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xi

PREFACE

The field of digital logic consists primarily of analysis and synthesis of combina-
tional and sequential logic circuits, also referred to as finite-state machines.  Finite-
state machines are designed into every computer.  They occur in the form of
counters, shift registers, microprogram control sequencers, sequence detectors, and
many other sequential structures.  The principal characteristic of combinational logic
is that the outputs are a function of the present inputs only, whereas, the outputs of
sequential logic are a function of the input sequence; that is, the input history.
Sequential logic, therefore, requires storage elements which indicate the present state
of the machine relative to a unique sequence of inputs.

Sequential logic is partitioned into synchronous and asynchronous sequential
machines.  Synchronous sequential machines are controlled by a system clock which
provides the triggering mechanism to cause state changes.  Asynchronous sequential
machines have no clocking mechanism — the machines change state upon the appli-
cation of input signals.  The input signals provide the means to enable the sequential
machines to proceed through a prescribed sequence of states.

The purpose of this book is to present a thorough exposition of the analysis and
synthesis of both synchronous and asynchronous sequential machines.  The
machines will be implemented using Verilog HDL (Hardware Description Lan-
guage).  Verilog HDL is an Institute of Electrical and Electronics Engineers (IEEE)
standard: 1364-1995.  The book concentrates on sequential logic design with empha-
sis on the detailed design of various Verilog HDL projects.

Emphasis is placed on structured and rigorous design principles that can be
applied to practical applications.  Each step of the analysis and synthesis procedures
is clearly delineated.  Each method that is presented is expounded in sufficient detail
with accompanying examples.  Many analysis and synthesis examples use mixed-
logic symbols which incorporate both positive- and negative-input logic gates for
NAND and NOR logic, while other examples utilize only positive-input logic gates.
The use of mixed logic parallels the use of these symbols in the industry.

The book is intended to be tutorial, and as such, is comprehensive and self con-
tained.  All designs are carried through to completion — nothing is left unfinished or
partially designed.  Each chapter includes numerous problems of varying complexity
to be designed by the reader using Verilog HDL design techniques.  The Verilog
HDL designs include the design module, the test bench module which tests the
design for correct functionality, the outputs obtained from the test bench, and the
waveforms obtained from the test bench.

It is assumed that the reader has an adequate knowledge of the topics listed in
this paragraph and the following two paragraphs, which are prerequisites for any
course in Verilog HDL:  Number systems of different radices such as binary, octal,
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decimal, and hexadecimal, including conversion between radices.  The number rep-
resentations of sign magnitude, diminished-radix complement, and radix comple-
ment.  Binary weighted and nonweighted codes, including conversion to and from
binary-coded decimal (BCD), plus the Gray code.

Boolean algebra, which illustrates methods to minimize switching functions.
These methods include algebraic minimization, Karnaugh maps, Karnaugh maps
using map-entered variables, the Quine–McCluskey algorithm, and the Petrick algo-
rithm.

Combinational logic and storage elements.  This includes wired-AND logic
gates, wired-OR logic gates, and three-state logic.  Logic macro functions such as
multiplexers, decoders, encoders, and comparators.  Analysis and synthesis of com-
binational logic and sequential logic.  Programmable logic devices.  These include
programmable read-only memory (PROM) devices, programmable array logic
(PAL) devices, and programmable logic array (PLA) devices.  The storage elements
are SR latches, D flip-flops, JK flip-flops, and T flip-flops.

Chapter 1 introduces the Verilog Hardware Description Language, which will
be used throughout the book to design the various types of sequential circuits.  Ver-
ilog HDL is the state-of-the-art method for designing digital and computer systems
and is ideally suited to describe both combinational, clocked sequential, and non-
clocked logic sequential logic circuits.  Verilog provides a clear relationship between
the language syntax and the physical hardware.  The Verilog simulator used in this
book is easy to learn and use, yet powerful enough for any application.  It is a logic
simulator — called SILOS — developed by Silvaco Incorporated for use in the de-
sign and verification of digital systems.

The SILOS simulation environment is a method to quickly prototype and debug
any logic function.  It is an intuitive environment that displays every variable and
port from a module to a logic gate.  SILOS allows single-stepping through the Ver-
ilog source code, as well as drag-and-drop ability from the source code to a data ana-
lyzer for waveform generation and analysis.  This chapter introduces the reader to
the different modeling techniques, including built-in primitives for logic primitive
gates and user-defined primitives for larger logic functions.  The three main model-
ing methods of dataflow modeling, behavioral modeling, and structural modeling are
introduced.

Chapter 2 designs synchronous sequential machines using Verilog HDL.  The
machines include different categories of synchronous registers, such as parallel-in
serial-out registers; serial-in parallel-out registers; and serial-in serial-out registers.
Different types of counters of various moduli are also designed in this chapter.
These include: a modulo-8 counter, a modulo-10 counter, and a Johnson counter.
Also included will be a binary-to-Gray code converter.  Different versions of Moore
and Mealy synchronous sequential machines will also be designed using Verilog
together with different techniques to eliminate output glitches.  Each step in the syn-
thesis procedure employs several examples which help to clarify the corresponding
step.  Several examples are presented detailing the synthesis procedure in a step-by-
step process.

Chapter 3 uses Verilog HDL to design alternative synchronous sequential
machines.  The devices include multiplexers for the  next-state logic of both the
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linear-select and nonlinear-select category.  Decoders are included for the  output
logic.  Programmable logic devices are presented, which are used to synthesize syn-
chronous sequential machines.  These include: programmable read-only memories,
programmable array logic devices, and programmable logic array devices.  Sequen-
tial iterative machines are also used in the Verilog design process.  A final section
presents error detection in synchronous sequential machines using Verilog HDL.

Chapter 4 presents the synthesis of asynchronous sequential machines using
Verilog HDL.  The chapter includes numerous examples for a comparative study of
the design methodologies.  The designs will be accomplished by utilizing one or
more of the following modeling methods for each design: built-in primitive gates,
dataflow modeling, behavioral modeling, and structural modeling.

The examples illustrate the synthesis procedure for asynchronous sequential ma-
chines using a timing diagram and/or a verbal specification.  In order to prevent pos-
sible race conditions and associated timing problems when two or more inputs
change value simultaneously, it will be assumed that only one input variable will
change state at a time.  This is referred to as a fundamental-mode model.

Chapter 5 presents synthesis examples of pulse-mode asynchronous sequential
machines using Verilog HDL.  Moore and Mealy pulse-mode asynchronous
sequential machines are designed using different Verilog HDL modeling constructs.
The synthesis procedure is described using several different types of storage ele-
ments.  The synthesis examples will utilize built-in primitives with SR latches and D
flip-flops; T flip-flops only; dataflow modeling with D flip-flops; built-in primitives
and D flip-flops; built-in primitives and T flip-flops.

The pulse width restrictions that are dominant in pulse-mode sequential ma-
chines can be eliminated by including D flip-flops in the feedback path from the SR
latches to the  next-state logic.  Providing edge-triggered D flip-flops as a constitu-
ent part of the implementation negates the requirement of precisely controlled input
pulse durations.  This is by far the most reliable means of synthesizing pulse-mode
machines.  The SR latches — in conjunction with the D flip-flops — form a master-
slave configuration.

Appendix A presents a brief discussion on event handling using the event queue.
Operations that occur in a Verilog module are typically handled by an event queue.

Appendix B presents a procedure to implement a Verilog project.
Appendix C contains the solutions to select problems in each chapter.
The material presented in this book represents more than two decades of com-

puter equipment design by the author.  The book is not intended as a book on combi-
national logic, since it is assumed that the reader has an adequate background in the
analysis and synthesis of combinational logic.  The book is intended as a text for a
course on sequential logic design using Verilog HDL.  The book presents Verilog
HDL with numerous design examples to help the reader thoroughly understand this
popular hardware description language.

This book presents basic and advanced concepts in sequential machine analysis
and synthesis and is designed for practicing electrical engineers, computer engineers,
and computer scientists; for graduate students in electrical engineering, computer
engineering, and computer science; and for senior-level undergraduate students.
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1
Introduction to Verilog HDL

This chapter provides an introduction to the design methodologies and modeling con-
structs of the Verilog hardware description language (HDL).  Modules, ports, and test
benches will be presented.  This chapter introduces Verilog in conjunction with com-
binational logic only.

A module is the basic unit of design in Verilog that describes the Verilog hardware
and consists of the following types of modules: built-in logic primitives, user-defined
logic primitives, dataflow modeling, behavioral modeling, and structural modeling.  A
module describes the functional operation of some logical entity and can be a stand-
alone module or a collection of modules that are instantiated into a structural module.
Instantiation means to use one or more lower-level modules in the construction of a
higher-level structural module.  A module can be a logic gate, an adder, a multiplexer,
a counter, or some other logical function.  Examples will be shown for each type of
modeling.

Ports allow the modules to communicate with the external environment; that is,
other modules and input/output signals.  Ports, also referred to as terminals, can be de-
clared as input, output, or inout.  A port is a net by default; however, it can be de-
clared explicitly as a net.  A module contains an optional list of ports, as shown below
for a full adder.  Ports a, b, and cin are input ports; ports sum and cout are output ports.

module full_adder (a, b, cin, sum, cout);

Test benches will also be described.  Test benches are used to apply input vectors
to the design module in order to test the functional operation of the module in a

1.1 Built-In Primitives
1.2 User-Defined Primitives
1.3 Dataflow Modeling
1.4 Behavioral Modeling
1.5 Structural Modeling
1.6 Problems
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simulation environment.  The test bench for the full adder contains no ports as shown
below because it does not communicate with the external environment.

module full_adder_tb;

When a Verilog module is finished, it must be tested to ensure that it operates ac-
cording to the machine specifications.  The functionality of the module can be tested
by applying stimulus to the inputs and checking the outputs.  The test bench will dis-
play the inputs and outputs in a radix (binary, octal, hexadecimal, or decimal) as well
as the waveforms.

1.1 Built-In Primitives
Logic primitives such as and, nand, or, nor, xor (exclusive-OR), and xnor (exclu-
sive-NOR) functions are classified as multiple-input gates.  The buf and not functions
have one input, but can have one or more outputs.  These are all built-in primitives that
can be instantiated into a module.  The inputs of built-in primitives are declared as type
wire or as type reg depending on whether they were generated by a structural or
behavioral module.  

Type wire represents a physical connection between hardware elements.  The out-
put of a logic gate is declared as wire and represents a net with a single driver.  The
connection can be a wire or a group of wires, both of which are called a net.  Nets are
1-bit scalar values unless declared otherwise.

Type reg data types are registers that hold a value.  The register value is retained
in memory until it is changed by a subsequent assignment. A variable of type reg
closely resembles a hardware register that is synthesized with D flip-flops, JK flip-
flops, or SR latches.

This section presents a design methodology that is characterized by a low level of
abstraction, where the logic hardware is described in terms of gates.  Designing logic
at this level is similar to designing logic by drawing gate symbols — there is a close
correlation between the logic gate symbols and the Verilog built-in primitive gates.

The primitive gates are used to describe a net and have one or more scalar inputs,
but only one scalar output.  The output signal is listed first, followed by the inputs in
any order.  The outputs are declared as wire; the inputs can be declared as either wire
or reg.  The gates represent combinational logic functions and can be instantiated into
a module, as follows, where the instance name (inst1) is optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

Two or more instances of the same type of gate can be specified in the same con-
struct, as shown below.  Note that only the last instantiation has a semicolon terminat-
ing the line.  All previous lines are terminated by a comma.

gate_type  inst1 (output_1, input_11, input_12, . . . , input_1n),
        inst2 (output_2, input_21, input_22, . . . , input_2n);
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The best way to learn design methodologies using built-in primitives is by exam-
ple.  Therefore, combinational logic examples will be presented of varying complex-
ety.  When necessary, the theory for the examples will be presented prior to the
Verilog design.  All examples are carried through to completion at the gate level.
Nothing is left unfinished or partially designed.

Example 1.1 The logic diagram of Figure 1.1 will be designed using built-in prim-
itives for the logic gates which consist of NAND gates and one OR gate (inst3).  These
gates will generate the two outputs z1 and z2 .  The output of the gate labeled inst2
(instantiation 2) will be at a high voltage level if either x1 , x2 , or x3 is deasserted.
Therefore, by DeMorgan’s theorem, the output will be at a low voltage level if x1 , x2 ,
and x3  are all asserted.  Note that the gate labeled inst3 is an OR gate that is drawn as
an AND gate with active-low inputs and an active-low output.  The output of each gate
is assigned a net name, where a net is one or more interconnecting wires that connect
the output of one logic element   to the input of one or more logic elements.  The
remaining gates in Figure 1.1 are drawn in the standard manner as NAND gates.

Figure 1.1 Logic diagram to be designed using built-in primitives.

The equations for z1 and z2 are shown in Equation 1.1 and Equation 1.2, respec-
tively.  If necessary, the laws of Boolean algebra should be reviewed in order to obtain
the minimized expressions for the outputs.

1

5

7

+x1+x2+x3 +z1

+z2

inst1

inst2 inst3

inst4

inst5

inst6

inst7

inst8

net1

net2 net3

net5

net6

net7

z1 = [x1x2x3 + x1x2x3(x1x2)]

= x1x2x3 (1 + x1x2)

= x1x2x3 (1.1)
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The Verilog design module is shown in Figure 1.2.  The first line is usually
reserved for a comment (//) and specifies the function of the module.  Comments (//)
can also be placed at the end of a line to indicate the function of a specific line of code.
Line 2 is the beginning of the Verilog code and is indicated by the keyword module
followed by the module name log_eqn_sop15.  This is followed by the list of input and
output ports placed within parentheses and terminated by a semicolon.

Verilog must know which ports are used for input and which ports are used for
output; therefore, lines 4 and 5 list the input and output ports indicated by the key-
words input and output, respectively.  Line 7 begins the instantiation of the built-in
primitives.  The instantiation names and net names in the module correlate directly to
the corresponding names in the logic diagram.  Thus, line 7 in the module, which is

nand inst1 (net1, x1, x2, x3);

represents NAND gate inst1 with inputs x1 , x2 , and x3  and output net1 in the logic dia-
gram.  Line 14 in the module corresponds to OR function of instantiation inst8 of the
logic diagram whose inputs are net5, net6, and net7 and whose active-high output is
z2 .  The end of the module is indicated by the keyword endmodule as shown in line
16.  In this example, Figure 1.2 correctly describes the hardware that is represented by
the logic diagram of Figure 1.1.

In order to verify that the module operates correctly, as specified in the logic dia-
gram, the module must be tested.  This is accomplished by means of a test bench.  Test
benches are used to apply input vectors to the module in order to test the functional
operation of the module in a simulation environment.  The functionality of the module
can be tested by applying stimulus to the inputs and checking the outputs.  The test
bench can display the inputs and outputs in the following radices: binary (b), octal (o),
hexadecimal (h), or decimal (d).  Refer to the Verilog Project Procedure in Appendix
B to review the procedure for generating the inputs, outputs, and waveforms of a Ver-
ilog design.

The test bench contains Verilog code to generate the input stimulus and code to
display the output response to the stimulus.  The test bench also provides code to
instantiate the design module into the test bench.  Figure 1.3 shows a test bench which
applies input stimulus to test the validity of the Verilog design of Figure 1.2, which
represents the logic diagram of Figure 1.1.  Line 1 of the test bench is a comment indi-
cating that the module is a test bench for the log_eqn_sop15 module.  Line 2 contains
the keyword module followed by the module name, which includes tb indicating a test
bench module.  The name of the module and the name of the module under test are the
same for ease of cross-referencing.  The notations #0 and #10 specify the time at which
values are assigned to the inputs.  The keyword endmodule terminates the test bench
module.

z2  = x1x2 + x1x3 + x2x3 (1.2)
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Figure 1.2 Design module for the logic diagram shown in Figure 1.1 using built-
in primitives.

Figure 1.3 Test bench for the module of Figure 1.2.

 1   //logic diagram using built-in primitives
  module log_eqn_sop15 (x1, x2, x3, z1, z2);

  input x1, x2, x3;
 5   output z1, z2;

     nand inst1 (net1, x1, x2, x3);
     nand inst2 (net2, x1, x2, x3);
     or inst3 (net3, net2, net5);
 10  nand inst4 (z1, net1, net3);
     nand inst5 (net5, x1, x2);
     nand inst6 (net6, x1, x3);
     nand inst7 (net7, x2, x3);
     nand inst8 (z2, net5, net6, net7);
 15
     endmodule

 1   //test bench for log_eqn_sop_15
     module log_eqn_sop15_tb;

     reg x1, x2, x3;
 5   wire z1, z2;

     //display variables
     initial
     $monitor ("x1=%b, x2=%b, x3=%b, z1=%b, z2=%b",
 10            x1, x2, x3, z1, z2);

     //apply input vectors
     initial
     begin
 15  #0 x1 = 1'b0;

x2 = 1'b0;
x3 = 1'b0;

     #10 x1 = 1'b0;
 20 x2 = 1'b0;

x3 = 1'b1;
 22

//continued on next page
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Figure 1.3     (Continued)

Values are assigned to the variables by the notation 1’ b0 for example, where the
number 1 specifies the width of the variable (1 bit), b specifies the radix (binary), and
0 specifies the value (zero).  The system task $stop causes simulation to stop.

Line 4 specifies that the inputs are reg type variables; that is, they contain their
values until they are assigned new values.  Outputs are assigned as type wire in test
benches.  Output nets are driven by the output ports of the module under test.  Line 8
contains an initial statement, which executes only once.

 23  #10 x1 = 1'b0;
x2 = 1'b1;

 25 x3 = 1'b0;

     #10 x1 = 1'b0;
x2 = 1'b1;
x3 = 1'b1;

 30
     #10 x1 = 1'b1;

x2 = 1'b0;
x3 = 1'b0;

 35  #10 x1 = 1'b1;
x2 = 1'b0;
x3 = 1'b1;

     #10 x1 = 1'b1;
 40 x2 = 1'b1;

x3 = 1'b0;

     #10 x1 = 1'b1;
x2 = 1'b1;

 45 x3 = 1'b1;

     #10 $stop;
     end

//instantiate the module into the test bench
log_eqn_sop15 inst1 (
 52   .x1(x1),

.x2(x2),

.x3(x3),
 55 .z1(z1),

.z2(z2)
     );

 59 endmodule
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Verilog provides a means to monitor a signal when its value changes.  This is ac-
complished by the $monitor system task.  The $monitor continuously monitors the
values of the variables indicated in the parameter list that is enclosed in parentheses.  It
will display the value of the variables whenever a variable changes state.  The string
that is enclosed in quotes in the task is printed and specifies that the variables are to be
shown in binary (%b).  The $monitor is invoked only once.  Line 13 is a second initial
statement that allows the procedural code between the begin . . . end block statements
to be executed only once.  Every ten time units (#10) the input variables change state
and are displayed by the system task $monitor.

Lines 51 through 57 instantiate the design module into the test bench module.  The
instantiation name is inst1 followed by a left parenthesis.  The port names of the design
module are preceded by a period, which is followed by the corresponding port name in
the test bench enclosed in parentheses; the port names in the module and the test bench
do not necessarily have to be the same.  A comma terminates each line of the port
instantiation except the line containing the last port name — there is no termination
character at the end of this line.  This is followed by a right parenthesis followed by a
semicolon.  The keyword endmodule terminates the test bench module.

The logic shown in Figure 1.1 contains redundant gates to provide a review of
Boolean algebra minimization, as shown in Equation 1.1 and Equation 1.2.  The out-
puts obtained from the test bench are shown in Figure 1.4 and correspond to the equa-
tions for z1 and z2 .  There is a single active-high output for z1 and four active-high
outputs for z2 , including the case where the outputs overlap.  The waveforms are
shown in Figure 1.5.  As mentioned previously, refer to Appendix B for the procedure
to create a Verilog project and obtain the outputs and waveforms.

Figure 1.4 Outputs for the logic diagram of Figure 1.1 obtained from the test
bench to Figure 1.3.

Example 1.2 The Karnaugh map of Figure 1.6 will be implemented using only
NOR gates in a product-of-sums format.  Equation 1.3 shows the product-of-sums
expression obtained from the Karnaugh map.  The minimal product-of-sums expres-
sion can be obtained by combining the 0s in Figure 1.6 to form sum terms in the same
manner as the 1s were combined to form product terms.  However, since 0s are being
combined, each sum term must equal 0.  Thus, the two 0s in row x1x2  = 00 combine to
yield the sum term (x1  + x2  + x4).  In a similar manner, the remaining 0s are combined

x1=0, x2=0, x3=0, z1=0, z2=0
x1=0, x2=0, x3=1, z1=0, z2=0
x1=0, x2=1, x3=0, z1=0, z2=0
x1=0, x2=1, x3=1, z1=0, z2=1
x1=1, x2=0, x3=0, z1=0, z2=0
x1=1, x2=0, x3=1, z1=0, z2=1
x1=1, x2=1, x3=0, z1=0, z2=1
x1=1, x2=1, x3=1, z1=1, z2=1
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to yield the product-of-sums expression shown in Equation 1.3.  When combining 0s
to obtain sum terms, treat a variable with a value of 1 as false and a variable with a
value of 0 as true.  Thus, minterm locations 2 and 10 have variables x2x3 x4 = 010,
providing a sum term of (x2  + x3 '  + x4 ).  The logic diagram is shown in Figure 1.7,
which includes the instantiation names and net names.

Figure 1.5 Waveforms for the logic diagram of Figure 1.1 obtained from the test
bench of Figure 1.3.

Figure 1.6 Karnaugh map for Example 1.2.

 0 0      0 1     1 1     1 0

0 0      0         1        1         0

0 1      1         1        0         1

1 1      1         1        0         1

1 0      1         1        1         0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

z1 = (x1  + x2 + x4) (x2  + x3'  + x4) (x2'  + x3'  + x4' ) (1.3)
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Figure 1.7 Logic diagram for Example 1.2.

The design module is shown in Figure 1.8 using NOR gate built-in primitives.
The instantiation names and the net names shown in Figure 1.8 agree with the corre-
sponding names in the logic diagram.  A true value for a variable is indicated by the
variable name, such as x3 ; a false (complemented) value for a variable name is indi-
cated by the symbol (~), such as ~x3 .  The test bench is shown in Figure 1.9.  Since
there are four inputs to the circuit, all 16 combinations of the four variables must be ap-
plied to the design module from the test bench in order to verify correct circuit oper-
ation.  This is accomplished by assigning values to the four variables x1, x2 , x3, and x4
in 16 separate lines of the test bench.  The outputs obtained from the test bench are
shown in Figure 1.10 and the waveforms are shown in Figure 1.11.  The correct op-
eration of the circuit can be verified by applying specific values to the inputs of the
logic diagram and corroborate the resulting z1 values with the outputs or the wave-
forms.

Figure 1.8 Design module for the logic diagram of Figure 1.7 for Example 1.2.

+x1+x2+x4

–x3

–x2–x4

+z1

inst1

inst2

inst3

inst4

net1

net2

net3

//logic diagram using built-in primitives
module log_eqn_pos8 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//instantiate the nor built-in primitives
nor inst1(net1, x1, x2, x4);
nor inst2(net2, x2, x4, ~x3);
nor inst3(net3, ~x3, ~x2, ~x4);
nor inst4(z1, net1, net2, net3);

endmodule
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Figure 1.9 Test bench for the module of Figure 1.8.

//test bench for log_eqn_pos8
module log_eqn_pos8_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//display variables
//the brace ({) symbol specifies concatenation
initial
$monitor ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);

//apply input vectors
initial
begin

#0 x1=1'b0; x2=1'b0; x3=1'b0; x4=1'b0; //00
#10 x1=1'b0; x2=1'b0; x3=1'b0; x4=1'b1; //01
#10 x1=1'b0; x2=1'b0; x3=1'b1; x4=1'b0; //02
#10 x1=1'b0; x2=1'b0; x3=1'b1; x4=1'b1; //03
#10 x1=1'b0; x2=1'b1; x3=1'b0; x4=1'b0; //04
#10 x1=1'b0; x2=1'b1; x3=1'b0; x4=1'b1; //05
#10 x1=1'b0; x2=1'b1; x3=1'b1; x4=1'b0; //06
#10 x1=1'b0; x2=1'b1; x3=1'b1; x4=1'b1; //07
#10 x1=1'b1; x2=1'b0; x3=1'b0; x4=1'b0; //08
#10 x1=1'b1; x2=1'b0; x3=1'b0; x4=1'b1; //09
#10 x1=1'b1; x2=1'b0; x3=1'b1; x4=1'b0; //10
#10 x1=1'b1; x2=1'b0; x3=1'b1; x4=1'b1; //11
#10 x1=1'b1; x2=1'b1; x3=1'b0; x4=1'b0; //12
#10 x1=1'b1; x2=1'b1; x3=1'b0; x4=1'b1; //13
#10 x1=1'b1; x2=1'b1; x3=1'b1; x4=1'b0; //14
#10 x1=1'b1; x2=1'b1; x3=1'b1; x4=1'b1; //15

#10 $stop;
end

//instantiate the module into the test bench
log_eqn_pos8 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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Figure 1.10 Outputs for the logic diagram of Figure 1.7 generated by the test
bench of Figure 1.9.

Figure 1.11 Waveforms for the logic diagram of Figure 1.7.

Example 1.3 A 4:1 multiplexer will be designed using built-in logic primitives.
The 4:1 multiplexer of Figure 1.12 will be designed using built-in primitives of and,
or, and not.  The design is simpler and takes less code if a continuous assignment
statement is used, but this section presents gate-level modeling only — continuous
assignment statements are used in dataflow modeling.

The multiplexer has four data inputs, which are specified as a 4-bit vector d[3:0],
two select inputs, specified as a 2-bit vector s[1:0], one scalar input enable, and one
scalar output z1.  Also, the system function $time will be used in the test bench to

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 0
x1x2x3x4 = 0011, z1 = 1
x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 1
x1x2x3x4 = 0110, z1 = 1
x1x2x3x4 = 0111, z1 = 0
x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 1
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 1
x1x2x3x4 = 1100, z1 = 1
x1x2x3x4 = 1101, z1 = 1
x1x2x3x4 = 1110, z1 = 1
x1x2x3x4 = 1111, z1 = 0



12          Chapter  1     Introduction to Verilog HDL

return the current simulation time measured in nanoseconds (ns).  The design module
is shown in Figure 1.13, the test bench module in Figure 1.14 designating the appro-
priate inputs, the outputs in Figure 1.15, and the waveforms in Figure 1.16.  The wave-
forms are shown as both hexadecimal values and as individual bits.

Figure 1.12 Logic diagram of a 4:1 multiplexer to be designed using built-in prim-
itives.

Figure 1.13 Design module for a 4:1 multiplexer using built-in primitives.

+d0

+d1

+d2

+d3

+s0

+s1

+enable

d0s1's0'

d1s1's0

d2s1s0'

d3s1s0

+z1

net3

net4

net5

net6

net1

net2

inst1

inst2

inst4

inst5

inst6

inst3

inst7

//a 4:1 multiplexer using built-in primitives
module mux_4to1 (d, s, enbl, z1);

input [3:0] d;
input [1:0] s;
input enbl;
output z1;

not inst1 (net1, s[0]),
inst2 (net2, s[1]);

and inst3 (net3, d[0], net1, net2, enbl),
inst4 (net4, d[1], s[0], net2, enbl),
inst5 (net5, d[2], net1, s[1], enbl),
inst6 (net6, d[3], s[0], s[1], enbl);

or inst7 (z1, net3, net4, net5, net6);
endmodule
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Figure 1.14 Test bench for the 4:1 multiplexer of Figure 1.12.

//test bench for 4:1 multiplexer
module mux_4to1_tb;

reg [3:0] d;
reg [1:0] s;
reg enbl;
wire z1;

initial
$monitor ($time,"ns, select:s=%b, inputs:d=%b, output:z1=%b",

s, d, z1);
initial
begin

#0 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b0;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[0]=0; z1=0

#10 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[0]=1; z1=1

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[1]=1; z1=1

#10 s[0]=1'b0;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[2]=0; z1=0

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b0;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[1]=1; z1=0

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[3]=1; z1=1

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;
enbl=1'b1; //d[3]=0; z1=0

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;
enbl=1'b0; //d[3]=0; z1=0

#10 $stop;
end //continued on next page
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Figure 1.14     (Continued)

Figure 1.15 Outputs for the 4:1 multiplexer of Figure 1.12.

Figure 1.16 Waveforms for the 4:1 multiplexer of Figure 1.12.

//instantiate the module into the test bench
mux_4to1 inst1 (

.d(d),

.s(s),

.z1(z1),

.enbl(enbl)
);

 
endmodule

0  ns, select:s=00, inputs:d=1010, output:z1=0
10 ns, select:s=00, inputs:d=1011, output:z1=1
20 ns, select:s=01, inputs:d=1011, output:z1=1
30 ns, select:s=10, inputs:d=1011, output:z1=0
40 ns, select:s=01, inputs:d=1001, output:z1=0
50 ns, select:s=11, inputs:d=1011, output:z1=1
60 ns, select:s=11, inputs:d=0011, output:z1=0
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Example 1.4 Recall that a decoder is a combinational logic macro device, which
for every combination of inputs, a unique output is generated.  Each output represents
a minterm that corresponds to the binary representation of the input vector.  A decoder
with n inputs has a maximum of 2n outputs, in which only one output signal is active
— all other outputs are inactive.

A 3:8 decoder is shown in Figure 1.17, which will be designed using built-in prim-
itives.  The decoder will be designed using the following built-in primitives: and and
not.  The decoder has three data inputs, x[2:0], where x[0] is the low-order input.
There is also an enable (enbl) input, which allows the appropriate output to be
asserted.  There are eight outputs, z[7:0], where z[0] is the low-order output.  The
design module is shown in Figure 1.18, the test bench module is shown in Figure 1.19,
the outputs are shown in Figure 1.20, and waveforms are shown in Figure 1.21.

Figure 1.17 Logic diagram for a 3:8 decoder.

+x[0]

+x[1]

+x[2]

+z[0]

+z[1]

+z[2]

+z[3]

+z[4]

+z[5]

+z[6]

+z[7]

+enbl

inst1

inst2

inst3

inst4

inst5

inst6

inst7

inst8

inst9

inst10

inst11

net1

net2

net3
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Figure 1.18 Design module for the 3:8 decoder using built-in primitives.

Figure 1.19 Test bench for the 3:8 decoder using built-in primitives.

//3:8 decoder using built-in primitives
module decoder_3to8_bip5 (x, enbl, z);

input [2:0] x;
input enbl;
output [7:0] z;

//instantiate the inverters for the inputs
not inst1 (net1, x[0]),

inst2 (net2, x[1]),
inst3 (net3, x[2]);

//instantiate the and gates for the decoder outputs
and inst4 (z[0], net1, net2, net3, enbl),

inst5 (z[1], net2, net3, x[0], enbl),
inst6 (z[2], net1, x[1], net3, enbl),
inst7 (z[3], net3, x[1], x[0], enbl),
inst8 (z[4], x[2], net1, net2, enbl),
inst9 (z[5], x[2], net2, x[0], enbl),
inst10(z[6], x[2], x[1], net1, enbl),
inst11(z[7], x[2], x[1], x[0], enbl);

endmodule

//test bench for decoder_3to8_bip5 module
module decoder_3to8_bip5_tb;

reg [2:0] x; //inputs are reg for test bench
reg enbl;
wire [7:0] z; //outputs are wire for test bench

//display inputs and outputs
initial
$monitor ("input = %b, enable = %b, output = %b",

x [2:0], enbl, z [7:0]);

//apply input vectors
initial
begin

#0 x [2:0] = 3'b000; enbl = 1'b1;

//continued on next page
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Figure 1.19       (Continued)

Figure 1.20 Outputs for the 3:8 decoder using built-in primitives.

#10 x [2:0] = 3'b001; enbl = 1'b1;

#10 x [2:0] = 3'b010; enbl = 1'b1;

#10 x [2:0] = 3'b011; enbl = 1'b1;

#10 x [2:0] = 3'b100; enbl = 1'b1;

#10 x [2:0] = 3'b101; enbl = 1'b1;

#10 x [2:0] = 3'b110; enbl = 1'b1;

#10 x [2:0] = 3'b111; enbl = 1'b1;

#10 x [2:0] = 3'b111; enbl = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
decoder_3to8_bip5 inst1 (

.x(x),

.enbl(enbl),

.z(z)
);

endmodule

input = 000, enable = 1, output = 00000001
input = 001, enable = 1, output = 00000010
input = 010, enable = 1, output = 00000100
input = 011, enable = 1, output = 00001000
input = 100, enable = 1, output = 00010000
input = 101, enable = 1, output = 00100000
input = 110, enable = 1, output = 01000000
input = 111, enable = 1, output = 10000000
input = 111, enable = 0, output = 00000000
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Figure 1.21 Waveforms for the 3:8 decoder using built-in primitives.

1.2 User-Defined Primitives
Verilog provides the capability to design primitives according to user specifications.
These are called user-defined primitives (UDPs) and are usually at a higher-level logic
function than built-in primitives.  They are independent primitives and do not instan-
tiate other primitives or modules.  UDPs are instantiated into a module the same way
as built-in primitives.  A UDP is defined outside the module into which it is instanti-
ated.  There are two types of UDPs: combinational and sequential.  Sequential prim-
itives include level-sensitive and edge-sensitive circuits.

1.2.1 Defining a User-Defined Primitive

The syntax for a UDP is similar to that for declaring a module.  The definition begins
with the keyword primitive and ends with the keyword endprimitive.  The UDP con-
tains a name and a list of ports, which are declared as input or output.  For a sequential
UDP, the output port is declared as reg.  UDPs can have one or more scalar inputs, but
only one scalar output.  The output port is listed first in the terminal list followed by the
input ports, in the same way that the  terminal list appears in built-in primitives.  UDPs
do not support inout ports.
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The UDP table is an essential part of the internal structure and defines the func-
tionality of the circuit.  It is a lookup table similar in concept to a truth table.  The table
begins with the keyword table and ends with the keyword endtable.  The contents of
the table define the value of the output with respect to the inputs.  The syntax for a
UDP is shown below.

primitive udp_name (output, input_1, input_2, . . . , input_n);
input input_1, input_2, . . . , input_n;
output output;
reg sequential_output; //for sequential UDPs

initial //for sequential UDPs

table
state table entries

endtable
endprimitive

1.2.2  Combinational User-Defined Primitives

To illustrate the method for defining and using combinational UDPs, examples will be
presented for designs of varying complexity.  UDPs are not compiled separately.  They
are saved in the same project as the module with a .v extension; for example,
udp_and.v.

Example 1.5 The Karnaugh map of Figure 1.22 will be designed as a sum-of-prod-
ucts expression using two UDPs: udp_and2 and udp_or3.  The UDPs will then be
instantiated into the module udp_sop.  The equation for the sum-of-products expres-
sion obtained from the Karnaugh map is shown in Equation 1.4 and the logic diagram
is shown in Figure 1.23.

Figure 1.22 Karnaugh map to be implemented by UDPs.

 0 0      0 1     1 1     1 0

0 0      1         1        1         0

0 1      0         0        1         0

1 1      1         1        1         1

1 0      1         1        1         0

x1x2

x3x4

z1
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Figure 1.23 Logic diagram for sum-of-products UDP implementation.

UDPs will first be designed for a 2-input AND gate and a 3-input OR gate.  The
UDPs will then be instantiated into the sum-of-products design module udp_sop.  The
Verilog code for the udp_and2 module is shown in Figure 1.24.  The Verilog code for
the udp_or3 module is shown in Figure 1.25.  The design module for udp_sop, the test
bench module, the outputs, and the waveforms are shown in Figure 1.26, Figure 1.27,
Figure 1.28, and Figure 1.29, respectively.

Figure 1.24 UDP for a 2-input AND gate.

z1 = x1x2  + x3x4  + x2' x3' (1.4)

+x1
+x2

+x3
+x4

–x2
–x3

+z1

udp_and2

udp_or3

udp_sop

net1

net2

net3

inst1

inst2

inst3

inst4

//UDP for a 2-input AND gate
primitive udp_and2 (z1, x1, x2); //output is listed first

input x1, x2;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 : z1; comment is for readability

0 0 : 0;
0 1 : 0;
1 0 : 0;
1 1 : 1;

endtable

endprimitive
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Figure 1.25 UDP for a 3-input OR gate.

Figure 1.26 Design module for the sum-of-products logic diagram of Figure 1.23
using UDPs.

//UDP for a 3-input OR gate
primitive udp_or3 (z1, x1, x2, x3);  //output is listed first

input x1, x2, x3;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 x3 : z1; comment is for readability

0 0 0 : 0;
0 0 1 : 1;
0 1 0 : 1;
0 1 1 : 1;
1 0 0 : 1;
1 0 1 : 1;
1 1 0 : 1;
1 1 1 : 1;

endtable

endprimitive

//sum of products using UDPs for the AND gate and the OR gate
module udp_sop (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//define internal nets
wire net1, net2, net3;

//instantiate the udps
udp_and2 inst1 (net1, x1, x2);
udp_and2 inst2 (net2, x3, x4);
udp_and2 inst3 (net3, ~x2, ~x3);

udp_or3 inst4 (z1, net1, net2, net3);

endmodule
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Figure 1.27 Test bench for the design module of Figure 1.26.

//test bench for sum-of-products logic using UDPs
module udp_sop2_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//display inputs and outputs
initial
$monitor ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; x4 = 1'b1;

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1; x4 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1; x4 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1; x4 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
udp_sop2 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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Figure 1.28 Outputs for the test bench of Figure 1.27 for the sum-of-products
design module of Figure 1.26.

Figure 1.29 Waveforms for the test bench of Figure 1.28 for the sum-of-products
design module of Figure 1.26.

Example 1.6 This example will design the sum-of-products equation shown in
Equation 1.5 using user-defined-primitives.  The logic diagram for Equation 1.5 is
shown in Figure 1.30.  The design will incorporate the following three NAND gate
user-defined-primitives: udp_nand2, udp_nand3, and udp_nand4, as shown in Figure
1.31, Figure 1.32, and Figure 1.33, respectively.

