  right shi ed. 
The ‘reset_in’ is an asynchronous 
input and when 
logic ‘0’ it is used to ini alize 
the four bit register. 
During normal opera on ‘reset
in

Example 5.18 VHDLRTL for the right/left shift register
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In such scenarios, PIPO registers are used. The logic diagram of PIPO four-bit
register is shown in Fig. 5.43. Four parallel input lines are named as PA, PB, PC, and
PD, and four-bit parallel output lines are named as QA, QB, Qc, and QD. The PIPO
register is triggered on the positive edge of clock signal.

The RTL using VHDL is described in Example 5.19.
The synthesis result for the four-bit PIPO register is shown in Fig. 5.44.

Fig. 5.42 Synthesized logic for bidirectional shift register

Fig. 5.43 Four-bit PIPO register
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--PIPO Register

library ieee;

use ieee.std_logic_1164.all;

en ty PIPO_Register is

port ( d_in : in std_logic_vector ( 3 downto 0);

clk , reset_in : in std_logic; 

q_out : out std_logic_vector ( 3 downto 0) );

end PIPO_Register;

architecture arch_PIPO_register of PIPO_Register is

begin   

process ( d_in, clk, reset_in)

begin

  if (reset_in ='0') then

q_out <= "0000";

elsif ( clk='1' and clk'event) then 

q_out <= d_in;   end if;

end process; end arch_PIPO_Register ;

Architecture defines the 
func onality of design.
Process is sensi ve to ‘clk’ . 
Any event on the clock input 
invokes the process. 
Nested  If-then-else is sequen al 
statement and used 
inside the process. 
The parallel input is assigned 
to output on rising edge of 
clock.
The ‘reset_in’ is an asynchronous 
input and when 
logic ‘0’ it is used to ini alize 
the four bit register. 
During normal opera on ‘re-
set_in’ is ac ve high. 

Example 5.19 VHDLRTL for 4-bit PIPO register
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5.11 Asynchronous Designs

In the asynchronous designs, the clock signal is not driven by the common clock
source. If the output of LSB flip-flop is given as an input to the subsequent flip-flop,
then the design is asynchronous. The issue with the asynchronous design is the
cumulative clock to q delay of flip-flop due to the cascading of the stages.
Asynchronous counters are not recommended in the ASIC design due to the issue
of glitches or spikes, and even the timing analysis for such kind of design is difficult
task.

The asynchronous counter design and the memories are discussed in the next
subsequent chapter. Even the test benches and verification using VHDL for the
RTL design are discussed in Chap. 7.

5.12 Summary

The following are the key points to summarize the sequential logic design:

1. Sequential design elements are latches and flip-flops.

Fig. 5.44 Synthesized logic for four-bit PIPO register
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2. Sequential designs are of two types: synchronous and asynchronous.
3. If the two arriving clock inputs are from different sources and has phase dif-

ference, then the design is called asynchronous.
4. Latches are level sensitive and not recommended in the ASIC designs.

Flip-flops are edge-triggered and are recommended in the ASIC designs.
5. Number of statements inside the if (clk’event and clk = ‘1’) infers those many

number of registers.
6. Flip-flop timing parameters are setup time, hold time, and clock to q delay or

propagation delay.
7. Gray counters can be designed by using the binary counters with the additional

combinational logic.
8. Synchronous counters are recommended in the ASIC or FPGA design as timing

analysis will be easy and they are not prone to the glitches.
9. Asynchronous counters are prone to the glitches or spikes and hence not rec-

ommended in the ASIC or FPGA designs.
10. Special counters such as ring and Johnson can be designed by using the shift

registers.
11. If setup or hold time is violated, then the flip-flop goes into the metastable state.
12. Use the two-stage level synchronizer to pass the data from one of the clock

domains to another clock domain.
13. Maximum operating frequency for any design is dependent on the time period

of the register-to-register path and setup time of the flip-flop.
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Chapter 6
Introduction to PLD

Abstract This chapter describes the practical understanding about the PLD
architecture and the practical use in the ASIC prototyping and FPGA based design.
This chapter is organized in such a way that it explains the PLD evolution and the
classification with the detailed architecture. Even this chapter covers the practical
scenarios while using the FPGA for prototyping. The architecture for XILINX and
Altera is covered with the practical-oriented examples and the synthesis results.

Keywords ASIC � PLD � CPLD � SPLD � PAL � PLA � FPGA � LUT �
Register � LFSR � Configuration file � MUX � Registered output � Combinational
output � Device utilization � CLB � Slice � Carry chain � PROM � Bit-map �
XILINX � Altera � Spartan � Cyclone � Virtex � Stratix � Multiplex clocking

During the past decade, the programmable logic devices (PLDs) are used for the
rapid prototyping of ASICs. PLD based designs can be used to detect the bugs
during early design cycle and to validate the design in lesser time duration for the
given functional specifications. If we consider the era of miniaturization, during the
past 50 years, then we can easily conclude that the designs have become very
complex. In the present scenario there is need of million gate programmable ASIC
for realization of the complex designs. As PLD-based design is more cost-effective

“I have no special talent. I am only passion-
ately curious...” --- Albert Einstein 

Understand the concept of PLD and PLD based de-
signs and use the imaginaƟon and intelligence 
to develop the design using PLDs.  

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_6
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and can be realized in lesser time duration, the PLD market has grown substantially
for the quick prototyping of ASICs. This chapter discusses about the evolution of
PLDs, the types of PLDs, and the architecture of PLDs. Even this chapter discusses
the PLD-specific design guidelines and scenarios.

6.1 History and Evolution of PLDs

In the semiconductor design industry, it is very much required to have the pro-
grammable logic devices. The reason is that the device can be repeatedly programmed
for the different design specifications. The cost requirement to establish the setup for
PLD-based designs is lesser as compared to the Application-Specific Integrated
Circuit (ASIC). For the new idea realization, it is not possible to infuse the
million-dollar funds at the early stage. So it is always recommended to have less
investment while realizing the product idea and even to validate the design func-
tionality. If we consider the past decade, then the real growth of PLDmarket is due to
the requirements of the million-to-billion-gate SOCs. In the SOC designs, the PLDs
are extensively used to validate the design functionality. The PLDs are used in various
market segments such as automotive, consumer, computer peripherals, wireless, and
industrial domains for proof of concept of the ideas. Table 6.1 gives information about
the worldwide semiconductor revenue projections till the year 2018.

Even if we consider the shrinking process node below 10 nm, then we can
conclude that there is a need of multiple FPGAs in the realization of billion-gate
complexity ASICs.

The major advantage of PLDs is they can be Programmed by end user in the
field. The first PLD that was invented before 1970 is Programmable Read-Only
Memory (PROM). But PROM is one-time-programmable memory. Again, we can
differentiate this as mask programmable devices and field-programmable logic
devices. The mask programmable logic devices are programmed by vendor using
the interconnect and custom mask, whereas the programmable devices are pro-
grammed or configured by user depending on the required design specification and
complexity.

During the late 1970s, the programmable array logic (PAL) was introduced in
the market. The PAL consists of programmable AND and fixed OR plane. In the
subsequent section, we will discuss the PAL architecture and how the Boolean
expressions are realized using the PAL. But they are used to realize low-complexity
designs. But during the present decade, the PAL devices are available with a varied
size of inputs and outputs. Instead of using the AND–OR array plane, most of the
vendors use the NAND–NAND or NOR–NOR structures.

During the early 1970s, the programmable logic array (PLA) was introduced in
the market and it has programmable AND and programmable OR structures.
During the 1980s, the evolution of PLD happened and the PLDs are classified as
simple programmable logic devices (SPLDs) and high-density programmable logic
devices (HPLDs). SPLD includes the PROM, PLA, PAL, and GAL. HPLD
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includes the CPLD and FPGA. CPLD is a complex programmable logic device, and
FPGA is a field-programmable gate array.

6.2 Simple Programmable Logic Device (SPLD)

The SPLDs are simple programmable logic devices and used for low-density gate
count design. The SPLD can be visualized as the array of AND and OR. Figure 6.1
describes the key functional blocks for the SPLD.

Now, before going through the internal structure of every block to understand
the SPLD, let us explore the simple design of full adder using the concept of
programmable OR.

The full adder using two half adders and the OR gate is shown in Fig. 6.2. Please
refer Chap. 2 for the basic combinational elements.

Fig. 6.1 Internal structure of logic array

Fig. 6.2 Full adder using the logic gates
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Instead of using the half adders and or gate the full adder can be realized using
the fixed OR array and programmable AND array. The same concept is used in the
programmable array. Figure 6.3 describes the realization of the full adder using the
programmable concept.

As shown in Fig. 6.3 depending on the required min-terms, the AND plane acts
as programmable decoder and the OR plane that is fixed is used to generate to
programmable outputs ‘sum_out’ and ‘carry_out’. Depending on the programmable
or fixed array, SPLDs are classified as follows:

1. Programmable read-only memory (PROM);
2. Programmable array logic (PAL);
3. Programmable logic array (PLA);
4. Generic array logic (GAL).

The subsequent section discusses about the details of the SPLD and the basic
architecture for the each SPLD.

Fig. 6.3 Full adder using the programmable concept
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6.2.1 Programmable Read-Only Memory (PROM)

The PROM was firstly developed as one-time-programmable read-only memory. It is
available as one-time-programmable and field-programmable. The field-programmable
PROM is EPROM-based and EEPROM-based. The PROM is the array of the read-only
cells and extensively used in the computer systems. The PROMs are used to realize the
small gate count logic using the concept of lookup tables. The logic can be programmed
into the PROM. It is like the lookup table that holds the functionality of the design. In
this, the function inputs can be visualized as address lines, the memory array cells are
used to hold the information about the functionality and the outputs lines are from the
memory cells of the PROM. So in the simple words, we can describe PROM archi-
tecture as, the input decoder which is AND array and at outputs are generated from
programmable OR array. This allows programming of every output individually for the
given set of the inputs. Consider the architecture shown in Fig. 6.4.

As shown in Fig. 6.4, the function inputs are given to the select lines of 3 � 8
decoder. The decoder acts as fixed AND array, and the output lines of decoder are
used to program the OR array. Depending on the fan-out capability of decoder, the
number of outputs can be programmed. The function realization using PROM is
shown in Fig. 6.5.

As shown in the figure, the three input lines are A2, A1, and A0 and output lines
are F2 and F1. The output functions are F2 ¼ P ð0; 1; 2; 5; 7Þ and F1 ¼P ð1; 2; 4; 6Þ which are realized using the PROM. The fixed AND array uses the
decoding logic, and the programmable OR array is used to generate programmable
output.

Fig. 6.4 Basic PROM architecture
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6.2.2 Programmable Array Logic (PAL)

The PAL uses the programmable AND array and fixed OR array and can be used to
design small gate count logic. So these are used to implement the canonical form
sum of product Boolean functions using the programmable AND array followed by
fixed OR array. So each of the two-level AND–OR terms has the number of inputs
which can be programmed. These kinds of PAL are the oldest programmable logic
and can be used to generate the combinational output, or the output can be regis-
tered or can be fed back internally.

The PAL with the programmable AND array and fixed OR array is shown in
Fig. 6.6. This is used to realize the functions F1 and F2. The output functions are
F2 ¼ P ð4; 5; 6; 7Þ, and F1 ¼ P ð0:1:2:3Þ are realized using the PAL.

As shown in Fig. 6.6, the outputs are combinational, that is, output is the
function of the present input only. The PAL structure can be modified by using the
register at the output of the OR array to generate the registered output. Figure 6.7
describes one more example of the macrocell which uses the concept of PAL with
the registered output.

As shown in Fig. 6.7, the output can be programmed as registered output or
unregistered output. The PAL output passes through the XOR logic which and
XOR gate acts as the polarity control. If the output of XOR gate passes through the
register the output can be available as the registered output. Output MUX is used to
select the registered or combinational output depending on the status of the select
line. The loopback of the register output is possible internally and can be used for
the internal processing by the PAL.

6.2.3 Programmable Logic Array (PLA)

The PLA is more flexible as compared to PAL, and PLA uses the programmable
AND and programmable OR arrays. For the logic circuit optimization of the small

Fig. 6.5 Logic function realization using PROM
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gate count design, the PLA can be a good choice. Boolean functions can be realized
by using the programmable AND followed by programmable OR. The imple-
mentation of functions F1 and F2 using PLA is shown in Fig. 6.8. The function
implementation for F2 ¼ P ð4; 5; 6; 7Þ and F1 ¼ P ð0:1:2:3Þ is shown below. As
shown the cross indicates the connection.

Figure 6.9 shows the structure of macrocell using the PLA block. The output
from PLA can be registered or combinational at the output pad. Even depending on
the status of select lines of multiplexer, the output can be configured. The output
configuration for the better understanding is shown in Table 6.2.

As shown in Fig. 6.9, the output can be combinational active low or active high.
Even the output can be configured as registered active low or registered active high
output.

Fig. 6.6 PAL architecture
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Fig. 6.7 Altera macrocell

Fig. 6.8 PLA architecture
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6.3 Complex Programmable Logic Devices

The complex programmable logic devices (CPLD) are used to realize the
small-to-moderate count density controllers using the FSM. Even they can be used
to design the combinational and sequential logic of moderate density count designs.
The CPLD has evolved by using the concept of PAL-like blocks. The CPLD
consists of PAL-like blocks with the routing resources and input/output (IO) blocks
to realize the moderate gate count designs.

Each PAL-like block can be treated as simple PLD of few gate count.
Figure 6.10 describes the structure of CPLD.

Fig. 6.9 PLA as macrocell

Table 6.2 PLA macrocell
output types

S1 S0 Output type

0 0 Combinational active high output

0 1 Combinational active low output

1 0 Registered active high output

1 1 Registered active low output

Fig. 6.10 CPLD structure
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Every IO block is used to establish communication between the external world
and the PLDs. The multiple PLDs are stacked on the silicon and can be connected
using the programmable interconnect. The PLD or PAL block structure can consist
of the gate array with the register (number of registers is dependent of the archi-
tecture) and be used to generate either combinational or sequential output or both.
Figure 6.11 shows the basic PLD block, the logic implementation using the VHDL
is shown in Example 6.1.

As shown in Example 6.1, the combinational output ‘q2_out’ is the AND logic
of ‘a_in’ and ‘b_in’ and realized using the simple PAL block. The registered output
‘q1_out’ is sensitive to positive edge of clock ‘clk’ and realized by use of dedicated
register inside the PAL or use of the register from the IO block. The use of
registered input and output can improve the design timing and performance even
the addition of pipelined logic becomes easy if required.

CPLD is gate-rich logic and has lesser number of sequential cells (registers). The
major limitation of the CPLD is small gate count up to few thousand gates, and
hence, although having the clean register timing due to small gate count imple-
mentation, the multiple CPLDs may be needed to realize the logic which consists of
complex design. In such scenario, the best choice is FPGA as it is flip-flop-rich
logic. The subsequent session discusses the basic architecture of the field-
programmable gate array (FPGA) and the realization of the logic using FPGA.

Fig. 6.11 Basic PLD block
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19library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity cpld_logic is 

port ( a_in, b_in : in std_logic;

clk :  in std_logic;

q1_out, q2_out : out std_logic);

end cpld_logic;

architecture arch_cpld_logic of cpld_logic is

begin

q2_out <= a_in and b_in;

process ( clk, a_in, b_in) 

begin    

if (clk='1' and clk'event) then 

q1_out <= a_in and b_in;

end if;

end process; 

end arch_cpld_logic;

Architecture defines 
the funcƟonality of 
design.
Process is sensiƟve to 
‘a_in’, ‘b_in’ and ‘clk’. 
Any event on one of 
the signal invokes the 
process. 
If-then-else is sequenƟal
statement and 
used inside the process. 

For rising edge of clock 
‘q1_out’ is assigned as 
‘a_in and b_in’. 

The output ‘q2_out’ is 
combinaƟonal output 
and ‘q1_out’ is registered
output. 

Example 6.1 Synthesizable VHDL RTL code for the logic realization using PLD
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6.4 Field-Programmable Gate Arrays

The field-programmable gate arrays (FPGAs) can be programmed or configured in
the field by the user programs and extensively used in the design of complex gate
count designs. Even nowadays, FPGAs are used to realize the complex SOC
designs and for proof of concept of the ideas. The extensive use of FPGA during
this decade is due to the availability of the soft and hard macros required for the
processor, DSP, and video processing. Even most of the complex architecture
FPGAs support the high-speed interfaces, Ethernet, USB, and AHB protocols.

The basic FPGA architecture can be visualized as a sea of the logic blocks or
configurable logic blocks (CLBs), input/output blocks (IOBs), block RAMs
(BRAMs), DSP blocks (DSP), and other routing resources. The basic FPGA blocks
are shown in Fig. 6.12, and as shown in Fig. 6.12, it consists of

Fig. 6.12 Basic FPGA architecture
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1. CLB It is used to realize the combinational and sequential logic. Dedicated CLB
consists of the number of lookup tables (LUTs) and registers. The combinational
function is realized using the LUTs where LUTs have the uniform delay. If logic
is not fitted in the single CLB, then the multiple CLBs need to be used and
reconfigured depending on the functionality. They are configured by using the
vendor-specific program that is configuration or bit-map file.

2. IOB It is used to establish the communication between the external world and
the CLBs and vice versa. The IOB consists of the bidirectional buffers with the
registers. The input can be registered using the IO block, and even the output
can be registered using the IO block. The unregistered input and output are
possible. Depending on the functional requirements in the design IO can be
configured as registered IO or unregistered IO.

3. BRAM The FPGA can have the distributed RAM and block RAM (BRAM).
Distributed RAM can be realized using the LUTs, and the BRAMs are realized
by using the dedicated BRAM blocks which can be programmed by the
vendor-specific design tool for the required configuration and size. Single-port
RAM and dual-port RAM realization is possible using the BRAMs. Capacity of
BRAM depends on the architecture.

4. DSP These are dedicated predefined blocks and can be configured to realize the
DSP functionality. Most of the DSP application needs the multipliers, pipelined
registers, dedicated DSP functional blocks for DSP operations, etc. For the
high-speed DSP computation, these blocks are used and can be configured
depending on the design requirements.

Apart from the above blocks, every FPGA has the clocking structure that is clock
block;Xilinxusesdigital clockmanager (DCM)with delay-locked loop (DLL),whereas
Altera uses phase-locked loop (PLL) as clock network. The clock network is used to
generate the clock with uniform clock skew and with glitch and hazard-free clock.

Every FPGA can have multiple routing resources and used to establish the
communication between the different FPGA blocks. The vendor-specific tool used
to configure the FPGA uses the routing resources with the least routing delays.

The following section gives the practical-oriented design realization using
FPGA. As a design engineer, it is always recommended to understand the FPGA
architecture for better outcome of the design using VHDL. This can result in the
efficient FPGA design. As architecture resources are known before writing the RTL
using VHDL, it gives the better synthesis results and even this strategy can be used
to reduce the area, to improve the design speed and power performance.

6.4.1 Concept of LUT and Combinational Logic Realization

The LUT concept can be easily understood by using the MUX-based designs.
Effectively, the logic function is realized using the LUT. LUT provides the uniform
delay, irrespective of the number of inputs for the same design.
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Consider four-input LUT shown in Fig. 6.13, and it is used to realize the logic
function having four inputs and single output.

6.4.2 VHDL Design and Realization Using CLB

As discussed earlier, the basic CLB consists of the LUTs and registers. Depending
on the device architecture, the number of LUTs and registers can vary and even the
inputs and outputs of LUT structure can vary. For easy understanding, consider the
basic CLB architecture shown in Fig. 6.14.

The LUT can be used to realize the logic functions, can be used as distributed
RAM, and even used to realize the shift registers. As shown in Fig. 6.14, the output
generated is combinational or sequential depending on the configuration set by
bitstream file. If the SRAM cell (FF) holds logic ‘1’, then output is combinational
logic, and if configuration FF holds the logic ‘0’, then output is registered output.

Consider the RTL using VHDL described in Example 6.2.

Fig. 6.13 Four-input LUT

Fig. 6.14 Basic CLB architecture
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The synthesis result is shown in Fig. 6.15. So the logic is realized using the four-input
LUT.The inputs ofLUT ‘a_in, b_in, c_in, d_in’ are configured using thevendor-specific
program, and unregistered output ‘q_out’ is generated from the MUX logic.

But as the complexity of the design increases the number of inputs required can
increase and in such scenario the CLB architecture can have multiple LUTs and mul-
tiple registers with the dedicated blocks for adders. Figure 6.16 describes the archi-
tecture of the CLB and it consists of multiple three-input LUTs, even it consists of the
adder and register. The output from this CLB can be combinational or sequential.

As shown in the figure, the CLB consists of two three-input LUTs, full adder (FA)
with carry-in and carry-out logic, and dedicated register. Now, before going through the
details of the logic realized using CLB, let us understand the function implementation
using the concept of the carry propagation. Figure 6.17 describes the implementation of
full adder using theXOR logic and themultiplexer. In FPGA similar kind of logic can be
used to perform the addition using ‘A, B, Cin’ to generate the ‘Cout and Sum’ output.

Consider the following structure of CLB which has three-input LUT and reg-
ister. The output of CLB can be combinational and registered.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity comb_logic is 

port ( a_in, b_in, c_in,d_in: in std_logic;

q_out: out std_logic);

end comb_logic;

architecture arch_comb_logic of comb_logic is

begin

q_out <= (a_in and b_in) xor (c_in and d_in);

end arch_comb_logic;

Architecture defines 
the funcƟonality of design.

The assignment statement
is used where the 
‘q_out’ is combinaƟonal
logic. 

Example 6.2 Synthesizable VHDL RTL for the combinational design
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Fig. 6.15 Logic realization using the LUT

Fig. 6.16 Architecture of CLB with multiple LUTs

Fig. 6.17 Full adder using the concept of carry propagation
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As described in Example 6.3, the RTL using VHDL is described to generate the
combinational output ‘q2_out’ and registered output ‘q1_out’. The input signals to
three-input LUT are ‘a_in, b_in, c_in’, and LUT implements the function ‘a_in and

30library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity design_logic is 

port ( a_in, b_in, c_in, clk: in std_logic;

q1_out, q2_out: out std_logic);

end design_logic;

architecture arch_design_logic of design_logic is

begin

q2_out <= (a_in and b_in and c_in);

process (clk)

begin

if (clk=’1’ and clk’event) then 

q1_out <= a_in and b_in and c_in;

end process; 

end arch_design_logic

Architecture defines 
the funcƟonality of 
design.
The assignment 
statement is used 
where the ‘q2_out’ is 
combinaƟonal logic. 
The ‘q1_out’ is the 
registered output 
which is from the posiƟve
edge triggered D 
flip-flop. 

Example 6.3 Synthesizable VHDL RTL for the registered output
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b_in and c_in’ to get the output ‘q2_out’. The registered output ‘q1_out’ is gen-
erated from the D register which is triggered on the positive edge of clock ‘clk’.

Figure 6.18 gives information about the synthesis and the implementation using
CLB.

As discussed previously, the FPGA architecture is device-specific. The different
device series of XILINX/Altera have different CLB blocks. The CLB architecture
for Virtex series of XILINX is shown in Fig. 6.19. This consists of two slices, and
each CLB has two slices. Slice 1 and slice 0 are identical and used to realize the
digital logic with registered output and combinational output.

As shown in Fig. 6.19, every slice consists of two four-input LUT and two
registers. Even every slice consists of the carry and control logic to realize the

Fig. 6.18 Logic realization using the CLB

Fig. 6.19 CLB architecture for Virtex series FPGA
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addition logic. The four-input LUT is used to realize the function with four inputs.
By using the routing resources, the slice 1 logic can communicate with the slice 0.
Even the output of one CLB can transfer the data to another CLB. Routing is done
using the vendor-specific routing algorithms.

The eight-input CLB with the registered output and combinational output is
shown in Fig. 6.20. This is used to design the logic function which needs 8 inputs.
The CLB can be used to get registered or unregistered output.

The LUT or function generator is named as G, H, and F. The LUT G and F are
four-input LUT and LUT H is three-input LUT. Now, consider the design scenario
to realize the 8:256 decoder using FPGA. By using the CLB architecture shown in
the Fig 6.20 the 8:256 decoder can be realized. But it needs many LUTs, to realize
the logic with 256 output lines it needs 3 � 256 LUTs, that is 768 LUTs. The
single output can be taken from the ‘y’ or ‘x’. The output is unregistered output.

As discussed in Chap. 4 to implement the decoders, the ‘case’ construct can be
used. If ‘case’ construct is used then, to realize the combinational logic to generate
single output it utilizes F,G and H LUTs. So it is very expensive as per as overall
gate count is concern.

In such scenario, the logic duplication can be used and this technique is discussed
in Chap. 8. If logic duplication is used, then the overall area in such scenario can be
minimized to realize the 8:256 decoder. Instead of using the 8-bit select input, use
the 4-bit lower nibble of select lines as input and describe the RTL using VHDL for

Fig. 6.20 CLB with two four-input LUTs
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4:16 decoder. Use the upper nibble of select lines as the input and describe the RTL
using VHDL for 4:16 decoder. Two four as to 16 decoders needs 32 LUTs only . Use
the design strategy in such a way that it can minimize the area. Create the AND plane
for 256 output lines. use the decoder output lines as inputs lines of AND gates to
meet the design functionality. So using the logic duplication, the design needs the
288 LUTs, thus this technique saves area of 768 − 288 = 480 LUTs.

6.4.3 IO Block

The IO blocks are used to communicate with the external world. The basic IO block
structure is shown in Fig. 6.21.

As shown in Fig. 6.21, the IO can be configured to transfer the data from the
external world to the configurable array. The data is transferred from the input port
to PAD and through the input buffer to CLB.

The data can be transferred from the CLB to the outside world through the
output buffer, and the buffer enable can be controlled by the programmable

multiplexer.

Fig. 6.21 Basic IO block structure
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In the practical scenario, it is required to have the registered inputs and registered
outputs, and under such circumstances, the IO block can have multiple registers in
the input and output path. The IO block for the Altera FPGA is shown in Fig. 6.22.

As shown in Fig. 6.22, the IO block uses the registered input and registered
output logic. Consider the RTL using VHDL shown in Example 6.4.

Figure 6.23 shows the programmable output ‘q_out’ by using the IO block. The
tmp_sig and b_in is implemented by using the CLB, and the output of the CLB is
given to the data_out1 of the register. The red color line indicates the data flow from
the CLB to the output buffer.

The registered input is shown in Fig. 6.24, and as shown in the figure, the
registered input is generated at Data In 1 and is passed to the CLB array. The red
color line indicates the programming of IO block as input block with the registered
input to generate the signal ‘tmp_sig’ as registered input.

6.4.4 Block RAM (BRAM)

BRAM is embedded memory, and the FPGA consists of the single-port and
dual-port BRAM. Depending on the architecture of FPGA device, each BRAM
consists of the number of static RAM cells. Among them, the few cells are used for
the configuration of the memory and the remaining are used for the data storage.
The BRAMs are used for the internal storage of the data, to design FIFO, buffers,
stacks and can be used to store data required for the FSMs.

Every BRAM has the clock and clock enable, read, and write, and every BRAM
is synchronous. If we consider the two-port BRAM, then both ports can be

Fig. 6.22 Basic IO block structure used by Altera
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity IO_logic is 

port ( a_in, b_in, clk: in std_logic;

q_out: out std_logic);

end IO_logic;

architecture arch_IO_logic of IO_logic is

signal tmp_sig : std_logic; 

begin

process (clk)

begin

if (clk=’1’ and clk’event) then 

tmp_sig <= a_in;

q_out <= tmp_sig  XOR  b_in;

end process; 

end arch_design_logic

Architecture defines 
the funcƟonality of 
design.
The assignment 
statement is used 
where the ‘q_out’ is 
registered output. 
The ‘tmp_sig’ is the in-
termediate signal 
which is registered input

Example 6.4 Synthesizable VHDL RTL for registered input and registered output
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interchangeably used and can be controlled for the synchronous read–write oper-
ation. If we consider Spartan-3 devices, then it has BRAM which works at
200 MHz operating frequency. The BRAM single-port and dual-port structure is
shown in Fig. 6.25.

As shown in Fig. 6.25, the BRAM consists of the reconfigurable memory,
address lines, write enable, clk, data input and data output lines. The RTL using
VHDL for the inference of the BRAM is described in Example 6.5, and the syn-
thesis result for the 16 � 2 BRAM is shown in Fig. 6.26.

Fig. 6.24 IO configured as registered input

Fig. 6.23 IO configured as registered output
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Fig. 6.25 BRAM structure

Fig. 6.26 Synthesis result BRAM
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41library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

enƟty BRAM_16x2 is

port (q_out: out std_logic_vector(1 downto 0);

write_en : in std_logic;

clk: in std_logic;

d_in: in std_logic_vector(1 downto 0);

a_in: in std_logic_vector(3 downto 0));

end BRAM_16x2;

architecture BRAM_arch of BRAM_16x2 is

component RAM16x1S is

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0 : in std_logic;

WE, WCLK : in std_logic); end component;

Single port BRAM of 
size 16X2 is described 
using the component 
of BRAM 16x1

Example 6.5 Synthesizable VHDL RTL using BRAM component
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begin

U0 : RAM16x1S

port map (O => q_out(0), WE => write_en, WCLK => clk, D

=> d_in(0), A0 => a_in(0), A1 => a_in(1), A2 => a_in(2), A3 => a_in(3));

U1 : RAM16x1S

port map (O => q_out(1), WE => write_en, WCLK => clk, D

=> d_in(1), A0 => a_in(0), A1 => a_in(1), A2 => a_in(2),A3 => a_in(3));

end BRAM_arch;;

Component instanƟaƟon
is used and the RAM16x1s
is instanƟated twice

This will generate the 
BRAM 16x2. 

