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PREFACE

The field of digital logic consists primarily of analysis and synthesis of combina-
tional and sequential logic circuits, also referred to as finite-state machines. Finite-
state machines are designed into every computer. They occur in the form of
counters, shift registers, microprogram control sequencers, sequence detectors, and
many other sequential structures. The principal characteristic of combinational logic
is that the outputs are a function of the present inputs only, whereas, the outputs of
sequential logic are a function of the input sequence; that is, the input history.
Sequential logic, therefore, requires storage elements which indicate the present state
of the machine relative to a unique sequence of inputs.

Sequential logic is partitioned into synchronous and asynchronous sequential
machines. Synchronous sequential machines are controlled by a system clock which
provides the triggering mechanism to cause state changes. Asynchronous sequential
machines have no clocking mechanism — the machines change state upon the appli-
cation of input signals. The input signals provide the means to enable the sequential
machines to proceed through a prescribed sequence of states.

The purpose of this book is to present a thorough exposition of the analysis and
synthesis of both synchronous and asynchronous sequential machines. The
machines will be implemented using Verilog HDL (Hardware Description Lan-
guage). Verilog HDL is an Institute of Electrical and Electronics Engineers (IEEE)
standard: 1364-1995. The book concentrates on sequential logic design with empha-
sis on the detailed design of various Verilog HDL projects.

Emphasis is placed on structured and rigorous design principles that can be
applied to practical applications. Each step of the analysis and synthesis procedures
is clearly delineated. Each method that is presented is expounded in sufficient detail
with accompanying examples. Many analysis and synthesis examples use mixed-
logic symbols which incorporate both positive- and negative-input logic gates for
NAND and NOR logic, while other examples utilize only positive-input logic gates.
The use of mixed logic parallels the use of these symbols in the industry.

The book is intended to be tutorial, and as such, is comprehensive and self con-
tained. All designs are carried through to completion — nothing is left unfinished or
partially designed. Each chapter includes numerous problems of varying complexity
to be designed by the reader using Verilog HDL design techniques. The Verilog
HDL designs include the design module, the test bench module which tests the
design for correct functionality, the outputs obtained from the test bench, and the
waveforms obtained from the test bench.

It is assumed that the reader has an adequate knowledge of the topics listed in
this paragraph and the following two paragraphs, which are prerequisites for any
course in Verilog HDL: Number systems of different radices such as binary, octal,

X1



X1l Preface

decimal, and hexadecimal, including conversion between radices. The number rep-
resentations of sign magnitude, diminished-radix complement, and radix comple-
ment. Binary weighted and nonweighted codes, including conversion to and from
binary-coded decimal (BCD), plus the Gray code.

Boolean algebra, which illustrates methods to minimize switching functions.
These methods include algebraic minimization, Karnaugh maps, Karnaugh maps
using map-entered variables, the Quine—McCluskey algorithm, and the Petrick algo-
rithm.

Combinational logic and storage elements. This includes wired-AND logic
gates, wired-OR logic gates, and three-state logic. Logic macro functions such as
multiplexers, decoders, encoders, and comparators. Analysis and synthesis of com-
binational logic and sequential logic. Programmable logic devices. These include
programmable read-only memory (PROM) devices, programmable array logic
(PAL) devices, and programmable logic array (PLA) devices. The storage elements
are SR latches, D flip-flops, JK flip-flops, and T flip-flops.

Chapter 1 introduces the Verilog Hardware Description Language, which will
be used throughout the book to design the various types of sequential circuits. Ver-
ilog HDL is the state-of-the-art method for designing digital and computer systems
and is ideally suited to describe both combinational, clocked sequential, and non-
clocked logic sequential logic circuits. Verilog provides a clear relationship between
the language syntax and the physical hardware. The Verilog simulator used in this
book is easy to learn and use, yet powerful enough for any application. It is a logic
simulator — called SILOS — developed by Silvaco Incorporated for use in the de-
sign and verification of digital systems.

The SILOS simulation environment is a method to quickly prototype and debug
any logic function. It is an intuitive environment that displays every variable and
port from a module to a logic gate. SILOS allows single-stepping through the Ver-
ilog source code, as well as drag-and-drop ability from the source code to a data ana-
lyzer for waveform generation and analysis. This chapter introduces the reader to
the different modeling techniques, including built-in primitives for logic primitive
gates and user-defined primitives for larger logic functions. The three main model-
ing methods of dataflow modeling, behavioral modeling, and structural modeling are
introduced.

Chapter 2 designs synchronous sequential machines using Verilog HDL. The
machines include different categories of synchronous registers, such as parallel-in
serial-out registers; serial-in parallel-out registers; and serial-in serial-out registers.
Different types of counters of various moduli are also designed in this chapter.
These include: a modulo-8 counter, a modulo-10 counter, and a Johnson counter.
Also included will be a binary-to-Gray code converter. Different versions of Moore
and Mealy synchronous sequential machines will also be designed using Verilog
together with different techniques to eliminate output glitches. Each step in the syn-
thesis procedure employs several examples which help to clarify the corresponding
step. Several examples are presented detailing the synthesis procedure in a step-by-
step process.

Chapter 3 uses Verilog HDL to design alternative synchronous sequential
machines. The devices include multiplexers for the & next-state logic of both the
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linear-select and nonlinear-select category. Decoders are included for the A output
logic. Programmable logic devices are presented, which are used to synthesize syn-
chronous sequential machines. These include: programmable read-only memories,
programmable array logic devices, and programmable logic array devices. Sequen-
tial iterative machines are also used in the Verilog design process. A final section
presents error detection in synchronous sequential machines using Verilog HDL.

Chapter 4 presents the synthesis of asynchronous sequential machines using
Verilog HDL. The chapter includes numerous examples for a comparative study of
the design methodologies. The designs will be accomplished by utilizing one or
more of the following modeling methods for each design: built-in primitive gates,
dataflow modeling, behavioral modeling, and structural modeling.

The examples illustrate the synthesis procedure for asynchronous sequential ma-
chines using a timing diagram and/or a verbal specification. In order to prevent pos-
sible race conditions and associated timing problems when two or more inputs
change value simultaneously, it will be assumed that only one input variable will
change state at a time. This is referred to as a fundamental-mode model.

Chapter 5 presents synthesis examples of pulse-mode asynchronous sequential
machines using Verilog HDL. Moore and Mealy pulse-mode asynchronous
sequential machines are designed using different Verilog HDL modeling constructs.
The synthesis procedure is described using several different types of storage ele-
ments. The synthesis examples will utilize built-in primitives with SR latches and D
flip-flops; T flip-flops only; dataflow modeling with D flip-flops; built-in primitives
and D flip-flops; built-in primitives and 7T flip-flops.

The pulse width restrictions that are dominant in pulse-mode sequential ma-
chines can be eliminated by including D flip-flops in the feedback path from the SR
latches to the 8 next-state logic. Providing edge-triggered D flip-flops as a constitu-
ent part of the implementation negates the requirement of precisely controlled input
pulse durations. This is by far the most reliable means of synthesizing pulse-mode
machines. The SR latches — in conjunction with the D flip-flops — form a master-
slave configuration.

Appendix A presents a brief discussion on event handling using the event queue.
Operations that occur in a Verilog module are typically handled by an event queue.

Appendix B presents a procedure to implement a Verilog project.

Appendix C contains the solutions to select problems in each chapter.

The material presented in this book represents more than two decades of com-
puter equipment design by the author. The book is not intended as a book on combi-
national logic, since it is assumed that the reader has an adequate background in the
analysis and synthesis of combinational logic. The book is intended as a text for a
course on sequential logic design using Verilog HDL. The book presents Verilog
HDL with numerous design examples to help the reader thoroughly understand this
popular hardware description language.

This book presents basic and advanced concepts in sequential machine analysis
and synthesis and is designed for practicing electrical engineers, computer engineers,
and computer scientists; for graduate students in electrical engineering, computer
engineering, and computer science; and for senior-level undergraduate students.
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1.1 Built-In Primitives

1.2 User-Defined Primitives
1.3 Dataflow Modeling

1.4  Behavioral Modeling
1.5 Structural Modeling

1.6  Problems

Introduction to Verilog HDL

This chapter provides an introduction to the design methodologies and modeling con-
structs of the Verilog hardware description language (HDL). Modules, ports, and test
benches will be presented. This chapter introduces Verilog in conjunction with com-
binational logic only.

A module is the basic unit of design in Verilog that describes the Verilog hardware
and consists of the following types of modules: built-in logic primitives, user-defined
logic primitives, dataflow modeling, behavioral modeling, and structural modeling. A
module describes the functional operation of some logical entity and can be a stand-
alone module or a collection of modules that are instantiated into a structural module.
Instantiation means to use one or more lower-level modules in the construction of a
higher-level structural module. A module can be a logic gate, an adder, a multiplexer,
a counter, or some other logical function. Examples will be shown for each type of
modeling.

Ports allow the modules to communicate with the external environment; that is,
other modules and input/output signals. Ports, also referred to as terminals, can be de-
clared as input, output, or inout. A port is a net by default; however, it can be de-
clared explicitly as a net. A module contains an optional list of ports, as shown below
for a full adder. Ports a, b, and cin are input ports; ports sum and cout are output ports.

module full adder (a, b, cin, sum, cout);

Test benches will also be described. Test benches are used to apply input vectors
to the design module in order to test the functional operation of the module in a
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simulation environment. The test bench for the full adder contains no ports as shown
below because it does not communicate with the external environment.

module full adder tb;

When a Verilog module is finished, it must be tested to ensure that it operates ac-
cording to the machine specifications. The functionality of the module can be tested
by applying stimulus to the inputs and checking the outputs. The test bench will dis-
play the inputs and outputs in a radix (binary, octal, hexadecimal, or decimal) as well
as the waveforms.

1.1 Built-In Primitives

Logic primitives such as and, nand, or, nor, xor (exclusive-OR), and xnor (exclu-
sive-NOR) functions are classified as multiple-input gates. The buf and not functions
have one input, but can have one or more outputs. These are all built-in primitives that
can be instantiated into a module. The inputs of built-in primitives are declared as type
wire or as type reg depending on whether they were generated by a structural or
behavioral module.

Type wire represents a physical connection between hardware elements. The out-
put of a logic gate is declared as wire and represents a net with a single driver. The
connection can be a wire or a group of wires, both of which are called a net. Nets are
1-bit scalar values unless declared otherwise.

Type reg data types are registers that hold a value. The register value is retained
in memory until it is changed by a subsequent assignment. A variable of type reg
closely resembles a hardware register that is synthesized with D flip-flops, JK flip-
flops, or SR latches.

This section presents a design methodology that is characterized by a low level of
abstraction, where the logic hardware is described in terms of gates. Designing logic
at this level is similar to designing logic by drawing gate symbols — there is a close
correlation between the logic gate symbols and the Verilog built-in primitive gates.

The primitive gates are used to describe a net and have one or more scalar inputs,
but only one scalar output. The output signal is listed first, followed by the inputs in
any order. The outputs are declared as wire; the inputs can be declared as either wire
or reg. The gates represent combinational logic functions and can be instantiated into
a module, as follows, where the instance name (inst1) is optional:

gate_type instl (output, input 1, input 2, ..., input_n);
Two or more instances of the same type of gate can be specified in the same con-
struct, as shown below. Note that only the last instantiation has a semicolon terminat-

ing the line. All previous lines are terminated by a comma.

gate_type instl (output 1, input 11, input 12, ..., input 1n),
inst2 (output 2, input 21, input 22, ..., input_2n);
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The best way to learn design methodologies using built-in primitives is by exam-
ple. Therefore, combinational logic examples will be presented of varying complex-
ety. When necessary, the theory for the examples will be presented prior to the
Verilog design. All examples are carried through to completion at the gate level.
Nothing is left unfinished or partially designed.

Example 1.1 The logic diagram of Figure 1.1 will be designed using built-in prim-
itives for the logic gates which consist of NAND gates and one OR gate (inst3). These
gates will generate the two outputs z; and zp. The output of the gate labeled inst2
(instantiation 2) will be at a high voltage level if either x|, x5, or x5 is deasserted.
Therefore, by DeMorgan’s theorem, the output will be at a low voltage level if x|, x5,
and x5 are all asserted. Note that the gate labeled inst3 is an OR gate that is drawn as
an AND gate with active-low inputs and an active-low output. The output of each gate
is assigned a net name, where a net is one or more interconnecting wires that connect
the output of one logic element to the input of one or more logic elements. The
remaining gates in Figure 1.1 are drawn in the standard manner as NAND gates.

+Z1

+x 1
X instl o netl
+X3
G .
%mstZ net2

nst5 nets

inst6 & net6 §inst8 tz;

Figure 1.1 Logic diagram to be designed using built-in primitives.

The equations for z| and z, are shown in Equation 1.1 and Equation 1.2, respec-
tively. Ifnecessary, the laws of Boolean algebra should be reviewed in order to obtain
the minimized expressions for the outputs.

z1 = [xypx3 + xp20px3(x1X7)]
= xxx3 (1 +x1x)

=x1x2x3 (11)
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2y = X1 Xy T X1x3 + XpX3 (1.2)

The Verilog design module is shown in Figure 1.2. The first line is usually
reserved for a comment (//) and specifies the function of the module. Comments (//)
can also be placed at the end of a line to indicate the function of a specific line of code.
Line 2 is the beginning of the Verilog code and is indicated by the keyword module
followed by the module name log _eqn _sopl15. This is followed by the list of input and
output ports placed within parentheses and terminated by a semicolon.

Verilog must know which ports are used for input and which ports are used for
output; therefore, lines 4 and 5 list the input and output ports indicated by the key-
words input and output, respectively. Line 7 begins the instantiation of the built-in
primitives. The instantiation names and net names in the module correlate directly to
the corresponding names in the logic diagram. Thus, line 7 in the module, which is

nand instl (netl, x1, x2, x3);

represents NAND gate inst/ with inputs x|, x5, and x3 and output net/ in the logic dia-
gram. Line 14 in the module corresponds to OR function of instantiation inst8 of the
logic diagram whose inputs are net5, net6, and net7 and whose active-high output is
zp. The end of the module is indicated by the keyword endmodule as shown in line
16. In this example, Figure 1.2 correctly describes the hardware that is represented by
the logic diagram of Figure 1.1.

In order to verify that the module operates correctly, as specified in the logic dia-
gram, the module must be tested. This is accomplished by means of a test bench. Test
benches are used to apply input vectors to the module in order to test the functional
operation of the module in a simulation environment. The functionality of the module
can be tested by applying stimulus to the inputs and checking the outputs. The test
bench can display the inputs and outputs in the following radices: binary (b), octal (0),
hexadecimal (h), or decimal (d). Refer to the Verilog Project Procedure in Appendix
B to review the procedure for generating the inputs, outputs, and waveforms of a Ver-
ilog design.

The test bench contains Verilog code to generate the input stimulus and code to
display the output response to the stimulus. The test bench also provides code to
instantiate the design module into the test bench. Figure 1.3 shows a test bench which
applies input stimulus to test the validity of the Verilog design of Figure 1.2, which
represents the logic diagram of Figure 1.1. Line 1 of the test bench is a comment indi-
cating that the module is a test bench for the log egn _sopl5 module. Line 2 contains
the keyword module followed by the module name, which includes ¢b indicating a test
bench module. The name of the module and the name of the module under test are the
same for ease of cross-referencing. The notations #0 and #10 specify the time at which
values are assigned to the inputs. The keyword endmodule terminates the test bench
module.
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1 //logic diagram using built-in primitives
module log egn sopl5 (x1, x2, x3, zl, z2);

input x1, x2, x3;
5 output z1, z2;

nand instl (netl, x1, x2, x3);

nand inst2 (net2, x1, x2, x3);

or inst3 (net3, net2, netb);
10 nand inst4 (z1l, netl, net3);

nand inst5 (netb5, x1, x2);

nand inst6 (neto6o, x1, x3);

nand inst7 (net7 X2, x3);

nand inst8 (z net5, net6, net7);
15

endmodule

Figure 1.2 Design module for the logic diagram shown in Figure 1.1 using built-
in primitives.

1 //test bench for log eqn sop 15
module log egn sopl5 tb;

reg x1, x2, x3;
5 wire z1, z2;

//display variables

initial

$Smonitor ("x1=%b, x2=%b, x3=%b, zl=%b, z2=%b",
10 x1, x2, x3, zl1, z2);

//apply input vectors

initial
begin
15 #0 x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#10 x1 = 1'b0;
20 x2 = 1'b0;
x3 = 1'bl;
22
//continued on next page

Figure 1.3 Test bench for the module of Figure 1.2.
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23 #10 x1 = 1'b0;
x2 = 1'bl;
25 x3 = 1'b0;

#10 x1 = 1'b0;

x2 = 1'bl;
x3 = 1'bl;
30
#10 x1 = 1'bl;
x2 = 1'b0;
x3 = 1'b0;

35 #10 x1 = 1'bl;
x2 = 1'b0;
x3 = 1'bl;

#10 x1 = 1'bl;
40 x2 = 1'bl;
x3 = 1'b0;

#10 x1 = 1'b1;

x2 = 1'bl;
45 x3 = 1'bl;
#10 $stop;

end

//instantiate the module into the test bench
log egn sopl5 instl (

52 .x1(x1),
x2 (x2),
x3(x3),

55 .z1(z1l),
z2(z2)

59 endmodule

Figure 1.3  (Continued)

Values are assigned to the variables by the notation /50 for example, where the
number / specifies the width of the variable (1 bit), b specifies the radix (binary), and
0 specifies the value (zero). The system task $stop causes simulation to stop.

Line 4 specifies that the inputs are reg type variables; that is, they contain their
values until they are assigned new values. Outputs are assigned as type wire in test
benches. Output nets are driven by the output ports of the module under test. Line 8

contains an initial statement, which executes only once.
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Verilog provides a means to monitor a signal when its value changes. This is ac-
complished by the $monitor system task. The $monitor continuously monitors the
values of the variables indicated in the parameter list that is enclosed in parentheses. It
will display the value of the variables whenever a variable changes state. The string
that is enclosed in quotes in the task is printed and specifies that the variables are to be
shown in binary (%b). The $monitor is invoked only once. Line 13 is a second initial
statement that allows the procedural code between the begin . . . end block statements
to be executed only once. Every ten time units (#10) the input variables change state
and are displayed by the system task $monitor.

Lines 51 through 57 instantiate the design module into the test bench module. The
instantiation name is inst/ followed by a left parenthesis. The port names of the design
module are preceded by a period, which is followed by the corresponding port name in
the test bench enclosed in parentheses; the port names in the module and the test bench
do not necessarily have to be the same. A comma terminates each line of the port
instantiation except the line containing the last port name — there is no termination
character at the end of this line. This is followed by a right parenthesis followed by a
semicolon. The keyword endmodule terminates the test bench module.

The logic shown in Figure 1.1 contains redundant gates to provide a review of
Boolean algebra minimization, as shown in Equation 1.1 and Equation 1.2. The out-
puts obtained from the test bench are shown in Figure 1.4 and correspond to the equa-
tions for z and z,. There is a single active-high output for z| and four active-high
outputs for z;, including the case where the outputs overlap. The waveforms are
shown in Figure 1.5. As mentioned previously, refer to Appendix B for the procedure
to create a Verilog project and obtain the outputs and waveforms.

x1=0, x2=0, x3=0, z1=0, z2=0
x1=0, x2=0, x3=1, z1=0, z2=0
x1=0, x2=1, x3=0, z1=0, z2=0
x1=0, x2=1, x3=1, z1=0, z2=1
x1=1, x2=0, x3=0, z1=0, z2=0
x1=1, x2=0, x3=1, z1=0, z2=1
x1=1, x2=1, x3=0, z1=0, z2=1
x1=1, x2=1, x3=1, z1l=1, z2=1

Figure 1.4 Outputs for the logic diagram of Figure 1.1 obtained from the test
bench to Figure 1.3.

Example 1.2 The Karnaugh map of Figure 1.6 will be implemented using only
NOR gates in a product-of-sums format. Equation 1.3 shows the product-of-sums
expression obtained from the Karnaugh map. The minimal product-of-sums expres-
sion can be obtained by combining the Os in Figure 1.6 to form sum terms in the same
manner as the 1s were combined to form product terms. However, since Os are being
combined, each sum term must equal 0. Thus, the two Os in row x;x, =00 combine to
yield the sum term (x| +x, +x4). In a similar manner, the remaining Os are combined
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to yield the product-of-sums expression shown in Equation 1.3. When combining Os
to obtain sum terms, treat a variable with a value of 1 as false and a variable with a
value of 0 as true. Thus, minterm locations 2 and 10 have variables xyx3x4 =010,
providing a sum term of (x, +x3' +x4). The logic diagram is shown in Figure 1.7,
which includes the instantiation names and net names.

2 SILOS-X - C:Werilog\log_eqn_sop15ilog_eqn_sop15.5pj
File Edit View #analyzer Debug Explorer Reports Help

OYEER PMEHBE B [0 BARE 2

Narne |SD|||||||||4ID|||||||||8|D||||||
=1 Default I I

] i

:-:3 N 1 I ! T e
- I ! I
Figure 1.5 Waveforms for the logic diagram of Figure 1.1 obtained from the test

bench of Figure 1.3.

X3X4
xxp, \_00 01 11 10

00| O 1 1 0

01| 1 1 0 1

11| 1 1 0 1

10| 1 1 1 0

2]

Figure 1.6 Karnaugh map for Example 1.2.

21 = (x] T xp +x4) (xp Tx3' +x4) (0 +x3' +x4') (1.3)
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+x1
ixz Jinst] netl
X4
—@c netz 1nSt4 +Zl
x % )
X Jinst3 net3
- o

Figure 1.7 Logic diagram for Example 1.2.

The design module is shown in Figure 1.8 using NOR gate built-in primitives.
The instantiation names and the net names shown in Figure 1.8 agree with the corre-
sponding names in the logic diagram. A true value for a variable is indicated by the
variable name, such as x3; a false (complemented) value for a variable name is indi-
cated by the symbol (~), such as ~x3. The test bench is shown in Figure 1.9. Since
there are four inputs to the circuit, all 16 combinations of the four variables must be ap-
plied to the design module from the test bench in order to verify correct circuit oper-
ation. This is accomplished by assigning values to the four variables x|, x5, x3, and x4
in 16 separate lines of the test bench. The outputs obtained from the test bench are
shown in Figure 1.10 and the waveforms are shown in Figure 1.11. The correct op-
eration of the circuit can be verified by applying specific values to the inputs of the
logic diagram and corroborate the resulting z; values with the outputs or the wave-
forms.

//logic diagram using built-in primitives
module log egn pos8 (x1, x2, x3, x4, zl);

input x1, x2, x3, x4;
output z1;

//instantiate the nor built-in primitives

nor instl (netl, x1, x2, x4);
nor inst2 (net2, x2, x4, ~x3);
nor inst3 (net3, ~x3, ~x2, ~x4);
nor inst4(z1, netl, net2, net3);

endmodule

Figure 1.8 Design module for the logic diagram of Figure 1.7 for Example 1.2.
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//test bench for log eqn pos8
module log egn pos8 tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//display variables
//the brace ({) symbol specifies concatenation
initial
$Smonitor ("x1x2x3x4 = %b, zl1 = %b",
{x1, x2, x3, x4}, z1);

//apply input vectors

initial

begin
#0 x1=1"'b0; x2=1'b0; x3=1'b0; x4=1'bO0; //00
#10 x1=1'b0; x2=1"'b0; x3=1'b0; x4=1'bl; //01
#10 x1=1'b0; x2=1"'b0; x3=1'bl; x4=1'b0; //02
#10 x1=1'b0; x2=1"'b0; x3=1'bl; x4=1'bl; //03
#10 x1=1'b0; x2=1"bl; x3=1'b0; x4=1'bO; //04
#10 x1=1'b0; x2=1"bl; x3=1'b0; x4=1'bl; //05
#10 x1=1'b0; x2=1"bl; x3=1"'bl; x4=1'b0; //06
#10 x1=1'b0; x2=1"bl; x3=1'bl; x4=1'bl; //07
#10 x1=1'bl; x2=1"'b0; x3=1'b0; x4=1'bO; //08
#10 x1=1'bl; x2=1"'b0; x3=1'b0; x4=1'bl; //09
#10 x1=1'bl; x2=1"'b0; x3=1'bl; x4=1'b0; //10
#10 x1=1'bl; x2=1"'b0; x3=1'bl; x4=1'bl; //11
#10 x1=1'bl; x2=1"bl; x3=1'b0; x4=1'bO; //12
#10 x1=1'bl; x2=1"bl; x3=1'b0; x4=1'bl; //13
#10 x1=1'bl; x2=1"bl; x3=1'bl; x4=1'b0; //14
#10 x1=1'bl; x2=1"'bl; x3=1'bl; x4=1'bl; //15

#10 $stop;
end

//instantiate the module into the test bench
log egn pos8 instl (

.x1(x1),
X2

4

X2 (x2)
.x3(x3),
x4 (x4),
z1(zl)
) ;

endmodule

Figure 1.9 Test bench for the module of Figure 1.8.
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x1x2x3x4 = 0000, =zl =
x1x2x3x4 = 0001, =zl =
x1x2x3x4 = 0010, =zl =
x1x2x3x4 = 0011, =zl =
x1x2x3x4 = 0100, =zl =
x1x2x3x4 = 0101, =zl =
x1x2x3x4 = 0110, =zl =
x1x2x3x4 = 0111, =zl =
x1x2x3x4 = 1000, =zl =
x1x2x3x4 = 1001, =zl =
x1x2x3x4 = 1010, =zl =
x1x2x3x4 = 1011, =zl =
x1x2x3x4 = 1100, =zl =
x1x2x3x4 = 1101, =zl =
x1x2x3x4 = 1110, =zl =
x1x2x3x4 = 1111, =zl =

O RPRPRPRRPROFRRPRPRORRERERLOLRO

Figure 1.10  Outputs for the logic diagram of Figure 1.7 generated by the test
bench of Figure 1.9.

23 SILOS-X - C:Werilog\log_eqn_posBlMog_eqn_posB.spj

File Edit View A&nalyzer Debug Explorer Reports Help

OYEER P MEHBE B/ BRAR&[<2

Mame | Mo 20 160
=) Default ! !

&
=

el 4I—S—l—
fewd 1 I ! I :
cend

iwﬂ N = L_J L L_E

Figure 1.11 Waveforms for the logic diagram of Figure 1.7.

Example 1.3 A 4:1 multiplexer will be designed using built-in logic primitives.
The 4:1 multiplexer of Figure 1.12 will be designed using built-in primitives of and,
or, and not. The design is simpler and takes less code if a continuous assignment
statement is used, but this section presents gate-level modeling only — continuous
assignment statements are used in dataflow modeling.

The multiplexer has four data inputs, which are specified as a 4-bit vector d/3:0],
two select inputs, specified as a 2-bit vector s/1:0], one scalar input enable, and one
scalar output z;. Also, the system function $time will be used in the test bench to
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return the current simulation time measured in nanoseconds (ns). The design module
is shown in Figure 1.13, the test bench module in Figure 1.14 designating the appro-
priate inputs, the outputs in Figure 1.15, and the waveforms in Figure 1.16. The wave-
forms are shown as both hexadecimal values and as individual bits.

d dos1'so’
0
@L
+d, d151's
net4
+d2
‘s d35150
@L
instl
+5, » netl
inst2
+s _d > net2
+enable

Figure 1.12 Logic diagram of'a 4:1 multiplexer to be designed using built-in prim-
itives.

//a 4:1 multiplexer using built-in primitives
module mux 4tol (d, s, enbl, zl);

input [3:0] d;
input [1:0] s;
input enbl;
output z1;

not instl (netl, s[0]),
inst2 (net2, s[1]);
and inst3 (net3, d[0], netl, net2, enbl),
inst4 (net4, d[l], s[0], net2, enbl),
inst5 (netb5, d[2], netl, s[l], enbl),
inst6 (net6, d[3], s[0], s[l], enbl);
or inst7 (z1l, net3, net4, netb, neto);
endmodule

Figure 1.13 Design module for a 4:1 multiplexer using built-in primitives.
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//test bench for 4:1 multiplexer
module mux 4tol tb;

reg [3:0] d;
reg [1:0] s;

reg enbl;
wire z1;
initial
Smonitor ($time,"ns, select:s=%b, inputs:d=%b, output:zl=%b",
s, d, zl);
initial
begin
#0 s[0]=1"b0; s[1]=1"'b0;
d[0]=1"b0; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"bl;
enbl=1'bl; //d[0]=0; z1=0
#10 s[0]=1"b0; s[1]=1'b0;
d[0]=1"bl; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"bl;
enbl=1'bl; //d[0]=1; zl=1
#10 s[0]=1"bl; s[1]=1'b0;
d[0]=1"bl; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"bl;
enbl=1'bl; //d[1]=1; zl=1
#10 s[0]=1"b0; s[1l]=1'bl;
d[0]=1"bl; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"bl;
enbl=1'bl; //d[2]=0; z1=0
#10 s[0]=1"bl; s[1]=1'b0;
d[0]=1"bl; d[1]1=1"'b0; d[2]1=1"b0; d[3]1=1"bl;
enbl=1'bl; //d[1]=1; z1=0
#10 s[0]=1"bl; s[1l]=1'bl;
d[0]=1"bl; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"bl;
enbl=1'bl; //d[3]=1; zl=1
#10 s[0]=1"bl; s[1l]=1'bl;
d[0]=1"bl; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"b0;
enbl=1'bl; //d[3]=0; z1=0
#10 s[0]=1"bl; s[1l]=1'bl;
d[0]=1"bl; d[1l]1=1"bl; d[2]1=1"b0; d[3]1=1"b0;
enbl=1'b0; //d[3]=0; z1=0
#10 $stop;
end //continued on next page

Figure 1.14  Test bench for the 4:1 multiplexer of Figure 1.12.
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//instantiate the module into the test bench
mux_4tol instl (

.d(d),

.s(s),

.z1(z1),

.enbl (enbl)

) ;

endmodule

Figure 1.14  (Continued)

0 ns, select:s=00, inputs:d=1010, output:z1=0
10 ns, select:s=00, inputs:d=1011, output:zl=1
20 ns, select:s=01, inputs:d=1011, output:zl=1l
30 ns, select:s=10, inputs:d=1011, output:z1=0
40 ns, select:s=01, inputs:d=1001, output:z1=0
50 ns, select:s=11, inputs:d=1011, output:zl=1
60 ns, select:s=11, inputs:d=0011, output:z1=0

Figure 1.15  Outputs for the 4:1 multiplexer of Figure 1.12.