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 1
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 1

x1 x2 x3 x4 = 0100, z1 = 0
x1 x2 x3 x4 = 0101, z1 = 0
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 1

x1 x2 x3 x4 = 1000, z1 = 1
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 0
x1 x2 x3 x4 = 1011, z1 = 1

x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 1
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Figure 1.30 Logic circuit to represent Equation 1.5.

Figure 1.31 UDP for a 2-input NAND gate.

z1 = x1' x3  + x1' x2x4 + x1x2' x3'  + x2' x3' x4' (1.5)

udp_nand2

udp_nand3
udp_nand4

–x1
+x3

+x2
+x4

+x1–x2–x3

–x4

+z1

net1

net2

net3

net4

inst1

inst2

inst3

inst4

inst5

//UDP for a 2-input NAND gate
primitive udp_nand2 (z1, x1, x2);

input x1, x2;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 : z1; comment is for readability

0 0 : 1;
0 1 : 1;
1 0 : 1;
1 1 : 0;

endtable

endprimitive
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Figure 1.32 UDP for a 3-input NAND gate.

Figure 1.33 UDP for a 4-input NAND gate.

//UDP for a 3-input NAND gate
primitive udp_nand3 (z1, x1, x2, x3);
input x1, x2, x3;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 x3 : z1; comment is for readability

0 0 0 : 1;
0 0 1 : 1;
0 1 0 : 1;
0 1 1 : 1;
1 0 0 : 1;
1 0 1 : 1;
1 1 0 : 1;
1 1 1 : 0;

endtable
endprimitive

//UDP for a 4-input NAND gate
primitive udp_nand4 (z1, x1, x2, x3, x4);

input x1, x2, x3, x4;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 x3 x4 : z1; comment is for readability

0 0 0 0 : 1;
0 0 0 1 : 1;
0 0 1 0 : 1;
0 0 1 1 : 1;
0 1 0 0 : 1;
0 1 0 1 : 1;
0 1 1 0 : 1;
0 1 1 1 : 1;
1 0 0 0 : 1;
1 0 0 1 : 1;
1 0 1 0 : 1;

//continued on next page
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Figure 1.33       (Continued)

The design module into which the UDPs will be instantiated is shown in Figure
1.34.  The test bench, outputs, and waveforms are shown in Figure 1.35, Figure 1.36,
and Figure 1.37, respectively.

Figure 1.34 Module to design Equation 1.5 using user-defined primitives.

Figure 1.35 Test bench for the design module of Figure 1.34.

1 0 1 0 : 1;
1 0 1 1 : 1;
1 1 0 0 : 1;
1 1 0 1 : 1;
1 1 1 0 : 1;
1 1 1 1 : 0;

endtable
endprimitive

//user-defined primitives to design Equation 1.5
module udp_sop3 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//define internal nets
wire net1, net2, net3, net4;

//instantiate the udps
udp_nand2 (net1, ~x1, x3);
udp_nand3 (net2, ~x1, x2, x4);
udp_nand3 (net3, x1, ~x2, ~x3);
udp_nand3 (net4, ~x2, ~x3, ~x4);

udp_nand4 (z1, net1, net2, net3, net4);

endmodule

//test bench for udp_sop3
module udp_sop3_tb;

reg x1, x2, x3, x4;
wire z1;

//continued on next page
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Figure 1.35       (Continued)

//display inputs and outputs
initial
$monitor ("input = %b, z1 = %b", {x1, x2, x3, x4}, z1);

//apply input vectors
initial
begin

#0 {x1, x2, x3, x4} = 4'b0000;
#10 {x1, x2, x3, x4} = 4'b0001;
#10 {x1, x2, x3, x4} = 4'b0010;
#10 {x1, x2, x3, x4} = 4'b0011;

#10 {x1, x2, x3, x4} = 4'b0100;
#10 {x1, x2, x3, x4} = 4'b0101;
#10 {x1, x2, x3, x4} = 4'b0110;
#10 {x1, x2, x3, x4} = 4'b0111;

#10 {x1, x2, x3, x4} = 4'b1000;
#10 {x1, x2, x3, x4} = 4'b1001;
#10 {x1, x2, x3, x4} = 4'b1010;
#10 {x1, x2, x3, x4} = 4'b1011;

#10 {x1, x2, x3, x4} = 4'b1100;
#10 {x1, x2, x3, x4} = 4'b1101;
#10 {x1, x2, x3, x4} = 4'b1110;
#10 {x1, x2, x3, x4} = 4'b1111;

#10 $stop;
end

//instantiate the module into the test bench
udp_sop3 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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Figure 1.36 Outputs for the design module of Figure 1.34 for Equation 1.5.

Figure 1.37 Waveforms for the test bench of  Figure 1.36 for Equation 1.5.

Example 1.7 The Karnaugh map of Figure 1.38 will be implemented using a 4:1
multiplexer and additional logic.  The equations for the multiplexer data inputs — d0 ,
d1 , d2, and d3 — are shown to the right of the Karnaugh map, where the multiplexer
select inputs are s1s0= x1x2 , where s0  (x2) is the low-order select input.  The circuit
will be designed using user-defined primitives for the multiplexer and associated logic
gates.

Figure 1.39 depicts the logic diagram that is designed from the Karnaugh map.
The udp_and2 was previously designed.  The user-defined primitive for a 4:1 multi-
plexer is shown in Figure 1.40.  Note the entries in the table that contain the symbol
(?), which indicates a “don’t care” condition.  Referring to the first line in the table, if

input = 0000, z1 = 1
input = 0001, z1 = 0
input = 0010, z1 = 1
input = 0011, z1 = 1
input = 0100, z1 = 0
input = 0101, z1 = 1
input = 0110, z1 = 1
input = 0111, z1 = 1
input = 1000, z1 = 1
input = 1001, z1 = 1
input = 1010, z1 = 0
input = 1011, z1 = 0
input = 1100, z1 = 0
input = 1101, z1 = 0
input = 1110, z1 = 0
input = 1111, z1 = 0
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s1s0  = 00, then it is irrelevant what the values are for inputs d1d2d3, because only in-
put d0  is selected.  The design module, test bench module, outputs, and waveforms are
shown in Figure 1.41, Figure 1.42, Figure 1.43, and Figure 1.44, respectively.

Figure 1.38 Karnaugh map for Example 1.7.

Figure 1.39 Logic diagram for the Karnaugh map of Figure 1.38.

Figure 1.40 A UDP for a 4:1 multiplexer.

 0 0      0 1     1 1     1 0

0 0      0         0        1         0

0 1      1         1        0         0

1 1      1         1        1         1

1 0      1         0        0         1

x1x2

x3x4
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12         13          15         14
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d1

s1

d3

d2

+x2
+x1
+x3
+x4
–x3
–x4

+z1net1inst1

inst2+Logic 1

//4:1 multiplexer as a UDP
primitive udp_mux4 (out, s1, s0, d0, d1, d2, d3);

input s1, s0, d0, d1, d2, d3;
output out;

table //define state table
//inputs are in the same order as the input list
// s1 s0 d0 d1 d2 d3 : out     comment is for readability

0 0 1 ? ? ? : 1;   //? is "don't care"
0 0 0 ? ? ? : 0;   //continued on next page
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Figure 1.40       (Continued)

Figure 1.41 Module for the logic diagram of Figure 1.39.

Figure 1.42 Test bench for Figure 1.41 for the logic diagram of Figure 1.39.

0 1 ? 1 ? ? : 1;
0 1 ? 0 ? ? : 0;

1 0 ? ? 1 ? : 1;
1 0 ? ? 0 ? : 0;

1 1 ? ? ? 1 : 1;
1 1 ? ? ? 0 : 0;

? ? 0 0 0 0 : 0;
? ? 1 1 1 1 : 1;

endtable
endprimitive

//logic circuit using a 4:1 multiplexer UDP
//together with other logic circuit UDPs

module mux4_kmap (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//instantiate the udps
udp_and2 inst1 (net1, x3, x4);

//the mux inputs are: s1, s0, d0,   d1,  d2,  d3
//they correspond to x1, x2, net1, ~x3, ~x4, 1'b1

udp_mux4 inst2 (z1, x1, x2, net1, ~x3, ~x4, 1'b1);

endmodule

//test bench for mux4_kmap
module mux4_kmap_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//continued on next page
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Figure 1.42       (Continued)

//display inputs and outputs
initial
$monitor ("x1 x2 x3 x4 =%b, z1 = %b", {x1, x2, x3, x4}, z1);

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; x4 = 1'b1;

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1; x4 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1; x4 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0; x4 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1; x4 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1; x4 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
mux4_kmap inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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Figure 1.43 Outputs for Figure 1.39 obtained from the test bench of Figure 1.42.

Figure 1.44 Waveforms for Figure 1.39 obtained from the test bench of Figure
1.42.

Example 1.8 This example will use user-defined primitives to design a full adder
that is constructed from two half adders.  A half adder is a combinational circuit that
performs the addition of two operand bits and produces two outputs: a sum bit and a
carry-out bit.  The half adder does not accommodate a carry-in bit.  A full adder is a
combinational circuit that performs the addition of two operand bits plus a carry-in bit.
The carry-in represents the carry-out of the previous lower-order stage.  The full adder
produces two outputs: a sum bit and a carry-out bit.

s1 s0 s1s0
x1 x2 x3 x4 = 0 0 00, z1 = 0
x1 x2 x3 x4 = 0 0 01, z1 = 0
x1 x2 x3 x4 = 0 0 10, z1 = 0
x1 x2 x3 x4 = 0 0 11, z1 = 1
x1 x2 x3 x4 = 0 1 00, z1 = 1
x1 x2 x3 x4 = 0 1 01, z1 = 1
x1 x2 x3 x4 = 0 1 10, z1 = 0
x1 x2 x3 x4 = 0 1 11, z1 = 0
x1 x2 x3 x4 = 1 0 00, z1 = 1
x1 x2 x3 x4 = 1 0 01, z1 = 0
x1 x2 x3 x4 = 1 0 10, z1 = 1
x1 x2 x3 x4 = 1 0 11, z1 = 0
x1 x2 x3 x4 = 1 1 00, z1 = 1
x1 x2 x3 x4 = 1 1 01, z1 = 1
x1 x2 x3 x4 = 1 1 10, z1 = 1
x1 x2 x3 x4 = 1 1 11, z1 = 1
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The logic diagram for a full adder that is designed from two half adders is shown
in Figure 1.45.  The full adder utilizes UDPs for all gates of the full adder.  The design
module is shown in Figure 1.46, the test bench module is shown in Figure 1.47, and the
outputs are shown in Figure 1.48.

Figure 1.45 Full adder designed from two half adders.

Figure 1.46 Design module for the full adder of Figure 1.45.

+a
+b +sum

+carry-out
+cin

a  b a  b  cin

ab (a  b) cin ab + acin + bcin

net1

net2 net3

udp_xor2 udp_xor2

inst2 inst3
inst1

half adder
half adder

udp_and2 udp_and2 udp_or2

//udp for a full adder designed from two half adder udps
module udp_full_adder3 (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

//define internal nets
wire net1, net2, net3;
//udp for a full adder designed from two half adder udps
module udp_full_adder (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

//define internal nets
wire net1, net2, net3;

//instantiate the udps for the full adder
//udps for the first half adder
udp_xor2 (net1, a, b);
udp_and2 (net2, a, b);

//continued on next page
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Figure 1.46       (Continued)

Figure 1.47 Test bench for the full adder of Figure 1.45.

//udps for the second half adder
udp_xor2 (sum, net1, cin);
udp_and2 (net3, net1, cin);

udp_or2 (cout, net3, net2);

endmodule

//test bench for the full adder
module udp_full_adder3_tb;

reg a, b, cin;
wire sum, cout;

//display inputs and outputs
initial
$monitor ("a b cin = %b, cout = %b, sum = %b",

{a, b, cin}, cout, sum);

//apply input vectors
initial
begin

#0 a = 1'b0; b = 1'b0; cin = 1'b0;
#10 a = 1'b0; b = 1'b0; cin = 1'b1;
#10 a = 1'b0; b = 1'b1; cin = 1'b0;
#10 a = 1'b0; b = 1'b1; cin = 1'b1;

#10 a = 1'b1; b = 1'b0; cin = 1'b0;
#10 a = 1'b1; b = 1'b0; cin = 1'b1;
#10 a = 1'b1; b = 1'b1; cin = 1'b0;
#10 a = 1'b1; b = 1'b1; cin = 1'b1;
#10 $stop;

end

//instantiate the module into the test bench
udp_full_adder3 inst1 (

.a(a),

.b(b),

.cin(cin),

.sum(sum),

.cout(cout)
);

endmodule
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Figure 1.48 Outputs for the full adder of Figure 1.45.

1.3 Dataflow Modeling
Loop statements are covered in detail in Section 1.4, but will be briefly described in
this section in order to minimize the code in test benches.  The keyword for is used to
specify a loop.  The for loop repeats the execution of a procedural statement or a block
of procedural statements a specified number of times — a procedural statement is a
synonym for instruction.  The for loop is used when there is a specified beginning and
end to the loop.  The format and function of a for loop is similar to the for loop used
in the C programming language.  The parentheses following the keyword for contain
three expressions separated by semicolons, as shown below.

for (register initialization; test condition; update register control variable)
procedural statement or block of procedural statements

Gate-level modeling is an intuitive approach to digital design because it corre-
sponds one-to-one with conventional digital logic design at the gate level.  Dataflow
modeling, however, is at a higher level of abstraction than gate-level modeling.
Design automation tools are used to create gate-level logic from dataflow modeling by
a process called logic synthesis.  Register transfer level (RTL) is a combination of
dataflow modeling and behavioral modeling — behavioral modeling is presented in
Section 1.4 — and characterizes the flow of data through logic circuits.

1.3.1  Continuous Assignment

The continuous assignment statement models dataflow behavior and is used to design
combinational logic without using gates and interconnecting nets.  Continuous assign-
ment statements provide a Boolean correspondence between the right-hand side
expression and the left-hand side target.  The continuous assignment statement uses

a b cin = 000, cout = 0, sum = 0
a b cin = 001, cout = 0, sum = 1
a b cin = 010, cout = 0, sum = 1
a b cin = 011, cout = 1, sum = 0

a b cin = 100, cout = 0, sum = 1
a b cin = 101, cout = 1, sum = 0
a b cin = 110, cout = 1, sum = 0
a b cin = 111, cout = 1, sum = 1
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the keyword assign and has the following syntax with optional drive strength and
delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The continuous assignment statement assigns a value to a net (wire) that has been
previously declared — it cannot be used to assign a value to a register.  Therefore, the
left-hand target must be a scalar or vector net or a concatenation of scalar and vector
nets.  The operands on the right-hand side can be registers, nets, or function calls.  The
registers and nets can be declared as either scalars or vectors.

The following are examples of continuous assignment statements for scalar nets:

assign z1 = x1  & x2 & x3 ; z1 = x1  AND x2  AND x3
assign z1 = x1  ^ x2 ; z1 = x1  XOR x2
assign z1 = (x1  & x2) | x3; z1 = (x1  AND x2) OR x3

The assign statement continuously monitors the right-hand side expression.  If a
variable changes value, then the expression is evaluated and the result is assigned to
the target after any specified delay.  If no delay is specified, then the default delay is
zero.  The drive strength defaults to strong0 and strong1.  The continuous assignment
statement can be considered to be a form of behavioral modeling, because the behavior
of the circuit is specified, not the implementation.

Example 1.9 This example designs a 3-input AND gate using dataflow modeling
which incorporates the continuous assignment statement.  The AND function is also
called the conjunction of two or more variables.  The design module is shown in Figure
1.49, the test bench module is shown Figure 1.50, the outputs are shown in Figure
1.51, and the waveforms are shown in Figure 1.52.

Figure 1.49 Module for a 3-input AND gate using continuous assignment.

//3-input AND gate using dataflow
module and3a_df (x1, x2, x3, z1);

input x1, x2, x3;
output z1;

//signals can be optionally declared as wire for dataflow
wire x1, x2, x3;
wire z1;

//use continuous assignment
assign z1 = x1 & x2 & x3;

endmodule
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Figure 1.50 Test bench for the module of Figure 1.49.

Figure 1.51 Outputs for the 3-input AND gate using continuous assignment.

Figure 1.52 Waveforms for the 3-input AND gate using continuous assignment.

//test bench for the 3-input AND gate
module and3a_df_tb;
reg x1, x2, x3; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin : apply_stimulus //colon followed by a name
reg [3:0] invect;

for (invect = 0; invect < 8; invect = invect + 1)
begin

{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b, z1 = %b", {x1, x2, x3}, z1);

end
end

and3a_df inst1 ( //instantiate the module into the test bench
.x1(x1),
.x2(x2),
.x3(x3),
.z1(z1)
);

endmodule

x1 x2 x3 = 000, z1 = 0
x1 x2 x3 = 001, z1 = 0
x1 x2 x3 = 010, z1 = 0
x1 x2 x3 = 011, z1 = 0
 

x1 x2 x3 = 100, z1 = 0
x1 x2 x3 = 101, z1 = 0
x1 x2 x3 = 110, z1 = 0
x1 x2 x3 = 111, z1 = 1
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Example 1.10 A comparator will be designed that compares two 2-bit binary oper-
ands x1x2  and x3x4  and generates a high output for z1 whenever x1x2   x3x4 .  The
comparator will be designed as a product of sums using NOR logic.  A product of sums
is an expression in which at least one term does not contain all the variables; that is, at
least one term is a proper subset of the possible variables or their complements.  For
example, the equation shown below is a product of sums for the function z1, because
the second term does not contain the variable x1.

The minimal product-of-sums expression can be obtained by combining 0s in a
Karnaugh map to form sum terms in the same manner as 1s are combined to form
product terms.  However, since 0s are being combined, each sum term must equal 0.
When combining 0s to obtain sum terms, treat a variable value of 1 as false and a vari-
able value of 0 as true.

The Karnaugh map that represents the comparator is shown in Figure 1.53.  The
product-of-sums equation obtained from the Karnaugh map is shown in Equation 1.6.
The logic diagram using NOR gates is shown in Figure 1.54. The design module is
shown in Figure 1.55, the test bench module is shown in Figure 1.56, the outputs are
shown in Figure 1.57, and the waveforms are shown in Figure 1.58.

Figure 1.53 Karnaugh map for the 2-bit comparator of Example 1.10.

z1(x1 , x2, x3) = (x1 '  + x2  + x3) (x2 '  + x3 ') (x1  + x2  + x3)

 0 0      0 1     1 1     1 0

0 0      1         0        0         0

0 1      1         1        0         0

1 1      1         1        1         1

1 0      1         1        0         1

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

z1 = (x1  + x3' )(x1  + x2 + x4' )(x2  + x3'  + x4' ) (1.6)
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Figure 1.54 Logic diagram for the comparator of Example 1.10 that is imple-
mented as a product of sums.

Figure 1.55 Design module for the comparator of Example 1.10 using NOR logic.

Figure 1.56 Test bench for the comparator of Example 1.10 using NOR logic.

+x1
–x3

+x2–x4
+z1

net1

net2

net3

//dataflow for 2-bit comparator using nor logic
module comparator2a_nor (x1, x2, x3, x4, z1);

input x1, x2, x3, x4; //define inputs and outputs
output z1;

//define inputs and output as wire
wire x1, x2, x3, x4;
wire z1;

//define internal nets
wire net1, net2, net3;

//define z1 using continuous assignment
assign net1 = ~(x1 | ~x3),

net2 = ~(x1 | x2 | ~x4),
net3 = ~(x2 | ~x3 | ~x4);

assign z1 = ~net1 & ~net2 & ~net3;

endmodule

//test bench for comparator2 using nor logic
module comparator2a_nor_tb;

reg x1, x2, x3, x4;
wire z1;

//continued on next page
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Figure 1.56       (Continued)

Figure 1.57 Outputs for the comparator of Example 1.10 using NOR logic.

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
comparator2a_nor inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0

x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 0

x1 x2 x3 x4 = 1000, z1 = 1
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 0

x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 1
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Figure 1.58 Waveforms for the comparator of Example 1.10 using NOR logic.

1.3.2  Reduction Operators

The reduction operators are: AND (&), NAND (~&), OR ( | ), NOR (~ | ), exclusive-
OR ( ^ ), and exclusive-NOR ( ^ ~ or ~ ^ ).  Reduction operators are unary operators;
that is, they operate on a single vector and produce a single-bit result.  Reduction op-
erators perform their respective operations on a bit-by-bit basis from right to left.  If
any bit in the operand is an unknown value (x) or a high impedance value (z), then the
result of the operation is an x.

reduction AND If any bit in the operand is 0, then the result is 0; otherwise, the re-
sult is 1.  For example, let x1  be the vector shown below.

The reduction AND (& x1) operation is equivalent to the following operation:

1 & 1 & 1 & 0 & 1 & 0 & 1 & 1

which returns a result of 0.

reduction NAND If any bit in the operand is 0, then the result is 1; otherwise, the
result is 0.  For a vector x1 , the reduction NAND (~& x1) is the inverse of the reduction
AND operator.

reduction OR If any bit in the operand is 1, then the result is 1; otherwise, the re-
sult is 0.  For example, let x1  be the vector shown below.

1 1 1 0 1 0 1 1
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The reduction OR ( | x1) operation is equivalent to the following operation:

1 | 1 | 1 | 0 | 1 | 0 | 1 | 1

which returns a result of 1.

reduction NOR If any bit in the operand is 1, then the result is 0; otherwise, the re-
sult is 1.  For a vector x1 , the reduction NOR (~ | x1) is the inverse of the reduction OR
operator.

reduction exclusive-OR If there is an even number of 1s in the operand, then the
result is 0; otherwise, the result is 1.   For example, let x1  be the vector shown below.

The reduction exclusive-OR (^ x1) operation is equivalent to the following operation:

1 ^ 1 ^ 1 ^ 0 ^ 1 ^ 0 ^ 1 ^ 1

which returns a result of 0.  The reduction exclusive-OR operator can be used as an
even parity generator.

reduction exclusive-NOR If there is an odd number of 1s in the operand, then
the result is 0; otherwise, the result is 1.  For a vector x1, the reduction exclusive-NOR
( ^ ~ x1) is the inverse of the reduction exclusive-OR operator.  The reduction exclu-
sive-NOR operator can be used as an odd parity generator.

Example 1.11 Figure 1.59 contains a module that illustrates the coding of the reduc-
tion operators.  The test bench, outputs, and waveforms are shown in Figure 1.60, Fig-
ure 1.61, and Figure 1.62, respectively.

Figure 1.59 Design module to illustrate the utilization of the reduction operators.

1 1 1 0 1 0 1 1

1 1 1 0 1 0 1 1

//module to illustrate the use of reduction operators
module reduction2 (a, red_and, red_nand, red_or, red_nor,

red_xor, red_xnor);
input [7:0] a;
output red_and, red_nand, red_or, red_nor, red_xor, red_xnor;

//continued on next page
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Figure 1.59       (Continued)

Figure 1.60 Test bench for the reduction operator module of Figure 1.59.

wire [7:0] a;
wire red_and, red_nand, red_or, red_nor, red_xor, red_xnor;

assign red_and  = &a, //reduction AND
red_nand = ~&a, //reduction NAND
red_or   = |a, //reduction OR
red_nor  = ~|a, //reduction NOR
red_xor  = ^a, //reduction exclusive-OR
red_xnor = ^~a; //reduction exclusive-NOR

endmodule

//test bench for reduction2 module
module reduction2_tb;

reg [7:0] a;
wire red_and, red_nand, red_or, red_nor, red_xor, red_xnor;

initial
$monitor ("a=%b, red_and=%b, red_nand=%b,

red_or=%b, red_nor=%b,
red_xor=%b, red_xnor=%b",
a, red_and, red_nand, red_or, red_nor,
red_xor, red_xnor);

//apply input vectors
initial
begin

#0 a = 8'b0011_0011;
#10 a = 8'b1101_0011;
#10 a = 8'b0000_0000;
#10 a = 8'b0000_0001;
#10 a = 8'b0001_0000;
#10 a = 8'b0011_1100;
#10 a = 8'b1111_0000;
#10 a = 8'b0100_1111;
#10 a = 8'b1101_1111;
#10 a = 8'b1111_1111;
#10 a = 8'b0111_1111;

#10 $stop;
end //continued on next page
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Figure 1.60       (Continued)

Figure 1.61 Outputs for the reduction operator module of Figure 1.59.

//instantiate the module into the test bench
reduction2 inst1 (

.a(a),

.red_and(red_and),

.red_nand(red_nand),

.red_or(red_or),

.red_nor(red_nor),

.red_xor(red_xor),

.red_xnor(red_xnor)
);

endmodule

a=00110011, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=11010011, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=00000000, red_and=0, red_nand=1, red_or=0,
red_nor=1, red_xor=0, red_xnor=1

a=00000001, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=00010000, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=00111100, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=11110000, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=01001111, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=11011111, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=11111111, red_and=1, red_nand=0, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=01111111, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=10101010, red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1
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Figure 1.62 Waveforms for the reduction operator module of Figure 1.59.

1.3.3  Conditional Operator

The conditional operator (? :) has three operands, as shown in the syntax below.  The
conditional_expression is evaluated.  If the result is true (1), then the true_expression
is evaluated; if the result is false (0), then the false_expression is evaluated.

conditional_expression ? true_expression : false_expression;

  The conditional operator can be used when one of two expressions is to be se-
lected.  For example, in the statement below, if x1  is greater than or equal to x2, then
z1 is assigned the value of x3 ; if x1  is less than x2 , then z1 is assigned the value of x4 .

z1 = (x1 > = x2) ? x3 : x4;

Since the conditional operator selects one of two values, depending on the result of
the conditional_expression evaluation, the operator can be used in place of the if . . .
else construct.  The if . . . else construct is presented in Section 1.47 entitled, Condi-
tional Statements.
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Conditional operators can be nested; that is, each true_expression and each
false_expression can be a conditional operation, as shown below.  This is useful for
modeling a 4:1 multiplexer, as shown in Example 1.12.

conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
     : (cond_expr2 ? true_expr2 : false_expr2);

Example 1.12 A 4:1 multiplexer will be designed using the conditional operator.
This design will declare the multiplexer inputs as scalars instead of vectors.  The select
inputs are: s0  and s1 ; the data inputs are: in0, in1, in2, and in3; the output is: out.  The
design module is shown in Figure 1.63.  The assign statement is reproduced as shown
below.

assign out = s1 ? (s0 ? in3 : in2) : (s0 ? (in1 : in0);

The assign statement functions as shown below.

The test bench is shown in Figure 1.64.  The outputs and waveforms are shown in
Figure 1.65 and Figure 1.66, respectively.

Figure 1.63 Design module for the conditional operator.

s1 s0 out

0 0 in0

0 1 in1
1 0 in2
1 1 in3

//dataflow 4:1 mux using the conditional operator
module mux4to1_cond (s0, s1, in0, in1, in2, in3, out);

input s0, s1;
input in0, in1, in2, in3;
output out;

//use nested conditional operator
assign out = s1 ? (s0 ? in3 : in2) : (s0 ? in1 : in0);

endmodule
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Figure 1.64 Test bench module for the conditional operator.

Figure 1.65 Outputs for the conditional operator.

//mux4to1_cond test bench
module mux4to1_cond_tb;

reg in0, in1, in2, in3, s0, s1; //inputs are reg
wire out; //outputs are wire

initial //display signals
$monitor ("s1s0 = %b, in0in1in2in3 = %b, out = %b",

{s1, s0}, {in0, in1, in2, in3}, out);

initial //apply stimulus
begin

#0 s1 = 1'b0;s0 = 1'b0;
in0 = 1'b0;in1 = 1'b1;in2 = 1'b1;in3 = 1'b1;

#10 s1 = 1'b0;s0 = 1'b1;
in0 = 1'b0;in1 = 1'b1;in2 = 1'b1;in3 = 1'b0;

#10 s1 = 1'b1;s0 = 1'b0;
in0 = 1'b1;in1 = 1'b0;in2 = 1'b0;in3 = 1'b1;

#10 s1 = 1'b1;s0 = 1'b1;
in0 = 1'b0;in1 = 1'b1;in2 = 1'b0;in3 = 1'b1;

#10 $stop;
end

mux4to1_cond inst1 ( //instantiate the module
.s0(s0),
.s1(s1),
.in0(in0),
.in1(in1),
.in2(in2),
.in3(in3),
.out(out)
);

endmodule

s1 s0 = 00, in0 in1 in2 in3 = 0111, out = 0
s1 s0 = 01, in0 in1 in2 in3 = 0110, out = 1
s1 s0 = 10, in0 in1 in2 in3 = 1001, out = 0
s1 s0 = 11, in0 in1 in2 in3 = 0101, out = 1
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Figure 1.66 Waveforms for the conditional operator.

1.3.4  Relational Operators

Relational operators compare operands and return a Boolean result, either 1 (true) or 0
(false) indicating the relationship between the two operands.  There are four relational
operators: greater than (>), less than (<), greater than or equal (> = ), and less than or
equal (<=).

If the relationship is true, then the result is 1; if the relationship is false, then the re-
sult is 0.  Net or register operands are treated as unsigned values; real or integer oper-
ands are treated as signed values.  An x or z in any operand returns a result of x.  When
the operands are of unequal size, the smaller operand is zero-extended to the left.

Example 1.13 Figure 1.67 illustrates a design module showing examples of relation-
al operators using dataflow modeling.  The identifier gt means greater than, gte means
greater than or equal, lt means less than, and lte means less than or equal.  The test
bench, which applies several different values to the two operands, is shown in Figure
1.68.  The outputs and waveforms are shown in Figure 1.69 and Figure 1.70, respec-
tively.

Figure 1.67 Design module to illustrate the relational operators.

//relational operations
module relational_ops2 (a, b, gt, gte, lt, lte);

input [3:0] a, b;
output gt, gte, lt, lte; //continued on next page
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Figure 1.67       (Continued)

Figure 1.68 Test bench for the relational operators module of Figure 1.67.

//implement the relational operators using the assign statement
assign gt = a > b,

gte = a >= b,
lt = a < b,
lte = a <= b;

endmodule

//test bench for relational operations
module relational_ops2_tb;

reg [3:0] a, b; //inputs are reg for test benches
wire gt, gte, lt, lte; //outputs are wire for test benches

//display variables
initial
$monitor ("a=%b, b=%b, gt=%b, gte=%b, lt=%b, lte=%b",

a, b, gt, gte, lt, lte);

//apply input vectors
initial
begin

#0 a = 4'b0000; b = 4'b0000;
#10 a = 4'b1111; b = 4'b1111;
#10 a = 4'b0011; b = 4'b0001;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1100; b = 4'b1101;
#10 a = 4'b1010; b = 4'b1001;
#10 a = 4'b1000; b = 4'b1011;
#10 a = 4'b1000; b = 4'b0100;

#10 $stop;
end

//instantiate the module into the test bench
relational_ops2 inst1 (

.a(a),

.b(b),

.gt(gt),

.gte(gte),

.lt(lt),

.lte(lte)
);

endmodule
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Figure 1.69 Outputs for the relational operators test bench.

Figure 1.70 Waveforms for the relational operators test bench.

1.3.5  Logical Operators

There are three logical operators: the binary logical AND operator (&&), the binary
logical OR operator ( | | ), and the unary logical negation operator (!).  Logical opera-
tors evaluate to a logical 1 (true), a logical 0 (false), or an x (ambiguous).  If a logical
operation returns a nonzero value, then it is treated as a logical 1 (true); if a bit in an op-
erand is x or z, then it is ambiguous and is normally treated as a false condition.

If a vector operand is nonzero, then it is treated as a logical 1 (true); if a vector op-
erand is zero, then it is treated as a logical 0 (false).  For example, let vector a = 1000
and vector b = 1001.  Then a && b returns a value of 1, because both vector a and vec-
tor b are true.  Similarly, a | | b returns a value of 1.  However, since vector a is nonzero
(true), then !a is zero (false).

a=0000, b=0000, gt=0, gte=1, lt=0, lte=1
a=1111, b=1111, gt=0, gte=1, lt=0, lte=1
a=0011, b=0001, gt=1, gte=1, lt=0, lte=0
a=1110, b=1111, gt=0, gte=0, lt=1, lte=1

a=1100, b=1101, gt=0, gte=0, lt=1, lte=1
a=1010, b=1001, gt=1, gte=1, lt=0, lte=0
a=1000, b=1011, gt=0, gte=0, lt=1, lte=1
a=1000, b=0100, gt=1, gte=1, lt=0, lte=0
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Example 1.14 The design module of Figure 1.71 shows examples of the logical op-
erators using dataflow modeling.  Figure 1.72, Figure 1.73, and Figure 1.74 show the
test bench, outputs, and waveforms, respectively.  Refer to Figure 1.71 and assume
that vector a = 0110 and vector b = 1100.  The logical operation of a && b returns a
value of 1, because both a and b are nonzero (true).

Now assume that a = 0101 and b = 0000.  Thus, z1 = a && b = 1 && 0, which re-
turns a value of 0, because 1 && 0 = 0 — a is true and b is false.  Output z2 , however,
is equal to 1, because z2 = a | | b = 1 | | 0 = 1.  In a similar manner, z3  = !a = !1 = 0, be-
cause a is true.

As a final example, assume that a = 0000 and b = 0000; that is, both variables are
false.  Therefore, z1 = a && b = 0 && 0, which returns a value of 0, because 0 && 0
= 0.  Output z2  = a | | b = 0 | | 0 = 0.  In a similar manner, z3  = !a = !0 = 1.  If a bit in
either operand is x, then the result of a logical operation is x.  Also, !x is x.

Figure 1.71 Design module to illustrate the application of the logical operators.

Figure 1.72 Test bench for the logical operators.

//examples of logical operators
module logical_ops (a, b, z1, z2, z3);

input [3:0] a, b;
output z1, z2, z3;

//perform the logical operations
assign z1 = a && b, //logical and

z2 = a || b, //logical or
z3 = !a; //logical negation

endmodule

//test bench for the logical operators
module logical_ops_tb;

reg [3:0] a, b; //inputs are reg for test bench
wire z1, z2, z3; //outputs are wire for test bench

//display variables
initial
$monitor ("a = %b, b = %b, z1 = %b, z2 = %b, z3 = %b",

 a, b, z1, z2, z3);

//continued on next page
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Figure 1.72       (Continued)

Figure 1.73 Outputs for the logical operators.

//apply input vectors
initial
begin

#0 a = 4'b0110; b = 4'b1100;
#10 a = 4'b0101; b = 4'b0000;
#10 a = 4'b0000; b = 4'b0000;
#10 a = 4'b1000; b = 4'b1001;

#10 a = 4'b1111; b = 4'b1111;
#10 a = 4'b0000; b = 4'b0001;
#10 a = 4'b0111; b = 4'b0111;

#10 $stop;
end

//instantiate the module into the test bench
logical_ops inst1 (

.a(a),

.b(b),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule

z1 = &&, z2 = ||, z3 = !

a = 0110, b = 1100, z1 = 1, z2 = 1, z3 = 0

a = 0101, b = 0000, z1 = 0, z2 = 1, z3 = 0

a = 0000, b = 0000, z1 = 0, z2 = 0, z3 = 1

a = 1000, b = 1001, z1 = 1, z2 = 1, z3 = 0

a = 1111, b = 1111, z1 = 1, z2 = 1, z3 = 0

a = 0000, b = 0001, z1 = 0, z2 = 1, z3 = 1

a = 0111, b = 0111, z1 = 1, z2 = 1, z3 = 0
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Figure 1.74 Waveforms for the logical operators.

1.3.6  Bitwise Operators

The bitwise operators are: AND (&), OR ( | ), negation (~), exclusive-OR (^), and ex-
clusive-NOR ( ^ ~ or ~ ^).  The bitwise operators perform logical operations on the op-
erands on a bit-by-bit basis and produce a vector result.  Except for negation, each bit
in one operand is associated with the corresponding bit in the other operand.  If one op-
erand is shorter, then it is zero-extended to the left to match the length of the longer op-
erand.

The bitwise AND operator and the bitwise OR operator perform their respective
functional operations on two operands on a bit-by-bit basis.  Examples of the bitwise
AND operator and the bitwise OR operator are shown below.

0 0 1 1 0 1 1 0
&) 1 1 1 1 0 1 0 1

0 0 1 1 0 1 0 0

1 0 0 1 0 1 1 0
| ) 0 1 0 1 0 1 0 1

1 1 0 1 0 1 1 1
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The bitwise negation operator performs the negation function on one operand on
a bit-by-bit basis.  Each bit in the operand is inverted.  An example of the bitwise ne-
gation operator is shown below.

The bitwise exclusive-OR operator and the bitwise exclusive-NOR operator per-
form their respective functional operations on two operands on a bit-by-bit basis.  Ex-
amples of the bitwise exclusive-OR operator and the bitwise exclusive-NOR operator
are shown below.

Bitwise operators perform operations on  operands on a bit-by-bit basis and pro-
duce a vector result.  This is in contrast to logical operators, which perform operations
on the operands in such a way that the truth or falsity of the result is determined by the
truth or falsity of the operands.  That is, the logical AND operator returns a value of 1
(true) only if both operands are nonzero (true); otherwise, it returns a value of 0 (false).
If the result is ambiguous, it returns a value of x.

The logical OR operator returns a value of 1 (true) if either or both operands are
true; otherwise, it returns a value of 0.  The logical negation operator returns a value of
1 (true) if the operand has a value of zero and a value of 0 (false) if the operand is non-
zero.

Example 1.15 Figure 1.75 shows a design module to illustrate the use of the five bit-
wise operators.  The test bench is shown in Figure 1.76, which includes one case where
the operands are of different lengths.  The outputs and waveforms are shown in Figure
1.77 and Figure 1.78, respectively.

Figure 1.75 Module to illustrate using the five bitwise operators.