Example 6.5 (continued)

6.4 Field-Programmable Gate Arrays 195



6.4.5 Clocking Resources

The clock management in the XILINX FPGA uses the DCM, and in the
Altera FPGA, it uses the PLL. The clock management is used to generate the clock
with the uniform clock skew. Even the clock should be free from glitches and
hazards. Figure 6.27 shows the clock management structure using the DLL for
Xilinx FPGAs and by using PLL for the Altera FPGA.

The clock management plays the important role in the architecture of the FPGA.
It is essential that all the blocks in the design should work synchronously, and
hence, providing the uniform clock skew or zero delay across clock network is
essential.

The DLL uses the variable delay line with the clock distribution network to
provide the clock and to route the clock signals to the internal registers. To adjust
the delay, the control logic is used to sample the input clock ‘CLKIN’ and feedback
clock ‘CLKFB’. DLL is used to adjust the phase shift of the input clock and
feedback clock. The PLL uses the voltage-controlled oscillator (VCO) instead of
the delay line to adjust the 360° or 0° phase shift between the input clock and the
feedback clock. The control logic in the PLL consists of the filter and the phase
detector and is used to generate the desired clock frequency in the lock range.

In most of the practical scenarios, the multiple clocks need to be generated
depending on the design requirements. Under such scenarios, the clock manage-
ment with the clock tree with the uniform clock skew plays an important role. Even
the clock tree should be able to propagate the clocks with the zero propagation
delays. Consider the simple Example 6.6 described by using the VHDL.

The synthesis result shows the clock selection logic using MUX. As shown in
the figure, depending on the ‘sel_in’ status, one of the clocks is assigned to
‘clk_out’ (Fig. 6.28).

Fig. 6.27 Clock management for FPGA

196 6 Introduction to PLD



library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

enƟty clk_muxing is

port (sel_in: in std_logic;

clk_slow, clk_fast: in std_logic;

clk_out: out std_logic);

end clk_muxing;

architecture arch_clk_muxing of clk_muxing is

begin

P1: process (clk_slow, clk_fast, sel_in)

begin

if (sel_in = '1') then

clk_out <= clk_fast;

else

clk_out <= clk_slow;

end if; end process; end arch_clk_muxing;

‘The selecƟon of the 
fast clock ‘clk_fast’ or 
the slower clock 
‘clk_slow’ is described 
by using the if-then-
else statement. 

For ‘sel_in’ equal to 
one the fast clock is 
output from MUX

For the ‘sel_in’ equal 
to zero the slow clock 
is output from the 
MUX.

Example 6.6 Synthesizable VHDL RTL with multiplex clocking
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6.4.5.1 Data and Clock Paths and Use of Clock Buffers

The global clock buffers can be inserted to improve the overall fan-out of the clock
tree. The following VHDL code describes the instantiation of the global clock buffer
(BUFG) in the clock path. It is recommended that the data path and the clock path
logic should be separate. Figure 6.29 shows the synthesis result for Example 6.7.

6.4.6 DSP Blocks and Multipliers

For the high computational design and for the improved performance, the modern
FPGAs have the dedicated resources as multipliers and DSP blocks. Chapter 9
discusses the use of the multipliers, barrel shifters while prototyping the design. The
major DSP applications are filtering, compression, FFT, DFT, encoding, and
decoding of the input streams. These operations needs the dedicated resources
which can support the pipelining and execution in the shorter time duration. To
support this, the DSP blocks are used as dedicated resource in the modern FPGAs.

Figure 6.30 gives information about the dedicated DSP block and can be used
efficiently to design some DSP processing algorithms like multiply and accumulate
(MAC). As shown in the figure, the DSP block has the input register, multiplier,

Fig. 6.28 Synthesis result for multiplex clocking

Fig. 6.29 Synthesis result for the use of BUFG
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MAC, summation block, and output register. To improve the design performance,
the DSP block has the pipelined registers.

The multiplier block is used to perform the multiplication on signed, unsigned,
and floating-point numbers, and the architecture is shown in the following figure.

6.4.7 Routing Resources and IO Standards

For the local routing inside the CLB and for the global routing between the CLBs,
different types of routing resources are used. The interconnects for the devices are
arranged in the form of horizontal and vertical lines. The interconnection lines are
single length, double length, and long lines. Single-length lines are used within the
CLB and are used for the shorter distance routing. They are flexible enough and
used for the faster routing, but when it passes through the switch matrix, it has some
delay depending on the length of the line.

In case of double-length line, as each line is two times the single-length line,
they are used for routing two CLBs. Long lines are used as routing resource for the
full FPGA chip. They are used for high fan-out nets.

Many FPGA vendors support the different IO standards, and they are described
in Table 6.3.

The design flow for the FPGA designs is discussed in Chap. 9 with the complex
designs and prototyping using modern FPGAs.
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

enƟty clk_buffer is

port (sel_in, d_in: in std_logic;

clk_slow, clk_fast: in std_logic;

q_out: out std_logic);

end clk_buffer;

architecture arch_clk_buffer of clk_buffer is

signal tmp_clk: std_logic;

signal clk_bufg: std_logic;

component BUFGS

port (I: in std_logic;

O: out std_logic);

end component;

For the device Xilinx 
“XC3s100e the global 
clock buffer component 
‘BUFGS’ is declared
and used to instanƟate
the clock.
Depending on the requirement
of the slower of faster
clock in the design the clock 
is passed to trigger the 
register. 

Example 6.7 Synthesizable VHDL using BUFG for multiplex clocking
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begin

P1: process (clk_slow, clk_fast, sel_in)

begin

if (sel_in = '1') then

tmp_clk <= clk_fast;

else

tmp_clk <= clk_slow;

end if;

end process;

U1: BUFGS port map (I => tmp_clk, O => clk_bufg);

P2: process (clk_bufg)

begin

if (clk_bufg ='1' and clk_bufg'event)then

q_out <= d_in;

end if;

end process;  end arch_clk_buffer;

Process ‘p1’ is for the 
clock path and describes
the selecƟon of 
the fast or slow clock 
depending on the status
of select input. 

BUFGS is instanƟated 
and input the BUFGS is 
‘tmp_clk’ and output 
from BUFGS is 
‘clk_bufg’.

Depending on the rising
edge on the ‘clk_bufg’ the
data input ‘d_in’ is passed
to ‘d_out’ 

Process ‘P2’ is data 
path for the design. 

Example 6.7 (continued)

6.4 Field-Programmable Gate Arrays 201



6.5 Practical Scenarios and Guidelines

While using the FPGAs, the designers need to take care of the design guidelines.
Most of the design guidelines for the PLD based design are explained in Chap. 8.
The major focus of this section is to have the practical-oriented information and
guidelines for the synchronous and asynchronous designs, clocks, resets, and the
use of the synchronizers during the design.

6.5.1 Reset Strategy

Most of the times, the designers are confused whether to use the synchronous reset
or synchronous resets in the design.

Fig. 6.30 DSP block

Table 6.3 IO standards

IO standard Long form Description

LVTTL Low-voltage TTL A general-purpose IO standard

LVCMOS Low-voltage CMOS A general-purpose IO standard

HSTL High-speed transceiver logic A general-purpose high-speed IO standard supported
for 1.5 V bus by IBM

SSTL Subseries terminated logic The general-purpose memory bus standard

PCI Peripheral component interface It uses LVTTL input buffers and supports the PCI
bus applications at 33 and 66 MHz

AGP Advanced graphics port This standard supports the graphics application and
works at 3.3 V
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6.5.1.1 Synchronous Reset

The synchronous resets are recommended in most of the applications as the reset
logic is part of the data path, and the reset is sampled on the active edge of the
clock. The logic in the data path of register using synchronous reset is shown in the
Fig. 6.31.

The RTL using VHDL for the design using synchronous reset is described in
Example 6.8.

The synthesis result for the synchronous reset is shown in Fig. 6.32.
In the synchronous reset, the reset logic is part of the data path and reset signal is

sampled on the active clock edge, and hence there is no need of the synchronizer.
By using the synchronous reset strategy the glitches are filtered out and it shown

in the Fig. 6.33.

Fig. 6.31 Synchronous reset logic

Fig. 6.32 Synthesis result for D flip-flop using synchronous reset and enable
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

enƟty sync_reset_ff is

port (d_in, clk, enable_in, reset_n: in std_logic;

q_out: out std_logic);

end sync_reset_ff;

architecture arch_sync_rest_ff of sync_reset_ff is

begin

P1: process (clk)

begin

if (clk='1' and clk'event) then

if ( reset_n='0') then

q_out <='0';

elsif ( enable_in ='1') then

q_out <= d_in; end if; end if;end process; end arch_sync_rest_ff;

The synchronous reset 
‘reset_n’ has highest 
priority as compare to 
the ‘enable_in’ input. 
The synchronous reset
logic is part of the data
path. 
The flip-flop is rising 
edge triggered. 

Example 6.8 Synthesizable VHDL using the synchronous reset and enable
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6.5.1.2 Asynchronous Reset

The asynchronous reset signal is sampled at any time irrespective of the active
clock edge. In the asynchronous reset strategy, the reset logic is not a part of the
data path.

While designing using asynchronous resets, designer needs to take care of the
reset assertion and reset deassertion. The reset recovery and removal time play the
significant role in such type of the strategy.

The reset recovery time is the minimum amount of time required where reset
signal should be active before the arrival of the active clock edge. If at a time clock
and reset will change, then the register goes into the metastable state. To avoid this,
the asynchronous reset can be synchronized internally using the two-stage level
synchronizer.

Figure 6.34 gives information about the reset recovery time. If reset signal
arrives before the active edge of clock and remains stable, then the timing is met.

Fig. 6.33 Reset glitch filtering

Fig. 6.34 Timing sequence for the reset recovery time

6.5 Practical Scenarios and Guidelines 205



Figure 6.35 gives the information about the timing violation as the reset signal
makes changes at the clock edge. The design goes into the metastable state.

The reset removal time is the amount of time required for deassertion of the reset
signal. Figure 6.36 shows the timing sequence for the reset removal.

The asynchronous reset can be synchronized internally using the two-stage level
synchronizer and shown in Fig. 6.37.

As shown in Fig. 6.37, the two-stage synchronizer is used to generate the
asynchronous reset signal to the register. It uses the clock as ‘clk’ and reset signal as
‘master_reset’. During the normal operation, the two-stage synchronizer generates
the logic ‘1’ at the reset input of the register during the valid reset time duration the
‘master_reset’ input is active low and the level synchronizer generates the active
low output to reset the register. Refer Chap. 5 for the RTL using VHDL which uses
the asynchronous reset.

6.5.2 Asynchronous Versus Synchronous Designs

As discussed already in Chap. 5, the designers need to have a good understanding
of the asynchronous and synchronous designs. In the asynchronous designs, as

Fig. 6.35 Reset recovery time violation and metastable output

Fig. 6.36 Timing sequence for the reset removal
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clock signal is not common for all the registers, the cumulative delay slows down
the design performance. In most of the practical scenarios, it is not recommended to
use the asynchronous designs.

The asynchronous design using JK flip-flops and timing sequence is shown in
Fig. 6.38.

As shown in Fig. 6.38, to get the output ‘q-out’, it needs the delay of 4 times the
propagation delay of the single flip-flop.

Fig. 6.37 Two-stage level synchronizer for the reset

Fig. 6.38 Asynchronous counter design and timing sequence
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In the synchronous designs, all the flip-flops are triggered on the same clock
edge, and hence, the overall delay is equal to the single flip-flop propagation delay.
The synchronous design for the 2-bit gray counter is shown in Fig. 6.39, and both
the registers uses the same clock source driven by the master clock.

6.5.3 Clocking Strategies

The few important clocking strategies are listed below.

6.5.3.1 Single Master Clock

The clocking strategy plays an important role in the design. In the FPGA designs, it
is recommended to use the clock signals with the uniform clock skew. It is rec-
ommended to use the clock signal driven by the single master clock.

6.5.3.2 Ripple Counters

Do not use the ripple counters to generate the clock as the cumulative delay add up
in the clock network.

6.5.3.3 Mix Edge Clocking

Do not use the double-edge clocking that is the use of the positive and negative
edge-triggered flip-flops in the design as the scan insertion and testing are the major
issues in such type of clocking strategy.

Fig. 6.39 Synchronous 2-bit
gray counter
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6.5.3.4 Gated Clocks

Use the gated clocks to reduce the dynamic power dissipation in the design. Gated
clock can introduce the glitches in the generated clock, and hence, it is recom-
mended to use the clock gating cells with the latch enable mechanism. Please refer
Chap. 8 for the clock gating mechanism and RTL description using VHDL.

6.6 Summary

The following are the key points to summarize this chapter.

1. SPLDs are used for design of small gate count designs.
2. SPLDs are classified as PROM, PAL, and PLA.
3. CPLDs are used to realize the moderate gate count designs with the better

timing performance.
4. FPGAs are programmed by the user program at field.
5. FPGA architecture consists of CLBs, IOBs, routing resources, clocking

resources, and programmable interconnects.
6. Modern FPGAs consist of the CLBs, IOBs, routing resources, clocking

resources, programmable interconnects, DSP blocks, multipliers, processor, etc.
7. It is not recommended to use the ripple counters for the clock generation.
8. Use the clock gating cell to reduce the power dissipation in the design.
9. Synchronous counters are recommended in the ASIC design as timing analysis

will be easy and they are not prone to the glitches.
10. Asynchronous counter logic is prone to glitches or spikes and hence not rec-

ommended in the ASIC designs.
11. Use the BRAM instead of the distributed RAM. But BRAM can have one clock

latency as compared to distributed RAM.
12. Clock management is accomplished in the FPGAs using the DLL or PLL.

Xilinx uses the DLL, and Altera uses the PLL.
13. Clock management is used for the uniform clock skew and for the clock

propagation with the zero delay.
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Chapter 7
Design and Simulation Using VHDL
Constructs

Abstract This chapter discusses the VHDL constructs and their use during the
design verification. The constructs such as subprogram, procedures, functions,
TEXTIO, and file handling are discussed in this chapter with the practical exam-
ples. Even this chapter gives basic understanding of design simulation using the
VHDL constructs. How to write an efficient testbench and how to carry out the
presynthesis simulation are explained in this chapter with the simulation results.
This chapter even discusses the use of the packages and file handling.

Keywords Block � Subprogram � Procedure � Functions � Files � TEXTIO �
Simulation � Verification � Testbench � File handling � Package � Device under
test � Design under verification � Presynthesis simulation � Generate � Binary
counter � Attributes

As discussed in the previous chapters, VHDL is efficiently used to code the
functionality of the design. VHDL has powerful concurrent and sequential constructs
and can be used during the design, simulation or verification of the design. For smaller
designswith few input and output ports, it is easy tomanually force the inputs to check
the functional correctness of the design. For the complex designswithmore number of
inputs and outputs, it becomes time-consuming to force the inputs to check the
behavior of the design. Even the chances of error are higher with the manual forcing.

“The significant problems we have cannot be 
solved at the same level of thinking with 
which we created them....” --- Albert Einstein

Design simulaƟon needs different thinking . Use the 
VHDL constructs to simulate the design. 

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_7
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The functional correctness of the design can be checked by writing another
VHDL code that is testbench. Testbench can be written efficiently using the VHDL
constructs to force the inputs for different time instances. The subsequent section
discusses the use of the VHDL constructs during simulation.

7.1 Simulation Using VHDL

The required inputs can be forced by using the stimulus generator, and the output
can be observed. For the complex designs the functions, packages, TEXTIO with
file handling can be used efficiently to write the testbenches and even to simulate
the results. For the complex designs, file handling can play the important role and
can be used to store the results. Figure 7.1 shows the simulation setup for the design
using VHDL.

As shown in Fig. 7.1, the stimulus generator (testbench) can drive the required
input signal to the design under test (DUT). DUT is also called as design under
verification. Stimulus generator is used to check the functional correctness of the
design. In the practical scenario, the self-checking testbenches using the stimulus
generator, monitor, and checkers can be used to check the design functionality.
Following section discusses the use of the VHDL constructs during simulation.

7.1.1 Testbench for 4:1 MUX

As discussed in the previous chapters, the multiplexers are combinational elements.
In the multiplexer (MUX), at a time one of the inputs is selected and passed to the
output. Example 7.1 describes the 4:1 MUX using VHDL RTL.

Multiplexer has single-bit inputs ‘a_in, b_in, c_in, d_in’ and 2-bit select input
‘sel_in.’ Output of multiplexer is ‘y_out.’ Example 7.2 describes the forcing of the
inputs and select lines of 4:1 MUX using VHDL construct. The simulation result
for 4:1 MUX is shown in Fig. 7.2.

Stimulus 

Generator

DUT

Fig. 7.1 Simulation using VHDL
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library ieee;

use ieee.std_logic_1164.all;

entity mux_4to1 is

port (

a_in, b_in,c_in,d_in: in std_logic;

sel_in : in std_logic_vector(1 downto 0);    

y_out: out std_logic);

end mux_4to1;  

architecture arch_mux_4to1 of mux_4to1 is

begin

comb_p1:  process ( a_in, b_in,c_in,d_in, sel_in)  

begin  

case ( sel_in) is

when "00" => y_out<= a_in;

when "01" => y_out<= b_in;

when "10" => y_out<= c_in;

when "11" => y_out<= d_in;

end case;

end process comb_p1;

end arch_mux_4to1;

Architecture defines 
the funcƟonality of 
design.
CombinaƟonal Process 
‘comb_p1’ is sensiƟve 
to the input changes 
at ‘a_in’, ‘b_in’ in’, 
‘d_in’ and ‘sel_in’.
Case construct is used 
to infer the parallel 
logic. 
Depending on the status
of 2-bit ‘sel_in’ the 
‘y_out’ is assigned.
An output is either 
‘a_in’, ‘b_in’,’c_in’ or 
‘d_in’ at a Ɵme. 

Example 7.1 Synthesizable VHDL RTL for 4:1 MUX
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library ieee;use ieee.std_logic_1164.all;

entity testbench_mux_4to1 is

end;

architecture arch_testbench of testbench_mux_4to1 is

component mux_4to1

port (

a_in, b_in,c_in,d_in:in std_logic;

sel_in :in std_logic_vector(1 downto 0);    

y_out: out std_logic);

end component;

signal sel_in: std_logic_vector(1 downto 0);

signal a_in,b_in,c_in,d_in,y_out: std_logic;

begin

sel_in <= "00", "01" after 20 ns, "10" after 40 ns,

"11" after 60 ns, "XX" after 90 ns,

"00" after 110 ns;

a_in <= 'X', '0' after 5 ns, '1' after 10 ns;

b_in <= 'X', '0' after 20 ns, '1' after 30 ns;

C_in<= 'X', '0' after 40 ns, '1' after 60 ns;

d_in <= 'X', '0' after 100 ns, '1' after 110 ns; U: mux_4to1 port map ( a_in, b_in, c_in, d_in, sel_in, y_out);

end arch_testbench;

To bind the individual 
ports to carry out the 
simulaƟon the temporary
signals are declared
using ‘signal’
The ‘sel_in’ is forced 
to different values 
“00’,”01”, “10”, “11” 
and “XX” for the different
Ɵme duraƟons.
Inputs ‘a_in’, ‘b_in’, 
‘c_in’, ‘d_in’ are forced 
to different logic levels 
‘0’ or ‘1’ at various 
Ɵme instances. 
The instance of the 
design under test is 
‘mux_4to1’ and using 
’port map’ the input 
and output ports are 
mapped.

The component 
‘mux_4to1’ is declared 
inside the architecture.

The name of component
should be same as that
of name of VHDL enƟty. 

Example 7.2 Testbench for 4:1 MUX
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7.1.2 Testbench for 4-Bit Binary up Counter

As discussed in Chap. 5, the counters are used to count the specific steps depending
on the clock input. Counters are sequential logic circuits. Example 7.3 describes the
4-bit binary counter using VHDL.

The testbench using VHDL constructs to force the clk and reset value is
described in Example 7.4, and simulation results are shown in Fig. 7.3.

7.2 Functions

A function call is in the form of an expression that returns a value. A function call is
subprogram which consists of function declaration and sequential statements.
Functions are used to describe the algorithm or the required behavior. The functions
are used to return the complex-type or scalar-type values.

The function calls can be pure or impure. In the pure function calls, it returns the
default or the same type of values as that of parameter type. In case of impure
functions, it may return different types of values. Impure functions can update the
objects that are out of scope, but pure functions will not be able to update objects
that are out of scope.

Function declaration has two main parts and they are function declarations and
function body.

• Function Declaration: It consists of name of function, parameter list, and type
of the values returned by the function. The function declaration can start with an
optional reserved word pure or impure; it denotes the character of the function.
Without any reserved word, the function is assumed as pure.

• Function Body: It contains variables, types, constants, local declarations of
nested subprograms, files, aliases, attributes, groups, and sequence of statements
to perform the required algorithm.

It is important to note that function body may not contain a wait statement or a
signal assignment. But subprograms (functions and procedures) can be nested.
Function can be recursive.

Fig. 7.2 Simulation result for 4:1 MUX

7.1 Simulation Using VHDL 215

http://dx.doi.org/10.1007/978-981-10-3296-7_5


8

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counter is
port (clk : in std_logic; 

reset_n :in std_logic;
count_out : out std_logic_vector(3 downto 0)      

);
end counter;

architecture arch_counter of counter is

signal tmp_count : std_logic_vector(3 downto 0) :=(others => '0'); 

begin

count_out <= tmp_count;

seq_p1: process(clk,reset_n)
begin

if(reset_n='0') then 

tmp_count <=(others => '0'); 

elsif(clk'event and clk='1') then

if(tmp_count = "1111") then 
tmp_count <="0000";

end if;
tmp_count<= tmp_count+'1'; 

end if;

end process seq_p1;

end arch_counter;

Architecture defines 
the funcƟonality of 
design.
SequenƟal Process 
‘seq_p1’ is sensiƟve to 
the input changes at 
‘clk’ and ‘reset_n’.

‘if-then-else’ construct 
is used to infer the 
priority logic.
For the ‘reset_n=’0’’ 
the output ‘count_out’ 
is equal to “0000”. 
During counƟng ‘reset_n=’1’’.

For acƟve edge of the 
clock input ‘clk’ the 
‘count_out’ is incremented
by one.  

When ‘count_out’ 
reaches to “1111” 
counter output is assigned 
to “0000”.

Example 7.3 Synthesizable VHDL RTL for 4-bit binary up counter
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity testbench_counter is 

end testbench_counter;

architecture arch_tb of testbench_counter is  

component counter   

port( 

clk : in std_logic;

reset_n : in std_logic;

count_out : out std_logic_vector(3 downto 0)         

);

end component;   

signal clk : std_logic := '0';

signal reset_n : std_logic := '1';   

signal count_out : std_logic_vector(3 downto 0);  

The component ‘counter’
is declared inside the
architecture.

The name of component
should be same as that
of name of VHDL enƟty. 

For the port binding 
the temporary signals 
are declared using 
‘signal’ and of type 
‘std_logic’. 

Example 7.4 Testbench for 4-bit binary up counter
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U: counter PORT MAP (

clk => clk,

reset_n => reset_n,

count_out => count_out );       

clk_p1 :process

begin

clk <= '0';

wait until clk_period/2; 

clk <= '1';

wait until clk_period/2;  

end process;

reset_p2: process

begin         

wait for 12 ns; reset_n <='0';

wait for 5 ns; reset_n <='1';

wait for 25 ns;        reset_n <= '0';

wait for 3 ns; reset_n <= '0';

wait;

end process; end arch_tb;

Process ‘Clk_p1’ is 
without sensiƟvity list.

The process is used to 
generate the sƟmulus 
at ‘clk’ input.  

Process ‘reset_p2’ is 
without sensiƟvity list.

The process is used to 
generate the sƟmulus 
at ‘reset_n’ input.  

The ‘reset_n’ input is 
forced to different 
logic levels ‘0’ or ‘1’

Using one to one mapping
the design under test
input and output ports
are mapped. 

Example 7.4 (continued)
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Syntax

Function Examples

function name_function  (parameters) return type;

function name_function (parameters) return type is

function declarations

begin

sequential statements;

end function name_function;

function Function_real (a_in,b_in,c_in: real) return real;

The function declared is called as Function_real, the function 
has three parameters a_in, b_in and c_in of real type and 
this returns the real value. 

function "*" (a_in,b_in: integer_value) return integer_value;

The function uses the operator as function name and used to 
defines a algorithm for multiplication

function addition  (signal sig_in1,sig_in2: real) return real;

In the above function signals are used as input parameters. 
Signals are denoted by the reserved word signal.

type data_int is file of natural;
function file_end (file file_name: data_int) return boolean;

The function is used to check the end of the file and it consists 
of natural numbers. The parameters are Boolean type 
declarations. 
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Function to return complement
Function Body to return the complement of bit vector

The sequential construct ‘case’ is used in the function body. The parameter is
‘para_value’ and/or ‘bit_vector’ type, the function returns the value of same type.

Function for multiplication

The parameters declared are of type real, and after the execution of the
expression in the function body, it returns the real value.

Fig. 7.3 Simulation result for the 4-bit binary up counter

function complement (para_value: in bit_vector(0 to 7)) return bit_vector is

begin
case para_value is

when "00000000" => return "11111111";
when "11111111" => return "00000000";
when others => return "00000000";

end case;
end complement;

function multiplication (constant a_in, b_in,c_in: real) return real is
begin
return a_in*b_in**4+b_in;

end multiplication;
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Function to count minimum value

The parameters declared are constants and of the real type. The value of a_in and
b_in is passed when function is called. The left_b and right_b are declared and used
to define the range to search the minimum value.

The function body uses the sequence of statements to search for the minimum
value, the function returns the minimum value from the range.

Impure function

function min_value (con-
stant a_in,b_in,step_size,left_b,right_b: in real) return real is
variable count, min, temp_v: real;
begin

count:= left_b;
max:=min_value(a_in,b_in, count);
Loop1:
while count >= right_b loop

temp_v:=min_value(a_in,b_in, count);
if temp_v < min then

min:=temp_v;
end if; 
count := count-step_size;

end loop Loop1;
return min;

end min_value;

variable number: integer := 0;
impure function imp_fucntion (a_in: Integer) return integer is
variable count: integer;
begin

count := a_in * number;
number := number + 1;
return count;

end imp_function;
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The declared function is of impure type, and the parameter a_in is of integer type,
and when the function is executed, it returns the count value. The returned value by
function may be of different type, and hence, it is called as an impure function.

7.3 Packages

Packages are used to share the design objects with the different kinds of VHDL
designs. Packages consist of the following declarations:

• Subprogram
• Attributes
• Aliases
• Types
• Files
• Components

Package is declared by using the following syntax:

package package_name is

subprogram_declaration | subprogram_body

| type_declaration | subtype_declaration

| constant_declaration | shared_variable_declaration

| file_declaration | alias_declaration

| use_clause | group_template_declaration

| group_declaration

end package package_name ;

222 7 Design and Simulation Using VHDL Constructs



Package body consists of the functional information of the procedures and
functions. The functional information may be visible to many other designs.

Package body package_name is

subprogram_declaration | subprogram_body

| type_declaration | subtype_declaration

| constant_declaration | shared_variable_declaration

| file_declaration | alias_declaration

| use_clause | group_template_declaration

| group_declaration 

end package body package_name ;

Consider the design scenario to perform the addition (XOR) of two operands
‘a_in’ and ‘b_in.’ The RTL using VHDL is described in Example 7.5. Synthesis
result is shown in Fig. 7.4.

7.3.1 Package Use in Design

The package ‘add_package’ is declared in the VHDL program, and by using; use
work.add_package.all; it is accessed in the main VHDL program. The package
declaration and package body are shown in the Example 7.6, to perform the XOR
operation.
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library ieee;

use ieee.std_logic_1164.all;

library work;

use work.add_package.all;

enƟty seq_logic is

port (clk : in std_logic; 

a_in : in s1_pck;

b_in : in s1_pck;

y_out: out s1_pck     );

end seq_logic;

architecture arch_seq_logic of seq_logic is

begin

process(clk)

begin

if(clk'event and clk='1') then

y_out<=add_op(a_in,b_in);  

end if;

end process;

end arch_seq_logic;

The sequenƟal logic is 
posiƟve edge triggered.

It performs the addiƟon
(xor) of two operands.

The package used is 
‘add_package’.

Package is included 
using  use 
work.add_package.all;

The ports  clk is of 
‘std_logic’

The ports ‘a_in’, ‘b_in’ 
and ‘y_out’ are of 
type s1_pck.

Example 7.5 Use of package for addition operation
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Fig. 7.4 Synthesis result for the addition operation using package
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library IEEE; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all;

package add_package is

type s1_pck is  

record

a_in :std_logic_vector(5 downto 0);

b_in :std_logic_vector(7 downto 0);

y_out :std_logic_vector(1 downto 0);

end record;

funcƟon add_op (a_in : s1_pck; b_in: s1_pck) return s1_pck;

end add_package;   

package body add_package is  

funcƟon  add_op (a_in : s1_pck; b_in: s1_pck) return s1_pck is

variable sum : s1_pck;

begin 

sum.a_in:=a_in.a_in xoR b_in.a_in;

sum.b_in:=a_in.b_in xoR b_in.b_in;

sum.y_out:=a_in.y_out xoR b_in.y_out;

return sum;

end add_op;  end add_package;  

And The funcƟon 
‘add_op’ is used in the 
package. 

Package body consists 
of the statements and 
used to perform the 
addiƟon on two operands.

FuncƟon ‘add_op’ returns
the sum. 

Example 7.6 Package declaration for addition
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7.4 Attributes

Attributes in VHDL are used to return information about the signal. The attributes
are of type signal attributes, array attributes, and type attributes. Attributes consist
of the (’) quote followed by the name of the attribute. In the array manipulations,
the attributes are used.

7.4.1 Signal Attribute

These are used to return the true value on the event. These attributes return a
Boolean value. Following is the example of the signal attribute

As shown in the above code, the clk’event is used to return the true value, that is,
to find the positive edge of the clock ‘clk.’