3 SILOS - Project C:\Werilog\mux_4to1\mux_4to1.spj
File Edit W¥iew #Analyzer Debug Explorer Reports Help

MR OSEERY P EHBE BB 4
AR B QA 1> 2 1128 [F

] 40 g0

Narne 2 A A0 S A | o i S

B--Dpfault

E---enbl i
2 <10 i 1 I 3 ;
Pkl I ! I :
| I ! f :
¥ 3 3 3 :

El d[3 0] a b i ;
d ; ——
~d[2] !

wedl] b ]

ed(0] ;

e — i —

Figure 1.16  Waveforms for the 4:1 multiplexer of Figure 1.12.
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Example 1.4 Recall that a decoder is a combinational logic macro device, which
for every combination of inputs, a unique output is generated. Each output represents
a minterm that corresponds to the binary representation of the input vector. A decoder
with z inputs has a maximum of 2" outputs, in which only one output signal is active
— all other outputs are inactive.

A 3:8 decoder is shown in Figure 1.17, which will be designed using built-in prim-
itives. The decoder will be designed using the following built-in primitives: and and
not. The decoder has three data inputs, x[2:0], where x[0] is the low-order input.
There is also an enable (enbl) input, which allows the appropriate output to be
asserted. There are eight outputs, z[7:0], where z[0] is the low-order output. The
design module is shown in Figure 1.18, the test bench module is shown in Figure 1.19,
the outputs are shown in Figure 1.20, and waveforms are shown in Figure 1.21.

inst4 +z[0]

inst5 +z[1]

inst6 +z[2]

inst7 +z[3]

inst8 +z[4]

inst9 +z[5]

instl

0] 4o ety

inst2

+x[1] > . net2
2] [inst3 net3

+enbl

+z[6]

+z[7]

TTTTTTT

Figure 1.17  Logic diagram for a 3:8 decoder.
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//3:8 decoder using built-in primitives
module decoder 3to8 bip5 (x, enbl, z);

input [2:0] x;
input enbl;
output [7:0] z;

//instantiate the inverters for the inputs
not instl (netl, x[0]),

inst2 (net2, x[1]),

inst3 (net3, x[2]);

//instantiate the and gates for the decoder outputs
and inst4 (z[0], netl, net2, net3, enbl),

inst5 (z[l1], net2, net3, x[0], enbl),
inst6 (z[2], netl, x[1], net3, enbl),
inst7 (z[3], net3, x[1], x[0], enbl),
inst8 (z[4], x[2], netl, net2, enbl),
inst9 (z[5], x[2], net2, x[0], enbl),
instl0(z[6], x[2], x[1], netl, enbl),
instll(z[7], x[2], x[1], x[0], enbl);
endmodule

Figure 1.18  Design module for the 3:8 decoder using built-in primitives.

//test bench for decoder 3to8 bip5 module
module decoder 3to8 bip5 tb;

reg [2:0] x; //inputs are reg for test bench
reg enbl;
wire [7:0] z; //outputs are wire for test bench

//display inputs and outputs

initial

Smonitor ("input = %b, enable = %b, output = %b",
x [2:0], enbl, z [7:0]);

//apply input vectors
initial
begin
#0 x [2:0] = 3'b000; enbl = 1'bl;

//continued on next page

Figure 1.19  Test bench for the 3:8 decoder using built-in primitives.
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#10 x [2:0] = 3'b001; enbl = 1'bl;
#10 x [2:0] = 3'b010; enbl = 1'bl;
#10 x [2:0] = 3'b011; enbl = 1'bl;
#10 x [2:0] = 3'b100; enbl = 1'bl;
#10 x [2:0] = 3'b101; enbl = 1'bl;
#10 x [2:0] = 3'b110; enbl = 1'bl;
#10 x [2:0] = 3'b11l1; enbl = 1'bl;
#10 x [2:0] = 3'b11l1; enbl = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
decoder 3to8 bip5 instl (

>_,
bl (enbl)
z)

);

endmodule

Figure 1.19 (Continued)

input = 000, enable =
input = 001, enable =
input = 010, enable =
input = 011, enable =
input = 100, enable =
input = 101, enable =
input = 110, enable =
input = 111, enable =
input = 111, enable =

output = 00000001
output = 00000010
output = 00000100
output = 00001000
output = 00010000
output = 00100000
output = 01000000
output = 10000000
output = 00000000

~ N~ 0~

~

~ N~ 0~

S e e
N

~

Figure 1.20 Outputs for the 3:8 decoder using built-in primitives.
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22 SILOS-X - C:Werilog\decoder_3to8_bip5\decod
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Figure 1.21 Waveforms for the 3:8 decoder using built-in primitives.

1.2 User-Defined Primitives

Verilog provides the capability to design primitives according to user specifications.
These are called user-defined primitives (UDPs) and are usually at a higher-level logic
function than built-in primitives. They are independent primitives and do not instan-
tiate other primitives or modules. UDPs are instantiated into a module the same way
as built-in primitives. A UDP is defined outside the module into which it is instanti-
ated. There are two types of UDPs: combinational and sequential. Sequential prim-
itives include level-sensitive and edge-sensitive circuits.

1.2.1 Defining a User-Defined Primitive

The syntax for a UDP is similar to that for declaring a module. The definition begins
with the keyword primitive and ends with the keyword endprimitive. The UDP con-
tains a name and a list of ports, which are declared as input or output. For a sequential
UDP, the output port is declared as reg. UDPs can have one or more scalar inputs, but
only one scalar output. The output port is listed first in the terminal list followed by the
input ports, in the same way that the terminal list appears in built-in primitives. UDPs
do not support inout ports.
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The UDP table is an essential part of the internal structure and defines the func-
tionality of the circuit. It is a lookup table similar in concept to a truth table. The table
begins with the keyword table and ends with the keyword endtable. The contents of
the table define the value of the output with respect to the inputs. The syntax for a
UDP is shown below.

primitive udp name (output, input 1, input 2, ..., input n);
input input_1, input 2, ..., input_n;
output output;
reg sequential output; //for sequential UDPs
initial //for sequential UDPs
table
state table entries
endtable
endprimitive

1.2.2 Combinational User-Defined Primitives

To illustrate the method for defining and using combinational UDPs, examples will be
presented for designs of varying complexity. UDPs are not compiled separately. They
are saved in the same project as the module with a .v extension; for example,
udp_and.v.

Example 1.5 The Karnaugh map of Figure 1.22 will be designed as a sum-of-prod-
ucts expression using two UDPs: udp _and2 and udp or3. The UDPs will then be
instantiated into the module udp sop. The equation for the sum-of-products expres-
sion obtained from the Karnaugh map is shown in Equation 1.4 and the logic diagram
is shown in Figure 1.23.

X3X4
xx, \_00 01 11 10

00| 1 1 1 0

01| 0 0 1 0

11| 1 1 1 1

10| 1 1 1 0

21

Figure 1.22 Karnaugh map to be implemented by UDPs.
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z] = x1xp +x3x4 +x5'x3' (1.4)
udp_sop
: udp_and2 :
> - netl [
+ nst1 |
: udp_or3 :
tx3 ' N\ net2  —— > ! 4

+x, : inst2) w | Z)
[ [
. [ [
7x2 T linst3 >—net3 !
3 I E— |
[

Figure 1.23 Logic diagram for sum-of-products UDP implementation.

UDPs will first be designed for a 2-input AND gate and a 3-input OR gate. The
UDPs will then be instantiated into the sum-of-products design module udp sop. The
Verilog code for the udp _and2 module is shown in Figure 1.24. The Verilog code for
the udp _or3 module is shown in Figure 1.25. The design module for udp _sop, the test
bench module, the outputs, and the waveforms are shown in Figure 1.26, Figure 1.27,
Figure 1.28, and Figure 1.29, respectively.

//UDP for a 2-input AND gate
primitive udp_and2 (zl, x1, x2); //output is listed first

input x1, x2;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 : zl; comment is for readability

o 0 : 0;

0 1 0;

1 0 : 07

1 1 1
endtable

’

endprimitive

Figure 1.24  UDP for a 2-input AND gate.
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//UDP for a 3-input OR gate
primitive udp or3 (zl, x1, x2, x3); //output is listed first

input x1, x2, x3;
output z1;

//define state table
table
//inputs are in the same order as the input list

// x1 x2 x3 : zl; comment is for readability
0O 0 O

~e  Ne

o N

~e

~e

P PP OO O
P O O B+ O

~e

H R R R R RP RO
N

~e

B oOoORr OoORr o

1 1
endtable

endprimitive

Figure 1.25  UDP for a 3-input OR gate.

//sum of products using UDPs for the AND gate and the OR gate
module udp sop (x1, x2, x3, x4, zl);

input x1, x2, x3, x4;
output z1;

//define internal nets
wire netl, net2, net3;

//instantiate the udps

udp_and2 instl (netl, x1, x2);
udp_and2 inst2 (net2, x3, x4);
udp_and2 inst3 (net3, ~x2, ~x3);

udp_or3 inst4 (zl, netl, net2, net3);

endmodule

Figure 1.26  Design module for the sum-of-products logic diagram of Figure 1.23
using UDPs.
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//test bench for sum-of-products logic using UDPs
module udp sop2 tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//display inputs and outputs

initial

$monitor ("x1 x2 x3 x4 = %b, zl1 = %b",
{x1, x2, x3, x4}, z1);

//apply input vectors

initial

begin
#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'bl;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'bl; x4 = 1'b0;
#10 x1l = 1'b0; x2 = 1'b0; x3 = 1'bl; x4 = 1'bl;

#10 xl = 1'b0; x2 = 1'bl; x3 = 1'b0; x4 = 1'b0;
#10 xl = 1'b0; x2 = 1'bl; x3 = 1'b0; x4 = 1'bl;
#10 xl = 1'b0; x2 = 1'bl; x3 = 1'bl; x4 = 1'b0;
#10 xl = 1'b0; x2 = 1'bl; x3 = 1'bl; x4 = 1'bl;

#10 xl = 1'bl; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 xl = 1'bl; x2 = 1'b0; x3 = 1'b0; x4 = 1'bl;
#10 xl = 1'bl; x2 = 1'b0; x3 = 1'bl; x4 = 1'b0;
#10 xl = 1'bl; x2 = 1'b0; x3 = 1'bl; x4 = 1'bl;

#10 xl = 1'bl; x2 = 1'bl; x3 = 1'b0; x4 = 1'b0;
#10 xl = 1'bl; x2 = 1'bl; x3 = 1'b0; x4 = 1'bl;
#10 xl = 1'bl; x2 = 1'bl; x3 = 1'bl; x4 = 1'b0;
#10 xl = 1'bl; x2 = 1'bl; x3 = 1'bl; x4 = 1'bl;

#10 $stop;
end

//instantiate the module into the test bench
udp_sop2 instl (

.x1(x1),
X2

4

X2 (x2)
.x3(x3),
x4 (x4),
.z1(zl)
) ;

endmodule

Figure 1.27  Test bench for the design module of Figure 1.26.
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x1 x2 x3 x4 = 0000, z1 =1
x1 x2 x3 x4 = 0001, z1 =1
x1 x2 x3 x4 = 0010, z1 = O
x1l x2 x3 x4 = 0011, z1 =1
x1 x2 x3 x4 = 0100, z1 = O
x1l x2 x3 x4 = 0101, z1 = O
x1l x2 x3 x4 = 0110, z1 = 0O
x1l x2 x3 x4 = 0111, z1 =1
x1 x2 x3 x4 = 1000, z1 =1
x1 x2 x3 x4 = 1001, z1 =1
x1l x2 x3 x4 = 1010, z1 = 0O
x1l x2 x3 x4 = 1011, z1 =1
x1l x2 x3 x4 = 1100, z1 =1
x1l x2 x3 x4 = 1101, z1 =1
x1l x2 x3 x4 = 1110, z1 =1
x1l x2 x3 x4 = 1111, z1 =1

Figure 1.28  Outputs for the test bench of Figure 1.27 for the sum-of-products
design module of Figure 1.26.

22 SILOS-X - C:Werilog\udp_sop2\udp_sop2.spj
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Figure 1.29  Waveforms for the test bench of Figure 1.28 for the sum-of-products
design module of Figure 1.26.

Example 1.6 This example will design the sum-of-products equation shown in
Equation 1.5 using user-defined-primitives. The logic diagram for Equation 1.5 is
shown in Figure 1.30. The design will incorporate the following three NAND gate
user-defined-primitives: udp nand2, udp nand3, and udp nand4, as shown in Figure
1.31, Figure 1.32, and Figure 1.33, respectively.
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z1=x1'x3 T x1'xpx4 +x1x0' x3" +x7'x3' x4’

: udp nand2
—x |
+x; | instl netl
: udp_nand3
+x, | net2 udp_nand4
+x4 |
|
+x1 r
X2 T
—X3 T
|
[
[
—X4 :

Figure 1.30

Logic circuit to represent Equation 1.5.

(1.5)

input x1,

//define
table
//inputs
// x1 x2
0 0
0 1
1 0
1 1
endtable

//UDP for a 2-input NAND gate
primitive udp nand2 (zl, x1, x2);

X2;

output z1;

state table

are in the same order as the input list
zl; comment is for readability
1;
1;
1;
0

’

endprimitive

Figure 1.31

UDP for a 2-input NAND gate.
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//UDP for a 3-input NAND gate
primitive udp nand3 (zl, x1, x2, x3);
input x1, x2, x3;

output z1;

//define state table
table
//inputs are in the same order as the input list

// x1 x2 x3 : zl; comment is for readability
0O 0 O

Ne  Ne N

o N

P PP OO O
P O oOoOr K O
~.

~e

eI N e e
N

~e

B oOoORr OoORr o

1 1
endtable
endprimitive

Figure 1.32 UDP for a 3-input NAND gate.

//UDP for a 4-input NAND gate
primitive udp nand4 (zl, x1, x2, x3, x4);

input x1, x2, x3, x4;
output z1;

//define state table
table
//inputs are in the same order as the input list

// x1 x2 x3 x4 : zl1; comment is for readability
O 0 0 O

[
Ne Ne Ne Ne N

o Ne

~e  Ne

~e

HERE PR OOOOOOoOO
OO O RPRREPEREOOO
HO O, R OOR O
O O ORFR OR O
e el e e e e
~ N

//continued on next page

Figure 1.33 UDP for a 4-input NAND gate.
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~.

e
)
H R o o
B o R O
O P P
~e N~

~.

1 1
endtable
endprimitive

Figure 1.33 (Continued)

The design module into which the UDPs will be instantiated is shown in Figure
1.34. The test bench, outputs, and waveforms are shown in Figure 1.35, Figure 1.36,
and Figure 1.37, respectively.

//user—-defined primitives to design Equation 1.5
module udp sop3 (x1, x2, x3, x4, zl);

input x1, x2, x3, x4;
output z1;

//define internal nets
wire netl, net2, net3, net4;

//instantiate the udps

udp nand2 (netl, ~x1, x3);

udp nand3 (net2, ~x1, x2, x4);
udp nand3 (net3, x1, ~x2, ~x3);
udp nand3 (netd4, ~x2, ~x3, ~x4);

udp nand4 (z1, netl, net2, net3, netd);

endmodule

Figure 1.34  Module to design Equation 1.5 using user-defined primitives.

//test bench for udp sop3
module udp sop3 tb;

reg x1, x2, x3, x4;
wire z1;
//continued on next page

Figure 1.35  Test bench for the design module of Figure 1.34.
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//display inputs and outputs
initial
$monitor ("input = %b, zl

gb", {x1, x2, x3, x4}, z1);

//apply input vectors

initial

begin
#0 {x1, x2, x3, x4} = 4'b0000;
#10 {x1, x2, x3, x4} = 4'b0001;
#10 {x1, x2, x3, x4} = 4'b0010;
#10 {x1, x2, x3, x4} = 4'b0011;

#10 {x1, x2, x3, x4} = 4'b0100;
#10 {x1, x2, x3, x4} = 4'b0101;
#10 {x1, x2, x3, x4} = 4'b0110;
#10 {x1, x2, x3, x4} = 4'b0111;

#10 {x1, x2, x3, x4} = 4'b1000;
#10 {x1, x2, x3, x4} = 4'b1001;
#10 {x1, x2, x3, x4} = 4'b1010;
#10 {x1, x2, x3, x4} = 4'b1011;

#10 {x1, x2, x3, x4} = 4'b1100;
#10 {x1, x2, x3, x4} = 4'b1101;
#10 {x1, x2, x3, x4} = 4'b1110;
#10 {x1, x2, x3, x4} = 4'b1111;

#10 $stop;

end

//instantiate the module into the test bench
udp_sop3 instl (
.x1(x1),

endmodule

Figure 1.35 (Continued)
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input = 0000, zl1 =
input = 0001, zl1 =
input = 0010, zl1 =
input = 0011, zl1 =
input = 0100, zl1 =
input = 0101, zl1 =
input = 0110, zl1 =
input = 0111, zl1 =
input = 1000, zl1 =
input = 1001, zl1 =
input = 1010, zl1 =
input = 1011, zl1 =
input = 1100, zl1 =
input = 1101, zl1 =
input = 1110, zl1 =
input = 1111, z1 =

oOoocoocoocoocoorr PR RPRPORFRRFR O

Figure 1.36  Outputs for the design module of Figure 1.34 for Equation 1.5.

23 SILOS-X - C:Werilog\udp_sop3\udp_sop3.spj
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Figure 1.37  Waveforms for the test bench of Figure 1.36 for Equation 1.5.

Example 1.7 The Karnaugh map of Figure 1.38 will be implemented using a 4:1
multiplexer and additional logic. The equations for the multiplexer data inputs — d,
dy, dp, and d3 — are shown to the right of the Karnaugh map, where the multiplexer
select inputs are s15¢p= x| X, where s (x,) is the low-order select input. The circuit
will be designed using user-defined primitives for the multiplexer and associated logic
gates.

Figure 1.39 depicts the logic diagram that is designed from the Karnaugh map.
The udp_and?2 was previously designed. The user-defined primitive for a 4:1 multi-
plexer is shown in Figure 1.40. Note the entries in the table that contain the symbol
(?), which indicates a “don’t care” condition. Referring to the first line in the table, if
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5150 = 00, then it is irrelevant what the values are for inputs d d,d3, because only in-
putd, is selected. The design module, test bench module, outputs, and waveforms are
shown in Figure 1.41, Figure 1.42, Figure 1.43, and Figure 1.44, respectively.

X3X4
X1 Xs 00 01 11 10
0 1 3 2
00| 0 0 1 0 do= X3x4
4 5 7 6 xa'
01| 1 1 0 0 dy = 3
12 13 15 14 1
11] 1 1 1 1 dy=
8 9 11 10 A
10] 1 0 0 1 dy= 4

21

Figure 1.38  Karnaugh map for Example 1.7.

MUX
+x2 SO
+_x1 sl
+Xx3 ——f. 7\ netl . 4z
x, instl ZO 1
o I !
X3
o — ZZ
+Logic 1 inst2

Figure 1.39  Logic diagram for the Karnaugh map of Figure 1.38.

//4:1 multiplexer as a UDP
primitive udp mux4 (out, sl, s0, d0, dl, dz2, d3);

input sl1, sO, d0, d1, d2, d3;
output out;

table //define state table

//inputs are in the same order as the input list

// sl s0 d0 dl1 d2 d3 : out comment is for readability
o o 1 2 2 2 = 1; //? is "don't care"
o 0o o0 2 2 2 = 03 //continued on next page

Figure 1.40 A UDP for a 4:1 multiplexer.
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0 1 1 1;
0 1 0 0;
1 0 1 1;
1 0 0 0;
1 1 1 1;
1 1 0 0;
2 2?2 0 0 0 O : 0;
? 0?2 1 1 1 1 : 1;

endtable

endprimitive

Figure 1.40 (Continued)

//logic circuit using a 4:1 multiplexer UDP
//together with other logic circuit UDPs

module mux4 kmap (x1, x2, x3, x4, zl);

input x1, x2, x3, x4;
output z1;

//instantiate the udps
udp_and2 instl (netl, x3, x4);

//the mux inputs are: sl, s0, doO, di, d2, d3
//they correspond to x1, x2, netl, ~x3, ~x4, 1'bl

udp_mux4 inst2 (zl, x1, x2, netl, ~x3, ~x4, 1'bl);

endmodule

Figure 1.41 Module for the logic diagram of Figure 1.39.

//test bench for mux4 kmap
module mux4 kmap tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench
//continued on next page

Figure 1.42 Test bench for Figure 1.41 for the logic diagram of Figure 1.39.
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//display inputs and outputs

//instantiate the module into the test bench

mux4 kmap instl (

endmodule

initial

$Smonitor ("x1 x2 x3 x4 =%b, z1 = %$b", {x1, x2, x3, x4}, z1);

//apply input vectors

initial

begin
#0 x1l = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1l = 1'b0; x2 1'b0; x3 = 1'b0; x4 = 1'b1;
#10 x1l = 1'b0; x2 1'b0; x3 = 1'bl; x4 = 1'b0;
#10 x1l = 1'b0; x2 = 1'b0; x3 = 1'bl; x4 = 1'b1;
#10 x1l = 1'b0; x2 = 1'bl; x3 = 1'b0; x4 = 1'b0;
#10 x1l = 1'b0; x2 1'bl; x3 = 1'b0; x4 = 1'b1;
#10 x1l = 1'b0; x2 1'bl; x3 = 1'bl; x4 = 1'b0;
#10 x1l = 1'b0; x2 = 1'bl; x3 = 1'bl; x4 = 1'b1;
#10 x1l = 1'bl; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1l = 1'bl; x2 1'b0; x3 = 1'b0; x4 = 1'b1;
#10 x1l = 1'bl; x2 1'b0; x3 = 1'bl; x4 = 1'b0;
#10 x1l = 1'bl; x2 = 1'b0; x3 = 1'bl; x4 = 1'b1;
#10 x1l = 1'bl; x2 = 1'bl; x3 = 1'b0; x4 = 1'b0;
#10 x1l = 1'bl; x2 1'bl; x3 = 1'b0; x4 = 1'b1;
#10 x1l = 1'bl; x2 1'bl; x3 = 1'bl; x4 = 1'b0;
#10 x1l = 1'bl; x2 = 1'bl; x3 = 1'bl; x4 = 1'b1;
#10 $stop;

end

Figure 1.42 (Continued)
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s1 Sg 5159
x1l x2 x3 x4 = 0 0 00, z1 =0
x]l x2 x3 x4 =0 0 01, z1 =0
x]l x2 x3 x4 =0 0 10, z1 =0
x]l x2 x3 x4 =0 0 11, z1 =1
x]l x2 x3 x4 = 0 1 00, z1 =1
x]l x2 x3 x4 =0 1 01, z1 =1
x]l x2 x3 x4 =0 1 10, z1 =0
x]l x2 x3 x4 =01 11, z1 =0
x]l x2 x3 x4 =1 0 00, z1 =1
x]l x2 x3 x4 =1 0 01, z1 =0
x]l x2 x3 x4 =1 0 10, z1 =1
x]l x2 x3 x4 =1 0 11, z1 =0
x]l x2 x3 x4 =1 1 00, z1 =1
x]l x2 x3 x4 =11 01, z1 =1
x]l x2 x3 x4 =1 1 10, z1 =1
x]l x2 x3 x4 =11 11, z1 =1

Figure 1.43 Outputs for Figure 1.39 obtained from the test bench of Figure 1.42.
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Figure 1.44  Waveforms for Figure 1.39 obtained from the test bench of Figure
1.42.

Example 1.8 This example will use user-defined primitives to design a full adder
that is constructed from two half adders. A half adder is a combinational circuit that
performs the addition of two operand bits and produces two outputs: a sum bit and a
carry-out bit. The half adder does not accommodate a carry-in bit. A full adder is a
combinational circuit that performs the addition of two operand bits plus a carry-in bit.
The carry-in represents the carry-out of the previous lower-order stage. The full adder
produces two outputs: a sum bit and a carry-out bit.
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The logic diagram for a full adder that is designed from two half adders is shown
in Figure 1.45. The full adder utilizes UDPs for all gates of the full adder. The design
module is shown in Figure 1.46, the test bench module is shown in Figure 1.47, and the
outputs are shown in Figure 1.48.

a®b a®b®cin
half adder
LT ) half adder
| |
vy o e xor2 T adp o2
' [
RN
| udp_an | | d 42
| @_Irnetz. HETET 3 udp_or2
o | : +carry-out
+cin e /
ab (a @ b) cin ab + acin + bcin

Figure 1.45  Full adder designed from two half adders.

//udp for a full adder designed from two half adder udps
module udp full adder3 (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

//define internal nets

wire netl, net2, net3;

//udp for a full adder designed from two half adder udps
module udp full adder (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

//define internal nets
wire netl, net2, net3;

//instantiate the udps for the full adder
//udps for the first half adder

udp xor2 (netl, a, b);

udp _and2 (net2, a, b);

//continued on next page

Figure 1.46  Design module for the full adder of Figure 1.45.
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//udps for the second half adder
udp_xor2 (sum, netl, cin);
udp_and2 (net3, netl, cin);
udp _or2 (cout, net3, net2);

endmodule

Figure 1.46 (Continued)

//test bench for the full adder
module udp full adder3 tb;

reg a, b, cin;
wire sum, cout;

//display inputs and outputs

initial

$monitor ("a b cin = %b, cout = %b,
{a, b, cin}, cout, sum);

//apply input vectors

udp_full adder3 instl (
.a(a),
.b(b),
.cin(cin),
.sum(sum),
.cout (cout)

)7

endmodule

initial

begin
#0 a = 1'b0; b = 1'b0; cin
#10 a = 1'b0; b = 1'b0; cin
#10 a = 1'b0; b = 1'bl; cin
#10 a = 1'b0; b = 1'bl; cin
#10 a = 1"bl; b = 1'b0; cin
#10 a = 1"bl; b = 1'b0; cin
#10 a = 1"bl; b = 1'bl; cin
#10 a = 1"bl; b = 1'bl; cin
#10 $stop;

end

sum

//instantiate the module into the test

= 3pb",

1'b0;
1'bl;
1'b0;
1'bl;

1'b0;
1'bl;
1'b0;
1'bl;

bench

Figure 1.47  Test bench for the full adder of Figure 1.45.
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a b cin = 000, cout = 0, sum = 0
a b cin = 001, cout = 0, sum = 1
a b cin = 010, cout = 0, sum = 1
a b cin = 011, cout =1, sum = 0
a b cin = 100, cout = 0, sum = 1
a b cin = 101, cout =1, sum = 0
a b cin = 110, cout =1, sum = 0
a b cin = 111, cout =1, sum = 1

Figure 1.48 Outputs for the full adder of Figure 1.45.

1.3 Dataflow Modeling

Loop statements are covered in detail in Section 1.4, but will be briefly described in
this section in order to minimize the code in test benches. The keyword for is used to
specify a loop. The for loop repeats the execution of a procedural statement or a block
of procedural statements a specified number of times — a procedural statement is a
synonym for instruction. The for loop is used when there is a specified beginning and
end to the loop. The format and function of a for loop is similar to the for loop used
in the C programming language. The parentheses following the keyword for contain
three expressions separated by semicolons, as shown below.

for (register initialization; test condition; update register control variable)
procedural statement or block of procedural statements

Gate-level modeling is an intuitive approach to digital design because it corre-
sponds one-to-one with conventional digital logic design at the gate level. Dataflow
modeling, however, is at a higher level of abstraction than gate-level modeling.
Design automation tools are used to create gate-level logic from dataflow modeling by
a process called logic synthesis. Register transfer level (RTL) is a combination of
dataflow modeling and behavioral modeling — behavioral modeling is presented in
Section 1.4 — and characterizes the flow of data through logic circuits.

1.3.1 Continuous Assignment

The continuous assignment statement models dataflow behavior and is used to design
combinational logic without using gates and interconnecting nets. Continuous assign-
ment statements provide a Boolean correspondence between the right-hand side
expression and the left-hand side target. The continuous assignment statement uses
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the keyword assign and has the following syntax with optional drive strength and
delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The continuous assignment statement assigns a value to a net (wire) that has been
previously declared — it cannot be used to assign a value to a register. Therefore, the
left-hand target must be a scalar or vector net or a concatenation of scalar and vector
nets. The operands on the right-hand side can be registers, nets, or function calls. The
registers and nets can be declared as either scalars or vectors.