~ ) 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

0 0 1 1 0 1 1 0
^ ) 1 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1

1 0 1 1 0 1 0 0
^ ~ ) 1 1 0 1 0 1 0 1

1 0 0 1 1 1 1 0

//dataflow example of the five bitwise operators
module bitwise2 (a, b, and_rslt, or_rslt, neg_rslt,

xor_rslt, xnor_rslt);

//continued on next page
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Figure 1.75       (Continued)

Figure 1.76 Test bench for the five bitwise operators.

//define inputs and outputs
input [7:0] a, b;
output [7:0] and_rslt, or_rslt, neg_rslt, xor_rslt, xnor_rslt;

wire [7:0] a, b;
wire [7:0] and_rslt, or_rslt, neg_rslt, xor_rslt, xnor_rslt;

//define outputs using continuous assignment
assign and_rslt = a & b, //bitwise AND

or_rslt = a | b, //bitwise OR
neg_rslt = ~a, //bitwise negation
xor_rslt = a ^ b, //bitwise exclusive-OR
xnor_rslt = a ^~ b; //bitwise exclusive-NOR

endmodule

//test bench for bitwise2 module
module bitwise2_tb;

reg [7:0] a, b;
wire [7:0] and_rslt, or_rslt, neg_rslt, xor_rslt, xnor_rslt;

initial
$monitor ("a=%b, b=%b, and_rslt=%b, or_rslt=%b, neg_rslt=%b,

xor_rslt=%b, xnor_rslt=%b",
a, b, and_rslt, or_rslt, neg_rslt,
xor_rslt, xnor_rslt);

//apply input vectors
initial
begin

#0 a = 8'b1100_0011;
b = 8'b1001_1001;

#10 a = 8'b1001_0011;
b = 8'b1101_1001;

#10 a = 8'b0000_1111;
b = 8'b1101_1001;

//continued on next page
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Figure 1.76       (Continued)

#10 a = 8'b0100_1111;
b = 8'b1101_1001;

#10 a = 8'b1100_1111;
b = 8'b1101_1001;

#10 a = 8'b0000_0001;
b = 8'b1000_0001;

#10 a = 8'b0000_0000;
b = 8'b0000_0000;

#10 a = 8'b1111_1111;
b = 8'b1111_1111;

#10 a = 8'b1010_1010;
b = 8'b1010_1010;

#10 a = 8'b0101_0101;
b = 8'b0101_0101;

#10 a = 8'b0111_0101;
b = 4'b0101;

#10 $stop;
end

//instantiate the module into the test bench
bitwise2 inst1 (

.a(a),

.b(b),

.and_rslt(and_rslt),

.or_rslt(or_rslt),

.neg_rslt(neg_rslt),

.xor_rslt(xor_rslt),

.xnor_rslt(xnor_rslt)
);

endmodule
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Figure 1.77 Outputs for the five bitwise operators.

 a = 11000011,
 b = 10011001,

and_rslt = 10000001,
or_rslt = 11011011,
neg_rslt = 00111100,
xor_rslt = 01011010,
xnor_rslt= 10100101

------------------------------------------------------------
 a = 10010011,
 b = 11011001,

and_rslt = 10010001,
or_rslt = 11011011,
neg_rslt = 01101100,
xor_rslt = 01001010,
xnor_rslt= 10110101

------------------------------------------------------------
 a = 00001111,
 b = 11011001,

and_rslt = 00001001,
or_rslt = 11011111,
neg_rslt = 11110000,
xor_rslt = 11010110,
xnor_rslt= 00101001

------------------------------------------------------------
 a = 01001111,
 b = 11011001,

and_rslt = 01001001,
or_rslt = 11011111,
neg_rslt = 10110000,
xor_rslt = 10010110,
xnor_rslt= 01101001

------------------------------------------------------------
 a = 11001111,
 b = 11011001,

and_rslt = 11001001,
or_rslt = 11011111,
neg_rslt = 00110000,
xor_rslt = 00010110,
xnor_rslt= 11101001

//continued on next page
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Figure 1.77       (Continued)

 a = 00000001,
 b = 10000001,

and_rslt = 00000001,
or_rslt = 10000001,
neg_rslt = 11111110,
xor_rslt = 10000000,
xnor_rslt= 01111111

------------------------------------------------------------
 a = 00000000,
 b = 00000000,

and_rslt = 00000000,
or_rslt = 00000000,
neg_rslt = 11111111,
xor_rslt = 00000000,
xnor_rslt= 11111111

------------------------------------------------------------
 a = 11111111,
 b = 11111111,

and_rslt = 11111111,
or_rslt = 11111111,
neg_rslt = 00000000,
xor_rslt = 00000000,
xnor_rslt= 11111111

------------------------------------------------------------
 a = 10101010,
 b = 10101010,

and_rslt = 10101010,
or_rslt = 10101010,
neg_rslt = 01010101,
xor_rslt = 00000000,
xnor_rslt= 11111111

------------------------------------------------------------
 a = 01010101,
 b = 01010101,

and_rslt = 01010101,
or_rslt = 01010101,
neg_rslt = 10101010,
xor_rslt = 00000000,
xnor_rslt= 11111111

------------------------------------------------------------

//continued on next page
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Figure 1.77       (Continued)

Figure 1.78 Waveforms for the five bitwise operators.

1.3.7  Shift Operators

The shift operators shift a single vector operand left or right a specified number of bit
positions.  These are logical shift operations, not algebraic; that is, as bits are shifted
left or right, zeroes fill in the vacated bit positions.  The bits shifted out of the operand
are lost; they do not rotate to the high-order or low-order bit positions of the shifted op-
erand.  If the shift amount evaluates to x or z, then the result of the operation is x.

 a = 01110101,
 b = 00000101,

and_rslt = 00000101,
or_rslt = 01110101,
neg_rslt = 10001010,
xor_rslt = 01110000,
xnor_rslt= 10001111
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There are two shift operators, as shown below.  The value in parentheses is the number
of bits that the operand is shifted.

<< (Left-shift amount)
>> (Right-shift amount)

When an operand is shifted left, this is equivalent to a multiply-by-two operation
for each bit position shifted.  When an operand is shifted right, this is equivalent to a
divide-by-two operation for each bit position shifted.  The shift operators are useful to
model the sequential add-shift multiplication algorithm and the sequential shift-sub-
tract division algorithm.

Example 1.16 The design module illustrating examples of the shift-left and shift-
right operators using dataflow modeling is shown in Figure 1.79.  The shift-left oper-
ator shifts the bits two and four bit positions; the shift-right operator shifts the bits one
and three bit positions.  The test bench module is shown in Figure 1.80.  The outputs
and waveforms are shown in Figure 1.81 and Figure 1.82, respectively.

Figure 1.79 Design module to illustrate the shift-left and shift-right operators.

Figure 1.80 Test bench for the shift-left and shift-right operators.

//dataflow module to illustrate the shift operators
module shift2 (a, b, a_rslt2, a_rslt4, b_rslt1, b_rslt3);

//define inputs and outputs
input [11:0] a, b;
output [11:0] a_rslt2, a_rslt4, b_rslt1, b_rslt3;

//define inputs and outputs as wire
wire a, b;
wire a_rslt2, a_rslt4, b_rslt1, b_rslt3;

//define outputs using continuous assignment
assign a_rslt2 = a << 2, //multiply by 4

a_rslt4 = a << 4, //multiply by 16

b_rslt1 = b >> 1, //divide by 2
b_rslt3 = b >> 3; //divide by 8

endmodule

//test bench for shift operators module
module shift2_tb;

reg [11:0] a, b;
wire [11:0] a_rslt2, a_rslt4, b_rslt1, b_rslt3;  //next page



1.3     Dataflow Modeling     61

Figure 1.80       (Continued)

//display variables
initial
$monitor ("a = %b, b = %b, a_rslt2 = %b, a_rslt4 = %b,

b_rslt1 = %b, b_rslt3 = %b",
a, b, a_rslt2, a_rslt4, b_rslt1, b_rslt3);

//apply input vectors
initial
begin

#0 a = 12'b0000_0000_0010; //2
b = 12'b0000_0000_1000; //8

#10 a = 12'b0000_0000_0110; //6
b = 12'b0000_0001_1000; //24

#10 a = 12'b0000_0000_1111; //15
b = 12'b0000_0011_1000; //56

#10 a = 12'b1111_1110_0000; //-32
b = 12'b0000_0000_0011; //3

#10 $stop;
end

//instantiate the module into the test bench
shift2 inst1 (

.a(a),

.b(b),

.a_rslt2(a_rslt2),

.a_rslt4(a_rslt4),

.b_rslt1(b_rslt1),

.b_rslt3(b_rslt3)
);

endmodule
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Figure 1.81 Outputs for the left-shift and right-shift operators.

a_rslt2 = a << 2, //multiply by 4
a_rslt4 = a << 4, //multiply by 16

b_rslt1 = b >> 1, //divide by 2
b_rslt3 = b >> 3; //divide by 8

------------------------------------------------------------
a = 000000000010, //a = 2

a_rslt2 = 000000001000, //a << 2 = 8; multiply by 4
a_rslt4 = 000000100000, //a << 4 = 32; multiply by 16

b = 000000001000, //b = 8

b_rslt1 = 000000000100, //b >> 1 = 4; divide by 2
b_rslt3 = 000000000001 //b >> 3 = 1; divide by 8
------------------------------------------------------------
a = 000000000110, //a = 6

a_rslt2 = 000000011000, //a << 2 = 24; multiply by 4
a_rslt4 = 000001100000, //a << 4 = 96; multiply by 16

b = 000000011000, //b = 24

b_rslt1 = 000000001100, //b >> 1 = 12; divide by 2
b_rslt3 = 000000000011 //b >> 3 = 3; divide by 8
------------------------------------------------------------
a = 000000001111, //a = 15

a_rslt2 = 000000111100, //a << 2 = 60; multiply by 4
a_rslt4 = 000011110000, //a << 4 = 240; multiply by 16

b = 000000111000, //b = 56

b_rslt1 = 000000011100, //b >> 1 = 28; divide by 2
b_rslt3 = 000000000111 //b >> 3 = 7; divide by 8
------------------------------------------------------------
a = 111111100000, //a = -32

a_rslt2 = 111110000000, //a << 2 = -128; multiply by 4
a_rslt4 = 111000000000, //a << 4 = -512; multiply by 16

b = 000000000011, //b = 3

b_rslt1 = 000000000001, //b >> 1 = 1; divide by 2
b_rslt3 = 000000000000 //b >> 3 = 0; divide by 8
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Figure 1.82 Waveforms for the left-shift and right-shift operators.

1.4 Behavioral Modeling
This section describes the behavior of a digital system and is not concerned with the
direct implementation of logic gates, but more with the architecture of the system.
This is an algorithmic approach to hardware implementation and represents a higher
level of abstraction than previous modeling methods.  Describing a module in behav-
ioral modeling is an abstraction of the functional operation of the design.  It does not
describe the implementation of the design at the gate level.

In previous sections, built-in primitives, user-defined primitives (UDPs), and
dataflow modeling were used to design hardware primarily at the gate level.  A Ver-
ilog module may contain a mixture of built-in primitives, UDPs, dataflow constructs,
and behavioral constructs.  The constructs in behavioral modeling closely resemble
those used in the C programming language.

A procedure is a series of operations taken to design a module.  A Verilog module
that is designed using behavioral modeling contains no internal structural details, it
simply defines the behavior of the hardware in an abstract, algorithmic description.
Verilog contains two structured procedure statements or behaviors: initial and al-
ways.  A behavior may consist of a single statement or a block of statements delimited
by the keywords begin . . . end.  A module may contain multiple initial and always
statements.  These statements are the basic statements used in behavioral modeling
and execute concurrently starting at time zero in which the order of execution is not
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important.  All other behavioral statements are contained inside these structured pro-
cedure statements.

1.4.1  Initial Statement

This section presents a recapitulation of the initial statement, which was originally
presented in Section 1.1.  All statements within an initial statement comprise an initial
block.  An initial statement executes only once beginning at time zero, then suspends
execution.  An initial statement provides a method to initialize and monitor variables
before the variables are used in a module; it is  also used to generate waveforms.  For
a given time unit, all statements within the initial block execute sequentially.  Execu-
tion or assignment is controlled by the # symbol, which is used to signify an optional
time unit for timing control and delays.  The syntax for an initial statement is shown
below.

initial [optional timing control] procedural statement or
    block of procedural statements

Each initial block executes concurrently at time zero and each block ends execu-
tion independently.  If there is only one procedural statement, then the statement does
not require the keywords begin . . . end.  However, if there are two or more procedural
statements, then they are delimited by the keywords begin . . . end.

Example 1.17 A module showing the use of the initial statement is shown in Figure
1.83, where the variables x1 , x2 , x3 , x4 , and x5  are initialized to specific values.  Seven
initial statements are used for both a single procedural statement and a block of pro-
cedural statements.  The outputs and waveforms are shown in Figure 1.84 and Figure
1.85, respectively.

Figure 1.83 Module to illustrate the use of the initial statement.

//module showing use of the initial keyword
module initial_ex (x1, x2, x3, x4, x5);

output x1, x2, x3, x4, x5;

reg x1, x2, x3, x4, x5;

//display variables
initial
$monitor ($time, " x1x2x3x4x5 = %b", {x1, x2, x3, x4, x5});

//continued on next page
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Figure 1.83       (Continued)

//initialize variables to 0
//multiple statements require begin . . . end
initial
begin

#0 x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;
x4 = 1'b0;
x5 = 1'b0;

end

//set x1
//single statement requires no begin . . . end
initial

#10 x1 = 1'b1;

//set x2 and x3
initial
begin

#10 x2 = 1'b1;
#10 x3 = 1'b1;

end

//set x4 and x5
initial
begin

#10 x4 = 1'b1;
#10 x5 = 1'b1;

end

//reset variables
initial
begin

#20 x1 = 1'b0;
#10 x2 = 1'b0;
#10 x3 = 1'b0;
#10 x4 = 1'b0;
#10 x5 = 1'b0;

end

//determine length of simulation
initial

#70 $finish;

endmodule
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Figure 1.84 Outputs for the initial module of Figure 1.83.

Figure 1.85 Waveforms for the initial module of Figure 1.83.

Figure 1.83 contains seven initial statements.  The first initial statement invokes
the system task $monitor, which causes the specified string (enclosed in quotation
marks) to be printed whenever a variable changes in the argument list (enclosed in
braces).  The $time system function returns the simulation time as a decimal number.

The second initial statement initializes all variables to zero.  The third initial
statement sets x1  at 10 time units.  Since all initial statements begin execution at time
zero, the fourth initial statement sets x2 at 10 time units also, and sets x3  at time 20
time units (#10 plus #10).  This can be seen in the waveforms of Figure 1.85.  Variable
x4  is set at 10 time units by the fifth initial statement, which also sets x5  at 20 time
units.  The sixth initial statement resets all variables.  The seventh initial statement in-
vokes the system task $finish, which causes the simulator to exit the module and re-
turn control to the operating system.

1.4.2  Always Statement

The always statement executes the behavioral statements within the always block re-
peatedly in a looping manner and begins execution at time zero.  Execution of the

0  x1x2x3x4x5 = 00000
10 x1x2x3x4x5 = 11010
20 x1x2x3x4x5 = 01111
30 x1x2x3x4x5 = 00111
40 x1x2x3x4x5 = 00011
50 x1x2x3x4x5 = 00001
60 x1x2x3x4x5 = 00000



1.4     Behavioral Modeling     67

statements continues indefinitely until the simulation is terminated.  The keywords
initial and always specify a behavior and the statements within a behavior are classi-
fied as behavioral or procedural.  The syntax for the always statement is shown be-
low.

always [optional timing control] procedural statement or
   block of procedural statements

An always statement is often used with an event control list — or sensitivity list —
to execute a sequential block.  When a change occurs to a variable in the sensitivity
list, the statement or block of statements in the always block is executed.  The key-
word or is used to indicate multiple events.  When one or more inputs change state, the
statement in the always block is executed.  The begin . . . end keywords are necessary
only when there is more than one behavioral statement.  Target variables used in an al-
ways statement are declared as type reg.

Example 1.18 A 5-input majority circuit will be designed that produces a high out-
put on z1 whenever the majority of inputs x1 , x2 , x3 , x4 , and x5  are at a logic 1, where
x5  is the low-order bit; otherwise, output z1 will be at a logic 0.  In order for there to be
a majority, there must be an odd number of inputs.  The circuit can be designed by plot-
ting the five variables on a Karnaugh map and inserting 1s in minterm locations in
which there are at least three 1s.  Then the groups of 1s are combined to form a min-
imized sum-of-products expression.  The 5-variable Karnaugh map is shown in Figure
1.86 and the resulting equation for the majority circuit is shown in Equation 1.7.

Figure 1.86 Karnaugh map for a 5-input majority circuit.

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      0         0        1         0

1 1      0         1        1         1

1 0      0         0        1         0

x1x2

x3x4

 0            2           6            4

 8         10         14         12

 

 24         26         30         28

 16         18          22         20

x5 = 0

 0 0      0 1     1 1     1 0

0 0      0         0        1         0

0 1      0         1        1         1

1 1      1         1        1         1

1 0      0         1        1         1

x1x2

x3x4

  1           3           7            5

  9          11         15         13

 

  25         27          31        29

 17         19         23         21

x5 = 1

z1

z1 = x3x4x5+ x2x3x5 + x2x4x5  + x1x3x5  + x1x4x5 + x1x2x3  + x1x2x4  +

 x2x3x4 + x1x3x4  + x1x2x5 (1.7)
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The behavioral design module using an always statement is shown in Figure 1.87.
The entry of #5 to the immediate right of the equal sign specifies that the output is
delayed by five time units to allow for the propagation delay — inertial delay — of the
AND gate.  The sensitivity list in the always statement lists the five inputs.  Whenever
one or more of the inputs changes value, the equation for z1 is executed.

The test bench is shown in Figure 1.88.  The system function $time obtains the
current simulation time that is displayed in the outputs of Figure 1.89 every seven time
units, as indicated by the #7 symbol immediately preceding the $display system task,
which prints the inputs and output variables specified in the argument list.  The wave-
forms are shown in Figure 1.90 and clearly show the propagation delay of five time
units that occurs when an input changes; that is, output z1 is asserted five time units
after an input changes value if the input vector results in a majority of inputs.

Figure 1.87 Design module for the 5-input majority circuit.

Figure 1.88 Test bench module for the 5-input majority circuit.

//behavioral 5-input majority circuit
module maj5_bh (x1, x2, x3, x4, x5, z1);

input x1, x2, x3, x4, x5;
output z1;

wire x1, x2, x3, x4, x5;
reg z1;

always @ (x1 or x2 or x3 or x4 or x5)
z1 = #5 (x3 & x4 & x5) | (x2 & x3 & x5) | (x2 & x4 & x5) |

  (x1 & x3 & x5) | (x1 & x4 & x5) | (x1 & x2 & x3) |
  (x1 & x2 & x4) | (x2 & x3 & x4) | (x1 & x3 & x4) |
  (x1 & x2 & x5);

endmodule

//test bench for the 5-input majority circuit
module maj5_bh_tb;

reg x1, x2, x3, x4, x5;
wire z1;

initial //apply vectors and display variables
begin: apply_stimulus

reg [5:0] invect;
for (invect=0; invect<32; invect=invect+1)

//continued on next page
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Figure 1.88       (Continued)

Figure 1.89 Outputs for the 5-input majority circuit.

begin
{x1, x2, x3, x4, x5} = invect [5:0];
#7 $display ($time, "input = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
maj5_bh inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.x5(x5),

.z1(z1)
);

endmodule 

7 input = 00000, z1 = 0
14 input = 00001, z1 = 0
21 input = 00010, z1 = 0
28 input = 00011, z1 = 0
35 input = 00100, z1 = 0
42 input = 00101, z1 = 0
49 input = 00110, z1 = 0
56 input = 00111, z1 = 1
63 input = 01000, z1 = 0
70 input = 01001, z1 = 0
77 input = 01010, z1 = 0
84 input = 01011, z1 = 1
91 input = 01100, z1 = 0
98 input = 01101, z1 = 1
105 input = 01110, z1 = 1
112 input = 01111, z1 = 1

119 input = 10000, z1 = 0
126 input = 10001, z1 = 0
133 input = 10010, z1 = 0
140 input = 10011, z1 = 1
147 input = 10100, z1 = 0
154 input = 10101, z1 = 1
161 input = 10110, z1 = 1
168 input = 10111, z1 = 1
175 input = 11000, z1 = 0
182 input = 11001, z1 = 1
189 input = 11010, z1 = 1
196 input = 11011, z1 = 1
203 input = 11100, z1 = 1
210 input = 11101, z1 = 1
217 input = 11110, z1 = 1
224 input = 11111, z1 = 1
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Figure 1.90 Waveforms for the 5-input majority circuit.

1.4.3  Intrastatement Delay

A procedural assignment may have an optional delay.  A delay appearing to the right
of an assignment operator is called an intrastatement delay.  It is the delay by which
the right-hand result is delayed before assigning it to the left-hand target.  In the ex-
ample below, the expression (x1 & x2) is evaluated, a delay of five time units is taken,
then the result is assigned to z1.

z1 = #5 (x1  & x2);

The statement evaluates the logical function x1  AND x2 , waits five time units,
then assigns the result to z1.  If no delay is specified in a procedural assignment, then
zero delay is the default delay and the assignment occurs immediately.

Example 1.19 This example will illustrate intrastatement delay for three operations:
a statement consisting of two AND gates and an exclusive-OR gate; a statement using
the conditional operator; and a statement for a 3-bit odd parity generator.  There are
three inputs: x1 , x2 , and x3 .  There are three outputs: z1, z2, and z3 , which are defined
as follows:

z1 = #2 (x1  & ~x2) ^ (~x1 & x3);
z2  = #3 (x1  > = x2) ? x2 : x3 ;
z3  = #4 ~(x1  ^ x2  ^ x3);

The behavioral module is shown in Figure 1.91 in which intrastatement delays are
assigned to the statements that generate z1, z2 , and z3.  The test bench module is shown

5
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in Figure 1.92 for all combinations of the inputs.  Figure 1.93 shows the outputs for z1,
z2 , and z3  based upon the definitions stated above.  The waveforms are shown in Fig-
ure 1.94, which show the delays for each output.  The values for the outputs are
unknown until their respective delays have taken place.  Since blocking assignments
are used, the delays are cumulative; that is, z1 receives its value two time units after the
inputs change, z2 receives its value at five time units, and z3  receives its value at nine
time units after the inputs change.

Figure 1.91 Design module to illustrate the intrastatement delay.

Figure 1.92 Test bench module for the intrastatement delay module.

//behavioral model to demonstrate intrastatement delay
module intra_stmt_dly5 (x1, x2, x3, z1, z2, z3);

input x1, x2, x3;
output z1, z2, z3;

reg z1, z2, z3;

always @ (x1 or x2 or x3)
begin

z1 = #2 (x1 & ~x2) ^ (~x1 & x3);
z2 = #3 (x1 >= x2) ? x2 : x3;
z3 = #4 ~(x1 ^ x2 ^ x3);

end
endmodule

//test bench for intrastatement delay
module intra_stmt_dly5_tb;

reg x1, x2, x3;
wire z1, z2, z3;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect=0; invect<8; invect=invect+1)

begin
{x1, x2, x3} = invect [3:0];
#10  $display ("x1 x2 x3 = %b,

z1 = %b, z2 = %b, z3 = %b",
{x1, x2, x3}, z1, z2, z3);

end
end //continued on next page
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Figure 1.92       (Continued)

Figure 1.93 Outputs for the intrastatement delay module.

Figure 1.94 Waveforms for the intrastatement delay module.

//instantiate the module into the test bench
intra_stmt_dly5 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule

x1 x2 x3 = 000, z1 = 0, z2 = 0, z3 = 1
x1 x2 x3 = 001, z1 = 1, z2 = 0, z3 = 0
x1 x2 x3 = 010, z1 = 0, z2 = 0, z3 = 0
x1 x2 x3 = 011, z1 = 1, z2 = 1, z3 = 1

x1 x2 x3 = 100, z1 = 1, z2 = 0, z3 = 0
x1 x2 x3 = 101, z1 = 1, z2 = 0, z3 = 1
x1 x2 x3 = 110, z1 = 0, z2 = 1, z3 = 1
x1 x2 x3 = 111, z1 = 0, z2 = 1, z3 = 0

2
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1.4.4  Interstatement Delay

An interstatement delay is the delay by which a statement’s execution is delayed; that
is, it is the delay between statements.  In the code segment shown in Equation 1.8,
when the first statement has completed execution, a delay of five time units is taken
before the second statement is executed.  If no delays are specified in a procedural
assignment, then there is zero delay in the assignment.

The behavioral module of Figure 1.95 illustrates the use of an interstatement delay
for Equation 1.8.  The test bench is shown in Figure 1.96, the outputs are shown in Fig-
ure 1.97, and the waveforms are  shown in Figure 1.98.

Figure 1.95 Design module to illustrate interstatement delay.

Figure 1.96 Test bench for the interstatement delay design module.

z1 = (x1 | x2) & x3

#5 z2  = ( x1  & x2) | x3 (1.8)

//behavioral module to illustrate interstatement delay
module inter_stmt_dly3 (x1, x2, x3, z1, z2);

input x1, x2, x3;
output z1, z2;

reg z1, z2;

always @ (x1 or x2 or x3)
begin

z1 = (x1 | x2) & x3;
#5 z2 = (x1 & x2) | x3;

end
endmodule

//test bench for interstatement delay
module inter_stmt_dly3_tb;

reg x1, x2, x3;
wire z1, z2;

//display variables
initial
$monitor ("x1 x2 x3 = %b, z1 = %b, z2 = %b",

{x1, x2, x3}, z1, z2);   //continued on next page
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Figure 1.96      (Continued)

Figure 1.97 Outputs for the interstatement delay module.

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
inter_stmt_dly3 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.z1(z1),

.z2(z2)
);

endmodule

z1 = (x1 | x2) & x3 z2 = (x1 & x2) | x3
The multiple x1 x2 x3 entries are the result of the interstate-
ment delay.  Observe the waveforms of Figure 1.98.
x1 x2 x3 = 000, z1 = 0, z2 = x
x1 x2 x3 = 000, z1 = 0, z2 = 0
x1 x2 x3 = 001, z1 = 0, z2 = 0
x1 x2 x3 = 001, z1 = 0, z2 = 1
x1 x2 x3 = 010, z1 = 0, z2 = 1
x1 x2 x3 = 010, z1 = 0, z2 = 0
x1 x2 x3 = 011, z1 = 1, z2 = 0
x1 x2 x3 = 011, z1 = 1, z2 = 1
x1 x2 x3 = 100, z1 = 0, z2 = 1
x1 x2 x3 = 100, z1 = 0, z2 = 0
x1 x2 x3 = 101, z1 = 1, z2 = 0
x1 x2 x3 = 101, z1 = 1, z2 = 1
x1 x2 x3 = 110, z1 = 0, z2 = 1
x1 x2 x3 = 111, z1 = 1, z2 = 1
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Figure 1.98 Waveforms for the interstatement delay module.

1.4.5  Blocking Assignments

A blocking procedural assignment completes execution before the next statement is
executed.  The assignment operator (=) is used for blocking assignments.  The right-
hand expression is evaluated, then the assignment is placed in an internal temporary
register called the event queue and scheduled for assignment.  If no time units are spec-
ified, then the scheduling takes place immediately.  The event queue is covered in Ap-
pendix A.

In the code segment below, an interstatement delay of two time units is specified
for the assignment to z2 .  The evaluation of z2 is delayed by the timing control; that is,
the expression for z2  will not be evaluated until the expression for z1 has been execut-
ed, plus two time units.  The execution of any of the following statements is blocked
until the assignment occurs.

#2 z1 = x1 & x2;
#2 z2 = x1 & x3;
#2 z3 = x2 & x3;

Example 1.20 The module of Figure 1.99 shows delayed blocking assignments for
the three statements shown above, each with an interstatement delay of two time units.
The blocking statement for z1 is assigned to be executed two time units  later  than the
current simulation time t at t + 2.  The right-hand side expression is evaluated at time
t + 2 and assigned to z1 at time t + 2.  The statement for z2  is evaluated at time t + 4,
then assigned to z2 .  The statement for z3  is evaluated at time t + 6, then assigned to z3 .

5
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The test bench is shown in Figure 1.100.  The outputs and waveforms are shown in
Figure 1.101 and Figure 1.102, respectively.  The waveforms show the delay for each
blocking statement.  Observe the waveforms for output z2 .  At 50 time units, both x1
and x3  are asserted.  However, since the delays are cumulative, output z2  is not assert-
ed until 54 time units.

Figure 1.99 Behavioral module to illustrate delayed blocking assignments.

Figure 1.100 Test bench for the delayed blocking assignments of Figure 1.99.

//example of blocking assignment
module blocking_7 (x1, x2, x3, z1, z2, z3);

input x1, x2, x3;
output z1, z2, z3;

reg z1, z2, z3;

always @ (x1 or x2 or x3)
begin

#2 z1 = x1 & x2;
#2 z2 = x1 & x3;
#2 z3 = x2 & x3;

end

endmodule

//test bench for blocking assignment
module blocking_7_tb;

reg x1, x2, x3;
wire z1, z2, z3;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b,

z1 = %b, z2 = %b, z3 = %b",
{x1, x2, x3}, z1, z2, z3);

end
end

//continued on next page
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Figure 1.100       (Continued)

Figure 1.101 Outputs for the delayed blocking assignments of Figure 1.99.

Figure 1.102 Waveforms for the delayed blocking assignments of Figure 1.99.

//instantiate the module into the test bench
blocking_7 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule

x1 x2 x3 = 000, z1 = 0, z2 = 0, z3 = 0
x1 x2 x3 = 001, z1 = 0, z2 = 0, z3 = 0
x1 x2 x3 = 010, z1 = 0, z2 = 0, z3 = 0
x1 x2 x3 = 011, z1 = 0, z2 = 0, z3 = 1
x1 x2 x3 = 100, z1 = 0, z2 = 0, z3 = 0
x1 x2 x3 = 101, z1 = 0, z2 = 1, z3 = 0
x1 x2 x3 = 110, z1 = 1, z2 = 0, z3 = 0
x1 x2 x3 = 111, z1 = 1, z2 = 1, z3 = 1

4
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1.4.6  Nonblocking Assignments

The assignment symbol (< =) is used to represent a nonblocking procedural assign-
ment.  Nonblocking assignments allow the scheduling of assignments without block-
ing execution of the following statements in a sequential procedural block.  A
nonblocking assignment is used to synchronize assignment statements so that they
appear to execute at the same time.

The Verilog simulator schedules a nonblocking assignment statement to execute,
then proceeds to the next statement in the block without waiting for the previous non-
blocking statement to complete execution.  That is, the right-hand expression is eval-
uated and the value is stored in the event queue and is scheduled to be assigned to the
left-hand target.  The assignment is made at the end of the current time step if there are
no intrastatement delays specified.

Nonblocking assignments are typically used to model several concurrent assign-
ments that are caused by a common event such as the low-to-high transition of a clock
pulse or a change to any variable in a sensitivity list (event control).  The order of the
assignments is irrelevant because the right-hand side evaluations are stored in the
event queue before any assignments are made.

Example 1.21 A behavioral module will be used to design a full adder using non-
blocking statements with intrastatement delays of 5 time units.  A full adder has three
scalar inputs: the augend a, the addend b, and the carry-in cin.  There are two outputs:
the sum designated as sum and the carry-out cout.  The truth table for a full adder is
shown in Table 1.1 for stagei.  The equations for sumi and couti are shown in Equation
1.9 and Equation 1.10, respectively.

sumi = ai  bi  cini–1     (1.9)

couti = aibi + ai cini–1 + bicini–1            (1.10)

Table 1.1  Truth Table for a Full Adder

ai bi cini–1 couti sumi

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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The behavioral module and test bench module are shown in Figure 1.103 and Fig-
ure 1.104, respectively.  The outputs and waveforms are shown in Figure 1.105 and
Figure 1.106, respectively.  The waveforms show that when an input changes value,
the outputs are delayed by the intrastatement delay of five time units, then the outputs
are displayed simultaneously, because of the nonblocking assignment.

Figure 1.103 Design module for a full adder using nonblocking assignments.

Figure 1.104 Test bench for the full adder of Figure 1.103.

//behavioral full adder using nonblocking assignments
module full_adder_nonblock (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

//inputs are wire in behavioral (optional)
wire a, b, cin;

//reg used in always block
reg sum, cout;

//initialize sum and cout to avoid Xs until #10
initial
begin

sum = 1'b0;
cout = 1'b0;

end

always @ (a or b or cin)
begin

sum  <= #5 (a ^ b ^ cin); //nonblocking statement
cout <= #5 ((a & b) | (a & cin) | (b & cin));

end
endmodule

//test bench for full adder using nonblocking statements
module full_adder_nonblock_tb;

reg a, b, cin;
wire sum, cout;

//apply stimulus and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

//continued on next page



80          Chapter  1     Introduction to Verilog HDL

Figure 1.104       (Continued)

Figure 1.105 Outputs for the full adder of Figure 1.103.

Figure 1.106 Waveforms for the full adder of Figure 1.103.

begin
{a, b, cin} = invect [3:0];
#10 $display ("a b cin = %b, cout = %b, sum = %b",

{a, b, cin}, cout, sum);
end

end

//instantiate the module into the test bench
full_adder_nonblock inst1 (

.a(a),

.b(b),

.cin(cin),

.sum(sum),

.cout(cout)
);

endmodule

a b cin = 000, cout = 0, sum = 0
a b cin = 001, cout = 0, sum = 1
a b cin = 010, cout = 0, sum = 1
a b cin = 011, cout = 1, sum = 0
a b cin = 100, cout = 0, sum = 1
a b cin = 101, cout = 1, sum = 0
a b cin = 110, cout = 1, sum = 0
a b cin = 111, cout = 1, sum = 1

5
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1.4.7  Conditional Statements

Conditional statements alter the flow within a behavior based upon certain conditions.
The choice among alternative statements depends on the Boolean value of an expres-
sion.  The alternative statements can be a single statement or a block of statements de-
limited by the keywords begin . . . end.  The keywords if and else are used in
conditional statements.  There are three categories of the conditional statement as
shown below.  A true value is 1 or any nonzero value; a false value is 0, x (unknown),
or z (high impedance).  If the evaluation is false, then the next expression in the activ-
ity flow is evaluated.

No else statement
if (expression) statement1; //if expression is true, then statement1 is executed.

One else statement //choice of two statements.  Only one is executed.
if (expression) statement1; //if expression is true, then statement1 is executed.
else statement2; //if expression is false, then statement2  is executed.

Nested if-else if statements //choice of multiple statements.  Only one is execut-
ed.

if (expression1) statement1; //if expression1 is true, then statement1 is executed.
else if (expression2) statement2; //if expression2 is true, then statement2 is executed.
else if (expression3) statement3; //if expression3 is true, then statement3 is executed.
else default statement;

Examples of the three categories are shown below.

//no else statement
if (x1  &  x2) z1 = 1;

//one else statement
if (rst_n = = 0)

ctr = 3'b000;
else ctr = next_count;

//nested if-else if
if (opcode = = 00)

z1 = x1  + x2 ;
else if (opcode = = 01)

z1 = x1  – x2 ;
else if (opcode = = 10)

z1 = x1  * x2 ;
else 

z1 = x1  / x2;
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Example 1.22 Figure 1.107 shows a behavioral design module using conditional
statements that utilize one alternative else statement to illustrate an application of the
four equations shown below.  The equations use both the logical operators and the
reduction operators.

z1 = x1  & x2
z2  = x2  | x3
z3  = x3  ^ x4
z4  = (x1  & x4) | | (x2  & x3)

Figure 1.108 shows the test bench that generates all 16 combinations of the four
inputs x1 , x2 , x3 , and x4  and displays the four outputs z1, z2 , z3 , and z4  for their respec-
tive equations.  Figure 1.109 and Figure 1.110 display the corresponding outputs and
waveforms, respectively.

Figure 1.107 Behavioral module using conditional statements.

//conditional statements using if ... else
module cond_stmt (x1, x2, x3, x4, z1, z2, z3, z4);

input x1, x2, x3, x4;
output z1, z2, z3, z4;

reg z1, z2, z3, z4;

always @ (x1 or x2)
begin

if (x1 & x2)
z1 = 1'b1;

else
z1 = 1'b0;

end

always @ (x2 or x3)
begin

if (x2 | x3)
z2 = 1'b1;

else
z2 = 1'b0;

end

always @ (x3 or x4)
begin

if (x3 ^ x4)
z3 = 1'b1;

else
z3 = 1'b0;

end //continued on next page
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Figure 1.107      (Continued)

Figure 1.108 Test bench for the module of Figure 1.107.

always @ (x1 or x2 or x3 or x4)
begin

if ((x1 & x4) || (x2 & x3))
z4 = 1'b1;

else
z4 = 1'b0;

end

endmodule

//test bench for conditional statements module
module cond_stmt_tb;

reg x1, x2, x3, x4;
wire z1, z2, z3, z4;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} = %b,

z1 = %b, z2 = %b, z3 = %b, z4 = %b",
{x1, x2, x3, x4}, z1, z2, z3, z4);

end
end

//instantiate the module into the test bench
cond_stmt inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1),

.z2(z2),

.z3(z3),

.z4(z4)
);

endmodule
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Figure 1.109 Outputs for the module of Figure 1.107.