Consider another example of signal attribute to find the negative edge of the
clock.

if(clk= 1’ and clk’event ) then

q_out<= data_in; else

q_out <= ‘0’; 

end if;

’

q_out<= data_in; else

q_out <= ‘0’; 

end if;

if(clk= 1’ and clk’event ) then’
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7.4.2 Array Attribute

These types of attributes are used in the array manipulations and array access.
Consider a scenario where the particular range of array needs to be accessed. Under
such scenario, the name_array’range attribute can be used. This is used to find
whether the signal is zero or not.

Consider the following example for the array attribute

As shown in the above example, the array attribute value_sig’range is used.
These types of attributes are used for the long signals.

7.5 File Handling

Most of the complex designs using VHDL may need the larger number of inputs
and outputs. In such scenarios, it becomes difficult to write the testbench. Even it
becomes difficult to read the testbench code. The better way is to use the files. The
input can be stored in the text file and can be read from the text file. The results can
be even stored in the output file. The following section discusses the file handling
using VHDL.

7.5.1 Use of Files in Design Simulation

During the simulation of the VHDL design if it is required, that the data written in
one of the files need to be copied in another file, then under such circumstances, the

signal tmp_sig :std_logic_vector(31 downto 0):=(others =>'0'); 

signal value_sig :std_logic_vector(31 downto 0):=(others =>'0'); 

if(value_sig /= value_sig'range => '0')) then

      tmp_sig <= value_sig; 

end if; 
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file handling can be efficiently used. In such scenario, data can be stored in one of
the input files and the data can be copied in the other output files.

Consider Example 7.7; in this, the input data is stored in ‘file1.txt’ and the ‘file2.
txt’ is used to hold the output data.

As shown in Example 7.7, the process ‘read_p1’ is used to read the data till the
end of the line in input file ‘file1.txt’. An another process ‘write_p2’ is used to write
the data in another file ‘file2.txt.’

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use std.textio.all;

entity file_handling is

end file_handling;

architecture arch_file_handling of file_handling is

signal clk,end_file : bit := '0';

signal    data_read : real;

signal    data_save : real;

signal line_number : integer:=1; 

Example 7.7 VHDL code for the file read and write
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7.5.2 TEXTIO

Library consists of the predefined packages. If the requirement is to access the
predefined packages from standard library, then ‘TEXTIO’ can be used. To use the
‘TEXTIO,’ declare use ieee.std_logic_TEXTIO.all;

To read and write the ASCII files, the packages should consist of the functions
and procedures. The ‘TEXTIO’ uses the files, where a line is a carriage return

begin

clk <= not (clk) after 2 ns;

read_p1:process

    file   input_file    : text is in  "file1.txt";      

variable  line_no_in    : line;

   variable  data_read_1    : real;

begin

wait until (clk = '1' and clk'event);

if (not endfile(input_file)) then   

readline(input_file, line_no_in;

read(line_no_in, data_read_1);

data_read <=data_read_1;   .

else

end_file <='1';

Example 7.7 (continued)
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terminated by text string. The package defines a number of types that can be used
with text files. A variable of type ‘line’ is defined to hold a line of text. The ‘line’ is
the basic unit upon which ‘TEXTIO’ operates.

end if;

end process read_p1;

write_p2 : process

file      output_file  : text is out "file2.txt";  

variable  line_no_out : line;   

begin

wait until (clk ='0' and clk'event);

if(end_file='0') then  

write(line_no_out, data_read, right, 20, 16);

writeline(output_file, line_no_out);

line_number <= line_number + 1;

else

null;

end if;

end process write_p2;

end arch_file_handling;

Example 7.7 (continued)
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Consider Example 7.8, where the XOR operation is performed by using the
‘TEXTIO.’ Files ‘input_file’ and ‘output_file’ are used and operated in the read
mode and write mode respectively.

By using the ‘TEXTIO,’ the result for the different input values is shown in
Fig. 7.5.

library ieee,std;

use ieee.std_logic_1164.all;

use ieee.std_logic_textio.all;

use std.textio.all;

entity text_io is

end text_io;

architecture arch_text_io of text_io is

begin

file_p1: process is

file input_file : text open read_mode is "input_data_values";

file output_file : text open write_mode is "output_data_values";

variable output_line : line;

variable input_line : line;

Example 7.8 VHDL code for the TEXTIO
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variable a_in,b_in,c_out : std_logic;

begin

while not endfile(input_file) loop 

readline(input_file, input_line); 

read(input_line, a_in); 

read(input_line, b_in); 

c_out := a_in xor b_in; 

write(output_line, c_out); 

writeline(output_file, output_line);

end loop;

assert false report "simulation is over" severity warning;

wait; 

end process;

end arch_text_io;

Example 7.8 (continued)
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7.6 Summary

The following are key points to summarize this chapter:

1. VHDL has powerful constructs to carry out simulation. For complex designs,
use file handling.

2. Functions can be of pure or of impure type.
3. Pure function can return default value of same type as that of the parameters.
4. Impure function can return value and may be of different type as that of the

parameters.
5. Packages are used extensively to pass the information about the design objects

to other VHDL designs.
6. Testbench is used to force the values to the design under verification, and it acts

like stimulus generator.

input_values   output_values

0 0 0

1 0 1 

0 1 1 

1 1 0

Fig. 7.5 Results using TEXTIO
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Chapter 8
PLD-Based Design Guidelines

Abstract This chapter describes the design guidelines for ASIC and FPGA
designs. The coding and design guidelines are useful in the RTL design cycle and
recommended to be used for the efficient performance of the design. The design
guidelines such as resource sharing, pipelining, logic duplications, grouping, use of
signals and variables, gated clock, and clock enable logic are discussed in this
chapter. Designers are requested to use these guidelines for area, speed, and power
improvement in the design.

Keywords ASIC � PLD � Signals � Variables � FPGA � Grouping � Pipelining �
Logic duplication � Area minimization � Speed improvement � Power �
Constraining design � Parallel logic � Priority logic � Bidirectional IO � Clock
gating � Clock enable � LUT � Latch � Sensitivity list � Registered output � Tri-state
unintentional latches

During the design using programmable ASIC, the use of guidelines is important.
For efficient design, coding and design guidelines are used in the industries. Every
organization has their own coding guidelines and used during the RTL design cycle
for ASIC and FPGA designs. The design and optimization guidelines are used for
the performance improvement of the design, and these guidelines are covered with
the practical scenarios in the subsequent sessions.

 

“Once we accept our limits, we go beyond 
them. 
”  --- Albert Einstein 

 Try to use the guidelines to overcome the issues 
during design cycles. Strong design guidelines
can lead to the efficient design.    

© Springer Nature Singapore Pte Ltd. 2017
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DOI 10.1007/978-981-10-3296-7_8
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Among these coding guidelines, few of them are naming conventions, use of the
registered outputs, complete sensitivity list, and use of the signals and variables.

8.1 Naming Conventions

Every organization has their own style in describing the naming conventions while
writing the RTL code for the given design functionality. The naming conventions
improve the readability of code. Even the good naming conventions can give
information about the functional intent of the declarations used in the VHDL design.

8.2 Use of Signals and Variables

Most of the times, it is essential to use either the signals or variables in the VHDL
code RTL design using VHDL. These are used to assign the values depending on
the simulation time stamp or based on the simulator time tick. Simulator uses the
time stamp to update the variable and signal values. The signals and variables are
used for the interconnection, and the purpose of using signal or variable is
depending upon the design functional requirements.

The major difference between the signals and variables is that signals are
updated on the next-simulation time stamp or at the end of the process, whereas the
variables are updated instant immediately during the same simulation time
stamp. For more information, please go through the Chap. 3.

Example 8.1 describes the use of signal. Signals are global to the architecture
and hence used in all the sequential processes across the architecture. Signals are
updated at the end of the process.

The synthesis result is shown in Fig. 8.1 and as shown in the result, the y1_out
and y2_out both are assigned as b_in XNOR c_in. In this a_in, input is not used and
connected to ground. The reason is that synthesis tool updates the last assignment to
d_in for evaluating the expression of y1_out and y2_out.

For Example : 

1. Instead of declaring input as,   a : in std_logic; it is 
better to use a_in : in std_logic;

2. Instead of declaring output as,   y : out std_logic; it is 
better to use  y_out : out std_logic;

3. Signal can be declared as : tmp_sig : std_logic;
4. varibale can be declared as : tmp_var : std_logic;
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

enƟty design_signal is

port ( a_in, b_in, c_in : in std_logic;

y1_out, y2_out: out std_logic);

end design_signal;

architecture arch_signal of design_signal is

signal d_sig : std_logic;

begin

process (a_in, b_in , c_in)

begin

d_sig <= a_in; -- this assignment will be ignored 

y1_out <= c_in xnor d_sig;

d_sig <= b_in; -- this assignment overrides the previous assignment

y2_out <= c_in xnor d_sig;

end process;

end arch_signal;

Architecture defines 
the funcƟonality of 
design.
Process is sensiƟve to 
‘a_in’, ‘b_in’ and 
‘c_in’. Any event on 
one of the signal 
invokes the process. 
The ‘d_sig’ is global 
signal and assigned 
twice in the 
architecture.
As the same signal is 
assigned twice the last 
assignment will be 
updated and first 
assignment is ignored. 

Example 8.1 Synthesizable VHDL code for the signal assignments

Fig. 8.1 Synthesis result for signal assignment
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

enƟty design_variable is

port ( a_in, b_in, c_in : in std_logic;

y1_out, y2_out: out std_logic);

end design_variable;

architecture arch_variable of design_variable is

begin

process (a_in, b_in , c_in)

variable d_var : std_logic;

begin

d_var := a_in; -- this assignment will not be ignored 

y1_out <= c_in xnor d_sig;

d_var:= b_in; -- this assignment will not override the previous

y2_out <= c_in xnor d_sig;

end process;

end arch_variable;

Architecture defines 
the funcƟonality of 
design.
Process is sensiƟve to 
‘a_in’, ‘b_in’ and 
‘c_in’. Any event on 
one of the signal 
invokes the process. 
The variable ‘d_var’ is 
declared inside the 
process.
The ‘d_var’ is assigned 
to a_in and updated 
immediately 
The ‘d_var’ is assigned 
to b_in and updated 
immediately. 

Example 8.2 Synthesizable VHDL using variable

Variables are declared inside the process, and they are local to the process. Variables
are updated instant immediately. The RTL using VHDL is shown in the Example 8.2.

The synthesis result is shown in Fig. 8.2 and as shown in the result, the y1_out is
assigned as a_in XNOR c_in and y2_out is assigned as b_in XNOR c_in. The
variable d_var is updated instant immediately.

Note It is important aspect to understand when to use the signals and when to use
variables. As discussed earlier, the signals are updated at the end of the process after
delta delay, and variables are updated instant immediately. So if the assigned value
needs to be used during the same simulation time stamp, then use variables
otherwise use the signals. Another important point is, if the global declaration is
required then use the signal so that it can be accessed throughout the architecture.
Remember that VHDL-87 does not support the shared variables.
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8.3 Grouping in Design

To improve the design performance, the grouping of terms or expressions can be
used. This can be visualized as the expression with the use of parenthesis. Consider
Example 8.3 shown. In this figure, the output y_out is assigned as a_in + b_in –

c_in − d_in. Without grouping, the synthesis will generate a logic using cascaded
network.

Fig. 8.2 Synthesis result for the VHDL code using variable

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity without_grouping is 

port ( a_in, b_in, c_in, d_in : in std_logic_vector(1 downto 0);

y_out : out std_logic_vector(1 downto 0) );

end without_grouping;

architecture arch_without_gropuing of without_grouping is

begin

y_out <= a_in + b_in -c_in -d_in;

end arch_without_gropuing;

Architecture defines 
the funcƟonality of 
design.
Architecture uses the 
concurrent assignment 
and ‘y_out’ is assigned 
as ‘a_in + b_in –c_in-
d_in’
This generates the 
cascaded logic. 

Example 8.3 Synthesizable VHDL without use of parenthesis
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The synthesis result is shown in Fig. 8.3; as shown in the result, it generates
three cascaded adders. If every adder has the propagation delay of 1 ns then the
overall delay is 3 ns.

The VHDL code described in Example 8.3 can be modified by the use of
parenthesis. The modified code is shown in Example 8.4 and it uses the expression
as y_out <= (a_in + b_in) – (c_in + d_in);

The synthesis result is shown in Fig. 8.4 and it uses the parallel logic due to use
of the parenthesis. As a_in and b_in are combined using parenthesis, c_in and d_in
are combined using parenthesis so it generates the two adders and one subtractor.
The subtraction operation is implemented using 2’s complement addition. If the
delay of every adder is 1 ns, then the overall propagation delay is 2 ns. This
technique is used to improve the design performance.

8.4 Guidelines for Use of Tri-State Logic

In most of the practical scenarios, the tri-state logic needs to be used to design the
buses. Tri-state has three values logic ‘0’, logic ‘1’, and high impedance ‘z’. The
tri-state buses are used to communicate with the other design modules. Example 8.5
describes the tri-state logic. It is recommended to use the tri-state logic at the top
level in the design to avoid the bus contentions. Instead of using the tri-state logic, it
is recommended to use the Mux-based logic with the enable.

Figure 8.5 shows the synthesis result for the tri-state logic and the logic can be
used to pass the data when ‘enable_in’ is equal to logic ‘1’. For logic ‘0’ enable
input, the output of tri-state logic is high impedance that is potential-free contact.

Fig. 8.3 Synthesis result for the VHDL code without use of parenthesis
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity with_grouping is 

port ( a_in, b_in, c_in, d_in : in std_logic_vector(1 downto 0);

y_out : out std_logic_vector(1 downto 0) );

end with_grouping;

architecture arch_with_gropuing of with_grouping is

begin

y_out <= (a_in + b_in) -(c_in + d_in) ;

end arch_with_gropuing;

Architecture defines 
the funcƟonality of 
design.
The concurrent 
assignment statement 
is used inside the 
architecture.
The ‘y_out’ is assigned 
to  (a_in + b_in) –
(c_in+d_in);

Example 8.4 Synthesizable VHDL code using parenthesis

Fig. 8.4 Synthesis result for VHDL code using parenthesis
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity tri_state is 

port ( a_in, enable_in : in std_logic;

y_out : out std_logic);

end tri_state;

architecture arch_tri_state of tri_state is

begin

process ( a_in, enable_in)

begin

if ( enable_in='1') then

y_out <= a_in;

else

y_out <='Z';

end if; 

end process;

end arch_tri_state;

Architecture defines 
the func�onality of 
design.
The process is 
sensi�ve to 
‘enable_in’, ‘a_in’.
The ‘y_out’ is assigned 
to  a_in  for enable_in 
=’1’
For enable_in =’0’ 
y_out is assigned to 
high impedance state. 

Example 8.5 Synthesizable VHDL RTL for tri-state logic

Fig. 8.5 Synthesis result for the tri-state logic
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8.5 Arithmetic Resource Sharing

In most of the practical design scenarios, the common resources can be shared by
using the fundamental concepts of logic design. For example, if adders are used and
consuming the more area, then the area can be reduced by sharing the common
adder as resource. This technique plays important role in the reduction of area by
minimizing the required gate count during synthesis. Instead of using more number
of adders, it is better practice to use more number of multiplexers in the design.
Consider the VHDL code described in Example 8.6 for the following truth
Table 8.1. As described in the VHDL code, the output needs to be assigned
depending on the condition of the select input. For ‘sel_in = 1’ the output ‘y_out’ is
assigned to ‘a_in + b_in’ and for the ‘sel_in = 0’ an output ‘y_out’ is assigned to
‘c_in + d_in’.

The synthesis result for the arithmetic logic without using the concept of re-
source sharing is shown in Fig. 8.6. As shown in Fig. 8.6, the logic uses two adders
and single multiplexer. The adders are used in the data path to perform the addition.
The output of multiplexer is controlled by ‘sel_in’ input and for the ‘sel_in’ input as
logic ‘1’ it generates an output which is addition of ‘a_in’ and ‘b_in’. For the logic
‘0’ condition of ‘sel_in’ it generates an output as addition of ‘c_in’ and ‘d_in’.

The generated logic has issue, as both adders are performing operations at the
same time so unnecessarily it is wastage of power. The result data after performing
the additions waits at the input lines of multiplexers and depending on the status of
select line, the output is assigned. So this kind of technique is less efficient and has
more gate count and leads to more power dissipation. To overcome this limitation,
the resource sharing is used where the common resources can be shared by pushing
the adder forward to the multiplexers. So using resource sharing more multiplexers
are used and less number of adders and this leads to the significant area reduction.

As discussed earlier, the common resource required that is adder can be shared
by using the multiplexer chain at the input and that can be achieved by pushing the
adder at the output. Table 8.2 gives information about the strategy used for sharing
the common resources.

By modification in the VHDL code, the resource sharing can be achieved. The
modified RTL using VHDL is described in Example 8.7 and uses the temporary
signals as ‘sig_1’ and ‘sig_2’. For logic ‘0’ status on the select line ‘sel_in’ the
‘sig_1’ holds the ‘c_in’ input and ‘sig_2’ holds the ‘d_in’ input value. For logic ‘1’
status on the select line ‘sel_in’ the ‘sig_1’ holds the ‘a_in’ input and ‘sig_2’ holds
the ‘b_in’ input value.

The synthesis result for the Example 8.7 is shown in Fig. 8.7. As shown in the
figure, the logic is realized by using the single adder and two multiplexers. As one
adder consumes lesser area, the design is efficient and has less gate count and lesser
power. In this logic, only one operation is performed at a time.
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity resource_sharing is

port (a_in,b_in,c_in,d_in: in std_logic_vector (1 downto 0);

sel_in: in std_logic;

y_out: out std_logic_vector ( 1 downto 0));

end resource_sharing;

architecture arch_without_sharing of resource_sharing is

begin

process (a_in, b_in, c_in, d_in, sel_in)

begin

if (sel_in='1') then

y_out <= a_in +  b_in;

else

y_out <= c_in +  d_in;

end if;

end process; 

end arch_without_sharing;

Architecture defines 
the funcƟonality of 
design.
Process is sensitive to 
‘a_in’, ‘b_in’ and 
‘sel_in’. Any event on 
one of the signal 
invokes the process. 
If-then-else is
sequenƟal statement 
and used inside the 
process. 
For true ‘sel_in’ condiƟon
the input ‘a_in+b_in’ is 
assigned to ‘y_out’. 
For false ‘sel_in’ condiƟon
the input ‘c_in+d_in’ is 
assigned to ‘y_out’

Example 8.6 Synthesizable VHDL code for arithmetic logic without resource sharing
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8.6 Logic Duplications

The duplication of the logic plays an important role in the design of the digital
circuits. The logic duplication depending on the scenario can increase the gate
count or can reduce the gate count. In the ASIC design realization, the logic

Table 8.1 Truth table for the
arithmetic logic

sel_in y_out

0 c_in + d_in

1 a_in + b_in

Fig. 8.6 Synthesis result for the VHDL code without resource sharing

Table 8.2 Truth table for the
arithmetic logic

sel_in sig_1 sig_2 y_out

0 c_in d_in c_in + d_in

1 a_in b_in a_in + b_in

Fig. 8.7 Synthesis result for the VHDL code using resource sharing
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duplication can increase the gate count but for the FPGA deigns the logic dupli-
cation can reduce the number of Look Up Tables (LUTs). So this technique is
scenario specific.

Example 8.8 is the description of the 4:16 decoder using VHDL and the code
uses the case construct. As ‘case’ construct is used, it infers the parallel logic and if
the design is realized using the FPGA which has 4 input and single output LUT
then it uses two LUTs for every output. The reason being the ‘enable_in’ is one
more input and hence two cascaded LUTs are required to generate single-bit
decoder output.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

enƟty resource_sharing  is

port (a_in,b_in,c_in,d_in: in std_logic_vector (1 downto 0);

sel_in: in std_logic;

y_out: out std_logic_vector ( 1 downto 0));

end resource_sharing;

architecture arch_with_sharing of resource_sharing_1 is

signal sig_1, sig_2 : std_logic_vector (1 downto 0);

begin

Architecture defines 
the funcƟonality of 
design.
The temporary signals 
‘sig_1’ and ‘sig_2’ are 
used to hold the value 
depending on the 
assignment. 
The declared signals 
are global to the 
architecture and used 
to enable the resource 
sharing by using the 
MUX logic in the data 
path. 

Example 8.7 Synthesizable VHDL RTL for the arithmetic logic using resource sharing
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P1: process (a_in, b_in, c_in, d_in, sel_in)

begin

if (sel_in='1') then

sig_1 <= a_in ;

sig_2 <= b_in;

else

sig_1 <= c_in ;

sig_2<= d_in;

end if;

end process; 

P2: process ( sig_1, sig_2)

begin

y_out <= sig_1 + sig_2;

end process;

end arch_with_sharing;

Process is sensiƟve to 
‘a_in’, ‘b_in’, ‘c_in’, 
‘d_in’ and ‘sel_in’. Any 
event on one of the 
signal invokes the
process. 
If-then-else is 
sequenƟal statement 
and used inside the 
process. 
For true ‘sel_in’ condiƟon
the input ‘b_in’ is 
assigned to ‘sig_2’ and 
input ‘a_in’ is assigned 
to ‘sig_1’. 
For false ‘sel_in’ condiƟon
the input ‘d_in’ is 
assigned to ‘sig_2’ and 
input ‘c_in’ is assigned 
to ‘sig_1’. 

Process is sensiƟve to 
‘sig_1’  and ‘sig_2’. Any 
event on one of the 
signal invokes the 
The assignment  is 
used inside the process 
and output ‘y_out’ is 
assigned to  addiƟon of 
‘sig_1’ , ‘sig_2’

Example 8.7 (continued)
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As shown in Fig. 8.8, two cascaded LUTs having uniform delay are used to
realize the logic at one of the output of decoder. For the 16 output lines, the
realization using FPGA uses 32 LUTs without the use of logic duplication.

The RTL using VHDL code described in Example 8.8 can be modified by using
the logic duplication where two 2:4 decoders can drive the 16 AND gates. So in
such scenario the FPGA realization uses the 8 LUTs for the decoders and 16 LUTs
for generating the outputs. Thus this technique reduces almost 8 LUTs as compare
to logic without the use of logic duplication.

The modified VHDL design using the logic duplication technique is described in
Example 8.9. The synthesis result is shown in Fig. 8.9.

By this technique, the VHDL code length increases but this technique can reduce
the usage of number of LUTs while implementing by using FPGA.

8.7 Multiple Driver Assignments

Most of the time during the design using programmable ASICs, if the same signal is
assigned in the different processes then it gives the multiple driver assignment error.
Most of the EDA tools generate the error as ‘Error: Can’t resolve multiple constant
drivers for net “name_net” in the file_name.vhd’. The scenario is described in
Example 8.10.

As described in Example 8.10 the signal ‘y_reg’ is assigned in the process ‘P1’
and process ‘P2’. So during compilation the EDA tool gives the error as multiple
driver assignments.

The RTL using VHDL is described in Example 8.10, is modified to resolve the
multiple driver error. The error is resolved by using the intermediate signal ‘y1_reg’
in the second process. As same signal is not assigned in the process P1 and process
P2, it does not have the compilation issue, and hence, there is no any error for the
multiple driver assignment. The synthesizable RTL using VHDL is described in
Example 8.11.

The synthesis result for Example 8.11 is shown in Fig. 8.10.

Fig. 8.8 Decoder single output realization using FPGA
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library ieee;

use ieee.std_logic_1164.all;

enƟty without_logic_duplicaƟon is 

port (sel_in  : in std_logic_vector(3 downto 0);

enable_in : in std_logic; 

y_out : out std_logic_vector ( 15 downto 0));

end without_logic_duplicaƟon;

architecture arch_without_logic_duplicaƟon of without_logic_duplicaƟon is

begin

process(sel_in, enable_in) 

begin

if (enable_in ='1') then

case ( sel_in) is

when "0000" => y_out <= "0000000000000001";

when "0001" => y_out <= "0000000000000010";

when "0010" => y_out <= "0000000000000100";

when "0011" => y_out <= "0000000000001000";

Architecture defines 
the funcƟonality of 
design.
Process is sensiƟve to 
‘sel_in’, and ‘ena-
ble_in’. Any event on 
one of the signal 
invokes the process. 
If-then-else is sequen-
Ɵal statement and 
used inside the pro-
cess. 
For true ‘enable_in’ 
condiƟon the decoder 
is enabled to generate 
acƟve high output. 

Example 8.8 Synthesizable VHDL RTL for 4:16 decoder without logic duplication
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when "0100" => y_out <= "0000000000010000";

when "0101" => y_out <= "0000000000100000";

when "0110" => y_out <= "0000000001000000";

when “0111” => y_out <= "0000000010000000";

when "1000" => y_out <= "0000000100000000";

when "1001" => y_out <= "0000001000000000";

when "1010" => y_out <= "0000010000000000";

when "1011" => y_out <= "0000100000000000";

when "1100" => y_out <= "00010

when "1101" => y_out <= "0010000000000000";

when "1110" => y_out <= "0100000000000000";

when “1111” => y_out <= "1000000000000000";

end case;

else 

y_out <= (others =>0);

end if;

end process; 

The case construct is 
used to describe the 
parallel logic. 
Depending on the status
tus on ‘sel_in’ input 
lines it assigns one of 
the output line as acƟve
high. 
For ‘enable_in’ input 
as acƟve high the
decoder is enabled to 
force one of the output
line as acƟve high.  
For ‘enable_in’ as 
acƟve low all the output
lines are forced to 
acƟve low as decoder 
is disabled. 

Example 8.8 (continued)
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library ieee;

use ieee.std_logic_1164.all;

enƟty with_logic_duplicaƟon is 

port (sel_in  : in std_logic_vector( 3 downto 0);

enable_in : in std_logic; 

y_out : out std_logic_vector ( 15 downto 0));

end with_logic_duplicaƟon;

architecture arch_with_logic_duplicaƟon of with_logic_duplicaƟon is

signal y0_reg, y1_reg : std_logic_vector ( 3 downto 0);

begin

process(sel_in(1 downto 0), enable_in) 

begin

if (enable_in ='1') then

case ( sel_in(1 downto 0)) is

when "00" => y0_reg <= "0001";

when "01" => y0_reg <= "0010";

Architecture defines 
the funcƟonality of 
design.
Intermediate signals 
y0_reg and y1_reg are 
defined to hold the 
value. 
Process is sensiƟve to 
‘sel_in(1 downto 0)’, 
and ‘enable_in’. Any 
event on one of the 
signal invokes the 
process. 
If-then-else is sequenƟal
statement and 
used inside the
process. 
For true ‘enable_in’ 
condiƟon the decoder 
is enabled to 4 bit 
generate output 
y0_reg. 

Example 8.9 Synthesizable VHDL RTL using logic duplication
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when "10" => y0_reg <= "0100";

when "11" => y0_reg <= "1000";

end case;

else 

y0_reg <= "0000";

end if;

end process; 

process(sel_in(3 downto 2), enable_in) 

begin

if (enable_in ='1') then

case ( sel_in(3 downto 2)) is

when "00" => y1_reg <= "0001";

when "01" => y1_reg <= "0010";

when "10" => y1_reg <= "0100";

when "11" => y1_reg <= "1000";

end case;

Process is sensiƟve to 
‘sel_in(3 downto 2)’, 
and ‘enable_in’. Any 
event on one of the 
signal invokes the 
process. 
If-then-else is sequenƟal
statement and 
used inside the process. 
For true ‘enable_in’ 
condiƟon the decoder 
is enabled to 4 bit 
generate output 
y1_reg. 
For false ‘enable_in’ 
condiƟon the decoder 
is disabled to 
generate 4 bit output 
y1_reg as logic ‘0000’

Example 8.9 (continued)

252 8 PLD-Based Design Guidelines



else 

y1_reg <= "0000";

end if;

end process; 

y_out(0) <= y0_reg(0) and y1_reg(0);

y_out(1) <= y0_reg(1) and y1_reg(0);

y_out(2) <= y0_reg(2) and y1_reg(0);

y_out(3) <= y0_reg(3) and y1_reg(0);

y_out(4) <= y0_reg(0) and y1_reg(1);

y_out(5) <= y0_reg(1) and y1_reg(1);

y_out(6) <= y0_reg(2) and y1_reg(1);

y_out(7) <= y0_reg(3) and y1_reg(1);

y_out(8) <= y0_reg(0) and y1_reg(2);

y_out(9) <= y0_reg(1) and y1_reg(2);

y_out(10) <= y0_reg(2) and y1_reg(2);

y_out(11) <= y0_reg(3) and y1_reg(2);

EffecƟvely the decoder
with output line 
y1_reg(0) is used as 
the enable input of 
AND gate to generate 
the four output lines 
y_out(0) to y_out(3) 
depending on the status
of y0_reg(0) to 
yo_reg(3)

EffecƟvely the decod-
er with output line 
y1_reg(1) is used as 
the enable input of 
AND gate to generate 
the four output lines 
y_out(4) to y_out(7) 
depending on the status 
of y0_reg(0) to 
y0_reg(3)

EffecƟvely the decoder
with output line 
y1_reg(2) is used as 
the enable input of 
AND gate to generate 
the four output lines 
y_out(8) to y_out(11) 
depending on the status 
of y0_reg(0) to 
y0_reg(3).

Example 8.9 (continued)
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8.8 Inferring Latches

Most of the time during the RTL design phase, it has been observed that, the
undesired functional behavior due to inference of the latches. The reason for the
unintentional latches is the missing ‘else’ condition from the ‘if then else’ statement
or missing ‘when others’ from the ‘case’ construct. Example 8.12 describes the
scenario for the unintended latch inference. The intended design functionality is to
generate output ‘y_out’ as ‘a_in and b_in’ for ‘enable_in = 1’ and to assign
‘y_out = 0’ for the ‘enable_in = 0’. As ‘else’ clause is missing it infers unintended
latch.