The following are examples of continuous assignment statements for scalar nets:

assign z| = x| & xp & x3; z1=x1 AND xy AND x3
assign z| = x| " xp; z1=x1 XOR xy
assign z; = (x] & xp) | x33 z1 = (x; AND x;,) OR x3

The assign statement continuously monitors the right-hand side expression. If a
variable changes value, then the expression is evaluated and the result is assigned to
the target after any specified delay. If no delay is specified, then the default delay is
zero. The drive strength defaults to strong0 and strongl. The continuous assignment
statement can be considered to be a form of behavioral modeling, because the behavior
of the circuit is specified, not the implementation.

Example 1.9 This example designs a 3-input AND gate using dataflow modeling
which incorporates the continuous assignment statement. The AND function is also
called the conjunction of two or more variables. The design module is shown in Figure
1.49, the test bench module is shown Figure 1.50, the outputs are shown in Figure
1.51, and the waveforms are shown in Figure 1.52.

//3-input AND gate using dataflow
module and3a df (x1, x2, x3, zl);

input x1, x2, x3;
output z1;

//signals can be optionally declared as wire for dataflow
wire x1, x2, x3;
wire z1;

//use continuous assignment
assign z1 = x1 & x2 & x3;

endmodule

Figure 1.49  Module for a 3-input AND gate using continuous assignment.
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//test bench for the 3-input AND gate

module and3a df tb;

reg x1, x2, x3; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin : apply stimulus //colon followed by a name
reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)
begin
{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b, z1 = $b", {x1, %2, x3}, zl);
end
end

and3a_df instl ( //instantiate the module into the test bench
.x1(x1),
x2 (x2),
.x3(x3),
.z1(z1)
) ;
endmodule

Figure 1.50  Test bench for the module of Figure 1.49.

x1 x2 x3 = 000, zl =
x1l x2 x3 = 001, zl1l =
x1 x2 x3 = 010, zl1l =
x1l x2 x3 = 011, z1 =

x1 x2 x3 = 100, zl1l =
x1l x2 x3 = 101, z1l =
x1l x2 x3 = 110, z1l =
x1l x2 x3 = 111, z1 =

O O O O

= O O O

Figure 1.51 Outputs for the 3-input AND gate using continuous assignment.

2 SILOS - Project C:Werilogland3a_df\and3a_df spj

File Edit Yiew #Analyzer Debug Explorer Reports Help

GO HERS PO EESEER 2
HARE 2 Ameree W1>2> T1T2E [

0 40 80

Ll 2 TS T T S S ST TSSO HY O SN S SN S AN ST S T
= Default ! !
:-:1 ;
b . o
3 o [ 1 I 1 [ v
L | —

Figure 1.52 Waveforms for the 3-input AND gate using continuous assignment.



38 Chapter 1  Introduction to Verilog HDL

Example 1.10 A comparator will be designed that compares two 2-bit binary oper-
ands xx, and x3x4 and generates a high output for z; whenever x;xy > x3x4. The
comparator will be designed as a product of sums using NOR logic. A product of sums
is an expression in which at least one term does not contain all the variables; that is, at
least one term is a proper subset of the possible variables or their complements. For
example, the equation shown below is a product of sums for the function z;, because
the second term does not contain the variable x.

z1(xy,x2,x3) = (x1" +xp +x3) (2" +x3") (x] +x2 +x3)

The minimal product-of-sums expression can be obtained by combining Os in a
Karnaugh map to form sum terms in the same manner as 1s are combined to form
product terms. However, since Os are being combined, each sum term must equal 0.
When combining Os to obtain sum terms, treat a variable value of 1 as false and a vari-
able value of 0 as true.

The Karnaugh map that represents the comparator is shown in Figure 1.53. The
product-of-sums equation obtained from the Karnaugh map is shown in Equation 1.6.
The logic diagram using NOR gates is shown in Figure 1.54. The design module is
shown in Figure 1.55, the test bench module is shown in Figure 1.56, the outputs are
shown in Figure 1.57, and the waveforms are shown in Figure 1.58.

X3X4
xxp, \_00 01 11 10
0 1 3 2
00| 1 0 0 0
4 5 7 6
01 1 1 0 0
12 13 15 14
11 1 1 1 1
8 9 11 10

10| 1 1 0 1

2]

Figure 1.53 Karnaugh map for the 2-bit comparator of Example 1.10.

z1 = (x] +x3")00) Txp x4 )(xp +x3' +x4") (1.6)
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X ) netl
— O——————
Tx net2 ——9 \ i
5 —) Dort——f ) “

j > net3

Figure 1.54  Logic diagram for the comparator of Example 1.10 that is imple-
mented as a product of sums.

//dataflow for 2-bit comparator using nor logic
module comparator2a nor (x1, x2, x3, x4, zl);

input x1, x2, x3, x4; //define inputs and outputs
output z1;

//define inputs and output as wire
wire x1, x2, x3, x4;

wire z1;

//define internal nets
wire netl, net2, net3;

//define z1l using continuous assignment

assign netl = ~(x1 | ~x3),
net2 = ~(x1 | x2 | ~x4),
net3 = ~(x2 ~x3 ~x4);
assign z1l = ~netl & ~net2 & ~net3;
endmodule

Figure 1.55  Design module for the comparator of Example 1.10 using NOR logic.

//test bench for comparator?2 using nor logic
module comparator2a nor tb;

reg x1, x2, x3, x4;
wire z1;
//continued on next page

Figure 1.56  Test bench for the comparator of Example 1.10 using NOR logic.
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//apply input vectors and display variables
initial
begin: apply stimulus

reg [4:0] invect;

for (invect = 0; invect < 16; invect = invect + 1)
begin
{x1, x2, x3, x4} = invect [4:0];

#10 $display ("x1 x2 x3 x4 = %b, zl1 = %b",
{x1, x2, x3, x4}, z1);
end
end

//instantiate the module into the test bench
comparator2a nor instl (

.x1(x1),
X2

4

X2 (x2)
.x3(x3),
x4 ( ),
z1(zl)

x3
x4
z1

)7

endmodule

Figure 1.56 (Continued)

x1 x2 x3 x4 = 0000, z1l =1
x1 x2 x3 x4 = 0001, z1 = O
x1 x2 x3 x4 = 0010, z1 = O
x1 x2 x3 x4 = 0011, z1 = O
x1 x2 x3 x4 = 0100, z1 =1
x1l x2 x3 x4 = 0101, z1 =1
x1 x2 x3 x4 = 0110, z1 = O
x1l x2 x3 x4 = 0111, z1 = O
x1 x2 x3 x4 = 1000, z1 =1
x1 x2 x3 x4 = 1001, z1 =1
x1 x2 x3 x4 = 1010, z1 =1
x1l x2 x3 x4 = 1011, z1 = O
x1l x2 x3 x4 = 1100, z1 =1
x1l x2 x3 x4 = 1101, z1 =1
x1l x2 x3 x4 = 1110, z1 =1
x1l x2 x3 x4 = 1111, z1 =1

Figure 1.57 Outputs for the comparator of Example 1.10 using NOR logic.
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Figure 1.58  Waveforms for the comparator of Example 1.10 using NOR logic.

1.3.2 Reduction Operators

The reduction operators are: AND (&), NAND (~&), OR (]), NOR (~|), exclusive-
OR (*), and exclusive-NOR (~~ or ~”). Reduction operators are unary operators;
that is, they operate on a single vector and produce a single-bit result. Reduction op-
erators perform their respective operations on a bit-by-bit basis from right to left. If
any bit in the operand is an unknown value (x) or a high impedance value (z), then the
result of the operation is an x.

reduction AND If any bit in the operand is 0, then the result is 0; otherwise, the re-
sultis 1. For example, let x; be the vector shown below.

Lo o o [rfo o Jir |

The reduction AND (& x| ) operation is equivalent to the following operation:
1&1&1&0&1&0&1 &1

which returns a result of 0.

reduction NAND If any bit in the operand is 0, then the result is 1; otherwise, the
resultis 0. Fora vector x|, the reduction NAND (~& x ) is the inverse of the reduction
AND operator.

reduction OR If any bit in the operand is 1, then the result is 1; otherwise, the re-
sult is 0. For example, let x; be the vector shown below.



42 Chapter 1  Introduction to Verilog HDL

Lo o JoJu Jo i fu |

The reduction OR (|x) operation is equivalent to the following operation:
Li1j1joj1jof1]1

which returns a result of 1.

reduction NOR Ifany bit in the operand is 1, then the result is 0; otherwise, the re-
sultis 1. Fora vectorx, the reduction NOR (~| x| ) is the inverse of the reduction OR
operator.

reduction exclusive-OR Ifthere is an even number of 1s in the operand, then the
result is 0; otherwise, the resultis 1. For example, let x| be the vector shown below.

Lo o JoJu Jo i fu |

The reduction exclusive-OR (" x| ) operation is equivalent to the following operation:
A A IR RN AN VRN A |

which returns a result of 0. The reduction exclusive-OR operator can be used as an
even parity generator.

reduction exclusive-NOR If there is an odd number of 1s in the operand, then
the result is 0; otherwise, the result is 1. For a vector x, the reduction exclusive-NOR
(" ~x) is the inverse of the reduction exclusive-OR operator. The reduction exclu-
sive-NOR operator can be used as an odd parity generator.

Example 1.11 Figure 1.59 contains a module that illustrates the coding of the reduc-
tion operators. The test bench, outputs, and waveforms are shown in Figure 1.60, Fig-
ure 1.61, and Figure 1.62, respectively.

//module to illustrate the use of reduction operators
module reduction2 (a, red and, red nand, red or, red nor,
red xor, red xnor);
input [7:0] a;
output red and, red nand, red or, red nor, red xor, red xnor;
//continued on next page

Figure 1.59  Design module to illustrate the utilization of the reduction operators.
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wire [7:0] a;
wire red and, red nand, red or, red nor, red xor, red xnor;

assign red and = &a, //reduction AND
red nand = ~&a, //reduction NAND
red or = |a, //reduction OR
red nor = ~|a, //reduction NOR
red xor = "a, //reduction exclusive-OR
red xnor = “~a; //reduction exclusive-NOR
endmodule

Figure 1.59 (Continued)

//test bench for reduction2 module
module reduction2 tb;

reg [7:0] a;
wire red and, red nand, red or, red nor, red xor, red xnor;

initial
$monitor ("a=%b, red and=%b, red nand=%b,
red or=%b, red nor=%b,
red xor=%b, red xnor=%b",
a, red and, red nand, red or, red nor,
red xor, red Xnor);

//apply input vectors

initial

begin
#0 a = 8'b0011 0011;
#10 a = 8'bl101 0011;
#10 a = 8'b0000_0000;
#10 a = 8'b0000_0001;
#10 a = 8'b0001 _0000;
#10 a = 8'b0011 1100;
#10 a = 8'bll1l1l 0000;
#10 a = 8'b0100_1111;
#10 a = 8'bl101 1111;
#10 a = 8'bll11l 1111;
#10 a = 8'b0111 1111;

#10 $stop;
end //continued on next page

Figure 1.60  Test bench for the reduction operator module of Figure 1.59.
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//instantiate the module into the test bench

reduction? instl (
.a(a),
.red and(red and),
.red nand(red nand),
.red or(red or),
.red nor (red nor),
.red xor (red xor),
.red xnor (red_xnor)
) ;

endmodule

Figure 1.60 (Continued)

a=00110011, red and=0, red nand=1, red or=l,
red nor=0, red xor=0, red xnor=l

a=11010011, red and=0, red nand=1, red or=l,
red nor=0, red xor=1l, red xnor=0

a=00000000, red and=0, red nand=1, red or=0,
red nor=1, red xor=0, red xnor=l

a=00000001, red and=0, red nand=1, red or=l,
red nor=0, red xor=1l, red xnor=0

a=00010000, red and=0, red nand=1, red or=l,
red nor=0, red xor=1l, red xnor=0

a=00111100, red and=0, red nand=1, red or=l,
red nor=0, red xor=0, red xnor=l

a=11110000, red and=0, red nand=1, red or=l,
red nor=0, red xor=0, red xnor=l

a=01001111, red and=0, red nand=1, red or=l,
red nor=0, red xor=1l, red xnor=0

a=11011111, red and=0, red nand=1, red or=l,
red nor=0, red xor=1l, red xnor=0

a=11111111, red and=1, red nand=0, red or=l,
red nor=0, red xor=0, red xnor=l

a=01111111, red and=0, red nand=1, red or=l,
red nor=0, red xor=1l, red xnor=0

a=10101010, red and=0, red nand=1, red or=l,
red nor=0, red xor=0, red xnor=l

Figure 1.61 Outputs for the reduction operator module of Figure 1.59.
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Figure 1.62 Waveforms for the reduction operator module of Figure 1.59.

1.3.3 Conditional Operator

The conditional operator (? :) has three operands, as shown in the syntax below. The
conditional_expression is evaluated. If the result is true (1), then the true_expression
is evaluated; if the result is false (0), then the false expression is evaluated.

conditional expression ? true expression : false expression;

The conditional operator can be used when one of two expressions is to be se-
lected. For example, in the statement below, if x| is greater than or equal to x,, then
zy is assigned the value of x3; if x| is less than x,, then z; is assigned the value of x4.

z1 =(x1 >=x2) ? x3 : x4;

Since the conditional operator selects one of two values, depending on the result of
the conditional expression evaluation, the operator can be used in place of the if . . .
else construct. The if . . . else construct is presented in Section 1.47 entitled, Condi-
tional Statements.
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Conditional operators can be nested; that is, each true expression and each
false expression can be a conditional operation, as shown below. This is useful for
modeling a 4:1 multiplexer, as shown in Example 1.12.

conditional expression ? (cond exprl ? true_exprl : false exprl)
: (cond_expr2 ? true_expr2 : false_expr2);

Example 1.12 A 4:1 multiplexer will be designed using the conditional operator.
This design will declare the multiplexer inputs as scalars instead of vectors. The select
inputs are: sq and s ; the data inputs are: in, iny, in,, and in3; the output is: out. The
design module is shown in Figure 1.63. The assign statement is reproduced as shown
below.

assign out =s1 ? (s0 ? in3 : in2) : (sO ? (inl : in0);

The assign statement functions as shown below.

sl s0 out
0 0 in0
0 1 inl
1 0 in2
1 1 in3

The test bench is shown in Figure 1.64. The outputs and waveforms are shown in
Figure 1.65 and Figure 1.66, respectively.

//dataflow 4:1 mux using the conditional operator
module mux4tol cond (s0, sl, inO, inl, in2, in3, out);

input s0, sl1;
input in0O, inl, in2, in3;
output out;

//use nested conditional operator
assign out = sl ? (s0 ? in3 : in2) : (s0 ? inl : inO0);

endmodule

Figure 1.63 Design module for the conditional operator.
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//mux4tol cond test bench
module mux4tol cond tb;

reg in0O, inl, in2, in3, s0, sl; //inputs are reg

wire out; //outputs are wire
initial //display signals
$monitor ("sls0 = %$b, in0inlin2in3 = %b, out = %b",

{sl1, s0}, {in0O, inl, in2, in3}, out):;

initial //apply stimulus
begin
#0 sl = 1'b0;s0 = 1'b0;

in0 = 1'b0;inl

1'bl;in2

1'bl;in3 = 1'bl;

#10 sl = 1'b0;s0 = 1'bl;
in0 = 1'b0;inl 1'bl;in2

1'bl;in3 = 1'bO;

#10 sl = 1'bl;s0 = 1'b0;
in0 = 1'bl;inl 1'b0;in2

1'b0;in3 = 1'bl;

#10 sl = 1'bl;s0 = 1'bl;
in0 = 1'b0;inl 1'bl;in2

1'b0;in3 = 1'bl;

#10 $stop;
end

mux4tol cond instl ( //instantiate the module
.s0(s0),
.sl(sl),

.in0 (in0),

)
.inl (4 ),
.in2 (in2),
.in3(in3),
)

(
(
(
.out (
)
endmodule

Figure 1.64  Test bench module for the conditional operator.

sl sO = 00, in0 inl in2 in3 0111, out =
sl sO = 01, in0 inl in2 in3 = 0110, out =
sl sO 10, in0 inl in2 in3 = 1001, out =
sl sO 11, in0 inl in2 in3 = 0101, out =

Il
Il
= o P o

Figure 1.65 Outputs for the conditional operator.
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Figure 1.66  Waveforms for the conditional operator.

1.3.4 Relational Operators

Relational operators compare operands and return a Boolean result, either 1 (true) or 0
(false) indicating the relationship between the two operands. There are four relational
operators: greater than (>), less than (<), greater than or equal (>=), and less than or
equal (<=).

If the relationship is true, then the result is 1; if the relationship is false, then the re-
sult is 0. Net or register operands are treated as unsigned values; real or integer oper-
ands are treated as signed values. An x or z in any operand returns a result of x. When
the operands are of unequal size, the smaller operand is zero-extended to the left.

Example 1.13 Figure 1.67 illustrates a design module showing examples of relation-
al operators using dataflow modeling. The identifier gf means greater than, gfe means
greater than or equal, /t means less than, and /fe means less than or equal. The test
bench, which applies several different values to the two operands, is shown in Figure
1.68. The outputs and waveforms are shown in Figure 1.69 and Figure 1.70, respec-
tively.

//relational operations
module relational ops2 (a, b, gt, gte, 1lt, lte);

input [3:0] a, b;
output gt, gte, 1lt, lte; //continued on next page

Figure 1.67  Design module to illustrate the relational operators.
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//implement the relational operators using the assign statement
assign gt = a > b,

gte = a >= Db,

1t = a < b,

lte = a <= b;
endmodule

Figure 1.67 (Continued)

//test bench for relational operations
module relational ops2 tb;

reg [3:0] a, b; //inputs are reg for test benches
wire gt, gte, 1lt, lte; //outputs are wire for test benches

//display variables

initial

$monitor ("a=%b, b=%b, gt=%b, gte=%b, 1lt=%b, lte=%b",
a, b, gt, gte, 1t, 1lte):;

//apply input vectors

initial

begin
#0 a = 4'b0000; b = 4'b0000;
#10 a = 4'bl111; b = 4'bl111;
#10 a = 4'b0011; b = 4'b0001;
#10 a = 4'bl1l110; b = 4'bl111;
#10 a = 4'b1100; b = 4'bl1101;
#10 a = 4'b1010; b = 4'b1001;
#10 a = 4'b1000; b = 4'bl1011;
#10 a = 4'b1000; b = 4'b0100;

#10 $stop;
end

//instantiate the module into the test bench
relational ops2 instl (

.a(a),

.b(b),

.gt(gt),

.gte (gte),

L1t (1t),

.lte(1lte)

) ;
endmodule

Figure 1.68  Test bench for the relational operators module of Figure 1.67.
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a=0000, b=0000, gt=0, gte=1, 1t=0, lte=1l
a=1111, b=1111, gt=0, gte=1, 1t=0, lte=l
a=0011, b=0001, gt=1, gte=1, 1t=0, lte=0
a=1110, b=1111, gt=0, gte=0, 1lt=1, lte=l

a=1100, b=1101, gt=0, gte=0, 1lt=1, lte=1l
a=1010, b=1001, gt=1, gte=1, 1t=0, lte=0
a=1000, b=1011, gt=0, gte=0, 1lt=1, lte=l
a=1000, b=0100, gt=1, gte=1, 1t=0, lte=0

Figure 1.69 Outputs for the relational operators test bench.
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Figure 1.70  Waveforms for the relational operators test bench.

1.3.5 Logical Operators

There are three logical operators: the binary logical AND operator (&&), the binary
logical OR operator (| |), and the unary logical negation operator (!). Logical opera-
tors evaluate to a logical 1 (true), a logical 0 (false), or an x (ambiguous). If a logical
operation returns a nonzero value, then it is treated as a logical 1 (true); if a bit in an op-
erand is x or z, then it is ambiguous and is normally treated as a false condition.

If a vector operand is nonzero, then it is treated as a logical 1 (true); if a vector op-
erand is zero, then it is treated as a logical O (false). For example, let vector @ = 1000
and vector 5=1001. Then a && b returns a value of 1, because both vector a and vec-
tor b are true. Similarly, a || b returns a value of 1. However, since vector a is nonzero
(true), then !a is zero (false).
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Example 1.14 The design module of Figure 1.71 shows examples of the logical op-
erators using dataflow modeling. Figure 1.72, Figure 1.73, and Figure 1.74 show the
test bench, outputs, and waveforms, respectively. Refer to Figure 1.71 and assume
that vector @ = 0110 and vector b = 1100. The logical operation of ¢ && b returns a
value of 1, because both a and b are nonzero (true).

Now assume that = 0101 and b = 0000. Thus,z; =a && b=1 && 0, which re-
turns a value of 0, because 1 && 0 =0 — a is true and b is false. Output z5, however,
isequalto I, becausezy =a||b=1||0=1. Ina similar manner,z3 =!a=11=0, be-
cause « is true.

As a final example, assume that @ = 0000 and b = 0000; that is, both variables are
false. Therefore, z; = a && b =0 && 0, which returns a value of 0, because 0 && 0
=0. Outputzy =a||b=0||0=0. Ina similar manner,z3 =!a =!0=1. Ifabitin
either operand is x, then the result of a logical operation is x. Also, !x is Xx.

//examples of logical operators
module logical ops (a, b, zl, z2, z3);

input [3:0] a, b;
output z1, z2, z3;

//perform the logical operations

assign zl = a && b, //logical and

z2 = a || b, //logical or

z3 = la; //logical negation
endmodule

Figure 1.71 Design module to illustrate the application of the logical operators.

//test bench for the logical operators
module logical ops_tb;

reg [3:0] a, b; //inputs are reg for test bench
wire z1, z2, z3; //outputs are wire for test bench

//display variables
initial
$monitor ("a = %b, b = %b, zl1 = %b, z2 = %b, z3 = %b",

a, b, z1, z2, z3);

//continued on next page

Figure 1.72 Test bench for the logical operators.
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//apply input vectors

initial

begin
#0 a = 4'b0110; b = 4'b1100;
#10 a = 4'b0101; b = 4'b0000;
#10 a = 4'b0000; b = 4'b0000;
#10 a = 4'0b1000; b = 4'b1001;
#10 a = 4'b1111; b = 4'bl111;
#10 a = 4'b0000; b = 4'b0001;
#10 a = 4'b0111; b = 4'b0111;
#10 $stop;

end

//instantiate the module into the test bench

logical ops instl

(

a (a)_,
b(b),
z1(zl),
z2(z2),
.z3(z3)
)7
endmodule
Figure 1.72 (Continued)
zl = &&, z2 = |1, z3 !
a = 0110, b = 1100, =zl 1, z2 =1, z3
a = 0101, b = 0000, =zl 0, z2 =1, z3
a = 0000, b = 0000, =zl 0, z2 =0, z3
a = 1000, b = 1001, =zl 1, z2 =1, z3
a = 1111, b = 1111, =z1 1, z2 =1, z3
a = 0000, b = 0001, =zl 0, z2 =1, z3
a = 0111, b = 0111, =zl 1, z2 =1, z3

Figure 1.73

Outputs for the logical operators.
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Figure 1.74  Waveforms for the logical operators.

1.3.6 Bitwise Operators

The bitwise operators are: AND (&), OR (|), negation (~), exclusive-OR (*), and ex-
clusive-NOR (~~ or ~*). The bitwise operators perform logical operations on the op-
erands on a bit-by-bit basis and produce a vector result. Except for negation, each bit
in one operand is associated with the corresponding bit in the other operand. Ifone op-
erand is shorter, then it is zero-extended to the left to match the length of the longer op-
erand.

The bitwise AND operator and the bitwise OR operator perform their respective
functional operations on two operands on a bit-by-bit basis. Examples of the bitwise
AND operator and the bitwise OR operator are shown below.

& 1 1 1 1 0 1 0
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The bitwise negation operator performs the negation function on one operand on
a bit-by-bit basis. Each bit in the operand is inverted. An example of the bitwise ne-
gation operator is shown below.

~)y o0 1 0 1 0 1 0 1
1 0 1.0 1 0 1 O

The bitwise exclusive-OR operator and the bitwise exclusive-NOR operator per-
form their respective functional operations on two operands on a bit-by-bit basis. Ex-

amples of the bitwise exclusive-OR operator and the bitwise exclusive-NOR operator
are shown below.

Bitwise operators perform operations on operands on a bit-by-bit basis and pro-
duce a vector result. This is in contrast to logical operators, which perform operations
on the operands in such a way that the truth or falsity of the result is determined by the
truth or falsity of the operands. That is, the logical AND operator returns a value of 1
(true) only if both operands are nonzero (true); otherwise, it returns a value of 0 (false).
If the result is ambiguous, it returns a value of x.

The logical OR operator returns a value of 1 (true) if either or both operands are
true; otherwise, it returns a value of 0. The logical negation operator returns a value of

1 (true) if the operand has a value of zero and a value of 0 (false) if the operand is non-
Zero.

Example 1.15 Figure 1.75 shows a design module to illustrate the use of the five bit-
wise operators. The test bench is shown in Figure 1.76, which includes one case where
the operands are of different lengths. The outputs and waveforms are shown in Figure
1.77 and Figure 1.78, respectively.

//dataflow example of the five bitwise operators
module bitwise2 (a, b, and rslt, or rslt, neg rslt,
xor rslt, xnor rslt);

//continued on next page

Figure 1.75  Module to illustrate using the five bitwise operators.
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//define inputs and outputs
input [7:0] a, b;
output [7:0] and rslt, or rslt, neg rslt, xor rslt, xnor rslt;

wire [7:0] a, b;
wire [7:0] and rslt, or rslt, neg rslt, xor rslt, xnor rslt;

//define outputs using continuous assignment

assign and rslt = a & b, //bitwise AND
or rslt = a | b, //bitwise OR
neg rslt = ~a, //bitwise negation
xor rslt = a "~ b, //bitwise exclusive-OR
xnor _rslt = a "~ Db; //bitwise exclusive-NOR
endmodule

Figure 1.75 (Continued)

//test bench for bitwise2 module
module bitwise2 tb;

reg [7:0] a, b;
wire [7:0] and rslt, or rslt, neg rslt, xor rslt, xnor rslt;

initial

$monitor ("a=%b, b=%b, and rslt=%b, or rslt=%b, neg rslt=%b,
xor rslt=%b, xnor rslt=%b",
a, b, and rslt, or rslt, neg_rslt,
xor rslt, xnor rslt);

//apply input vectors
initial
begin
#0 a = 8'bl100_0011;
b = 8'b1001_1001;

#10 a = 8'bl001_0011;
b = 8'b1101 _1001;

#10 a = 8'b0000_1111;
b = 8'b1101 _1001;
//continued on next page

Figure 1.76  Test bench for the five bitwise operators.
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#10 a = 8'b0100_1111;
b = 8'b1101 _1001;

#10 a = 8'bl100_1111;
b = 8'b1101 _1001;

#10 a = 8'b0000_0001;
b = 8'b1000_0001;

#10 a = 8'b0000_0000;
b = 8'b0000_0000;

#10 a = 8'bllll 1111;
b = 8'p1111 1111;

#10 a = 8'bl1010_1010;
b = 8'p1010_1010;

#10 a = 8'b0101_0101;
b = 8'b0101_0101;

#10 a = 8'b0111 0101;
b = 4'b0101;

#10 $stop;
end

//instantiate the module into the test bench
bitwise2 instl (

.a(a),

.b(b),

.and_rslt(and rslt),

.or_rslt(or_rslt),

.neg_rslt(neg rslt),

.xor_rslt(xor rslt),

.xnor_rslt(xnor rslt)

)7

endmodule

Figure 1.76 (Continued)
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a =
b =

and _rslt =
or rslt =
neg rslt =
xor rslt
xnor_rslt=

and _rslt =
or rslt =
neg rslt =
xor rslt
xnor_rslt=

and rslt =
or rslt =
neg rslt =
xor_rslt =
xnor_rslt=

and rslt =
or rslt =
neg rslt =
xor_rslt
xnor_rslt=

and rslt =
or rslt
neg rslt =
xor_rslt
xnor_rslt=

11000011,
10011001,

10000001,
11011011,
00111100,
01011010,
10100101

10010001,
11011011,
01101100,
01001010,
10110101

00001001,
11011111,
11110000,
11010110,
00101001

01001001,
11011111,
10110000,
10010110,
01101001

11001001,
11011111,
00110000,
00010110,
11101001

//continued on next page

= 10010011,
= 11011001,

= 00001111,
= 11011001,

= 01001111,
= 11011001,

= 11001111,
= 11011001,

Figure 1.77

Outputs for the five bitwise operators.
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a = 00000001,

b = 10000001,
and rslt = 00000001,
or rslt = 10000001,
neg rslt = 11111110,
xor_rslt = 10000000,
xnor rslt= 01111111

a = 00000000,

b = 00000000,
and rslt = 00000000,
or rslt = 00000000,
neg rslt = 11111111,
xor_rslt = 00000000,
xnor rslt= 11111111

a = 11111111,

b = 11111111,
and rslt = 11111111,
or rslt = 11111111,
neg rslt = 00000000,
xor_rslt = 00000000,
xnor rslt= 11111111

a = 10101010,

b = 10101010,
and rslt = 10101010,
or rslt = 10101010,
neg rslt = 01010101,
xor_rslt = 00000000,
xnor rslt= 11111111

a = 01010101,

b = 01010101,
and rslt = 01010101,
or rslt = 01010101,
neg rslt = 10101010,
xor_rslt = 00000000,
xnor rslt= 11111111

//continued on next page
Figure 1.77 (Continued)
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a = 01110101,

b = 00000101,
and rslt = 00000101,
or rslt = 01110101,
neg rslt = 10001010,
xor_rslt = 01110000,
xnor rslt= 10001111

Figure 1.77 (Continued)
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Figure 1.78

1.3.7 Shift Operators

Waveforms for the five bitwise operators.