Figure 1.110 Waveforms for the module of Figure 1.107.

z1 = x1 & x2;
z2 = x2 | x3;
z3 = x3 ^ x4;
z4 = (x1 & x4) || (x2 & x3)

{x1 x2 x3 x4} = 0000, z1 = 0, z2 = 0, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 0001, z1 = 0, z2 = 0, z3 = 1, z4 = 0
{x1 x2 x3 x4} = 0010, z1 = 0, z2 = 1, z3 = 1, z4 = 0
{x1 x2 x3 x4} = 0011, z1 = 0, z2 = 1, z3 = 0, z4 = 0

{x1 x2 x3 x4} = 0100, z1 = 0, z2 = 1, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 0101, z1 = 0, z2 = 1, z3 = 1, z4 = 0
{x1 x2 x3 x4} = 0110, z1 = 0, z2 = 1, z3 = 1, z4 = 1
{x1 x2 x3 x4} = 0111, z1 = 0, z2 = 1, z3 = 0, z4 = 1

{x1 x2 x3 x4} = 1000, z1 = 0, z2 = 0, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 1001, z1 = 0, z2 = 0, z3 = 1, z4 = 1
{x1 x2 x3 x4} = 1010, z1 = 0, z2 = 1, z3 = 1, z4 = 0
{x1 x2 x3 x4} = 1011, z1 = 0, z2 = 1, z3 = 0, z4 = 1

{x1 x2 x3 x4} = 1100, z1 = 1, z2 = 1, z3 = 0, z4 = 0
{x1 x2 x3 x4} = 1101, z1 = 1, z2 = 1, z3 = 1, z4 = 1
{x1 x2 x3 x4} = 1110, z1 = 1, z2 = 1, z3 = 1, z4 = 1
{x1 x2 x3 x4} = 1111, z1 = 1, z2 = 1, z3 = 0, z4 = 1
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1.4.8  Case Statement

When there are many paths from which to chose,  nested if . . . else if statements can be
cumbersome.  The case statement is an alternative to the if . . . else if construct and may
simplify the readability of the Verilog code.  The case statement is a multiple-way
conditional branch and contains the keywords case, endcase, and default.

It executes one of several different procedural statements depending on the com-
parison of an expression with a case item.  The case expression may be an expression
or a constant.  The case items are evaluated in the order in which they are listed.  The
expression and the case item are compared bit-by-bit and must match exactly.  The
statement that is associated with a case item may be a single procedural statement or a
block of statements delimited by the keywords begin . . . end.  In the event that there
is no match, the default statement is executed.  The endcase keyword terminates the
case statement.  The  case statement has the following syntax:

case (expression)
case_item1 : procedural_statement1;
case_item2 : procedural_statement2;
case_item3 : procedural_statement3;

.

.

.
case_itemn : procedural_statementn;
default : default_statement;

endcase

Example 1.23 Figure 1.111 shows a behavioral module using the case statement to
perform the following operations on two 3-bit operands, a[2:0] and b[2:0]: AND, OR,
XOR, NAND, NOR, XNOR, and NOT.  The test bench is shown in Figure 1.112,
where operand a[2:0] is assigned the values 000, 010, 100, and 110; operand b[2:0] is
assigned the values 001, 011, 101, and 111.  The outputs and waveforms are shown in
Figure 1.113 and Figure 1.114, respectively.

Figure 1.111 Behavioral module using the case statement for logical operations.

//behavioral using the case statement for logical operations
module case_log_ops (a, b, opcode, rslt);

input [2:0] a, b, opcode;
output [2:0] rslt;

wire [2:0] a, b, opcode; //inputs are wire (optional)
reg [2:0] rslt; //outputs are reg

//continued on next page
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Figure 1.111       (Continued)

Figure 1.112 Test bench for logical operations using the case statement.

parameter and_op = 3'b000, //define operation codes
or_op = 3'b001,
xor_op = 3'b010,
nand_op = 3'b011,
nor_op = 3'b100,
xnor_op = 3'b101,
not_op = 3'b110;

//perform the logical operations
always @(a or b or opcode)
begin

case (opcode)
and_op:  rslt = a & b;
or_op:   rslt = a | b;
xor_op:  rslt = a ^ b;
nand_op: rslt = ~(a & b);
nor_op:  rslt = ~(a | b);
xnor_op: rslt = ~(a ^ b);
not_op:  rslt = ~a;
default: rslt = 3'b000;

endcase
end
endmodule

//test bench for logical operations using the case statement
module case_log_ops_tb;

reg [2:0] a, b, opcode;
wire [2:0] rslt;

//display variables
initial
$monitor ("a = %b, b = %b, op = %b, rslt = %b",

a, b, opcode, rslt);

//apply input vectors
initial
begin
//and operation

#0   a = 3'b000; b = 3'b001; opcode = 3'b000;
#10  a = 3'b010; b = 3'b011; opcode = 3'b000;
#10  a = 3'b100; b = 3'b101; opcode = 3'b000;
#10  a = 3'b110; b = 3'b111; opcode = 3'b000;  //next page
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Figure 1.112       (Continued)

//or operation
#10  a = 3'b000; b = 3'b001; opcode = 3'b001;
#10  a = 3'b010; b = 3'b011; opcode = 3'b001;
#10  a = 3'b100; b = 3'b101; opcode = 3'b001;
#10  a = 3'b110; b = 3'b111; opcode = 3'b001;

//xor operation
#10  a = 3'b000; b = 3'b001; opcode = 3'b010;
#10  a = 3'b010; b = 3'b011; opcode = 3'b010;
#10  a = 3'b100; b = 3'b101; opcode = 3'b010;
#10  a = 3'b110; b = 3'b111; opcode = 3'b010;

//nand operation
#10  a = 3'b000; b = 3'b001; opcode = 3'b011;
#10  a = 3'b010; b = 3'b011; opcode = 3'b011;
#10  a = 3'b100; b = 3'b101; opcode = 3'b011;
#10  a = 3'b110; b = 3'b111; opcode = 3'b011;

//nor operation
#10  a = 3'b000; b = 3'b001; opcode = 3'b100;
#10  a = 3'b010; b = 3'b011; opcode = 3'b100;
#10  a = 3'b100; b = 3'b101; opcode = 3'b100;
#10  a = 3'b110; b = 3'b111; opcode = 3'b100;

//xnor operation
#10  a = 3'b000; b = 3'b001; opcode = 3'b101;
#10  a = 3'b010; b = 3'b011; opcode = 3'b101;
#10  a = 3'b100; b = 3'b101; opcode = 3'b101;
#10  a = 3'b110; b = 3'b111; opcode = 3'b101;

//not operation
#10  a = 3'b000; b = 3'b001; opcode = 3'b110;
#10  a = 3'b010; b = 3'b011; opcode = 3'b110;
#10  a = 3'b100; b = 3'b101; opcode = 3'b110;
#10  a = 3'b110; b = 3'b111; opcode = 3'b110;

#10  $stop;
end

//instantiate the module into the test bench
case_log_ops inst1 (

.a(a),

.b(b),

.opcode(opcode),

.rslt(rslt)
);

endmodule
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Figure 1.113 Outputs for logical operations using the case statement.

//and operation
a = 000, b = 001, op = 000, rslt = 000
a = 010, b = 011, op = 000, rslt = 010
a = 100, b = 101, op = 000, rslt = 100
a = 110, b = 111, op = 000, rslt = 110

//or operation
a = 000, b = 001, op = 001, rslt = 001
a = 010, b = 011, op = 001, rslt = 011
a = 100, b = 101, op = 001, rslt = 101
a = 110, b = 111, op = 001, rslt = 111

//xor operation
a = 000, b = 001, op = 010, rslt = 001
a = 010, b = 011, op = 010, rslt = 001
a = 100, b = 101, op = 010, rslt = 001
a = 110, b = 111, op = 010, rslt = 001

//nand operation
a = 000, b = 001, op = 011, rslt = 111
a = 010, b = 011, op = 011, rslt = 101
a = 100, b = 101, op = 011, rslt = 011
a = 110, b = 111, op = 011, rslt = 001

//nor operation
a = 000, b = 001, op = 100, rslt = 110
a = 010, b = 011, op = 100, rslt = 100
a = 100, b = 101, op = 100, rslt = 010
a = 110, b = 111, op = 100, rslt = 000

//xnor operation
a = 000, b = 001, op = 101, rslt = 110
a = 010, b = 011, op = 101, rslt = 110
a = 100, b = 101, op = 101, rslt = 110
a = 110, b = 111, op = 101, rslt = 110

//not operation
a = 000, b = 001, op = 110, rslt = 111
a = 010, b = 011, op = 110, rslt = 101
a = 100, b = 101, op = 110, rslt = 011
a = 110, b = 111, op = 110, rslt = 001
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Figure 1.114 Waveforms for logical operations using the case statement.

1.4.9  Loop Statements

There are four types of loop statements in Verilog: for, while, repeat, and forever.
Loop statements must be placed within an initial or an always block and may contain
delay controls.  The loop constructs allow for repeated execution of procedural state-
ments within an initial or an always block.

For loop The for loop contains three parts:

1. An initial condition to assign a value to a register control variable.  This is ex-
ecuted once at the beginning of the loop to initialize a register variable that
controls the loop.

2. A test condition to determine when the loop terminates.  This is an expression
that is executed before the procedural statements of the loop to determine if
the loop should execute.  The loop is repeated as long as the expression is true.
If the expression is false, the loop terminates and the activity flow proceeds to
the next statement in the module.

3. An assignment to modify the control variable, usually an increment or a dec-
rement.  This assignment is executed after each execution of the loop and be-
fore the next test to terminate the loop.

The for loop is generally used when there is a known beginning and an end to a
loop.  The for loop is similar in function to the for loop in the C programming lan-
guage and has been used in the test bench of several previous examples.
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While loop The while loop executes a procedural statement or a block of proce-
dural statements as long as a Boolean expression returns a value of true.  When the pro-
cedural statements are executed, the Boolean expression is reevaluated.  The loop is
executed until the expression returns a value of false.  If the evaluation of the expres-
sion is false, then the while loop is terminated and control is passed to the next state-
ment in the module.  If the expression is false before the loop is initially entered, then
the while loop is never executed.

The Boolean expression may contain any of the following types: arithmetic, log-
ical, relational, equality, bitwise, reduction, shift, concatenation, replication, or con-
ditional.  If the while loop contains multiple procedural statements, then they are
contained within the begin . . . end keywords.  The syntax for a while statement is as
follows:

while (expression)
procedural statement or block of procedural statements

Repeat loop The repeat loop executes a procedural statement or a block of pro-
cedural statements a specified number of times.  The repeat construct can contain a
constant, an expression,  a variable, or a signed value.  The syntax for the repeat loop
is as follows:

repeat (loop count expression)
procedural statement or block of procedural statements

If the loop count is x (unknown value) or z (high impedance), then the loop count
is treated as zero.  The value of the loop count expression is evaluated once at the
beginning of the loop.

Forever  loop The forever loop executes the procedural statement continuously
until the system tasks $finish or $stop are encountered.  It can also be terminated by
the disable statement.  The disable statement is a procedural statement; therefore, it
must be used within an initial or an always block.  It is used to prematurely terminate
a block of procedural statements or a system task.  When a disable statement is exe-
cuted, control is transferred to the statement immediately following the procedural
block or task.  The forever loop is similar to a while loop in which the expression al-
ways evaluates to true (1).  A timing control must be used with the forever loop; oth-
erwise, the simulator would execute the procedural statement continuously without
advancing the simulation time.  The syntax of the forever loop is as follows:

forever
procedural statement

The forever statement is typically used for clock generation as shown in Figure
1.115 together with the system task $finish.  The variable clk will toggle every 10 time
units for a period of 20 time units.  The length of simulation is 100 time units.
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Figure 1.115 Clock generation using the forever statement.

1.5  Structural Modeling
Structural modeling consists of instantiation of one or more of the following design
objects:

• Built-in primitives
• User-defined primitives (UDPs)
• Design modules

Instantiation means to use one or more lower-level modules — including logic
primitives — that are interconnected in the construction of a higher-level structural
module.    A module can be a logic gate, an adder, a multiplexer, a counter, or some
other logical function.  The objects that are instantiated are called instances.  Structural
modeling is described by the interconnection of these lower-level logic primitives or
modules.  The interconnections are made by wires that connect primitive terminals or
module ports.

1.5.1  Module Instantiation

Design modules were instantiated into every test bench module in previous examples.
The ports of the design module were instantiated by name and connected to the cor-
responding net names of the test bench.  Each named instantiation was of the form

.design_module_port_name (test_bench_module_net_name) 

Design module ports can be instantiated by name explicitly or by position.  In-
stantiation by position is not recommended when a large number of ports are involved.
Instantiation by name precludes the possibility of making errors in the instantiation
process.  Modules cannot be nested, but they can be instantiated into other modules.  

//define clock
initial
begin

clk = 1'b0;
forever

#10  clk = ~clk;
end

//define length of simulation
initial

#100  $finish;
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Structural modeling is analogous to placing the instances on a logic diagram and
then connecting them by wires.  When instantiating built-in primitives, an instance
name is optional; however, when instantiating a module, an instance name must be
used.  Instances that are instantiated into a structural module are connected by nets of
type wire.

A structural module may contain behavioral statements (always), continuous as-
signment statements (assign), built-in primitives (and, or, nand, nor, etc.), UDPs
(mux4, half_adder, adder4, etc.), design modules, or any combination of these ob-
jects.  Design modules can be instantiated into a higher-level structural module in or-
der to achieve a hierarchical design.

Each module in Verilog is either a top-level (higher-level) module or an instanti-
ated module.  There is only one top-level module and it is not instantiated anywhere
else in the design project.  Instantiated primitives or modules, however, can be instan-
tiated many times into a top-level module and each instance of a module is unique and
has a unique instance name.

1.5.2  Ports

Ports provide a means for the module to communicate with its external environment.
Ports, also referred to as terminals, can be declared as input, output, or inout.  A port
is a net by default; however, it can be declared explicitly as a net.  A module contains
an optional list of ports, as shown below for a full adder.

module full_adder (a, b, cin, sum, cout);

Ports a, b, and cin are input ports; ports sum and cout are output ports.  The test bench
for the full adder contains no ports as shown below because it does not communicate
with the external environment.

module full_adder_tb;

As mentioned previously, there are two methods of associating ports in the mod-
ule being instantiated and the module doing the instantiation: instantiation by position
and instantiation by name (the preferred method).  The two methods cannot be mixed.
Instantiation by position must have the ports in the module instantiation listed in the
same order as in the module definition.  Instantiation by name does not require the
ports to be listed in the same order.

Input ports must always be of type net (wire) internally except for test benches;
externally, input ports can be reg or wire.  The input port names can be different, but
the net (wire) names connecting the input ports must be the same.  Output ports can be
of type reg or wire internally; externally, output ports must always be connected to a
wire.  

When making intermodule port connections, it is permissible to connect ports of
different widths.  Port width matching occurs by right justification or truncation.
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1.5.3  Design Examples

Examples will now be presented that illustrate the structural modeling technique.
These examples include: converting from a 4-bit binary number to the excess-3 code,
implementing a logic equation, the design of a majority circuit, a 3-bit comparator, and
a nonlinear-select multiplexer.  Each example will be completely designed in detail
and will include appropriate theory where applicable.

Example 1.24 This example converts a 4-bit binary number to a 5-bit excess-3 code.
The excess-3 code is obtained by adding three to the binary number and contains a
fifth bit, the carry-out bit cy, which is set to a value of 1 for binary numbers equal to or
greater than 13.  Table 1.2 lists the binary numbers and the corresponding excess-3
numbers.

Figure 1.116 shows the Karnaugh maps used for the code conversion example.
The coordinates of the Karnaugh maps correspond to the binary code; the map entries

Table 1.2  Binary-to-Excess-3 Conversion

Binary Excess 3

x1 x2 x3 x4 cy z1 z2 z3 z4

8 4 2 1 16 8 4 2 1
0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 1
0 0 1 1 0 0 1 1 0
0 1 0 0 0 0 1 1 1
0 1 0 1 0 1 0 0 0
0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 0 1 0
1 0 0 0 0 1 0 1 1
1 0 0 1 0 1 1 0 0
1 0 1 0 0 1 1 0 1
1 0 1 1 0 1 1 1 0
1 1 0 0 0 1 1 1 1
1 1 0 1 1 0 0 0 0
1 1 1 0 1 0 0 0 1
1 1 1 1 1 0 0 1 0
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in the minterm locations correspond to the excess-3 code for that particular bit.  The
equations for each of the five maps are shown in Equation 1.11.

Figure 1.116 Karnaugh maps for the binary-to-excess-3 code conversion.
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Cy = x1x2x3  + x1x2x4
     = x1x2(x3  + x4)

z1 = x1' x2x3  + x1' x2x4  + x1x3' x4'  + x1x2'

z2  = x2' x3  + x2' x4  + x2x3' x4'

z3  = x3' x4'  + x3x4
    = (x3  x4)'

z4  = x4'  (1.11)

Figure 1.117 contains the structural design module for the binary-to-excess-3
code conversion.  The module utilizes the continuous assignment statement of the
dataflow construct to implement the AND and OR functions for the carry-out cy.  It
also uses built-in primitives for the implementation of the outputs z1, z2, z3 , and z4 .
Figure 1.118 shows the test bench module.  The outputs and waveforms are shown in
Figure 1.119 and Figure 1.120, respectively.

Figure 1.117 Design module to convert from binary to excess-3.

//structural binary to excess-3 code conversion
module bin_excess3_struc (x1, x2, x3, x4, z1, z2, z3, z4, cy);

input x1, x2, x3, x4;
output cy, z1, z2, z3, z4;

wire net1, net2, net3, net4, net5, net6, net7;

//generate carry-out cy
assign cy = (x1 & x2 & x3) | (x1 & x2 & x4);

//generate output z1
and inst1 (net1, x1, ~x2),

inst2 (net2, x1, ~x3, ~x4),
inst3 (net3, ~x1, x2, x4),
inst4 (net4, ~x1, x2, x3);

or inst5 (z1, net1, net2, net3, net4);

//generate output z2
and inst6 (net5, ~x2, x3),

inst7 (net6, ~x2, x4),
inst8 (net7, x2, ~x3, ~x4);

or inst9 (z2, net5, net6, net7);
//continued on next page
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Figure 1.117       (Continued)

Figure 1.118 Test bench for the binary-to-excess-3 module.

//generate output z3
xnor inst10 (z3, x3, x4);

//generate output z4
buf inst11 (z4, ~x4);

endmodule

//test bench for binary to excess-3
module bin_excess3_struc_tb;

reg x1, x2, x3, x4;
wire z1, z2, z3, z4, cy;

//apply stimulus
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10  $display ("x1x2x3x4} = %b, cout = %b,

{z1z2z3z4} = %b",
{x1, x2, x3, x4}, cy, {z1, z2, z3, z4});

end
end

//instantiate the module into the test bench
bin_excess3_struc inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.cy(cy),

.z1(z1),

.z2(z2),

.z3(z3),

.z4(z4)
);

endmodule
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Figure 1.119 Outputs for the binary-to-excess-3 module.

Figure 1.120 Waveforms for the binary-to-excess-3 module.

x1x2x3x4} = 0000, cout = 0, {z1z2z3z4} = 0011
x1x2x3x4} = 0001, cout = 0, {z1z2z3z4} = 0100
x1x2x3x4} = 0010, cout = 0, {z1z2z3z4} = 0101
x1x2x3x4} = 0011, cout = 0, {z1z2z3z4} = 0110

x1x2x3x4} = 0100, cout = 0, {z1z2z3z4} = 0111
x1x2x3x4} = 0101, cout = 0, {z1z2z3z4} = 1000
x1x2x3x4} = 0110, cout = 0, {z1z2z3z4} = 1001
x1x2x3x4} = 0111, cout = 0, {z1z2z3z4} = 1010

x1x2x3x4} = 1000, cout = 0, {z1z2z3z4} = 1011
x1x2x3x4} = 1001, cout = 0, {z1z2z3z4} = 1100
x1x2x3x4} = 1010, cout = 0, {z1z2z3z4} = 1101
x1x2x3x4} = 1011, cout = 0, {z1z2z3z4} = 1110

x1x2x3x4} = 1100, cout = 0, {z1z2z3z4} = 1111
x1x2x3x4} = 1101, cout = 1, {z1z2z3z4} = 0000
x1x2x3x4} = 1110, cout = 1, {z1z2z3z4} = 0001
x1x2x3x4} = 1111, cout = 1, {z1z2z3z4} = 0010
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Example 1.25 A logic circuit will be designed using combinational logic gates to
implement the two Karnaugh maps shown in Figure 1.121.  The equations obtained
from the maps are shown in Equation 1.12.  The logic diagram is shown in Figure
1.122.  Then the circuit will be designed using structural modeling.

Figure 1.121 Karnaugh maps for Example 1.25.

z1 = x1' x3' x4'  + x1' x2  + x2x3' x4  + x1x2' x3x4

z2  = x3   x4  (1.12)

Figure 1.122 Logic diagram for Example 1.25.
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Figure 1.123 and Figure 1.124 show the dataflow modules for the 3-input AND
gate and the exclusive-OR gate, respectively.  The other gates are designed in a similar
manner.  Figure 1.125 shows the structural design module for the logic diagram of Fig-
ure 1.122 using the AND, OR, and exclusive-OR gates that were designed using data-
flow modeling and instantiated into the design module.  Figure 1.126 shows the test
bench.  The outputs and waveforms are shown in Figure 1.127 and Figure 1.128,
respectively.

Figure 1.123 Dataflow module for a 3-input AND gate.

Figure 1.124 Dataflow module for an exclusive-OR gate.

//and3 dataflow
module and3_df (x1, x2, x3, z1);

//list inputs and output
input x1, x2, x3;
output z1;

//define signals as wire for dataflow
wire x1, x2, x3;
wire z1;

//continuous assign for dataflow
assign z1 = x1 & x2 & x3;

endmodule

//dataflow xor2_df
module xor2_df (x1, x2, z1);

//list inputs and outputs
input x1, x2;
output z1;

//define signals as wire for dataflow
wire x1, x2;
wire z1;

//continuous assignment for dataflow
assign z1 = x1 ^ x2;

endmodule
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Figure 1.125 Design module for the logic diagram of Figure 1.122.

//structural logic equation as a sum of products
module log_eqtn_sop (x1, x2, x3, x4, z1, z2);

input x1, x2, x3, x4;
output z1, z2;

//define internal nets
wire net1, net2, net3, net4;

//instantiate the logic gates for z1
and3_df inst1 (

.x1(~x1),

.x2(~x3),

.x3(~x4),

.z1(net1)
);

and2_df inst2 (
.x1(~x1),
.x2(x2),
.z1(net2)
);

and3_df inst3 (
.x1(x2),
.x2(~x3),
.x3(x4),
.z1(net3)
);

and4_df inst4 (
.x1(x4),
.x2(x1),
.x3(~x2),
.x4(x3),
.z1(net4)
);

or4_df inst5 (
.x1(net1),
.x2(net2),
.x3(net3),
.x4(net4),
.z1(z1)
);

//continued on next page
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Figure 1.125       (Continued)

Figure 1.126 Test bench for the logic diagram of Figure 1.122.

//instantiate the logic gates for z2
xor2_df inst6 (

.x1(x4),

.x2(x3),

.z1(z2)
);

endmodule

//test bench for logic equation as a sum of products
module log_eqtn_sop_tb;

reg x1, x2, x3, x4;
wire z1, z2;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b, z2 = %b",

{x1, x2, x3, x4}, z1, z2);
end

end

//instantiate the module into the test bench
log_eqtn_sop inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1),

.z2(z2)
);

endmodule
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Figure 1.127 Outputs for the logic diagram of Figure 1.122.

Figure 1.128 Waveforms for the logic diagram of Figure 1.122.

Example 1.26 This example illustrates the design of a 5-input majority circuit using
dataflow modules that are instantiated into a structural module.  The dataflow modules
consist of nine 3-input AND gates and one 9-input OR gate.  The output of a majority
circuit is a logic 1 if the majority of the inputs is a logic 1; otherwise, the output is a
logic 0.  Therefore, a majority circuit must have an odd number of inputs in order to

x1 x2 x3 x4 = 0000, z1 = 1, z2 = 0
x1 x2 x3 x4 = 0001, z1 = 0, z2 = 1
x1 x2 x3 x4 = 0010, z1 = 0, z2 = 1
x1 x2 x3 x4 = 0011, z1 = 0, z2 = 0

x1 x2 x3 x4 = 0100, z1 = 1, z2 = 0
x1 x2 x3 x4 = 0101, z1 = 1, z2 = 1
x1 x2 x3 x4 = 0110, z1 = 1, z2 = 1
x1 x2 x3 x4 = 0111, z1 = 1, z2 = 0

x1 x2 x3 x4 = 1000, z1 = 0, z2 = 0
x1 x2 x3 x4 = 1001, z1 = 0, z2 = 1
x1 x2 x3 x4 = 1010, z1 = 0, z2 = 1
x1 x2 x3 x4 = 1011, z1 = 1, z2 = 0

x1 x2 x3 x4 = 1100, z1 = 0, z2 = 0
x1 x2 x3 x4 = 1101, z1 = 1, z2 = 1
x1 x2 x3 x4 = 1110, z1 = 0, z2 = 1
x1 x2 x3 x4 = 1111, z1 = 0, z2 = 0
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have a majority of the inputs at logic 1 level, as shown in Table 1.3 for a 5-input ma-
jority circuit.  By analyzing Table 1.3 or by plotting it on a modified 5-variable Kar-
naugh map, as shown in Figure 1.129, Equation 1.13 can be realized which has the
fewest number of terms.  The equation can then be implemented with nine 3-input
AND gates and one 9-input OR gate.

Figure 1.129 Karnaugh map for a 5-variable majority circuit.

Table 1.3  Truth Table for a 5-Input
Majority Circuit

Inputs Output

x1 x2 x3 x4 x5 z1

0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1
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The design module is shown in Figure 1.130, which instantiates nine 3-input data-
flow AND gates, and3_df, and one 9-input dataflow OR gate, or9_df.  The test bench
module is shown in Figure 1.131.  The outputs and waveforms are shown in Figure
1.132 and Figure 1.133, respectively.

Figure 1.130 Design module for a 5-input majority circuit.

z1 = x3x4x5 + x2x3x5  + x1x3x5  + x2x4x5  + x1x4x5

+ x1x2x5  + x1x2x4  + x2x3x4  + x1x3x4 (1.13)

//structural 5-input majority circuit
module majority5_struc (x1, x2, x3, x4, x5, z1);

input x1, x2, x3, x4, x5;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;

//instantiate the logic gates
and3_df inst1 (

.x1(x3),

.x2(x4),

.x3(x5),

.z1(net1)
);

and3_df inst2 (
.x1(x2),
.x2(x3),
.x3(x5),
.z1(net2)
);

and3_df inst3 (
.x1(x1),
.x2(x3),
.x3(x5),
.z1(net3)
);

and3_df inst4 (
.x1(x2),
.x2(x4),
.x3(x5),
.z1(net4)
); //continued on next page
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Figure 1.130       (Continued)

and3_df inst5 (
.x1(x1),
.x2(x4),
.x3(x5),
.z1(net5)
);

and3_df inst6 (
.x1(x1),
.x2(x2),
.x3(x5),
.z1(net6)
);

and3_df inst7 (
.x1(x1),
.x2(x2),
.x3(x4),
.z1(net7)
);

and3_df inst8 (
.x1(x2),
.x2(x3),
.x3(x4),
.z1(net8)
);

and3_df inst9 (
.x1(x1),
.x2(x3),
.x3(x4),
.z1(net9)
);

or9_df inst10 (
.x1(net1),
.x2(net2),
.x3(net3),
.x4(net4),
.x5(net5),
.x6(net6),
.x7(net7),
.x8(net8),
.x9(net9),
.z1(z1)
);

endmodule
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Figure 1.131 Test bench for the 5-input majority circuit.

Figure 1.132 Outputs for the 5-input majority circuit.

//test bench for 5-input majority circuit
module majority5_struc_tb;

reg x1, x2, x3, x4, x5;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [5:0] invect;
for (invect = 0; invect < 32; invect = invect + 1)

begin
{x1, x2, x3, x4, x5} = invect [5:0];
#10 $display ("x1x2x3x4x5 = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
majority5_struc inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.x5(x5),

.z1(z1)
);

endmodule

x1x2x3x4x5 = 00000, z1 = 0
x1x2x3x4x5 = 00001, z1 = 0
x1x2x3x4x5 = 00010, z1 = 0
x1x2x3x4x5 = 00011, z1 = 0
x1x2x3x4x5 = 00100, z1 = 0
x1x2x3x4x5 = 00101, z1 = 0
x1x2x3x4x5 = 00110, z1 = 0
x1x2x3x4x5 = 00111, z1 = 1
x1x2x3x4x5 = 01000, z1 = 0
x1x2x3x4x5 = 01001, z1 = 0
x1x2x3x4x5 = 01010, z1 = 0
x1x2x3x4x5 = 01011, z1 = 1
x1x2x3x4x5 = 01100, z1 = 0
x1x2x3x4x5 = 01101, z1 = 1
x1x2x3x4x5 = 01110, z1 = 1
x1x2x3x4x5 = 01111, z1 = 1

x1x2x3x4x5 = 10000, z1 = 0
x1x2x3x4x5 = 10001, z1 = 0
x1x2x3x4x5 = 10010, z1 = 0
x1x2x3x4x5 = 10011, z1 = 1
x1x2x3x4x5 = 10100, z1 = 0
x1x2x3x4x5 = 10101, z1 = 1
x1x2x3x4x5 = 10110, z1 = 1
x1x2x3x4x5 = 10111, z1 = 1
x1x2x3x4x5 = 11000, z1 = 0
x1x2x3x4x5 = 11001, z1 = 1
x1x2x3x4x5 = 11010, z1 = 1
x1x2x3x4x5 = 11011, z1 = 1
x1x2x3x4x5 = 11100, z1 = 1
x1x2x3x4x5 = 11101, z1 = 1
x1x2x3x4x5 = 11110, z1 = 1
x1x2x3x4x5 = 11111, z1 = 1
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Figure 1.133 Waveforms for the 5-input majority circuit.

Example 1.27 This example converts a 4-bit Gray code to the corresponding 4-bit
binary code.  The Gray code is a nonweighted code that has the characteristic in which
only one bit changes between adjacent code words.  The Gray code belongs to a class
of cyclic codes called reflective codes.

The general algorithm to convert from Gray code to binary code is shown in Equa-
tion 1.14, where n is the number of bits.  The specific equations to convert a 4-bit Gray
code segment to a 4-bit binary number are shown in Equation 1.15.  The structural de-
sign will instantiate the exclusive-OR dataflow module, xor2_df, as shown in Figure
1.134.  The structural design module, the test bench module, and the outputs are shown
in Figure 1.135, Figure 1.136, and Figure 1.137.

bn – 1 = gn – 1

bi = bi + 1  gi (1.14)

b3 = g3

b2 = b3  g2

b1 = b2  g1

b0 = b1  g0 (1.15)



108          Chapter  1     Introduction to Verilog HDL

Figure 1.134 Dataflow module for a 2-input exclusive-OR circuit.

Figure 1.135 Design module for the Gray-to-binary conversion.

//dataflow xor2_df
module xor2_df (x1, x2, z1);

//list inputs and outputs
input x1, x2;
output z1;

//define signals as wire for dataflow
wire x1, x2;
wire z1;

//continuous assignment for dataflow
assign z1 = x1 ^ x2;

endmodule

//structural gray-to-binary conversion
module gray_bin_struc (g3, g2, g1, g0, b3, b2, b1, b0);

input g3, g2, g1, g0;
output b3, b2, b1, b0;

assign b3 = g3;

xor2_df inst1 ( //instantiate the xor gates
.x1(b3),
.x2(g2),
.z1(b2)
);

xor2_df inst2 (
.x1(b2),
.x2(g1),
.z1(b1)
);

xor2_df inst3 (
.x1(b1),
.x2(g0),
.z1(b0)
);

endmodule
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Figure 1.136 Test bench for the Gray-to-binary conversion.

Figure 1.137 Outputs for the Gray-to-binary conversion.

//test bench for gray-to-binary conversion
module gray_bin_struc_tb;

reg g3, g2, g1, g0;
wire b3, b2, b1, b0;

//apply input vectors
initial
begin: apply_stimulus

reg[4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{g3, g2, g1, g0} = invect [4:0];
#10 $display ("{g3g2g1g0} = %b, {b3b2b1b0} = %b",

{g3, g2, g1, g0}, {b3, b2, b1, b0});
end

end

//instantiate the module into the test bench
gray_bin_struc inst1 (

.g3(g3),

.g2(g2),

.g1(g1),

.g0(g0),

.b3(b3),

.b2(b2),

.b1(b1),

.b0(b0)
);

endmodule

{g3g2g1g0} = 0000, {b3b2b1b0} = 0000
{g3g2g1g0} = 0001, {b3b2b1b0} = 0001
{g3g2g1g0} = 0010, {b3b2b1b0} = 0011
{g3g2g1g0} = 0011, {b3b2b1b0} = 0010

{g3g2g1g0} = 0100, {b3b2b1b0} = 0111
{g3g2g1g0} = 0101, {b3b2b1b0} = 0110
{g3g2g1g0} = 0110, {b3b2b1b0} = 0100
{g3g2g1g0} = 0111, {b3b2b1b0} = 0101

//continued on next page
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Figure 1.137       (Continued)

Example 1.28 As a final example for structural modeling, a nonlinear-select multi-
plexer will be used to implement the Karnaugh map shown in Figure 1.138, where y is
a map-entered variable.  A nonlinear-select multiplexer represents a smaller multi-
plexer than a linear-select multiplexer and has fewer data inputs.  It can be effectively
utilized to implement the same function with a corresponding reduction in machine
cost.

If a multiplexer has unused data inputs — corresponding to unused states in the
input map — then these unused inputs can be connected to logically adjacent multi-
plexer inputs.  The resulting linked set of inputs can be addressed by a common select
variable.

Figure 1.138 Karnaugh map to be implemented with a nonlinear-select multi-
plexer.

Figure 1.139 illustrates the nonlinear-select multiplexer that will be utilized in the
design of the Karnaugh map of Figure 1.138.  The select inputs are s0 and s1 , where s0
is the low-order select input that is selected by variable x2 .  The data inputs are d0 , d1 ,
d2 , and d3, where d0  is the low-order data input.  The outputs of the multiplexer are
identical to the values in the corresponding minterm locations of the Karnaugh map.
For example, in the Karnaugh map, if x1x2  = 00, then minterm locations 0 and 1 con-
tain the variable y, corresponding to input d0 .  In the logic diagram of Figure 1.139, if
x1x2 = 00, then input d0  is selected and output z1 contains the value of y.  All of the
multiplexer outputs can be verified in a similar manner.

{g3g2g1g0} = 1000, {b3b2b1b0} = 1111
{g3g2g1g0} = 1001, {b3b2b1b0} = 1110
{g3g2g1g0} = 1010, {b3b2b1b0} = 1100
{g3g2g1g0} = 1011, {b3b2b1b0} = 1101

{g3g2g1g0} = 1100, {b3b2b1b0} = 1000
{g3g2g1g0} = 1101, {b3b2b1b0} = 1001
{g3g2g1g0} = 1110, {b3b2b1b0} = 1011
{g3g2g1g0} = 1111, {b3b2b1b0} = 1010

  0 0      0 1     1 1     10
x1x2

    x3

 0       y         y '        0         1

 1       –         1         0         1

 0            2           6            4

 1            3           7           5

d0  = y
d1  = x3' y ' + x3  = x3  + y '
d2  = 1
d3 = 0

 d0       d1      d3       d2

Absorption law 2 (a)
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Figure 1.139 Logic diagram for Example 1.28 using a nonlinear-select multi-
plexer.

Figure 1.140 contains the structural module, which instantiates a dataflow 4:1
multiplexer mux4_df and utilizes the continuous assignment statement — both used in
the design of the logic diagram of Figure 1.139.  The test bench is shown in Figure
1.141.  The outputs and waveforms are shown in Figure 1.142 and Figure 1.143,
respectively.

Figure 1.140 Structural module for the nonlinear-select multiplexer.

MUX

s0

d0
d1

s1

d3

d2

+z1

enbl+Logic 1

–Logic 0

+x2
+x1

+y
+x3
–y

net1

inst1

//structural nonlinear-select multiplexer
module mux_nonlinear5 (x1, x2, x3, y, z1);

//define inputs and output
input x1, x2, x3, y;
output z1;

//define internal net
wire net1;

//use the continuous assign statement to design the or gate
assign net1 = (x3 | ~y);

//instantiate the 4:1 multiplexer
mux4_df inst1 (

.s({x1, x2}), //({s1, s0})

.d({1'b0, 1'b1, net1, y}), //({d3, d2, d1, d0})

.enbl(1'b1),

.z1(z1)
);

endmodule
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Figure 1.141 Test bench for the nonlinear-select multiplexer.

Figure 1.142 Outputs for the nonlinear-select multiplexer.

//test bench for the nonlinear-select multiplexer circuit
module mux_nonlinear5_tb;

reg x1, x2, x3, y;

wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, y} = invect [4:0];
#10 $display ("x1 x2 x3 = %b, y = %b, z1 = %b",

{x1, x2, x3}, y, z1);
end

end

//instantiate the module into the test bench
mux_nonlinear5 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.y(y),

.z1(z1)
);

endmodule

d0 = x1' x2'  = y
d1 = x1' x2 = x3  + y '
d2 = x1x2'  = 1
d3 = x1x2 = 0

x1   x2   x3   =   000,   y   =  0,   z1  =  0
x1   x2   x3   =   000,   y   =  1,   z1  =  1
x1   x2   x3   =   001,   y   =  0,   z1  =  0
x1   x2   x3   =   001,   y   =  1,   z1  =  1
x1   x2   x3   =   010,   y   =  0,   z1  =  1
x1   x2   x3   =   010,   y   =  1,   z1  =  0
x1   x2   x3   =   011,   y   =  0,   z1  =  1
x1   x2   x3   =   011,   y   =  1,   z1  =  1

d0  = x1' x2'  = y
d1  = x1' x2 = x3 + y '
d2  = x1x2'  = 1
d3 = x1x2 = 0

x1 x2 x3 = 100, y = 0, z1 = 1
x1 x2 x3 = 100, y = 1, z1 = 1
x1 x2 x3 = 101, y = 0, z1 = 1
x1 x2 x3 = 101, y = 1, z1 = 1
x1 x2 x3 = 110, y = 0, z1 = 0
x1 x2 x3 = 110, y = 1, z1 = 0
x1 x2 x3 = 111, y = 0, z1 = 0
x1 x2 x3 = 111, y = 1, z1 = 0
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Figure 1.143 Waveforms for the nonlinear-select multiplexer.