The synthesis result for the Example 8.12 is shown in Fig. 8.11.
The RTL using VHDL described in Example 8.12 can be modified by using the

‘else’ clause to get the intended design functionality. The modified VHDL RTL is
described in Example 8.13. Synthesis result is shown in Fig. 8.12.

y_out(12) <= y0_reg(0) and y1_reg(3);

y_out(13) <= y0_reg(1) and y1_reg(3);

y_out(14) <= y0_reg(2) and y1_reg(3);

y_out(15) <= y0_reg(3) and y1_reg(3);

end arch_with_logic_duplicaƟon;
EffecƟvely the decoder
with output line 
y1_reg(3) is used as 
the enable input to 
generate the four 
output lines y_out(12) 
to y_out(15) depending
on the status of 
y0_reg(0) to y0_reg(3)

Example 8.9 (continued)
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8.9 Use of If Then Else Versus Case Statements

As discussed in Chap. 4, the sequential statements ‘if then else’ and ‘case’ are used
inside the process and they are used to design the combinational or sequential logic.
Example 8.14 describes the functionality of the design using ‘case.’ The ‘case’
construct generates the parallel logic. The synthesis result is shown in Fig. 8.13.

The synthesis result for Example 8.14 is shown in Fig. 8.13. As shown, it infers
the parallel logic and hence the lesser propagation delay as compare to imple-
mentation using ‘if then else’.

The synthesizable VHDL using the ‘if then else’ construct is shown in
Example 8.15. As described in Example 8.15, due to use of the nested ‘if then else’

Fig. 8.9 Synthesis result for the VHDL RTL using logic duplication
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statement it infers the priority logic. Priority logic is having more propagation delay
due to cumulative effect of the individual stage propagation delay.

The synthesis result for the VHDL code using nested if then else is shown in
Fig. 8.14 and as shown it infers the priority logic. The input ‘a_in’ has the highest
priority as compared to any other input. The input ‘d_in’ has the least priority.

--Error: Can't resolve mulƟple constant drivers for net "y_reg" at multiple_driver.vhd
--Code with the mulƟple drivers
library ieee;
use ieee.std_logic_1164.all;
enƟty mulƟple_driver is
port (a_in, b_in, c_in, d_in : in std_logic;
clk : in std_logic;
y_out : out std_logic);
end mulƟple_driver;
architecture arch_mulƟple_driver of mulƟple_driver is
signal y_reg : std_logic;
begin
P1: process(clk, a_in, b_in) 
begin
if (clk='1' and clk'event) then
y_reg <= a_in and b_in;
end if;
end process;
P2: process (clk, c_in, d_in)
begin
if (clk = '1' and clk'event) then
y_reg <= y_reg or (c_in and d_in );
end if;
end process;
y_out <= y_reg;
end arch_mulƟple_driver;

Error : Can't resolve mul ple constant 

drivers for net "y_reg" at mul ple_driver.vhd

Process ‘P1’is 
sensiƟve to  ‘clk’, 
‘a_in’, and  ‘b_in’. Any 
event on one of the 
signal invokes the process.  
If-then-else is 
sequenƟal statement 
and used inside the 
process. 
For rising edge of the 
clock the y_reg is
assigned to “a_In and 
b_in”. in the first 
process ‘P1’. 
Process ‘P2’is 
sensiƟve to  ‘clk’, 
‘c_in’, and  ‘d_in’. Any 
event on one of the 
signal invokes the process.  
For rising edge of the 
clock the y_reg is
assigned to “y_reg or 
(c_in and d_in)” in the 
second process ‘P2’. 
This code gives 
compilaƟon error due 
to assignment of the 
same signal twice in 
the two different
processes. 

Example 8.10 Synthesizable VHDL RTL with multiple drivers
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library ieee;
use ieee.std_logic_1164.all;
enƟty mulƟple_driver is 
port (a_in, b_in, c_in, d_in : in std_logic;
clk : in std_logic;
y_out : out std_logic);
end mulƟple_driver;
architecture arch_mulƟple_driver of mulƟple_driver is
signal y_reg : std_logic;
signal y1_reg : std_logic; 
begin
P1: process(clk, a_in, b_in) 
begin
if (clk='1' and clk'event) then
y_reg <= a_in and b_in;
end if;
end process;
P2:process (clk, c_in, d_in)
begin
if (clk = '1' and clk'event) then
y1_reg <= y_reg or (c_in and d_in );
end if;
end process;
y_out <= y1_reg;
end arch_mulƟple_driver;

Process is sensiƟve to 
‘a_in’, ‘clk’ and ‘b_in’. 
Any event on one of 
the signal invokes the 
process. 
If-then-else is 
sequenƟal statement 
and used inside the 
process. 
For rising edge of clk 
the ‘y_reg’ is assigned 
as ‘a_in and b_in’ in 
the process P1.
For rising edge of clk 
the y1_reg is assigned 
to ‘y_reg or (c_in and 
d_in). 
The example doesn’t 
have mulƟple drivers. 

Example 8.11 Synthesizable VHDL RTL without multiple drivers

Fig. 8.10 Synthesis result for the logic without multiple drivers
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8.10 Use of Pipelining in Design

The pipelining is used in the design to improve the design performance. Consider
the scenario that the design has the combinational logic between two registers and
the delay of combinational logic is more. In such scenario, the combinational logic

library ieee;
use ieee.std_logic_1164.all;

enƟty latch_inference is 
port (a_in, b_in: in std_logic;
enable_in : in std_logic;
y_out : out std_logic);
end latch_inference;

architecture arch_latch_inference of latch_inference is
begin

process(enable_in, a_in, b_in) 
begin
if (enable_in=’1’) then
y_out <= a_in and b_in;
end if;
end process;

end arch_latch_inference;

Process is sensiƟve to 
‘a_in’, ‘b_in’ and 
‘enable_in’. Any event 
on one of the signal 
invokes the process. 
For true value of 
‘enable_in’ the ‘y_out’ 
is assigned to ‘a_in 
and b_in’.
For false value of 
‘enable_in’ it has not 
stated what to do?
So as ‘else’ clause is 
missing it infers logic 
with latch

Example 8.12 Synthesizable VHDL RTL with missing ‘else’

Fig. 8.11 Synthesis result for the VHDL RTL with unintentional latch
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can be spitted by adding one more register in the design. The technique is used to
improve the overall design timing and performance of the design at the cost of one
cycle latency. Considering the design described in Example 8.16, the synthesis
result is shown in Fig. 8.15.

As shown in Fig. 8.15, the register-to-register path has AND logic gate followed
by the OR logic gate. So it has the maximum combinational delay. If delay of every
gate is 1 ns, the combinational delay in the register-to-register path is 2 ns.

This delay has significant impact on the design speed. To improve the design
performance, the combinational delay can be reduced by adding the pipelined

library ieee;
use ieee.std_logic_1164.all;

enƟty wo_latch_inference is 
port (a_in, b_in: in std_logic;
enable_in : in std_logic;
y_out : out std_logic);
end wo_latch_inference;
architecture arch_wo_latch_inference of wo_latch_inference is

begin
process(enable_in, a_in, b_in) 
begin
if (enable_in='1') then
y_out <= a_in and b_in;
else
y_out<='0';
end if;
end process;

end arch_wo_latch_inference;

Process is sensiƟve to 
‘a_in’, ‘b_in’ and 
‘enable_in’. Any event 
on one of the signal 
invokes the process. 
For true value of 
‘enable_in’ the ‘y_out’ 
is assigned to ‘a_in 
and b_in’.
For false value of 
‘enable_in’ ‘y_out’ is 
assigned to logc’0’
So it infers the 
combinaƟonal logic. 

Example 8.13 Synthesizable VHDL RTL without missing else
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
enƟty mux_case is
port (sel_in: in std_logic_vector(1 downto 0);
a_in, b_in,c_in,d_in: in std_logic;
y_out: out std_logic);
end mux_case;
architecture arch_mux_case of mux_case is
begin
process (sel_in, a_in, b_in, c_in , d_in)
begin
case (sel_in) is
when "00" => y_out <= a_in;
when "01" => y_out <= b_in;
when "10" => y_out <= c_in;
when "11" => y_out <= d_in;
when others => y_out <= null;

end case;

end process;
end arch_mux_case;

Architecture defines 
the funcƟonality of 
design.
Process is sensiƟve to 
‘a_in’, ‘b_in’ , ‘c_in’ 
and ‘d_in’. Any event 
on one of the signal 
invokes the process. 
The ‘case’ construct is 
used and it infers the 
parallel logic.  

Example 8.14 Synthesizable VHDL using case

Fig. 8.12 Synthesis result for the VHDL RTL with ‘if then else’
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Fig. 8.13 Synthesis result for the VHDL RTL using case

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
enƟty mux_if is
port (sel_in: in std_logic_vector(1 downto 0);
a_in, b_in,c_in,d_in: in std_logic;
y_out: out std_logic);
end mux_if;
architecture arch_mux_if of mux_if is
begin
process (sel_in, a_in, b_in, c_in , d_in)
begin
if (sel_in="00") then 

y_out <= a_in;
elsif (sel_in="01") then

y_out <= b_in;
elsif (sel_in="10") then 

y_out <= c_in;
elsif (sel_in="11") then 

y_out <= d_in;
else 

y_out <= '0';
end if;
end process;
end arch_mux_if;

Architecture defines 
the funcƟonality of 
design.
Process is sensiƟve to 
‘a_in’, ‘b_in’,’c_in’ and 
‘d_in’. Any event on 
one of the signal 
invokes the process. 
The nested ‘if-then-
else’ is used and it 
infers the priority 
logic. 
All the condiƟons are 
covered in this and it 
infers the 
combinaƟonal logic. 

Example 8.15 Synthesizable VHDL RTL using nested if then else
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register by retaining the same design functionality. The modified VHDL code is
described in Example 8.17 and the synthesis result is shown in Fig. 8.16.

The synthesis result for Example 8.17 is shown in Fig. 8.16. As shown it uses
the four registers using the pipelining whereas the Example 8.16, uses only three
registers.

Due to pipelining, the design has the less combinational delay in the
register-to-register path and has better performance as compared to the design
without pipelining. Commonly used techniques to improve the design performance
using the pipelining concept are register balancing and register optimization.
Depending on the requirement of the hierarchical designs or flattened design, these
techniques can be used during the RTL design and synthesis phase.

8.11 Multiple Clock Domain and Data Passing

The complex ASIC designs or design using FPGA can have single clock domain or
multiple clock domains. A single clock domain design does not have the issue of
data integrity or data convergence. But if the design has multiple clocks then the
real issue is the data passing from one of the clock domains to another clock

Fig. 8.14 Synthesis result for VHDL RTL using nested if then else
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

enƟty without_pipelining is

port (a_in, b_in,c_in,d_in,e_in, clk: in std_logic;

y_out: out std_logic);

end without_pipelining;

architecture arch_without_pipelining of without_pipelining is

signal y1_out, y2_out : std_logic;

begin

process (clk, a_in, b_in,c_in,d_in, e_in)

begin

if (clk='1' and clk'event) then

y1_out <= a_in and b_in;

y2_out <= c_in and d_in;

y_out <= (y1_out or y2_out) and e_in; 

end if;

end process; 

end arch_without_pipelining;

The process is 
sensiƟve to ‘clk’, 
‘a_in’,’b_jn’,’c_in, 
‘d_in’and ‘e_in’.
On rising edge of the 
clock input the signal 
‘y1_out’ is assigned to 
‘a_in and b_in’
On rising edge of the 
clock input the signal 
‘y2_out’ is assigned to 
‘c_in and d_in’
On rising edge of clock 
an output ‘y_out’ is 
assigned to ‘(y1_out 
or y2_out) and e_in’.

Example 8.16 Synthesizable VHDL RTL without use of pipelining
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Fig. 8.15 Synthesis result for the VHDL RTL without using pipelining

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
enƟty with_pipelining is
port (a_in, b_in,c_in,d_in,e_in, clk: in std_logic;
y_out: out std_logic);
end with_pipelining;
architecture arch_with_pipelining of with_pipelining is
signal y1_out, y2_out,y3_out : std_logic;
begin
process (clk, a_in, b_in,c_in,d_in, e_in)
begin
if (clk='1' and clk'event) then
y1_out <= a_in and b_in;
y2_out <= c_in and d_in;
y3_out <= (y1_out or y2_out); 
y_out <= y3_out and e_in; 
end if;
end process; 
end arch_with_pipelining;

Process is sensiƟve to 
‘clk’, ‘a_in’, 
‘b_in’,’c_in’,’d_in’and 
‘e_in’. Any event on 
one of the signal 
invokes the process. 
On the rising edge of 
clock the y1_out, 
y2_out, y3_out and 
y_out areassigned.
Due to use of ‘y3_out’ 
signal it infers one 
more register. 
Total number of 
registers inferred by 
this code are four. 

Example 8.17 Synthesizable VHDL RTL using the pipelining
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domain. To avoid the metastability and the data integrity issues, the data can be
passed from one of the clock domain to another by using the two-stage- or
multi-stage-level synchronizers.

Example 8.18 describes the multiple clock domain design scenario. But in the
practice there can be separate design for clock domain one and clock domain two.

The synthesis result is shown in Fig. 8.17 and as shown while passing the data
from clock domain one to the clock domain two, two-level synchronizer is used.
The two-level synchronizer output is valid legal state although the first flip-flop in
the second clock domain goes into the metastable state.

Fig. 8.16 Synthesis result for VHDL RTL using pipelining

Fig. 8.17 Synthesis result for the VHDL RTL using multiple clocks
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8.12 Bidirectional IO

During the design, the bidirectional IO is used to pass the data from the design to
the external world or vice versa. As discussed earlier in Chap. 3, the port can be
declared as ‘in’, ‘out’, and ‘inout’. The RTL using VHDL for the bidirectional IO is
shown in Example 8.19. The synthesis result is shown in Fig. 8.18.

The synthesis outcome of Example 8.19 is shown in Fig. 8.18. As shown the
four-bit output line is ‘y_out’ and four-bit bidirectional line is ‘y_inout’

library ieee;
use ieee.std_logic_1164.all;
enƟty clock_domain_crossing is 
port ( a_in , b_in , clk_1, clk_2 : in std_logic;

y_out : out std_logic);
end clock_domain_crossing;
architecture arch_mult_clock of clock_domain_crossing is
signal sig_domain_1 , sig_domain_2 : std_logic;
begin
P1: process (clk_1)
begin
if rising_edge (clk_1) then
sig_domain_1 <= a_in and b_in;
end if;
end process;
P2: process (clk_2)
begin
if rising_edge (clk_2) then
sig_domain_2 <= sig_domain_1;
y_out <= sig_domain_2;
end if;
end process;
end arch_mult_clock;

Two different 
processes P1, P2. 
Process P1 is triggered 
on the clk_1, process 
P2 is triggered on 
clk_2.
Single assignment in 
the process P1 infers 
the single register
whereas mulƟple 
assignment 
statements in the 
process P2 infers the 
two registers. 

Example 8.18 Synthesizable VHDL RTL for multiple clock domains
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library ieee;
use ieee.std_logic_1164.all;
enƟty bidirecƟonal_register is port (
data_in : in std_logic_vector (3 downto 0);
clk,enable_in : in std_logic;
y_out : out std_logic_vector (3 downto 0);
y_inout : inout std_logic_vector (3 downto 0));
end bidirecƟonal_register;
architecture arch_bidirecƟonal_register of bidirecƟonal_register is
signal y_reg : std_logic_vector (3 downto 0);
signal yio_reg : std_logic_vector (3 downto 0);
begin
P1: process(clk,data_in) 
begin
if (clk='1' and clk'event) then
y_reg <= data_in;
end if;
end process;
P2: process (y_reg,enable_in)
begin
if (enable_in = '1') then
yio_reg <= y_reg ;
else
yio_reg <= (others=>'Z');
end if;
end process;
y_inout <= yio_reg;
y_out <= y_inout;
end arch_bidirecƟonal_register;

Process P1 is sensiƟve 
to the ‘clk’ and 
‘data_in’.
Process P2 is sensiƟve 
to ‘y_reg’ and 
‘enable_in’
The bidirecƟonal IO is 
‘y_inout’ and the 
value to this are 
assigned by using the 
intermediate signal 
‘yio_reg’

Example 8.19 Synthesizable VHDL RTL for bidirectional IO

Fig. 8.18 Synthesis result for the VHDL RTL using bidirectional IO
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

enƟty gated_clock is

port (data_in, clk, load_en, clock_en: in std_logic;

y_out: out std_logic);

end gated_clock;

architecture arch_gated_clock of gated_clock is

signal clock_gate: std_logic;

begin

clock_gate <= (clk and clock_en);

process (load_en, clock_gate)

begin

if (clock_gate='1' and clock_gate'event) then

if (load_en='1') then

y_out <= data_in;

end if; end if;

end process; 

end arch_gated_clock;

Clock enable 
‘clock_en’signal is 
used to enable the 
clock.
The gated clock 
‘clock_gate’ is created 
by using ‘clock_en and 
clk’.
The process is 
sensiƟve to the 
‘clock_gate’and  
‘load_en’
For the rising edge of 
the ‘clock_gate’ the 
‘y_out’ is assigned as 
‘data_in’ for 
‘load_en=’1’. 

Example 8.20 Synthesizable VHDL RTL using clock gating

268 8 PLD-Based Design Guidelines



8.13 Gated Clock

The clock is hungry net in the design. Due to clock toggling, the design has more
dynamic power dissipation. The power dissipation can be reduced by using the
clock-gating cells. The design using the clock-gating concept is described in
Example 8.20. The synthesis result is shown in Fig. 8.19.

As shown in the synthesis outcome, the clock input of the register is controlled
by using the ‘clock_gate’, where ‘clock_gate’ signal is generated by using AND
logic. But such type of gating strategy is prone to the glitches. To avoid the glitches,
it is recommended to use the clock-gating cells.

8.14 Design with Clock Enable

The sequential design can have the additional enable signal. Depending on the
enable signal status, the input data can be transferred to the output. Example 8.21
describes the synthesizable VHDL using the enable input and the synthesis result is
shown in Fig. 8.20.

As shown in the synthesis outcome the clock enable is generated and used in the
enable path of the flip-flop.

More guidelines related to the practical scenarios and their interpretation in the
practical ASIC prototyping are discussed in the next subsequent chapters. For the
FPGA device-specific guidelines, please refer the Chap. 6.

Fig. 8.19 Synthesis result for VHDL RTL using clock gating
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

enƟty clock_enable is

port (data_in, clk, load_en, clock_en: in std_logic;

y_out: out std_logic);

end clock_enable;

architecture arch_clock_enable of clock_enable is

signal clock_enable : std_logic; 

begin

clock_enable <= load_en and clock_en; 

process (clk, data_in, clock_enable)

begin

if (clk='1' and clk'event) then

if (clock_enable='1') then

y_out <= data_in;

end if;end if;

end process; 

end arch_clock_enab

The clock enable 
signal ‘clock_enable’ 
is generated by using 
AND of ‘load_en’, 
‘clock_en’
The process is 
sensiƟve to ‘clk’, 
‘data_in’ and 
‘clock_enable’.
If ‘clock-enable’ is 
logic ‘1’ and clk is 
rising edge then the 
‘data_in’ is passed to 
the output ‘y_out’

Example 8.21 Synthesizable VHDL RTL using clock enable
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8.15 Summary

The following are the key points to summarize the design guidelines

1. During the RTL design phase, use the naming conventions suggested in the
coding guidelines.

2. To avoid the simulation and synthesis mismatch, use all the required signals in
the sensitivity list.

3. Do not use ‘Buffer’ as during synthesis; it creates the problem. Use ‘inout’ with
the suitable intermediate signal for looping back of the signals.

4. Use the ‘case’ construct to infer the parallel logic and use ‘if then else’ con-
struct to infer the priority logic.

5. For better timing and constraining design, use the registered input and output.
6. Do not use the glue logic between different modules, instead of that combine

the glue logic in the module.
7. Use pipelining for the improved design performance.
8. Use more number of multiplexers as compare to adder. Adder consumes more

area as compared to the multiplexers.
9. Use tri-state logic at the top level or model the tri-state behavior using the

suitable multiplexing logic with enable input.
10. Use the grouping of the terms using parenthesis to reduce the overall propa-

gation delay.
11. Describe all the conditions in the ‘case’ construct and ‘if then else’ construct to

avoid inference of the unintentional latches.
12. Latches are inferred in the design if ‘else’ condition is not covered. Even if all

the conditions in the ‘case’ construct are not covered, then it infers uninten-
tional latches.

13. Use the two- or multi-level synchronizer to pass the data from one of the clock
domains to the another clock domain.

14. Use the logic duplication technique to improve the overall design performance.
Depending on the scenario, logic duplication can increase the gate count or can
reduce the gate count.

Fig. 8.20 Synthesis result for the VHDL RTL using clock enable
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15. Have a clean data and control paths in the design. Try to push the late arrival
signal forward as compared to early arrival signals. This will have better timing
and can be used to eliminate the setup time violations.

16. Use gated clock for the low power dissipation. Use the dedicated clock-gating
cell.
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Chapter 9
Finite-State Machines

Abstract This chapter describes the efficient FSMcoding usingVHDLconstructs. The
FSMs are of two types: Moore and Mealy, and this chapter focuses on the RTL design
for the Moore and Mealy machines. Even this chapter discusses about the different
encoding methods for FSM, and the FSM examples are described using binary, gray,
and one-hot encoding method. The examples such as sequence detector and parity
checker are useful in the real practical world and are discussed in this chapter. Even this
chapter is useful to understand the importance of the multiple process FSM. The key
design guidelines for FSMare describedwith the performance improvement techniques.

Keywords FSM � Moore machine � Mealy machine � Binary encoding � Gray
encoding � One-hot encoding � Sequence detector � Glitch-free output � Parity
checker � Multiple-process FSM � FSM performance improvement � FSM design
guidelines

9.1 Introduction to FSM

Finite-state machine (FSM) is a source synchronous sequential circuit and can be
efficiently described by VHDL. FSMs are used in the design of the sequential
circuits, which needs predefined sequence. Even FSMs are used to describe the

“

”  --- Albert Einstein 

Design the efficient FSM using VHDL using the 
        VHDL constructs. Use the basic VHDL  knowledge, 
        apply the intelligence and write efficient VHDL RTL. 

The true sign of intelligence is not knowledge but
      imagination. 

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_9
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functionality of the controllers in the ASIC/FPGA based designs. The efficient
coding of FSM plays an important role in the design of integrated circuits. FSMs
are classified as Moore machine and Mealy Machine.

In the Moore FSM, an output is the function of the current or present state only,
and hence, in the Moore FSM, an output is constant for one clock-cycle duration. In
the Mealy FSM, an output is the function of the current state and changes in any
one of the input, and hence, output may or may not be constant for one clock cycle.
Current state is constant for one clock-cycle duration, but if any input changes, then
an output also changes irrespective of clock.

9.1.1 Moore Machine

As discussed earlier in the Moore machine, an output is the function of the current
state only. Hence, an output is stable or constant for one clock-cycle duration. The
representation of Moore machine is shown in Fig. 9.1. As shown in Fig. 9.1, the
key blocks of FSM are as follows:

• next state logic,
• state register, and
• output logic.

Fig. 9.1 Block diagram of Moore machine
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The next state logic receives input as current state ‘current_state’ and data input
to generate the next state. Hence, next state (next_state) is the function of input and
‘current_state’. The next-state logic is combinational logic.

The state register is triggered on the active edge of the clock (clk) and used to
update the ‘current_state’ of FSM depending on the valid data f. The synchronous
or asynchronous reset input can be incorporated in the state register logic to ini-
tialize the state register. The state register logic is the sequential block triggered on
the active edge of the clock.

Output logic is the combinational logic block, and in the Moore FSM, an output
is the function of the current state and constant for one clock cycle.

The state diagram representation of Moore machine is shown in Fig. 9.2. The
state diagram has two states: State 1 and State 2. Bubble indicates the state, and the
transition from one state to other is indicated by the transition arc. As shown in the
state diagram, every state has output and indicated by state 1/output 1 and state
2/output 2. Depending on the changes in the input or transition condition, the state
transition occurs.

9.1.2 Mealy Machine

As stated earlier in the Mealy FSM, an output is the function of the current state
(current_state) and present input (input). Hence, an output may or may not be stable

Fig. 9.2 State diagram representation of Moore machine
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for one clock cycle. The Mealy FSM representation is shown in Fig. 9.3. As shown
in the representation, it has three key blocks:

• next state logic,
• state register, and
• output logic.

The next state logic receives input as current state ‘current_state’ and data input
to generate the value of the next state. Hence, next state (next_state) is the function
of input and ‘current_state’. The next-state logic is combinational logic.

The state register is triggered on the active edge of the clock (clk) and used to
update the ‘current_state’ of FSM depending on the valid data generated by next
state logic. The synchronous or asynchronous reset input can be incorporated in the
state register logic to initialize the state register. The state register logic is the
sequential block triggered on the active edge of the clock.

Output logic is the combinational logic block, and in the Mealy FSM, an output
is function of the current state and input and hence may or may not be constant for
one clock cycle.

Fig. 9.3 Block diagram of Mealy machine
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The state diagram representation of Mealy machine is shown in Fig. 9.4. The
state diagram has two states: State 1 and State 2. Bubble indicates the state, and the
transition from one state to other is indicated by the transition arc. As shown in the
state diagram state is indicated by State 1 and State 2. Depending on the changes
in the input or transition condition, the state transition occurs. As output is function
of the current state and input, transition arc shown indicates transition condition/
output.

9.2 FSM Encoding Methods

Depending on the requirement of the design functionality, the FSM can be
described by using different encoding styles. The main FSM encoding styles are
binary encoding, gray encoding, and one-hot encoding.

For the FSM having 8 states, the state encoding is shown in Table 9.1.

Fig. 9.4 State diagram representation of Mealy machine

Table 9.1 FSM encoding methods

State Binary encoding Gray encoding One-hot encoding

State 0 (s0) 000 000 00000001

State 1 (s1) 001 001 00000010

State 2 (s2) 010 011 00000100

State 3 (s3) 011 010 00001000

State 4 (s4) 100 110 00010000

State 5 (s5) 101 111 00100000

State 6 (s6) 101 101 01000000

State 7 (s7) 111 100 10000000
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As shown in Table 9.1, the number of flip-flops required for FSM using the
binary and gray encoding are same. For eight-state FSM, the numbers of flip-flops
required for the binary and gray encoding are equal to 3. Hence, if ‘n’ are number of
states and ‘q’ are number of flip-flops, then the relationship between the number of
states and number of flip-flops is described as follows: q = log2n.

In the one-hot encoding method, as only one bit is logic ‘1’ or hot at a time, the
number of flip-flops required for the state machine implementation is same as that of
number of states. That is, q = n, and hence, these types of machines need more
sequential elements as compared to the binary/gray encoding methods.

The key highlights of binary, gray, and one-hot encoding FSM are described in
Table 9.2.

The real objective of an RTL design engineer is to design an FSM using one of
the encoding styles discussed above. The default encoding style is binary encoding,
but due to the following advantages, the one-hot encoding is popular.

• One-hot encoding state machines are faster, and the operation speed is depen-
dent on the number of state transitions.

• Easily synthesized and can be easily described using VHDL to achieve better
and clean timing performance.

• Addition and deletion of the states can be easily incorporated without affecting
the remaining states.

• Easy to design as the RTL using VHDL can be directly written from the state
diagram.

• These kinds of machines are easy to debug.

The subsequent session discusses about the RTL description using VHDL for
the state machine depending on the encoding method.

Table 9.2 FSM encoding methods and highlights

Binary encoding Gray encoding One-hot encoding

Number of
registers

q = log2n
Least number of
registers

q = log2n
Least number of
registers

q = n
Number of registers
and equal to the
number of states

Combinational
logic

More logic is
required

Less logic as compared
to binary encoding

Less logic is required

Speed Slower Slower Faster

Application Single-clock-domain
designs

Multiple-clock-domain
designs

For better and clean
timing, to design the
moderate density
controllers

Debugging Difficult to debug Difficult to debug Easy to debug
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9.3 How to Code Moore FSM Using VHDL?

In the previous few chapters, we have discussed about the RTL design using VHDL
constructs. In the practical design scenario, the FSM can be described using
single-process block or by using multiple process blocks. Let us consider the design
shown Fig. 9.5.

As shown in Fig. 9.5, an output ‘q_out’ is the function of the ‘tmp_sig’ that is
q_out = not tmp_sig. So let us consider ‘tmp_sig’ as ‘current_state’. The data at ‘D’
input of register is the function of the changes in the input ‘a_in, b_in’ and ‘cur-
rent_state (tmp_sig)’. So let us consider the output of AND gate as ‘next_state’.
The RTL is described using the VHDL constructs and shown in Example 9.1. As
output is the function of the ‘current_state’, only these kind of machines are called
as Moore machine.

As shown in Example 9.1, the design functionality is described using the single
process block. In the RTL description, it is assumed that next state is the function of
the inputs ‘a_in, b_in and previous output from register’ that is ‘tmp_sig’. An
output ‘q_out’ is the function of the ‘current_state (tmp_sig)’. But this code has less
readability, and it does not give the meaningful information regarding the next-state
logic and state register logic. In the above VHDL code, single process is used to
describe the next-state logic and state register logic. These kind of coding styles are
difficult to debug and inefficient as per as timing, and performance is concern. So it
is essential to evolve the efficient technique to describe the Moore FSM. It is
recommended to use two- or three-process block FSM to describe the state
machines. This improves the readability, and even the debugging also becomes
easy. The subsequent sessions discusses about the coding of the Moore FSM using
multiple process blocks.