The shift operators shift a single vector operand left or right a specified number of bit
positions. These are logical shift operations, not algebraic; that is, as bits are shifted
left or right, zeroes fill in the vacated bit positions. The bits shifted out of the operand
are lost; they do not rotate to the high-order or low-order bit positions of the shifted op-
erand. If the shift amount evaluates to x or z, then the result of the operation is x.
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There are two shift operators, as shown below. The value in parentheses is the number
of bits that the operand is shifted.

<< (Left-shift amount)
>> (Right-shift amount)

When an operand is shifted left, this is equivalent to a multiply-by-two operation
for each bit position shifted. When an operand is shifted right, this is equivalent to a
divide-by-two operation for each bit position shifted. The shift operators are useful to
model the sequential add-shift multiplication algorithm and the sequential shift-sub-
tract division algorithm.

Example 1.16 The design module illustrating examples of the shift-left and shift-
right operators using dataflow modeling is shown in Figure 1.79. The shift-left oper-
ator shifts the bits two and four bit positions; the shift-right operator shifts the bits one
and three bit positions. The test bench module is shown in Figure 1.80. The outputs
and waveforms are shown in Figure 1.81 and Figure 1.82, respectively.

//dataflow module to illustrate the shift operators
module shift2 (a, b, a rslt2, a rsltd4, b rsltl, b rslt3);

//define inputs and outputs
input [11:0] a, b;
output [11:0] a rslt2, a rsltd4, b rsltl, b rslt3;

//define inputs and outputs as wire
wire a, b;

wire a rslt2, a rslt4, b rsltl, b _rslt3;

//define outputs using continuous assignment

assign a rslt2 = a << 2, //multiply by 4
a rsltd = a << 4, //multiply by 16
b rsltl = b >> 1, //divide by 2
b rslt3 = b >> 3; //divide by 8
endmodule

Figure 1.79  Design module to illustrate the shift-left and shift-right operators.

//test bench for shift operators module
module shift2 tb;

reg [11:0] a, b;
wire [11:0] a rslt2, a rslt4, b rsltl, b rslt3; //next page

Figure 1.80  Test bench for the shift-left and shift-right operators.
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//display variables

initial

$monitor ("a = %b, b = %b, a rslt2 = %b,
b rsltl = %b, b_rslt3 = %b",

a, b, a rslt2, a rslt4, b rsltl, b rslt3);

a rsltd = %b,

//apply input vectors

initial
begin
#0 a = 12'b0000_0000_0010; //2
b = 12'00000_0000_1000; //8
#10 a = 12'b0000_0000_0110; //6
b = 12'00000 0001 1000; //24
#10 a = 12'b0000_0000_1111; //15
b = 12'00000 0011 1000; //56
#10 a = 12'b1111 1110 _0000; //-32
b = 12'00000_0000_0011; //3
#10 $stop;
end

//instantiate the module into the test bench
shift2 instl (

.a(a),

.b(b),

.a_rslt2(a_rslt2),

.a_rslt4d(a_rsltd),

.b_rsltl (b rsltl)

.b_rslt3(b_rslt3)
) ;

4

endmodule

Figure 1.80 (Continued)
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a rslt2 = a << 2, //multiply by 4
a rsltd = a << 4, //multiply by 16
b rsltl = b >> 1, //divide by 2
b rslt3 = b >> 3; //divide by 8
a = 000000000010, //a = 2
a rslt2 = 000000001000, //a << 2 = 8; multiply by 4
a rslt4 = 000000100000, //a << 4 = 32; multiply by 16
b = 000000001000, //b =8
b rsltl = 000000000100, //b >> 1 = 4; divide by 2
b rslt3 = 000000000001 //b >> 3 = 1; divide by 8
a = 000000000110, //a = 6
a rslt2 = 000000011000, //a << 2 = 24; multiply by 4
a rslt4 = 000001100000, //a << 4 = 96; multiply by 16
b = 000000011000, //b = 24
b rsltl = 000000001100, //b >> 1 = 12; divide by 2
b rslt3 = 000000000011 //b >> 3 = 3; divide by 8
a = 000000001111, //a = 15
a rslt2 = 000000111100, //a << 2 = 60; multiply by 4
a rslt4 = 000011110000, //a << 4 = 240; multiply by 16
b = 000000111000, //b = 56
b rsltl = 000000011100, //b >> 1 = 28; divide by 2
b rslt3 = 000000000111 //b >> 3 = 7; divide by 8
a = 111111100000, //a = =32
a rslt2 = 111110000000, //a << 2 = -128; multiply by 4
a rslt4 = 111000000000, //a << 4 = -512; multiply by 16
b = 000000000011, //b =3
b rsltl = 000000000001, //b >> 1 = 1; divide by 2
b rslt3 = 000000000000 //b >> 3 = 0; divide by 8

Figure 1.81 Outputs for the left-shift and right-shift operators.
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Figure 1.82 Waveforms for the left-shift and right-shift operators.

1.4 Behavioral Modeling

This section describes the behavior of a digital system and is not concerned with the
direct implementation of logic gates, but more with the architecture of the system.
This is an algorithmic approach to hardware implementation and represents a higher
level of abstraction than previous modeling methods. Describing a module in behav-
ioral modeling is an abstraction of the functional operation of the design. It does not
describe the implementation of the design at the gate level.

In previous sections, built-in primitives, user-defined primitives (UDPs), and
dataflow modeling were used to design hardware primarily at the gate level. A Ver-
ilog module may contain a mixture of built-in primitives, UDPs, dataflow constructs,
and behavioral constructs. The constructs in behavioral modeling closely resemble
those used in the C programming language.

A procedure is a series of operations taken to design amodule. A Verilog module
that is designed using behavioral modeling contains no internal structural details, it
simply defines the behavior of the hardware in an abstract, algorithmic description.
Verilog contains two structured procedure statements or behaviors: initial and al-
ways. A behavior may consist of a single statement or a block of statements delimited
by the keywords begin . . . end. A module may contain multiple initial and always
statements. These statements are the basic statements used in behavioral modeling
and execute concurrently starting at time zero in which the order of execution is not
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important. All other behavioral statements are contained inside these structured pro-
cedure statements.

1.4.1 Initial Statement

This section presents a recapitulation of the initial statement, which was originally
presented in Section 1.1. All statements within an initial statement comprise an initial
block. An initial statement executes only once beginning at time zero, then suspends
execution. An initial statement provides a method to initialize and monitor variables
before the variables are used in a module; it is also used to generate waveforms. For
a given time unit, all statements within the initial block execute sequentially. Execu-
tion or assignment is controlled by the # symbol, which is used to signify an optional
time unit for timing control and delays. The syntax for an initial statement is shown
below.

initial [optional timing control] procedural statement or
block of procedural statements

Each initial block executes concurrently at time zero and each block ends execu-
tion independently. Ifthere is only one procedural statement, then the statement does
not require the keywords begin . . . end. However, if there are two or more procedural
statements, then they are delimited by the keywords begin . . . end.

Example 1.17 A module showing the use of the initial statement is shown in Figure
1.83, where the variables x|, x5, x3, x4, and x5 are initialized to specific values. Seven
initial statements are used for both a single procedural statement and a block of pro-
cedural statements. The outputs and waveforms are shown in Figure 1.84 and Figure
1.85, respectively.

//module showing use of the initial keyword
module initial ex (x1, x2, x3, x4, x5);

output x1, x2, x3, x4, x5;

reg x1, x2, x3, x4, x5;

//display variables
initial
$monitor ($time, " x1x2x3x4x5 = %$b", {x1, x2, x3, x4, x5});

//continued on next page

Figure 1.83 Module to illustrate the use of the initial statement.
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//initialize variables to 0

//multiple statements require begin . . . end
initial
begin
#0 x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;
x4 = 1'b0;
x5 = 1'b0;
end
//set x1
//single statement requires no begin . . . end
initial

#10 xl = 1'bl;

//set x2 and x3
initial
begin
#10 x2 = 1'bl;
#10 x3 = 1'bl;
end

//set x4 and x5
initial
begin
#10 x4 = 1'bl;
#10 x5 = 1'bl;
end

//reset variables
initial
begin
#20 x1l = 1'b0;
#10 x2 = 1'b0;
#10 x3 = 1'b0;
#10 x4 = 1'b0;
#10 x5 = 1'b0;
end

//determine length of simulation
initial

#70 $finish;

endmodule

Figure 1.83 (Continued)
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0 x1x2x3x4x5 = 00000
10 x1x2x3x4x5 = 11010
20 x1x2x3x4x5 = 01111
30 x1x2x3x4x5 = 00111
40 x1x2x3x4x5 = 00011
50 x1x2x3x4x5 = 00001
60 x1x2x3x4x5 = 00000

Figure 1.84 Outputs for the initial module of Figure 1.83.
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Figure 1.85  Waveforms for the initial module of Figure 1.83.

Figure 1.83 contains seven initial statements. The first initial statement invokes
the system task $monitor, which causes the specified string (enclosed in quotation
marks) to be printed whenever a variable changes in the argument list (enclosed in
braces). The $time system function returns the simulation time as a decimal number.

The second initial statement initializes all variables to zero. The third initial
statement sets x; at 10 time units. Since all initial statements begin execution at time
zero, the fourth initial statement sets x5 at 10 time units also, and sets x3 at time 20
time units (#10 plus #10). This can be seen in the waveforms of Figure 1.85. Variable
X4 is set at 10 time units by the fifth initial statement, which also sets x5 at 20 time
units. The sixth initial statement resets all variables. The seventh initial statement in-
vokes the system task $finish, which causes the simulator to exit the module and re-
turn control to the operating system.

1.4.2 Always Statement

The always statement executes the behavioral statements within the always block re-
peatedly in a looping manner and begins execution at time zero. Execution of the
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statements continues indefinitely until the simulation is terminated. The keywords
initial and always specify a behavior and the statements within a behavior are classi-
fied as behavioral or procedural. The syntax for the always statement is shown be-
low.

always [optional timing control] procedural statement or
block of procedural statements

An always statement is often used with an event control list— or sensitivity list—
to execute a sequential block. When a change occurs to a variable in the sensitivity
list, the statement or block of statements in the always block is executed. The key-
word or is used to indicate multiple events. When one or more inputs change state, the
statement in the always block is executed. The begin . .. end keywords are necessary
only when there is more than one behavioral statement. Target variables used in an al-
ways statement are declared as type reg.

Example 1.18 A 5-input majority circuit will be designed that produces a high out-
put on z; whenever the majority of inputs x1, x5, x3, x4, and x5 are at a logic 1, where
x5 is the low-order bit; otherwise, output z; will be at a logic 0. In order for there to be
amajority, there must be an odd number of inputs. The circuit can be designed by plot-
ting the five variables on a Karnaugh map and inserting 1s in minterm locations in
which there are at least three 1s. Then the groups of 1s are combined to form a min-
imized sum-of-products expression. The 5-variable Karnaugh map is shown in Figure
1.86 and the resulting equation for the majority circuit is shown in Equation 1.7.

=0 =1
X3X4 s X3X4 s
X \_00 01 11 10 X%, N 00 01 11 10
0 2 6 4 1 3 7 5
00| O 0 0 0 00| O 0 1 0
8 10 14 12 9 11 15 13
01| 0 0 1 0 01| 0 1 1 1
24 26 30 28 25 27 31 29
111 0 1 1 1 11 1 1 1 1
16 18 22 20 17 19 23 21
101 O 0 1 0 101 O 1 1 1
21

Figure 1.86  Karnaugh map for a 5-input majority circuit.

Z] = X3X4X5F XpX3X5 T XpXqX5 T X1X3X5 T X1 X4X5 t X1 XpX3 T X XXy T

XpXx3x4 + X1 X3X4 T X1 XpX5 (1.7)
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The behavioral design module using an always statement is shown in Figure 1.87.
The entry of #5 to the immediate right of the equal sign specifies that the output is
delayed by five time units to allow for the propagation delay — inertial delay — of the
AND gate. The sensitivity list in the always statement lists the five inputs. Whenever
one or more of the inputs changes value, the equation for z| is executed.

The test bench is shown in Figure 1.88. The system function $time obtains the
current simulation time that is displayed in the outputs of Figure 1.89 every seven time
units, as indicated by the #7 symbol immediately preceding the $display system task,
which prints the inputs and output variables specified in the argument list. The wave-
forms are shown in Figure 1.90 and clearly show the propagation delay of five time
units that occurs when an input changes; that is, output z; is asserted five time units
after an input changes value if the input vector results in a majority of inputs.

//behavioral 5-input majority circuit
module maj5 bh (x1, x2, x3, x4, x5, zl);

input x1, x2, x3, x4, x5;
output z1;

wire x1, x2, x3, x4, x5;
reg zl;

always @ (x1 or x2 or x3 or x4 or x5)

zl = #5 (x3 & x4 & x5) | (x2 & x3 & x5) | (x2 & x4 & x5) |
(x1 & x3 & x5) | (x1 & x4 & x5) | (x1 & x2 & x3) |
(x1 & x2 & x4) (x2 & x3 & x4) | (x1 & x3 & x4) |
(x1 & x2 & x5);

endmodule

Figure 1.87  Design module for the 5-input majority circuit.

//test bench for the 5-input majority circuit
module maj5 bh tb;

reg x1, x2, x3, x4, x5;
wire z1;

initial //apply vectors and display variables
begin: apply stimulus

reg [5:0] invect;

for (invect=0; invect<32; invect=invect+1)

//continued on next page

Figure 1.88  Test bench module for the 5-input majority circuit.
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begin
{x1, x2, x3, x4, x5} = invect [5:0];
#7 $display ($time, "input = %b, zl1 = %b",
{x1, x2, x3, x4, x5}, z1);
end
end

//instantiate the module into the test bench
maj5 bh instl (
.x1(x1),

endmodule

Figure 1.88 (Continued)

7 input = 00000, z1 = 0 119 input = 10000, zl =
14 input = 00001, z1 = 0 126 input = 10001, =zl =
21 input = 00010, z1 = 0 133 input = 10010, =zl =
28 input = 00011, z1 = 0 140 input = 10011, =zl =
35 input = 00100, z1 = 0 147 input = 10100, =zl =
42 input = 00101, z1 = 0 154 input = 10101, =zl =
49 input = 00110, z1 = 0 161 input = 10110, =zl =
56 input = 00111, z1 =1 168 input = 10111, =zl =
63 input = 01000, z1 = 0 175 input = 11000, =zl =
70 input = 01001, z1 = 0 182 input = 11001, zl =
77 input = 01010, z1 = 0 189 input = 11010, zl =
84 input = 01011, z1 =1 196 input = 11011, =zl =
91 input = 01100, z1 = 0 203 input = 11100, =zl =
98 input = 01101, z1 =1 210 input = 11101, =zl =
105 input = 01110, z1 =1 217 input = 11110, =zl =
112 input = 01111, z1 =1 224 input = 11111, z1 =

PR PP R PRPPRPROR R REROROOO

Figure 1.89 Outputs for the 5-input majority circuit.
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Figure 1.90  Waveforms for the 5-input majority circuit.

1.4.3 Intrastatement Delay

A procedural assignment may have an optional delay. A delay appearing to the right
of an assignment operator is called an intrastatement delay. It is the delay by which
the right-hand result is delayed before assigning it to the left-hand target. In the ex-
ample below, the expression (x| & x;) is evaluated, a delay of five time units is taken,
then the result is assigned to z;.

z] =#5 (x) & xp);

The statement evaluates the logical function x; AND x,, waits five time units,
then assigns the result to z;. If no delay is specified in a procedural assignment, then
zero delay is the default delay and the assignment occurs immediately.

Example 1.19 This example will illustrate intrastatement delay for three operations:
a statement consisting of two AND gates and an exclusive-OR gate; a statement using
the conditional operator; and a statement for a 3-bit odd parity generator. There are
three inputs: x, x5, and x3. There are three outputs: zy, zp, and z3, which are defined
as follows:

2] =#2 (x] & ~xp) " (~x] & x3);
2y =#3 (x1 >=xp) 2 xp 1 x3;
23 = #4~(x) " xp " x3);

The behavioral module is shown in Figure 1.91 in which intrastatement delays are
assigned to the statements that generate z|, zp, and z3. The testbench module is shown
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in Figure 1.92 for all combinations of the inputs. Figure 1.93 shows the outputs for z{,
z, and z3 based upon the definitions stated above. The waveforms are shown in Fig-
ure 1.94, which show the delays for each output. The values for the outputs are
unknown until their respective delays have taken place. Since blocking assignments
are used, the delays are cumulative; that is, z| receives its value two time units after the
inputs change, z, receives its value at five time units, and z3 receives its value at nine
time units after the inputs change.

//behavioral model to demonstrate intrastatement delay
module intra stmt dly5 (x1, x2, x3, zl, z2, z3);

input x1, x2, x3;
output z1, z2, z3;

reg z1, z2, 2z3;

always @ (x1 or x2 or x3)

begin
z1l = #2 (x1 & ~x2) ~ (~x1 & x3);
z2 #3 (x1 >= x2) ? x2 : x3;
z3 = #4 ~(x1 ~ x2 ~ x3);

end

endmodule

Figure 1.91 Design module to illustrate the intrastatement delay.

//test bench for intrastatement delay
module intra stmt dly5 tb;

reg x1, x2, x3;
wire z1, z2, z3;

//apply input vectors and display variables
initial
begin: apply stimulus
reg [3:0] invect;
for (invect=0; invect<8; invect=invect+1)
begin
{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b,
zl = %b, z2 = %b, z3 = %b",
{x1, x2, x3}, z1, z2, z3);
end
end //continued on next page

Figure 1.92 Test bench module for the intrastatement delay module.
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//instantiate the module into the test bench
intra stmt dly5 instl (
.x1(x1),

endmodule

Figure 1.92 (Continued)

x1l x2 x3 = 000, z1 = 0, z2 =0, z3 =1
x1l x2 x3 = 001, z1 =1, z2 =0, z3 =0
x1l x2 x3 = 010, z1 = 0, z2 =0, z3 =0
x1l x2 x3 = 011, z1 =1, z2 =1, z3 =1
x1l x2 x3 = 100, z1 =1, z2 = 0, z3 =0
x1l x2 x3 = 101, z1 =1, z2 = 0, z3 =1
x1l x2 x3 = 110, z1 = 0, z2 =1, z3 =1
x1l x2 x3 = 111, z1 = 0, z2 =1, z3 =0

Figure 1.93 Outputs for the intrastatement delay module.
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Figure 1.94  Waveforms for the intrastatement delay module.
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1.4.4 Interstatement Delay

An interstatement delay is the delay by which a statement’s execution is delayed; that
is, it is the delay between statements. In the code segment shown in Equation 1.8,
when the first statement has completed execution, a delay of five time units is taken
before the second statement is executed. If no delays are specified in a procedural
assignment, then there is zero delay in the assignment.

z1=(x1 [ xp) & x3
#5525 =(x] &xp) | x3 (1.8)
The behavioral module of Figure 1.95 illustrates the use of an interstatement delay

for Equation 1.8. The test bench is shown in Figure 1.96, the outputs are shown in Fig-
ure 1.97, and the waveforms are shown in Figure 1.98.

//behavioral module to illustrate interstatement delay
module inter stmt dly3 (x1, x2, x3, zl, z2);

input x1, x2, x3;
output z1, z2;

reg z1, z2;

always @ (x1 or x2 or x3)

begin
z1l = (x1 | x2) & x3;
#5 z2 = (x1 & x2) x3;
end
endmodule

Figure 1.95  Design module to illustrate interstatement delay.

//test bench for interstatement delay
module inter stmt dly3 tb;

reg x1, x2, x3;
wire z1, z2;

//display variables
initial
$monitor ("x1 x2 x3 = %b, zl1 = %b, z2 = %b",
{x1, x2, x3}, zl1, z2); //continued on next page

Figure 1.96  Test bench for the interstatement delay design module.
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//apply input vectors

initial

begin
#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'bl;
#10 x1 = 1'b0; x2 = 1'bl; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'bl; x3 = 1'bl;

#10 xl = 1'bl; x2 = 1'b0; x3 = 1'b0;
#10 xl = 1'bl; x2 = 1'b0; x3 = 1'bl;
#10 xl = 1'bl; x2 = 1'bl; x3 = 1'b0;
#10 xl = 1'bl; x2 = 1'bl; x3 = 1'bl;

#10 $stop;
end

//instantiate the module into the test bench
inter stmt dly3 instl (

.x1(x1),
X2

x2(x2),
.x3(x3),
z1(zl),
.22 (z2)
)7
endmodule

Figure 1.96  (Continued)

zl = (x1 | x2) & x3 z2 = (x1 & x2) | x3

The multiple x1 x2 x3 entries are the result of the interstate-
ment delay. Observe the waveforms of Figure 1.98.
x1l x2 x3 = 000, z1 = 0, z2 = x

x1l x2 x3 = 000, z1 = 0, z2 =0

x1l x2 x3 = 001, z1 = 0, z2 =0

x1l x2 x3 = 001, z1 = 0, z2 =1

x1l x2 x3 = 010, z1 = 0, z2 =1

x1l x2 x3 = 010, z1 = 0, z2 =0

x1l x2 x3 = 011, z1 =1, z2 =0

x1l x2 x3 = 011, z1 =1, z2 =1

x1l x2 x3 = 100, z1 = 0, z2 =1

x1l x2 x3 = 100, z1 = 0, z2 =0

x1l x2 x3 = 101, z1 =1, z2 =0

x1l x2 x3 = 101, z1 =1, z2 =1

x1l x2 x3 = 110, z1 = 0, z2 =1

x1l x2 x3 = 111, z1 =1, z2 =1

Figure 1.97 Outputs for the interstatement delay module.
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Figure 1.98  Waveforms for the interstatement delay module.

1.4.5 Blocking Assignments

A blocking procedural assignment completes execution before the next statement is
executed. The assignment operator (=) is used for blocking assignments. The right-
hand expression is evaluated, then the assignment is placed in an internal temporary
register called the event queue and scheduled for assignment. Ifno time units are spec-
ified, then the scheduling takes place immediately. The event queue is covered in Ap-
pendix A.

In the code segment below, an interstatement delay of two time units is specified
for the assignment to z,. The evaluation of z, is delayed by the timing control; that is,
the expression for zp will not be evaluated until the expression for z| has been execut-
ed, plus two time units. The execution of any of the following statements is blocked
until the assignment occurs.

#2 z1 = x1 & x2;
#2 z2 = x1 & x3;
#2 z3 = x2 & X3;

Example 1.20 The module of Figure 1.99 shows delayed blocking assignments for
the three statements shown above, each with an interstatement delay of two time units.
The blocking statement for z; is assigned to be executed two time units later than the
current simulation time ¢ at ¢ + 2. The right-hand side expression is evaluated at time
t+ 2 and assigned to z; at time ¢ + 2. The statement for z, is evaluated at time ¢ + 4,
then assigned to z,. The statement for z3 is evaluated at time ¢ + 6, then assigned to z3.
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The test bench is shown in Figure 1.100. The outputs and waveforms are shown in
Figure 1.101 and Figure 1.102, respectively. The waveforms show the delay for each
blocking statement. Observe the waveforms for output zp. At 50 time units, both x;
and x5 are asserted. However, since the delays are cumulative, output z, is not assert-

ed until 54 time units.

//example of blocking assignment
module blocking 7 (x1, x2, x3, zl, z2, z3);

input x1, x2, x3;
output z1, z2, z3;

reg z1, z2, z3;

always @ (x1 or x2 or x3)
begin

#2 z1 = x1 & x2;

#2 z2 = x1 & x3;

#2 z3 = x2 & x3;
end

endmodule

Figure 1.99  Behavioral module to illustrate delayed blocking assignments.

//test bench for blocking assignment
module blocking 7 tb;

reg x1, x2, x3;
wire z1, z2, z3;

//apply input vectors and display variables
initial
begin: apply stimulus
reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)
begin
{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b,
zl = %b, z2 = %b, z3 = %b",
{x1, x2, x3}, z1, z2, z3);
end
end
//continued on next page

Figure 1.100 Test bench for the delayed blocking assignments of Figure 1.99.
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//instantiate the module into the test bench
blocking 7 instl (
.x1(x1),

endmodule

Figure 1.100 (Continued)

x1l x2 x3 = 000, z1 = 0, z2 =0, z3 =0
x1l x2 x3 = 001, z1 = 0, z2 =0, z3 =0
x1l x2 x3 = 010, z1 = 0, z2 =0, z3 =0
x1l x2 x3 = 011, z1 = 0, z2 =0, z3 =1
x1l x2 x3 = 100, z1 = 0, z2 =0, z3 =0
x1l x2 x3 = 101, z1 = 0, z2 =1, z3 =0
x1l x2 x3 = 110, z1 =1, z2 =0, z3 =0
x1l x2 x3 = 111, z1 =1, z2 =1, z3 =1

Figure 1.101  Outputs for the delayed blocking assignments of Figure 1.99.
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Figure 1.102 Waveforms for the delayed blocking assignments of Figure 1.99.
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1.4.6 Nonblocking Assignments

The assignment symbol (<=) is used to represent a nonblocking procedural assign-
ment. Nonblocking assignments allow the scheduling of assignments without block-
ing execution of the following statements in a sequential procedural block. A
nonblocking assignment is used to synchronize assignment statements so that they
appear to execute at the same time.

The Verilog simulator schedules a nonblocking assignment statement to execute,
then proceeds to the next statement in the block without waiting for the previous non-
blocking statement to complete execution. That is, the right-hand expression is eval-
uated and the value is stored in the event queue and is scheduled to be assigned to the
left-hand target. The assignment is made at the end of the current time step if there are
no intrastatement delays specified.

Nonblocking assignments are typically used to model several concurrent assign-
ments that are caused by a common event such as the low-to-high transition of a clock
pulse or a change to any variable in a sensitivity list (event control). The order of the
assignments is irrelevant because the right-hand side evaluations are stored in the
event queue before any assignments are made.

Example 1.21 A behavioral module will be used to design a full adder using non-
blocking statements with intrastatement delays of 5 time units. A full adder has three
scalar inputs: the augend a, the addend b, and the carry-in cin. There are two outputs:
the sum designated as sum and the carry-out cout. The truth table for a full adder is
shown in Table 1.1 for stage,. The equations for sum; and cout; are shown in Equation
1.9 and Equation 1.10, respectively.

Table 1.1 Truth Table for a Full Adder

a; b; cing_y cout;  sum;
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
sum; = a; ® b; ® cin;_, (1.9)

cout; = a;b; + a;cin;_y + b;cin;_, (1.10)



1.4 Behavioral Modeling

The behavioral module and test bench module are shown in Figure 1.103 and Fig-
ure 1.104, respectively. The outputs and waveforms are shown in Figure 1.105 and
Figure 1.106, respectively. The waveforms show that when an input changes value,
the outputs are delayed by the intrastatement delay of five time units, then the outputs

are displayed simultaneously, because of the nonblocking assignment.

//behavioral full adder using nonblocking assignments
module full adder nonblock (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

//inputs are wire in behavioral (optional)
wire a, b, cin;

//reg used in always block
reg sum, cout;

//initialize sum and cout to avoid Xs until #10
initial
begin
sum = 1'b0;
cout = 1'b0;
end

always @ (a or b or cin)

begin
sum <= #5 (a ~ b * cin); //nonblocking statement
cout <= #5 ((a & b) | (a & cin) | (b & cin));

end

endmodule

Figure 1.103  Design module for a full adder using nonblocking assignments.

//test bench for full adder using nonblocking statements
module full adder nonblock tb;

reg a, b, cin;
wire sum, cout;

//apply stimulus and display variables
initial
begin: apply stimulus
reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)
//continued on next page

Figure 1.104  Test bench for the full adder of Figure 1.103.
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begin
{a, b, cin} = invect [3:0];
#10 $display ("a b cin = %b, cout = %b, sum =
{a, b, cin}, cout, sum);
end
end

//instantiate the module into the test bench
full adder nonblock instl (

.a(a),

.b(b),

.cin(cin),

.sum (sum),

.cout (cout)

) ;
endmodule

$b",

Figure 1.104 (Continued)

a b cin = 000, cout = 0, sum = 0
a b cin = 001, cout = 0, sum = 1
a b cin = 010, cout = 0, sum = 1
a b cin = 011, cout =1, sum = 0
a b cin = 100, cout = 0, sum = 1
a b cin = 101, cout =1, sum = 0
a b cin = 110, cout =1, sum = 0
a b cin = 111, cout =1, sum = 1

Figure 1.105  Outputs for the full adder of Figure 1.103.
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1.4.7 Conditional Statements

Conditional statements alter the flow within a behavior based upon certain conditions.
The choice among alternative statements depends on the Boolean value of an expres-
sion. The alternative statements can be a single statement or a block of statements de-
limited by the keywords begin . . . end. The keywords if and else are used in
conditional statements. There are three categories of the conditional statement as
shown below. A true value is 1 or any nonzero value; a false value is 0, x (unknown),
or z (high impedance). If the evaluation is false, then the next expression in the activ-
ity flow is evaluated.

No else statement

if (expression) statementl; //if expression is true, then statement] is executed.
One else statement //choice of two statements. Only one is executed.
if (expression) statementl; //if expression is true, then statement] is executed.
else statement2; //if expression is false, then statement2 is executed.