1.6 Problems

1.1 Given the Karnaugh map shown below, obtain the logic diagram using NOR
gates in a product-of-sums implementation.  Then obtain the design module us-
ing built-in primitives, the test bench module, the outputs, and the waveforms.

1.2 Design a circuit using built-in primitive nand gates that satisfies the following
specifications: 3 < N  8 and 10  N < 15.  Obtain the Karnaugh map, the equa-
tion, and the logic diagram using NAND gates.  Then obtain the design mod-
ule using built-in primitives, the test bench module, the outputs, and the
waveforms.

 0 0      0 1     1 1     1 0

0 0      1        0         1         1

0 1      0        0         0         0

1 1      1        1         1         0

1 0      1        0         1         0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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1.3 Given the equation shown below, obtain the Karnaugh map.  Then obtain the
sum-of-products equation from the Karnaugh map and generate the logic di-
agram using AND and OR gates, where output z1 is asserted at a high logic
level.  Then obtain the design module using built-in primitives, the test bench
module, the outputs, and the waveforms.

z1(x1 , x2 , x3 , x4) = m(1, 4, 7, 9, 11, 13) + d(5, 14, 15)

1.4 Repeat Problem 1.3, but generate the circuit as a product-of-sums design. 

1.5 Design the logic for a 4-bit odd parity generator, then use built-in primitives to
implement the design in Verilog.  The output  will be a logical 1 if there is an
even number of 1s on the input; otherwise, the  output will be a logical 0.  Ob-
tain the design module, the test bench module, the outputs, and the wave-
forms.

1.6 Design a circuit using dataflow modeling that satisfies the following specifi-
cations: 4  N < 9 and 10 < N < 14.  Derive the Karnaugh map and obtain the
equation in a sum-of-products expression.  Then design the logic diagram us-
ing NOR gates, where output z1 is asserted at a high logic level.  Generate the
design module using the continuous assignment statement for NOR gates, the
test bench module, the outputs, and the waveforms.

1.7 Given the Karnaugh map shown below, obtain the equation for output z1 in a
sum-of-products notation and the corresponding logic diagram using AND
and OR gates.  Then use dataflow modeling for the design module and gen-
erate a test bench.  Obtain the outputs and the waveforms.

1.8 Given the Karnaugh map shown in Problem 1.7, obtain the equation for output
z1 in a product-of-sums notation and the corresponding logic diagram using
NAND gates.  Output z1 is to be asserted at a high logic level.  Then use data-
flow modeling for the design module and generate a test bench.  Obtain the

 0 0      0 1     1 1     1 0

0 0      1        1         0         0

0 1      0        1         1         1

1 1      0        0         1         1

1 0      1        0         0         0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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outputs and the waveforms  This problem is similar to Problem 1.7, but uses
only NAND gates and generates the equation as a product-of-sums.  There-
fore, the outputs and waveforms should be identical to those of Problem 1.7.

1.9 Design a circuit using dataflow modeling to detect overflow in a fixed-point
binary adder.  The augend (a) and addend (b) are both four bits in the 2s com-
plement number representation.  Overflow occurs when the result of an arith-
metic operation exceeds the word size of the machine.  Overflow can be
detected by the equation shown below, where n–1 is the high-order bit and s
is the sum.  Obtain the design module, the test bench module for eight vari-
ations of the two operands, the outputs, and the waveforms.

1.10 Use the three logical operators of AND (&&), OR ( | | ), and negation ( ! ) to
implement the logical operations shown below.  Obtain the dataflow design
module, the test bench module for eight variations of the three 4-bit operands
a, b, and c, the outputs, and the waveforms.

z1 = (a && b) && c
z2  = (a | | b) && c
z3  = (a && c) | | b
z4  = ! (a | | c)

1.11 Use the three bitwise operators of AND (&), OR ( | ), and exclusive-OR ( ^ ) to
implement the logical operations shown below.  Obtain the dataflow design
module, the test bench module for eight variations of the three 4-bit operands
a, b, and c, the outputs, and the waveforms

z1 = (a & b) | c
z2  = (a ^ b) & c
z3  = (a | c) ^ b

1.12 Design a 4-bit odd parity generator using the exclusive-OR and exclusive-
NOR operators.  There are four data inputs and one output that is a logic 1
when the number of 1s in the input vector is even.  Use dataflow modeling for
the design module.  Generate a test bench for all combinations of the inputs.
Obtain the outputs and waveforms.

1.13 Design a 4-bit adder using dataflow modeling whose inputs are augend a and
addend b with a carry-in cin.  The outputs are sum and carry-out cout.  Gen-
erate the design module, the test bench module containing eight variations of
the augend and addend with specific values for carry-in.  Obtain the outputs
and the waveforms.

Overflow = (an–1• bn–1 • sn–1' )  +  (an–1 ' • bn–1' • sn–1)
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1.14 Use the bitwise AND and OR operators on the 8-bit operands a and b, then use
the logical left shift and logical right shift operators on the results.  Perform
the operations shown below.  Obtain the design module and the test bench
module that applies eight sets of vectors to the two operands.  Show the out-
puts and the waveforms.

z1 = a & b;
z1_sl = z1 << 3; //shift left z1 3 bit positions
z1_sr = z1 >> 2; //shift right z1 2 bit positions

z2  = a | b;
z2_sl = z2 << 4; //shift left z2 4 bit positions
z2_sr = z2  >> 3; //shift right z2  3 bit positions

1.15 Use dataflow modeling to design a circuit that generates an output z1 when-
ever a 4-bit unsigned binary number meets the following requirements,
where N > 0: N is an odd number or N is evenly divisible by four.  Obtain the
design module using a sum-of-products expression, the test bench module
for all sixteen combinations of the four bits, the outputs, and the waveforms.

1.16 Use behavioral modeling to design a circuit that counts the number of 1s in a
16-bit register x.  A register is a logic macro device that stores data.  The data
is retained until new data is stored.  Registers are implemented by means of
storage elements.  Registers are presented in this problem to illustrate one use
of the while loop and the conditional statement if.  Assume that the register
contains the following contents: f63f16.  Display the individual counts — 1
through 12 — then the final count of the number of 1s.  No test bench is re-
quired for this problem.  The two counts are displayed in the design module by
the $display system task.

1.17 Design a behavioral module that performs addition, shifting, and checks for
overflow on two 8-bit operands a and b.  Shift the sum left three bit positions
and right two positions.  Display the sum before and after the shift operations.
Obtain the design module, the test bench module for eight variations of the au-
gend and addend.  Display the resulting outputs and the waveforms.

1.18 Implement the Karnaugh map shown below using a 4:1 multiplexer, where
x1x2 represent the select inputs s1s0  and x3x4  represent the data inputs
d0d1d2d3.  The variable x5  is a map-entered variable.  Obtain the design mod-
ule and the test bench module for all combinations of the three variables
x3x4x5 for the four combinations of the select inputs.  Obtain the outputs and
the waveforms.
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1.19 Use behavioral modeling to design a full adder.  A full adder has three scalar
inputs a, b, and cin; there are two scalar outputs sum and cout.  Obtain the de-
sign module, the test bench module for all combinations of the inputs, the out-
puts, and the waveforms.  The equations for sum and cout are shown below.

1.20 Use behavioral modeling to convert a 4-bit binary code word binary[3:0] to
the corresponding 4-bit Gray code word gray[3:0].  The general algorithm to
convert an n-bit binary number to a Gray code number is shown below, where
n = 4 for this problem.  Obtain the design module, the test bench module for all
16 combinations of the four binary bits, the outputs, and the waveforms. 

gn–1 = bn–1
gi = bi+1  bi

1.21 Design a behavioral module using conditional statements to implement the
equation shown below.  The design module will use an intrastatement delay of
five time units.  Obtain the test bench, the outputs for all 16 combinations of
the inputs, and the waveforms.

z1 = x1x2  + x3x4

1.22 Design a 4:1 multiplexer using a combination of behavioral modeling and
dataflow modeling.  The multiplexer has four data inputs, which are specified
as a 4-bit vector d[3:0], two select inputs, specified as a 2-bit vector s[1:0],

 0 0      0 1     1 1     1 0

0 0      x5       0         0         x5

0 1      1        1         0         0

1 1      0        1         1        x5'

1 0      0        1         0         1

x1x2

x3x4

 0            1           3            2

 4            5           7           6
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z1 = x4'x5

s1 =

s0 =

s3 =

s2 =

z1 = x3'

z1 = x4 + x3x5'

z1 = x3 ^ x4

sum = a'b'cin + a'bcin' + ab'cin' + abcin

= a  b  cin

cout = a'bcin + ab'cin + ab cin' + abcin

= ab + a cin + bcin
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one scalar enable input enbl, and one scalar output z1.  Obtain the design mod-
ule and the test bench module containing eight combinations of the data in-
puts.  Obtain the outputs and the waveforms.

1.23 Design a behavioral module that converts a 4-bit binary code to the excess-3
code.  The excess-3 code is obtained by adding three to the binary code.  Ob-
tain the design module and the test bench module for all combinations of the
four bits.  Obtain the outputs and the waveforms.

1.24 Write a behavioral module to determine the decimal value of the following bi-
nary number:  0111_1110.  No test bench is required.

1.25 Use behavioral modeling with the case statement to design a 6-function logic
unit for the following six functions: add, subtract, multiply, AND, OR, and
exclusive-OR.  The operands are 4-bit vectors: a[3:0] and b[3:0].  Obtain the
design module and the test bench module for four variations of the operands
for each function.  Obtain the outputs and waveforms.

1.26 Given the Karnaugh map shown below, obtain the equation for output z1 in a
sum-of-products form with the fewest number of terms.  Then design the be-
havioral module and the test bench module for all combinations of the five
variables x1 , x2 , x3 , x4 , and x5.  Obtain the outputs and the waveforms.

1.27 Design a structural 4-bit, [3:0], binary-to-excess-3 code converter by instan-
tiating behavioral full adders into the design.  The excess-3 code will contain
five bits to include the carry out of the high-order bit position of adder[3].  For
example, binary = 1111, excess3 = 10010.  Obtain the design module
and the test bench module for all 16 combinations of the binary inputs.  Obtain
the outputs and the waveforms. 

1.28 Use structural modeling to design a 3-bit comparator for the following oper-
ands: a[2:0] and b[2:0].  Obtain the design module, the test bench module, the

x1
x2x3

   0 0                       0 1                        1 1                        1 0

0

1

 0                                   1                                 3                                  2

  4                                  5                                  7                                  6

  x4 x5' + x4 x5                 0                           1                           1

 x4 x5 + x4' + x5'               1                           0                           0

z1
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outputs, and the waveforms.  Test the module with inputs that demonstrate the
relative magnitude of the two operands for the categories shown below.

a[2:0] = b[2:0] and a[2:0] > b[2:0] 

1.29 Design a logic circuit that will generate a high logic level on output z1 if a 4-
bit binary number x[3:0] has a value less than or equal to five or greater than
nine.  Obtain the structural design module and the test bench module for all 16
combinations of the inputs.  Obtain the outputs and the waveforms.

1.30 Given the logic diagram shown below, obtain the Karnaugh map for output z1.
Then design the structural module that represents the logic diagram and the
test bench module utilizing all eight combinations of the three inputs.  Obtain
the outputs and the waveforms.

1.31 Given the logic diagram shown below, obtain the minimum product-of-sums
equation, then design a structural module using NOR gates to implement the
equation.  Then design the test bench using all 16 combinations of the four in-
put variables.  Verify the results by displaying the outputs and the waveforms.
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1.32 Given the Karnaugh map shown below, obtain the function z1 in a minimum
product-of-sums expression.  Then implement the design as a structural mod-
ule using NOR gates and design a test bench module that incorporates all 16
combinations of the four variables.  Obtain the outputs and the waveforms.

 0 0      0 1     1 1     1 0

0 0      0         0        1         0

0 1      0         1        0         0

1 1      0         1        1         0

1 0      1         1        1         1

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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2
Synthesis of Synchronous 
Sequential Machines 1 Using 
Verilog HDL

A synchronous sequential machine consists of storage elements, usually flip-flops,
and  next-state combinational logic that connects to the flip-flop data inputs.  The
machine may also contain combinational logic for the  output function.  In some
cases, the output logic may require one or more storage elements, depending on the
assertion and deassertion of the output signals.  The number of flip-flops is determined
by the number of states required by the machine.  The combinational logic is derived
directly from either the state diagram or from the state table.

This chapter implements synchronous sequential machine designs using Verilog
HDL.  The designs will be accomplished by utilizing built-in primitives, dataflow
modeling, behavioral modeling, structural modeling, or a combination of these mod-
eling techniques.  Different types of synchronous registers will be designed.  These
include: parallel-in, serial-out registers; serial-in, parallel-out registers; and serial-in,
serial-out registers.  Also included will be high-speed combinational shifting tech-
niques.  These include: shift left logical, shift left algebraic, shift right logical, and
shift right algebraic.

Different types of counters of various moduli are also designed in this chapter.
These include: a modulo-8 counter, a modulo-10 counter, and a Johnson counter.  Also
included will be a binary-to-Gray code converter.  Different versions of Moore and
Mealy synchronous sequential machines will also be designed using Verilog together
with different techniques to eliminate output glitches.

2.1 Synchronous Registers
2.2 Synchronous Counters
2.3 Moore Machines
2.4 Mealy Machines
2.5 Moore–Mealy Equivalence
2.6 Output Glitches
2.7 Problems
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2.1 Synchronous Registers
The next state of a synchronous (clocked) register is usually a direct result of the input
vector, whose binary variables connect to the flip-flop data inputs, either directly or in-
directly through  next-state logic.  Most registers are used primarily for temporary
storage of binary data and do not modify the data internally; that is, the state of the reg-
ister is unchanged until the next active clock transition.  An n-bit register requires n
storage elements, either SR latches, D flip-flops, or JK flip-flops.  There are 2n differ-
ent states in an n-bit register, where each n-tuple corresponds to a unique state of the
register.

The simplest and most prevalent register is the parallel-in, parallel-out (PIPO)
register used for temporary storage of binary data.  There is a one-to-one correspon-
dence between the input alphabet X, the state alphabet Y, and the output alphabet Z.
The values of the present inputs Xi(t) become the next state Yk(t+1) of the register at the
next active clock transition.  The synthesis procedure is not required for this type of
register; therefore, the design will not be implemented in Verilog.  

2.1.1  Parallel-In, Serial-Out Registers

A parallel-in, serial-out (PISO) register accepts binary input data in parallel and gen-
erates binary output data in serial form.  The binary data can be shifted either left or
right under control of a shift direction signal and a clock pulse, which is applied to all
flip-flops simultaneously.  The register shifts left or right one bit position at each ac-
tive clock transition.  Bits shifted out one end of the register are lost unless the register
is cyclic, in which case, the bits are shifted (or rotated) into the other end.

If the PISO register is a right-shift register, then two conditions determine the val-
ue of the bits shifted into the vacated positions on the left.  If the binary data represents
an unsigned number, then 0s are shifted into the vacated positions.  If the binary data
represents a signed number — with the high-order bit specified as the sign of the num-
ber, where a 0 bit represents a positive number and a 1 bit represents a negative number
—then the sign bit extends right one bit position for each active clock transition.

The state diagram for a parallel-in, serial-out shift right register for unsigned bi-
nary data is shown in Figure 2.1.  Zeroes are shifted in to the vacated positions on the
left.  Upon completion of the load cycle, yi = xi.  During the shift sequence, yi = yi–1 or
0, depending on the shift count.  After four shift cycles, the state of the register is
y1y2y3y4 = 0000, and the process repeats with a new input vector Xi.

Examination of the state diagram reveals that each clock pulse shifts in 0s from the
left and replaces the present state of a flip-flop with the present state of the flip-flop to
its immediate left.  Thus, the output of flip-flop yi connects to the data input of flip-flop
yi+1.  The Verilog design of the register will be implemented first using behavioral
modeling then using structural modeling.
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Figure 2.1 State diagram for a parallel-in, serial-out shift right register for
unsigned binary data.

Example 2.1 This example designs a PISO register using behavioral modeling.
Figure 2.2 illustrates the behavioral design module for the PISO shift register and Fig-
ure 2.3 shows the test bench with parallel binary input data of 1111.  The outputs and
waveforms are shown in Figure 2.4 and Figure 2.5, respectively.

Figure 2.2 Behavioral module for the PISO shift right register.

a

b

c

d

Parallel load

y1y2y3y4    State flip-flops
x1x2x3x4    State data

Shift right 1

0x1x2x3

Shift right 2

00x1x2

Shift right 3

000x1

Shift right 4

//behavioral 4-bit shift right piso shift register
//for unsigned binary data
module shift_reg_piso4a (rst_n, clk, load, x, y, z);

input rst_n, clk, load;
input [1:4] x;
output [1:4] y;
output z;

reg [1:4] y;

assign z = y[4];

//continued on next page
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Figure 2.2       (Continued)

Figure 2.3 Test bench for the PISO shift right register.

always @ (negedge rst_n or posedge clk)
begin

if (rst_n == 1'b0)
y = 4'b0000;

else
y[1] <= ((load && x[1]) || (~load && 1'b0));
y[2] <= ((load && x[2]) || (~load && y[1]));
y[3] <= ((load && x[3]) || (~load && y[2]));
y[4] <= ((load && x[4]) || (~load && y[3]));

end

endmodule

//test bench for the 4-bit piso shift register
module shift_reg_piso4a_tb;

reg rst_n, clk, load;
reg [1:4] x;
wire [1:4] y;
wire z;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
$monitor ("x=%b, y=%b, z=%b", x, y, z);

//apply inputs
initial
begin

#0 rst_n = 1'b0; load = 1'b0; x = 4'b0000;
#3 rst_n = 1'b1;
#2 x = 4'b1111;
#3 load = 1'b1;
#7 load = 1'b0;

#100 $stop;     
end //continued on next page
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Figure 2.3      (Continued)

Figure 2.4 Outputs for the PISO shift right register.

Figure 2.5 Waveforms for the PISO shift right register.

//instantiate the module into the test bench
shift_reg_piso4a inst1 (

.rst_n(rst_n),

.clk(clk),

.load(load),

.x(x),

.y(y),

.z(z)
);

endmodule

x=0000, y=0000, z=0
x=1111, y=0000, z=0
x=1111, y=1111, z=1
x=1111, y=0111, z=1
x=1111, y=0011, z=1
x=1111, y=0001, z=1
x=1111, y=0000, z=0
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Example 2.2 This example designs a PISO register using structural modeling.  The
logic diagram for the PISO shift register using D flip-flops is shown in Figure 2.6 with
implied reset inputs.  Each stage (or cell) of the register is loaded with external data or
receives data from the previous stage with the assertion of a clock signal.  A Load sig-
nal is asserted to load the register with the binary input vector prior to the shift oper-
ation — this occurs at the first active Clock signal.  Then the Load signal is deasserted
and the shift operation begins.

The structural design module is shown in Figure 2.7 and the test bench module is
shown in Figure 2.8.  The same binary input vector that was used in the behavioral
module is used in the structural module for comparison.  The outputs and waveforms
are shown in Figure 2.9 and Figure 2.10, respectively.

Figure 2.6 Implementation of a parallel-in, serial-out register using D flip-flops.

One application of a PISO register is to convert data from a parallel bus into serial
data for use by a single-track device, such as a disk drive.  The serialization process oc-
curs during a write operation.
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Figure 2.7 Structural design module for the PISO shift right register.

//structural 4-bit parallel-in, serial-out shift register
module piso4_struc (rst_n, clk, load, x, y, z1);

//define inputs and outputs
input rst_n, clk, load;
input [1:4] x;
output [1:4] y;
output z1;

//define internal nets
wire net1, net2, net3, net4, net6, net7, net8;
wire net10, net11, net12, net14, net15, net16;

//instantiate the load/shift logic
not inst1 (net1, load);

//instantiate the logic for flip-flop y[1]
and2_df inst2 (

.x1(load),

.x2(x[1]),

.z1(net2)
);

and2_df inst3 (
.x1(net2),
.x2(1'b0),
.z1(net3)
);

or2_df inst4 (
.x1(net2),
.x2(net3),
.z1(net4)
);

d_ff_bhinst5 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[1])
);

//continued on next page



128          Chapter  2     Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL

Figure 2.7       (Continued)

//instantiate the logic for flip-flop y[2]
and2_df inst6 (

.x1(load),

.x2(x[2]),

.z1(net6)
);

and2_df inst7 (
.x1(net1),
.x2(y[1]),
.z1(net7)
);

or2_df inst8 (
.x1(net6),
.x2(net7),
.z1(net8)
);

d_ff_bh inst9 (
.rst_n(rst_n),
.clk(clk),
.d(net8),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
and2_df inst10 (

.x1(load),

.x2(x[3]),

.z1(net10)
);

and2_df inst11 (
.x1(net1),
.x2(y[2]),
.z1(net11)
);

//continued on next page
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Figure 2.7       (Continued)

or2_df inst12 (
.x1(net10),
.x2(net11),
.z1(net12)
);

d_ff_bh inst13 (
.rst_n(rst_n),
.clk(clk),
.d(net12),
.q(y[3])
);

//instantiate the logic for flip-flop y[4]
and2_df inst14 (

.x1(load),

.x2(x[4]),

.z1(net14)
);

and2_df inst15 (
.x1(net1),
.x2(y[3]),
.z1(net15)
);

or2_df inst16 (
.x1(net14),
.x2(net15),
.z1(net16)
);

d_ff_bh inst17 (
.rst_n(rst_n),
.clk(clk),
.d(net16),
.q(y[4])
);

assign z1 = y[4];

endmodule
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Figure 2.8 Test bench module for the PISO shift right register.

//test bench for parallel-in, serial-out shift register
module piso4_struc_tb;

//inputs are reg for test benches, outputs are wire
reg rst_n, clk, load;
reg [1:4] x;

wire [1:4] y;
wire z1;

//display variables
initial
$monitor ("y = %b, z = %b", y, z1);

//generate clock
initial
begin

clk = 1'b0;
forever

#10clk = ~clk;
end

//apply inputs
initial
begin

#0 rst_n = 1'b0; load = 1'b0; x = 4'b0000;
#3 rst_n = 1'b1;

#2 x = 4'b1111;

#3 load = 1'b1;
#7 load = 1'b0;

#100 $stop;
end

//instantiate the module into the test bench
piso4_struc inst1 (

.rst_n(rst_n),

.clk(clk),

.load(load),

.x(x),

.y(y),

.z1(z1)
);

endmodule
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Figure 2.9 Outputs for the PISO shift right register.

Figure 2.10 Waveforms for the PISO shift right register.

2.1.2  Serial-In, Parallel-Out Registers

The serial-in, parallel-out (SIPO) register is another typical synchronous iterative net-
work containing p identical cells.  Data enters the register from the left and shifts se-
rially to the right through all p stages, one bit position per clock pulse.  After p shifts,
the register is fully loaded and the bits are transferred in parallel to the destination.  A
typical application is to change serial data read from a disk drive to parallel data to be
sent to a processor.

An example of a 4-bit SIPO register is shown in the state diagram of Figure 2.11,
in which four bits of serial data, x1 , x2 , x3 , and x4  are shifted into a register from the
left, where x4 is the first bit entered.  The initial state of the register is either unknown

y = 0000, z = 0
y = 1111, z = 1
y = 0111, z = 1
y = 0011, z = 1
y = 0001, z = 1
y = 0000, z = 0
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or reset to y1y2y3y4 = 0000.  During the shift sequence, y1 = xi and yi = yi–1.  After
four shift cycles, the state of the register is y1y2y3y4 = x1x2x3x4  and the 4-bit word is
transferred in parallel to the destination.

Figure 2.11 State diagram for a serial-in, parallel-out register.

Example 2.3 This example designs a SIPO register using behavioral modeling.
Figure 2.12 shows a behavioral design module that implements the serial-in, parallel-
out register of Figure 2.11.  The test bench is shown in Figure 2.13 and provides an
input sequence to illustrate more than four serial bits for the input data.  The outputs
and waveforms are shown in Figure 2.14 and Figure 2.15, respectively.

Figure 2.12 Behavioral design module for the 4-bit SIPO register.

a

y1y2y3y4    State flip-flops
– –  – –     State data

b

c

d

e

x4

x4 – – –

x3

x3x4 – – 

x2

x2x3x4  – 

x1

x1x2x3x4 

Transfer parallel data
to destination

//behavioral 4-bit serial-in, parallel-out shift register
module shift_reg_sipo4_bh (rst_n, clk, x, y);

input rst_n, clk, x;
output [1:4] y;

reg [1:4] y; //continued on next page



2.1     Synchronous Registers     133

Figure 2.12       (Continued)

Figure 2.13 Test bench module for the 4-bit SIPO register.

always @ (rst_n)
begin

if (rst_n == 0)
y = 4'b0000;

end

always @ (posedge clk)
begin

y[1] <= x;
y[2] <= y[1];
y[3] <= y[2];
y[4] <= y[3];

end

endmodule

//test bench for 4-bit serial-in parallel-out shift register
module shift_reg_sipo4_bh_tb;

reg rst_n, clk, x;
wire [1:4] y;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
$monitor ("ser_in = %b, shift_reg = %b", x, y);

//apply inputs
initial
begin

#0 rst_n = 1'b0;
x = 1'b0;

#5 rst_n = 1'b1;
x = 1'b1;

//continued on next page
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Figure 2.13       (Continued)

Figure 2.14 Outputs for the 4-bit SIPO register.

#10 x = 1'b1;
#10 x = 1'b0;
#10 x = 1'b1;

#10 x = 1'b0;
#10 x = 1'b1;
#10 x = 1'b0;
#10 x = 1'b1;

#90 $stop;
end

//instantiate the module into the test bench
shift_reg_sipo4_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.x(x),

.y(y)
);

endmodule

ser_in = 0, shift_reg = 0000
ser_in = 1, shift_reg = 0000
ser_in = 1, shift_reg = 1000
ser_in = 0, shift_reg = 1000

ser_in = 0, shift_reg = 0100
ser_in = 1, shift_reg = 0100
ser_in = 0, shift_reg = 0100
ser_in = 0, shift_reg = 0010

ser_in = 1, shift_reg = 0010
ser_in = 0, shift_reg = 0010
ser_in = 0, shift_reg = 0001
ser_in = 1, shift_reg = 0001

ser_in = 1, shift_reg = 1000
ser_in = 1, shift_reg = 1100
ser_in = 1, shift_reg = 1110
ser_in = 1, shift_reg = 1111
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Figure 2.15 Waveforms for the 4-bit SIPO register.

Like the PISO register, the synthesis of a SIPO register is intuitively obvious and
can be designed from the state diagram without any intermediate steps.  The data input
of each flip-flop is connected directly to the output of the preceding flip-flop with the
exception of flip-flop y1 , which receives the external serial binary data.  A typical ap-
plication of a serial-in, parallel-out shift register is to deserialize binary data from a
single-track peripheral subsystem as illustrated in Figure 2.16.  The resulting word of
parallel bits is placed on the system data bus.

Figure 2.16 A serial-in, parallel-out register to deserialize data from a disk sub-
system.

Serial-in,
parallel-out
register

Control unit

Disk subsystem

Data bus
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Figure 2.17 shows the implementation of a 4-bit serial-in, parallel-out shift regis-
ter using JK flip-flops, where y4 is the low-order flip-flop.  D flip-flops or SR latches
are equally acceptable storage elements.  Each stage of the machine is required to per-
form only one function: Store the state of the preceding storage element.  Data bits at
the serial input are changed at the positive clock transition to allow bit xi to be stable at
the JK inputs of flip-flop y1  before the active negative clock transition.

Figure 2.17 Implementation of a 4-bit serial-in, parallel-out shift register using JK
flip-flops.  The flip-flops have implied active-low Reset inputs.

Example 2.4 This example designs a SIPO register using structural modeling with
JK flip-flops.  The structural design module of the 4-bit serial-in, parallel-out shift reg-
ister is shown in Figure 2.18 using a not gate in the implementation.  The not gate is an
inverting built-in primitive with one scalar input and one or more scalar outputs. The
output terminal is listed first when it is instantiated into the module; the input is listed
last.  A negative-edge triggered JK flip-flop, jkff-neg-clk, is also used and is instanti-
ated four times to implement the 4-bit serial-in, parallel-out register.  The test bench
module is shown in Figure 2.19 and provides an input sequence to illustrate serial bits
for the input data.  The outputs and waveforms are shown in Figure 2.20 and Figure
2.21, respectively.
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Figure 2.18 Structural design module for the 4-bit serial-in, parallel-out shift reg-
ister using JK flip-flops

//structural 4-bit serial-in, parallel-out shift register
module shift_reg_sipo4_struc (rst_n, clk, x1, y);

input rst_n, clk, x1; //define inputs and outputs
output [1:4] y;

wire net1; //define internal nets

//instantiate the logic for flip-flop y[1]
not inst1 (net1, x1);

jkff_neg_clk inst2 (
.rst_n(rst_n),
.clk(clk),
.j(x1),
.k(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
jkff_neg_clk inst3 (

.rst_n(rst_n),

.clk(clk),

.j(y[1]),

.k(~y[1]),

.q(y[2])
);

//instantiate the logic for flip-flop y[3]
jkff_neg_clk inst4 (

.rst_n(rst_n),

.clk(clk),

.j(y[2]),

.k(~y[2]),

.q(y[3])
);

//instantiate the logic for flip-flop y[4]
jkff_neg_clk inst5 (

.rst_n(rst_n),

.clk(clk),

.j(y[3]),

.k(~y[3]),

.q(y[4])
);

endmodule
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Figure 2.19 Test bench module for the 4-bit serial-in, parallel-out shift register
using JK flip-flops.

//test bench for 4-bit serial_in, parallel-out
//shift register using JK flip-flops
module shift_reg_sipo4_struc_tb;

reg rst_n, clk, x1;
wire [1:4] y;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
$monitor ("ser_in = %b, shift_reg = %b", x1, y);

//apply inputs
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;
x1 = 1'b1;

#10 x1 = 1'b1;
#10 x1 = 1'b0;
#10 x1 = 1'b0;
#10 x1 = 1'b1;

#50 $stop;
end

//instantiate the module into the test bench
shift_reg_sipo4_struc inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y)
);

endmodule
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Figure 2.20 Outputs for the 4-bit serial-in, parallel-out shift register using JK flip-
flops.

Figure 2.21 Waveforms for the 4-bit serial-in, parallel-out shift register using JK
flip-flops.

Example 2.5 This example designs a SIPO register using structural modeling with
D flip-flops.  Another useful application of a SIPO register is to generate a sequence of
nonoverlapping pulses for system timing.  This provides a simple, yet effective state
machine, where each pulse represents a different state.  A small amount of additional
logic is required as shown in Figure 2.22 (a).  The flip-flops have an implied active-
low Reset input.  The machine outputs are presented in Figure 2.22 (b).  The machine
is initially reset to y1y2y3y4 = 0000.  Whenever y1y2y3 = 000, a 1 bit will be shifted
into flip-flop y1  at the next positive clock transition.  If  either y1, y2 , or y3 = 1, then
a 0 bit will be shifted into flip-flop y1 , and yi = yi–1 at the next positive clock transition.
Thus, the required four nonoverlapping pulses are generated.

ser_in = 0, shift_reg = 0000
ser_in = 1, shift_reg = 0000
ser_in = 1, shift_reg = 1000
ser_in = 0, shift_reg = 1000

ser_in = 0, shift_reg = 0100
ser_in = 1, shift_reg = 0100
ser_in = 1, shift_reg = 1010
ser_in = 1, shift_reg = 1101
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The structural design module is shown in Figure 2.23 and the test bench module is
shown in Figure 2.24.  The outputs and waveforms are shown in Figure 2.25 and Fig-
ure 2.26, respectively.

Figure 2.22 A serial-in, parallel-out register configured to generate a sequence of
nonoverlapping pulses: (a) logic diagram and (b) timing diagram.
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Figure 2.23 Structural design module to generate a sequence of four nonoverlap-
ping pulses.

//structural 4-bit serial-in, parallel-out shift register
//using D flip-flops to generate nonoverlapping pulses

module sipo4_struc (rst_n, clk, y);

input rst_n, clk; //define inputs and outputs
output [1:4] y;

wire net1; //define internal nets

//instantiate the logic for flip-flop y[1]
nor3_df inst1 (

.x1(y[1]),

.x2(y[2]),

.x3(y[3]),

.z1(net1)
);

d_ff inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
d_ff inst3 (

.rst_n(rst_n),

.clk(clk),

.d(y[1]),

.q(y[2])

);
//instantiate the logic for flip-flop y[3]
d_ff inst4 (

.rst_n(rst_n),

.clk(clk),

.d(y[2]),

.q(y[3])
);

//instantiate the logic for flip-flop y[4]
d_ff inst5 (

.rst_n(rst_n),

.clk(clk),

.d(y[3]),

.q(y[4])
);

endmodule
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Figure 2.24 Test bench module to generate a sequence of four nonoverlapping
pulses.

//test bench for serial-in, parallel-out
//shift register for nonoverlapping pulses

module sipo4_struc_tb;

//inputs are reg for test benches
reg rst_n, clk;

//outputs are wire for test benches
wire [1:4] y;

//display outputs
initial
$monitor ("out = %b", y);

//generate reset
initial
begin

#0 rst_n = 1'b0;
#2 rst_n = 1'b1;

end

//generate clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//determine length of simulation
initial

#110 $stop;

//instantiate the module into the test bench
sipo4_struc inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule
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Figure 2.25 Outputs to generate a sequence of four nonoverlapping pulses.

Figure 2.26 Waveforms to generate a sequence of four nonoverlapping pulses.

2.1.3  Serial-In, Serial-Out Registers

The synthesis of a serial-in, serial-out (SISO) register is identical to that of a SIPO
register, with the exception that only one output is required.  The low-order flip-flop
provides the single output for the register as shown in the logic diagram of
Figure 2.27 for a 4-bit SISO register using JK flip-flops with implied reset inputs.

One application of a SISO register is in the design of a queue in which parallel
bytes are shifted into a matrix of SISO registers, where each bit of a byte is shifted into
a particular column of the matrix.  In this application, the SISO registers perform the
function of a first-in, first-out (FIFO) queue, which acts as a buffer between a single-
track input/output (I/O) device and the system I/O data bus.  Information is read from
the device into a SIPO register, then into the FIFO, and then transferred to the desti-
nation by means of a parallel data bus.

out = 0000
out = 1000
out = 0100
out = 0010
out = 0001
out = 1000
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Figure 2.27 Implementation of a 4-bit serial-in, serial-out register using JK flip-
flops.

Example 2.6 This example designs a SISO register using behavioral modeling.
The behavioral design module for the serial-in, serial-out shift register is shown in Fig-
ure 2.28, where the statement shown below indicates that y[1:4] is assigned the con-
catenated contents of the current input xi and the contents of y[1:3].  Thus, y[4] is
shifted out of the register.

y <= {x, y[1:3]};

The test bench is shown in Figure 2.29, in which an input sequence of serial data
bits is applied to flip-flop y[1].  The outputs and waveforms are shown in Figure 2.30
and Figure 2.31, respectively.

This mode of data transfer between a single-track I/O device and a destination al-
lows the I/O device to be logically removed from the system data bus temporarily
without losing any data, because the data is stored in the FIFO queue.  In this situation,
data continues to be read from the device and is transferred to the FIFO, where the
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bytes are retained until the device control unit again gains control of the bus.  The
FIFO prevents data from being lost while the control unit is arbitrating for bus control.

The same implementation of a SISO register matrix can be used as an instruction
queue in a CPU instruction pipeline.  The CPU prefetches instructions from memory
during unused memory cycles and stores the instructions in the FIFO queue.  Thus, an
instruction stream can be placed in the instruction queue to wait for decoding and ex-
ecution by the processor.  Instruction queueing provides an effective method to in-
crease system throughput.

Figure 2.28 Behavioral design module for the SISO register of Figure 2.27.

Figure 2.29 Test bench module for the SISO register.

//behavioral 4-bit serial-in, serial-out shift register
module shift_reg_siso4_bh (rst_n, clk, x, y, z1);

input rst_n, clk, x;
output [1:4] y;
output z1;

reg [1:4] y; //variables are reg in always

assign z1 = y[4];

always @ (negedge rst_n or posedge clk)
begin

if (rst_n == 1'b0)
y = 4'b000;

else
y = {x, y[1:3]};

end
endmodule

//test bench for serial-in, serial-out shift register
module shift_reg_siso4_bh_tb;

reg rst_n, clk, x;
wire [1:4] y;
wire z1;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end //continued on next page
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Figure 2.29       (Continued)

Figure 2.30 Outputs for the SISO register.

initial //display variables
$monitor ("ser_in = %b, siso_reg = %b, z = %b", x, y, z1);

initial //apply inputs
begin

#0 rst_n = 1'b0; x = 1'b0;
#5 rst_n = 1'b1;
#3 x = 1'b1;
#17 x = 1'b1;
#20 x = 1'b0;
#20 x = 1'b1;
#20 x = 1'b0;
#20 x = 1'b1;
#20 x = 1'b0;
#20 x = 1'b1;
#40 $stop;

end

//instantiate the module into the test bench
shift_reg_siso4_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.x(x),

.y(y),

.z1(z1)
);

endmodule

ser_in = 0, siso_reg = 0000, z = 0
ser_in = 1, siso_reg = 0000, z = 0
ser_in = 1, siso_reg = 1000, z = 0
ser_in = 1, siso_reg = 1100, z = 0
ser_in = 0, siso_reg = 1100, z = 0
ser_in = 0, siso_reg = 0110, z = 0
ser_in = 1, siso_reg = 0110, z = 0
ser_in = 1, siso_reg = 1011, z = 1
ser_in = 0, siso_reg = 1011, z = 1
ser_in = 0, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 1010, z = 0
ser_in = 0, siso_reg = 1010, z = 0
ser_in = 0, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 1010, z = 0
ser_in = 1, siso_reg = 1101, z = 1
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Figure 2.31 Waveforms for the SISO register.