Fig. 9.5 Moore machine sequential circuit
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library ieee;

use ieee.std_logic_1164.all;

en ty moore_machine is

port ( a_in,b_in : in std_logic;

clk, reset_n : in std_logic;

q_out : out std_logic);

end moore_machine;

architecture arch_moore_machine of moore_machine is 

signal tmp_sig : std_logic; 

begin

p1_register:  process (clk, reset_n) 

begin 

if ( reset_n='0') then   

tmp_sig <= '0';

elsif (clk='1' and clk'event) then 

tmp_sig <= a_in and b_in and tmp_sig;

end if;  

end process;    q_out<= not tmp_sig;  end arch_moore_machine;

Architecture defines 
the func onality of 
design.
FSM has single state 
tmp_sig. 
The process is described
for the state register logic
 and sensi ve to ‘clk’ and
‘reset_n’. 

For ac ve low ‘reset_n’
the default state is
logic ‘0’. 

For  rising edge of 
clock ‘clk’ the ‘current_state’
is assigned as ‘tmp_sig’

The next_state is func on of  
present input ‘a_in’, 
‘b_in’ and ‘curent_state’. 

Output is func on of 
‘current_state’ only. 

Example 9.1 Single-process block VHDL RTL to describe Moore machine
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9.3.1 FSM Design Template for Moore Machine

Figure 9.6 shows the basic template used to code the Moore FSM. In the practical
ASIC design and prototyping using FPGAs, the multiple-process block FSM is
used. The process block ‘next_state_logic’ is used to describe the next-state logic
and sensitive to the ‘current_state’ and input. The process block ‘state_register’ is
sensitive to clock ‘clk’ and reset ‘reset_n’ and used to describe the state update
depending on the output of the next state logic. The process block ‘output_logic’ is
sensitive to the ‘current_state’ and describes the output generation. Output logic
infers the combinational logic.

9.4 How to Code Mealy FSM Using VHDL?

In the Mealy FSM, an output is the function of the change in the input and current
state. In the practical design scenario, the FSM can be described using single
process or by using multiple processes. Let us consider the design shown in
Fig. 9.7.

As shown in Fig. 9.7, an output ‘q_out’ is function of the ‘tmp_sig’ and c_in that
is q_out = c_in OR tmp_sig. So let us consider ‘tmp_sig’ as ‘current_state’. The
data at ‘D’ input of register is the function of the changes in the input ‘a_in, b_in’,
and ‘current_state (tmp_sig)’. So let us consider the output of AND gate as
‘next_state’. The RTL is described using the VHDL constructs and shown in
Example 9.2. As output is a function of the ‘current_state’ and changes in one of the
input, these kinds of machines are called as Mealy machine.

As shown in Example 9.2, the design functionality is described using the mul-
tiple processes. In the RTL description, it is assumed that next state is function of
the inputs ‘a_in, b_in, and previous output from register’ that is tmp_sig. An output
‘q_out’ is function of the ‘current_state (tmp_sig)’ and ‘c_in’. But this code has less
readability, and it does not give the meaningful information regarding the next state
logic and state register logic. In the above VHDL code, single process is used to
describe the next state logic and state register logic. These kind of coding styles are
difficult to debug and inefficient as per as timing, and performance is concern. So it
is essential to evolve the efficient technique to describe the Mealy FSM. It is
recommended to use the three-process block FSM to describe the state machines.
This improves the readability, and even the debugging also becomes easy. The
subsequent sessions discuss about the coding of the Mealy FSM using multiple
processes.
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--declare the VHDL Library  

--Declare the packages required

--declare the en ty with the inputs and outputs

architecture  arch_name_fsm  of name_fsm is

type  state_type is (s0,s1,s2,s3);

signal   current_state, next_state : state_type;

begin

state_register : process(clk, reset_n)

begin   

-- statements;

end process;

next_state_logic : process(input, current_state)

begin   

-- statements;

end process;

output_logic : process(current_state)

begin   

-- statements;

end process; end arch_fsm_name;

Describe the state reg-
ister logic using the 
process sensi ve to 
the ‘clk’ and ‘reset_n’
The process is used to 
update the cur-
rent_state and for the 
ini aliza on of state 
machine on ‘reset_n’. 

The process 
next_state_logic is 
sensi ve to ‘cur-
rent_state’ and ‘input’.
Used to update the 
‘next_state’ depend-
ing on status of the 
‘current_state’ and 
‘input’. 

The process out-
put_logic is sensi ve to 
‘current_state’. Used 
to update output  de-
pending on status of 
the ‘current_state’

Declare the state_type 
using enumerated da-
ta type.
Declare the signals as
‘current_state’ and 
‘next_state’ of 
state_type.

Fig. 9.6 FSM design template for Moore machine
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9.4.1 FSM Design Template for Mealy Machine

Figure 9.8 shows the basic template used to code the Mealy FSM. In the practical
ASIC design and prototyping using FPGAs, the multiple-process block FSM is
used. The process block ‘next_state_logic’ is used to describe the next state logic
and sensitive to the ‘current_state’ and input. The process block ‘state_register’ is
sensitive to clock ‘clk’ and reset ‘reset_n’ and describes the state update depending
on the output generated by the next state logic. The process block ‘output_logic’ is
sensitive to the ‘current_state’ and ‘input’. The next state logic and output logic are
combinational processes.

9.5 FSM Examples and VHDL Coding

This section discusses about the FSM examples and efficient coding using VHDL.
Most of the FSMs in this section are coded using multiple processes. In some
practical scenarios, the same process can be used for the next-state logic and output
logic. So the FSM can have two processes: process ‘state_register’ for updating of
the ‘current_state’ and another process for the ‘next_state_logic plus output_logic’.
Following are key FSM design guidelines:

• Binary encoding techniques are efficient for a design having 16 or fewer states.
As number of states increases, the next state combinational logic performs
slower operation.

• One-hot encoding technique is efficient and reliable as compared to the binary
encoding due to glitch-free behavior. One-hot encoding requires low-density

Fig. 9.7 Mealy machine sequential circuit
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library ieee;

use ieee.std_logic_1164.all;

en ty mealy_machine is

port ( a_in,b_in, c_in : in std_logic;

clk, reset_n : in std_logic;

q_out : out std_logic);

end mealy_machine;

architecture arch_mealy_machine of mealy_machine is 

signal  tmp_sig : std_logic; 

begin

p1_register:  process (clk, reset_n) 

begin 

if ( reset_n='0') then   

tmp_sig <= '0';

elsif (clk='1' and clk'event) then 

tmp_sig <= a_in and b_in and tmp_sig;

end if;  

end process;  p2_comb_logic: process(tmp_sig, c_in)   

begin  

q_out<= tmp_sig or c_in; 

end process;  end arch_mealy_machine;

Architecture defines 
the func onality of 
design.

FSM has single state 
tmp_sig. 

The process is described
for the state register logic
and sensi ve to ‘clk’ and
‘reset_n’. 
For ac ve low ‘reset_n’
the default state is
logic ‘0’. 

For  rising edge of clock
‘clk’ the ‘current_state’ is
assigned as ‘tmp_sig’

The current_state 
‘tmp_sig’ is func on of 
present input ‘a_in’, 
‘b_in’ and ‘curent_state’.  

The process
‘p2_comb_logic’ is 
sensi ve to the ‘cur-
rent_state’ of register that
is ‘tmp_sig’ and input ‘c_in’.

Output is func on of 
the ‘tmp_sig’ and input 
‘c_in’ hence the FSM is
Mealy machine.  

Example 9.2 Two-process block VHDL RTL to describe Mealy machine

284 9 Finite-State Machines



23 

--declare the VHDL Library  

--Declare the packages required

--declare the en ty with the inputs and outputs

architecture  arch_name_fsm  of name_fsm is

type  state_type is (s0,s1,s2,s3);

signal   current_state, next_state : state_type;

begin

state_register : process(clk, reset_n)

begin   

-- statements;

end process;

next_state_logic : process(input, current_state)

begin   

-- statements;

end process;

output_logic : process(current_state, input) 

begin   

-- statements;

end process; end arch_fsm_name;

Describe the state reg-
ister logic using the 
process sensi ve to 
the ‘clk’ and ‘reset_n’
The process is used to 
update the cur-
rent_state and for the 
ini aliza on of state 
machine on ‘reset_n’. 

The process 
next_state_logic is 
sensi ve to ‘cur-
rent_state’ and ‘input’.
Used to update the 
‘next_state’ depend-
ing on status of the 
‘current_state’ and 
‘input’. 

The process out-
put_logic is sensi ve 
to ‘current_state ‘and
‘input’. Depending on 
‘current_state’ and in-
put status an output is 
updated. 

Declare the state_type 
using enumerated da-
ta type.
Declare the signals as 
‘current_state’ and 
‘next_state’ of 
state_type.

Fig. 9.8 FSM design template for Mealy machine
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next-state logic and useful in design of larger FSM blocks. But the main
drawback of one-hot encoding is that it uses more registers!

• While designing FSM, designer needs to take care of following key points:

– Don’t leave any undefined states. Initialize the unused states to reset value or
use the default statements.

– Don’t implement the FSM with combination of registers and latches. Avoid
the unintentional latches in the FSM design to improve the reliability.

– Model the FSM blocks by using case statements to infer the parallel logic.
– Separate the next state logic, output combinational logic, and state register

logic in different processes to improve the speed of FSM and for better
synthesis results.

– Register FSM output as it preserves the hierarchy.
– Use the look-ahead mealy machines for better design performance.

9.5.1 Binary Encoding FSM

Consider the following timing sequence, for the timing sequence, it is essential to
describe the FSM using binary encoding method. As discussed earlier, binary
encoding method uses the less number of registers but has slower speed.

As shown in Fig. 9.9, the design should have four states s0, s1, s2, and s3. The
‘reset_in’ is active high input, and during normal operation, it should be low.
The state transition occurs on the rising edge of clock ‘clk’ provided that enable
input ‘enable_in’ is active high. The synthesizable RTL using VHDL is shown in
Example 9.3.

The synthesis result for Example 9.3 is shown in Fig. 9.10, and it generates
two-bit binary counter.

Fig. 9.9 Timing sequence for two-bit counter
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library ieee;

use ieee.std_logic_1164.all;

en ty counter_fsm is 

port ( clk, reset_in, enable_in : in std_logic;

q_out : out std_logic);

end counter_fsm;

architecture arch_counter_fsm of counter_fsm is

type state_type is (s0,s1,s2,s3);

signal current_state, next_state : state_type;

begin

state_register : process(clk, reset_in)

begin   

if ( reset_in ='1') then

current_state <= s0;

elsif ( clk='1' and clk'event) then

current_state <= next_state;

end if;

end process; 

Architecture defines 
the func onality of 
design.

FSM has four states 
s0,s1,s2,s3 . The cur-
rent_state and 
next_state is defined 
as of type state_type

The process is described
for the state register logic
and sensi ve to ‘clk’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

On the rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

The ‘reset_in’ is asynchronous
signal. 

Example 9.3 Two-process FSM for the binary counter
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next_state_logic : process (current_state, enable_in)

begin

case (current_state) is

when s0 => if (enable_in='1') then

next_state<=s1; else  

next_state<= s0;

end if;  q_out <= '0';

when s1 => if (enable_in='1') then

next_state<=s2;      else

next_state<= s1;

end if;     q_out <= '0';

when s2 => if (enable_in='1') then

next_state<=s3; else

next_state<= s2;

end if;    q_out <= '0';

when s3 => if (enable_in='1') then

next_state<=s0; else

next_state<= s3;

end if;  q_out <= '1';

end case;      end process;      end arch_counter_fsm;

The next state logic is 
combina onal logic 
and it is described by 
the process 
‘Next_state_logic’.
Process is sensi ve to 
‘current_state’ and 
‘enable_in’.
For ‘enable_in’ value 
of the next_state is 
updated. 
The states are 
‘so,s1,s2,s3’ and output is
‘q_out’. 
Default state is ‘s0’. 

The output ‘q_out’ is 
func on of the ‘cur-
rent_state’ only and 
hence this type of machine
is Moore machine. 

The q_out is assigned 
in the same process.

Example 9.3 (continued)
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9.5.2 Binary Counter FSM

The binary counter FSM is described by using the VHDL constructs and shown in
Example 9.4. For more information on the binary counters, please refer Chap. 5.

Synthesis result for Example 9.4 is shown in Fig. 9.11. The counter is imple-
mented using two registers and LUTs. LUTs are used to implement the combina-
tional logic.

9.5.3 One-Hot Counter FSM

The one-hot counter FSM is described using VHDL and shown in Example 9.5.
Only one output bit is active high or hot at a time, and hence, the desired logic
should generate four registers for the four states.

The synthesis result is shown in Fig. 9.12, and as shown, it has four registers and
output ‘q_out’ is 4 bit in size.

9.6 Parity Logic Using Moore FSM

In most of the practical design scenario, the Moore machines are used to detect the
parity. Consider the one-bit data input ‘d_in’ to the machine, and the state diagram
is represented in Fig. 9.13.

Fig. 9.10 Synthesis result with single output
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library ieee;

use ieee.std_logic_1164.all;

en ty binary_counter_fsm is 

port ( clk, reset_n, enable_in : in std_logic;

q_out : out std_logic_vector( 1downto 0));

end binary_counter_fsm;

architecture arch_counter_fsm of binary_counter_fsm is

type state_type is (s0,s1,s2,s3);

signal  current_state, next_state : state_type;

begin

state_register : process(clk, reset_n)

begin   

if ( reset_n ='0') then

current_state <= s0;

elsif ( clk='1' and clk'event) then

current_state <= next_state;

end if; end process;

Architecture defines 
the func onality of 
design.

Architecture four 
states s0,s1,s2,s3 and 
current_state and 
next_state is defined 
as of type state_type

The process is described
for the state register logic. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

Example 9.4 Synthesizable VHDL RTL using binary encoding method
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next_state_logic : process (current_state, enable_in)

begin

case (current_state) is

when s0 => if (enable_in='1') then

next_state<=s1;    else

next_state<= s0;

end if; q_out <= "00";

when  s1 => if (enable_in='1') then

next_state<=s2; else

next_state<= s1;

end if; q_out <= "01";

when s2 => if (enable_in='1') then

next_state<=s3; else

next_state<= s2;

end if; q_out <= "10";

when s3 => if (enable_in='1') then

next_state<=s0; else

next_state<= s3;

end if; q_out <= "11"; end case; end process; end arch_counter_fsm;

The next state logic is 
combina onal logic 
and it is described by 
the process 
‘next_state_logic’.
Process is sensi ve to 
‘current_state’ and 
‘enable_in’.
For ‘enable_in’ is 
equal to logic ‘1’ the 
next_state is updated. 
For binary encoding 
the two bit output is 
assigned. 
The states are 
‘so,s1,s2,s3’ and output is
‘q_out’. 
Output ‘q_out’ is updated
in the same process and
func on of current_state.
Hence this is Moore
machine. 

Example 9.4 (continued)
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The RTL using VHDL for the Moore machine can be described using
three-process block FSM and discussed in this section.

9.6.1 Moore Machine: Three-Process Block FSM for Parity
Checking

The RTL using VHDL for the Moore machine parity checking logic is described
using the three-process FSM in Example 9.6. Process ‘state_register’ is used to
update the ‘current_state’ value and for the FSM initialization. The process
‘next_state_logic’ is used to update the ‘next_state’, and the process ‘output_logic’
is used to assign output ‘parity_out’.

The synthesis result for the parity checking logic for Example 9.6 is shown in
Fig. 9.14.

As shown in Fig. 9.14, an output ‘parity_out’ is the function of the current_state
only. As synchronous reset ‘reset_n’ is used, the reset logic in the data path adds the
combinational delay.

9.7 Parity Logic Using Mealy FSM

As discussed earlier in this chapter, in the Mealy machine, output is the function of
the current state and change in the input. Hence, output may or may not be stable
for one clock-cycle duration. Mealy machine output is prone to glitches, and it is

Fig. 9.11 Synthesis result for the binary encoding
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library ieee;

use ieee.std_logic_1164.all;

en ty counter_fsm is 

port ( clk, reset_n, enable_in : in std_logic;

q_out : out std_logic_vector(3 downto 0));

end counter_fsm;

architecture arch_counter_fsm of counter_fsm is

type state_type is (s0,s1,s2,s3);

signal  current_state, next_state : state_type;

begin

state_register : process(clk, reset_n)

begin   

if ( reset_n ='0') then

current_state <= s0;

elsif ( clk='1' and clk'event) then

current_state <= next_state;

end if;

end process;

Architecture defines 
the func onality of 
design.

Architecture four 
states s0,s1,s2,s3 and 
current_state and 
next_state is defined 
as of type state_type

The process is described
for the state register logic. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘cur-
rent_state’.

Example 9.5 Synthesizable VHDL RTL using one-hot encoding
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next_state_logic : process (current_state, enable_in)

begin

case (current_state) is

when s0 => if (enable_in='1') then

next_state<=s1;  else

next_state<= s0;

end if; q_out <= "0001";

when  s1 => if (enable_in='1') then

next_state<=s2; else

next_state<= s1;

end if; q_out <= "0010";

when s2 => if (enable_in='1') then

next_state<=s3; else

next_state<= s2;

end if; q_out <= "0100";

when s3 => if (enable_in='1') then

next_state<=s0;  else

next_state<= s3;

end if;       q_out <= "1000"; end case; end process; end arch_counter_fsm;

The next state logic is 
combina onal logic 
and it is described by 
the process 
‘next_state_logic’.
Process is sensi ve to 
‘current_state’ and 
‘enable_in’.
For ‘enable_in’ is 
equal to logic ‘1’ the 
next_state is updated. 
For one hot encoding 
the four bit output is 
assigned and only one 
bit is high or hot at a 
time. 
The states are 
‘so,s1,s2,s3’ and output is
‘q_out’. 

Example 9.5 (continued)
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essential to use the glitch suppression logic while coding for the Mealy machines.
The parity checking logic for the state diagram shown in Fig. 9.15 can be described
by using two or three processes.

Fig. 9.12 Synthesis result and state diagram for one-hot encoding counter

Fig. 9.13 Parity checking logic Moore state machine
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library ieee;

use ieee.std_logic_1164.all;

en ty parity_checker is 

port ( clk, reset_n, d_in : in std_logic;

parity_out : out std_logic);

end parity_checker;

architecture arch_parity_check of parity_checker is

type state_type is (s0, s1);

signal current_state, next_state : state_type;

begin

state_register : process (clk)

begin

if rising_edge(clk) then

if (reset_n = '0') then

current_state <= s0;

else

current_state <= next_state;

end if; end if; end process;

Architecture defines 
the func onality of 
design.

Architecture four 
states s0,s1 and cur-
rent_state and 
next_state is defined 
as of type state_type

The process is described
for the state register logic
and sensi ve to ‘clk’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

The ‘reset_n’ is synchronous
signal. 

Example 9.6 Synthesizable VHDL RTL for parity checking using Moore machine
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output_logic : process (current_state)

begin

case (current_state) is

when S0 => parity_out <= '0';

when S1 => parity_out<= '1';

when others => parity_out <= '0';

end case;

end process;

next_state_logic : process (current_state, d_in)

begin

next_state <= S0;

case (current_state) is

when S0 => if (d_in = '1') then

next_state <= S1;

end if;

when S1 =>if (d_in = '0') then

next_state <= S1;

end if; when others => next_state <= S0;

end case; end process; end arch_parity_check;

The next state logic is 
combina onal logic 
and it is described by 
the process 
‘next_state_logic’.
Process is sensi ve to 
‘current_state’ and 
‘d_in’.
For ‘d_in’ value, the 
next_state is updated. 
The states are ‘so,s1’ 
and output is ‘parity_out’. 
Default state is ‘s0’. 

The output logic is 
combina onal logic 
and it is described by 
the process ‘output_logic’.

Process is sensi ve to 
‘current_state’ only
An output is ‘parity_out’.
And assigned depending
on the ‘current_state’.

Default output is ‘0’.

Example 9.6 (continued)
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9.7.1 Mealy Machine: Two-Process Block FSM for Parity
Checking

The FSM for the parity checking logic shown in the Fig. 9.15 is described using
two processes in Example 9.7. As shown in the RTL description using VHDL, the
process block ‘state_register’ is used to update the ‘current_state’ and even to
initialize the state machine to the default state. Default state is ‘s0’. The another
procedure block ‘next_state_logic’ is used to update the ‘next_state’ and even to
assign the output ‘parity_out’ depending on the status of ‘current_state’ and ‘d_in’.

The synthesis result for the two process of FSM is shown in Fig. 9.16. As
shown, an output ‘parity_out’ is function of the ‘current_state’ and data input
‘d_in’.

9.7.2 Mealy Machine: Three-Process Block FSM for Parity
Checker

For better readability and easy debugging, it is recommended to use the
three-process FSM. The RTL using VHDL for the Mealy machine parity checker is

Fig. 9.14 Synthesis result for the Moore machine parity checking logic

Fig. 9.15 State diagram representation of Mealy machine parity checking logic
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library ieee;

use ieee.std_logic_1164.all;

en ty parity_checker is 

port ( clk, reset_n, d_in : in std_logic;

parity_out : out std_logic);

end parity_checker;

architecture arch_parity_check of parity_checker is

type  state_type is (s0, s1);

signal  current_state, next_state : state_type;

begin

state_register : process (clk)

begin

if rising_edge(clk) then

if (reset_n = '0') then

current_state <= s0;

else

current_state <= next_state;

end if; end if; end process;

Architecture defines 
the func onality of 
design.

Architecture four 
states s0,s1 and cur-
rent_state and 
next_state is defined 
as of type state_type

The process is described
for the state register logic
and sensi ve to ‘clk’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

The ‘reset_n’ is synchronous
signal. 

Example 9.7 VHDL RTL for Mealy machine parity checking logic using two processes
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Next_state_logic : process (current_state, d_in)

begin

parity_out <= '0';

case (current_state) is

when s0 =>   if (d_in = '1') then

parity_out <= '1';

next_state <= s1; else

next_state <= s0;

end if;

when s1 => if (d_in= '1') then

next_state <= s0; else

parity_out <= '1';

next_state <= s1;

end if;

when others => next_state <= s0;

end case;

end process; end arch_parity_check;

The next state logic is 
combina onal logic 
and it is described by 
the process 
‘Next_state_logic’.
Process is sensi ve to 
‘current_state’ and 
‘d_in’.
For ‘d_in’ value, the 
next_state is updated. 
The states are‘so,s1’ 
and output is ‘parity_out’. 
Default state is ‘s0’. 

Example 9.7 (continued)
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library ieee;

use ieee.std_logic_1164.all;

en ty parity_checker is 

port ( clk, reset_n, d_in : in std_logic;

parity_out : out std_logic);

end parity_checker;

architecture arch_parity_check of parity_checker is

type  state_type is (s0, s1);

signal  current_state, next_state : state_type;

begin

state_register : process (clk)

begin

if rising_edge(clk) then

if (reset_n = '0') then

current_state <= s0;

else

current_state <= next_state;

end if; end if; end process;

Architecture defines 
the func onality of design. 

Architecture four 
states s0,s1 and cur-
rent_state and 
next_state is defined 
as of type state_type

The process is described
for the state register logic
and sensi ve to ‘clk’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

The ‘reset_n’ is synchronous
signal. 

Example 9.8 VHDL RTL for Mealy machine parity checking logic using three processes
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Next_state_logic: process (current_state, d_in)

Begin next_state <= S0;

case (current_state) is

when S0 => if (d_in = '1') then

next_state <= S1; end if;

when S1 =>if (d_in= '0') then

next_state <= S1; end if;

when others => next_state <= S0;

end case; end process;

Output_decode_logic: process (current_state, d_in)

Begin parity_out <= '0';

case (current_state) is

when S0 => if (d_in = '1') then

parity_out <= '1'; end if;

when S1 => if (d_in = '0') then

parity_out <= '1'; end if;

when others =>parity_out <= '0';

end case;

end process; end arch_parity_check;

The next state logic is 
combina onal logic 
and it is described by 
the process 
‘Next_state_logic’.
Process is sensi ve to 
‘current_state’ and 
‘d_in’.
For ‘d_in’ value  the 
next_state is updated. 
The states are ‘so,s1’ 
Default state is ‘s0’. 

The output decode logic
is combina onal logic 
and it is described by 
the process ‘Out
put_decode_logic’.
Process is sensi ve to 
‘current_state’ and 
‘d_in’.
Depending on the status
of ‘d_in’ and ‘cur-
rent_state’ an output 
‘parity_out’ is assigned. 
The FSM described is 
mealy machine as output is
func on of ‘current_state’
and ‘d_in’. 

Example 9.8 (continued)
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described using the three-process FSM in the Example 9.8. Process ‘state_register’
is used to update the ‘current_state’ value and for the FSM initialization. The
process ‘next_state_logic’ is used to update the ‘next_state’, and the process
‘output_logic’ is used to assign output ‘parity_out’.

The synthesis result is shown in Fig. 9.16. As shown, the output ‘parity_out’ is
the function of the ‘current_state’ and data input ‘d_in’.

9.8 Sequence Detector Mealy Machine

In most of the practical scenarios, it is essential to design logic circuit to check the
required sequence. For example, if we consider the data input ‘d_in’ with input
sequence as ‘11010100101’, from this serial input we wish to detect the sequence ‘10’.

Fig. 9.16 Synthesis result for the Mealy machine parity checking logic

Fig. 9.17 Mealy machine sequence detector state diagram

9.7 Parity Logic Using Mealy FSM 303



library ieee;

use ieee.std_logic_1164.all;

en ty sequence_detector_mealy is

port ( d_in : in std_logic;

reset_n, clk : in std_logic;

q_out : out std_logic);

end sequence_detector_mealy;

architecture arch_mealy of sequence_detector_mealy is

type state_type is (s0,s1,s2);

signal current_state, next_state : state_type;

begin

state_register : process(clk, reset_n)

begin     

if (reset_n='0') then

current_state <= s0;

elsif (clk='1' and clk'event)then

current_state <= next_state;

end if; end process state_register;

Architecture defines 
the func onality of 
design.

FSM has three states s0,
s1,s2. The current_state
and next_state is defined 
as of type state_type

The process is described
for the state register logic
and sensi ve to ‘clk’ and
‘reset_n’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

The ‘reset_n’ is asynchronous
signal. 

Example 9.9 Synthesizable VHDL RTL for Mealy machine sequence detector
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comb_fsm: process (d_in, current_state)

begin

case current_state is

when s0=> if (d_in='0') then

q_out<='0'; next_state <= s0;

else

q_out<='0'; next_state <= s1;

end if;

when s1=> if (d_in='0') then

q_out<='1'; next_state <=s2;

else

q_out<='0'; next_state <= s1;

end if;

when s2=> if (d_in='0') then

q_out<='0'; next_state <=s0;

else

q_out<='0'; next_state <= s1;

end if; when others => current_state<= s0;

end case; end process comb_fsm; end arch_mealy;

The next state and 
output logic is combina onal
logic and it is described by
the process ‘comb_fsm’.

Process is sensi ve to 
‘current_state’ and ‘d_in’. 

Depending on  ‘d_in’ value
and ‘current_state’  the 
next_state is updated. 

The states are ‘so,s1,s2’ and
output is ‘q_out’. 

Default state is ‘s0’. 

Example 9.9 (continued)
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When ‘10’ sequence is detected, then an output ‘q_out’ should be high. So the output
‘q_out’ for the above-stated data input should be ‘00101010010’. To design these
kinds of detectors, the FSM using VHDL constructs can be used. The state diagram of
sequence detector for the ‘10’ sequence is shown in Fig. 9.17.

As shown in Fig. 9.17, using binary encoding method, the number of states
required to detect the sequence ‘10’ are equal to 3 and named as ‘s0, s1, s2’.
The RTL using VHDL for Fig. 9.17 is shown in Example 9.9. The synthesis result
is shown in Fig. 9.18.

9.9 One-Hot Encoding Sequence Detector: Moore
Machine

For the state diagram shown in Fig. 9.17, the sequence detector using one-hot
encoding method is shown in Example 9.10. The synthesis result is shown in
Fig. 9.19.

As shown in the above figure, the one-hot encoding state machine uses more
register as compared to binary encoding method.

9.10 One-Hot Encoding Sequence Detector: Mealy
Machine

To detect the ‘10’ sequence from the input stream ‘d_in’, the RTL using
two-process FSM is described in Example 9.11. The synthesis result is shown in
Fig. 9.20.

Fig. 9.18 Synthesis result for binary encoded sequence detector
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library ieee;

use ieee.std_logic_1164.all;

en ty moore_one_hot is

port(d_in,clk,reset_n: in std_logic;

q_out: out std_logic); 

end moore_one_hot;

architecture moore_fsm of moore_one_hot is

subtype state_type is std_logic_vector (2 downto 0);

signal state : state_type;

constant s0: state_type:="001";

constant s1: state_type:="010";

constant s2: state_type:="100";

signal current_state, next_state : state_type;

begin

state_register: process (clk, reset_n) 

begin

if (reset_n='0') then

current_state <= s0 ;

elsif (clk='1' and clk'event)then

current_state<= next_state; end if ; end process state_register ;

Architecture defines 
the func onality of 
design.

FSM has three states 
s0,s1,s2. The current_state
and next_state is defined 
as of type state_type. 
The encoding method 
is one-hot. 

The process is described
for the state register logic
and sensi ve to ‘clk’ and
‘reset_n’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock 
‘clk’ the ‘next_state’ is 
assigned to ‘current_state’.

The ‘reset_n’ is asynchronous
signal. 

Example 9.10 Synthesizable RTL for sequence detector using one-hot encoding method
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9.11 FSM Optimization

The coded FSM using VHDL can be optimized for the area and performance
improvement. Following are the key concepts and can be used during the FSM
optimization.

• The design partitioning plays important role while describing the RTL using
VHDL. The design is partitioned in such a way that FSM should be individual
block. If FSM is used with other logic, then due to poor partitioning, the design
performance and area may not be optimum.

• Optimize the state machine by isolating the other logic if the design is not
partitioned properly.

• Use the one-hot encoding FSM for better timing results and for glitch-free
output.

• If the design consists of the multiple FSMs, then use the separate VHDL
description for every FSM.