Nested if-else if statements  //choice of multiple statements. Only one is execut-
ed.

if (expressionl) statementl; //if expression] is true, then statementl is executed.

else if (expression2) statement2;//if expression2 is true, then statement?2 is executed.

else if (expression3) statement3;//if expression3 is true, then statement3 is executed.

else default statement;

Examples of the three categories are shown below.

//no else statement
if(xl & x2) 1= 1,

//one else statement
if (rst n==0)

ctr = 3'b000;
else ctr = next _count;

//nested if-else if

if (opcode == 00)
zZ1=x1 T X9,

else if (opcode == 01)
21 =X~ X2

else if (opcode == 10)
z1=x1 *xp;

else
z1=x1/xp;
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Example 1.22 Figure 1.107 shows a behavioral design module using conditional
statements that utilize one alternative else statement to illustrate an application of the
four equations shown below. The equations use both the logical operators and the
reduction operators.

z1=x1 & Xxp
zp =x3|x3
73 =x3 " x4
z4 = (x) &xg) [ [ (xp &x3)

Figure 1.108 shows the test bench that generates all 16 combinations of the four
inputs x1, x,, x3, and x4 and displays the four outputs z{, z5, z3, and z4 for their respec-
tive equations. Figure 1.109 and Figure 1.110 display the corresponding outputs and
waveforms, respectively.

//conditional statements using if ... else
module cond stmt (x1, x2, x3, x4, zl1, z2, z3, z4);

input x1, x2, x3, x4;
output z1, z2, z3, z4;

reqg z1, z2, z3, z4;

always @ (x1 or x2)

begin
if (x1 & x2)
z1l = 1'bl;
else
z1l = 1'b0;
end

always @ (x2 or x3)

begin
if (x2 | x3)
z2 = 1'bl;
else
z2 = 1'b0;
end

always @ (x3 or x4)

begin
if (x3 »~ x4)
z3 = 1'bl;
else
z3 = 1'b0;
end //continued on next page

Figure 1.107 Behavioral module using conditional statements.
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always @ (x1 or x2 or x3 or x4)
begin
if ((x1 & x4) || (x2 & x3))
z4 = 1'bl;
else
z4 = 1'b0;
end
endmodule

Figure 1.107  (Continued)

//test bench for conditional statements module
module cond stmt tb;

reg x1, x2, x3, x4;
wire z1, z2, z3, z4;

//apply input vectors and display variables
initial
begin: apply stimulus
reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)
begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} %b,
zl = %b, z2 = %b, z3 = %b, z4 = %b",
{x1, x2, x3, x4}, z1, z2, z3, z4)

Sl

end
end

//instantiate the module into the test bench
cond_stmt instl (

endmodule

Figure 1.108 Test bench for the module of Figure 1.107.
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z1l = x1 & x2;

z2 = X2 | x3;

z3 = x3 ~ x4;

z4 = (x1 & x4) || (x2 & x3)

{x1 x2 x3 x4} = 0000, zl = 0, z2 = 0, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 0001, z1 0, z2 0, z3 1, z4 0
{x1 x2 x3 x4} = 0010, z1 0, z2 1, z3 1, z4 0
{x1 x2 x3 x4} = 0011, zl = 0, z2 =1, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 0100, zl = 0, z2 =1, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 0101, z1 0, z2 1, z3 1, z4 0
{x1 x2 x3 x4} = 0110, z1 0, z2 1, z3 1, z4 1
{x1 x2 x3 x4} = 0111, zl = 0, z2 =1, z3 = 0, z4 = 1
{x1 x2 x3 x4} = 1000, zl = 0, z2 = 0, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 1001, z1 0, z2 0, z3 1, z4 1
{x1 x2 x3 x4} = 1010, z1 0, z2 1, z3 1, z4 0
{x1 x2 x3 x4} = 1011, zl = 0, z2 =1, z3 = 0, z4 = 1
{x1 x2 x3 x4} = 1100, zl =1, z2 =1, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 1101, z1 1, z2 1, z3 1, z4 1
{x1 x2 x3 x4} = 1110, z1 1, z2 1, z3 1, z4 1
{x1 x2 x3 x4} = 1111, zl =1, z2 =1, z3 = 0, z4 = 1

Figure 1.109  Outputs for the module of Figure 1.107.

2 SILOS - Project C:Werilog\cond_stmt\cond_stmt.spj
File Edit Y%iew A&nalyzer Debug Explorer Reports Help

DI ERS P HEHBEER BE
(B ® B <2 Afemutee ¥1> 2> T T2 | F

0 a0 160
Ve \ '

Mame |
= Default

-4l |

o3 1 f 1 f I o
ond

-4 : —
) LT P :
23 ji= " L e i o 1 I ER

bl —i

Figure 1.110 Waveforms for the module of Figure 1.107.
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1.4.8 Case Statement

When there are many paths from which to chose, nested if. .. else if statements can be
cumbersome. The case statement is an alternative to the if . .. else if construct and may
simplify the readability of the Verilog code. The case statement is a multiple-way
conditional branch and contains the keywords case, endcase, and default.

It executes one of several different procedural statements depending on the com-
parison of an expression with a case item. The case expression may be an expression
or a constant. The case items are evaluated in the order in which they are listed. The
expression and the case item are compared bit-by-bit and must match exactly. The
statement that is associated with a case item may be a single procedural statement or a
block of statements delimited by the keywords begin . . . end. In the event that there
is no match, the default statement is executed. The endcase keyword terminates the
case statement. The case statement has the following syntax:

case (expression)
case_iteml : procedural statementl;
case_item?2 : procedural statement2;
case_item3 : procedural statement3;

case_itemn : procedural statementn;
default : default statement;
endcase

Example 1.23 Figure 1.111 shows a behavioral module using the case statement to
perform the following operations on two 3-bit operands, a/2:0] and b/2:0]: AND, OR,
XOR, NAND, NOR, XNOR, and NOT. The test bench is shown in Figure 1.112,
where operand a/2:0] is assigned the values 000, 010, 100, and 110; operand b/2:0] is
assigned the values 001, 011, 101, and 111. The outputs and waveforms are shown in
Figure 1.113 and Figure 1.114, respectively.

//behavioral using the case statement for logical operations
module case log ops (a, b, opcode, rslt);

input [2:0] a, b, opcode;
output [2:0] rslt;

wire [2:0] a, b, opcode; //inputs are wire (optional)
reg [2:0] rslt; //outputs are reg

//continued on next page

Figure 1.111 Behavioral module using the case statement for logical operations.
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parameter and op = 3'b000, //define operation codes
or_op = 3'b001,
XOr_op = 3'b010,
nand op = 3'b011,
nor_op = 3'b100,
xnor_op = 3'bl01,
not op = 3'b110;

//perform the logical operations
always @(a or b or opcode)
begin

case (opcode)

and op: rslt = a & b;
or_op: rslt = a | b;
Xor op: rslt = a * b;
nand op: rslt = ~(a & b);
nor_op: rslt = ~(a | b);
Xnor op: rslt = ~(a ~ b);
not op: rslt = ~a;
default: rslt = 3'b000;
endcase
end
endmodule

Figure 1.111 (Continued)

//test bench for logical operations using the case statement
module case log ops tb;

reg [2:0] a, b, opcode;
wire [2:0] rslt;

//display variables
initial
$Smonitor ("a = %b, b = %b, op = %b, rslt = %b",

a, b, opcode, rslt);

//apply input vectors

initial
begin
//and operation
#0 a = 3'b000; b = 3'b001; opcode = 3'b000;
#10 a = 3'b010; b = 3'b011; opcode = 3'b000;
#10 a = 3'bl00; b = 3'b101; opcode = 3'b000;
#10 a = 3'bl110; b = 3'blll; opcode = 3'b000; //next page

Figure 1.112  Test bench for logical operations using the case statement.
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//or operation

//xor operation

//nand operation

//nor operation

//xnor operation

//not operation

case_log ops instl
.a(a),
.b(b),
.opcode (opcode),
.rslt(rslt)
)

endmodule

#10 a = 3'b000;
#10 a = 3'b010;
#10 a = 3'b100;
#10 a = 3'b1l10;

#10 a = 3'b000;
#10 a = 3'b010;
#10 a = 3'b100;
#10 a = 3'b1l10;

#10 a = 3'b000;
#10 a = 3'b010;
#10 a = 3'b100;
#10 a = 3'b1l10;

#10 a = 3'b000;
#10 a = 3'b010;
#10 a = 3'b100;
#10 a = 3'b1l10;

#10 a = 3'b000;
#10 a = 3'b010;
#10 a = 3'b100;
#10 a = 3'b1l10;

#10 a = 3'b000;
#10 a = 3'b010;
#10 a = 3'bl100;
#10 a = 3'bl10;
#10 $stop;

end

o o oo o o oo o o oo o o oo o o oo

o o oo

= 3'b001;
3'b011;
3'b101;
= 3'blll;

= 3'b001;
3'b011;
3'b101;
= 3'blll;

= 3'b001;
3'b011;
3'b101;
= 3'blll;

= 3'b001;
3'b011;
3'b101;
= 3'blll;

= 3'b001;
3'b011;
3'b101;
= 3'blll;

= 3'b001;
3'b011;
3'b101;
= 3'blll;

opcode
opcode
opcode
opcode

opcode
opcode
opcode
opcode

opcode
opcode
opcode
opcode

opcode
opcode
opcode
opcode

opcode
opcode
opcode
opcode

opcode
opcode
opcode
opcode

//instantiate the module into the test

= 3'b001;
= 3'b001;
= 3'b001;
= 3'b001;

= 3'b010;
= 3'b010;
= 3'b010;
= 3'b010;

= 3'b011;
= 3'b011;
= 3'b011;
= 3'b011;

= 3'b100;
= 3'b100;
= 3'b100;
= 3'b100;

= 3'bl01;
= 3'bl01;
= 3'bl01;
= 3'bl01;

= 3'bl10;
= 3'bl10;
= 3'bl10;
= 3'bl10;

bench

Figure 1.112

(Continued)
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//and operation

a = 000, b = 001, op = 000, rslt = 000
a = 010, b = 011, op = 000, rslt = 010
a = 100, b = 101, op = 000, rslt = 100
a = 110, b = 111, op = 000, rslt = 110

//or operation

a = 000, b =001, op = 001, rslt = 001
a = 010, b = 011, op = 001, rslt = 011
a = 100, b = 101, op = 001, rslt = 101
a = 110, b = 111, op = 001, rslt = 111

//xor operation

a = 000, b =001, op = 010, rslt = 001
a = 010, b 011, op = 010, rslt = 001
a =100, b = 101, op = 010, rslt = 001
a 110, b 111, op = 010, rslt = 001

//nand operation

a 000, b = 001, op = 011, rslt = 111
a = 010, b = 011, op = 011, rslt = 101
a =100, b = 101, op = 011, rslt = 011
a 110, b = 111, op = 011, rslt = 001

//nor operation
a = 000, b =001, op = 100, rslt = 110

a = 010, b = 011, op = 100, rslt = 100
a = 100, b = 101, op = 100, rslt = 010
a = 110, b = 111, op = 100, rslt = 000

//xnor operation

a 000, b = 001, op = 101, rslt = 110
a = 010, b 011, op = 101, rslt = 110
a =100, b = 101, op = 101, rslt = 110
a 110, b 111, op = 101, rslt = 110

//not operation

a 000, b = 001, op = 110, rslt = 111
a = 010, b = 011, op = 110, rslt = 101
a =100, b = 101, op = 110, rslt = 011
a 110, b = 111, op = 110, rslt = 001

Figure 1.113  Outputs for logical operations using the case statement.
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Figure 1.114 Waveforms for logical operations using the case statement.

1.4.9 Loop Statements

There are four types of loop statements in Verilog: for, while, repeat, and forever.
Loop statements must be placed within an initial or an always block and may contain
delay controls. The loop constructs allow for repeated execution of procedural state-
ments within an initial or an always block.

For loop The for loop contains three parts:

1. Aninitial condition to assign a value to a register control variable. This is ex-
ecuted once at the beginning of the loop to initialize a register variable that
controls the loop.

2. A testcondition to determine when the loop terminates. This is an expression
that is executed before the procedural statements of the loop to determine if
the loop should execute. The loop is repeated as long as the expression is true.
If the expression is false, the loop terminates and the activity flow proceeds to
the next statement in the module.

3. An assignment to modify the control variable, usually an increment or a dec-
rement. This assignment is executed after each execution of the loop and be-
fore the next test to terminate the loop.

The for loop is generally used when there is a known beginning and an end to a
loop. The for loop is similar in function to the for loop in the C programming lan-
guage and has been used in the test bench of several previous examples.
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While loop The while loop executes a procedural statement or a block of proce-
dural statements as long as a Boolean expression returns a value of true. When the pro-
cedural statements are executed, the Boolean expression is reevaluated. The loop is
executed until the expression returns a value of false. If the evaluation of the expres-
sion is false, then the while loop is terminated and control is passed to the next state-
ment in the module. If the expression is false before the loop is initially entered, then
the while loop is never executed.

The Boolean expression may contain any of the following types: arithmetic, log-
ical, relational, equality, bitwise, reduction, shift, concatenation, replication, or con-
ditional. If the while loop contains multiple procedural statements, then they are
contained within the begin . . . end keywords. The syntax for a while statement is as
follows:

while (expression)
procedural statement or block of procedural statements

Repeat loop The repeat loop executes a procedural statement or a block of pro-
cedural statements a specified number of times. The repeat construct can contain a
constant, an expression, a variable, or a signed value. The syntax for the repeat loop
is as follows:

repeat (loop count expression)
procedural statement or block of procedural statements

If the loop count is x (unknown value) or z (high impedance), then the loop count
is treated as zero. The value of the loop count expression is evaluated once at the
beginning of the loop.

Forever loop The forever loop executes the procedural statement continuously
until the system tasks $finish or $stop are encountered. It can also be terminated by
the disable statement. The disable statement is a procedural statement; therefore, it
must be used within an initial or an always block. It is used to prematurely terminate
a block of procedural statements or a system task. When a disable statement is exe-
cuted, control is transferred to the statement immediately following the procedural
block or task. The forever loop is similar to a while loop in which the expression al-
ways evaluates to true (1). A timing control must be used with the forever loop; oth-
erwise, the simulator would execute the procedural statement continuously without
advancing the simulation time. The syntax of the forever loop is as follows:

forever
procedural statement

The forever statement is typically used for clock generation as shown in Figure
1.115 together with the system task $finish. The variable cl/k will toggle every 10 time
units for a period of 20 time units. The length of simulation is 100 time units.
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//define clock
initial
begin
clk = 1'b0;
forever
#10 clk = ~clk;
end

//define length of simulation
initial
#100 $finish;

Figure 1.115  Clock generation using the forever statement.

1.5 Structural Modeling

Structural modeling consists of instantiation of one or more of the following design
objects:

*  Built-in primitives
*  User-defined primitives (UDPs)
e Design modules

Instantiation means to use one or more lower-level modules — including logic
primitives — that are interconnected in the construction of a higher-level structural
module. A module can be a logic gate, an adder, a multiplexer, a counter, or some
other logical function. The objects that are instantiated are called instances. Structural
modeling is described by the interconnection of these lower-level logic primitives or
modules. The interconnections are made by wires that connect primitive terminals or
module ports.

1.5.1 Module Instantiation

Design modules were instantiated into every test bench module in previous examples.
The ports of the design module were instantiated by name and connected to the cor-
responding net names of the test bench. Each named instantiation was of the form

.design_module port_name (test_bench_module net name)

Design module ports can be instantiated by name explicitly or by position. In-
stantiation by position is not recommended when a large number of ports are involved.
Instantiation by name precludes the possibility of making errors in the instantiation
process. Modules cannot be nested, but they can be instantiated into other modules.
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Structural modeling is analogous to placing the instances on a logic diagram and
then connecting them by wires. When instantiating built-in primitives, an instance
name is optional; however, when instantiating a module, an instance name must be
used. Instances that are instantiated into a structural module are connected by nets of
type wire.

A structural module may contain behavioral statements (always), continuous as-
signment statements (assign), built-in primitives (and, or, nand, nor, etc.), UDPs
(mux4, half adder, adder4, etc.), design modules, or any combination of these ob-
jects. Design modules can be instantiated into a higher-level structural module in or-
der to achieve a hierarchical design.

Each module in Verilog is either a top-level (higher-level) module or an instanti-
ated module. There is only one top-level module and it is not instantiated anywhere
else in the design project. Instantiated primitives or modules, however, can be instan-
tiated many times into a top-level module and each instance of a module is unique and
has a unique instance name.

1.5.2 Ports

Ports provide a means for the module to communicate with its external environment.
Ports, also referred to as terminals, can be declared as input, output, or inout. A port
is a net by default; however, it can be declared explicitly as a net. A module contains
an optional list of ports, as shown below for a full adder.

module full adder (a, b, cin, sum, cout);

Ports a, b, and cin are input ports; ports sum and cout are output ports. The test bench
for the full adder contains no ports as shown below because it does not communicate
with the external environment.

module full adder tb;

As mentioned previously, there are two methods of associating ports in the mod-
ule being instantiated and the module doing the instantiation: instantiation by position
and instantiation by name (the preferred method). The two methods cannot be mixed.
Instantiation by position must have the ports in the module instantiation listed in the
same order as in the module definition. Instantiation by name does not require the
ports to be listed in the same order.

Input ports must always be of type net (wire) internally except for test benches;
externally, input ports can be reg or wire. The input port names can be different, but
the net (wire) names connecting the input ports must be the same. Output ports can be
of type reg or wire internally; externally, output ports must always be connected to a
wire.

When making intermodule port connections, it is permissible to connect ports of
different widths. Port width matching occurs by right justification or truncation.
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1.5.3 Design Examples

Examples will now be presented that illustrate the structural modeling technique.
These examples include: converting from a 4-bit binary number to the excess-3 code,
implementing a logic equation, the design of a majority circuit, a 3-bit comparator, and
a nonlinear-select multiplexer. Each example will be completely designed in detail
and will include appropriate theory where applicable.

Example 1.24 This example converts a 4-bit binary number to a 5-bit excess-3 code.
The excess-3 code is obtained by adding three to the binary number and contains a
fifth bit, the carry-out bit cy, which is set to a value of 1 for binary numbers equal to or
greater than 13. Table 1.2 lists the binary numbers and the corresponding excess-3
numbers.

Table 1.2 Binary-to-Excess-3 Conversion

Binary Excess 3
R A % S A
8 4 2 1 16 8 4 2 1
0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 1
0 0 1 1 0 0 1 1 0
0 1 0 0 0 0 1 1 1
0 1 0 1 0 1 0 0 0
0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 0 1 0
1 0 0 0 0 1 0 1 1
1 0 0 1 0 1 1 0 0
1 0 1 0 0 1 1 0 1
1 0 1 1 0 1 1 1 0
1 1 0 0 0 1 1 1 1
1 1 0 1 1 0 0 0 0
1 1 1 0 1 0 0 0 1
1 1 1 1 1 0 0 1 0

Figure 1.116 shows the Karnaugh maps used for the code conversion example.
The coordinates of the Karnaugh maps correspond to the binary code; the map entries
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in the minterm locations correspond to the excess-3 code for that particular bit. The
equations for each of the five maps are shown in Equation 1.11.

X3X4
X% N_00 01 11 10

00 0 0 0 0

01| 0 0 0 0

11 0 1 1 1

10 0O 0 0 0

cy
X3X4 X3X4
xix; N\ 00 01 11 10 Xpxy \_00 01 11 10
0 1 3 2 0 1 3 2
00| O 0 0 0 00| O 1 1 1
4 5 7 6 4 5 7 6
01 0 1 1 1 01 1 0 0 0
12 13 15 14 12 13 15 14
11 1 0 0 0 11 1 0 0 0
8 9 11 10 8 9 11 10
10| 1 1 1 1 101 O 1 1 1
Zl Z2
X3X4 X3X4
xpx; \_00 01 11 10 xjx; N_00 01 11 10
0 1 3 2 0 1 3 2
00| 1 0 1 0 00| 1 0 0 1
4 5 7 6 4 5 7 6
01 1 0 1 0 01 1 0 0 1
12 13 15 14 12 13 15 14
11 1 0 1 0 11 1 0 0 1
8 9 11 10 8 9 11 10
10 1 0 1 0 10| 1 0 0 1
z3 Zy

Figure 1.116 Karnaugh maps for the binary-to-excess-3 code conversion.
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Cy = x1x9x3 + X1X0X4
= XX (03 x4)

z1 = x1"xpx3 +x1'Xpx4 T x1x3'x4" +x7x7'

Zy =x2'x3 +XZ')C4 +XZX3')C4'

z3 ZX3'X4' +Xx3x4
=(x3 ®xq)'

Zg =x4' 1.11
4 =Xy

Figure 1.117 contains the structural design module for the binary-to-excess-3
code conversion. The module utilizes the continuous assignment statement of the
dataflow construct to implement the AND and OR functions for the carry-out cy. It
also uses built-in primitives for the implementation of the outputs zy, z;, z3, and zy4.
Figure 1.118 shows the test bench module. The outputs and waveforms are shown in
Figure 1.119 and Figure 1.120, respectively.

//structural binary to excess-3 code conversion
module bin excess3 struc (x1, x2, x3, x4, zl, z2, z3, z4, cy);
input x1, x2, x3, x4;
output cy, zl, z2, z3, z4;
wire netl, net2, net3, net4, netb5, net6, net7;
//generate carry-out cy
assign cy = (x1 & x2 & x3) | (x1 & x2 & x4);
//generate output =zl
and instl (netl, x1, ~x2),
inst2 (net2, x1, ~x3, ~x4),
inst3 (net3, ~x1, x2, x4),
inst4 (net4 ~x1, x2, x3);
or inst5 (z1l, netl, net2, net3, netd);
//generate output z2
and inst6 (netb5, ~x2, x3),
inst7 (nete6, ~x2, x4),
inst8 (net7 X2, ~x3, ~x4);
or inst9 (z2, netb5, net6, net7);
//continued on next page

Figure 1.117 Design module to convert from binary to excess-3.
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//generate output z3
xnor instl0 (z3, x3, x4);

//generate output z4
buf instll (z4, ~x4);

endmodule

Figure 1.117 (Continued)

//test bench for binary to excess-3
module bin excess3 struc_tb;

reg x1, x2, x3, x4;
wire z1, z2, z3, z4, cy;

//apply stimulus
initial
begin: apply stimulus
reg [4:0] invect;
for (invect=0; invect<1l6; invect=invect+1)
begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1x2x3x4} = %b, cout = %b,
{z1z2z3z4} = %b",
{x1, x2, x3, x4}, cy, {z1, z2, z3,
end
end

//instantiate the module into the test bench
bin excess3 struc instl (

x1 (x1),
x2 (x2),
x3(x3),
x4 (x4),
cy(cy),
z1(zl),
z2(z2),
z3(z3),
.z4 (z4)
) ;
endmodule

z4});

Figure 1.118 Test bench for the binary-to-excess-3 module.
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x1x2x3x4} = 0000, cout = 0, {zlz2z3z4} = 0011
x1x2x3x4} = 0001, cout = 0, {zlz2z3z4} = 0100
x1x2x3x4} = 0010, cout = 0, {zlz2z3z4} = 0101
x1x2x3x4} = 0011, cout = 0, {zlz2z3z4} = 0110
x1x2x3x4} = 0100, cout = 0, {zlz2z3z4} = 0111
x1x2x3x4} = 0101, cout = 0, {zlz2z3z4} = 1000
x1x2x3x4} = 0110, cout = 0, {zlz2z3z4} = 1001
x1x2x3x4} = 0111, cout = 0, {zlz2z3z4} = 1010
x1x2x3x4} = 1000, cout = 0, {zlz2z3z4} = 1011
x1x2x3x4} = 1001, cout = 0, {zlz2z3z4} = 1100
x1x2x3x4} = 1010, cout = 0, {zlz2z3z4} = 1101
x1x2x3x4} = 1011, cout = 0, {zlz2z3z4} = 1110
x1x2x3x4} = 1100, cout = 0, {zlz2z3z4} = 1111
x1x2x3x4} = 1101, cout = 1, {zl1lz2z3z4} = 0000
x1x2x3x4} = 1110, cout = 1, {zlz2z3z4} = 0001
x1x2x3x4} = 1111, cout = 1, {zl1lz2z3z4} = 0010

Figure 1.119  Outputs for the binary-to-excess-3 module.
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Figure 1.120 Waveforms for the binary-to-excess-3 module.
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Example 1.25 A logic circuit will be designed using combinational logic gates to
implement the two Karnaugh maps shown in Figure 1.121. The equations obtained
from the maps are shown in Equation 1.12. The logic diagram is shown in Figure
1.122. Then the circuit will be designed using structural modeling.

X3Xy4 X3%4
Xy N\_00 01 11 10 xxa \_00 01 11 10
0 1 3 2 0 1 3 2
00 1 0 0 0 00 0 1 0 1
4 5 7 6 4 5 7 6
01 1 1 1 1 01 0 1 0 1
12 13 15 14 12 13 15 14
11 0 1 0 0 11 0 1 0 1
8 9 11 10 8 9 11 10
10 O 0 1 0 10 O 1 0 1
Zl 22
Figure 1.121 Karnaugh maps for Example 1.25.
z1=x1'x3'x4" T x1"x0 +xpx3' x4 T X1 X5' X34
zy) =x3 D x4 (1.12)
X
:ﬁ instl) netl
net2
+XZ
+zl
.2\ net3
- nst3
i) insid) 2]
+X3

Figure 1.122

Logic diagram for Example 1.25.
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Figure 1.123 and Figure 1.124 show the dataflow modules for the 3-input AND
gate and the exclusive-OR gate, respectively. The other gates are designed in a similar
manner. Figure 1.125 shows the structural design module for the logic diagram of Fig-
ure 1.122 using the AND, OR, and exclusive-OR gates that were designed using data-
flow modeling and instantiated into the design module. Figure 1.126 shows the test
bench. The outputs and waveforms are shown in Figure 1.127 and Figure 1.128,
respectively.

//and3 dataflow
module and3 df (x1, x2, x3, zl);

//list inputs and output
input x1, x2, x3;
output z1;

//define signals as wire for dataflow
wire x1, x2, x3;

wire z1;

//continuous assign for dataflow
assign z1 = x1 & x2 & x3;

endmodule

Figure 1.123  Dataflow module for a 3-input AND gate.

//dataflow xor2 df

module xor2 df (x1, x2, zl);

//1list inputs and outputs
input x1, x2;
output z1;

//define signals as wire for dataflow
wire x1, x2;

wire z1;

//continuous assignment for dataflow
assign z1 = x1 * x2;

endmodule

Figure 1.124  Dataflow module for an exclusive-OR gate.
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input x1,
output z1,

X2,

wire netl,

//instantiate
and3_df instl

xl( xl),
2(~x3),
3(~x4),
(netl)
),

and2_df inst2
.x1(~x1),
.x2(x2),
.z1 (net?2)
) ;

and3_df inst3

.xl(x2)
2(~x3),
3(x )
1 (net3)
),

and4 df inst4

or4 df instb
1 (netl),
2 (net2),
3 (net3),
4 (netd)
1(z1)

14

),

(x1, x2, x3, x4,

x3, x4;

z2;

//define internal nets
net2,

net3, netd;

the logic gates for zl
(

(

//continued on next page

z1l,

//structural logic equation as a sum of products
module log egtn sop

z2);

Figure 1.125  Design module for the logic diagram of Figure 1.122.
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//instantiate the logic gates for z2
xor2 df inst6 (

.x1(x4),

.x2(x3),

.z1(z2)

) ;

endmodule

Figure 1.125 (Continued)

//test bench for logic equation as a sum of products
module log egtn sop tb;

reg x1, x2, x3, x4;
wire z1, z2;

//apply input vectors and display variables
initial
begin: apply stimulus

reg [4:0] invect;

for (invect = 0; invect < 16; invect = invect + 1)
begin
{x1, x2, x3, x4} = invect [4:0];

#10 $display ("x1 x2 x3 x4 = %b, z1 = %b, z2 = %b",
{x1, x2, x3, x4}, z1, z2);
end
end

//instantiate the module into the test bench
log egtn sop instl (
.x1(x1),

endmodule

Figure 1.126  Test bench for the logic diagram of Figure 1.122.
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x1 x2 x3 x4 = 0000, z1 =1, z2 =0
x1l x2 x3 x4 = 0001, z1 = 0, z2 =1
x1l x2 x3 x4 = 0010, z1 = 0, z2 =1
x1l x2 x3 x4 = 0011, z1 = 0, z2 =0
x1l x2 x3 x4 = 0100, z1 =1, z2 =0
x1l x2 x3 x4 = 0101, z1 =1, z2 =1
x1l x2 x3 x4 = 0110, z1 =1, z2 =1
x1l x2 x3 x4 = 0111, z1 =1, z2 =0
x1l x2 x3 x4 = 1000, z1 = 0, z2 =0
x1l x2 x3 x4 = 1001, z1 = 0, z2 =1
x1l x2 x3 x4 = 1010, z1 = 0, z2 =1
x1l x2 x3 x4 = 1011, z1 =1, z2 = 0
x1l x2 x3 x4 = 1100, z1 = 0, z2 =0
x1l x2 x3 x4 = 1101, z1 =1, z2 =1
x1l x2 x3 x4 = 1110, z1 = 0, z2 =1
x1l x2 x3 x4 = 1111, z1 = 0, z2 = 0

Figure 1.127  Outputs for the logic diagram of Figure 1.122.