Example 2.7 This example designs a SISO register using structural modeling with
JK flip-flops.  The same serial-in, serial-out register of Figure 2.27 will now be
designed using structural modeling.  The structural design module is shown in Figure
2.32 and the test bench is shown in Figure 2.33.  The outputs and waveforms are shown
in Figure 2.34 and Figure 2.35, respectively.

Figure 2.32 Structural design module for the  SISO register of Figure 2.27.

//structural 4-bit serial-in, serial-out
//shift register using JK flip-flops
module shift_reg_siso4_jk (rst_n, clk, x, y, z1);

//define inputs and outputs
input rst_n, clk, x;

output [1:4] y;
output z1;

//define internal nets
wire net1;

assign z1 = y[4];
//continued on next page
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Figure 2.32       (Continued)

//instantiate the logic for flip-flop y[1]
not inst1 (net1, x);

jkff_neg_clk inst2 (
.rst_n(rst_n),
.clk(clk),
.j(x),
.k(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
jkff_neg_clk inst3 (

.rst_n(rst_n),

.clk(clk),

.j(y[1]),

.k(~y[1]),

.q(y[2])
);

//instantiate the logic for flip-flop y[3]
jkff_neg_clk inst4 (

.rst_n(rst_n),

.clk(clk),

.j(y[2]),

.k(~y[2]),

.q(y[3])
);

//instantiate the logic for flip-flop y[4]
jkff_neg_clk inst5 (

.rst_n(rst_n),

.clk(clk),

.j(y[3]),

.k(~y[3]),

.q(y[4])
);

endmodule



2.1     Synchronous Registers     149

Figure 2.33 Test bench module for the  SISO register of Figure 2.27.

//test bench for serial-in, serial-out shift register
module shift_reg_siso4_jk_tb;

reg rst_n, clk, x;
wire [1:4] y;
wire z1;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
$monitor ("ser_in = %b, siso_reg = %b, z = %b", x, y, z1);

//apply inputs
initial
begin

#0 rst_n = 1'b0; x = 1'b0;
#5 rst_n = 1'b1;

#3 x = 1'b1;
#17 x = 1'b1;
#20 x = 1'b0;
#20 x = 1'b1;
#20 x = 1'b0;
#20 x = 1'b1;
#20 x = 1'b0;
#20 x = 1'b1;

#50 $stop;
end

//instantiate the module into the test bench
shift_reg_siso4_jk inst1 (

.rst_n(rst_n),

.clk(clk),

.x(x),

.y(y),

.z1(z1)
);

endmodule
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Figure 2.34 Outputs for the  SISO register of Figure 2.27.

Figure 2.35 Waveforms for the  SISO register of Figure 2.27.

ser_in = 0, siso_reg = 0000, z = 0
ser_in = 1, siso_reg = 0000, z = 0
ser_in = 1, siso_reg = 1000, z = 0
ser_in = 1, siso_reg = 1100, z = 0

ser_in = 0, siso_reg = 1100, z = 0
ser_in = 0, siso_reg = 0110, z = 0
ser_in = 1, siso_reg = 0110, z = 0
ser_in = 1, siso_reg = 1011, z = 1

ser_in = 0, siso_reg = 1011, z = 1
ser_in = 0, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 1010, z = 0

ser_in = 0, siso_reg = 1010, z = 0
ser_in = 0, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 0101, z = 1
ser_in = 1, siso_reg = 1010, z = 0

ser_in = 1, siso_reg = 1101, z = 1
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2.1.4  Combinational Shifter

A combinational shifter will now be presented.  Although not sequential in structure,
it is used extensively in high-speed processors, specifically for machines with long
word sizes such as, 32- or 64-bit operands.  The shifter accomplishes all shift opera-
tions, whether left or right, algebraic or logical, by shifting left only.  This results in
considerable hardware savings, especially for large operands.

There are four basic shift operations: shift left logical (SLL), shift left algebraic
(SLA) for unsigned and signed operands, respectively; shift right logical (SRL) and
shift right algebraic (SRA) for unsigned and signed operands, respectively.  The four
shift operations are stated below.

Shift left logical (SLL) The logical shift operations are much simpler to imple-
ment than the arithmetic shift operations.  For SLL, the high-order bit of the unsigned
operand is shifted out of the left end of the shifter for each shift cycle.  Zeroes are en-
tered from the right and fill the vacated low-order bit positions.

Shift left algebraic (SLA) SLA operates on signed operands in 2s complement
representation.  The numeric part of the operand is shifted left the number of bit po-
sitions specified in the shift count field.  The sign remains unchanged and does not par-
ticipate in the shift operation.  All remaining bits participate in the left shift operation.
The bits are shifted out of the high-order numeric bit position and 0s are shifted in to
the vacated register positions on the right.  An overflow occurs if a bit shifted out of the
high-order numeric position is different than the sign bit.

Shift right logical (SRL) Any right shift operation can be implemented by shift-
ing left an amount that is the 2s complement of the right shift count.  For example, if
the right shift count is 0112 (310), then the equivalent left shift count is 100 + 1 = 101,
which is the 2s complement of the right shift count.  The equivalent left shift operation
is implemented in two levels of hardware, as will be explained subsequently.

Shift right algebraic (SRA) The numeric part of the signed operand is shifted
right the number of bits specified by the shift count.  The sign of the operand remains
unchanged.  All numeric bits participate in the right shift.  The sign bit propagates right
to fill in the vacated high-order numeric bit positions.  When the operation is executed
by shifting left, it is identical to SRL with the exception that the high-order bits in the
second level are set to the value of the sign bit, as will be explained subsequently.

Before presenting the individual structural modules for each of the four shift oper-
ations, a behavioral module will be implemented that performs all four shift opera-
tions.  This method utilizes the case statement.  Recall that the case statement is a
multi-way conditional branch that executes one of several different procedural state-
ments depending on the comparison of an expression with a case item.

Figure 2.36 shows the behavioral design module for 8-bit operands and Figure
2.37 shows the test bench module, which provides several different operands to be
shifted and also provides different shift amounts.  The outputs and waveforms are
shown in Figure 2.38 and Figure 2.39, respectively.
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Figure 2.36 Behavioral module to implement the four shift operations of SLL,
SLA, SRL, and SRA.

//behavioral logical and algebraic shifter
module comb_shifter (a, shft_code, shft_amt, shft_rslt);

input [7:0] a;
input [1:0] shft_code;
input [3:0] shft_amt;
output [7:0] shft_rslt;

wire [7:0] a;
wire [3:0] shft_amt;

//variables used in always are declared as registers
reg [7:0] reg_a;
reg [7:0] shft_rslt;
reg [15:0] sra_reg;

//define shift codes
parameter sll = 2'b00,

sla = 2'b01,
srl = 2'b10,
sra = 2'b11;

//perform the shift operations
always @ (a or shft_code)
begin

case (shft_code)
sll:

begin
reg_a = a << shft_amt;
shft_rslt = reg_a;

end

sla:
begin

reg_a = a;
reg_a = reg_a << shft_amt;
reg_a[7] = a[7];
shft_rslt = reg_a;

end

srl:
begin

reg_a = a >> shft_amt;
shft_rslt = reg_a;

end //continued on next page
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Figure 2.36       (Continued)

Figure 2.37 Test bench module for the four shift operations of SLL, SLA, SRL,
and SRA.

sra:
begin

sra_reg[15:8] = {8{a[7]}};
sra_reg[7:0] = a;
sra_reg = sra_reg >> shft_amt;
shft_rslt = sra_reg[7:0];

end
endcase

end
endmodule

//test bench for logical and algebraic shifter
module comb_shifter_tb;

reg [7:0] a;
reg [1:0] shft_code;
reg [3:0] shft_amt;
wire [7:0] shft_rslt;

initial //display variables
$monitor ("a=%b, shft_code=%b, shft_amt=%b, shft_rslt=%b",

a, shft_code, shft_amt, shft_rslt);

initial //apply input vectors
begin

//shift left logical
#0 a = 8'b0000_1111;

shft_code = 2'b00;shft_amt = 4'b0010;

//shift left algebraic
#10 a = 8'b1000_1111;

shft_code = 2'b01;shft_amt = 4'b0010;

//shift right logical
#10 a = 8'b0000_1111;

shft_code = 2'b10;shft_amt = 4'b0010;

//shift right algebraic
#10 a = 8'b1000_1111;

shft_code = 2'b11;shft_amt = 4'b0010;
------------------------------------------------------------

//continued on next page
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Figure 2.37       (Continued)

//shift left logical
#10 a = 8'b1111_1111;

shft_code = 2'b00;shft_amt = 4'b0100;

//shift left algebraic
#10 a = 8'b1111_1111;

shft_code = 2'b01;shft_amt = 4'b0100;

//shift right logical
#10 a = 8'b1111_1111;

shft_code = 2'b10;shft_amt = 4'b0100;

//shift right algebraic
#10 a = 8'b1111_1111;

shft_code = 2'b11;shft_amt = 4'b0100;
------------------------------------------------------------

//shift left logical
#10 a = 8'b1100_0011;

shft_code = 2'b00;shft_amt = 4'b0101;

//shift left algebraic
#10 a = 8'b1100_0011;

shft_code = 2'b01;shft_amt = 4'b0101;

//shift right logical
#10 a = 8'b1100_0011;

shft_code = 2'b10;shft_amt = 4'b0101;

//shift right algebraic
#10 a = 8'b0111_1111;

shft_code = 2'b11;shft_amt = 4'b0101;
------------------------------------------------------------

#10 $stop;

end

//instantiate the module into the test bench
comb_shifter inst1 (

.a(a),

.shft_code(shft_code),

.shft_amt(shft_amt),

.shft_rslt(shft_rslt)
);

endmodule



2.1     Synchronous Registers     155

Figure 2.38 Outputs for the four shift operations of SLL, SLA, SRL, and SRA.

Figure 2.39 Waveforms for the four shift operations of SLL, SLA, SRL, and SRA.

Shift operation codes
sll = 00, sla = 01, srl = 10, sra = 11

a=00001111, shft_code=00, shft_amt=0010, shft_rslt=00111100
a=10001111, shft_code=01, shft_amt=0010, shft_rslt=10111100
a=00001111, shft_code=10, shft_amt=0010, shft_rslt=00000011
a=10001111, shft_code=11, shft_amt=0010, shft_rslt=11100011
------------------------------------------------------------
Shift operation codes
sll = 00, sla = 01, srl = 10, sra = 11

a=11111111, shft_code=00, shft_amt=0100, shft_rslt=11110000
a=11111111, shft_code=01, shft_amt=0100, shft_rslt=11110000
a=11111111, shft_code=10, shft_amt=0100, shft_rslt=00001111
a=11111111, shft_code=11, shft_amt=0100, shft_rslt=11111111
------------------------------------------------------------
Shift operation codes
sll = 00, sla = 01, srl = 10, sra = 11

a=11000011, shft_code=00, shft_amt=0101, shft_rslt=01100000
a=11000011, shft_code=01, shft_amt=0101, shft_rslt=11100000
a=11000011, shft_code=10, shft_amt=0101, shft_rslt=00000110
a=01111111, shft_code=11, shft_amt=0101, shft_rslt=00000011
------------------------------------------------------------
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Shift left logical (SLL) Figure 2.40 shows an 8-bit register with a left shift count
of 3 (011) for a shift left logical operation.  The operand to be shifted is loaded into the
shift left register, then shifted left the requisite number of bits as specified by the shift
count.

Figure 2.40 Shift left logical 3 (011) bit positions.

The design of a combinational shift operation is more easily accomplished with
the utilization of multiplexers.  Therefore, a 4:1 multiplexer will be designed using
behavioral modeling, then instantiated into a structural module the requisite number of
times to accommodate the operand size.  The structural design module utilizes only
one byte in the shifter; however, the concept can be easily extended for larger oper-
ands.  A block diagram of the multiplexer is shown in Figure 2.41 using the ANSI/
IEEE Std. 91-1984 format.

Figure 2.41 Block diagram for a 4:1 multiplexer.

A block diagram of the required 4:1 multiplexers is shown in Figure 2.42.  If the
shift amount is shft_amt[00], then no shifting occurs — the input operand, a[7:0], is
passed through the 0 input of the multiplexers of the shifting element unchanged.  If
the shift amount is shft_amt[01], then all bit positions of operand a[7:0] are shifted
left one bit position by assigning a logic 0 to input 1 of the inst0 multiplexer, bit a[0]
to input 1 of the inst1 multiplexer, and the remaining bits assigned to the appropriate
data inputs of the remaining multiplexers.  Bit a[7] is shifted off the left end of the
shifting element, representing a logical left shift operation.

7     6     5    4    3    2    1     0

4    3     2     1    0    0    0     0 Shift in 0s

Shift left register

Operand to be shifted left

MUX

s0

d0
d1

s1

d3
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+z1
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If the shift amount is shft_amt[11], then operand a[7:0] is shifted left three bit
positions with zeroes filling the vacated low-order bit positions.  In this case, input 3 of
multiplexers 7 through 0 are assigned the values a[4] a[3] a[2] a[1] a[0] 0 0 0.

Figure 2.42 Block diagram for the logical organization for a high-speed shifter.

The behavioral module for a 4:1 multiplexer using the case statement is shown in
Figure 2.43.  Note that the data inputs for the multiplexer are labelled [3:0] data.
Therefore, when the multiplexer is instantiated into the structural module representing
Figure 2.42, the data inputs must be listed in the same sequence.

Figure 2.43 Four-to-one multiplexer to be used in the combinational shifter.

3  2  1  0s0
s1 inst7

a[4]

a[5]

a[6]

a[7]

shft_rslt[7]

3  2  1  0
inst6

a[3]

a[4]

a[5]

a[6]

shft_rslt[6]

3  2  1  0
inst5

a[2]

a[3]

a[4]

a[5]

shft_rslt[5]

3  2  1  0
inst4

a[1]

a[2]

a[3]

a[4]

shft_rslt[4]

3  2  1  0
inst3

a[0]

a[1]

a[2]

a[3]

shft_rslt[3]

3  2  1  0
inst2

0

a[0]

a[1]

a[2]

shft_rslt[2]

3  2  1  0
inst1

0

0

a[0]

a[1]

shft_rslt[1]

3  2  1  0
inst0

0

0

0

a[0]

shft_rslt[0]

shft_amt[0]
shft_amt[1]

//behavioral 4:1 multiplexer using a case statement
module mux_4_1_case (sel, data, out);

input [1:0] sel;
input [3:0] data;
output out;
reg out;

always @ (sel or data)
begin

case (sel)
(0) : out = data[0];
(1) : out = data[1];
(2) : out = data[2];
(3) : out = data[3];

endcase
end
endmodule
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The structural module for the shift left logical operation is shown in Figure 2.44
using the 4:1 multiplexers.  The test bench module is shown in Figure 2.45 and applies
several input vectors to be shifted left.  The outputs and waveforms are shown in Fig-
ure 2.46 and Figure 2.47, respectively.

Figure 2.44 Structural module for the shift left logical operation.

//structural combinational shift left logical
//shifter using multiplexers
module shifter_usg_mux_sll (a, shft_amt, shft_rslt);

input [7:0] a;
input [1:0] shft_amt;
output [7:0] shft_rslt;

//instantiate the multiplexers
mux_4_1_case inst0 (

.sel(shft_amt),

.data({{3{1'b0}}, a[0]}),

.out(shft_rslt[0])
);

mux_4_1_case inst1 (
.sel(shft_amt),
.data({{2{1'b0}}, a[0], a[1]}),
.out(shft_rslt[1])
);

mux_4_1_case inst2 (
.sel(shft_amt),
.data({1'b0, a[0], a[1], a[2]}),
.out(shft_rslt[2])
);

mux_4_1_case inst3 (
.sel(shft_amt),
.data({a[0], a[1], a[2], a[3]}),
.out(shft_rslt[3])
);

mux_4_1_case inst4 (
.sel(shft_amt),
.data({a[1], a[2], a[3], a[4]}),
.out(shft_rslt[4])
);

//continued on next page
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Figure 2.44       (Continued)

Figure 2.45 Test bench module for the shift left logical operation.

mux_4_1_case inst5 (
.sel(shft_amt),
.data({a[2], a[3], a[4], a[5]}),
.out(shft_rslt[5])
);

mux_4_1_case inst6 (
.sel(shft_amt),
.data({a[3], a[4], a[5], a[6]}),
.out(shft_rslt[6])
);

mux_4_1_case inst7 (
.sel(shft_amt),
.data({a[4], a[5], a[6], a[7]}),
.out(shft_rslt[7])
);

endmodule

//test bench for shifter using multiplexers
module shifter_usg_mux_sll_tb;

reg[7:0] a;
reg [1:0] shft_amt;
wire [7:0] shft_rslt;

//display variables
initial
$monitor ("a=%b, shft_amt=%b, shft_rslt=%b",

a, shft_amt, shft_rslt);

//apply input vectors
initial
begin

#0 a = 8'b0000_0000;
shft_amt = 2'b00;

#10 a = 8'b0000_1111;
shft_amt = 2'b01;

//continued on next page
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Figure 2.45       (Continued)

Figure 2.46 Outputs for the shift left logical operation.

#10 a = 8'b0000_1111;
shft_amt = 2'b10;

#10 a = 8'b0000_1111;
shft_amt = 2'b11;

#10 a = 8'b1111_0000;
shft_amt = 2'b00;

#10 a = 8'b1111_0000;
shft_amt = 2'b01;

#10 a = 8'b1111_0000;
shft_amt = 2'b10;

#10 a = 8'b1111_0000;
shft_amt = 2'b11;

#10 $stop;

end

//instantiate the module into the test bench
shifter_usg_mux_sll inst1 (

.a(a),

.shft_amt(shft_amt),

.shft_rslt(shft_rslt)
);

endmodule

a=00000000, shft_amt=00, shft_rslt=00000000 //shift left 0
a=00001111, shft_amt=01, shft_rslt=00011110 //shift left 1
a=00001111, shft_amt=10, shft_rslt=00111100 //shift left 2
a=00001111, shft_amt=11, shft_rslt=01111000 //shift left 3

a=11110000, shft_amt=00, shft_rslt=11110000 //shift left 0
a=11110000, shft_amt=01, shft_rslt=11100000 //shift left 1
a=11110000, shft_amt=10, shft_rslt=11000000 //shift left 2
a=11110000, shft_amt=11, shft_rslt=10000000 //shift left 3
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Figure 2.47 Waveforms for the shift left logical operation.

Shift left algebraic (SLA) Recall that for a shift left algebraic operation, the
numeric part of the operand is shifted left the number of bit positions specified by the
shift amount.  The logic diagram is similar to Figure 2.40 except that the sign remains
unchanged and does not participate in the shift operation.  The bits are shifted out of
the high-order numeric bit position and 0s are shifted into the vacated register posi-
tions on the right.  If a bit shifted out is different than the sign bit, then an overflow has
occurred.

The structural design module for a shift left algebraic operation using multiplexers
is shown in Figure 2.48.  The test bench module is shown in Figure 2.49 and provides
several operands to be shifted left.  The outputs and waveforms are shown in Figure
2.50 and Figure 2.51, respectively.

Figure 2.48 Structural design module for a shift left algebraic operation.

//structural shifter using multiplexers for
//shift left algebraic
module shifter_usg_mux_sla (a, shft_amt, shft_rslt);

input [7:0] a;
input [1:0] shft_amt;

output [7:0] shft_rslt; //continued on next page
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Figure 2.48       (Continued)

//instantiate the multiplexers
mux_4_1_case inst0 (

.sel(shft_amt),

.data({{3{1'b0}}, a[0]}),

.out(shft_rslt[0])
);

mux_4_1_case inst1 (
.sel(shft_amt),
.data({{2{1'b0}}, a[0], a[1]}),
.out(shft_rslt[1])
);

mux_4_1_case inst2 (
.sel(shft_amt),
.data({1'b0, a[0], a[1], a[2]}),
.out(shft_rslt[2])
);

mux_4_1_case inst3 (
.sel(shft_amt),
.data({a[0], a[1], a[2], a[3]}),
.out(shft_rslt[3])
);

mux_4_1_case inst4 (
.sel(shft_amt),
.data({a[1], a[2], a[3], a[4]}),
.out(shft_rslt[4])
);

mux_4_1_case inst5 (
.sel(shft_amt),
.data({a[2], a[3], a[4], a[5]}),
.out(shft_rslt[5])
);

mux_4_1_case inst6 (
.sel(shft_amt),
.data({a[3], a[4], a[5], a[6]}),
.out(shft_rslt[6])
);

mux_4_1_case inst7 (
.sel(shft_amt),
.data({4{a[7]}}),
.out(shft_rslt[7])
);

endmodule
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Figure 2.49 Test bench module for the shift left algebraic operation.

//test bench for structural shifter using multiplexers
//for shift left algebraic
module shifter_usg_mux_sla_tb;

reg[7:0] a;
reg [1:0] shft_amt;
wire [7:0] shft_rslt;

initial //display variables
$monitor ("a=%b, shft_amt=%b, shft_rslt=%b",

a, shft_amt, shft_rslt);

//apply input vectors
initial
begin

#0 a = 8'b0000_0000;
shft_amt = 2'b00;

#10 a = 8'b0000_1111;
shft_amt = 2'b01;

#10 a = 8'b0000_1111;
shft_amt = 2'b10;

#10 a = 8'b0000_1111;
shft_amt = 2'b11;

#10 a = 8'b0100_1111;
shft_amt = 2'b01;

//------------------------------
#10 a = 8'b1111_0000;

shft_amt = 2'b00;

#10 a = 8'b1111_0000;
shft_amt = 2'b01;

#10 a = 8'b1111_0000;
shft_amt = 2'b10;

#10 a = 8'b1111_0000;
shft_amt = 2'b11;

#10 a = 8'b1000_0000;
shft_amt = 2'b11;

#10 $stop;
end //continued on next page
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Figure 2.49       (Continued)

Figure 2.50 Outputs for the shift left algebraic operation.

Figure 2.51 Waveforms for the shift left algebraic operation.

//instantiate the module into the test bench
shifter_usg_mux_sla inst1 (

.a(a),

.shft_amt(shft_amt),

.shft_rslt(shft_rslt)
);

endmodule

a=00000000, shft_amt=00, shft_rslt=00000000
a=00001111, shft_amt=01, shft_rslt=00011110
a=00001111, shft_amt=10, shft_rslt=00111100
a=00001111, shft_amt=11, shft_rslt=01111000
a=01001111, shft_amt=01, shft_rslt=00011110

a=11110000, shft_amt=00, shft_rslt=11110000
a=11110000, shft_amt=01, shft_rslt=11100000
a=11110000, shft_amt=10, shft_rslt=11000000
a=11110000, shft_amt=11, shft_rslt=10000000
a=10000000, shft_amt=11, shft_rslt=10000000
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Shift right logical (SRL) Recall that any right shift operation can be implement-
ed by shifting left an amount that is the 2s complement of the right shift count.  For ex-
ample, if the right shift count is 0112 (310), then the equivalent left shift count is 100 +
1 = 101, which is the 2s complement of the right shift count.  The shift right logical op-
eration is implemented in two levels of hardware, as shown in Figure 2.52, which
shifts right an 8-bit operand three bit positions.

In level A, the operand is offset to the right by a number of bit positions equal to
the operand length, minus one bit position.  The "minus one bit" represents a left shift
of one bit position when 2s complementing the right shift count; that is, it is the “+1”
in the 2s complementation process.  This built-in left shift of one bit position reduces
the amount hardware by one cell.  The remaining high-order bit positions are set to ze-
ro, because the operation is a logical right shift of an unsigned number.

In level B, the operand is shifted left by an amount equal to the equivalent left shift
count minus 1; that is, the 1s complement of the right shift count.  The resultant oper-
and in level B is identical to the shifted operand that would have been obtained by a
right shift operation without utilizing two levels.

Figure 2.52 Shift right logical 3 (011) bit positions.

The structural design module is shown in Figure 2.53 using 4:1 multiplexers for 8-
bit operands.  The test bench module is shown in Figure 2.54 and provides several
operands to be shifted right logically.  The outputs and waveforms are shown in Figure
2.55 and Figure 2.56, respectively

Figure 2.53 Structural design module for a shift right logical operation.

7     6     5    4    3    2    1     0
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Level B

 +1

Operand to be shifted right

//structural shifter using multiplexers
//for shift right logical
module shifter_usg_mux_srl (a, shft_amt, shft_rslt);

input [7:0] a;
input [1:0] shft_amt;
output [7:0] shft_rslt; //continued on next page
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Figure 2.53       (Continued)

//instantiate the multiplexers
mux_4_1_case inst0 (

.sel(shft_amt),

.data({a[3], a[2], a[1], a[0]}),

.out(shft_rslt[0])
);

mux_4_1_case inst1 (
.sel(shft_amt),
.data({a[4], a[3], a[2], a[1]}),
.out(shft_rslt[1])
);

mux_4_1_case inst2 (
.sel(shft_amt),
.data({a[5], a[4], a[3], a[2]}),
.out(shft_rslt[2])
);

mux_4_1_case inst3 (
.sel(shft_amt),
.data({a[6], a[5], a[4], a[3]}),
.out(shft_rslt[3])
);

mux_4_1_case inst4 (
.sel(shft_amt),
.data({a[7], a[6], a[5], a[4]}),
.out(shft_rslt[4])
);

mux_4_1_case inst5 (
.sel(shft_amt),
.data({1'b0, a[7], a[6], a[5]}),
.out(shft_rslt[5])
);

mux_4_1_case inst6 (
.sel(shft_amt),
.data({1'b0, 1'b0, a[7], a[6]}),
.out(shft_rslt[6])
);

mux_4_1_case inst7 (
.sel(shft_amt),
.data({{3{1'b0}}, a[7]}),
.out(shft_rslt[7])
);

endmodule
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Figure 2.54 Test bench module for the shift right logical operation.

//test bench for shifter using multiplexers
//for shift right logical
module shifter_usg_mux_srl_tb;

reg[7:0] a;
reg [1:0] shft_amt;
wire [7:0] shft_rslt;

initial //display variables
$monitor ("a=%b, shft_amt=%b, shft_rslt=%b",

a, shft_amt, shft_rslt);

initial //apply input vectors
begin

#0 a = 8'b0000_0000;
shft_amt = 2'b00;

#10 a = 8'b0000_1111;
shft_amt = 2'b01;

#10 a = 8'b0000_1111;
shft_amt = 2'b10;

#10 a = 8'b0000_1111;
shft_amt = 2'b11;

#10 a = 8'b1111_0000;
shft_amt = 2'b00;

#10 a = 8'b1111_0000;
shft_amt = 2'b01;

#10 a = 8'b1111_0000;
shft_amt = 2'b10;

#10 a = 8'b1111_0000;
shft_amt = 2'b11;

#10 $stop;
end

//instantiate the module into the test bench
shifter_usg_mux_srl inst1 (

.a(a),

.shft_amt(shft_amt),

.shft_rslt(shft_rslt)
);

endmodule
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Figure 2.55 Outputs for the shift right logical operation.

Figure 2.56 Waveforms for the shift right logical operation.

Shift right algebraic (SRA) Recall that the numeric part of the signed operand is
shifted right the number of bits specified by the shift count for a shift right algebraic
operation.  The sign of the operand remains unchanged.  All numeric bits participate in
the right shift.  The sign bit propagates right to fill in the vacated high-order numeric
bit positions.  When the operation is executed by shifting left, the high-order bits in
level B are set to the value of the sign bit, as shown in the logical configuration of Fig-
ure 2.57, which shifts right algebraic an 8-bit operand five bit positions.

a=00000000, shft_amt=00, shft_rslt=00000000
a=00001111, shft_amt=01, shft_rslt=00000111
a=00001111, shft_amt=10, shft_rslt=00000011
a=00001111, shft_amt=11, shft_rslt=00000001

a=11110000, shft_amt=00, shft_rslt=11110000
a=11110000, shft_amt=01, shft_rslt=01111000
a=11110000, shft_amt=10, shft_rslt=00111100
a=11110000, shft_amt=11, shft_rslt=00011110
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Figure 2.57 Shift right algebraic 5 (101) bit positions.

Figure 2.57 illustrates a shift right algebraic operation with a right shift count of 5
(101).  The equivalent left shift count is 010 + 1, or simply 010 after the “+1” left shift
has been implemented.  The operand in level B is identical to the operand that would
have been obtained by a shift right algebraic operation without utilizing two levels.

Since the sign bit must be inserted into the high-order positions of level A, an 8:1
multiplexer is used in the design, which is shown in Figure 2.58 as a behavioral mod-
ule using the case statement.  Figure 2.59 shows the structural design module for a
shift right algebraic operation.  The test bench module is shown in Figure 2.60 and pro-
vides several operands to be shifted right algebraically.  The outputs and waveforms
are shown in Figure 2.61 and Figure 2.62, respectively.

Figure 2.58 Behavioral module for an 8:1 multiplexer using the case statement.
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Operand to be shifted right

//behavioral 8:1 multiplexer using the case statement
module mux_8to1_case2 (sel, data, out);

input [2:0] sel;
input [7:0] data;
output out;

reg out;

always @ (sel or data)
begin

case (sel)
(0) : out = data[0];
(1) : out = data[1];
(2) : out = data[2];
(3) : out = data[3]; //continued on next page
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Figure 2.58       (Continued)

Figure 2.59 Structural design module for a shift right algebraic operation.

(4): out = data[4];
(5): out = data[5];
(6): out = data[6];
(7): out = data[7];
default: out = 1'b0;

endcase
end
endmodule

//structural shifter using multiplexers
//for shift right algebraic
module shifter_usg_mux_sra (a, shift_amt, shift_rslt);

input [7:0] a;
input [2:0] shift_amt;
output [7:0] shift_rslt;

//instantiate the multiplexers
mux_8to1_case2 inst0 (

.sel(shift_amt),

.data({a[7], a[6], a[5], a[4], a[3], a[2], a[1], a[0]}),

.out(shift_rslt[0])
);

mux_8to1_case2 inst1 (
.sel(shift_amt),
.data({a[7], a[7], a[6], a[5], a[4], a[3], a[2], a[1]}),
.out(shift_rslt[1])
);

mux_8to1_case2 inst2 (
.sel(shift_amt),
.data({{3{a[7]}}, a[6], a[5], a[4], a[3], a[2]}),
.out(shift_rslt[2])
);

mux_8to1_case2 inst3 (
.sel(shift_amt),
.data({{4{a[7]}}, a[6], a[5], a[4], a[3]}),
.out(shift_rslt[3])
); //continue on next page
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Figure 2.59       (Continued)

Figure 2.60 Test bench module for the shift right algebraic operation.

mux_8to1_case2 inst4 (
.sel(shift_amt),
.data({{5{a[7]}}, a[6], a[5], a[4]}),
.out(shift_rslt[4])
);

mux_8to1_case2 inst5 (
.sel(shift_amt),
.data({{6{a[7]}}, a[6], a[5]}),
.out(shift_rslt[5])
);

mux_8to1_case2 inst6 (
.sel(shift_amt),
.data({{7{a[7]}}, a[6]}),
.out(shift_rslt[6])
);

mux_8to1_case2 inst7 (
.sel(shift_amt),
.data({8{a[7]}}),
.out(shift_rslt[7])
);

endmodule

//test bench for shifter using multiplexers
//for shift right algebraic
module shifter_usg_mux_sra_tb;

reg [7:0] a;
reg [2:0] shift_amt;

wire [7:0] shift_rslt;

//display variables
initial
$monitor ("a=%b, shift_amt=%b, shift_rslt=%b",

a, shift_amt, shift_rslt);

//continued on next page
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Figure 2.60       (Continued)

Figure 2.61 Outputs for the shift right algebraic operation.

//apply input vectors
initial
begin

#0 a = 8'b0000_0000; shift_amt = 3'b000;
#10 a = 8'b0000_1111; shift_amt = 3'b001;

#10 a = 8'b0000_1111; shift_amt = 3'b010;
#10 a = 8'b0000_1111; shift_amt = 3'b011;

#10 a = 8'b1111_0000; shift_amt = 3'b100;
#10 a = 8'b1111_0000; shift_amt = 3'b101;

#10 a = 8'b1111_0000; shift_amt = 3'b110;
#10 a = 8'b1111_0000; shift_amt = 3'b111;

#10 a = 8'b1000_0000; shift_amt = 3'b111;
#10 a = 8'b0111_1111; shift_amt = 3'b111;

#10 $stop;
end

//instantiate the module into the test bench
shifter_usg_mux_sra inst1 (

.a(a),

.shift_amt(shift_amt),

.shift_rslt(shift_rslt)
);

endmodule

a=00000000, shift_amt=000, shift_rslt=00000000
a=00001111, shift_amt=001, shift_rslt=00000111

a=00001111, shift_amt=010, shift_rslt=00000011
a=00001111, shift_amt=011, shift_rslt=00000001

a=11110000, shift_amt=100, shift_rslt=11111111
a=11110000, shift_amt=101, shift_rslt=11111111

a=11110000, shift_amt=110, shift_rslt=11111111
a=11110000, shift_amt=111, shift_rslt=11111111

a=10000000, shift_amt=111, shift_rslt=11111111
a=01111111, shift_amt=111, shift_rslt=00000000
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Figure 2.62 Waveforms for the shift right algebraic operation.

2.2 Synchronous Counters
Counters are designed in this section using Verilog.  The designs illustrated in this sec-
tion will be a modulo-8 counter, a modulo-10 counter, and a Johnson counter.  Also
presented will be a binary-to-Gray code converter using JK flip-flops to illustrate the
versatility of counters.

Counters are usually clocked synchronous devices used in the design of digital
systems and have a finite number of states.  The  output logic is usually a function of
the present state only; that is, (Yj(t)).  The state of the counter is interpreted as an in-
teger with respect to a modulus.  A number A modulo n is defined as the remainder af-
ter dividing A by n.  Some counters accommodate a set of binary input variables which
provides an initial state for the counter.  There are also asynchronous counters, which
are inherently slow, because of the ripple effect caused by the output of stage yi func-
tioning as the clock input for stage yi+1.

This section will discuss only synchronous counters.  Counters are associated with
a set of transformations on a set of states and follow a prescribed sequence of states un-
der control of a clock input signal.  When the active clock transition occurs at the input,
the state of the machine changes to some predetermined value as defined by the ma-
chine specifications.  The counting sequence is usually an increment or decrement by
one, or an arbitrary prescribed sequence, or a state in which only one flip-flop changes
state, as in a Gray code counter.
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2.2.1  Modulo-8 Counter

A modulo-8 counter counts in the following sequence: 000 001 010 . . . 110 111 000.
The state diagram for a modulo-8 counter is shown in Figure 2.63.  The counter is ini-
tially reset to state a (y1y2y3 = 000), then increments by one at each clock transition
until state h (y1y2y3 = 111) is reached.  At the next clock transition, the counter
sequences to state a (y1y2y3 = 000).  The counter will be designed using behavioral
modeling, structural modeling using D flip-flops, and structural modeling using JK
flip-flops.

Figure 2.63 State diagram for a modulo-8 counter.

a

y1y2y3
0 0 0 

b
0 0 1

c
0 1 0

d
0 1 1

e
1 0 0

f
1 0 1

g
1 1 0

h
1 1 1
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Example 2.8 This example designs a modulo-8 counter using behavioral modeling.
The behavioral design module is shown in Figure 2.64.  The operator symbol for mod-
ulus is the percent symbol (%).  As previously stated, a number A modulo n is defined
as the remainder after dividing A by n.  Therefore, the statement y = (y + 1) % 8;
in Figure 2.64 specifies that the counter is incremented by one, then the count y mod-
ulus 8 is obtained.  The test bench module is shown in Figure 2.65.  The outputs and
waveforms are shown in Figure 2.66 and Figure 2.67, respectively.

Figure 2.64 Behavioral design module for the modulo-8 counter.

Figure 2.65 Test bench module for the modulo-8 counter.

//behavioral modulo-8 counter
module ctr_mod8_bh (rst_n, clk, y);

input rst_n, clk; //define inputs and outputs
output [2:0] y;

wire rst_n, clk; //or do not declare inputs as wire,
//because inputs are wire by default

reg [2:0] y; //variables in always declared as reg

//define counting sequence
always @ (posedge clk or negedge rst_n)
begin

if (rst_n == 0)
y = 3'b000;

else
y = (y + 1) % 8;

end
endmodule

//test bench for modulo-8 behavioral counter
module ctr_mod8_bh_tb;

reg rst_n, clk; //inputs are reg in test bench
wire [2:0] y; //outputs are wire in test bench

initial //display outputs
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end //continued on next page
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Figure 2.65       (Continued)

Figure 2.66 Outputs for the modulo-8 counter.

Figure 2.67 Waveforms for the modulo-8 counter.

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define length of simulation
begin

#160 $finish;
end

//instantiate the module into the test bench
ctr_mod8_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule

count = 000
count = 001
count = 010

count = 011
count = 100
count = 101

count = 110
count = 111
count = 000
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Example 2.9 This example designs a modulo-8 counter using structural modeling
with D flip-flops.  The input maps for the D flip-flops are obtained from the state dia-
gram of Figure 2.63 and are shown in Figure 2.68.  The logic diagram is shown in Fig-
ure 2.69 with implied reset inputs.

Figure 2.68 Input maps for the modulo-8 counter using D flip-flops

Figure 2.69 Logic diagram for the modulo-8 counter using D flip-flops.
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The structural design module for the modulo-8 counter is shown in Figure 2.70.
The module instantiates 2- and 3-input AND gates, a 3-input OR gate, an exclusive-
OR function, and D flip-flops.  The test bench module is shown in Figure 2.71.  The
outputs and waveforms are shown in Figure 2.72 and Figure 2.73, respectively.

Figure 2.70 Structural design module for the modulo-8 counter using D flip-flops.