• Use the FSM compiler for the better design partitioning and to extract the states
in the form of state table.

• To code the FSM with glitch free output, ensure that all the outputs are coming
out from the flip-flop.

• Use the additional logic circuit as look-ahead output circuit for the Moore
machine.

• Use the proper encoding style and try to optimize the register-to-register path
delays.

• Improve the overall timing performance of FSM by reducing the combinational
delay encountered in the next-state logic. The overall operating frequency of
FSM is 1/T, where T is equal to tctoq + tcombo + tsu. If tcombo is reduced, then the
FSM can have improved performance.

Fig. 9.19 Synthesis result for sequence detector using one-hot encoded Moore FSM
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comb_fsm: process (d_in,current_state) 

begin

case current_state is

when s0=> q_out <= '0';

if (d_in='0') then next_state <=s0;

else next_state <= s1;

end if;

when s1=> q_out <= '0';

if (d_in='0') then next_state <= s2;

else next_state <= s1;

end if;

when s2=> q_out <= '1';

if (d_in='0') then next_state <= s0;

else next_state <= s1;

end if;

when others => q_out <='0'; next_state <= s0;

end case; end process comb_fsm; end moore_fsm;

The next state and output
logic is combina onal logic
and it is described by the
process ‘comb_fsm’.

Process is sensi ve to 
‘current_state’ and 
‘d_in’.

Depending on ‘d_in’ value
and‘current_state’ the
next_state is updated. 

The states are ‘so,s1,s2’
and output is ‘q_out’. 

Default state is ‘s0’. 

Example 9.10 (continued)
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library ieee;

use ieee.std_logic_1164.all;

en ty mealy_one_hot is

port(d_in,clk,reset_n: in std_logic;

q_out: out std_logic); 

end mealy_one_hot;

architecture mealy_fsm of mealy_one_hot is

subtype state_type is std_logic_vector (2 downto 0);

signal state : state_type;

constant s0: state_type:="001";

constant s1: state_type:="010";

constant s2: state_type:="100";

signal current_state, next_state : state_type;

begin

state_register: process (clk, reset_n) 

begin

if (reset_n='0') then

current_state <= s0 ;

elsif (clk='1' and clk'event)then

current_state<= next_state; end if ; end process state_register ;

Architecture defines 
the func onality of 
design.

FSM has three states s0,s1,
and s2. The current_state
and next_state is defined 
as of type state_type.The
encoding method is
one-hot. 

The process is described
for the state register logic
and sensi ve to ‘clk’ and
‘reset_n’. 

For ac ve low ‘reset_n’
the default state is ‘s0’. 

For rising edge of clock ‘clk’
the ‘next_state’ is assigned
to ‘current_state’.

The ‘reset_n’ is asynchronous
signal. 

Example 9.11 Synthesizable RTL for Mealy sequence detector using one-hot encoding method
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comb_fsm: process (d_in,current_state) 

begin

case current_state is

when s0=> if (d_in='0') then next_state <=s0; q_out <= '0';

else next_state <= s1; q_out <= '0';

end if;

when s1=> if (d_in='0') then next_state <= s2; q_out <= '1';

else next_state <= s1; q_out <= '0';

end if;

when s2=> if (d_in='0') then next_state <= s0; q_out <= '0';

else next_state <= s1; q_out <= '0';

end if;

when others => q_out <='0';

next_state <= s0;

end case;

end process comb_fsm; end mealy_fsm;

The next state and output
logic is combina onal logic
and it is described by the
process ‘comb_fsm’.

Process is sensi ve to 
‘current_state’ and ‘d_in’.

Depending on ‘d_in’ 
value and ‘current_state’
the next_state is updated. 

The states are ‘so,s1,s2’
and output is ‘q_out’. 

Default state is ‘s0’.

Output is func on of 
‘current_state’ and 
‘d_in’ hence the FSM 
is mealy type.  

Example 9.11 (continued)
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Chapter 10 discusses about the complex examples, few design performance
improvement techniques, and implementation using FPGA.

9.12 Summary

Following are the important points to summarize this chapter:

1. FSM is a source synchronous sequential circuits and of two types Moore and
Mealy.

2. FSM encoding methods are binary, gray, and one-hot encoding.
3. Binary and gray encoding methods uses the number of registers equal to log2n

where n are number of states.
4. One-hot encoding method uses the number of registers equal to number of states

in the machine.
5. The overall FSM speed is dependent on the register-to-register path, and the ‘T’

is equal to tctoq + tcombo + tsu.
6. In the Moore FSM, the output is the function of current state only. The

look-ahead output circuit can be used for the glitch-less output.
7. In the mealy machine, the output is the function of the current state and input.
8. For better timing, one-hot encoding can be used.

Fig. 9.20 Synthesis result for sequence detector using one-hot encoded Mealy FSM
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Chapter 10
Synthesis Optimization Using VHDL

Abstract The PLD-based designs can be described by using concurrent and
sequential VHDL constructs. In the practical scenario, the objective is to describe the
design functionality by using synthesizable VHDL constructs and that can be
accomplished by using important combinational and sequential design guidelines.
This chapter focuses on the designs such as ALU, parity checkers, generators,
memories, multipliers, and barrel shifters. This chapter also discusses about the
synthesis result with the data path and control paths. The synthesis optimization
techniques are discussed for the better synthesis outcome and used during RTL design
cycle. This chapter is useful for ASIC and FPGA designers to understand the design
using VHDL, critical paths and optimizations, and registered inputs and outputs. Even
this chapter discusses about the synthesis outcome using Altera and Xilinx PLDs.
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As discussed in the previous chapters, VHDL can be efficiently used to code the
functionality of the design. The concurrent and sequential constructs discussed in
the previous chapters can be used to infer the synthesized logic. In the practical
programmable ASIC designs, the design functionality is complex and needs to be
described by using the synthesizable VHDL constructs to infer the gate-level netlist
and to have the optimal design performance. Most of the programmable ASIC and
SOCs uses the processors, buses, arbiters, and protocols (predefined set of rules or
transactions). An efficient VHDL coding is an important aspect while describing the
functionality of the above blocks. In such scenarios, ASIC designer should use the
synthesizable constructs with combinational and sequential design guidelines.

The subsequent section discusses about the efficient designs using VHDL and
practical scenarios while describing the processor computational logic, barrel
shifters, parity generators, checkers, multipliers, and memories.

10.1 FPGA Design Flow

FPGA design flow includes the following key steps and described in Fig. 10.1:

1. Design entry,
2. Design simulation and synthesis,
3. Design implementation, and
4. Device programming.

These design steps are explained in the following section:

10.1.1 Design Entry

Before the design entry, the design planning need to be done by using the design
specifications. The design specifications need to be converted to the architecture
and microarchitecture. The design architecture and microarchitecture is design
representation of the functionality into small modules to realize the intended
functionality. During the architecture design phase, the requirement of memory,
speed, and power needs to be estimated. Depending on the requirement, the FPGA
device needs to be chosen for the implementation.

Design entry is done by using either Verilog (.v) or VHDL (.vhd) file. After the
design entry, the design needs to be simulated for the functional correctness of the
design. This is called as functional simulation.
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10.1.2 Design Simulation and Synthesis

During the functional simulation, the set of inputs are applied to the design to check
the functional correctness of the design. Although the timing or area and power
issues can crop up during the later design cycle, but designer is at least sure about
the functionality of the design.

The major goal of the hardware design engineer is to generate the efficient
hardware. The synthesis is the process of converting one level of the design
abstraction into the other level. In the logic synthesis, the HDL is converted into the
netlist. The netlist is device independent and can be in the standard format like
electronic design interchangeable format (EDIF).

Fig. 10.1 FPGA design flow
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10.1.3 Design Implementation

The design goes through the steps as translate, map, and place and route. During the
design implementation, the EDA tool translates the design into the required format
and map it on to the FPGA depending on the required area. The mapping is
performed by the EDA tool by using the actual logic cells or macrocells. During the
mapping process, the EDA tool uses the macrocells, configurable logic blocks,
programmable interconnects, and the IO blocks. The special dedicated blocks such
as multipliers, DSP, and BRAMs are also mapped using vendor tools. The blocks
are placed on the predefined geometry inside the FPGA and routed by using the
programmable interconnects for the intended functionality. The step is called as
place and route.

To check for the design timing performance and whether the constraints are met
or not, the timing analysis is performed and it is called as post-layout STA. During
the STA, the timing paths are checked with the delays associated with the pro-
grammable interconnects. Extracting the RC delays and using them by timing
analyzer is also called as back annotation.

10.1.4 Device Programming

The FPGA is programmed by using the vendor-specific or proprietary bitstream file.
Bitstream is a binary data file needs to be loaded into the FPGA to execute the
particular hardware design.

If the design is targeted with the specific FPGA, then the EDA tool generates
device utilization summary. Please refer Appendix B for the XILINX Spartan series
devices and Appendix C for the Altera Cyclone II and IV devices.

10.2 Synthesis Optimization Techniques

Before discussion on the synthesis and performance improvement, let us understand
the different synthesis techniques used for the optimization. The optimization can
be performed at the code level or during the synthesis. The fully optimized design is
that which has met the area and timing requirements. The optimization at the RTL
level can be achieved by modifying the code to meet the intended functionality. In
such type of optimizations, care needs to be taken that the optimized code should
have the same simulation results before and after synthesis. But there are few
standard techniques used in the real practical scenarios to have better synthesis
optimizations and results. Few of such techniques are discussed in this section.
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10.2.1 Resource Allocation

This is used for the better synthesis results and this optimization technique uses the
sharing of hardware resources.

Consider the VHDL description using process in the following example:

The above functionality generates two adders one to perform addition of c_in and
b_in and another to perform addition of b_in and d_in. It also generates the 2:1 MUX
to select one of the outputs of the adder. The synthesis result is shown in Fig. 10.2.

In the above synthesis result, the common input b_in is not shared properly. If
the above code is modified using only one adder, then the synthesis optimization
results into the better result and minimum area. Figure 10.3 shows the synthesis
output.

Adder

Adder

2:1 
Mux 

y_out

b_in 

c_in 

b_in 

d_in 
a_in 

Fig. 10.2 Synthesis result
without resource allocation

Comb_p1: process ( a_in, b_in,c_in,d_in)
begin
if(a_in=’1’) then 
y_out <= b_in+c_in;
else
y_out <= b_in+d_in;
end if;
end process Comb_p1;

2:1 
Mux 

c_in 

d_in

a_in

Adder

b_in 

y_out 

Fig. 10.3 Synthesis result
with resource allocation
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The modified optimized VHDL code using synthesizable constructs is described
in the following example:

So prior to the sharing of the resources, the area was more but resource sharing
technique is effective to reduce the area.

10.2.2 Common Factors and Subexpressions Used
for Optimization

In most of the RTL designs using VHDL, the RTL engineer uses the expressions or
subexpression. In most of the designs, the subexpressions are not reused. If the
subexpression-computed are reused, then the synthesizer will be able to perform to
synthesis to generate the better results.

Consider the example shown below. In the following example, b_in + c_in is
used for the multiple assignments

Instead of using the z_out <= d_in -(b_in+c_in); the following assignment can
give the better logic with minimum resources.

Comb_p1: process( a_in, b_in, c_in,d_in)
begin
if(a_in=’1’) then
y_tmp <= c_in;
else
y_tmp <= d_in;
end if;
end process Comb_p1;

y_out <= b_in + y_tmp;

y_tmp <= b_in + c_in;

z_out <= d_in _ ( b_in + c_in);

z_out <= d_in y_tmp;_
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Consider another RTL description using VHDL; common factor can be reused
while writing an efficient RTL using VHDL.

In the above example, the common factor is (c_in + d_in) and can be reused.
The above code can be modified as follows:

Comb_p1: process(a_in,b_in,c_in,d_in)

begin

if (a_in=’1’) then

y_out <= b_in and ( c_in + d_in);

else

z_out <= e_in xor (c_in +d_in);

end if;

end process Comb_p1;
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These minor modifications in the VHDL code can generate more optimized
logic.

10.2.3 Moving the Piece of Code

In most of the designs using VHDL constructs, the expressions are used in the
functional body of for or while loops. These expression values may or may not
change during every iteration. Those statements used in the functional body of for
or while loops whose value will not change can be handled by using the modifi-
cations in the code. The synthesizer during the optimization handles such scenarios,
but there are chances of redundant logic generation. This can be avoided by moving
the expression outside of the loop. Consider the following design RTL described
using VHDL constructs:

Comb_p1: process ( a_in, b_in,c_in,d_in)

tmp_add = c_in + d_in;

begin

if (a_in=’1’) then

y_out <= b_in and ( tmp_add);

else

z_out = e_in xor (tmp_add);

end if;

end process Comb_p1;
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In the above example, it is assumed that y_out is not assigned with the new value
within the loop and the above expression remains constant for every iteration inside
the loop. The synthesizer generates the 9 subtractors during the synthesis and this
occupies more area. The above VHDL design functionality can be modified to
avoid the unnecessary logic.

--The value of y_tmp in the range of 0 to 9

y_tmp <= a_in + b_in;

for y_tmp in 0 to 9 loop;

z_out <= y_tmp-6;

end loop;

--The value of y_tmp in the range of 0 to 9

y_tmp <= a_in + b_in;

tmp<= y_tmp-6;

for y_temp in 0 to 9 loop

z_out <= tmp;

end loop;

10.2.4 Constant Folding

Consider the use of constants in the RTL design using VHDL. Instead of writing the
code, use the direct computed or required value for the y_out. The piece of code is
shown in the following example.
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Instead of using the unnecessary VHDL construct, the better way is to use the
value 9 for y_out, and this technique is called as constant folding.

10.2.5 Dead Zone Elimination

The section of the code which is never executed is called as dead zone code. The dead
zone code elimination technique needs to be used for the better synthesis results.

The piece of RTL using VHDL is shown in the following example

In the above code, the condition is always false and hence if statement always
generates the false output. The synthesizer during the synthesis will perform such
kind of optimizations. But if the code is modified, then it will reduce the time
during the synthesis.

10.2.6 Use of Parentheses

In the most of the RTL designs using VHDL, if parentheses are used properly, then
the synthesis results can be more optimized.

For example, if the assign statement is used in the design without any paren-
theses, then it generates the logic with more propagation delay.

integer c_in =3;

y_out <= c_in *3;

integer c_in=3;
integer b_in =2;

comb_p1: process ( b_in,c_in)
if (b_in >c_in) then
y_out<=’1’;
else
y_out<=’0’;
end if;
end process Comb_p1;

y_out<= a_in + b_in _ c_in _d_in;
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if the above statement is modified as shown below, then it gives the clear timing
and data path (Figs. 10.4 and 10.5).

10.2.7 Partitioning and Structuring the Design

The design needs to be structured and partitioned for the better synthesis outcome.
It is the practical reality that the design which is better partitioned generates better
synthesis results and even it reduces the synthesis runtime. The following are the
key guidelines recommended for the design partitioning:

1. Partition the design for the design reuse.
2. For the different functionality, use the different module.
3. Use the combinational logic in the same block.
4. Use the separate block or structure logic for the random logic.
5. Partition the design at the top level.
6. Do not use the glue logic at the top level.
7. Use the separate module for state machines; that is, isolating the state machines

forms the other logic.
8. Limit the logic size to maximum 10-K gates for every block.
9. Avoid use of the multiple clocks in the same block.

10. Isolate the synchronizers for the multiple-clock-domain designs.

By using the synthesis optimization techniques, the RTL design using VHDL
designs by using the ALTERA and XILINX PLDs are discussed in the following

Adder
Sub

a_in 

b_in 

c_in

Sub

d_in
Y_out 

Fig. 10.4 Synthesis result without the use of parentheses

Adder

Adder

y_out 

a_in 

b_in 

c_in 

d_in 

Sub

Fig. 10.5 Synthesis result
with the use of parentheses

y_out<= (a_in+b_in) _ (c_in+d_in);
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sections. The device utilization and the synthesis results are discussed for the better
understanding.

10.3 ALU Design

Arithmetic logic unit (ALU) is used in the most of the processors to perform the
arithmetic and logical operations. Processor performs one of the operations at a time
depending on the operational code (opcode). For 8-bit processors, the ALU is used
to perform the operations on two eight-bit operands. Operand is the data on which
operation needs to be performed. Similarly for the 16-bit processors, the ALU is
used to perform the operations on two 16-bit numbers.

As shown in Fig. 10.6, a ALU architecture is described to perform the operation
on two four-bit numbers A (A3 is MSB and A0 is LSB), B (B3 is MSB and B0 is
LSB) and carry input C0, A ALU generates an output F (F3 is MSB and F0 is LSB)
and an output carry Cout3. In the practical design scenario, one-bit ALU can be
designed to perform operation on the single bit of data. The operation is performed
depending on the opcode bits specified by lines S1 and S0. As shown in the
following figure, ALU is designed to perform the execution for the four instructions
and the operations are described in the Table 10.1. The functionality is described
and it perform one of the operation listed depending on the status of select lines ‘S1’
and ‘S0’. In this example, opcode is 2 bits and is indicated by ‘S1’ and ‘S0’.

10.3.1 Processor Logic Unit and Design

In the practical programmable ASIC design scenario, it is recommended to describe
the functionality of design using an efficient VHDL constructs. So at the mi-
croarchitecture level, the design is partitioned into multiple modules. The parti-
tioning of design gives the better design understanding and visibility to designer.
Consider a scenario to implement the design functionality of an 8-bit ALU, the
design is petitioned as separate logic unit and arithmetic unit. Separate arithmetic
and logical unit functionality can be described by using efficient VHDL constructs
for better readability and better synthesis outcome.

As shown on Fig. 10.7 logical unit need to design to implement the four logical
operations, and these logical operations are described in the functional table. The logic
unit is designed to perform either AND, OR, XOR or complement operation.
Table 10.2 shown below, describes the different logical operations. The complement
operation is performedbyusing adder havingone inputA0 and another input logical ‘1’.

The issue with this type of design is; due to the use of parallel and multiplexing
logic the unit performs all the operations at a time. Hence it reduces overall design
performance and results into the more area. The data path is from input A0 and B0 to
the multiplexer data inputs, and control path is due to the control lines of multiplexers
‘S1’ and ‘S0’. As shown in Fig. 10.7, the processor logic unit performs all the
operations at a time and result ‘F0’ to ‘F3’ is generated depending on the status of the
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select lines. But this technique is inefficient as it needs more area and power and it
does not have the efficient implementation mechanism. If ‘S1’ and ‘S0’ are late
arriving signals and if this block is used in the register to register path, then there may
be possibility of the timing violations. Another important aspect is the concept of
resource sharing that is not used in this design.

Fig. 10.6 Four-bit ALU
architecture

Table 10.1 Four-bit ALU
operational table

S1 S0 Operation

0 0 Addition of A, B without carry

0 1 Subtraction of A, B without borrow

1 0 XOR of A, B

1 1 Complement of A
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So it is recommended to write an efficient RTL using synthesizable VHDL con-
structs for the processor logic unit. For the better performance of the design the ‘case’
construct and resource sharing technique can be used. The following section describes
the RTL using VHDL for the logical unit of the processor to infer the parallel logic.

10.3.1.1 8-bit Logic Unit

Example 10.1 describes the design functionality to perform the operations on two
8-bit binary inputs ‘a_in’ and ‘b_in’. The design functionality is described in
Table 10.3. The RTL using VHDL infers the parallel logic with multiplex encoding.

As described in Example 10.1, the functionality is described by using a proce-
dural ‘process’ block with the ‘case’ construct. All the case conditions are covered
and ‘when others’ condition is executed to generates output ‘result_out’ equal

Fig. 10.7 Single-bit logic
unit

Table 10.2 Single-bit
processors logic unit
operational table

S1 S0 Operation

0 0 A0 AND B0

0 1 A0 OR B0

1 0 XOR of A0, B0

1 1 Complement of A0
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity logic_unit is

port ( a_in , b_in: in std_logic_vector (7 downto 0);

op_code : in std_logic_vector (1 downto 0);

result_out : out std_logic_vector (7 downto 0));

end entity logic_unit; 

architecture arch_logic_unit of logic_unit is

begin

comb_p1 : process ( a_in, b_in, op_code)

begin

case op_code is

when "00" => result_out <= a_in or b_in;

when "01" => result_out <= a_in xor b_in;

when "10" => result_out <= a_in and b_in;

when "11" => result_out <= not a_in ;

when others => result_out<= “00000000”;

end case;    end process comb_p1; end architecture arch_logic_unit;

Architecture defines 
the func onality of 
design.
Combina onal Process 
‘comb_p1’ is sensi ve 
to the input changes 
at ‘a_in’, ‘b_in’ and 
‘op_code’.
Case construct is used 
to infer the parallel 
logic. 
Depending on the 
status of 2-bit 
‘op_code’ the 
‘result_out’ is 
assigned.
An output is either 
‘or’, ‘xor’, ‘and’, ‘not’
at a me. 

Example 10.1 VHDL RTL for 8-bit ALU using case construct
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to ‘00000000’. If op_code is not matching with “00” to “11” then the ‘when others’
clause is executed.

The synthesis result is shown in Fig. 10.8, and it infers the parallel logic using
multiplex encoding. For such kind of designs, ‘case’ construct is used instead of

Table 10.3 Operational table
for 8-bit ALU

op_code [1] op_code[o] Logic operation

0 0 a_in OR b_in

0 1 a_in XOR b_in

1 0 a_in AND b_in

1 1 Complement of a_in

Fig. 10.8 Synthesis result for 8-bit logic unit
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using ‘if then else’ construct. As discussed in Chap. 8, the ‘case’ construct infers the
parallel logic.

Synthesis result using case construct for the 8-bit processor logic unit is shown
in Fig. 10.8. As shown in the above figure, it infers the logic gates with multi-
plexing logic. In the practical scenario, it is recommended to use the adders as
common resources to implement both the logic and arithmetic units.

10.3.1.2 Processor Logic Unit with Registered IO

For the efficient and clean timing analysis, it is recommended to use registered
inputs and registered outputs. If all the inputs and outputs are registered that is
sampled or captured on the active edge of clock and even if all the outputs are
registered and captured on the active edge of clock, then design can give better
results and clean register to register timing. The registered inputs and registered
outputs can give the clean data path and even the output is glitch or hazard free. For
the performance improvement, the pipelining can be used to reduce the data arrival
time. Please refer Chap. 5 for the information about the sequential circuit timing.

Example 10.2 uses the registered input and registered output logic. The inputs
are sampled or captured on the positive edge of clock ‘clk’ and outputs are launched
on the positive edge of ‘clk.’ During the reset condition ‘reset_n = 0’, the processor
unit is initialized to logic ‘0’.

The Example 10.2 generates the processor logic unit with all the inputs and
outputs registered on positive edge of clock. Readers are requested to assume that
every register has an asynchronous reset input ‘reset_n’. The synthesis result is
shown in Fig. 10.9.

10.3.2 Arithmetic Unit

The arithmetic unit is used to perform the arithmetic operations such as addition,
subtraction, increment, and decrement. The operations are performed on the two
different operands. The functional Table 10.4 gives information about the different

Table 10.4 Operational table for the arithmetic unit

op_code[2] op_code[1] op_code[o] Logic operation

0 0 0 Transfer a_in

0 0 1 a_in ADD b_in

0 1 0 a_in ADD b_in with carry input cin_in

0 1 1 a_in SUB b_in

1 0 0 a_in SUB b_in with borrow input cin_in

1 0 1 Increment a_in

1 1 0 Decrement b_in

1 1 1 No operation performed
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library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;

entity logic_unit is

port ( a_in : in std_logic_vector (7 downto 0);

b_in: in std_logic_vector (7 downto 0);

clk: in std_logic;

reset_n : in std_logic;

op_code : in std_logic_vector (1 downto 0);

result_out : out std_logic_vector (7 downto 0));

end entity logic_unit;

architecture arch_logic_unit of logic_unit is

signal sig_a_in : std_logic_vector (7 downto 0);

signal sig_b_in : std_logic_vector (7 downto 0);

signal sig_op_code : std_logic_vector (1 downto 0);

begin

Architecture defines 
the func onality of 
design.
Signals are used to 
hold the intermediate 
data. 
Signals are declared as 
‘sig_a_in’, ‘sig_b_in’ 
and are 8 bit wide and 
of type std_logic.
Signal ‘sig_op_code’ is 
of type ‘std_logic’ and 
is 2-bit wide. 
These are used to 
assign the values of 
input on ac ve edge of 
clock ‘clk’. 

Example 10.2 VHDL RTL for 8-bit logic unit with registered inputs and outputs
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reg_p1 : process ( clk, reset_n)

begin 

if (reset_n='0') then

sig_a_in <= "00000000"; 

sig_b_in <= "00000000";

sig_op_code <= "00";

elsif (clk='1' and clk'event) then

sig_a_in <= a_in;

sig_b_in <= b_in;

sig_op_code <= op_code;   end if;      end process reg_p1;

comb_p2 : process ( sig_a_in, sig_b_in, sig_op_code)

begin

case sig_op_code is

when "00" => result_out <= sig_a_in or sig_b_in;

when "01" => result_out <= sig_a_in xor sig_b_in;

when "10" => result_out <= sig_a_in and sig_b_in;

when "11" => result_out <= not sig_a_in ;

end case;

end process comb_p2;

end architecture arch_logic_unit; 

� Combina onal Process 
‘comb_p2’ is sensi ve 
to the changes 
‘sig_a_in’, ‘sig_b_in’ 
and ‘sig_op_code’.

� Case construct is used 
to infer the parallel 
logic. 

� Depending on the 
status of 2-bit 
‘sig_op_code’ the 
‘result_out’ is 
assigned.

� An output is either 
‘or’, ‘xor’, ‘and’, ‘not’  
at a me. 

� It infers the parallel 
combina onal logic. 

� Sequen al process is 
labeled as ‘reg_p1’ 
and sensi ve to ‘clk’ 
and ‘reset_n’.

� For ac ve low 
‘reset_n’ the value of 
‘sig_a_in’, ‘sig_b_in’ 
and ‘sig_op_code’ is 
assigned to zero.

� For rising edge of the 
clock the input ‘a_in’ is 
assigned to ‘sig_a_in’.

� For rising edge of the 
clock the input ‘b_in’ 
assigned to ‘sig_b_in’.

� For rising edge of the 
clock the input 
‘op_code’ is assigned 
to ‘sig_op_code’.

Example 10.2 (continued)
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operations need to be performed. The arithmetic unit is described in such a way that
it performs only one operation at time. Figure 10.10 describes the block diagram
representation of the arithmetic unit (Example 10.3).

Logic Unit

reg_result_out

reg_a_in

reg_b_in

reg_op_code

Register logic

Register logic

Register logic
result_out

a_in

b_in

op_code

clk

registered logic

Control Unit with

Fig. 10.9 Synthesis result for processor logic unit with registered inputs and outputs
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--arithmetic unit VHDL 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity arithmetic_unit is

port ( a_in : in std_logic_vector (7 downto 0);

b_in : in std_logic_vector (7 downto 0);

cin_in : in std_logic;

op_code_in : in std_logic_vector (2 downto 0);

result_out : out std_logic_vector (7 downto 0);

co_out : out std_logic );

end entity arithmetic_unit;

architecture arch_arithmetic_unit of ari thmetic_unit is

begin

comb_p1 : process ( a_in, b_in, cin_in,op_code_in)

variable tmp_result_out : unsigned ( 8 downto 0);

begin

case op_code_in is

when "000" => tmp_result_out := unsigned ('0' & a_in);

when "001" => tmp_result_out := unsigned ('0' & a_in) + unsigned ('0' & b_in );

when "010" => tmp_result_out := unsigned ('0' & a_in ) + unsigned ('0' & b_in )+cin_in;

when "011" =>  tmp_result_out := unsigned ('0' & a_in ) -unsigned ('0' & b_in );

when "100" =>  tmp_result_out := unsigned ('0' & a_in ) -unsigned ('0' & b_in )-cin_in;

when "101" =>  tmp_result_out := unsigned ('0' & a_in ) + '1';

when "110" => tmp_result_out := unsigned ('0' & a_in )  -'1';

when others =>  tmp_result_out := "000000000";

Example 10.3 VHDL RTL for the arithmetic unit
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The synthesis result for one-bit arithmetic unit is shown in Fig. 10.11. The logic
uses the full adder as component to perform the addition and subtraction.
Subtraction is performed using 2’s complement addition. The synthesized logic also
consists of the multiplexer 4:1 to pass the required operand as one of the input of
full adder depending on the opcode.

Table 10.5 Signal or pin description of 8-bit ALU

Signal or pin name Size (bits) Description

a_in 8 An 8-bit operand

b_in 8 An 8-bit operand

cin_in 1 Carry input to a ALU

op_code_in 4 4-bit opcode for instruction

result_out 8 An 8-bit output from ALU

co_out 1 One-bit output carry from ALU

Arithme c unit

Control Unit

result_out

a_in

b_in

op_code_in

cin_in

co_out

Fig. 10.10 Block diagram of arithmetic unit
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10.3.3 Arithmetic and Logical Unit

Figure 10.12 illustrates the ALU with the associated logic circuit to perform the
operation on two 8-bit numbers ‘a_in’ and ‘b_in’. For logic operations, the carry
input (cin_in) is ignored and the output ‘result_out’ is generated depending on the

Full Adder

Control Unit

result_out[0]

a_in[0]

tmp_b_in[0]

op_code_in

cin_in

co_out[0]

0

b in[0]

~b in[0]

1

Fig. 10.11 Synthesis result for the one-bit arithmetic unit

ALU

Control Unit

result_out

a_in

b_in

op_code

cin_in

co_out

Fig. 10.12 ALU top-level
diagram
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operational code of the instruction. Depending of the operational code, ALU is used
to perform either arithmetic or logical operation. During arithmetic operations if
result is more than 8 bits, then carry output ‘co_out’ is set to logical ‘1’ that
indicates carry propagation outside to MSB.