23 SILOS - Project C:\Verilog\log_eqtn_sopllop._eqtn_sop.spj
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Figure 1.128 Waveforms for the logic diagram of Figure 1.122.

Example 1.26 This example illustrates the design of a 5-input majority circuit using
dataflow modules that are instantiated into a structural module. The dataflow modules
consist of nine 3-input AND gates and one 9-input OR gate. The output of a majority
circuit is a logic 1 if the majority of the inputs is a logic 1; otherwise, the output is a
logic 0. Therefore, a majority circuit must have an odd number of inputs in order to
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have a majority of the inputs at logic 1 level, as shown in Table 1.3 for a 5-input ma-
jority circuit. By analyzing Table 1.3 or by plotting it on a modified 5-variable Kar-
naugh map, as shown in Figure 1.129, Equation 1.13 can be realized which has the
fewest number of terms. The equation can then be implemented with nine 3-input
AND gates and one 9-input OR gate.

Table 1.3 Truth Table for a 5-Input
Majority Circuit

Inputs Output
X1 X2 X3 X4 X5 ]
0 0 1 1 1 1
0 1 0 1 1 1
0 1 I 0 1 1
0 1 1 1 0 1
0 1 1 1 1 1
I 0 0 1 1 1
1 0 1 0 1 1
I 0 1 1 0 1
I 0 1 1 1 1
1 I 0 0 1 1
1 1 0 1 0 1
1 I 0 1 1 1
1 1 1 0 0 1
1 1 I 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1
X3%4 %50 X3%4 5o
X1y 00 01 11 10 X1 00 01 11 10
0 2 6 4 1 3 7 5
00| O 0 0 0 00| O 0 1 0
8 10 14 12 9 11 15 13
01| 0 0 1 0 01| 0 1 1 1
24 26 30 28 25 27 31 29
11] 0 1 1 1 11] 1 1 1 1
16 18 22 20 17 19 23 21
10 0 0 1 0 10| O 1 1 1

2]

Figure 1.129 Karnaugh map for a 5-variable majority circuit.
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=X3X4X5 T X9X3X5 T X1 X3X5 t XoX4X5 + X1 X4X5

XXX T X XXy T XXXy F X N3Ny (1.13)

The design module is shown in Figure 1.130, which instantiates nine 3-input data-
flow AND gates, and3_df, and one 9-input dataflow OR gate, or9 df. The test bench
module is shown in Figure 1.131. The outputs and waveforms are shown in Figure
1.132 and Figure 1.133, respectively.

//structural 5-input majority circuit
module majority5 struc (x1, x2, x3, x4, x5, zl);

input x1, x2, x3, x4, x5;
output z1;

//define internal nets
wire netl, net2, net3, netd4, netb5, net6, net7, net8, net9;

//instantiate the logic gates
and3_df instl (

xl(x3)
2(x4),
3(x5),
1 (netl)
),

and3_df inst2 (

xl(x2)
2(x3),
3(x5),
1 (net2)
),

and3_df inst3 (

xl(xl)
2(x3),
3(x5),
1 (net3)
),

and3_df inst4 (
xl(x2)

2(x4),

3(x5),

1 (net4d)

), //continued on next page

Figure 1.130  Design module for a 5-input majority circuit.
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and3_df instb
xl(xl)
2(x4),
3(x5),
1 (netb)
),

and3_df insté6
xl(xl)
2(x2),
3(x5),
1 (net6)
),

and3_df inst7

xl(xl),
2(x2),
3(x4),
1 (net7)
),

and3_df inst8
xl(x2)
2(x3),
3(x4),
1 (net8)
),

and3_df inst9
xl(xl)
2(x3),
3(x4),
1 (net?9)
),

or9 df instlO
1 (netl),
2 (net?2)
3 (net3)
4 (netd),
5(netb),
6 ( )
7( )
8 ( )
9( )
1(z

14

14

net6
net?7
net8
net9
1)

14
14
14

14

);
endmodule

Figure 1.130 (Continued)
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//test bench for 5-input majority circuit
module majority5 struc tb;

reg x1, x2, x3, x4, x5;
wire z1;

//apply input vectors

initial
begin: apply stimulus

reg [5:0] invect;

for (invect = 0; invect < 32; invect = invect + 1)

begin
{x1, x2, x3, invect [5:0];
#10 $display ("x1x2x3x4x5 = %b, zl1 = %b",
{x1, x3, x4, x5}, zl);
end

end
//instantiate the module into the test bench
majority5 struc instl

x1 (x1)

x2 (x2)

x3(x3)

x4 (x4)

x5 (x5)

.z1(z1)

) ;
endmodule
Figure 1.131 Test bench for the 5-input majority circuit.
x1x2x3x4x5 = 00000, z1 = O x1x2x3x4x5 = 10000, z1 = O
x1x2x3x4x5 = 00001, =zl 0 x1x2x3x4x5 10001, z1 0
x1x2x3x4x5 = 00010, =zl 0 x1x2x3x4x5 10010, z1 0
x1x2x3x4x5 = 00011, =zl 0 x1x2x3x4x5 10011, =z1 1
x1x2x3x4x5 = 00100, =zl 0 x1x2x3x4x5 10100, z1 0
x1x2x3x4x5 = 00101, =zl 0 x1x2x3x4x5 10101, =z1 1
x1x2x3x4x5 = 00110, =zl 0 x1x2x3x4x5 10110, z1 1
x1x2x3x4x5 = 00111, =zl 1 x1x2x3x4x5 10111, =z1 1
x1x2x3x4x5 = 01000, =zl 0 x1x2x3x4x5 11000, z1 0
x1x2x3x4x5 = 01001, =zl 0 x1x2x3x4x5 11001, =zl 1
x1x2x3x4x5 = 01010, =zl 0 x1x2x3x4x5 11010, z1 1
x1x2x3x4x5 = 01011, =zl 1 x1x2x3x4x5 11011, =z1 1
x1x2x3x4x5 = 01100, =zl 0 x1x2x3x4x5 11100, z1 1
x1x2x3x4x5 = 01101, =zl 1 x1x2x3x4x5 11101, =zl 1
x1x2x3x4x5 = 01110, =zl 1 x1x2x3x4x5 11110, =zl 1
x1x2x3x4x5 = 01111, z1 =1 x1x2x3x4x5 = 11111, z1 = 1

Figure 1.132

Outputs for the 5-input majority circuit.
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Figure 1.133  Waveforms for the 5-input majority circuit.

Example 1.27 This example converts a 4-bit Gray code to the corresponding 4-bit
binary code. The Gray code is a nonweighted code that has the characteristic in which
only one bit changes between adjacent code words. The Gray code belongs to a class
of cyclic codes called reflective codes.

The general algorithm to convert from Gray code to binary code is shown in Equa-
tion 1.14, where n is the number of bits. The specific equations to convert a 4-bit Gray
code segment to a 4-bit binary number are shown in Equation 1.15. The structural de-
sign will instantiate the exclusive-OR dataflow module, xor2 df, as shown in Figure
1.134. The structural design module, the test bench module, and the outputs are shown
in Figure 1.135, Figure 1.136, and Figure 1.137.

bn—lign—l
bi:bi+l @gl (114)
by= g3
by=b3® g,
by=b,® g

by=b1 @ go (1.15)
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//dataflow xor2 df

module xor2 df (x1, x2, zl);

//1list inputs and outputs
input x1, x2;
output z1;

//define signals as wire for dataflow
wire x1, x2;

wire z1;

//continuous assignment for dataflow
assign z1 = x1 © x2;

endmodule

Figure 1.134  Dataflow module for a 2-input exclusive-OR circuit.

//structural gray-to-binary conversion
module gray bin struc (g3, g2, gl, g0, b3, b2, bl,

inPUt g3, g2, gl, gO0;
output b3, b2, bl, b0;

assign b3 = g3;

xor2 df instl ( //instantiate the xor gates
.x1(b3),
.x2(92),
.z1 (b2)
)7

xor2 df inst2 (
.x1(b2),
.x2(gl),
.z1 (bl)
)7

xor2 df inst3 (
.x1(bl),
.x2(g0),
.z1 (b0)
)7

endmodule

b0) ;

Figure 1.135 Design module for the Gray-to-binary conversion.
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//test bench for gray-to-binary conversion
module gray bin struc_tb;

reg g3, g2, g9l, g0;
wire b3, b2, bl, b0;

//apply input vectors
initial
begin: apply stimulus
reg[4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)
begin
{g3, g2, gl, g0} = invect [4:0];
#10 $display ("{g3g2glg0} = %b, {b3b2blb0} = %b",
{g3, 92, gl, g0}, {b3, b2, bl, b0});
end
end

//instantiate the module into the test bench
gray bin struc instl (

endmodule

Figure 1.136  Test bench for the Gray-to-binary conversion.

{g392g1g0} = 0000, {b3b2blb0} = 0000
{g39291g0} = 0001, {b3b2blb0} = 0001
{g392g1g0} = 0010, {b3b2blb0} = 0011
{g392g1g0} = 0011, {b3b2blb0} = 0010

{g39291g0} = 0100, {b3b2blb0} = 0111
{g39291g0} = 0101, {b3b2blb0} = 0110
{g39291g0} = 0110, {b3b2blb0} = 0100
{g39291g0} = 0111, {b3b2blb0} = 0101
//continued on next page

Figure 1.137  Outputs for the Gray-to-binary conversion.
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{g392g1g0} = 1000, {b3b2blb0} = 1111
{g392g1g0} = 1001, {b3b2blb0} = 1110
{g392g1g0} = 1010, {b3b2blb0} = 1100
{g39291g0} = 1011, {b3b2blb0} = 1101

{g392g1g0} = 1100, {b3b2blb0} = 1000
{g3g2g1g0} = 1101, {b3b2blb0} = 1001
{g392g1g0} = 1110, {b3b2blb0} = 1011
{g3g2g1g0} = 1111, {b3b2blb0} = 1010

Figure 1.137 (Continued)

Example 1.28 As a final example for structural modeling, a nonlinear-select multi-
plexer will be used to implement the Karnaugh map shown in Figure 1.138, where y is
a map-entered variable. A nonlinear-select multiplexer represents a smaller multi-
plexer than a linear-select multiplexer and has fewer data inputs. It can be effectively
utilized to implement the same function with a corresponding reduction in machine
cost.

If a multiplexer has unused data inputs — corresponding to unused states in the
input map — then these unused inputs can be connected to logically adjacent multi-
plexer inputs. The resulting linked set of inputs can be addressed by a common select
variable.

X1X2 Absorption law 2 (a)
X3 00 01 11 10
0 2 6 4 dn =
0| y y' 0 1 0~
dy =x3'y' +x3 =x3 +)'
1 3 7 5 dr =1
1 - |1 | o] 1 cé=0

Figure 1.138 Karnaugh map to be implemented with a nonlinear-select multi-
plexer.

Figure 1.139 illustrates the nonlinear-select multiplexer that will be utilized in the
design of the Karnaugh map of Figure 1.138. The select inputs are s and 51, where s
is the low-order select input that is selected by variable x,. The data inputs are dy, d,
d,, and d3, where dy is the low-order data input. The outputs of the multiplexer are
identical to the values in the corresponding minterm locations of the Karnaugh map.
For example, in the Karnaugh map, if xx, = 00, then minterm locations 0 and 1 con-
tain the variable y, corresponding to input dy. In the logic diagram of Figure 1.139, if
x1xp = 00, then input dy is selected and output z; contains the value of y. All of the
multiplexer outputs can be verified in a similar manner.
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MUX
+Logic 1 enbl
+XZ SO
+x1 Sl N

21

+y d()
X3 netl d
w4 1

dy
—Logic 0 d3

inst1

Figure 1.139 Logic diagram for Example 1.28 using a nonlinear-select multi-
plexer.

Figure 1.140 contains the structural module, which instantiates a dataflow 4:1
multiplexer mux4_dfand utilizes the continuous assignment statement — both used in
the design of the logic diagram of Figure 1.139. The test bench is shown in Figure
1.141. The outputs and waveforms are shown in Figure 1.142 and Figure 1.143,
respectively.

//structural nonlinear-select multiplexer
module mux nonlinear5 (x1, x2, x3, y, zl);

//define inputs and output
input x1, x2, x3, y;
output z1;

//define internal net
wire netl;

//use the continuous assign statement to design the or gate
assign netl = (x3 | ~y);

//instantiate the 4:1 multiplexer
mux4 df instl (

.s({x1, x2}), // ({sl, s0})
.d({1'b0, 1'bl, netl, y}), //({d3, d2, di, doO})
.enbl (1'bl),
.z1(z1)
)

endmodule

Figure 1.140  Structural module for the nonlinear-select multiplexer.
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module mux nonlinear5 tb;
reg x1, x2, x3, vy;

wire z1;

//apply input vectors and display variables
initial
begin: apply stimulus
reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)
begin
{x1, x2, x3, y} = invect [4:0];
#10 $display ("x1 x2 x3 = %b, y = %b, zl1 = %b"
{x1, x2, x3}, y, zl1);
end
end

//instantiate the module into the test bench
mux _nonlinear5 instl (
.x1(x1),
.x2(x2),
.x3(x3),
v (y),
.z1(z1)
) ;

endmodule

//test bench for the nonlinear-select multiplexer circuit

4

Figure 1.141 Test bench for the nonlinear-select multiplexer.

dy=x1'xy =y dy=x1'xy =y

dp =xy'xp =x3 +y' d =xy'xp =x3 +y'

d2 =x1x2’ =1 d2 =x1x2’ =1

d3=x1x2=0 d3=x1x2=0

xl x2 x3 = 000, y =0, z1 =0 x1 x2 x3 = 100, y = 0,
xlI x2 x3 = 000, y =1, z1 =1 x1 x2 x3 = 100, y =1,
xlI x2 x3 = 001, y =0, z1 =0 x1l x2 x3 = 101, y = 0,
xlI x2 x3 = 001, y =1, z1 =1 x1l x2 x3 = 101, y =1,
xlI x2 x3 = 010, y =0, z1 =1 x1 x2 x3 = 110, y = 0,
xlI x2 x3 =010, y =1, z1 =0 x1 x2 x3 = 110, y =1,
xlI x2 x3 = 011, y =0, z1 =1 x1l x2 x3 = 111, y = 0,
xlI x2 x3 =011, y =1, z1 =1 x1l x2 x3 = 111, y = 1,

zl =

z1
z1
z1
z1
z1
z1

zl =

o oleolNoR Il

Figure 1.142  Outputs for the nonlinear-select multiplexer.
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Figure 1.143  Waveforms for the nonlinear-select multiplexer.

1.6 Problems

1.1 Given the Karnaugh map shown below, obtain the logic diagram using NOR
gates in a product-of-sums implementation. Then obtain the design module us-
ing built-in primitives, the test bench module, the outputs, and the waveforms.

X3X4
xx, \_00 01 11 10

00| 1 0 1 1

01| 0 0 0 0

11| 1 1 1 0

10| 1 0 1 0

2]

1.2 Design a circuit using built-in primitive nand gates that satisfies the following
specifications: 3 <N <8and 10 <N <15. Obtain the Karnaugh map, the equa-
tion, and the logic diagram using NAND gates. Then obtain the design mod-
ule using built-in primitives, the test bench module, the outputs, and the
waveforms.
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Given the equation shown below, obtain the Karnaugh map. Then obtain the
sum-of-products equation from the Karnaugh map and generate the logic di-
agram using AND and OR gates, where output z; is asserted at a high logic
level. Then obtain the design module using built-in primitives, the test bench
module, the outputs, and the waveforms.

z1(x1, X0, x3,x4) =2,(1,4,7,9, 11, 13) + Z 45, 14, 15)

Repeat Problem 1.3, but generate the circuit as a product-of-sums design.

Design the logic for a 4-bit odd parity generator, then use built-in primitives to
implement the design in Verilog. The output will be a logical 1 if there is an
even number of 1s on the input; otherwise, the output will be a logical 0. Ob-
tain the design module, the test bench module, the outputs, and the wave-
forms.

Design a circuit using dataflow modeling that satisfies the following specifi-
cations: 4 <N <9 and 10 <N < 14. Derive the Karnaugh map and obtain the
equation in a sum-of-products expression. Then design the logic diagram us-
ing NOR gates, where output z; is asserted at a high logic level. Generate the
design module using the continuous assignment statement for NOR gates, the
test bench module, the outputs, and the waveforms.

Given the Karnaugh map shown below, obtain the equation for output z{ in a
sum-of-products notation and the corresponding logic diagram using AND
and OR gates. Then use dataflow modeling for the design module and gen-
erate a test bench. Obtain the outputs and the waveforms.

X3X4
X% N_00 01 11 10
0 1 3 2
00| 1 1 0 0
4 5 7 6
01| 0 1 1 1
12 13 15 14

11| 0 0 1 1

10| 1 0 0 0

21

Given the Karnaugh map shown in Problem 1.7, obtain the equation for output
z1 in a product-of-sums notation and the corresponding logic diagram using
NAND gates. Output zj is to be asserted at a high logic level. Then use data-
flow modeling for the design module and generate a test bench. Obtain the
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outputs and the waveforms This problem is similar to Problem 1.7, but uses
only NAND gates and generates the equation as a product-of-sums. There-
fore, the outputs and waveforms should be identical to those of Problem 1.7.

Design a circuit using dataflow modeling to detect overflow in a fixed-point
binary adder. The augend («) and addend (b) are both four bits in the 2s com-
plement number representation. Overflow occurs when the result of an arith-
metic operation exceeds the word size of the machine. Overflow can be
detected by the equation shown below, where n—1 is the high-order bit and s
is the sum. Obtain the design module, the test bench module for eight vari-
ations of the two operands, the outputs, and the waveforms.

Overflow = (a,,_1* b, 1 *5,1") + (a,_1'* by 1" *5,-1)

Use the three logical operators of AND (&&), OR (| |), and negation (!) to
implement the logical operations shown below. Obtain the dataflow design
module, the test bench module for eight variations of the three 4-bit operands
a, b, and c, the outputs, and the waveforms.

z1=(a && b) && ¢
zy=(al||b) &&c
zz=(a&&c)||b
zg=!(al]c)

Use the three bitwise operators of AND (&), OR (| ), and exclusive-OR (") to
implement the logical operations shown below. Obtain the dataflow design
module, the test bench module for eight variations of the three 4-bit operands
a, b, and c, the outputs, and the waveforms

z1=(@&b)|c
zp=(@"b)&c
zz3=(alc)™b

Design a 4-bit odd parity generator using the exclusive-OR and exclusive-
NOR operators. There are four data inputs and one output that is a logic 1
when the number of 1s in the input vector is even. Use dataflow modeling for
the design module. Generate a test bench for all combinations of the inputs.
Obtain the outputs and waveforms.

Design a 4-bit adder using dataflow modeling whose inputs are augend a and
addend b with a carry-in cin. The outputs are sum and carry-out cout. Gen-
erate the design module, the test bench module containing eight variations of
the augend and addend with specific values for carry-in. Obtain the outputs
and the waveforms.



116

1.14

1.16

Chapter 1  Introduction to Verilog HDL

Use the bitwise AND and OR operators on the 8-bit operands a and b, then use
the logical left shift and logical right shift operators on the results. Perform
the operations shown below. Obtain the design module and the test bench
module that applies eight sets of vectors to the two operands. Show the out-
puts and the waveforms.

z1=a & b;
z1_sl=z1 <<3; //shift left z; 3 bit positions
zy_sr=z1>>2;  //shift right z| 2 bit positions

zp =alb;
zyp_sl=zy <<4;  //shift left z, 4 bit positions
zy_sr=1zp >>3;  //shift right zp 3 bit positions

Use dataflow modeling to design a circuit that generates an output z; when-
ever a 4-bit unsigned binary number meets the following requirements,
where N> 0: N is an odd number or N is evenly divisible by four. Obtain the
design module using a sum-of-products expression, the test bench module
for all sixteen combinations of the four bits, the outputs, and the waveforms.

Use behavioral modeling to design a circuit that counts the number of 1s in a
16-bit register x. A register is a logic macro device that stores data. The data
is retained until new data is stored. Registers are implemented by means of
storage elements. Registers are presented in this problem to illustrate one use
of the while loop and the conditional statement if. Assume that the register
contains the following contents: £63£f¢. Display the individual counts — 1
through 12 — then the final count of the number of 1s. No test bench is re-
quired for this problem. The two counts are displayed in the design module by
the $display system task.

Design a behavioral module that performs addition, shifting, and checks for
overflow on two 8-bit operands a and b. Shift the sum left three bit positions
and right two positions. Display the sum before and after the shift operations.
Obtain the design module, the test bench module for eight variations of the au-
gend and addend. Display the resulting outputs and the waveforms.

Implement the Karnaugh map shown below using a 4:1 multiplexer, where
x1x, represent the select inputs s;s and x3x4 represent the data inputs
dyd|dyds. The variable x5 is a map-entered variable. Obtain the design mod-
ule and the test bench module for all combinations of the three variables
x3x4x5 for the four combinations of the select inputs. Obtain the outputs and
the waveforms.
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X3X4
X%y 00 01 11 10
0 1 3 2
0700 x5 | O 0 X5 | Z] = X4'x5
4 5 7 6
S1T01| 1 1 0 0 z; =x3'
12 13 15 14
3711 0 1 1 x5 | Z1 = x4+ x3x5'
3 8 of 1| 10
27100 0 | 1 | 0 | 1 | 21Tx3ty

Use behavioral modeling to design a full adder. A full adder has three scalar
inputs a, b, and cin; there are two scalar outputs sum and cout. Obtain the de-
sign module, the test bench module for all combinations of the inputs, the out-
puts, and the waveforms. The equations for sum and cout are shown below.

a'b'cin+a'bcin' +ab'cin' + abcin

a®b®cin

sum

cout=a'bcin+ ab'cin + ab cin' + abcin

=ab+acin+ bcin

Use behavioral modeling to convert a 4-bit binary code word binary/3:0] to
the corresponding 4-bit Gray code word gray[3:0]. The general algorithm to
convert an n-bit binary number to a Gray code number is shown below, where
n =4 for this problem. Obtain the design module, the test bench module for all
16 combinations of the four binary bits, the outputs, and the waveforms.

8n-17 bn—l
gi= by ®b;

Design a behavioral module using conditional statements to implement the
equation shown below. The design module will use an intrastatement delay of
five time units. Obtain the test bench, the outputs for all 16 combinations of
the inputs, and the waveforms.

Z]1=x1xp t Xx3x4
Design a 4:1 multiplexer using a combination of behavioral modeling and

dataflow modeling. The multiplexer has four data inputs, which are specified
as a 4-bit vector d/3:0], two select inputs, specified as a 2-bit vector s/1:0/,
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one scalar enable input enbl, and one scalar outputz;. Obtain the design mod-
ule and the test bench module containing eight combinations of the data in-
puts. Obtain the outputs and the waveforms.

Design a behavioral module that converts a 4-bit binary code to the excess-3
code. The excess-3 code is obtained by adding three to the binary code. Ob-
tain the design module and the test bench module for all combinations of the
four bits. Obtain the outputs and the waveforms.

Write a behavioral module to determine the decimal value of the following bi-
nary number: 0111 1110. No test bench is required.

Use behavioral modeling with the case statement to design a 6-function logic
unit for the following six functions: add, subtract, multiply, AND, OR, and
exclusive-OR. The operands are 4-bit vectors: a/3:0] and b/3:0]. Obtain the
design module and the test bench module for four variations of the operands
for each function. Obtain the outputs and waveforms.

Given the Karnaugh map shown below, obtain the equation for output z{ in a
sum-of-products form with the fewest number of terms. Then design the be-
havioral module and the test bench module for all combinations of the five
variables xq, x5, x3, x4, and x5. Obtain the outputs and the waveforms.

X2X3
x] 00 01 11 10
0 1 3 2
0 | x4x5' tx4x5 0 1 1
4 5 7 6
1 | xg4x5+ x4 +x4' 1 0 0
71

Design a structural 4-bit, /3:0], binary-to-excess-3 code converter by instan-
tiating behavioral full adders into the design. The excess-3 code will contain
five bits to include the carry out of the high-order bit position of adder/3]. For
example,binary = 1111, excess3 = 10010. Obtain the design module
and the test bench module for all 16 combinations of the binary inputs. Obtain
the outputs and the waveforms.

Use structural modeling to design a 3-bit comparator for the following oper-
ands: a/2:0] and b/2:0]. Obtain the design module, the test bench module, the
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outputs, and the waveforms. Test the module with inputs that demonstrate the
relative magnitude of the two operands for the categories shown below.

af2:0] = b[2:0] and a2:0] > b[2:0]

Design a logic circuit that will generate a high logic level on output z; if a 4-
bit binary number x/3:0] has a value less than or equal to five or greater than
nine. Obtain the structural design module and the test bench module for all 16
combinations of the inputs. Obtain the outputs and the waveforms.

Given the logic diagram shown below, obtain the Karnaugh map for outputz;.
Then design the structural module that represents the logic diagram and the
test bench module utilizing all eight combinations of the three inputs. Obtain
the outputs and the waveforms.

+x 1
+XZ

+x 3

Given the logic diagram shown below, obtain the minimum product-of-sums
equation, then design a structural module using NOR gates to implement the
equation. Then design the test bench using all 16 combinations of the four in-
put variables. Verify the results by displaying the outputs and the waveforms.

X e

S p— S PR N3
3

+XZ

+x . net2 D net4 .

X3 % 1nst2> inst4 Jinst7 tz3
—.

0—8 nst3 net3

d. net5

1nst6X0 net6
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1.32  Given the Karnaugh map shown below, obtain the function z| in a minimum
product-of-sums expression. Then implement the design as a structural mod-
ule using NOR gates and design a test bench module that incorporates all 16
combinations of the four variables. Obtain the outputs and the waveforms.

X3X4
xxp, \_00 01 11 10

00| O 0 1 0

01| 0 1 0 0

11| 0 1 1 0

10| 1 1 1 1

2]
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Synthesis of Synchronous
Sequential Machines 1 Using
Verilog HDL

A synchronous sequential machine consists of storage elements, usually flip-flops,
and J next-state combinational logic that connects to the flip-flop data inputs. The
machine may also contain combinational logic for the A output function. In some
cases, the output logic may require one or more storage elements, depending on the
assertion and deassertion of the output signals. The number of flip-flops is determined
by the number of states required by the machine. The combinational logic is derived
directly from either the state diagram or from the state table.

This chapter implements synchronous sequential machine designs using Verilog
HDL. The designs will be accomplished by utilizing built-in primitives, dataflow
modeling, behavioral modeling, structural modeling, or a combination of these mod-
eling techniques. Different types of synchronous registers will be designed. These
include: parallel-in, serial-out registers; serial-in, parallel-out registers; and serial-in,
serial-out registers. Also included will be high-speed combinational shifting tech-
niques. These include: shift left logical, shift left algebraic, shift right logical, and
shift right algebraic.

Different types of counters of various moduli are also designed in this chapter.
These include: a modulo-8 counter, a modulo-10 counter, and a Johnson counter. Also
included will be a binary-to-Gray code converter. Different versions of Moore and
Mealy synchronous sequential machines will also be designed using Verilog together
with different techniques to eliminate output glitches.

121
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2.1 Synchronous Registers

The next state of a synchronous (clocked) register is usually a direct result of the input
vector, whose binary variables connect to the flip-flop data inputs, either directly or in-
directly through & next-state logic. Most registers are used primarily for temporary
storage of binary data and do not modify the data internally; that is, the state of the reg-
ister is unchanged until the next active clock transition. An n-bit register requires n
storage elements, either SR latches, D flip-flops, or JK flip-flops. There are 2" differ-
ent states in an n-bit register, where each n-tuple corresponds to a unique state of the
register.

The simplest and most prevalent register is the parallel-in, parallel-out (PIPO)
register used for temporary storage of binary data. There is a one-to-one correspon-
dence between the input alphabet X, the state alphabet Y, and the output alphabet Z.
The values of the present inputs X;,) become the next state Yy 11y of the register at the
next active clock transition. The synthesis procedure is not required for this type of
register; therefore, the design will not be implemented in Verilog.

2.1.1 Parallel-In, Serial-Out Registers

A parallel-in, serial-out (PISO) register accepts binary input data in parallel and gen-
erates binary output data in serial form. The binary data can be shifted either left or
right under control of a shift direction signal and a clock pulse, which is applied to all
flip-flops simultaneously. The register shifts left or right one bit position at each ac-
tive clock transition. Bits shifted out one end of the register are lost unless the register
is cyclic, in which case, the bits are shifted (or rotated) into the other end.

If the PISO register is a right-shift register, then two conditions determine the val-
ue of the bits shifted into the vacated positions on the left. If the binary data represents
an unsigned number, then Os are shifted into the vacated positions. If the binary data
represents a signed number — with the high-order bit specified as the sign of the num-
ber, where a 0 bit represents a positive number and a 1 bit represents a negative number
—then the sign bit extends right one bit position for each active clock transition.

The state diagram for a parallel-in, serial-out shift right register for unsigned bi-
nary data is shown in Figure 2.1. Zeroes are shifted in to the vacated positions on the
left. Upon completion of the load cycle, y; = x;. During the shift sequence, y; =y;_; or
0, depending on the shift count. After four shift cycles, the state of the register is
Y1Y2¥3y4 = 0000, and the process repeats with a new input vector X;.