//structural modulo-8 counter using D flip-flops
module ctr_mod8_d_st (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [1:3] y;

//define wires
wire rst_n, clk;
wire [1:3] y;

//define internal nets
wire net1, net2, net3, net4, net6;

//instantiate the logic for flip-flop y[1]
and2_df inst1 (

.x1(y[1]),

.x2(~y[2]),

.z1(net1)
);

and2_df inst2 (
.x1(y[1]),
.x2(~y[3]),
.z1(net2)
);

and3_df inst3 (
.x1(~y[1]),
.x2(y[2]),
.x3(y[3]),
.z1(net3)
);

or3_df inst4 (
.x1(net1),
.x2(net2),
.x3(net3),
.z1(net4)
);

//continued on next page
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Figure 2.70       (Continued)

Figure 2.71 Test bench module for the modulo-8 counter using D flip-flops.

d_ff_bh inst5 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
xor2_df inst6 (

.x1(y[3]),

.x2(y[2]),

.z1(net6)
);

d_ff_bh inst7 (
.rst_n(rst_n),
.clk(clk),
.d(net6),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
d_ff_bh inst8 (

.rst_n(rst_n),

.clk(clk),

.d(~y[3]),

.q(y[3])
);

endmodule

//test bench for the structural modulo-8 counter
module ctr_mod8_d_st_tb;

reg rst_n, clk; //inputs are reg in test bench
wire [1:3] y; //outputs are wire in test bench

//display outputs
initial
$monitor ("count = %b", y);

//continued on next page
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Figure 2.71       (Continued)

Figure 2.72 Outputs for the modulo-8 counter using D flip-flops.

//define reset
initial
begin

#0 rst_n = 1'b0;
#3 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin

#140 $finish;
end

//instantiate the module into the test bench
ctr_mod8_d_st inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule

count = 000
count = 001
count = 010
count = 011

count = 100
count = 101
count = 110
count = 111

count = 000
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Figure 2.73 Waveforms for the modulo-8 counter using D flip-flops.

Example 2.10 This example designs a modulo-8 counter using structural modeling
with JK flip-flops.  The excitation table for a JK flip-flop is shown in Table 2.1.  The
input maps for the JK flip-flops are obtained from the state diagram of Figure 2.63
using the JK excitation table and are shown in Figure 2.74.  As can be seen from the
equations, only one AND (y2y3) is required for the  next-state logic.

The logic diagram is shown in Figure 2.75 with implied reset inputs.  The flip-
flops are clocked on the negative clock transition.  Notice that the low-order flip-flop
y3  is implemented in toggle mode (JK = 11).  Also, when y3 = 1, y2  toggles, and when
y2y3 = 11, y1  toggles.  Circuit action takes place only on the negative edge of the
clock.  Once the negative transition has occurred, no further change of the input values
will cause a change in circuit activity until the following negative clock transition.

The structural design  module is shown in Figure 2.76 and the test bench module
is shown in Figure 2.77.  The outputs and waveforms are shown in Figure 2.78 and
Figure 2.79, respectively.  The resulting waveforms are essentially the same as for the
structural design using D flip-flops.

 
Table 2.1  Excitation Table for a JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Flip-flop inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0



182          Chapter  2     Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL

Figure 2.74 Input maps for the modulo-8 counter using JK flip-flops.

As the counter progresses through the counting sequence, the machine specifica-
tions may require an indication when a particular state has been reached.  This is easily
implemented by using an AND gate to detect, for example, state f (y1y2y3 = 101).  The
–Clock signal is included as an AND gate input to prevent an erroneous output caused
by a momentary transition through state y1y2y3 = 101 when two or more flip-flops
change state for a state transition sequence that does not end in state f.
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Figure 2.75 Logic diagram for the modulo-8 counter using JK flip-flops.

Figure 2.76 Structural design module for the modulo-8 counter using JK flip-
flops.
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//structural for a modulo-8 counter using jk flip-flops
module ctr_mod8_jk_struc (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [1:3]y;

wire net1; //define internal nets

//instantiate the logic for flip-flop y[1]
and2_df inst1 (

.x1(y[2]),

.x2(y[3]),

.z1(net1)
);

jkff_neg_clk inst2 (
.rst_n(rst_n),
.clk(clk),
.j(net1),
.k(net1),
.q(y[1])
);

//continued on next page
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Figure 2.76       (Continued)

Figure 2.77 Test bench module for the modulo-8 counter using JK flip-flops.

//instantiate the logic for flip-flop y[2]
jkff_neg_clk inst3 (

.rst_n(rst_n),

.clk(clk),

.j(y[3]),

.k(y[3]),

.q(y[2])
);

//instantiate the logic for flip-flop y[3]
jkff_neg_clk inst4 (

.rst_n(rst_n),

.clk(clk),

.j(1'b1),

.k(1'b1),

.q(y[3])
);

endmodule

//test bench for modul0-8 structural counter
//using JK flip-flops
module ctr_mod8_jk_struc_tb;

reg rst_n, clk;
wire [1:3] y;

initial //display outputs
$monitor("count = %b", y);

initial //define reset
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

initial //define clock
begin

clk = 1'b0;
forever

#10clk = ~clk;
end //continued on next page
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Figure 2.77       (Continued)

Figure 2.78 Outputs for the modulo-8 counter using JK flip-flops.

Figure 2.79 Waveforms for the modulo-8 counter using JK flip-flops.

//define length of simulation
initial
begin

#175 $finish;
end

//instantiate the module into the test bench
ctr_mod8_jk_struc inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule

count = 000
count = 001
count = 010
count = 011

count = 100
count = 101
count = 110
count = 111
count = 000
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2.2.2  Modulo-10 Counter

A modulo-10, or binary-coded decimal (BCD) decade counter, generates ten states in
the following sequence: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,
0000, ... .  Thus, each decade requires four flip-flops.  There are six unused states, 1010
through 1111, that represent invalid numbers for BCD.  These unused states can be re-
garded as “don't care” states for the purpose of minimizing the  next-state logic, un-
less the counter is self-starting, in which case, all unused states contain entries which
cause the counter to proceed to a predetermined state at the next active clock transi-
tion.

A modulo-10 counter will be designed using the following four Verilog modeling
constructs: behavioral modeling using the modulus operator (%), behavioral modeling
using the case statement, structural modeling with a self-starting state of y1y2y3y4 =
0000, and structural modeling that with no self-starting state.

Example 2.11 This example designs a modulo-10 counter using behavioral model-
ing with the modulus operator.  The behavioral design module using the modulus op-
erator is shown in Figure 2.80 and the test bench module is shown in Figure 2.81.  A
state diagram is not required for the behavioral module.  The outputs and waveforms
are shown in Figure 2.82 and Figure 2.83, respectively.

Figure 2.80 Behavioral design module for the modulo-10 counter using the mod-
ulus operator.

//behavioral modulo-10 counter using the modulus operator
module ctr_mod10_bh (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [1:4] y;

//variable y is used in always statement
reg [1:4] y;

//define counting sequence
always @ (posedge clk or negedge rst_n)
begin

if (rst_n == 0)
y = 4'b0000;

else
y = (y + 1) % 10;

end

endmodule
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Figure 2.81 Test bench module for the modulo-10 counter using the modulus
operator.

//test bench for the modulo-10 counter

module ctr_mod10_bh_tb;

//inputs are reg for test bench
reg rst_n, clk;

//outputs are wire for test bench
wire [1:4] y;

//display outputs
initial
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial

#200 $stop;

//instantiate the module into the test bench
ctr_mod10_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule
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Figure 2.82 Outputs for the modulo-10 counter using the modulus operator.

Figure 2.83 Waveforms for the modulo-10 counter using the modulus operator.

Example 2.12 This example designs a modulo-10 counter using behavioral model-
ing with the case statement.  The behavioral design module is shown in Figure 2.84.
The test bench module is shown in Figure 2.85.  The outputs and waveforms are shown
in Figure 2.86 and Figure 2.87, respectively.

Figure 2.84 Behavioral design module for the modulo-10 counter using the case
statement.

count = 0000
count = 0001
count = 0010
count = 0011
count = 0100
count = 0101

count = 0110
count = 0111
count = 1000
count = 1001
count = 0000

//behavioral counter modulo-10 using case statement
module ctr_mod10_bh_case (rst_n, clk, count);

input rst_n, clk;
output [1:4] count;

//variables used in always are declared as reg
reg [1:4] count, next_count; //continued on next page
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Figure  2.84       (Continued)

Figure 2.85 Test bench module for the modulo-10 counter using the case state-
ment.

always @ (negedge rst_n or negedge clk)
begin

if (~rst_n) //if reset = 0
count = 4'b0000;

else
count = next_count;

end

//define the counting sequence
always @ (count)
begin

case (count)
4'b0000 : next_count = 4'b0001;
4'b0001 : next_count = 4'b0010;
4'b0010 : next_count = 4'b0011;
4'b0011 : next_count = 4'b0100;
4'b0100 : next_count = 4'b0101;
4'b0101 : next_count = 4'b0110;
4'b0110 : next_count = 4'b0111;
4'b0111 : next_count = 4'b1000;
4'b1000 : next_count = 4'b1001;
4'b1001 : next_count = 4'b0000;
default : next_count = 4'b0000;

endcase
end
endmodule

//test bench for modulo-10 counter
module ctr_mod10_bh_case_tb;

reg rst_n, clk; //define inputs and outputs
wire [1:4] count;

initial //display outputs
$monitor ("count = %b", count);

initial //define reset
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end
//continued on next page
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Figure 2.85       (Continued)

Figure 2.86 Outputs for the modulo-10 counter using the case statement.

Figure 2.87 Waveforms for the modulo-10 counter using the case statement.

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define length of simulation
begin

#210 $finish;
end

//instantiate the module into the test bench
ctr_mod10_bh_case inst1 (

.rst_n(rst_n),

.clk(clk),

.count(count)
);

endmodule

count = 0000
count = 0001
count = 0010
count = 0011

count = 0100
count = 0101
count = 0110
count = 0111

count = 1000
count = 1001
count = 0000
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Example 2.13 This example designs a modulo-10 counter using structural modeling
with JK flip-flops and a self-starting state.  The state diagram for the modulo-10
counter with a self-starting state of y1y2y3y4 = 0000 is shown in Figure 2.88.  The state
diagram also shows the unused states of 1010, 1011, 1100, 1101, 1110,  and 1111.  If
the counter enters an unused state due to noise or any other transient condition, the
next clock pulse will return the counter to a predetermined valid state, in this case
y1y2y3y4 = 0000.  All unused states, k through p, will sequence to y1y2y3y4 = 0000 as
the self-starting state.  The unused states correspond to minterms 10 through 15.

Figure 2.88 State diagram for the modulo-10 counter with a self-starting state of
y1y2y3y4 = 0000.
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Using the excitation table for a JK flip-flop, reproduced in Table 2.2, the next-state
table is obtained as shown in Table 2.3.  Note that states y1y2y3y4 = 1010 through
y1y2y3y4 = 1111 proceed to state y1y2y3y4 = 0000 as the next state, since this is a
self-starting counter and state y1y2y3y4 = 0000 was chosen as the self-starting state. 

Table 2.2  Excitation Table for a JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Flip-flop inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0

Table 2.3  Next-State Table for the Modulo-10 Counter of
Figure 2.88 Using JK Flip-Flops

Present  state Next state Flip-flop inputs

y1y2y3y4 y1y2y3y4 Jy1 Ky1 Jy2 Ky2 Jy3 Ky3 Jy4 Ky4

0  0  0  0 0  0  0  1 0    – 0    – 0    – 1    –
0  0  0  1 0  0  1  0 0    – 0    – 1    – –    1
0  0  1  0 0  0  1  1 0    – 0    – –    0 1    –
0  0  1  1 0  1  0  0 0    – 1    – –    1 –    1
0  1  0  0 0  1  0  1 0    – –    0 0    – 1    –
0  1  0  1 0  1  1  0 0    – –    0 1    – –    1
0  1  1  0 0  1  1  1 0    – –    0 –    0 1    –
0  1  1  1 1  0  0  0 1    – –    1 –    1 –    1
1  0  0  0 1  0  0  1 –    0 0    – 0    – 1    –
1  0  0  1 0  0  0  0 –    1 0    – 0    – –    1

1  0  1  0 0  0  0  0 –    1 0    – –    1 0    –
1  0  1  1 0  0  0  0 –    1 0    – –    1 –    1
1  1  0  0 0  0  0  0 –    1 –    1 0    – 0    –
1  1  0  1 0  0  0  0 –    1 –    1 0    – –    1
1  1  1  0 0  0  0  0 –    1 –    1 –    1 0    –
1  1  1  1 0  0  0  0 –    1 –    1 –    1 –    1
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The input maps of Figure 2.89 are obtained directly from the next-state table.  Re-
ferring to the state diagram, the entries for Jy1 and Ky1 for location y1y2y3y4 = 0111
are obtained as follows: Flip-flop y1  changes from 0 to 1 as the machine progresses
from state h to state i.  From the excitation table, a transition from 0 to 1 results in
Jy1Ky1 = 1–, as indicated in the input maps for Jy1 and Ky1.  Four sets of input maps
are necessary: two maps, Jyi and Kyi, for each flip-flop yi.

Figure 2.89 Input maps for the modulo-10 counter using JK flip-flops with a self-
starting state of y1y2y3y4 = 0000.
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Continued on next page



194          Chapter  2     Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL

Figure 2.89       (Continued)

The logic diagram of Figure 2.90 is derived from the JK input equations of Figure
2.89.  Although not shown in the logic diagram, it is assumed that the counter flip-
flops have a set and reset function.  The flip-flops were designed using behavioral
modeling.  The counter is reset initially to y1y2y3y4 = 0000.  State changes occur only
on the negative clock transition.  By examining the logic diagram, the counter can be
shown to increment through the modulo-10 counting sequence, then return to 0000 at
the next negative clock transition.  Since the counter is self-starting, the next state
should be 0000 from any invalid state 1010 through 1111.
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Figure 2.90 Logic diagram for the modulo-10 counter using JK flip-flops, where
y4 is the low-order stage.  The counter has a self-starting state of y1y2y3y4 = 0000.

The structural design module for the modulo-10 counter with a self-starting state
of  y1y2y3y4 = 0000, is shown in Figure 2.91.  The test bench module is shown in Fig-
ure 2.92.  The outputs and waveforms are shown in Figure 2.93 and Figure 2.94,
respectively.

Figure 2.91 Structural design module for the modulo-10 counter using JK flip-
flops with a self-starting state of y1y2y3y4 0000.
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//structural for modulo-10 counter using JK flip-flops
module ctr_mod10_struc (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [1:4] y; //continued on next page
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Figure 2.91       (Continued)

//define internal nets
wire net1, net2, net4, net5, net6, net8, net9, net11, net12;

//instantiate the logic for flip-flop y[1]
and3_df inst1 (

.x1(y[2]),

.x2(y[3]),

.x3(y[4]),

.z1(net1)
);

or3_df inst2 (
.x1(y[2]),
.x2(y[3]),
.x3(y[4]),
.z1(net2)
);

jkff inst3 ( //set_n input is not instantiated
.rst_n(rst_n),
.clk(clk),
.j(net1),
.k(net2),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and3_df inst4 (

.x1(~y[1]),

.x2(y[3]),

.x3(y[4]),

.z1(net4)
);

and2_df inst5 (
.x1(y[3]),
.x2(y[4]),
.z1(net5)
);

or2_df inst6 (
.x1(y[1]),
.x2(net5),
.z1(net6)
);

//continued on next page
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Figure 2.91       (Continued)

jkff inst7 (
.rst_n(rst_n),
.clk(clk),
.j(net4),
.k(net6),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
and2_df inst8 (

.x1(y[4]),

.x2(~y[1]),

.z1(net8)
);

or2_df inst9 (
.x1(y[4]),
.x2(y[1]),
.z1(net9)
);

jkff inst10 (
.rst_n(rst_n),
.clk(clk),
.j(net8),
.k(net9),
.q(y[3])
);

//instantiate the logic for flip-flop y[4]
and2_df inst11 (

.x1(~y[2]),

.x2(~y[3]),

.z1(net11)
);

or2_df inst12 (
.x1(~y[1]),
.x2(net11),
.z1(net12)
);

//continued on next page
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Figure 2.91       (Continued)

Figure 2.92 Test bench module for the modulo-10 counter using JK flip-flops
with a self-starting state of y1y2y3y4 0000.

jkff inst13 (
.rst_n(rst_n),
.clk(clk),
.j(net12),
.k(1'b1),
.q(y[4])
);

endmodule

//test bench for the modulo-10 counter using JK flip-flops
module ctr_mod10_struc_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [1:4] y; //outputs are wire for test bench

initial //display count
$monitor ("Count = %b,", y);

initial //generate reset
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

initial //generate clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //determine length of simulation
#200 $stop;

//instantiate the module into the test bench
ctr_mod10_struc inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule
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Figure 2.93 Outputs for the modulo-10 counter using JK flip-flops with a self-
starting state of y1y2y3y4 0000.

Figure 2.94 Waveforms for the modulo-10 counter using JK flip-flops with a self-
starting state of y1y2y3y4 0000.

Example 2.14 This example designs a modulo-10 counter using structural modeling
with JK flip-flops and no self-starting state.  The counter logic can be minimized con-
siderably by not allowing the self-starting attribute; that is, the unused states — cor-
responding to minterm locations 10 through 15, which represent invalid BCD digits —
are treated as “don’t care” states.  The 1s in the input maps can now combine with
more minterm locations to provide a minimal number of logic gates for the  next-state
function.  The input maps with the additional “don’t care” states are shown in
Figure 2.95.

Count = 0000,
Count = 0001,
Count = 0010,
Count = 0011,
Count = 0100,
Count = 0101,
Count = 0110,
Count = 0111,
Count = 1000,
Count = 1001,
Count = 0000,
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The logic diagram with no self-starting state is shown in Figure 2.96 and is im-
plemented from the JK input equations of Figure 2.95.  Although not shown in the log-
ic diagram, it is assumed that the JK flip-flops have a set and reset function.  The
following logic elements are utilized in the logic design: a 3-input dataflow AND gate
(and3_df), a 2-input dataflow AND gate (and2_df), and a negative-edge triggered JK
flip-flop (jkff_neg_clk).

Figure 2.95 Input maps for the modulo-10 counter of Figure 2.88 with no self-
starting state.

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      0         0        1         0

1 1      –         –        –         –

1 0      –         –        –         –

y1y2

y3y4

 

Jy1

 0 0      0 1     1 1     1 0

0 0      –         –        –         –

0 1      –         –        –         –

1 1      –         –        –         –

1 0      0         1        –         –

y1y2

y3y4

 

Ky1

Jy1 = y2y3y4 Ky1 =  y4

 0 0      0 1     1 1     1 0

0 0      0         0        1         0

0 1      –         –        –         –

1 1      –         –        –         –

1 0      0         0        –         –

y1y2

y3y4

 

Jy2

 0 0      0 1     1 1     1 0

0 0      –         –        –         –

0 1      0         0        1         0

1 1      –         –        –         –

1 0      –         –        –         –

y1y2

y3y4

 

Ky2

Jy2  = y3y4 Ky2 = y3y4

Continued on next page
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Figure 2.95       (Continued)

The  output logic is not mandatory for a single-stage 4-bit modulo-10 counter.
For a multi-stage counter, however, a signal must be made available from decadei to
decadei+1 to indicate when decadei has reached a terminal count of 1001.  The logic
diagram for a 3-digit, modulo-10 counter has a range of 000 to 999.  Each stage of the
counter contains the internal logic as shown in Figure 2.96.

 0 0      0 1     1 1     1 0

0 0      0         1        –         –

0 1      0         1        –         –

1 1      –         –        –         –

1 0      0         0        –         –

y1y2

y3y4

 

Jy3

 0 0      0 1     1 1     1 0

0 0      –         –        1         0

0 1      –         –        1         0

1 1      –         –        –         –

1 0      –         –        –         –

y1y2

y3y4

 

Ky3

Jy3 = y1 ' y4 Ky3 = y4

 0 0      0 1     1 1     1 0

0 0      1         –        –         1

0 1      1         –        –         1

1 1      –         –        –         –

1 0      1         –        –         –

y1y2

y3y4

 

Jy4

 0 0      0 1     1 1     1 0

0 0      –         1        1         –

0 1      –         1        1         –

1 1      –         –        –         –

1 0      –         1        –         –

y1y2

y3y4

 

Ky4

Jy4 = 1 Ky4 = 1
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Figure 2.96 Logic diagram for the modulo-10 counter of Figure 2.88 using JK
flip-flops, where flip-flop y4 is the low-order stage.  The counter has no self-starting
state.

The structural design module is shown in Figure 2.97 and the test bench module is
shown in Figure 2.98.  The outputs and waveforms are shown in Figure 2.99 and Fig-
ure 2.100, respectively.

Figure 2.97 Structural design module for the modulo-10 counter of Figure 2.96.

y1

>
J

K

 Y 

– Clock

y2

>
J

K

y3

>
J

K

y4

>
J

K

+y1

–y1

+y2

–y2

+y3

–y3

+y4

+y2+y3+y4

–y1

+Logic 1

inst1

inst2

inst3

inst4

inst5

inst6

inst7

net1

net3

net5

//structural modulo-10 counter using JK flip-flops
//no self-starting state
module ctr_mod10_jk_struc2 (rst_n, clk, y);

//define inputs and outputs
input  rst_n, clk;
output [1:4] y;

//continued on next page
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Figure 2.97       (Continued)

wire net1, net3, net5; //define internal nets

//instantiate the logic for flip-flop y[1]
and3_df inst1 (

.x1(y[2]),

.x2(y[3]),

.x3(y[4]),

.z1(net1)
);

jkff_neg_clk inst2 ( //set_n input is not instantiated
.rst_n(rst_n),
.clk(clk),
.j(net1),
.k(y[4]),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and2_df inst3 (

.x1(y[3]),

.x2(y[4]),

.z1(net3)
);

jkff_neg_clk inst4 (
.rst_n(rst_n),
.clk(clk),
.j(net3),
.k(net3),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
and2_df inst5 (

.x1(y[4]),

.x2(~y[1]),

.z1(net5)
);

jkff_neg_clk inst6 (
.rst_n(rst_n),
.clk(clk),
.j(net5),
.k(y[4]),
.q(y[3])
); //continued on next page
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Figure 2.97       (Continued)

Figure 2.98 Test bench module for the modulo-10 counter of Figure 2.96.

//instantiate the logic for flip-flop y[4]
jkff_neg_clk inst7 (

.rst_n(rst_n),

.clk(clk),

.j(1'b1),

.k(1'b1),

.q(y[4])
);

endmodule

//test bench for modulo-10 counter using JK flip-flops
module ctr_mod10_jk_struc2_tb;

reg rst_n, clk; //define inputs and outputs
wire [1:4] y;

//display outputs
initial
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin

#210 $finish;
end

//continued on next page
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Figure 2.98       (Continued)

Figure 2.99 Outputs for the modulo-10 counter of Figure 2.96.

Figure 2.100 Waveforms for the modulo-10 counter of Figure 2.96.

//instantiate the module into the test bench
ctr_mod10_jk_struc2 inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule

count = 0000
count = 0001
count = 0010
count = 0011
count = 0100
count = 0101
count = 0110
count = 0111
count = 1000
count = 1001
count = 0000
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2.2.3  Johnson  Counter

Counters have a counting sequence that increases or decreases in a binary manner
from a beginning value to some predefined end value.  Still other counters can be de-
signed for a unique application in which the counting sequence is neither entirely up
nor entirely down.  These have a nonsequential counting sequence that is prescribed
by external requirements.

One such counter is the Johnson counter shown in Figure 2.101, in which the
counting sequence is y1y2y3 = 000, 100, 110, 111, 011, 001, 000, ... .  The counter is
reset initially to y1y2y3 = 000.  For six of the eight possible states for three variables,
the state transitions are completely defined.  The remaining two states are unspecified
and can be regarded as "don't care" states in order to minimize the  next-state logic.  

The  Johnson counter has the characteristic in which any two contiguous state
codes (or code words) differ by only one variable.  It is similar, in this respect, to a
Gray code counter, which is used in Karnaugh maps.

Figure 2.101 State diagram for a Johnson counter with a nonsequential counting
sequence.  There are two unused states: y1y2y3  = 010 and 101. 

The Johnson counter is also referred to as a Möbius counter, because the output of
the last stage is inverted and fed back to the first stage.  August F. Möbius was a Ger-
man mathematician who discovered a one-sided surface that is constructed from a
rectangle by holding one end fixed, rotating the opposite end through 180 degrees, and
applying it to the first end.

a

y1y2y3
0 0  0

b
1 0 0

c
1 1 0

d
1 1 1

e
0 1 1

f
0 0 1
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Example 2.15 This example designs a Johnson counter using behavioral modeling
with conditional statements.  The behavioral design module of a 3-stage Johnson
counter using the if-else if conditional statements is shown in Figure 2.102.  These
keywords are used as conditional statements to alter the flow of activity through a
behavioral module.  They permit a choice of alternative paths based upon a Boolean
value obtained from a condition that is evaluated.  A true value from a condition is 1 or
any nonzero value; a false value is 0, x, or z.  If the evaluation is false, then the next
expression in the activity flow is evaluated.  The test bench is shown in Figure 2.103.
The outputs and waveforms are shown in Figure 2.104 and Figure 2.105, respectively.

An example of conditional statements of the type used in Figure 2.102 is shown
below, which provides a choice of multiple statements.  The alternative statements can
be a single statement or a block of statements delimited by the keywords begin . . .
end.

if (expression1) statement1;   //if expression1 is true, then statement1 is executed.
else if (expression2) statement2;   //if expression2 is true, then statement2 is executed.
else if (expression3) statement3;   //if expression3 is true, then statement3 is executed.

Figure 2.102 Behavioral design module for the 3-stage Johnson counter.

//behavioral for 3-bit Johnson counter using
//the if, else if conditional statements
module ctr_johnson3_bh (rst_n, clk, y);

input rst_n, clk;
output [1:3] y;

reg [1:3] y; //outputs are reg
reg [1:3] d; //internal next state

//reset counter and set y
always @ (posedge clk or negedge rst_n)
begin

if (rst_n == 0)
y <= 3'b000;

else
y <= d;

end

//determine counting sequence
always @ (y)
begin

if (y == 3'b000)
d <= 3'b100;

else if (y == 3'b100)
d <= 3'b110; //continued on next page
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Figure 2.102       (Continued)

Figure 2.103 Test bench module for the 3-stage Johnson counter.

else if (y == 3'b110)
d <= 3'b111;

else if (y == 3'b111)
d <= 3'b011;

else if (y == 3'b011)
d <= 3'b001;

else if (y == 3'b001)
d <= 3'b000;

end

endmodule

//test bench for 3-bit Johnson counter
module ctr_johnson3_bh_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench

initial //display count
$monitor ("Count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define length of simulation
begin

#140 $finish;
end //continued on next page



2.2     Synchronous Counters     209

Figure 2.103       (Continued)

Figure 2.104 Outputs for the 3-stage Johnson counter.

Figure 2.105 Waveforms for the 3-stage Johnson counter.

Example 2.16 This example designs a Johnson counter using behavioral modeling
with the case statement.  The 3-stage Johnson counter will use the multiple-way con-
ditional branch characteristics of the case statement.  The behavioral design module is

//instantiate the module into the test bench
ctr_johnson3_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule

Count = 000
Count = 100
Count = 110
Count = 111
Count = 011
Count = 001
Count = 000
Count = 100
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shown in Figure 2.106 and the test bench module is shown in Figure 2.107.  The next
count of the counter is a function of the current state of the counter and is determined
by the case statement.  The outputs and waveforms are shown in Figure 2.108 and Fig-
ure 2.109, respectively.  

Figure 2.106 Behavioral design module for the 3-stage Johnson counter using the
case statement.

//behavioral for 3-bit Johnson counter
//using the case statement

module ctr_johnson3_case (rst_n, clk, y);

//define inputs and output

input rst_n, clk;
output [1:3] y;

//variables used in an always block
//are declared as registers
reg [1:3] y, next_count;

//set next count
always @ (posedge clk or negedge rst_n)
begin

if(~rst_n)
y <= 4'b0000;

else
y <= next_count;

end

//determine next count
always @ (y)
begin

case (y)
3'b000 : next_count = 3'b100;
3'b100 : next_count = 3'b110;
3'b110 : next_count = 3'b111;
3'b111 : next_count = 3'b011;
3'b011 : next_count = 3'b001;
3'b001 : next_count = 3'b000;

default : next_count = 3'b000;
endcase

end

endmodule
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Figure 2.107 Test bench module for the 3-stage Johnson counter using the case
statement.

//test bench for 3-bit Johnson counter

module ctr_johnson3_case_tb;

//inputs are reg for test bench
reg rst_n, clk;

//outputs are wire for test bench
wire [1:3] y;

//display count
initial
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial

#140 $finish;

//instantiate the module into the test bench
ctr_johnson3_case inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule
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Figure 2.108 Outputs for the 3-stage Johnson counter using the case statement.

Figure 2.109 Waveforms for the 3-stage Johnson counter using the case statement.

Example 2.17 This example designs a Johnson counter using structural modeling
with D flip-flops.  The input maps are obtained from the state diagram of Figure 2.101
using D flip-flops, as shown in Figure 2.110.  The maps can be derived directly from
the state diagram without the necessity of generating a next-state table.

For example, from state a (y1y2y3 = 000), the machine sequences to state b
(y1y2y3 = 100) where the next state for flip-flop y1  is 1.  Thus, a 1 is entered in min-
term location y1y2y3 = 000 for flip-flop y1 .  Likewise, from state c the machine pro-
ceeds to state d where the next state for y1  is 1; therefore, a 1 is entered in minterm
location y1y2y3 = 110 for flip-flop y1.  In a similar manner, the remaining entries are
obtained for the input map for y1 , as well as for the input maps for y2  and y3.

The logic diagram using D flip-flops is shown in Figure 2.111.  Although not
shown in the logic diagram, it is assumed that the D flip-flops have a reset input.  The
structural design module is shown in Figure 2.112 and the test bench module is shown
in Figure 2.113.  The test bench uses the $time system function to return the current
simulation time.  The outputs and waveforms are shown in Figure 2.114 and Figure
2.115, respectively.

count = 000
count = 100
count = 110
count = 111

count = 011
count = 001
count = 000
count = 100
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Figure 2.110 Input maps for the 3-stage Johnson counter using D flip-flops.

Figure 2.111 Logic diagram for the 3-stage Johnson counter using D flip-flops.
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Figure 2.112 Structural design module for the 3-stage Johnson counter using D
flip-flops.

Figure 2.113 Test bench for the 3-stage Johnson counter using D flip-flops.

//structural johnson 3-bit counter
module ctr_johnson3_struc (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [1:3] y;

//instantiate the logic for flip-flop y[1]
d_ff_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.d(~y[3]),

.q(y[1])
);

//instantiate the logic for flip-flop y[2]
d_ff_bh inst2 (

.rst_n(rst_n),

.clk(clk),

.d(y[1]),

.q(y[2])
);

//instantiate the logic for flip-flop y[3]
d_ff_bh inst3 (

.rst_n(rst_n),

.clk(clk),

.d(y[2]),

.q(y[3])
);

endmodule

//test bench for the 3-bit johnson counter
module ctr_johnson3_struc_tb;

reg clk, rst_n;
wire [1:3] y;

//display outputs at simulation time
initial
$monitor ($time, "Count = %b", y); //continued on next page
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Figure 2.113       (Continued)

Figure 2.114 Outputs for the 3-stage Johnson counter using D flip-flops.

//define reset
initial
begin

#0 rst_n = 1'b0;
#10 rst_n = 1'b1;

end

//define clk
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin

#120 $finish;
end

//instantiate the module into the test bench
ctr_johnson3_struc inst1 (

.clk(clk),

.rst_n(rst_n),

.y(y)
);

endmodule

0 Count = 000
10 Count = 100
30 Count = 110
50 Count = 111

70 Count = 011
90 Count = 001
110 Count = 000
130 Count = 100
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Figure 2.115 Waveforms for the 3-stage Johnson counter using D flip-flops.

Example 2.18 This example designs a Johnson counter using structural modeling
with JK flip-flops.  The counter is a 3-stage Johnson counter.  The flip-flops in this
design contain active-low set and reset inputs, and a negative-edge clock input, as
shown below.

The structural design module is shown in Figure 2.116 and the test bench module
is shown in Figure 2.117.  The outputs and waveforms are shown in Figure 2.118 and
Figure 2.119, respectively.

Figure 2.116 Structural design module for the 3-stage Johnson counter using JK
flip-flops.

y1

>
K

Set

Reset

J

//structural johnson 3-stage counter using JK flip-flops
module ctr_johnson3_jk (clk, set_n, rst_n, y);

//define inputs and outputs
input clk, set_n, rst_n;
output [1:3] y;

//continued on next page
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Figure 2.116       (Continued)

Figure 2.117 Test bench module for the 3-stage Johnson counter using JK flip-
flops.

//instantiate the logic for flip-flop y[1]
jkff_neg_clk inst1 (

.set_n(1'b1),

.rst_n(rst_n),

.clk(clk),

.j(~y[3]),

.k(y[3]),

.q(y[1])
);

//instantiate the logic for flip-flop y[2]
jkff_neg_clk inst2 (

.set_n(1'b1),

.rst_n(rst_n),

.clk(clk),

.j(y[1]),

.k(~y[1]),

.q(y[2])
);

//instantiate the logic for flip-flop y[3]
jkff_neg_clk inst3 (

.set_n(1'b1),

.rst_n(rst_n),

.clk(clk),

.j(y[2]),

.k(~y[2]),

.q(y[3])
);

endmodule

//test bench for johnson 3-stage counter using JK flip-flops
module ctr_johnson3_jk_tb;

//define inputs and outputs
reg clk, set_n, rst_n; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench

//display outputs
initial
$monitor ("Count = %b", y);

//continued on next page
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Figure 2.117       (Continued)

Figure 2.118 Outputs for the 3-stage Johnson counter using JK flip-flops.

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10  clk = ~clk;
end

//define length of simulation
initial
begin

#150  $finish;
end

//instantiate the module into the test bench
ctr_johnson3_jk inst1 (

.clk(clk),

.set_n(set_n),

.rst_n(rst_n),

.y(y)
);

endmodule

Count = 000
Count = 100
Count = 110
Count = 111

Count = 011
Count = 001
Count = 000
Count = 100
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Figure 2.119 Waveforms for the 3-stage Johnson counter using JK flip-flops.

2.2.4  Binary-to-Gray Code Converter

One final application of counters is presented for the design of code converters.  Al-
though a code converter is more easily implemented by means of a read-only memory
(ROM), it is presented in this section to illustrate the versatility of counters.  It may
seem inappropriate to classify a code converter as a counter, but it falls into the general
category of machines that are loaded in parallel and then sequence to a new state upon
the application of an active clock transition.  Unlike registers such as parallel-in, par-
allel-out registers, where the next state is a function of the present inputs, a code con-
verter of this type has a next state that is a function of the present state only.

The next-state table of Table 2.4 shows the relationship between the binary 8421
code and the Gray code.  The Gray code belongs to a class of cyclic codes called re-
flective codes.  Notice in the first four rows, that y4 reflects across the reflecting axis;
that is, y4 in rows 2 and 3 is the mirror image of y4 in rows 0 and 1.  In the same manner,
y3  and y4 reflect across the reflecting axis drawn under row 3.  Thus, rows 4 through
7 reflect the state of rows 0 through 3 for y3  and y4.  The same is true for y2 , y3 , and y4
relative to rows 8 through 15 and rows 0 through 7.

The Gray code is an unweighted code and a Gray code counter has significant ap-
plications in sequential machine testing.  By applying the outputs of an n-bit Gray code
counter to the inputs of a synchronous sequential machine under test, the machine's be-
havior can be more easily monitored, since only one input changes during each test cy-
cle.

A state diagram is not relevant in this application, since the machine will not se-
quence through a series of states.  Rather, a binary input vector Xi is loaded into the
machine, and after a clock pulse is applied, the corresponding Gray code word be-
comes the next state.
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Example 2.19 This example designs a binary-to-Gray code converter using struc-
tural modeling with JK flip-flops.  For convenience, the excitation table for a JK flip-
flop is reproduced in Table 2.5.  The input maps for the code converter are shown in
Figure 2.120, using JK flip-flops.

Consider the present state in row 3 (y1y2y3y4 = 0011) of Table 2.4.  Flip-flop y3
proceeds from a present state of 1 to a next state of 1.  From Table 2.5, a 1-to-1 tran-
sition specifies the JK input values to be JK = – 0.  These values are entered in the map
for Jy3 and Ky3.  Now examine row 12 (y1y2y3y4 = 1100) of Table 2.4.  Flip-flop y3
moves from a present state of 0 to a next state of 1.  This transition yields JK values of
JK = 1–, which are entered in minterm location 1100 for Jy3 and Ky3, respectively.

Table 2.4  Next-State Table for Converting from the Binary 8421 Code to the 
Gray Code

Row

 Present state
(Binary Code  b1 b2 b3 b4)

y1       y2         y3       y4

               Next state
(Gray Code g1 g2 g3 g4)
 y1       y2       y3        y4

  0 0 0 0 0 0 0 0 0
  1 0 0 0 1 0 0 0 1
  2 0 0 1 0 0 0 1 1  y4 is reflected

  3 0 0 1 1 0 0 1 0
  4 0 1 0 0 0 1 1 0  y3 and  y4
  5 0 1 0 1 0 1 1 1       are reflected
  6 0 1 1 0 0 1 0 1
  7 0 1 1 1 0 1 0 0
  8 1 0 0 0 1 1 0 0  y2 , y3, and y4
  9 1 0 0 1 1 1 0 1       are reflected
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

Table 2.5  Excitation Table for a JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Flip-flop inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0
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Figure 2.120 Input maps for the binary-to-Gray code converter.