Table 10.6 describes the number of instructions need to be performed by the
ALU. As shown in the table ALU performs 7 arithmetic operations and 4 logical
operations. The pin or signal description is shown in Table 10.5.

An efficient RTL using VHDL to infer the parallel logic is described in Example
10.4. For the ‘op_code_in = 0’, it performs the arithmetic operation, and when
‘op_code_in = 1’, it performs the logic operation.

The synthesis result for the 8-bit ALU is shown in Fig. 10.13. As shown in the
figure, it consists of the parallel logic for the arithmetic operations and logic
operations. Using the multiplexer at the output side, either arithmetic or logical
operation result can be selected. The logic does not use the concept of resource
sharing and area and power optimization. This RTL can be modified by using the
concept of resource sharing for the better synthesis result.

Table 10.6 Operational table for 8-bit ALU

Operational code Instruction Description

0000 Transfer a_in Generate an output a_in + 0+0

0001 Addition without carry a_in + b_in +0

0010 Addition with carry a_in + b_in + 1

0011 Subtract without borrow a_in –b_in

0100 Subtract with borrow a_in –b_in-1

0101 Increment a_in by 1 a_in +1

0110 Decrement a_in by 1 a_in -1

1000 a_in OR with b_in a_in OR b_in

1001 a_in XOR with b_in a_in XOR b_in

1010 a_in AND with b_in a_in AND b_in

1011 Complement a_in Not a_in
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--8-bit arithmetic logic unit VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity arithmetic_logic_unit is

port ( a_in : in std_logic_vector (7 downto 0);

b_in : in std_logic_vector (7 downto 0);

cin_in : in std_logic;

op_code_in : in std_logic_vector (3 downto 0);

result_out : out std_logic_vector (7 downto 0);

co_out : out std_logic );

end entity arithmetic_logic_unit;

architecture arch_arithmetic_unit of arithmetic_logic_unit is

begi n

comb_p1 : process ( a_in, b_in, cin_in,op_code_in)

variable tmp_result_out : unsigned ( 8 downto 0);

begin

if(op_code_in(3)='0') then

case op_code_in(2 downto 0) is

when "000" => tmp_result_out := unsigned ('0' & a_in);

when "001" => tmp_result_out := unsigned ('0' & a_in ) + unsigned ('0' & b_in );

when "010" => tmp_result_out := unsigned ('0' & a_in ) + unsigned ('0' & b_in )+cin_in;

when "011" =>  tmp_result_out := unsigned ('0' & a_in ) -unsigned ('0' & b_in );

when "100" =>  tmp_result_out := unsigned ('0' & a_in ) -unsigned ('0' & b_in )-cin_in;

when "101" =>  tmp_result_out := unsigned ('0' & a_in ) + '1';

when "110" => tmp_result_out := unsigned ('0' & a_in )  -'1';

when others =>  tmp_result_out := "000000000";

Example 10.4 VHDL RTL for 8-bit ALU
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10.4 Barrel Shifters

In most of the DSP applications, the combinational shifters are used to perform the
shifting operations on the data input. The combinational shifters are called as barrel
shifter. The advantage of barrel shifter is that it performs the shifting operation
depending on the required number of shifts depending on the control inputs without
use of any clocking logic. Most of the barrel shifters are designed by using the
multiplexer logic.

Example 10.5 is RTL using VHDL and has 8-bit input ‘d_in’, three-bit control
input ‘c_in’, and an 8-bit output ‘q_out’ (Fig. 10.14).

end case;

else

case op_code_in (2 downto 0) is

when "000" => tmp_result_out :=  unsigned ( '0' & (a_in  OR  b_in)) ;

when "001" => tmp_result_out :=  unsigned ( '0' & (a_in  XOR  b_in)) ;

when "010" => tmp_result_out := unsigned ( '0' & (a_in  AND  b_in)) ;

when "011" => tmp_result_out := unsigned ( '0' & NOT (a_in )) ;

when others => tmp_result_out := "000000000";

end case;

end if;

result_out <= std_logic_vector(tmp_result_out(7 downto 0));

co_out <= std_logic(tmp_result_out(8));

end process comb_p1;

end architecture arch_arithmetic_unit;

Example 10.4 (continued)

338 10 Synthesis Optimization Using VHDL



10.5 Parity Checkers and Generators

In most of the programmable ASIC and SOC designs, RTL using VHDL constructs
is used to describe the protocol behavior. The requirement and objective is func-
tional correctness of the design and even to have timing and cycle accurate models.
In most of the practical applications, the parity needs to be detected as even parity
or odd parity. For example if the even number of 1’s is there in any string, then the
parity is treated as even parity, and if odd number of 1’s are there in the string, then
parity will be treated as odd parity. This section focuses on the parity generator and
checker.

Arithme c Unit

Logic Unit

result_out_a

result_out_b

a_in

b_in

a_in

b_in

Control Unit

0

1
sel

result_out

cin_in

co_out

op_code

Fig. 10.13 Synthesis result for the 8-bit ALU
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10.5.1 Parity Checker

Efficient RTL using VHDL construct for the parity checker is described in Example
10.6. As described in the RTL, the even or odd parity is checked, and at output
‘y_out’, even parity is indicated by logic ‘0’ and odd parity is indicated by logic ‘1’.

The syntheis result is shown in Fig. 10.15 and it is combinational logic and
implemented using XOR gate.

10.5.2 Parity Generator

The RTL using VHDL for the 8-bit parity generator is described by using efficient
constructs and shown in Example 10.7

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity barrel_shifter is  

port (

d_in        : in  std_logic_vector(7 downto 0);   --data input vector

shift_lr : in  std_logic;           -- 0=>left_operation 
--1=>right_operation

shift_value    : in  std_logic_vector(2 downto 0);   -- shift value

Example 10.5 VHDL RTL for barrel shifter
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clk         : in  std_logic;                      -- clock input signal

reset_n       : in  std_logic;                      -- active low reset signal

enable_in      : in  std_logic;                     -- used for parallel load

y_out       : out std_logic_vector(7 downto 0));   -- shifted data output

end barrel_shifter;

architecture arch_barrel_shifter of barrel_shifter is

begin  

sequ_p1: process (clk,reset_n,shift_value,shift_lr)   

variable tmp_x,tmp_y : std_logic_vector(7 downto 0);

variable ctrl_0,ctrl_1,ctrl_2 : std_logic_vector(1 downto 0);

begin  -- process p1   

ctrl_0:=shift_value(0) & shift_lr;

ctrl_1:=shift_value(1) & shift_lr;

ctrl_2:=shift_value(2) & shift_lr;

Example 10.5 (continued)
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if(reset_n = '0') then

y_out<="00000000";

elsif(clk'event and clk = '1') then

if (enable_in='0')then

assert(false) report "data load is disabled" severity warning;

elsif(shift_lr='1')then

assert(false) report "shift data right" severity warning;

elsif(shift_lr='0')then

assert(false) report "shift data left" severity warning;

end if;

if (enable_in='1') then  

case ctrl_0 is                                    

when "00"|"01" =>tmp_x:=d_in ;           

Example 10.5 (continued)
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when "10" =>tmp_x:=d_in(6 downto 0) & d_in(7);  --shift the data input 
left by 1 bit

when "11" =>tmp_x:=d_in(0) & d_in(7 downto 1);  --shift the data input 
right by 1 bit

when others => null;

end case;

case ctrl_1 is

when "00"|"01" =>tmp_y:=tmp_x;

when "10" =>tmp_y:=tmp_x(5 downto 0) & tmp_x(7 downto 6);  --shift 
data input to left by 2 bits

when "11" =>tmp_y:=tmp_x(1 downto 0) & tmp_x(7 downto 2);  --shift 
data input to right by 2 bits

when others => null;

end case;

case ctrl_2 is

when "00"|"01" =>y_out<=tmp_y ;

Example 10.5 (continued)
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The synthesis result is shown in Fig. 10.16. The synthesized logic consists of
XOR logic, and it is a purely combinational design. For the input string of the 7
bits, the output is 8 bits.

10.6 Memories

Depending on the design requirements, the distributed RAM or BRAMs can be used
while prototyping. The memories can have synchronous or asynchronous read–write
capabilities. The single-port and dual-port BRAMs are discussed in this section.

10.6.1 Single-Port RAM

Example 10.8 is the VHDL description of the distributed RAM with the asyn-
chronous read. Depending on the design requirements, the distributed or BRAM
can be modeled using VHDL.

The synthesis outcome of single-port RAM with asynchronous read using Altera
Quartus II for MAXII device is shown in Fig. 10.17.

when "10"|"11" =>y_out<= tmp_y(3 downto 0) & tmp_y(7 downto 4);  --
shift to righ or left by 4 bits

when others => null;

end case;

end if;

end if;

end process sequ_p1; 

end arch_barrel_shifter;

Example 10.5 (continued)

344 10 Synthesis Optimization Using VHDL



Another type of single-port BRAM with read-first mode is described using
VHDL and shown in Example 10.9.

The synthesis outcome of single-port RAM with read-first mode using Altera
Quartus II for MAXII device is shown in Fig. 10.18.

Fig. 10.14 Synthesis result of barrel shifter
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library ieee;

use ieee.std_logic_1164.all;

entity parity_checker is 

port (

    a0_in : in  std_logic;

    a1_in : in  std_logic;

    a2_in : in  std_logic;

    a3_in : in  std_logic;
y_out  : out std_logic); 

end parity_checker;

architecture arch_parity_checker of parity_checker is

signal sig_tmp_1,sig_tmp_2 : std_logic;

begin  

sig_tmp_1 <= a0_in xor a1_in;

sig_tmp_2 <= a2_in xor sig_tmp_1;

y_out <= sig_tmp_2 xor a3_in; 

end arch_parity_checker;

Example 10.6 VHDL RTL for the parity checker
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Another type of single-port BRAM with write-first mode is described using
VHDL and shown in Example 10.10.

The synthesis outcome of single-port RAM with write-first mode using Altera
Quartus II for MAXII device is shown in Fig. 10.19. Reader can target these single
port RAM VHDL codes on the different Altera devices (Cyclone Iv, Cyclone II).

Fig. 10.15 Synthesized logic for parity checker

--8 Bit parity Generator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity parity_generator is

generic(n:integer:=7);

Example 10.7 VHDL RTL for 8-bit parity generator
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port(a_in:in std_logic_vector(n-1 downto 0);

y_out:out std_logic_vector(n downto 0));

end parity_generator;

architecture arch_parity_gen of parity_generator is

begin

comb_p1: process(a_in)

variable tmp_1:std_logic;

variable tmp_2:std_logic_vector(y_out'range);

begin

tmp_1:='0';

for i in a_in'range loop

tmp_1:=tmp_1 xor a_in(i);

tmp_2(i):=a_in(i);

                        end loop;

tmp_2(y_out'high):=tmp_1;

y_out<=tmp_2;

end process comb_p1;

end arch_parity_gen;

Example 10.7 (continued)
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10.6.2 Dual-Port RAM

Example 10.11 is the VHDL description of the simple dual-port BRAM with single
clock.

The synthesis outcome of dual-port RAM using Altera Quartus II for MAXII
device is shown in Fig. 10.20.

For the dual-port RAM with two clocks, the RTL using VHDL is described and
shown in the Example 10.12.

The synthesis outcome of dual-port RAM with two clocks using Altera
Quartus II for MAXII device is shown in Fig. 10.21.

If the VHDL RTL is synthesized by using the XILINX ISE, then the device
utilization for the dual-port RAM is shown in Table 10.7.

Fig. 10.16 Synthesized 8-bit parity generator

Fig. 10.17 Synthesized single-port RAM with asynchronous read
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10.7 Multipliers

In most of the DSP applications, the dedicated multipliers are required to improve
the computational speed. The RTL using VHDL for the 16-bit multiplier is
described in Example 10.13. The synthesis result is shown in Fig. 10.22.

Analysis and synthesis of multiplier using Altera Quartus II license for MAXII
device is shown in the Table 10.8.

Device utilization summary for 16-bit multiplier is shown in Table 10.8.

--Single Port Distributed RAM with Asynchronous Read 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity ram_single_port is

port(

        clk : in std_logic;

        write_en : in std_logic;

        address_in : in std_logic_vector(5 downto 0);

Example 10.8 VHDL RTL for single-port RAM with asynchronous read
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data_in : in std_logic_vector(7 downto 0);

data_out : out std_logic_vector(7 downto 0)

);

end ram_single_port;

architecture arch_ram of ram_single_port is

type ram_m_type is array (63 downto 0) of std_logic_vector(7 downto 0);

signal sig_ram : ram_m_type;

begin

sequ_p1: process(clk)

begin

if (clk'event and clk = '1') then

if (write_en = '1') then

sig_ram(conv_integer(address_in)) <= data_in;

end if;

end if;

end process sequ_p1;

data_out <= sig_ram(conv_integer(address_in));

end arch_ram;

Example 10.8 (continued)
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Fig. 10.18 Synthesized single-port BRAM with read-first mode

-- Single-Port Block RAM with Read-First Mode

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity ram_sp_read_first is

port(

           clk : in std_logic;

          write_en : in std_logic;

           enable_in : in std_logic;

          addr_in : in std_logic_vector(9 downto 0);

         data_in : in std_logic_vector(7 downto 0);

         data_out : out std_logic_vector(7 downto 0)

Example 10.9 VHDL RTL for single-port BRAM with read-first mode
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      );

end ram_sp_read_first;

architecture arch_ram_sp of ram_sp_read_first is

type ram__m_type is array (1023 downto 0) of std_logic_vector(7 
downto 0);

signal sig_ram : ram_m_type;

begin

sequ_p1: process(clk)

begin

         if (clk'event and clk = '1)' then

              if( enable_in = '1' )then

                   if( write_en = '1' )then

                         sig_ram(conv_integer(addr_in)) <= data_in;

                   end if;

              data_out <= sig_ram(conv_integer(addr_in));

        end if;

     end if;

end process sequ_p1;

end arch_ram_sp;

Example 10.9 (continued)
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Fig. 10.19 Synthesized single-port RAM with write-first mode

-- Single port BRAM with the write first

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity ram_sp_write_first is

port(

        clk : in std_logic;

        write_en : in std_logic;

        enable_in : in std_logic;

        addr_in : in std_logic_vector(9 downto 0);

        data_in : in std_logic_vector(7 downto 0);

        data_out : out std_logic_vector(7 downto 0)

    );

end ram_sp_write_first;

Example 10.10 VHDL RTL for single-port BRAM with write-first mode
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architecture arch_ram_sp of ram_sp_write_first is

type ram_m_type is array (1023 downto 0) of std_logic_vector(7
downto 0);

signal sig_ram : ram_m_type;

begin

sequ_p1: process(clk)

begin

if (clk'event and clk = '1') then

if (enable_in = '1' ) then

if (write_en = '1' ) then

sig_ram(conv_integer(addr_in)) <= data_in;

data_out <= data_in;

end if;

data_out <= sig_ram(conv_integer(addr_in));

        end if;

    end if;

end process sequ_p1;

end arch_ram_sp;

Example 10.10 (continued)
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-- Simple Dual-Port Block RAM with single Clock

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity dual_port_ram is

port(

clk : in std_logic;

enable_a_in : in std_logic;

enable_b_in : in std_logic;

write_en : in std_logic;

addr_a_in : in std_logic_vector(9 downto 0);

addr_b_in : in std_logic_vector(9 downto 0);

data_a_in : in std_logic_vector(7 downto 0);

data_b_out : out std_logic_vector(7 downto 0)

Example 10.11 VHDL RTL for dual-port RAM
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);

end dual_port_ram;

architecture arch_dual_port_ram of dual_port_ram is

type ram_m_type is array (1023 downto 0) of std_logic_vector(7 
downto 0);

shared variable sig_ram : ram_m_type;

begin

sequ_p1: process(clk)

begin

if (clk'event and clk = '1') then

if (enable_a_in = '1' ) then

if (write_en = '1') then

sig_ram(conv_integer(addr_a_in)) := data_a_in;

end if;

Example 10.11 (continued)
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end if;

end if;

end process sequ_p1;

sequ_p2: process(clk)

begin

if (clk'event and clk = '1') then

if (enable_b_in = '1' ) then

data_b_out <= sig_ram(conv_integer(addr_b_in));

end if;

end if;

end process sequ_p2;

end arch_dual_port_ram;

Example 10.11 (continued)
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--Dual port RAM with two clocks

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity dual_port_ram is

port(

Example 10.12 VHDL RTL for dual-port BRAM with two clocks

Fig. 10.20 Synthesized dual-port RAM
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clk_a : in std_logic;

clk_b : in std_logic;

enable_a_in : in std_logic;

enable_b_in : in std_logic;

write_en : in std_logic;

addr_a_in : in std_logic_vector(9 downto 0);

addr_b_in : in std_logic_vector(9 downto 0);

data_a_in : in std_logic_vector(7 downto 0);

data_b_out : out std_logic_vector(7 downto 0)

);

end dual_port_ram;

architecture arch_dual_port_ram of dual_port_ram is

type ram_m_type is array (1023 downto 0) of std_logic_vector(7 downto 
0);

Example 10.12 (continued)
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shared variable sig_ram : ram_m_type;

begin

port_a: process(clk_a)

begin

       if (clk_a'event and clk_a = '1' )then

          if (enable_a_in = '1') then

             if (write_en = '1') then

                sig_ram(conv_integer(addr_a_in)) := data_a_in;

             end if;

         end if;

    end if;

end process port_a;

port_b: process(clk_b)

begin

Example 10.12 (continued)
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         if (clk_b'event and clk_b = '1') then

            if enable_b_in = '1' then

               data_b_out <= sig_ram(conv_integer(addr_b_in));

          end if;

     end if;

end process port_b;

end arch_dual_port_ram;

Example 10.12 (continued)

Fig. 10.21 Synthesized dual-port BRAM with two clocks
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Table 10.7 Device utilization for XILINX FPGA device: XC3S100e-5vq100

Device utilization summary (estimated values)

Logic utilization Used Available Utilization (%)

Number of slices 1 960 0

Number of 4 input LUTs 1 1920 0

Number of bonded IOBs 41 66 62

Number of BRAMs 1 4 25

Number of GCLKs 2 24 8

--VHDL RTL for 16 bit multiplier 

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity multiplier is

generic (data_size :integer := 16; 

data_level:integer:=4);

port (

clk : in std_logic;

a_in : in std_logic_vector (data_size-1 downto 0);

b_in : in std_logic_vector (data_size-1 downto 0);

y_out : out std_logic_vector (2*data_size-1 downto 0));

end multiplier;

architecture arch_multiplier of multiplier is

Example 10.13 VHDL RTL for 16-bit multiplier
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type register_levels is array (data_level-1 downto 0) of unsigned 
(2*data_size-1 downto 0);

signal register_bank :register_levels;

signal sig_a, sig_b : unsigned (data_size-1 downto 0);

begin

y_out <= std_logic_vector (register_bank (data_level-1));

seq_mul: process ( clk)

begin

        if( clk'event and clk = '1')  then

               sig_a <= unsigned(a_in);

                sig_b <= unsigned(b_in);

                register_bank (0) <= sig_a * sig_b;

         for i in 1 to data_level-1 loop

             register_bank (i) <= register_bank (i-1);

        end loop;

      end if;

end process seq_mul;

end arch_multiplier;

Example 10.13 (continued)
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Fig. 10.22 Synthesis result for the 16-bit multiplier

Analysis & Synthesis Status Successful - Mon May16 21:48:55 2016

Quartus II 32-bit Version 13.0.0 Build 156 04/24/2013 Revision 

Name Mult_design 

Top-level En ty Name mul plier 

Family MAX II

Total logic elements 472

Total pins 65

Total virtual pins 0 

UFM blocks 0 / 1 ( 0 % )
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10.8 Summary

The following are the key points to summarize this chapter:

1. The design partitioning can give the good and clear visibility of the data and
control paths for the programmable ASIC design.

2. The RTL using VHDL for the complex design should have the separate func-
tionality for the data paths and control paths.

3. Use the resource sharing concepts while coding for the logic unit. All the logical
operations can be performed by using full adder component with additional
combinational logic.

Table 10.8 Resource usage summary for multiplier 16 bits using Altera Quartus II

Analysis and synthesis resource usage summary Usage

Resource

1 Total logic elements 472

1 combinational with no register 312

2 register only 126

3 combinational with a register 34
2

3 Logic element usage by number of LUT inputs

1 4-input functions 120

2 3-input functions 168

3 2-input functions; 37

4 1-input functions 19

5 0-input functions 2

4

5 Logic elements by mode

1 normal mode 297\

2 arithmetic mode 175

3 qfbk mode 0

4 register cascade mode 0

5 synchronous clear/load mode 0

6 asynchronous clear/load mode 0

6

7 Total registers 160

8 Total logic cells in carry chains 185

9 I/O pins 65

10 Maximum fan-out node clk

11 Maximum fan-out 160

12 Total fan-out 1395

13 Average fan-out 2.60

366 10 Synthesis Optimization Using VHDL



4. Parity generators are used to generate an even or an odd parity for the data input
string.

5. Barrel shifters are combinational shifters and designed by using MUX-based
logic.

6. Memories can be of distributed or BRAM type and inferred depending on the
design requirement.

7. For less storage, distributed RAM can be inferred using the LUTs.
8. For the complex designs with large memory requirements, BRAMs can be

inferred using dedicated block RAM resources of FPGA.
9. Multipliers are used as dedicated resource to perform the multiplication to

realize DSP functions.
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Chapter 11
Design Implementation Using Xilinx
Vivado

Abstract The PLD-based designs can be implemented by using the FPGA and by
using the vendor-specific EDA tool chain. The chapter discusses about the design
implementation using XILINX Vivado. The design flow using XILINX Vivado to
perform the design simulation, synthesis, and implementation is discussed with the
case study. Even this chapter discusses about the FIFO depth calculations and FIFO
design.

Keywords FIFO � Vivado � Design planning � Verification � Translate � Map �
Place and route � Simulation � Synthesis � Timing simulation � Bitstream � Device
programming � IO planning � IO assignment � Constraints � Debugging

As discussed in the previous chapters, VHDL is efficiently used to code the
functionality of the design. The design using VHDL can be implemented using the
vendor-specific EDA tools. The subsequent section discusses about the design
implementation using the XILINX Vivado.

“I have no special talent. I am only passionately
---  Albert Einstein

While wri ng the RTL using the VHDl constructs use the
synthesis op miza on techniques for be er
performance of the design!

curious...” 

© Springer Nature Singapore Pte Ltd. 2017
V. Taraate, PLD Based Design with VHDL,
DOI 10.1007/978-981-10-3296-7_11
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11.1 Design Implementation Case_Study
Using Xilinx Vivado

The subsequent section discusses about the design implementation using XILINX
Vivado. For better understanding of the design flow the combinational design with
8 inputs and 8 outputs is realized using XILINX Vivado. The design flow using the
Xilinx Vivado is shown in Fig. 11.1.

11.1.1 Design Planning

The design planning stage uses the overall design specification while planning for
the design. The designs are planned depending on the end application of the design,
design functional specifications. In the product design cycle, the design planning is
done to realize the product to have the lesser area, lesser power, and maximum
design performance. With the required functional specifications of the design, it is
essential to consider the design electrical specifications, environmental conditions,
and mechanical assemblies required for the design.

As discussed in Chap. 10, the design planning stage starts with the architecture
development for the design. Architecture for the design is block-level representation
of the functionality and it gives information about the design intent. Depending on
the functionality requirements, the architecture document can be created and can be
evolved during this stage. The architecture of any design should give information
about the processing logic, external memories, interfaces, and internal storage
required. The overall data and control path information is described at the higher
level in the architecture document. Even the architecture document should be able

Fig. 11.1 Design flow [2]
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to give information about the overall data rate for the design, operating frequency,
area requirement, and power requirements. The architecture document also needs to
focus on the requirement of third-part IPs, processors, the timing requirements,
memories, and latency. The document should give the clarity about the overall area
estimations and the target FPGA requirements for the design.

The architecture document is used in the later stages to plan the design. It acts as
the source document while developing the microarchitecture of the design. The
microarchitecture document can be created by using the architecture document.
This document consists of the sub-blocks for every functional unit described in the
architecture. For example, consider processor logic; the microarchitecture document
should give information about the functional blocks of the processors, parallel and
sequential processing algorithms, internal registers required, pipelining stages,
buffer requirements, instructions and their decoding, communication, and interface
mechanism with other functional blocks. Even the microarchitecture document
should be able to specify the overall timing requirements for the individual func-
tional blocks. For the SOC designs, the document should give the clarity on the
hardware and software partitioning and their dependability. This document gives
the information about the data and control flow for the individual functional blocks
and hence used as reference document in the later stages of the design.

The RTL design using VHDL or Verilog uses the microarchitecture document as
reference document. For the complex designs, better design partitioning plays an
important role to realize the design with lesser area, lesser power, and improved
design performance. The RTL designer should have clarity about the target tech-
nology for which design need to be implemented. The area, speed, and power
improvement techniques with the coding and design guidelines need to be used
while writing the RTL using VHDL or Verilog. The individual functional blocks
with the correct functional intent can be integrated during this stage to realize the
design.

The functional correctness of the design is checked by using the verification
techniques. During the design verification, the objective is to check for the bugs to
have the functional correctness of the design. As the complexity of the design
increases, the design verification time and budgeting are additional overhead, but
efforts during this stage can detect the functional bugs. For complex designs, the
overall verification planning using the sophisticated self-checking testbenches can
boost the design performance. In the practical scenario, the verification planning
and verification architecture is used to improve the overall coverage for the design.
Before the synthesis, the functional correctness of design is checked without using
any delays. This kind of verification is called as presynthesis verification.

The fully functional RTL design is one of the input by the synthesis tool. Other
inputs used by synthesis tool are ASIC libraries, design constraints. For the design
using the PLD, the target FPGA device family information is used by the
vendor-specific EDA tool. The synthesis outcome is gate-level netlist, and it is
lower level abstraction of the HDL.

Consider the design shown in Example 11.1. To implement the design using the
Xilinx Vivado, use the following steps:
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity comb_design is

port (

d_in        : in  std_logic_vector(7 downto 0);   

y_out       : out std_logic_vector(7 downto 0) );   

end comb_design;

architecture arch_comb_design of comb_design is

Begin

y_out(0) <= not d_in (0);

y_out(1) <=( not d_in (2) ) d_in(1);

y_out(2) <= (d_in (2) and d_in(3)) or (( not d_in (2) ) and 
d_in(1));

y_out(3) <= (d_in (2) and d_in(3));

y_out(4) <= d_in(4);

y_out(5) <= d_in(5);

y_out(6) <= d_in (6);

y_out(7) <= d_in(7);

end arch_comb_design;

Example 11.1 VHDL RTL for comb_design
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1. Create the Vivado project and input the source file,
2. Simulate the design using Xsim simulator,
3. Perform the design synthesis,
4. Implement the design using Vivado,
5. Perform the timing simulation, and
6. Using Nexys 4 board, perform the functionality verification.

The design shown in the Example is implemented and verified using Xilinx
Vivado.

Add the source VHDL file comb_design.vhd using the Xilinx Vivado, and
perform the RTL analysis on the added source file. The result for the synthesis
without the IO assignment is shown in Fig. 11.2.

11.1.2 IO Planning and IO Constraints

Use the IO planning layout shown in Fig. 11.3.
To perform the IO planning, use the following auxiliary view after clicking on

IO planning (Fig. 11.4).

Fig. 11.2 Synthesis result for comb_design

Fig. 11.3 IO planning
layout [2]
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In the auxiliary view, the package is displayed, and after selection of the device
constraints, the IO ports are displayed in the console area. With multiple IO stan-
dards, the design inputs and outputs are listed in the IO tab area.

In the IO tab area, click on the (+) box for inputs (d_in) and output (y_out)
(Fig. 11.5).

Now you can see the IO standards. For the d_in(6 downto 0) and y_out(6
downto 0), the IO standard LVCMOS33 is used, and for the d_in(7) and y_out(7),
the default IO standard LVCMOS18 is used. Depending on the IO requirements,
one of the IO standards can be chosen. Now to change the IO standard for the y_out
(7) to LVCMOS33, use the following Fig. 11.6.

By using the tcl commands, also IO standards can be assigned. Use the fol-
lowing commands.

Even by using the IO port properties, the IO standards can be assigned. After
assignment of IO standards, save the constraints in the comb_design.xdc file.

Fig. 11.4 IO planning auxiliary view [2]

set_property package_pin V5 [get_ports {y_out[7]}]
set_property iostandard LVCMOS33 [get_ports [list
{y_out[7]}]]
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11.1.3 Functional Simulation of the Design

Carry out the functional simulation of the design using Xsim simulator. The sim-
ulation results are shown in Fig. 11.7. Functional simulation is carried out buy
writing the testbench using VHDL constructs.

Fig. 11.5 IO standards [2]

Fig. 11.6 Selection for IO standard [2]

Fig. 11.7 Functional simulation result [2]
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11.1.4 Design Synthesis

Synthesize the design using the Xilinx Vivado to analyze the design summary.
Figure 11.8 is the snapshot of the Xilinx Vivado and gives information about the
synthesis-phase completion.

Click on the Table tab to get the device utilization. The device utilization for the
comb_design is shown in Fig. 11.9. As the design is basic combinational logic, it
uses three LUTs and 16 IOs only.

Fig. 11.8 Synthesis-completed window [2]

Fig. 11.9 Device utilization [2]
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The synthesis result can be in the form of gate level netlist and for the above
design the synthesis result is shown in Fig. 11.10. As shown, the IO buffers are
automatically added by the tool in the input and output path. LUTs are used to map
the gates.

11.2 Design Implementation

The design is implemented using Vivado by clicking on the ‘run implementation’
which is in the implementation task. The design implementation is performed by
Vivado using the synthesis output file, and after design implementation, the
implementation result can be viewed in the schematic form by clicking on the ‘open
implemented design.’ Figure 11.11 shows the implemented design.