Examination of the state diagram reveals that each clock pulse shifts in Os from the
left and replaces the present state of a flip-flop with the present state of the flip-flop to
its immediate left. Thus, the output of flip-flop y; connects to the data input of flip-flop
¥i+1- The Verilog design of the register will be implemented first using behavioral
modeling then using structural modeling.
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Parallel load

Y1Y2y3y4 < State flip-flops
X1X9x3x4 < State data

Shift right 1

0x1xpx3

Shift right 2

00x7x7

Shift right 3

000x

Shift right 4

Figure 2.1 State diagram for a parallel-in, serial-out shift right register for
unsigned binary data.

Example 2.1 This example designs a PISO register using behavioral modeling.
Figure 2.2 illustrates the behavioral design module for the PISO shift register and Fig-
ure 2.3 shows the test bench with parallel binary input data of 1111. The outputs and
waveforms are shown in Figure 2.4 and Figure 2.5, respectively.

//behavioral 4-bit shift right piso shift register
//for unsigned binary data
module shift reg piso4a (rst n, clk, load, x, y, z);

input rst n, clk, load;
input [1:4] x;

output [1:4] y;

output z;

reg [1:4] y;

assign z = y[4];

//continued on next page

Figure 2.2 Behavioral module for the PISO shift right register.
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always @ (negedge rst n or posedge clk)
begin
if (rst n == 1'b0)
y = 4'b0000;
else
y[1l] <= ((load && x[1]) || (~load && 1'b0));
yl[2] <= ((load && x[2]) || (~load && yI[1l1));:
y[3] <= ((load && x[3]) || (~load && yI[2]));
v[4] <= ((load && x[4]) || (~load && yI[3])):
end
endmodule

Figure 2.2 (Continued)

//test bench for the 4-bit piso shift register
module shift reg pisoda tb;

reg rst n, clk, load;
reg [1:4] x;

wire [1:4] vy;

wire z;

//define clock

initial

begin
clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
Smonitor ("x=%b, y=%b, z=%b", x, y, z);

//apply inputs

initial
begin
#0 rst n = 1'b0; load = 1'b0; x = 4'b0000;
#3 rst n = 1'bl;
#2 x = 4'b1111;
#3 load = 1'bl;
#7 load = 1'b0;

#100 $stop;
end //continued on next page

Figure 2.3 Test bench for the PISO shift right register.
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//instantiate the module into the test bench
shift reg piso4a instl (

.rst n(rst n),

.clk(clk),

.load(load),

.x (%),

-y (y),

)

)7
endmodule

Figure 2.3  (Continued)

x=0000, y=0000,
x=1111, y=0000,
x=1111, y=1111,
x=1111, y=0111,
x=1111, y=0011,
x=1111, y=0001,
x=1111, y=0000,

N N N N N N N
Il
R =)

Figure 2.4 Outputs for the PISO shift right register.

2 SILOS - Project C:\Werilog\shift_reg_pisodalshift_reg pisoda.spj

File Edit View A&nalyzer Debug Explorer Reports Help
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I :
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z ) : I—;i

Figure 2.5 Waveforms for the PISO shift right register.
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Example 2.2  This example designs a PISO register using structural modeling. The
logic diagram for the PISO shift register using D flip-flops is shown in Figure 2.6 with
implied reset inputs. Each stage (or cell) of the register is loaded with external data or
receives data from the previous stage with the assertion of a clock signal. A Load sig-
nal is asserted to load the register with the binary input vector prior to the shift oper-
ation — this occurs at the first active Clock signal. Then the Load signal is deasserted
and the shift operation begins.

The structural design module is shown in Figure 2.7 and the test bench module is
shown in Figure 2.8. The same binary input vector that was used in the behavioral
module is used in the structural module for comparison. The outputs and waveforms
are shown in Figure 2.9 and Figure 2.10, respectively.

o Y A
+Clock
inst1
+Load —«»—l>0—net1
Y1
+x1 net4 D
—Logic 0 inst5 o
by
+ 18
Xy ne D
inst9
o—
V3
+ t12
X3 ne D
inst13
O—
Y4
+Xy netl6 D +29
inst17
O_
Figure 2.6 Implementation of a parallel-in, serial-out register using D flip-flops.

One application of a PISO register is to convert data from a parallel bus into serial
data for use by a single-track device, such as a disk drive. The serialization process oc-
curs during a write operation.
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//structural 4-bit parallel-in, serial-out shift register
module piso4 struc (rst n, clk, load, x, y, zl);

//define inputs and outputs
input rst n, clk, load;
input [1:4] x;

output [1:4] vy;

output z1;

//define internal nets
wire netl, net2, net3, net4, net6, net7, net8;
wire netl0, netll, netl2, netld, netl5, netlé6;

//instantiate the load/shift logic
not instl (netl, load);

//instantiate the logic for flip-flop yI[1]
and2_df inst2 (

.x1(load),

.x2(x[11),

.z1 (net?2)

) ;

and2_df inst3 (
.x1 (net2),
.x2(1'b0),
.z1 (net3)
) ;

or2 df instd (
.x1 (net2),
.x2 (net3),
.z1 (net4)
) ;

d ff bhinst5 (
.rst n(rst n),
.clk(clk),
.d(netd),
-q(yl[1])

) ;

//continued on next page

Figure 2.7 Structural design module for the PISO shift right register.
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//instantiate the logic for flip-flop y[2]
and2_df inst6 (

.x1(load),

.x2(x[2]1),

.z1 (neto)

) ;

and2_df inst7 (
.x1 (netl),
-x2(y[11),
.z1 (net7)
) ;

or2 df inst8 (
.x1 (net6),
.x2 (net7),
.z1 (net8)
) ;

d ff bh inst9 (
.rst n(rst n),
.clk(clk),
.d(net8),
-q(yl21])

) ;

//instantiate the logic for flip-flop yI[3]
and2_df instl0 (

.x1(load),

.x2(x[31),

.z1 (netl0)

) ;

and2_df instll (
.x1 (netl),
-x2(y[21),

.z1 (netll)

)7

//continued on next page

Figure 2.7 (Continued)
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or2 df instl2
.x1 (netl0),
.x2 (netll),

.z1 (netl2)

) ;

d_ff bh inst13

.clk(clk),
.d(netl2),
-a(yl3l)
)7

and2_df instl4
.x1(load),
.x2(x[4]1),
.z1 (netld)

)7

and2 _df instl5
.x1 (netl),
-X2(y[31),
.z1 (netlb)
)7

or2 df instlé6
.x1 (netl4),
.x2 (netlb),
.z1 (netl6)

)7
d_ff bh instl7

.clk(clk),
.d(netlo),
-a(yrl4l)
)7

(

(

.rst n(rst n),

//instantiate the logic for flip-flop

(

(

(

(

.rst n(rst n),

assign z1 = y[4];
endmodule
Figure 2.7 (Continued)
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//test bench for parallel-in, serial-out shift register
module pisod4 struc_ tb;

//inputs are reg for test benches, outputs are wire
reg rst n, clk, load;
reg [1:4] x;

wire [1:4] vy;
wire z1;

//display variables
initial

$Smonitor ("y = %b, z = %b", y, zl);

//generate clock

initial

begin
clk = 1'b0;
forever

#10clk = ~clk;
end

//apply inputs

initial

begin
#0 rst n = 1'b0; load = 1'b0; x = 4'b0000;
#3 rst n = 1'bl;

#2 x = 4'bl1l11;

#3 load = 1'bl;
#7 load

Il
—
o
o
N

#100 $stop;
end

//instantiate the module into the test bench
pisod4 struc instl (
.rst n(rst n),
.clk(clk),
.load(load),
.x (%),
LY (y),
.z1(z1)
) ;

endmodule

Figure 2.8 Test bench module for the PISO shift right register.
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= 0000,
= 1111,
= 0111,
= 0011,
= 0001,
= 0000,

KKK KKK
N N N N N N
oOr R E PO

Figure 2.9 Outputs for the PISO shift right register.
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Figure 2.10  Waveforms for the PISO shift right register.

2.1.2 Serial-In, Parallel-Out Registers

The serial-in, parallel-out (SIPO) register is another typical synchronous iterative net-
work containing p identical cells. Data enters the register from the left and shifts se-
rially to the right through all p stages, one bit position per clock pulse. After p shifts,
the register is fully loaded and the bits are transferred in parallel to the destination. A
typical application is to change serial data read from a disk drive to parallel data to be
sent to a processor.

An example of a 4-bit SIPO register is shown in the state diagram of Figure 2.11,
in which four bits of serial data, x|, x5, x3, and x4 are shifted into a register from the
left, where x4 is the first bit entered. The initial state of the register is either unknown
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or reset to y1ypy3y4 = 0000. During the shift sequence, y; =x; and y; = y;_;. After
four shift cycles, the state of the register is y17y3y4 = x1Xpx3x4 and the 4-bit word is
transferred in parallel to the destination.

Y1y2y3y4 < State flip-flops
— — — — <« State data

X4

X4 ———
X3

X3X4 - —
X2
x2x3x4 —
X1
x1x2x3x4

Transfer parallel data
to destination

(OO0 —06

Figure 2.11 State diagram for a serial-in, parallel-out register.

Example 2.3 This example designs a SIPO register using behavioral modeling.
Figure 2.12 shows a behavioral design module that implements the serial-in, parallel-
out register of Figure 2.11. The test bench is shown in Figure 2.13 and provides an
input sequence to illustrate more than four serial bits for the input data. The outputs
and waveforms are shown in Figure 2.14 and Figure 2.15, respectively.

//behavioral 4-bit serial-in, parallel-out shift register
module shift reg sipo4 bh (rst n, clk, x, y);

input rst n, clk, x;
output [1:4] y;

reg [1:4] y; //continued on next page

Figure 2.12 Behavioral design module for the 4-bit SIPO register.
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always @
begin

if (rst_ n == 0)

y = 4'b0000;

(rst_n)

end
always @ (posedge clk)
begin
y[1l] <= x;
yl2] <= yI[1];
y[3] <= yl2];
yl[4] <= yI[3];
end
endmodule
Figure 2.12 (Continued)

module shift reg sipo4 bh tb;

reg rst n, clk, x;
wire [1:4] vy;

//define clock
initial
begin
clk = 1'b0;
forever
#10 clk = ~clk;
end

//display variables

initial
$monitor ("ser in = %b, shift reg = %b", x,
//apply inputs
initial
begin
#0 rst n = 1'b0;
x = 1'b0;
#5 rst n = 1'bl;
x = 1'bl;

//test bench for 4-bit serial-in parallel-out shift register

y) i

//continued on next page

Figure 2.13

Test bench module for the 4-bit SIPO register.
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#10 x = 1'bl;

#10 x = 1'b0;
#10 x = 1'bl;
#10 x = 1'b0;
#10 x = 1'bl;
#10 x = 1'b0;
#10 x = 1'bl;

#90 $stop;
end

//instantiate the module into the test bench
shift reg sipo4 bh instl (

.rst n(rst n),

.clk(clk),

.x (%),

-y (y)

) ;

endmodule

Figure 2.13 (Continued)

ser _in = 0, shift reg = 0000
ser _in = 1, shift reg = 0000
ser in = 1, shift reg = 1000
ser in = 0, shift reg = 1000
ser _in = 0, shift reg = 0100
ser in = 1, shift reg = 0100
ser _in = 0, shift reg = 0100
ser _in = 0, shift reg = 0010
ser in = 1, shift reg = 0010
ser _in = 0, shift reg = 0010
ser _in = 0, shift reg = 0001
ser in = 1, shift reg = 0001
ser in = 1, shift reg = 1000
ser in = 1, shift reg = 1100
ser in = 1, shift reg = 1110
ser in = 1, shift reg = 1111

Figure 2.14 Outputs for the 4-bit SIPO register.
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2 SILOS - Project C:Werilog\shift_reg_sipod4_bh\shift_reg sipo4_bh.spj
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Figure 2.15  Waveforms for the 4-bit SIPO register.

Like the PISO register, the synthesis of a SIPO register is intuitively obvious and
can be designed from the state diagram without any intermediate steps. The data input
of each flip-flop is connected directly to the output of the preceding flip-flop with the
exception of flip-flop y;, which receives the external serial binary data. A typical ap-
plication of a serial-in, parallel-out shift register is to deserialize binary data from a
single-track peripheral subsystem as illustrated in Figure 2.16. The resulting word of
parallel bits is placed on the system data bus.

Data bus

O———> Control unit >

Disk subsystem Serial-in,
parallel-out
register

Figure 2.16 A serial-in, parallel-out register to deserialize data from a disk sub-
system.
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Figure 2.17 shows the implementation of a 4-bit serial-in, parallel-out shift regis-
ter using JK flip-flops, where y4 is the low-order flip-flop. D flip-flops or SR latches
are equally acceptable storage elements. Each stage of the machine is required to per-
form only one function: Store the state of the preceding storage element. Data bits at
the serial input are changed at the positive clock transition to allow bit x; to be stable at
the JK inputs of flip-flop y; before the active negative clock transition.

o Y A
—Clock
Y1
+x1 st J +Zl
ns
1 net1] inst2
D e
by
J +Zz
Pinst3
K O_‘
V3
J +Z3
inst4 -
Y4
J +Z4
o>
inst5 o
Figure 2.17 Implementation of a 4-bit serial-in, parallel-out shift register using JK

flip-flops. The flip-flops have implied active-low Reset inputs.

Example 2.4 This example designs a SIPO register using structural modeling with
JK flip-flops. The structural design module of the 4-bit serial-in, parallel-out shift reg-
ister is shown in Figure 2.18 using a not gate in the implementation. The not gate is an
inverting built-in primitive with one scalar input and one or more scalar outputs. The
output terminal is listed first when it is instantiated into the module; the input is listed
last. A negative-edge triggered JK flip-flop, jkff-neg-clk, is also used and is instanti-
ated four times to implement the 4-bit serial-in, parallel-out register. The test bench
module is shown in Figure 2.19 and provides an input sequence to illustrate serial bits
for the input data. The outputs and waveforms are shown in Figure 2.20 and Figure
2.21, respectively.
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//structural 4-bit serial-in, parallel-out shift register
module shift reg sipo4 struc (rst n, clk, x1, y);

input rst n, clk, x1; //define inputs and outputs
output [1:4] y;

wire netl; //define internal nets

//instantiate the logic for flip-flop yI[1]
not instl (netl, x1);

jkff neg clk inst2 (
.rst n(rst n),
.clk(clk),
j(x1),
.k(netl),
-q(yl1])
) ;

//instantiate the logic for flip-flop y[2]
jkff neg clk inst3 (

.rst n(rst n),

.clk(clk)
yI1l])
y[]
vIl21)
);

//instantiate the logic for flip-flop yI[3]
jkff neg clk instd (

.rst n(rst n),

.clk(clk)
vIl21)
y[]
yI[31)
);

//instantiate the logic for flip-flop y[4]
jkff neg clk inst5 (

.rst n(rst n),

.clk(clk)
yI[31)
y[]
v[41)

);
endmodule

Figure 2.18 Structural design module for the 4-bit serial-in, parallel-out shift reg-
ister using JK flip-flops
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//test bench for 4-bit serial in, parallel-out
//shift register using JK flip-flops
module shift reg sipo4 struc_ tb;

reg rst n, clk, xI1;
wire [1:4] vy;

//define clock
initial
begin
clk = 1'b0;
forever
#10 clk = ~clk;
end

//display variables
initial

$monitor ("ser in = %b, shift reg = %b", x1, y);

//apply inputs

initial
begin
#0 rst n = 1'b0;
x1 = 1'b0;
#5 rst n = 1'bl;
x1l = 1'bl;

#10 xl = 1'bl;
#10 xl = 1'b0;
#10 x1 1'b0;
#10 xl = 1'bl;

#50 $stop;
end

//instantiate the module into the test bench
shift reg sipo4 struc instl (

.rst n(rst n),

.clk(clk),

.x1(x1),

-y (y)

) ;

endmodule

Figure 2.19  Test bench module for the 4-bit serial-in, parallel-out shift register
using JK flip-flops.
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ser _in = 0, shift reg = 0000
ser _in = 1, shift reg = 0000
ser _in = 1, shift reg = 1000
ser _in = 0, shift reg = 1000
ser _in = 0, shift reg = 0100
ser _in = 1, shift reg = 0100
ser _in = 1, shift reg = 1010
ser _in = 1, shift reg = 1101

Figure 2.20 Outputs for the 4-bit serial-in, parallel-out shift register using JK flip-
flops.
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Figure 2.21 Waveforms for the 4-bit serial-in, parallel-out shift register using JK
flip-flops.

Example 2.5 This example designs a SIPO register using structural modeling with
D flip-flops. Another useful application of a SIPO register is to generate a sequence of
nonoverlapping pulses for system timing. This provides a simple, yet effective state
machine, where each pulse represents a different state. A small amount of additional
logic is required as shown in Figure 2.22 (a). The flip-flops have an implied active-
low Reset input. The machine outputs are presented in Figure 2.22 (b). The machine
is initially reset to y1y2y3y4 = 0000. Whenever y;y,y3 =000, a 1 bit will be shifted
into flip-flop y; at the next positive clock transition. If either yq, yp, ory3 =1, then
a 0 bit will be shifted into flip-flop y, and y; = y;_ at the next positive clock transition.
Thus, the required four nonoverlapping pulses are generated.
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The structural design module is shown in Figure 2.23 and the test bench module is
shown in Figure 2.24. The outputs and waveforms are shown in Figure 2.25 and Fig-
ure 2.26, respectively.

o Y A
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zZ Q
2 Jinst1)2 D +z)
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> o
2
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> o
V3
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V4
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+Clock — 1 L 1.7 LTI 17 1’ 11 1
+2, r
tz) I
+z3 -
+z4
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Figure 2.22 A serial-in, parallel-out register configured to generate a sequence of
nonoverlapping pulses: (a) logic diagram and (b) timing diagram.
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//structural 4-bit serial-in, parallel-out shift register
//using D flip-flops to generate nonoverlapping pulses

module sipo4 struc (rst n, clk, y);

input rst n, clk; //define inputs and outputs
output [1:4] y;

wire netl; //define internal nets

//instantiate the logic for flip-flop yI[1]
nor3 df instl (
Xl( (11,
2(yl[2]1),
3(y[31),
1 (netl)
),
d ff inst2 (
.rst n(rst n),
.clk(clk),
.d(netl),
-q(yl1])
) ;

//instantiate the logic for flip-flop y[2]
d ff inst3 (

.rst n(rst n),

.clk(clk)
vI1l])
vIl21)

) ;

//instantiate the logic for flip-flop yI[3]
d ff inst4d (
.rst n(rst n),

.clk(clk)
vIl21)
yI[31)
);

//instantiate the logic for flip-flop y[4]
d ff inst5 (

.rst n(rst n),

.clk(clk)
y[3])
y[4])

);
endmodule

Figure 2.23 Structural design module to generate a sequence of four nonoverlap-
ping pulses.



142 Chapter 2 Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL

//test bench for serial-in, parallel-out
//shift register for nonoverlapping pulses

module sipo4 struc_ tb;

//inputs are reg for test benches
reg rst n, clk;

//outputs are wire for test benches
wire [1:4] vy;

//display outputs
initial
Smonitor ("out = %b", y);

//generate reset

initial
begin
#0 rst n = 1'b0;
#2 rst n = 1'bl;
end

//generate clock

initial

begin
clk = 1'b0;
forever

#10 clk = ~clk;
end

//determine length of simulation
initial
#110 $stop;

//instantiate the module into the test bench
sipo4 struc instl (

.rst n(rst n),

.clk(clk),

-y (y)

) ;

endmodule

Figure 2.24  Test bench module to generate a sequence of four nonoverlapping
pulses.
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out = 0000
out = 1000
out = 0100
out = 0010
out = 0001
out = 1000

Figure 2.25 Outputs to generate a sequence of four nonoverlapping pulses.
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Figure 2.26  Waveforms to generate a sequence of four nonoverlapping pulses.

2.1.3 Serial-In, Serial-Out Registers

The synthesis of a serial-in, serial-out (SISO) register is identical to that of a SIPO
register, with the exception that only one output is required. The low-order flip-flop
provides the single output for the register as shown in the logic diagram of
Figure 2.27 for a 4-bit SISO register using JK flip-flops with implied reset inputs.

One application of a SISO register is in the design of a queue in which parallel
bytes are shifted into a matrix of SISO registers, where each bit of a byte is shifted into
a particular column of the matrix. In this application, the SISO registers perform the
function of a first-in, first-out (FIFO) queue, which acts as a buffer between a single-
track input/output (I/O) device and the system I/O data bus. Information is read from
the device into a SIPO register, then into the FIFO, and then transferred to the desti-
nation by means of a parallel data bus.
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Figure 2.27  Implementation of a 4-bit serial-in, serial-out register using JK flip-
flops.

Example 2.6 This example designs a SISO register using behavioral modeling.
The behavioral design module for the serial-in, serial-out shift register is shown in Fig-
ure 2.28, where the statement shown below indicates that y/1:4] is assigned the con-
catenated contents of the current input x; and the contents of y//:3]. Thus, y/4] is
shifted out of the register.

y<=1{x,y[1:3]};

The test bench is shown in Figure 2.29, in which an input sequence of serial data
bits is applied to flip-flop y/1]. The outputs and waveforms are shown in Figure 2.30
and Figure 2.31, respectively.

This mode of data transfer between a single-track I/O device and a destination al-
lows the 1/O device to be logically removed from the system data bus temporarily
without losing any data, because the data is stored in the FIFO queue. In this situation,
data continues to be read from the device and is transferred to the FIFO, where the
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bytes are retained until the device control unit again gains control of the bus. The
FIFO prevents data from being lost while the control unit is arbitrating for bus control.

The same implementation of a SISO register matrix can be used as an instruction
queue in a CPU instruction pipeline. The CPU prefetches instructions from memory
during unused memory cycles and stores the instructions in the FIFO queue. Thus, an
instruction stream can be placed in the instruction queue to wait for decoding and ex-
ecution by the processor. Instruction queueing provides an effective method to in-

crease system throughput.

//behavioral 4-bit serial-in, serial-out shift register
module shift reg siso4 bh (rst n, clk, x, y, zl);

input rst n, clk, x;
output [1:4] y;
output z1;

reg [1:4] vy; //variables are reg in always
assign z1 = yI[4];

always @ (negedge rst n or posedge clk)
begin
if (rst n == 1'b0)
y 4'0000;
else
y = {x, y[1:31});

end
endmodule

Figure 2.28  Behavioral design module for the SISO register of Figure 2.27.

//test bench for serial-in, serial-out shift register
module shift reg siso4 bh tb;

reg rst n, clk, x;
wire [1:4] vy;
wire z1;

//define clock
initial
begin
clk = 1'b0;
forever
#10 clk = ~clk;
end //continued on next page

Figure 2.29  Test bench module for the SISO register.
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initial //display variables
S$monitor ("ser in = %b, siso reg = %b, z = %b", x, y, zl);
initial //apply inputs
begin

#0 rst n = 1'b0; x = 1'b0;

#5 rst n = 1'bl;

#3 x = 1'bl;

#17 x = 1'bl;

#20 x = 1'b0;

#20 x = 1'bl;

#20 x = 1'b0;

#20 x = 1'bl;

#20 x = 1'b0;

#20 x = 1'bl;

#40 $stop;
end
//instantiate the module into the test bench
shift reg siso4 bh instl (

.rst n(rst n),

.clk(clk),

.x (%),

v (y),

.z1(z1)

) ;
endmodule

Figure 2.29 (Continued)

ser _in = 0, siso_reg = 0000, z =0
ser _in =1, siso_reg = 0000, z =0
ser _in =1, siso_reg = 1000, z = 0
ser in =1, siso_reg = 1100, z = 0
ser _in = 0, siso_reg = 1100, z = 0
ser _in = 0, siso_reg = 0110, z = 0
ser in =1, siso_reg = 0110, z = 0
ser in =1, siso _reg = 1011, z =1
ser _in = 0, siso_reg = 1011, z =1
ser _in = 0, siso_reg = 0101, z =1
ser in =1, siso _reg = 0101, z =1
ser in =1, siso_reg = 1010, z = 0
ser _in = 0, siso_reg = 1010, z = 0
ser _in = 0, siso_reg = 0101, z =1
ser in =1, siso _reg = 0101, z =1
ser in =1, siso_reg = 1010, z = 0
ser in =1, siso _reg = 1101, z =1

Figure 2.30 Outputs for the SISO register.
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Figure 2.31 Waveforms for the SISO register.

Example 2.7 This example designs a SISO register using structural modeling with
JK flip-flops. The same serial-in, serial-out register of Figure 2.27 will now be
designed using structural modeling. The structural design module is shown in Figure
2.32 and the test bench is shown in Figure 2.33. The outputs and waveforms are shown

in Figure 2.34 and Figure 2.35, respectively.

//structural 4-bit serial-in, serial-out
//shift register using JK flip-flops
module shift reg siso4 jk (rst_n, clk, x, y, zl);

//define inputs and outputs
input rst n, clk, x;

output [1:4] vy;
output z1;

//define internal nets
wire netl;

assign z1 = y[4];
//continued on next page

Figure 2.32 Structural design module for the SISO register of Figure 2.27.
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//instantiate the logic for flip-flop yI[1]
not instl (netl, x);

jkff neg clk inst2 (
.rst n(rst n),
.clk(clk),
.k (netl),
-q(yl1l])
) ;

//instantiate the logic for flip-flop y[2]
jkff neg clk inst3 (

.rst n(rst n),

.clk(clk)
vI1l])
y[]
vIl21)
);

//instantiate the logic for flip-flop yI[3]
jkff neg clk instd (

.rst n(rst n),

.clk(clk)
vIl21)
y[]
yI[31)
);

//instantiate the logic for flip-flop y[4]
jkff neg clk inst5 (

.rst n(rst n),

.clk(clk)
yI[31)
y[]
v[41)
);

endmodule

Figure 2.32 (Continued)
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//test bench for serial-in, serial-out shift register
module shift reg siso4 jk tb;

reg rst n, clk, x;
wire [1:4] vy;

wire z1;

//define clock

initial

begin
clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables

initial

[

//apply inputs

initial
begin
#0 rst n = 1'b0; x = 1'b0;
#5 rst n = 1'bl;
#3 x = 1'bl;
#17 x = 1'bl;
#20 x = 1'b0;
#20 x = 1'bl;
#20 x = 1'b0;
#20 x = 1'bl;
#20 x = 1'b0;
#20 x = 1'bl;

#50 $stop;
end

//instantiate the module into the test bench
shift reg siso4 jk instl (
.rst n(rst n),
.clk(clk),
.x (%),
LY (y),
.z1(z1)
) ;

endmodule

$monitor ("ser in = %b, siso reg = %b, z = %b", x, y, zl);

Figure 2.33 Test bench module for the SISO register of Figure 2.27.
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ser _in = 0, siso_reg = 0000, z =0
ser _in = 1, siso _reg = 0000, z =0
ser in =1, siso _reg = 1000, z = 0
ser in =1, siso _reg = 1100, z =0
ser _in = 0, siso _reg = 1100, z = 0
ser _in = 0, siso _reg = 0110, z = 0
ser in =1, siso _reg = 0110, z = 0
ser in =1, siso reg = 1011, z =1
ser in = 0, siso _reg = 1011, z =1
ser in = 0, siso _reg = 0101, z =1
ser in =1, siso reg = 0101, z =1
ser in =1, siso _reg = 1010, z = 0
ser in = 0, siso _reg = 1010, z = 0
ser in = 0, siso _reg = 0101, z =1
ser in =1, siso reg = 0101, z =1
ser in =1, siso _reg = 1010, z = 0
ser in =1, siso reg = 1101, z =1

Figure 2.34  Outputs for the SISO register of Figure 2.27.
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Figure 2.35  Waveforms for the SISO register of Figure 2.27.
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2.1.4 Combinational Shifter

A combinational shifter will now be presented. Although not sequential in structure,
it is used extensively in high-speed processors, specifically for machines with long
word sizes such as, 32- or 64-bit operands. The shifter accomplishes all shift opera-
tions, whether left or right, algebraic or logical, by shifting left only. This results in
considerable hardware savings, especially for large operands.

There are four basic shift operations: shift left logical (SLL), shift left algebraic
(SLA) for unsigned and signed operands, respectively; shift right logical (SRL) and
shift right algebraic (SRA) for unsigned and signed operands, respectively. The four
shift operations are stated below.

Shift left logical (SLL) The logical shift operations are much simpler to imple-
ment than the arithmetic shift operations. For SLL, the high-order bit of the unsigned
operand is shifted out of the left end of the shifter for each shift cycle. Zeroes are en-
tered from the right and fill the vacated low-order bit positions.

Shift left algebraic (SLA) SLA operates on signed operands in 2s complement
representation. The numeric part of the operand is shifted left the number of bit po-
sitions specified in the shift count field. The sign remains unchanged and does not par-
ticipate in the shift operation. All remaining bits participate in the left shift operation.
The bits are shifted out of the high-order numeric bit position and Os are shifted in to
the vacated register positions on the right. An overflow occurs if a bit shifted out of the
high-order numeric position is different than the sign bit.

Shift right logical (SRL) Any right shift operation can be implemented by shift-
ing left an amount that is the 2s complement of the right shift count. For example, if
the right shift count is 011, (31¢), then the equivalent left shift count is 100 + 1 =101,
which is the 2s complement of the right shift count. The equivalent left shift operation
is implemented in two levels of hardware, as will be explained subsequently.

Shift right algebraic (SRA) The numeric part of the signed operand is shifted
right the number of bits specified by the shift count. The sign of the operand remains
unchanged. All numeric bits participate in the right shift. The sign bit propagates right
to fill in the vacated high-order numeric bit positions. When the operation is executed
by shifting left, it is identical to SRL with the exception that the high-order bits in the
second level are set to the value of the sign bit, as will be explained subsequently.

Before presenting the individual structural modules for each of the four shift oper-
ations, a behavioral module will be implemented that performs all four shift opera-
tions. This method utilizes the case statement. Recall that the case statement is a
multi-way conditional branch that executes one of several different procedural state-
ments depending on the comparison of an expression with a case item.

Figure 2.36 shows the behavioral design module for 8-bit operands and Figure
2.37 shows the test bench module, which provides several different operands to be
shifted and also provides different shift amounts. The outputs and waveforms are
shown in Figure 2.38 and Figure 2.39, respectively.
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//behavioral logical and algebraic shifter

module comb_shifter (a, shft code, shft amt, shft rslt);
input [7:0] a;
input [1:0] shft code;
input [3:0] shft amt;
output [7:0] shft rslt;
wire [7:0] a;
wire [3:0] shft amt;
//variables used in always are declared as registers
reg [7:0] reg a;
reg [7:0] shft rslt;
reg [15:0] sra reg;
//define shift codes
parameter sll = 2'b00,
sla = 2'b01,
srl = 2'bl10,
sra = 2'bll;

//perform the shift operations

always @ (a or shft code)
begin
case (shft code)
sll:
begin
reg a = a << shft amt;
shft rslt = reg_a;
end
sla:
begin
reg a = a;
reg a = reg a << shft amt;
reg_al7] = al7l;
shft rslt = reg_a;
end
srl:
begin
reg a = a >> shft amt;
shft rslt = reg_a;
end //continued on next page
Figure 2.36  Behavioral module to implement the four shift operations of SLL,

SLA, SRL, and SRA.



2.1  Synchronous Registers

153

sra:
begin
sra _reg[15:8] = {8{al7]}};
sra_reg[7:0] = a;
sra_reg = sra_reg >> shft amt;
shft rslt = sra reg[7:0];
end
endcase
end
endmodule

Figure 2.36 (Continued)

//test bench for logical and algebraic shifter
module comb_shifter tb;

reg [7:0] a;
reg [1:0] shft code;
reg [3:0] shft amt;

wire [7:0] shft rslt;

initial //display variables
$monitor ("a=%b, shft code=%b, shft amt=%b, shft rslt=%b",
a, shft code, shft amt, shft rslt);

initial //apply input vectors
begin
//shift left logical
#0 a = 8'b0000_1111;
shft code = 2'b00;shft amt = 4'b0010;

//shift left algebraic
#10 a = 8'bl000_1111;

shft code = 2'b01;shft amt = 4'b0010;
//shift right logical

#10 a = 8'b0000_1111;
shft code = 2'bl0;shft amt = 4'b0010;

//shift right algebraic
#10 a = 8'bl000_1111;
shft code = 2'bll;shft amt = 4'b0010;

//continued on next page

Figure 2.37 Test bench module for the four shift operations of SLL, SLA, SRL,

and SRA.
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//shift left logical
#10 a = 8'bll11l 1111;
shft code = 2'b00;shft amt = 4'b0100;

//shift left algebraic
#10 a = 8'bll11l 1111;
shft code = 2'b01;shft amt = 4'b0100;

//shift right logical
#10 a = 8'bll11l 1111;
shft code = 2'bl0;shft amt = 4'b0100;

//shift right algebraic
#10 a = 8'bll11l 1111;
shft code = 2'bll;shft amt = 4'b0100;
//shift left logical
#10 a = 8'bl100_0011;
shft code = 2'b00;shft amt = 4'b0101;

//shift left algebraic
#10 a = 8'bl100_0011;
shft code = 2'b01;shft amt = 4'b0101;

//shift right logical
#10 a = 8'bl100_0011;
shft code = 2'bl0;shft amt = 4'b0101;

//shift right algebraic
#10 a = 8'b0111 1111;
shft code = 2'bll;shft amt = 4'b0101;

end

//instantiate the module into the test bench
comb_shifter instl (
.a(a),
.shft code(shft code),
.shft amt (shft amt),
.shft rslt(shft rslt)
) ;

endmodule

Figure 2.37 (Continued)
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Shift operation codes
sll = 00, sla = 01, srl = 10, sra = 11

a=00001111, shft code=00, shft amt=0010, shft rslt=00111100
a=10001111, shft code=01, shft amt=0010, shft rslt=10111100
a=00001111, shft code=10, shft amt=0010, shft rslt=00000011
a=10001111, shft code=11, shft amt=0010, shft rslt=11100011
Shift operation codes

sll = 00, sla = 01, srl = 10, sra = 11

a=11111111, shft code=00, shft amt=0100, shft rslt=11110000
a=11111111, shft code=01, shft amt=0100, shft rslt=11110000
a=11111111, shft code=10, shft amt=0100, shft rslt=00001111
a=11111111, shft code=11, shft amt=0100, shft rslt=11111111
Shift operation codes

sll = 00, sla = 01, srl = 10, sra = 11

a=11000011, shft code=00, shft amt=0101, shft rsl1t=01100000
a=11000011, shft code=01, shft amt=0101, shft rslt=11100000
a=11000011, shft code=10, shft amt=0101, shft rsl1t=00000110
a=01111111, shft code=11, shft amt=0101, shft rsl1t=00000011

Figure 2.38 Outputs for the four shift operations of SLL, SLA, SRL, and SRA.
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Figure 2.39 Waveforms for the four shift operations of SLL, SLA, SRL, and SRA.
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Shift left logical (SLL) Figure 2.40 shows an 8-bit register with a left shift count
of 3 (011) for a shift left logical operation. The operand to be shifted is loaded into the
shift left register, then shifted left the requisite number of bits as specified by the shift
count.

716|543 (2110 Operand to be shifted left

/ Shift left register

«—4|3|2|1|0|0|0]|O0 ~— ShiftinOs

Figure 2.40 Shift left logical 3 (011) bit positions.

The design of a combinational shift operation is more easily accomplished with
the utilization of multiplexers. Therefore, a 4:1 multiplexer will be designed using
behavioral modeling, then instantiated into a structural module the requisite number of
times to accommodate the operand size. The structural design module utilizes only
one byte in the shifter; however, the concept can be easily extended for larger oper-
ands. A block diagram of the multiplexer is shown in Figure 2.41 using the ANSI/
IEEE Std. 91-1984 format.

MUX
——@ enbl

+Zl

Figure 2.41 Block diagram for a 4:1 multiplexer.

A block diagram of the required 4:1 multiplexers is shown in Figure 2.42. If the
shift amount is shft_amt[00], then no shifting occurs — the input operand, a/7.:0], is
passed through the 0 input of the multiplexers of the shifting element unchanged. If
the shift amount is shft_amt[01], then all bit positions of operand a/7:0] are shifted
left one bit position by assigning a logic 0 to input 1 of the inst0 multiplexer, bit a/0]
to input 1 of the inst/ multiplexer, and the remaining bits assigned to the appropriate
data inputs of the remaining multiplexers. Bit a/7] is shifted off the left end of the
shifting element, representing a logical left shift operation.
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If the shift amount is shfi amt[11], then operand a/7:0] is shifted left three bit
positions with zeroes filling the vacated low-order bit positions. In this case, input 3 of
multiplexers 7 through 0 are assigned the values a/4/ a/3] af2] a[1] a/0] 0 0 0.

al4] af3] af2] afl] al0] 0 0 0
af5] al4] af3] af2] afl] al0] 0 0
af6] af5] al4] af3] af2] afl] al0] 0
al7] a[6] af5] al4] af3] af2] afl] af0]

shft_amif0] —s0{3 2 101((3210(3210(3210](|[3210][3210][32101[3210
shft_amt[1] —s1| inst7 inst6 inst5 inst4 inst3 inst2 inst] inst0

shft_rsit[7] shft_rsit[5] shft_rsit[3] shft_rsit[1]

shft_rsit[6] shft_rsit[4] shft_rsit[2] shft_rsit[0]

Figure 2.42 Block diagram for the logical organization for a high-speed shifter.

The behavioral module for a 4:1 multiplexer using the case statement is shown in
Figure 2.43. Note that the data inputs for the multiplexer are labelled /3:0] data.
Therefore, when the multiplexer is instantiated into the structural module representing
Figure 2.42, the data inputs must be listed in the same sequence.

//behavioral 4:1 multiplexer using a case statement
module mux 4 1 case (sel, data, out);

input [1:0] sel;
input [3:0] data;
output out;

reg out;

always @ (sel or data)

begin
case (sel)
(0) : out = datal[0];
(1) : out = datall]l;
(2) out = datal[2];
(3) : out = datal[3]:;
endcase
end
endmodule

Figure 2.43 Four-to-one multiplexer to be used in the combinational shifter.
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The structural module for the shift left logical operation is shown in Figure 2.44
using the 4:1 multiplexers. The test bench module is shown in Figure 2.45 and applies
several input vectors to be shifted left. The outputs and waveforms are shown in Fig-
ure 2.46 and Figure 2.47, respectively.

//structural combinational shift left logical
//shifter using multiplexers
module shifter usg mux sll (a, shft amt, shft rslt);

input [7:0] a;
input [1:0] shft amt;
output [7:0] shft rslt;

//instantiate the multiplexers
mux 4 1 case inst0 (
.sel (shft amt),
.data ({{3{1'b0}}, al0]}),
.out (shft rslt[0])
) ;

mux 4 1 case instl (
.sel (shft amt),
.data({{2{1'b0O}}, al0], alll}),
.out (shft rslt[1l])
) ;

mux 4 1 case inst2 (
.sel (shft amt),
.data ({1'b0, al0]
.out (shft rslt[2]
) ;

~ ~

mux 4 1 case inst3 (
.sel (shft amt),
.data({a[0], a[l]
.out (shft rslt[3]
) ;

~ ~

mux 4 1 case instd (
.sel (shft amt),
.data({a[l], al[2]
.out (shft rslt([4]
) ;

~ ~

//continued on next page

Figure 2.44 Structural module for the shift left logical operation.
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mux 4 1 case inst5 (
.sel (shft amt),
.data({a[2], al[3]
.out (shft rslt[5]
) ;

~ 0~

mux 4 1 case inst6 (
.sel (shft_amt),
.data({a[3], al4]
.out (shft rslt[6]
) ;

~ 0~

mux 4 1 case inst7 (
.sel (shft _amt),
.data({a[4], al5],
.out (shft rslt([7])
) ;

endmodule

Figure 2.44 (Continued)

//test bench for shifter using multiplexers
module shifter usg mux sll tb;

reg[7:0] a;
reg [1:0] shft amt;
wire [7:0] shft rslt;

//display variables

initial

$monitor ("a=%b, shft amt=%b, shft rslt=%b",
a, shft amt, shft rslt);

//apply input vectors
initial
begin
#0 a = 8'b0000_0000;
shft amt = 2'b00;

#10 a = 8'b0000_1111;
shft amt = 2'b01;
//continued on next page

Figure 2.45  Test bench module for the shift left logical operation.
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#10 a = 8'b0000_1111;
shft amt = 2'bl0;
#10 a = 8'b0000_1111;
shft amt = 2'bll;
#10 a = 8'bl111 0000;
shft amt = 2'b00;
#10 a = 8'bl111 0000;
shft amt = 2'b01;
#10 a = 8'bl111 0000;
shft amt = 2'bl0;
#10 a = 8'bl111 0000;
shft amt = 2'bll;
#10 $stop;

end

.a(a),

)i

endmodule

.shft amt (shft amt),
.shft rslt(shft rslt)

//instantiate the module into the test bench
shifter usg mux sll instl

(

Figure 2.45

(Continued)

a=00000000,
a=00001111,
a=00001111,
a=00001111,

a=11110000,
a=11110000,
a=11110000,
a=11110000,

shft amt=00,
shft amt=01,
shft amt=10,
shft amt=11,

shft amt=00,
shft amt=01,
shft amt=10,
shft amt=11,

shft rs1t=00000000
shft rsl1t=00011110
shft rsl1t=00111100
shft rslt=01111000

shft rslt=11110000
shft rslt=11100000
shft rslt=11000000
shft rslt=10000000

//shift
//shift
//shift
//shift

//shift
//shift
//shift
//shift

left
left
left
left

left
left
left
left

w N P O

w N P O

Figure 2.46

Outputs for the shift left logical operation.
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2 SILOS - Project C:Werilog\shifter_usg_mux\shifter_usg_mux.spj
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Figure 2.47  Waveforms for the shift left logical operation.

Shift left algebraic (SLA) Recall that for a shift left algebraic operation, the
numeric part of the operand is shifted left the number of bit positions specified by the
shift amount. The logic diagram is similar to Figure 2.40 except that the sign remains
unchanged and does not participate in the shift operation. The bits are shifted out of
the high-order numeric bit position and Os are shifted into the vacated register posi-
tions on the right. If a bit shifted out is different than the sign bit, then an overflow has
occurred.

The structural design module for a shift left algebraic operation using multiplexers
is shown in Figure 2.48. The test bench module is shown in Figure 2.49 and provides
several operands to be shifted left. The outputs and waveforms are shown in Figure
2.50 and Figure 2.51, respectively.

//structural shifter using multiplexers for
//shift left algebraic
module shifter usg mux sla (a, shft amt, shft rslt);

input [7:0] a;
input [1:0] shft amt;

output [7:0] shft rslt; //continued on next page

Figure 2.48 Structural design module for a shift left algebraic operation.
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//instantiate the multiplexers
mux 4 1 case inst0 (
.sel (shft _amt),
.data ({{3{1'p0}}, al0l}),
.out (shft rslt[0])
) ;

mux 4 1 case instl (
.sel (shft _amt),
.data ({{2{1'b0}}, al0], alll}),
.out (shft rslt([1l])
) ;

mux 4 1 case inst2 (
.sel (shft _amt),
.data({1'b0, al[0],
.out (shft rslt[2])
) ;

mux 4 1 case inst3 (
.sel (shft _amt),
.data({af[0], all],
.out (shft rslt([3])
) ;

mux 4 1 case instéd (
.sel (shft _amt),
.data({al[l], al2],
.out (shft rslt([4])
) ;

mux 4 1 case inst5 (
.sel (shft _amt),
.data({al[2], al[3],
.out (shft rslt([5])
) ;

mux 4 1 case inst6 (
.sel (shft _amt),
.data({a[3], al4],
.out (shft rslt[6])
) ;

mux 4 1 case inst7 (
.sel (shft _amt),
.data ({4{al71}}),
.out (shft rslt[7])
)

endmodule

Figure 2.48 (Continued)
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//test bench for structural shifter using multiplexers
//for shift left algebraic
module shifter usg mux sla tb;

reg[7:0] a;
reg [1:0] shft amt;
wire [7:0] shft rslt;

initial //display variables
$monitor ("a=%b, shft amt=%b, shft rslt=%b",
a, shft amt, shft rslt);

//apply input vectors
initial
begin
#0 a = 8'ob0000_0000;
shft amt = 2'b00;

#10 a = 8'b0000_1111;
shft amt = 2'b01;

#10 a = 8'b0000_1111;
shft amt = 2'b10;

#10 a = 8'b0000_1111;
shft amt = 2'bll;

#10 a = 8'b0100_1111;
shft amt = 2'b01;

J /=
#10 a = 8'bll1l1l 0000;
shft amt = 2'b00;
#10 a = 8'bll1l1l 0000;
shft amt = 2'b01;
#10 a = 8'bll1l1l 0000;
shft amt = 2'b10;
#10 a = 8'bll1l1l 0000;
shft amt = 2'bll;
#10 a = 8'bl1000_0000;
shft amt = 2'bll;
#10 $stop;
end //continued on next page

Figure 2.49  Test bench module for the shift left algebraic operation.
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//instantiate the module into the test bench
shifter usg mux sla instl (

.a(a),

.shft amt (shft amt),

.shft rslt(shft rslt)

)7
endmodule

Figure 2.49 (Continued)

a=00000000, shft amt=00, shft rslt=00000000
a=00001111, shft amt=01, shft rslt=00011110
a=00001111, shft amt=10, shft rslt=00111100
a=00001111, shft amt=11, shft rslt=01111000
a=01001111, shft amt=01, shft rslt=00011110

a=11110000, shft amt=00, shft rslt=11110000
a=11110000, shft amt=01, shft rslt=11100000
a=11110000, shft amt=10, shft rslt=11000000
a=11110000, shft amt=11, shft rslt=10000000
a=10000000, shft amt=11, shft rslt=10000000

Figure 2.50 Outputs for the shift left algebraic operation.

23 SILOS - Project C:Werilop\shifter_uss_mux_sla\shifter_uss_mux_sla.spj
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Figure 2.51 Waveforms for the shift left algebraic operation.
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Shift right logical (SRL) Recall that any right shift operation can be implement-
ed by shifting left an amount that is the 2s complement of the right shift count. For ex-
ample, if the right shift countis 011, (3;(), then the equivalent left shift count is 100 +
1 =101, which is the 2s complement of the right shift count. The shift right logical op-
eration is implemented in two levels of hardware, as shown in Figure 2.52, which
shifts right an 8-bit operand three bit positions.

In level A, the operand is offset to the right by a number of bit positions equal to
the operand length, minus one bit position. The "minus one bit" represents a left shift
of one bit position when 2s complementing the right shift count; that is, it is the “+1”
in the 2s complementation process. This built-in left shift of one bit position reduces
the amount hardware by one cell. The remaining high-order bit positions are set to ze-
ro, because the operation is a logical right shift of an unsigned number.

In level B, the operand is shifted left by an amount equal to the equivalent left shift
count minus 1; that is, the 1s complement of the right shift count. The resultant oper-
and in level B is identical to the shifted operand that would have been obtained by a
right shift operation without utilizing two levels.

71651432110 Operand to be shifted right

\\ .

Level A o(o0o|lO0|lO|O|O|O|7]|6|5|4|3[2|1]0] !
Level B 0[0|0|7|6]|5|4]|3

Figure 2.52 Shift right logical 3 (011) bit positions.

The structural design module is shown in Figure 2.53 using 4:1 multiplexers for 8-
bit operands. The test bench module is shown in Figure 2.54 and provides several
operands to be shifted right logically. The outputs and waveforms are shown in Figure
2.55 and Figure 2.56, respectively

//structural shifter using multiplexers
//for shift right logical
module shifter usg mux srl (a, shft amt, shft rslt);

input [7:0] a;
input [1:0] shft amt;
output [7:0] shft rslt; //continued on next page

Figure 2.53 Structural design module for a shift right logical operation.
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//instantiate the multiplexers
mux 4 1 case inst0 (
.sel (shft _amt),
.data({a[3], al2],
.out (shft rslt[0])

) ;

mux 4 1 case instl (
.sel (shft _amt),
.data({a[4], al[3],
.out (shft rslt([1l])
) ;

mux 4 1 case inst2 (
.sel (shft _amt),
.data({a[5], al4],
.out (shft rslt[2])
) ;

mux 4 1 case inst3 (
.sel (shft _amt),
.data({a[6], al[5],
.out (shft rslt[3])
) ;

mux 4 1 case instd (
.sel (shft _amt),
.data({al[7], al6],
.out (shft rslt[4])
) ;

mux 4 1 case inst5 (
.sel (shft _amt),
.data({1'b0, al7],
.out (shft rslt([5])
) ;

mux 4 1 case inst6 (
.sel (shft _amt),
.data({1'b0, 1'b0, al71, al6l}),
.out (shft rslt[6])
) ;

mux 4 1 case inst7 (
.sel (shft _amt),
.data ({{3{1'b0}}, al71}),
.out (shft rslt[7])
) ;

alll, afol}),

endmodule

Figure 2.53 (Continued)
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//test bench for shifter using
//for shift right logical
module shifter usg mux srl tb;

multiplexers

reg[7:0] a;
reg [1:0] shft amt;
wire [7:0] shft rslt;
initial //display variables
$monitor ("a=%b, shft amt=%b, shft rslt=%b",
a, shft amt, shft rslt);
initial //apply input vectors
begin
#0 a = 8'b0000_0000;
shft amt = 2'b00;
#10 a = 8'b0000_1111;
shft amt = 2'b01;
#10 a = 8'b0000_1111;
shft amt = 2'b10;
#10 a = 8'b0000_1111;
shft amt = 2'bll;
#10 a = 8'bl111l 0000;
shft amt = 2'b00;
#10 a = 8'bll11l 0000;
shft amt = 2'b01;
#10 a = 8'bll11l 0000;
shft amt = 2'b10;
#10 a = 8'bll11l 0000;
shft amt = 2'bll;
#10 $stop;
end

//instantiate the module into the test bench
shifter usg mux srl instl (

.a(a),

.shft amt (shft amt),

.shft rslt(shft rslt)

)7
endmodule

Figure 2.54  Test bench module for the shift right logical operation.
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a=00000000, shft amt=00, shft rslt=00000000
a=00001111, shft amt=01, shft rslt=00000111
a=00001111, shft amt=10, shft rslt=00000011
a=00001111, shft amt=11, shft rslt=00000001

a=11110000, shft amt=00, shft rslt=11110000
a=11110000, shft amt=01, shft rslt=01111000
a=11110000, shft amt=10, shft rslt=00111100
a=11110000, shft amt=11, shft rslt=00011110

Figure 2.55 Outputs for the shift right logical operation.

2 SILOS - Project C:Werilog\shifter_usg_mux_srl\shifter_usg_mux_srl.spj
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Figure 2.56  Waveforms for the shift right logical operation.

Shift right algebraic (SRA) Recall that the numeric part of the signed operand is
shifted right the number of bits specified by the shift count for a shift right algebraic
operation. The sign of the operand remains unchanged. All numeric bits participate in
the right shift. The sign bit propagates right to fill in the vacated high-order numeric
bit positions. When the operation is executed by shifting left, the high-order bits in
level B are set to the value of the sign bit, as shown in the logical configuration of Fig-
ure 2.57, which shifts right algebraic an 8-bit operand five bit positions.
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S{6(5|4|3(2]|1]0 Operand to be shifted right

| \ (_+1
S|S|S S{S|S|[6 5|43 (2|10
S|S|S S|{6]5

Figure 2.57 Shift right algebraic 5 (101) bit positions.

Level A

—_ 4

Level B

Figure 2.57 illustrates a shift right algebraic operation with a right shift count of 5
(101). The equivalent left shift count is 010 + 1, or simply 010 after the “+1” left shift
has been implemented. The operand in level B is identical to the operand that would
have been obtained by a shift right algebraic operation without utilizing two levels.

Since the sign bit must be inserted into the high-order positions of level A, an 8:1
multiplexer is used in the design, which is shown in Figure 2.58 as a behavioral mod-
ule using the case statement. Figure 2.59 shows the structural design module for a
shift right algebraic operation. The test bench module is shown in Figure 2.60 and pro-
vides several operands to be shifted right algebraically. The outputs and waveforms
are shown in Figure 2.61 and Figure 2.62, respectively.

//behavioral 8:1 multiplexer using the case statement
module mux 8tol case2 (sel, data, out);

input [2:0] sel;
input [7:0] data;
output out;

reg out;

always @ (sel or data)

begin
case (sel)
(0) : out = datal[0];
(1) : out = datalll;
(2) out = datal[2];
(3) out = datal[3]; //continued on next page

Figure 2.58  Behavioral module for an 8:1 multiplexer using the case statement.
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(4) : out = datal

(5): out = datal

(6) : out = datal

(7) : out = datal

default: out = 1
endcase

end

endmodule

Figure 2.58 (Continued)

//structural shifter using multiplexers
//for shift right algebraic
module shifter usg mux sra (a, shift amt, shift rslt);

input [7:0] a;
input [2:0] shift amt;
output [7:0] shift rslt;

//instantiate the multiplexers
mux 8tol case2 inst0 (
.sel(shift amt),
.data({al[7], ale],
.out (shift rslt[0])

) ;

mux 8tol case2 instl (
.sel(shift amt),
.data({al[7], al7],
.out (shift rslt[1l])
) ;

mux 8tol case2 inst2 (
.sel(shift amt),
.data ({{3{al71}}, ale6l, al5], al4l, al3]l, al2l}),
.out (shift rslt[2])
)7

mux 8tol case2 inst3 (
.sel(shift amt),
.data({{4{al71}}, al6l, al5]l, arl4l, al31}),
.out (shift rslt[3])
) ; //continue on next page

Figure 2.59 Structural design module for a shift right algebraic operation.
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mux 8tol case2 inst4d (
.sel(shift amt),
.data ({{5{al71}}, ale6l, al5], al4l}),
.out (shift rsltf[4])
)7

mux 8tol case2 inst5 (
.sel(shift amt),
.data({{6f{al7]1}}, alel, al51}),
.out (shift rslt[5])
)7

mux 8tol case2 inst6 (
.sel(shift amt),
.data ({{7{al71}}, alel}),
.out (shift rslt[6])
)7

mux 8tol case2 inst7 (
.sel(shift amt),
.data({8{al7]}}),
.out (shift rslt[7])
)7

endmodule

Figure 2.59 (Continued)

//test bench for shifter using multiplexers
//for shift right algebraic
module shifter usg mux sra tb;

reg [7:0] a;
reg [2:0] shift amt;

wire [7:0] shift rslt;

//display variables
initial
$monitor ("a=%b, shift amt=%b, shift rslt=%b",

a, shift amt, shift rslt);

//continued on next page

Figure 2.60  Test bench module for the shift right algebraic operation.
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//apply input vectors

initial

begin
#0 a = 8'b0000_0000; shift amt = 3'b000;
#10 a = 8'b0000_1111; shift amt = 3'b001;
#10 a = 8'b0000_1111; shift amt = 3'b010;
#10 a = 8'b0000_1111; shift amt = 3'b011;
#10 a = 8'bll11l 0000; shift amt = 3'b100;
#10 a = 8'bll1l1l 0000; shift amt = 3'b101;
#10 a = 8'bll1l1l 0000; shift amt = 3'b110;
#10 a = 8'bll1l1l 0000; shift amt = 3'bl11;
#10 a = 8'b1000_0000; shift amt = 3'bl11;
#10 a = 8'b0111 1111; shift amt = 3'bl11;

#10 $stop;
end

//instantiate the module into the test bench

shifter usg mux sra instl
.a(a),
.shift amt (shift amt),
.shift rslt(shift rslt)
)

endmodule

—

Figure 2.60 (Continued)

a=00000000, shift amt=000, shift rslt=00000000
a=00001111, shift amt=001, shift rslt=00000111

a=00001111, shift amt=010, shift rslt=00000011
a=00001111, shift amt=011, shift rslt=00000001

a=11110000, shift amt=100, shift rslt=11111111
a=11110000, shift amt=101, shift rslt=11111111

a=11110000, shift amt=110, shift rslt=11111111
a=11110000, shift amt=111, shift rslt=11111111

a=10000000, shift amt=111, shift rslt=11111111
a=01111111, shift amt=111, shift rslt=00000000

Figure 2.61 Outputs for the shift right algebraic operation.
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Figure 2.62 Waveforms for the shift right algebraic operation.

2.2 Synchronous Counters

Counters are designed in this section using Verilog. The designs illustrated in this sec-
tion will be a modulo-8 counter, a modulo-10 counter, and a Johnson counter. Also
presented will be a binary-to-Gray code converter using JK flip-flops to illustrate the
versatility of counters.

Counters are usually clocked synchronous devices used in the design of digital
systems and have a finite number of states. The A output logic is usually a function of
the present state only; that is, A(¥;(;)). The state of the counter is interpreted as an in-
teger with respect to a modulus. A number 4 modulo # is defined as the remainder af-
ter dividing 4 by n. Some counters accommodate a set of binary input variables which
provides an initial state for the counter. There are also asynchronous counters, which
are inherently slow, because of the ripple effect caused by the output of stage y; func-
tioning as the clock input for stage y;; ;.

This section will discuss only synchronous counters. Counters are associated with
a set of transformations on a set of states and follow a prescribed sequence of states un-
der control of a clock input signal. When the active clock transition occurs at the input,
the state of the machine changes to some predetermined value as defined by the ma-
chine specifications. The counting sequence is usually an increment or decrement by
one, or an arbitrary prescribed sequence, or a state in which only one flip-flop changes
state, as in a Gray code counter.



174 Chapter 2 Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL

2.2.1 Modulo-8 Counter

A modulo-8 counter counts in the following sequence: 000 001 010 ... 110 111 000.
The state diagram for a modulo-8 counter is shown in Figure 2.63. The counter is ini-
tially reset to state a (y1),y3 = 000), then increments by one at each clock transition
until state 4 (y;y,y3=111) is reached. At the next clock transition, the counter
sequences to state a (y1y,y3 = 000). The counter will be designed using behavioral
modeling, structural modeling using D flip-flops, and structural modeling using JK
flip-flops.

y12y3

001

S
—_
S

S
—_
—_

100

101

110

111

Figure 2.63 State diagram for a modulo-8 counter.
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Example 2.8 This example designs a modulo-8 counter using behavioral modeling.
The behavioral design module is shown in Figure 2.64. The operator symbol for mod-
ulus is the percent symbol (%). As previously stated, a number 4 modulo 7 is defined
as the remainder after dividing 4 by n. Therefore, the statementy = (y + 1) % 8;
in Figure 2.64 specifies that the counter is incremented by one, then the count y mod-
ulus 8 is obtained. The test bench module is shown in Figure 2.65. The outputs and
waveforms are shown in Figure 2.66 and Figure 2.67, respectively.

//behavioral modulo-8 counter
module ctr mod8 bh (rst n, clk, y);

input rst n, clk; //define inputs and outputs
output [2:0] y;

wire rst n, clk; //or do not declare inputs as wire,
//because inputs are wire by defaul