To check the project summary, close the implemented design view and select the
project summary tab. Select the post-implementation tab under the timing and
utilization window. Figure 11.12 shows the post-implementation status, and the
device utilization is only 3 LUTs with 16 IOs. As the design is combinational, there
are no any timing constraints provided for the design.

Fig. 11.10 Netlist view [2]
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Fig. 11.11 Implemented design [2]

Fig. 11.12 Post-implementation summary [2]

378 11 Design Implementation Using Xilinx Vivado



11.2.1 Timing Simulation

Perform the timing simulation by using the Vivado. Use the run simulation > run
post-implementation timing simulation. Use the comb_design.tb tas top-level
module. The result of timing simulation is shown in Fig. 11.13.

11.3 FPGA Board Bring-up

Create the bitstream file and verify the design functionality.

1. Click on the ‘Generate Bitstream’ under the program and debug tasks.
2. This will be generated by using the implemented design output. The bitstream

file ‘comb_design.bit’ is generated under ‘impl_1’ directory.
3. Check for the board setting and power on status of the board. The Nexys 4 board

is shown below (Fig. 11.14).
4. Click on ‘Open new hardware target’ link. The link is shown in Fig. 11.15.
5. Click ‘Next’ to see the Vivado CSE server name form.

Fig. 11.13 Timing simulation result [2]

Fig. 11.14 Nexys 4 board [2]
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6. Click ‘Next’ with local host port selected. The JTAG cable will be searched to
detect the Xilinx_tcf. This shows the hardware device detected in the chain.
Figure 11.16 shows the detected hardware device.

7. Click ‘Next’ till Finish and this will give the status of hardware session from
unconnected to the server name. The device is highlighted and indicates that it is
not programmed.

8. Now select the device and use comb_design.bit file as programming file
(Fig. 11.17).

Fig. 11.15 New hardware tab [2]

Fig. 11.16 Hardware device-detected window [2]
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Fig. 11.17 Bitstream programming [2]
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9. Now select the Program Device, use the right click to configure FPGA. The
snapshot is shown in the figure. By changing the switches on the board for the
respective inputs, verify the output. By using File > Close Hardware Manager
close the hardware debugging session (Fig. 11.18).

11.4 FIFO Design Case Study

The following section describes the case study of FIFO used in the
multiple-clock-domain designs. By using the steps in the above section, the design
can be targeted on the required XILINX FPGAs. Designer can choose the Spartan
or Virtex series FPGAs required for the suitable applications.

FIFOs are the storage buffers used to pass data in the multiple-clock-domain
designs. The FIFO depth calculation is described in the following section and
subsequently how to design efficient FIFO is explained by using the RTL design
using VHDL.

Fig. 11.18 Device programming window [2]
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11.4.1 Asynchronous FIFO Depth Calculations

Scenario I: Clock domain 1 is faster as compared to clock domain 2; that is, f1 is
greater than f2 without any idle cycle between write and read.

Scenario II: Clock domain 1 is faster as compared to clock domain 2; that is, f1
is greater than f2 with idle cycles between writes and reads.

Consider the design where f1 = 100 MHz and f2 = 50 MHz and the burst of data transfer 
from clock domain one to clock domain 2  is 100 without idle cycles that is consecu-

ve write and read cycles.

The depth of FIFO can be calculated as : 
1. Find me required to write one data :

Twrite = 1/100 MHz = 10 nsec
2. Find out me required to write burst of data :

Tburst_write=  Twrite * Burst length = 10nsec * 100 = 1micro-second
3. Find me required to read one data :

Tread = 1/50 MHz = 20 nsec
4. Find out number of data read in dura on of Tburst_write :

No of reads = 1000 nsec/20 nsec = 50 
5. The depth of FIFO : 

Depth = Burst length – No of reads = 100-50 = 50 
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Scenario III: Clock domain 1 is slower as compared to clock domain 2; that is,
f1 is less than f2 with idle cycles between two successive writes and two successive
reads.

Consider the design where f1 = 100 MHz and f2 = 50 MHz and the burst of data transfer 
from clock domain one to clock domain 2 is 100 with idle cycles . Number of idle cy-
cles between two successive writes = 1 and number of idle cycle between two suc-
cessive reads =3

The depth of FIFO can be calculated as : 
1. Find me required to write one data : 

As between two successive writes the idle cycle is one therefore for every two cycles 
one data is wri en 

Twrite = 2 * ( 1/100 MHz) = 20 nsec
2. Find out me required to write burst of data :

Tburst_write=  Twrite * Burst length = 20nsec * 100 = 2 micro-second
3. Find me required to read one data :

As between two successive reads the idle cycle is three therefore for every four cycles 
one data is read 

Tread = 4 * (1/50 MHz) =80 nsec
4. Find out number of data read in dura on of Tburst_write :

No of reads = 2000 nsec/80 nsec = 25
5. The depth of FIFO : 

Depth = Burst length – No of reads = 100-25 = 75 
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Scenario IV: Clock domain 1 is the frequency equal to clock domain 2; that is,
f1 is equal to f2 and idle cycles between two successive reads and writes

Consider the design where f1 = 50 MHz and f2 = 80 MHz and the burst of data transfer 
from clock domain one to clock domain 2  is 100 with idle cycles . Number of idle cy-
cles between two successive writes = 1 and number of idle cycle between two suc-
cessive reads =3

The depth of FIFO can be calculated as : 
1. Find me required to write one data : 

As between two successive writes the idle cycle is one therefore for every two cycles 
one data is wri en 

Twrite = 2 * ( 1/50 MHz) = 40 nsec
2. Find out me required to write burst of data :

Tburst_write=  Twrite * Burst length = 40nsec * 100 = 4 micro-second
3. Find me required to read one data :

As between two successive reads the idle cycle is three therefore for every four cycles 
one data is read 

Tread = 4 * (1/80 MHz) =50 nsec
4. Find out number of data read in dura on of Tburst_write :

No of reads = 4000 nsec/50 nsec = 80
5. The depth of FIFO : 

Depth = Burst length – No of reads = 100-80 = 20
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11.4.2 FIFO Design Using VHDL

The FIFO design uses the dual-port RAM as component and the RTL description
using the VHDL is shown in Example 11.2. Please refer Chap. 10 for the dual-port
RAM implementation.

The design can be implemented by using the XILINX and ALTERA PLDs.

Consider the design where f1 = 100 MHz and f2 = 100 MHz and the burst of data transfer 
from clock domain one to clock domain 2 is 100 with idle cycles . Number of idle cy-
cles between two successive writes = 1 and number of idle cycle between two suc-
cessive reads =3

The depth of FIFO can be calculated as : 
1. Find me required to write one data : 

As between two successive writes the idle cycle is one therefore for every two cycles 
one data is wri en 

Twrite = 2 * ( 1/100 MHz) = 20 nsec
2. Find out me required to write burst of data :

Tburst_write=  Twrite * Burst length = 20nsec * 100 = 2 micro-second
3. Find me required to read one data :

As between two successive reads the idle cycle is three therefore for every four cycles 
one data is read 

Tread = 4 * (1/100 MHz) =40 nsec
4. Find out number of data read in dura on of Tburst_write :

No of reads = 2000 nsec/40 nsec = 50
5. The depth of FIFO : 

Depth = Burst length – No of reads = 100-50 = 50 
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library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity fifo _RTL is

generic(

DATA_WIDTH:natural:=8;

ADDRESS_WIDTH:natural:=2

);

port(

reset_n      :in std_logic;

clk      :in std_logic;  

Example 11.2 VHDL RTL for FIFO
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data_in  :in std_logic_vector(DATA_WIDTH-1 downto 0);

data_out :out std_logic_vector(DATA_WIDTH-1 downto 0);

read_en    :in std_logic;

write_en    :in std_logic;

fifo_empty    :out std_logic;

fifo_full     :out std_logic l

);

end entity fifo_RTL;

architecture arch_RTL_fifo of fifo_RTL is

signal read_ptr:std_logic_vector(ADDRESS_WIDTH-1 downto 
0):=(others=>'0');

signal write_ptr:std_logic_vector(ADDRESS_WIDTH-1 downto 
0):=(others=>'0');

signal count:std_logic_vector(ADDRESS_WIDTH downto 
0):=(others=>'0');

Example 11.2 (continued)
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signal valid_read:std_logic:='0';

signal valid_write:std_logic:='0';

signal empty:std_logic:='1';

signal full:std_logic:='0';

constant MAX:std_logic_vector(ADDRESS_WIDTH downto 
0):=('1',others=>'0');

constant MIN:std_logic_vector(ADDRESS_WIDTH downto 
0):=(others=>'0');

component dual_port_ram

generic(

DATA_WIDTH:natural:=8;

ADDRESS_WIDTH:natural:=4

);

port(

Example 11.2 (continued)
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reset_n      :in std_logic;

read_clk   :in std_logic;

write_clk   :in std_logic;

data_in  :in std_logic_vector(DATA_WIDTH-1 downto 0);

data_out :out std_logic_vector(DATA_WIDTH-1 downto 0);

read_addr  :in std_logic_vector(ADDRESS_WIDTH-1 downto 0);

write_addr  :in std_logic_vector(ADDRESS_WIDTH-1 downto 0); 

read_en    :in std_logic;

write_en    :in std_logic

);

end component dual_port_ram;

begin

memory:dual_port_ram

generic map(

Example 11.2 (continued)
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DATA_WIDTH=>DATA_WIDTH,

ADDRESS_WIDTH=>ADDRESS_WIDTH

)

port map(

reset_n=>reset_n,   

read_clk=>clk, 

write_clk=>clk,

data_in=>data_in, 

data_out=>data_out,

read_addr=>read_ptr(ADDRESS_WIDTH-1 downto 0), 

write_addr=>write_ptr(ADDRESS_WIDTH-1 downto 0), 

read_en=>valid_read,  

write_en=>valid_write 

Example 11.2 (continued)
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);

valid_read<='1' when (read_en='1' and empty='0') else '0';

valid_write<='1' when (write_en='1' and full='0') else '0';

empty<='1' when count=MIN else '0';

full<='1' when count=MAX else'0';

fun_ p2:process(reset_n,clk) is

begin

if (reset_n='0') then

read_ ptr<=(others=>'0');

write_ptr<=(others=>'0');

count<=(others=>'0');

elsif rising_edge(clk) then

if (valid_read='1') then

read_ ptr<=read_ ptr+1;

Example 11.2 (continued)
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if (valid_write='1') then

count<=count;

else

count<=count-1;

end if;

end if;

if (valid_write='1') then

write_ptr<=write_ptr+1;

if (valid_read='1') then

count<=count;

else

count<=count+1;

end if;

end if;

Example 11.2 (continued)
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11.5 Summary

The following are the key points to summarize this chapter:

1. The RTL description using VHDL for the complex design should have the
separate functionality for the data paths and control paths.

2. Use the FIFO for passing the data from one of the clock domains to another
clock domain.

3. Design can be implemented on XILINX and Altera PLDs depending on the
available resources.

4. The combinational logic is mapped into the LUT.
5. The timing simulation of design is post-layout simulation which includes the

delays.
6. In the prelayout simulation, delays are not included.

References

1. www.springer.com http://www.springer.com/us/book/9788132227892.
2. www.xilinx.com “XILINX Vivado Design guide”.

end if;

end process fun_ p2;

fifo_empty<=empty;

fifo_ full<=full;

end architecture arch_RTL_ fifo;

Example 11.2 (continued)
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Appendix A
Key Differences VHDL 87 and VHDL 93

The key differences in the syntax of VHDL 87 and VHDL 93 are listed in this
appendix.

1. Alias

In VHDL 87, aliases are declared for the object, but in VHDL 93, aliases are
declared for the objects, subprograms, types, and operators and even for the named
entities. In VHDL 93, aliases cannot be declared for the entities with the loop
parameters, labels, and generate parameters.

2. Attributes

In VHDL 93, the following attributes are added:

• ASCENDING
• DRIVING
• DRIVING_VALUE
• IMAGE
• INSTANCE_NAME
• PATH_NAME
• SIMPLE_NAME
• VALUE

3. Bit-String literals

In VHDL 87, bit-string literals are of type Bit_Vector. For example, if signal
‘tmp_sig’ is declared as std_logic_vector (0–7), then using VHDL 87 the assign-
ment can be

But using VHDL 93, the above signal assignment generates error. So for VHDL
87 and VHDL 93, the following can work

tmp_sig <= to_stdlogicvector(x”B1A2”);

© Springer Nature Singapore Pte Ltd. 2017
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4. Character Set

The character set in VHDL 87 is 128 characters, but in VHDL 93, the character
set is of 256 characters.

5. Direct Instantiations

In VHDL 87, component declaration is required, but in VHDL 93, it is possible
to exclude the component declaration and it is possible to instantiate an entity or
configuration declaration. VHDL 87 does not allow any international characters
even in comments. But using VHDL 93, many standard EDA tools support the
international characters in the comments.

6. Delayed concurrent statements

In VHDL 87, it is not possible to have all concurrent statements active during
simulation. In VHDL 93, it is possible to have all the concurrent statements active
during simulation as postponed.

7. Extended Identifiers

Extended identifiers with the backslash ‘\’ are supported in VHDL 93. Extended
identifiers always start with the ‘\’ and are case sensitive. The extended identifiers
may include the reserved words and spaces.

8. Files

File handling is very different in VHDL 93 as compared to VHDL 87. The
predefined subprograms such as File_Open and File_Close are not supported in
VHDL 87. VHDL 93 supports Impure for the functions using files outside the local
scope. VHDL 87 does not support the Impure.

File parameters for the subprogram do not have mode as In and Out in VHDL 93.

9. Generate

The generate statement in VHDL 87 does not support the declaration. By using
VHDL 93, the declaration is possible.

10. Impure functions

The function Now that returns the current simulation time is impure function in
VHDL 93. An impure function works using the parameters and returns the different
values for the identical input parameters. Function calling an impure function must
be declared as Impure. The procedure not working by using only parameters can be
declared as Impure.

tmp_sig <= to_stdlogicvector(Bit_vector(x”B1A2”));
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11. Port associations

In VHDL 87, actual parameter must be of signal type. VHDL 93 allows the use
of the constant value as input port parameter. VHDL 93 allows slice as the formal
parameter. Even VHDL 93 allows the type conversion functions and direct type
conversions between the formal and actual parameters.

12. Report

By using VHDL 87, it is possible to use Report statement with Assert. Report
statement is new in VHDL 93.

13. Shared Variables

VHDL 87 does not allow shared variable, but VHDL 93 allows the use of the
shared variables in the concurrent declarations.

14. Signal delay

By using VHDL 93, it is possible to describe inertial delay by using Inertial. By
using VHDL 93, it is possible to use the Reject to combine the inertial and
transport.

By using VHDL 87, additional signal is required to have the similar
functionality.

15. Syntax

VHDL 87 syntax is allowed in VHDL 93, and the following are the differences
in the declaration using VHDL 87 and VHDL 93.

S. No. VHDL 87 VHDL 93

1 end arch_name; end architecture arch_name;

2 end entity_name; end entity entity_name;

3 end conf_name; end configuration conf_name;

4 end component; end component comp_name;
(continued)

For example: 

In VHDL 87 the signal delay can be expressed by using

tmp_sig <= d_in after 3 ns;
y_out <=  transport tmp_sig after 5 ns;

In VHDL 93 the delay assignment is declared as 

y_out <= reject 3 ns inertial d_in after 8 ns;
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(continued)

S. No. VHDL 87 VHDL 93

5 end fun_name; end function fun_name;

6 end proc_name; end procedure proc_name;

7 end record; end record rec_name;

8 end pck_name end package pck_name;

16. Statement declaration

The statement declaration using VHDL 87 and VHDL 93 differs, and the dec-
laration style is shown below.

S. No. VHDL 87 VHDL 93

1 component : comp_name component : comp_name is

2 blk_name : block blk_name : block is

3 proc_name: process proc_name: process is
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Appendix B
Xilinx Spartan Devices

• XILINX SPARTAN 3 DEVICES
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• Spartan 3 Family Architecture

• Xilinx Spartan 3 Package information for Part no. XC3S400-4PQ208C
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For more information, please use the following link:

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
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• XILINX SPARTAN 3E Architecture

• XILINX Spartan 3E package information
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For more information, please use the following link:

http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
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Appendix C
Altera (Intel FPGA) Cyclone IV Devices

• Cyclone IV GX FPGA Devices
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• ALTERA (Intel FPGA) Cyclone II Architecture

• ALTERA (Intel FPGA) Cyclone II FPGA Features (Table 1.1)

Table 1.1 Cyclone II FPGA family features

Feature EP2C5 EP2C8 EP2C20 EP2C35 EP2C50 EP2C70

LEs 4,608 8,256 18,752 33,216 50,528 63,416

M4K RAM
blocks (4 Kbits
plus 512 parity
bits)

26 36 52 105 129 250

Total RAM bits 119,808 165,888 239,616 483,840 594,432 1,152,000

Embedded
multipliers (1)

13 I8 26 35 86 150

PLLs 2 2 4 4 4 4

Maximum user
I/O pins

158 182 315 475 450 622

Note
(1)This is the total number of 18 � 18 multipliers. For the total number of 9 � 9 multipliers per
device, multiply the total number of 18 � 18 multipliers by 2
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For more information, please use the following link:

http://www.altera.com
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Appendix D
VHDL Design Units

VHDL design units are classified as primary design units and secondary design
units.

Primary design units are as follows:

• Entity
• Package
• Configuration

Secondary design units are as follows:

• Architecture or multiple architectures
• Package body declarations

The syntax of the VHDL design units and constructs are listed below for the
quick reference.

Primary Design Units

1. Entity Declaration

Entity is used to define the input and output interfaces for the given design, and it
consists of the port declaration and generic clauses. The environment in which
entity is used may consist of the following declarations:

• Type
• Subprogram
• Alias
• File
• Constants
• Signals
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2. Package Declaration

Packages are used to define the input and output interfaces of common elements
which are visible to other designs. Packages consist of the following declarations:

• Subprogram
• Attributes
• Aliases
• Types
• Files
• Components

entity entity_name is

generic (generic_list);
port (port_list);

subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
|shared_variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

begin

concurrent_assertion_statement
| passive_concurrent_procedure_call
| passive_process_statement

end entity_name ;
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3. Configuration Declaration

In the case of the VHDL complex designs which consist of multiple entities or
components, configuration statement is used. Configuration statement is used to
select the required components from the IEEE library. It may contain the following:

• Component configuration
• Block configuration
• Generate statement
• Attribute specifications

package package_name is

subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| use_clause
| group_template_declaration
| group_declaration

end package package_name ;

configuration conf_name of entity_name is

use_clause
| attribute_specification
| group_declaration

for
architecture_name
block statement label
|generate statement label
(discret range | static expression)
|use clause
(block configuration | component configuration)

end for;

end configuration conf_name ;
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Secondary Design Units

1. Package Body Declaration

Package body consists of the functional information of the procedures and
functions. The functional information may be visible to many other designs.

2. Architecture Declaration

Architecture is used to describe the functionality of the design. The input and
output relations are described by the architecture. Single entity can have more than
one architecture. Architecture can have the different modules such as processes,
subprograms (function and procedure calls), and block statements,

Libraries
Library is used to store the previously compiled or analyzed information. By

using the library clause, the information is available to the design units. Library can
contain one or more than one package. By using the ‘use’ clause, the information of
library element can be accessible. Even the required package element or all the
elements of the packages can be accessible

Package body package_name is

subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| use_clause
| group_template_declaration
| group_declaration

end package body package_name ;

architecture arch_name of entity_name is

architecture_declarative_part

begin
concurrent_statements;

end architecture arch_name ;
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library library_name;
use library_name.package_name.(selected_elements | all);
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Index

A
Accellera, 12
Adders, 88, 243
Addition, 329
ALTERA, 7
Altera cyclone II, 316
Altera FPGA, 190
ALU, 91
ALU architecture, 324
AND, 324
AND array, 174
AND logic, 31
Arbiters, 314
Architecture, 9, 49, 314, 370
Area, 103, 370
Area, speed and power, 10
Arithmetic Logical Unit (ALU), 40, 324
Arithmetic operations, 40
Array attributes, 227
Arrival time, 144
ASIC chip, 2
ASIC design and prototyping, 281
Asynchronous design, 124
Asynchronous preset and clear, 135
Asynchronous read–write, 344
Asynchronous reset, 140, 205
Attributes, 227

B
Barrel shifter, 338
BCD, 99, 101
BCD down counter, 151
BCD up counter, 149
BCD up–down counter, 153
Bidirectional, 50
Bidirectional buffers, 182
Bidirectional IO, 266
Binary counter FSM, 289
Binary encoding, 277

Binary to gray, 44
Bit-map file, 182
Bit-stream, 316
Block RAMs (BRAMs), 181
Boolean functions, 176
BRAM, 182, 190

C
Carry-in and carry-out logic, 184
Case, 255
Case-end case, 110
Checker, 339
CLB, 182
CLB architecture, 183
Clock distribution network, 196
Clocked logic, 338
Clock enable, 269
Clock gating, 209
Clock management, 196
Clock network, 196
Clock path, 198
Clocks, 202
Clock skew, 126, 196
Clock tree, 196
Clock tree synthesis, 10
CMOS, 2
Code converters, 88, 99
Combinational, 87
Combinational logic elements, 24
Combinational output, 188
Combinational path, 144
Combinational shifters, 338
Comparator, 88, 95, 97
Complex functionality, 7
Computational speed, 350
Concurrent, 50
Configurable array, 189
Configurable Logic Blocks (CLBs), 181
Configuration, 50
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Constant folding, 322
Controllers, 178
Counters, 215
Coverage, 371
CPLD, 178
Critical path, 40
Cycle accurate, 339

D
Data convergence, 262
Data integrity, 265
Data path, 135, 198, 203
Data selectors, 88
Data types, 50
DCM, 196
Dead zone code, 322
Decoder, 88, 110, 188
Decrement, 329
Delay-Locked Loop (DLL), 182
Delta delay, 238
Demorgan’s theorem, 24
Design, 308
Design constraints, 10
Design library, 7
Design partitioning, 7, 323
Design performance, 199
Design planning stage, 370
Design Under Test (DUT), 212
Device utilization, 349
Device utilization summary, 316
DFT, 198
Digital Clock Manager (DCM), 182
Distributed RAM, 182, 344
Double-edge clocking, 208
Double length, 199
Down counter, 147
DSP, 181, 182, 338, 350
DSP blocks, 181, 198

E
EDA, 2, 316
Edge-triggered, 137
EDIF, 315
Encoder, 88, 116
Encoding styles, 277
Entity, 50
EPROM, 174
Even parity, 340

Excess-3, 99
Exclusive NOR logic, 36
Exclusive OR logic, 34

F
FFT, 198
FIFO, 190
File handling, 229
Filtering, 198
Fixed OR, 175
Fixed OR array, 173
Flip-flop, 124, 137
Flip-flop propagation delay, 144
Flip-flop rich logic, 179
Four-input LUT, 187
FPGA, 179, 371
FSM, 190, 273
FSM design guidelines, 283
FSM initialization, 292
FSM optimization, 308
FSM techniques, 178
Full adder (FA), 42, 184, 334
Function, 212, 215
Functional correctness, 211
Functional simulation, 314
Functional verification, 10
Function body, 215
Function declarations, 215
Function generator, 188
Function realization, 174

G
Gate-rich logic, 179
Gating strategy, 269
GDSII, 10
Glitch, 89, 269, 292
Glitch free output, 308
Glitch suppression logic, 295
Global clock, 7
Global clock buffers, 198
Global routing, 199
Glue logic, 323
Gordon Moore, 2
Gray codes, 99
Gray counters, 155
Gray encoding, 277
Gray to binary, 44
Grouping, 91, 239

420 Index



H
Half adder, 40
HDLs, 3
High impedance, 240
Hold time, 127, 144

I
IEEE 1076-1987, 11
If-then-else, 255
Impure, 215
Increment, 329
Input buffer, 189
8 input CLB, 188
Input Output Blocks (IOBs), 178, 179, 181,

182, 190, 316
Input to register path, 144
Interconnects, 199
interface, 50
Inverter, 26
IO pins, 7
IPs, 5

J
Johnson counter, 159

K
K-map, 24

L
Latch, 124, 130
2 Line to 4 Decoder, 115
Local routing, 199
Logic cells, 316
Logic duplication, 188, 245
Long lines, 199
Look-ahead mealy machines, 286
Look-ahead output, 308
LUT, 90, 182, 248

M
Macrocell, 175, 176, 316
MAXII device, 350
Maximum operating freq, 144
Mealy FSM, 274
Metastability, 128
Metastable, 126
Metastable state, 205, 265
Micro-architecture, 4, 9, 324, 371
Migration, 6
Moore FSM, 274
Multibit adders, 91

Multiple clock domain, 7, 99, 262
Multiple clock domain design, 124, 125
Multiple clocks, 196, 323
Multiple driver, 248
Multiple process, 279
Multiplexer (MUX), 88, 103, 212, 243
Multiplier, 88, 94, 350
Multiplier block, 199
Multiplier encoding, 326
Multiply and accumulate (MAC), 198
Multi valued logic, 12
2:1 MUX, 108
4:1 MUX, 108, 212
Mux based logic, 240
MUX logic, 184

N
Naming conventions, 236
NAND logic, 32
Nano-meter, 5
Negative edge-triggered D flip-flop, 139
Negative level sensitive D-Latch, 132
Netlist, 9, 315
Next state logic, 275
Nine value logic, 13
NOR logic, 29
NOT logic, 26

O
Odd parity, 340
One hot counter, 289
One hot encoding, 277
Opcode, 324
Operand, 334
Operating frequency, 308
Operational code, 336
Optimization, 10, 91
OR, 324
OR logic, 28
Output buffer, 189
Output logic, 275

P
Package body, 223
Packages, 50, 212, 222
PAL, 175
PAL-like blocks, 178
Parallel and multiplexing logic, 324
Parallel input parallel output, 163
Parallel logic, 90, 240, 255
Parentheses, 322
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Parity, 289
Parity checking logic, 292
Parity generator, 339, 340
Partitioning, 308
Partitioning of design, 324
Performance improvement, 235, 329
Phase-Locked Loop (PLL), 182
Phase shift, 196
Pipelined registers, 199
Pipelining, 198, 258, 262, 329
PIPO registers, 165
PLA, 175
Place and route, 10
PLD, 11, 178, 371
PLL, 196
Positive edge-triggered D flip-flop, 137
Positive level sensitive D-latch, 130
Positive slack, 144
Post layout verification, 10
Power, 370
Power dissipation, 243
Power optimization, 336
Power planning, 10
Priority, 109
Priority encoders, 116
Priority logic, 256
Procedures, 223
Process, 236
Process technology, 2
Programmable AND, 175
Programmable AND array, 173
Programmable ASIC, 324
Programmable decoder, 173
Programmable interconnects, 316
Programmable multiplexer, 189
Programmable OR, 172, 174, 175
PROM, 174
Propagation delay, 88
Propagation delay of flip-flop, 128
Protocols, 314
Prototype, 6
Pure, 215

R
Read first, 345
Reconfigurable memory, 192
Register balancing, 262
Registered input, 329
Registered output, 175, 188, 329
Register FSM output, 286
Register optimization, 262
Registers and latches, 286

Register to output path, 144
Register to register, 308
Register to register path, 148, 325
Register Transfer Level (RTL), 4
Required time, 144
Reset assertion, 205
Reset deassertion, 205
Reset recovery time, 205
Reset removal time, 206
Resets, 202
Resource sharing, 91, 243, 325
(right/left) shift registers, 163
Ring counters, 158
Ripple counters, 208
Routing algorithms, 188
Routing delays, 182
Routing resources, 178, 181
RTL synthesis, 4

S
2’s complement, 334
Self checking testbenches, 371
Sequence detector, 306
Serial input serial output shift register, 161
Set-up, 127
Setup time, 144
Seven segment, 99
Shannon’s expansion theorems, 24
Shared variables, 238
Shift registers, 161
Signal attributes, 227
Signals, 236
Simulation, 10
Single length, 199
Single master clock, 208
Single port BRAM, 347
Single process, 279
Slice, 188
SOC prototyping, 4
SOCs, 314
Spartan-3, 192
SPLD, 172
STA, 316
State diagram, 275
State machines, 323
State register, 275
State transition, 275
Static RAM, 190
Static Timing Analysis (STA), 10, 145
STD_LOGIC, 13, 27
Structural design, 15
Subprogram, 50, 215
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Subtraction, 329
Subtractors, 88
Switch level design, 4
Synchronizer, 128, 202, 323
Synchronous, 190, 344
Synchronous and asynchronous designs, 202
Synchronous design, 124
Synchronous preset or clear, 135
Synchronous reset, 142, 202
Synthesis, 10, 50, 315

T
Testbench, 10, 212
Textio, 212, 230
The behavior style, 16
The design compiler, 7
The stimulus generator, 212
Three input LUT, 184
Three process block FSM, 281
Timing or area, power, 315
Timing parameters, 144
Timing path, 144
Timing performance, 278, 316
Timing sequence, 286
Timing violation, 206, 325
Toggle flip-flop, 125
Top level, 323
Tri-state, 38, 240
Two-bit binary counter, 286
Two-stage level synchronizer, 206
Type attributes, 227

U
Undefined states, 286

Unintentional latches, 254, 286
Universal logic, 103
Unregistered output, 188
Unused states, 286
Up counter, 146

V
Variable delay line, 196
Variables, 236
Vendor specific EDA, 371
Verification, 371
Verilog, 2
VHDL-87, 238
VHDL-2008, 12
VHDL constructs, 25, 49
VHDL library, 50
VHDL RTL, 24, 182
VHSICHDL, 2

W
Write first mode, 347

X
XILINX, 7
XILINX ISE, 349
XILINX Spartan, 316
XILINX Vivado, 370
XNOR, 36
XOR, 34, 324
XOR logic, 109, 344

Z
Zero delay, 196
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