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      0         0        0         0

1 1      –         –        –         –

1 0      –         –        –         –

y1y2

y3y4

 

Jy1

 0 0      0 1     1 1     1 0

0 0      –         –        –         –

0 1      –         –        –         –

1 1      0         0        0         0

1 0      0         0        0         0

y1y2

y3y4

 

Ky1

Jy1 =  Logic 0 Ky1  =  Logic 0

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      –         –        –         –

1 1      –         –        –         –

1 0      1         1        1         1

y1y2

y3y4

 

Jy2

 0 0      0 1     1 1     1 0

0 0      –         –        –         –

0 1      0         0        0         0

1 1      1         1        1         1

1 0      –         –        –         –

y1y2

y3y4

 

Ky2

Jy2 = y1 Ky2 = y1

 0 0      0 1     1 1     1 0

0 0      0         0        –         –

0 1      1         1        –         –

1 1      1         1        –         –

1 0      0         0        –         –

y1y2

y3y4

 

Jy3

 0 0      0 1     1 1     1 0

0 0      –         –        0         0

0 1      –         –        1         1

1 1      –         –        1         1

1 0      –         –        0         0

y1y2

y3y4

 

Ky3

Jy3 = y2 Ky3 = y2
Continued on next page
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Figure 2.120       (Continued)

The ith Gray code bit gi can be obtained from the corresponding binary code word
by the following algorithm:

gn–1 = bn–1 
    gi = bi  bi+1 

for 0  i  n – 2, where the symbol  denotes modulo-2 addition.  For example, using
the algorithm, the 4-bit binary code word b3 b2 b1 b0 = 1010 translates to the 4-bit
Gray code word g3 g2 g1 g0 = 1111 as follows:

The logic diagram is shown in Figure 2.121.  The machine is initially reset.  The
binary code word b1 b2 b3 b4 is loaded into the code converter by generating a positive
pulse on the +Load signal.  The next negative clock transition performs the requisite
binary-to-Gray code conversion.  The machine is reset before each binary vector is ap-
plied.

From Table 2.4, it is observed that the high-order bit of the Gray code word is the
same as the high-order bit of the corresponding binary code word.  Therefore, all the
logic associated with flip-flop y1 can be eliminated, and g1 = b1.  If all four flip-flops
are an integral part of a macro logic function, then flip-flop y1  is retained and acts as a
1-bit parallel-in, parallel-out register.  

 0 0      0 1     1 1     1 0

0 0      0         –        –         1

0 1      0         –        –         1

1 1      0         –        –         1

1 0      0         –        –         1

y1y2

y3y4

 

Jy4

 0 0      0 1     1 1     1 0

0 0      –         0        1         –

0 1      –         0        1         –

1 1      –         0        1         –

1 0      –         0        1         –

y1y2

y3y4

 

Ky4

Jy4 = y3 Ky4 = y3

g3 = b3 = 1

g2 = b2  b3 = 0  1 = 1

g1 = b1  b2 = 1  0 = 1

g0 = b0  b1 = 0  1 = 1
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Figure 2.121 Logic diagram using JK flip-flops for the binary-to-Gray code con-
verter.  Flip-flop y4 is the low-order stage.

The structural design module is shown in Figure 2.122, which instantiates the
NAND gates as dataflow modules (nand2-df) and the negative-edge JK flip-flops as
jkff-neg-clk modules.  The test bench module is shown in Figure 2.123, which applies
five binary vectors to the design module.  The outputs and waveforms are shown in
Figure 2.124 and Figure 2.125, respectively.

The reverse algorithm to convert from the Gray code to the binary 8421 code is de-
fined as follows:

bn–1 = gn–1

    bi = bi+1  gi  

y1

>
K

Set

Reset

J

 Y 

y2

>
K

Set

Reset

J

y3

>
K

Set

Reset

J

y4

>
K

Set

Reset

J

–Logic 0

+b1
+Load

+b2

+b3

+b4

–Reset

+y1

+y2

+y3

–Clock

+y1 (+g1)

+y2 (+g2)

+y3 (+g3)

+y4 (+g4)

inst1

inst2

inst3

inst4

inst1

inst5

inst6
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net1

net3

net5

net7
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Figure 2.122 Structural design module to convert from the 8421 binary code to the
corresponding Gray code.

//structural binary-to-gray code converter
//using negative edge-triggered JK flip-flops
module bin_to_gray_struc2_jk (rst_n, clk, load, b, y);

//define inputs and outputs
input rst_n, clk, load;
input [1:4] b;
output [1:4] y;

//define internal nets
wire net1, net3, net5, net7;

//instantiate the logic for flip-flop y[1]
nand2_df inst1 (

.x1(b[1]),

.x2(load),

.z1(net1)
);

jkff_neg_clk inst2 (
.rst_n(rst_n),
.clk(clk),
.j(1'b0),
.k(1'b0),
.set_n(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
nand2_df inst3 (

.x1(b[2]),

.x2(load),

.z1(net3)
);

jkff_neg_clk inst4 (
.rst_n(rst_n),
.clk(clk),
.j(y[1]),
.k(y[1]),
.set_n(net3),
.q(y[2])
);

//continued on next page
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Figure 2.122       (Continued)

Figure 2.123 Test bench module for converting from the 8421 binary code to the
corresponding Gray code.

//instantiate the logic for flip-flop y[3]
nand2_df inst5 (

.x1(b[3]),

.x2(load),

.z1(net5)
);

jkff_neg_clk inst6 (
.rst_n(rst_n),
.clk(clk),
.j(y[2]),
.k(y[2]),
.set_n(net5),
.q(y[3])
);

//instantiate the logic for flip-flop y[4]
nand2_df inst7 (

.x1(b[4]),

.x2(load),

.z1(net7)
);

jkff_neg_clk inst8 (
.rst_n(rst_n),
.clk(clk),
.j(y[3]),
.k(y[3]),
.set_n(net7),
.q(y[4])
);

endmodule

//test bench for the binary-to-gray code converter
module bin_to_gray_struc2_jk_tb;

reg rst_n, clk, load; //inputs are reg for test bench
reg[1:4] b;
wire [1:4] y; //outputs are wire for test bench

//continued on next page
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Figure 2.123       (Continued)

//display variables
initial
$monitor ("Binary = %b, Gray = %b", b, y);

//define clock
initial
begin

clk = 1'b1;
forever

#10 clk = ~clk;
end

//apply input vectors
initial
begin
//----------------------------------

#0 rst_n = 1'b0; //0 time
#3 rst_n = 1'b1; //3 time

b = 4'b1010;
#2 load = 1'b1; //5 time
#10 load = 1'b0; //15 time

//----------------------------------
#5 rst_n = 1'b0; //20 time
#3 rst_n = 1'b1; //23 time

b = 4'b1000;
#2 load = 1'b1; //25 time
#10 load = 1'b0; //35 time

//----------------------------------
#5 rst_n = 1'b0;
#3 rst_n = 1'b1;

b = 4'b1001;
#2 load = 1'b1;
#10 load = 1'b0;

//----------------------------------
#5 rst_n = 1'b0;
#3 rst_n = 1'b1;

b = 4'b0100;
#2 load = 1'b1;
#10 load = 1'b0;

//----------------------------------
#5 rst_n = 1'b0;
#3 rst_n = 1'b1;

b = 4'b0010;
#2 load = 1'b1;
#10 load = 1'b0;
#10 $stop;

end //continue on next page
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Figure 2.123       (Continued)

Figure 2.124 Outputs for the binary-to-Gray code converter.

Figure 2.125 Waveforms for the binary-to-Gray code converter.

//instantiate the module into the test bench
bin_to_gray_struc2_jk inst1 (

.rst_n(rst_n),

.clk(clk),

.load(load),

.b(b),

.y(y)
);

endmodule

Binary = xxxx, Gray = 0000
Binary = 1010, Gray = 0000
Binary = 1010, Gray = 1010
Binary = 1010, Gray = 1111
Binary = 1010, Gray = 0000

Binary = 1000, Gray = 0000
Binary = 1000, Gray = 1000
Binary = 1000, Gray = 1100
Binary = 1000, Gray = 0000

Binary = 1001, Gray = 0000
Binary = 1001, Gray = 1001
Binary = 1001, Gray = 1101
Binary = 1001, Gray = 0000

Binary = 0100, Gray = 0000
Binary = 0100, Gray = 0100
Binary = 0100, Gray = 0110
Binary = 0100, Gray = 0000

Binary = 0010, Gray = 0000
Binary = 0010, Gray = 0010
Binary = 0010, Gray = 0011
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A much simpler way to convert from binary code to Gray code is using built-in
primitives or behavioral modeling, both of which will be shown in the next two exam-
ples.

Example 2.20 This example designs a binary-to-Gray code converter using built-in
primitives.  The table to convert from binary to Gray is reproduced in Table 2.6.  The
logic diagram for the binary-to-Gray code converter is shown in Figure 2.126, as
derived from Table 2.6 and the algorithm previously presented.

Figure 2.126 Logic diagram for a binary-to-Gray code converter.

Table 2.6  Binary-to-Gray Code
Conversion

Binary Gray

b3 b2 b1 b0 g3 g2 g1 g0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

+b3

+b2

+b1

+b0

+g3

+g2

+g1

+g0

inst1

inst2

inst3

inst4
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The built-in primitive design module is shown in Figure 2.127 and the test bench
module is shown in Figure 2.128.  The outputs and waveforms are shown in Figure
2.129 and Figure 2.130, respectively.

Figure 2.127 Design module for binary-to-Gray conversion using built-in primi-
tives.

Figure 2.128 Test bench module for binary-to-Gray conversion using built-in
primitives.

//built-in primitives binary-to-gray converter
module bin_to_gray_bip (bin, gray);

input [3:0] bin;
output [3:0] gray;

buf inst1 (gray[3], bin[3]);

xor inst2 (gray[2], bin[3], bin[2]),
inst3 (gray[1], bin[2], bin[1]),
inst4 (gray[0], bin[1], bin[0]);

endmodule

//test bench for binary-to-gray converter using
//built-in primitives
module bin_to_gray_bip_tb;

reg [3:0] bin;
wire [3:0] gray;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
bin = invect [4:0];
#10 $display ("binary = %b, gray = %b", bin, gray);

end
end

//instantiate the module into the test bench
bin_to_gray_bip inst1 (

.bin(bin),

.gray(gray)
);

endmodule
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Figure 2.129 Outputs for the binary-to-Gray conversion.

Figure 2.130 Waveforms for the binary-to-Gray conversion.

binary = 0000, gray = 0000
binary = 0001, gray = 0001
binary = 0010, gray = 0011
binary = 0011, gray = 0010

binary = 0100, gray = 0110
binary = 0101, gray = 0111
binary = 0110, gray = 0101
binary = 0111, gray = 0100

binary = 1000, gray = 1100
binary = 1001, gray = 1101
binary = 1010, gray = 1111
binary = 1011, gray = 1110

binary = 1100, gray = 1010
binary = 1101, gray = 1011
binary = 1110, gray = 1001
binary = 1111, gray = 1000
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Example 2.21 This example designs a binary-to-Gray code converter using behav-
ioral modeling.  The design module for the behavioral design is shown in Figure 2.131
and the test bench module is shown in Figure 2.132.  The outputs and waveforms are
shown in Figure 2.133 and Figure 2.134, respectively.

Figure 2.131 Behavioral design module for binary-to-Gray code conversion.

Figure 2.132 Test bench module for binary-to-Gray code conversion.

//behavioral binary-to-gray converter
module bin_to_gray_bh (binary, gray);

//define inputs and outputs
input [3:0] binary;
output [3:0] gray;

//variables used in always are declared as type reg
reg [3:0] gray;

//define gray code
always @ (binary)
begin

gray[3] <= binary[3];
gray[2] <= binary[3] ^ binary[2];
gray[1] <= binary[2] ^ binary[1];
gray[0] <= binary[1] ^ binary[0];

end
endmodule

//test bench for behavioral binary-to-gray converter
module bin_to_gray_bh_tb;

reg [3:0] binary; //inputs are reg for test bench
wire [3:0] gray; //outputs are wire for test bench

//apply input vectors and display outputs
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
binary = invect [4:0];
#10 $display ("binary = %b, gray = %b", binary, gray);

end
end //continued on next page
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Figure 2.132       (Continued)

Figure 2.133 Outputs for binary-to-Gray code conversion.

Figure 2.134 Waveforms for binary-to-Gray code conversion.

//instantiate the module into the test bench
bin_to_gray_bh inst1 (

.binary(binary),

.gray(gray)
);

endmodule

binary = 0000, gray = 0000
binary = 0001, gray = 0001
binary = 0010, gray = 0011
binary = 0011, gray = 0010

binary = 0100, gray = 0110
binary = 0101, gray = 0111
binary = 0110, gray = 0101
binary = 0111, gray = 0100

binary = 1000, gray = 1100
binary = 1001, gray = 1101
binary = 1010, gray = 1111
binary = 1011, gray = 1110

binary = 1100, gray = 1010
binary = 1101, gray = 1011
binary = 1110, gray = 1001
binary = 1111, gray = 1000
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2.3  Moore Machines
This section presents procedures for synthesizing Moore machines using behavioral
modeling, D flip-flops, and JK flip-flops.  The primary focus will be on the synthesis
of deterministic synchronous sequential machines, in which the next state is uniquely
determined by the present state Yj(t) and the present inputs Xi(t).  Moore machines are
synchronous sequential machines in which the output function  produces an output
vector Zr which is determined by the present state only, and is not a function of the
present inputs.

The state diagram, shown in Figure 2.135, will be used for all design methodolo-
gies.  To minimize the amount of hardware, the state diagram utilizes adjacent state
codes; that is, when a state has two possible next states, then the two next states should
be adjacent — differ by only one variable.  This will provide a maximum number of 1s
in adjacent squares of the input maps.

Figure 2.135 State diagram for a Moore machine, which generates an output z1
whenever a 3-bit word x1 = 111.  The state codes are adjacent and there is one unused
state, y1y2y3  = 100.

The state diagram graphically describes the machine's behavior.  Seven states are
required, providing four state levels — one level for each bit in the 3-bit words and one
level for the bit space between words, at which time output z1 will be displayed if the
word contained a sequence of x1  = 111.

a

y1y2y3
0 0  0

b
0 0 1

c
1 0 1

d
0 1 1

e
1 1 1

f
0 1 0

g
z1

1 1  0

x1

x1'

x1' x1

x1'

x1

 z1t2t3

Level 1: bit b1

Level 2: bit b2

Level 3: bit b3

Level 4: bit space
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For a Moore machine, the outputs can be asserted for segments of the clock period
rather than for the entire clock period only.  This is illustrated below where the clock
transitions (ti) define the clock cycles for an active positive clock transition, and hence,
the state times.  This applies to both positive and negative active clocks.  Two clock
cycles are shown, one for the present state Y j(t) and one for the next state Yk(t+1).

Output z1 can be active for segments of the clock period, as shown below.

z1  t1  t2
z1  t2  t3

z1  t1  t3

z1  t2  t4

The leading edge of the clock pulse, which defines the beginning of the present
state, is labeled t1.  The leading edge may be a positive or negative clock transition and
is used for clocking positive- or negative-edge-triggered devices, respectively.  All
assertion/deassertion times are referenced to the present state Y j(t).  Time t2 occurs at
the middle of the present state; time t3 occurs at the end of the present state; and time
t4 occurs at the midpoint of the next state Yk(t+1).

The assertion of an output is indicated by an up-arrow (); deassertion is indicated
by a down-arrow ().  The output assertion/deassertion times for a Mealy machine
cannot be uniquely specified as for a Moore machine, because the outputs are contin-
gent not only upon a specific state but also upon the input variables, whose assertion
times may not be known.

The output symbol is represented by a rectangle and is placed immediately fol-
lowing the state symbol — designated by a circle — for a Moore machine, or placed
immediately after an input variable that causes the output to become active for a Mealy
machine.  Thus, the output for a Moore machine is a function of the present state only,
whereas the output for a Mealy machine is a function of both the present state and the
present input.

Asserting the output signals at various times and for different durations provides
more flexibility in the  output logic.  Waveforms that are asserted during the follow-
ing times z1  t2  t3  and z1  t2  t4 are especially useful in avoiding glitches.  Glitch-
es are discussed in detail in a later chapter.

t1 = beginning of the present state Yj(t)

t2 = middle of the present state Yj(t)

t3 = end of the present state Yj(t)

t4 = middle of the next state Yk(t+1)
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2.3.1  Design Using Behavioral Modeling

Behavioral modeling describes the behavior of a digital system and is not concerned
with the direct implementation of logic gates but more on the architecture of the sys-
tem.  There is no requirement for input maps or output maps.  This is an algorithmic
approach to hardware implementation and represents a higher level of abstraction than
gate-level design.

Using the state diagram of Figure 2.135, the behavioral design module of Figure
2.136 is obtained.  The test bench module is shown in Figure 2.137.  The system task
$random is used in the test bench to randomly select a value for input x1  from the val-
ues 0 and 1.  The outputs and waveforms are shown in Figure 2.138 and Figure 2.139,
respectively.

Figure 2.136 Behavioral design module for the Moore machine of Figure 2.135.

//behavioral moore synchronous sequential machine
//to detect a sequence of 111 on a serial data line
module moore_ssm3 (clk, rst_n, x1, y, z1);

input clk, rst_n, x1;

output [2:0] y; //y is an array of 3 bits
output z1;

wire clk, rst_n, x1;

reg [2:0] y, next_state; //outputs are reg in always
reg z1;

//assign state codes
parameter state_a = 3'b000, //parameter defines a constant

state_b = 3'b001, //state names must have at
state_c = 3'b101, //least two characters
state_d = 3'b011,
state_e = 3'b111,
state_f = 3'b010,
state_g = 3'b110;

//set next state
always @ (posedge clk or negedge rst_n)
begin

if (~rst_n) //if (~rst_n) is true (1),
y <= #3 state_a; //then y <= state_a #3 later

else
y <= #3 next_state;

end //continued on next page
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Figure 2.136       (Continued)

always @ (y or clk)   //determine output
begin

if (y == state_g)
begin

if (~clk)
z1 = 1'b1;

else
z1 = 1'b0;

end

else
z1 = 1'b0;

end

always @ (y or x1)//determine next state
begin

case (y) //case is a multiple-way
state_a: //conditional branch.

if (x1) //if y = state_a, then
next_state = state_c; //execute if ... else

else
next_state = state_b;

state_b: next_state = state_d;

state_c:
if (x1)

next_state = state_e;
else

next_state = state_d;

state_d: next_state = state_f;

state_e:
if (x1)

next_state = state_g;
else

next_state = state_f;

state_f: next_state = state_a;

state_g: next_state = state_a;

default: next_state = state_a;
endcase

end
endmodule
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Figure 2.137 Test bench module for the Moore machine of Figure 2.135.

//test bench for moore_ssm3
module moore_ssm3_tb;

reg clk, x1, rst_n;
wire [2:0] y;
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever //forever continually executes

#10 clk = ~clk; //the procedural statement
end

//define input vectors
initial
begin

#0 x1 = 1'b0;
rst_n = 1'b0;

#5 rst_n = 1'b1;

@ (posedge clk) //if x1=0 in state_a,
//go to state_b (001)

x1 = $random;@(posedge clk) //if x1=0/1 in state_b,
//go to state_d (011)

x1 = $random;@(posedge clk) //if x1=0/1 in state_d,
//go to state_f (010)

x1 = $random;@(posedge clk) //if x1=0/1 in state_f,
//go to state_a (000)

x1 = 1'b1;@(posedge clk) //if x1=1 in state_a,
//go to state_c (101)

x1 = 1'b1;@(posedge clk) //if x1=1 in state_c,
//go to state_e (111)

x1 = 1'b1;@(posedge clk) //if x1=1 in state_e,
//go to state_g (110);z1=1

x1 = $random;@(posedge clk) //if x1=0/1 in state_g,
//go to state_a (000)

x1 = 1'b1;@(posedge clk) //if x1=1 in state_a,
//go to state_c (101)

x1 = 1'b0;@(posedge clk) //if x1=0 in state_c,
//go to state_d (011)

//continued on next page
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Figure 2.137       (Continued)

Figure 2.138 Outputs for the Moore machine of Figure 2.135.

x1 = $random;@(posedge clk) //if x1=0/1 in state_d,
//go to state_f (010)

x1 = $random;@(posedge clk) //if x1=0/1 in state_f,
//go to state_a (000)

x1 = 1'b1;@(posedge clk) //if x1=1 in state_a,
//go to state_c (101)

x1 = 1'b1;@(posedge clk) //if x1=1 in state_c,
//go to state_e (111)

x1 = 1'b0;@(posedge clk) //if x1=0 in state_e,
//go to state_f (010)

x1 = $random;@(posedge clk) //if x1=0/1 in state_f,
//go to state_a (000)

#100 $stop;
end

//instantiate the module into the test bench
moore_ssm3 inst1 (

.clk(clk),

.rst_n(rst_n),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = xxx, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0

x1 = 1, state = 111, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 110, z1 = 1
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 0, state = 101, z1 = 0

x1 = 1, state = 101, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 101, z1 = 0
x1 = 0, state = 111, z1 = 0
x1 = 1, state = 111, z1 = 0

x1 = 1, state = 010, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 110, z1 = 1
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 000, z1 = 0
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Figure 2.139 Waveforms for the Moore machine of Figure 2.135.

2.3.2  Design Using Structural Modeling with                    
D Flip-Flops, AND Gates, and an OR Gate

The input maps, shown in Figure 2.140, are derived from the state diagram of Figure
2.135.  Input x1 is used as a map-entered-variable.  Refer to the input map for flip-flop
y1 .  Since the purpose of an input map is to obtain the flip-flop input equations by com-
bining 1s in the minterm locations, the variable x1  is entered as the value in minterm
location y1y2y3 = 000.  That is, y1 has a next value of 1 if and only if x1  has a value of
1.  The same reasoning applies to all other minterm entries, except minterm location 4,
which represents the unused state and is treated as a “don’t care” state.

Figure 2.140 Input maps for the Moore machine of Figure 2.135.

140 150
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 0       x1        0        0         0

 1       –         x1       x1        0
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Dy1  = y2 'y3 'x1  + y1y3x1

Continued on next page
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Figure 2.140       (Continued)

The logic diagram is shown in Figure 2.141 using AND gates, OR gates, and D
flip-flops with an implied reset input.  The structural design module is shown in Figure
2.142.  The test bench module is shown in Figure 2.143.  The outputs and waveforms
are shown in Figure 2.144 and Figure 2.145, respectively.

Figure 2.141 Logic diagram for the Moore machine of Figure 2.135.
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Figure 2.142 Structural design module for the Moore machine of Figure 2.141.

//structural moore machine using D flip-flops
module moore_ssm24a (rst_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1;

//define internal nets
wire net1, net2, net3;

//instantiate the logic for flip-flop y[1]
and3_df inst1 (

.x1(~y[2]),

.x2(~y[3]),

.x3(x1),

.z1(net1)
);

and3_df inst2 (
.x1(x1),
.x2(y[1]),
.x3(y[3]),
.z1(net2)
);

or2_df inst3 (
.x1(net1),
.x2(net2),
.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
d_ff_bh inst5 (

.rst_n(rst_n),

.clk(clk),

.d(y[3]),

.q(y[2])
);

//continued on next page
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Figure 2.142       (Continued)

Figure 2.143 Test bench module for the Moore machine of Figure 2.142.

//instantiate the logic for flip-flop y[3]
d_ff_bh inst6 (

.rst_n(rst_n),

.clk(clk),

.d(~y[2]),

.q(y[3])
);

//instantiate the logic for output z1
and3_df inst7 (

.x1(y[1]),

.x2(~y[3]),

.x3(~clk),

.z1(z1)
);

endmodule

//test bench for moore_ssm24a
module moore_ssm24a_tb;

reg rst_n, clk, x1;
wire [1:3] y;
wire z1;

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
clk = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//continued on next page
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Figure 2.143       (Continued)

Figure 2.144 Outputs for  the Moore machine of Figure 2.142.

//-------------------------------------------------------
#60 x1 = 1'b1;
#40 x1 = 1'b0;

#40 x1 = 1'b1;
#100 x1 = 1'b0;

//-------------------------------------------------------
#60 $stop;

end

//instantiate the module into the test bench
moore_ssm24a inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 0, state = 111, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 110, z1 = 1
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 101, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
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Figure 2.145 Waveforms for  the Moore machine of Figure 2.142.

2.3.3  Design Using Structural Modeling with                    
D Flip-Flops, NOR Gates, and an OR Gate

The characteristic table for a D flip-flop is reproduced in Table 2.7.  The state diagram
of Figure 2.135 will now be designed using structural modeling with D flip-flops,
NOR gates, and an OR gate, as shown in the logic diagram of Figure 2.146.  Although
not shown, it is  assumed that the D flip-flops have a reset input.  The output will
assume the state of the D input at the next positive clock transition.  After the occur-
rence of the clock’s positive edge, any change to the D input will not affect the output
until the next active clock transition.

Table 2.7  D Flip-Flop Characteristic Table

Data input
D

Present state
Yj(t)

Next state
Yk(t+1)

0 0 0
0 1 0
1 0 1
1 1 1

200 210



2.3     Moore Machines     245

Figure 2.146 Logic diagram for the Moore machine of Figure 2.135 using NOR
gates and an OR gate for the input logic.

The structural design module is shown in Figure 2.147 and the test bench module
is shown in Figure 2.148.  The outputs and waveforms are shown in Figure 2.149 and
Figure 2.150, respectively.

Figure 2.147 Structural design module for the Moore machine of Figure 2.146.
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//structural moore machine using D flip-flops and NOR gates
module moore_ssm24_nor (rst_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, clk, x1;

output [1:3] y;
output z1;

//define internal nets
wire net1, net2, net3;

//continued on next page
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Figure 2.147       (Continued)

//instantiate the logic for flip-flop y[1]
nor3_df inst1 (

.x1(y[2]),

.x2(y[3]),

.x3(~x1),

.z1(net1)
);

nor3_df inst2 (
.x1(~x1),
.x2(~y[1]),
.x3(~y[3]),
.z1(net2)
);

or2_df inst3 (
.x1(net1),
.x2(net2),
.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
d_ff_bh inst5 (

.rst_n(rst_n),

.clk(clk),

.d(y[3]),

.q(y[2])
);

//instantiate the logic for flip-flop y[3]
d_ff_bh inst6 (

.rst_n(rst_n),

.clk(clk),

.d(~y[2]),

.q(y[3])
);

//continued on next page
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Figure 2.147       (Continued)

Figure 2.148 Test bench module for the Moore machine of Figure 2.146.

//instantiate the logic for output z1
nor3_df inst7 (

.x1(~y[1]),

.x2(y[3]),

.x3(clk),

.z1(z1)
);

endmodule

//test bench for moore_ssm24a
module moore_ssm24_nor_tb;

reg rst_n, clk, x1;
wire [1:3] y;
wire z1;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
clk = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

#60 x1 = 1'b1;
#40 x1 = 1'b0;

#40 x1 = 1'b1;
#100 x1 = 1'b0;
#60 $stop;

end //continued on next page
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Figure 2.148       (Continued)

Figure 2.149 Outputs for the Moore machine of Figure 2.146.

Figure 2.150 Waveforms for the Moore machine of Figure 2.146.

//instantiate the module into the test bench
moore_ssm24_nor inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 0, state = 111, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 110, z1 = 1
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 101, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
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2.3.4  Design Using Structural Modeling with                  
JK Flip-Flops, AND Gates, and an OR Gate

The Moore machine represented by the state diagram of Figure 2.135 will now be
designed using JK flip-flops and is functionally equivalent to the design using D flip-
flops.  The excitation table for  a JK flip-flop is reproduced in Table 2.8.  The input
maps are derived from the state diagram and are shown in Figure 2.151.  The output
map will contain a “don’t care” condition in minterm location y1y2y3 = 100 and can be
combined with the 1 in minterm location y1y2y3 = 110 to yield the output equation of
z1 = y1y3 '.

Figure 2.151 Input maps for the Moore machine of Figure 2.135 using JK flip-
flops.

Table 2.8  Excitation Table for a JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Flip-flop inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0

  0 0      0 1     1 1      10
y2y3

    y1

 0       x1       0        0         0

 1       –         –        –         –

  0 0      0 1     1 1      10
y2y3

    y1

 0       –         –        –         –

 1       –        x1'      x1'        1

 

 

Jy1 Ky1

Jy1 = y2 ' y3 ' x1 Ky1 = x1 ' + y3 '

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         1        –         –

 1       –         1        –         –
 

  0 0      0 1     1 1      10
y2y3

    y1

 0       –         –       0         1

 1       –         –       0         1

Jy2 Ky2

Jy2 = y3 Ky2 = y3 '
Continued on next page
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Figure 2.151       (Continued)

The  input logic incorporates less hardware than the equivalent design using D
flip-flops.  This is due to the inherent added logic functions supplied by the JK data in-
puts.  As stated previously, the unused state can be utilized in the minimization process
only because the assertion for z1 occurs after the machine has stabilized.

The logic diagram is shown in Figure 2.152.  The structural design module is
shown in Figure 2.153 and the test bench module is shown in Figure 2.154.  The JK
flip-flops have an implied reset.  The outputs and waveforms are shown in Figure
2.155 and Figure 2.156, respectively.  Since the flip-flops are negative-edge triggered
devices, the output will be asserted when the clock pulse is at a positive voltage level.

Figure 2.152 Logic diagram for the Moore machine of Figure 2.135 using JK flip-
flops.
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Figure 2.153 Structural design module for the Moore machine of Figure 2.152
using JK flip-flops.

//Structural moore machine using JK flip-flops

module moore_ssm24_jk (rst_n, set_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, set_n, clk, x1;
output [1:3] y;
output z1;

//define internal nets
wire net1, net2;

//instantiate the logic for flip-flop y[1]
and3_df inst1 (

.x1(~y[2]),

.x2(~y[3]),

.x3(x1),

.z1(net1)
);

or2_df inst2 (
.x1(~x1),
.x2(~y[3]),
.z1(net2)
);

jkff_neg_clk inst3 (
.rst_n(rst_n),
.set_n(set_n),
.clk(clk),
.j(net1),
.k(net2),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
jkff_neg_clk inst4 (

.rst_n(rst_n),

.set_n(set_n),

.clk(clk),

.j(y[3]),

.k(~y[3]),

.q(y[2])
);

//continued on next page
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Figure 2.153       (Continued)

Figure 2.154 Test bench module for the Moore machine of Figure 2.152.

//instantiate the logic for flip-flop y[3]
jkff_neg_clk inst5 (

.rst_n(rst_n),

.set_n(set_n),

.clk(clk),

.j(~y[2]),

.k(y[2]),

.q(y[3])
);

//instantiate the logic for output z1
and3_df inst6 (

.x1(y[1]),

.x2(~y[3]),

.x3(clk),

.z1(z1)
);

endmodule

//test bench for moore_ssm24_jk

module moore_ssm24_jk_tb;

reg rst_n, set_n, clk, x1;

wire [1:3] y;
wire z1;

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//continued on next page
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Figure 2.154       (Continued)

Figure 2.155 Outputs for the Moore machine of Figure 2.152.

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
set_n = 1'b1;
clk = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//-------------------------------------------------------

#80 x1 = 1'b1;
#40 x1 = 1'b0;

#40 x1 = 1'b1;
#100 x1 = 1'b0;

//-------------------------------------------------------
#80 $stop;

end

//instantiate the module into the test bench
moore_ssm24_jk inst1 (

.rst_n(rst_n),

.set_n(set_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 0, state = 111, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 110, z1 = 1
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 101, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 0, state = 000, z1 = 0
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Figure 2.156 Waveforms for the Moore machine of Figure 2.152.

2.4  Mealy Machines
The next-state function  for Mealy machines maps the Cartesian product of X and Y
into Y, and thus, is determined by both the present inputs and the present state.  The
output function  maps the Cartesian product of X and Y into Z, such that the output
vector is a function of both the present inputs and the present state.  This is the under-
lying difference between Moore and Mealy machines — the outputs of a Moore ma-
chine are directly related to the present state only, whereas, the outputs of a Mealy
machine are a function of both the present state and the present inputs.

This section will provide three examples of Mealy machines designed using
behavioral modeling, structural modeling using D flip-flops, and structural modeling
using JK flip-flops.  The state diagram for all designs is shown in Figure 2.157 using
adjacent state codes.

The Mealy machine accepts serial data on an input line x1  which consists of 3-bit
words.  The words are contiguous with no space between adjacent words.  The ma-
chine is controlled by a periodic clock, where one clock period is equal to one bit cell.
The format for the 3-bit words is shown below, where bi = 0 or 1.

230 240



2.4     Mealy Machines     255

Whenever a word contains the bit pattern b1b2b3 = 111, the machine will assert
output z1 during the b3 bit cell according to the following assertion/deassertion state-
ment: z1t2t3.  Thus, z1 is active for the last half of bit cell b3.  An example of a valid
word in a series of words is as follows:

Figure 2.157 State diagram for the Mealy machine, which generates an output z1
whenever a 3-bit word x1 = 111.  Unused states are: y1y2y3 = 010, 100, and 110.

2.4.1  Design Using Behavioral Modeling

The behavioral design module is shown in Figure 2.158 using the case statement.  The
test bench module is shown in Figure 2.159 and takes the machine through three
sequences, or paths, of the state diagram.  The outputs are shown in Figure 2.160 and
indicate that output z1 is asserted in state code y1y2y3 = 111.  The waveforms are
shown in Figure 2.161 showing the three paths.  Note that output z1 is asserted during
the last half of the clock cycle in state (e) y1y2y3 = 111.

x1  =    b1b2b3 b1b2b3 b1b2b3    

x1  =    001 101 011 101 111 010   

z1t2t3

a

y1y2y3
0 0  0

b
0 0 1

c
1 0 1

d
0 1 1

e
1 1 1

z1

x1

x1'

x1' x1

x1'

x1

 z1t2t3

Level 1: bit b1

Level 2: bit b2

Level 3: bit b3
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Figure 7.158 Behavioral design module for a Mealy machine, which asserts output
z1 whenever a sequence of x1 = 111 occurs on input x1.

//behavioral mealy synchronous sequential machine

module mealy_ssm12 (rst_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, clk, x1;

output [1:3] y;
output z1;

//variables are reg in always
reg [1:3] y, next_state;
reg z1;

//assign state codes
//parameter defines a constant
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b101,
state_d = 3'b011,
state_e = 3'b111;

//set next state
always @ (posedge clk)
begin

if (~rst_n) //if (~rst_n) is true,
y <= state_a; //... go to state_a

else
y <= next_state;

end

//determine output
always @ (y or clk)
begin

if (y == state_e) //== specifies logical
begin //... equality or compare

if (~clk)
z1 = 1'b1; //assert z1 at t2,

else //deassert at t3
z1 = 1'b0;

end
else

z1 = 1'b0;
end

//continued on next page
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Figure 2.158       (Continued)

Figure 2.159 Test bench module for the Mealy machine of Figure 2.158.

//determine next state
always @ (y)
begin

case (y) //case is a multi-way
state_a: //... conditional branch

if (x1) //if y = state_a, then
next_state = state_c; //... do if ... else

else
next_state = state_b;

state_b: next_state = state_d;

state_c:
if (x1)

next_state = state_e;
else

next_state = state_d;

state_d: next_state = state_a;

state_e: next_state = state_a;

default: next_state = state_a;
endcase

end
endmodule

//test bench for mealy synchronous sequential machine
module mealy_ssm12_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end //continued on next page
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Figure 2.159       (Continued)

Figure 2.160 Outputs for the Mealy machine of Figure 2.158.

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#15 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (posedge clk) //go to state_b (001)
x1 = $random;@ (posedge clk) //go to state_d (011)
x1 = $random;@ (posedge clk) //go to state_a (000)

//------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b0;@ (posedge clk) //go to state_d (011)
x1 = $random;@ (posedge clk) //go to state_a (000)

//------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b1;@ (posedge clk) //go to state_e (111)
x1 = 1'b0;@ (posedge clk) //assert z1

//go to state_a (000)

//------------------------------------------------------
#10 $stop;

end

//------------------------------------------------------
//instantiate the module into the test bench
mealy_ssm12 inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

x1 = 0, state = xxx, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 0, state = 101, z1 = 0

x1 = 1, state = 011, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 111, z1 = 0
x1 = 0, state = 111, z1 = 1
x1 = 0, state = 000, z1 = 0
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Figure 2.161 Waveforms for the Mealy machine of Figure 2.158.

2.4.2  Design Using Structural Modeling with                    
D Flip-Flops

The Mealy machine for the state diagram of Figure 2.157 will now be designed using
structural modeling with D flip-flops.  The input maps are derived from the state dia-
gram and are shown in Figure 2.162 using input x1  as a map-entered variable.  The
logic diagram, designed from the input equations, is shown in Figure 2.163 containing
the instantiations for the input gates and the net names.  The D flip-flops have an
implied reset input.

Figure 2.162 Input maps for the Mealy machine of Figure 2.157.

  0 0      0 1     1 1      10
y2y3

    y1

 0       x1        0        0         –

 1       –        x1       0         –
 

Dy1

Dy1 = y3 ' x1 + y1y2 'x1 

Continued on next page
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Figure 2.162       (Continued)

Figure 2.163 Logic diagram for the Mealy machine of Figure 2.157.
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The structural design module is shown in Figure 2.164.  The test bench module is
shown in Figure 2.165 and takes the machine through three paths of the state diagram.
The outputs and waveforms are shown in Figure 2.166 and Figure 2.167, respectively.
The waveforms clearly show the three paths through the state diagram and output z1
being asserted during the last half of the clock cycle.

Figure 2.164 Structural design module for the Mealy machine of Figure 2.157.

//structural mealy to detect 111
module mealy_ssm13 (rst_n, clk, x1, y, z1);

input rst_n, clk, x1;
output [1:3] y;

output z1;

//define internal nets
wire net1, net2, net3, net5;

//design for flip-flop y[1]
and2_df inst1 (

.x1(~y[3]),

.x2(x1),

.z1(net1)
);

and3_df inst2 (
.x1(y[1]),
.x2(~y[2]),
.x3(x1),
.z1(net2)
);

or2_df inst3 (
.x1(net1),
.x2(net2),
.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//continued on next page
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Figure 2.164       (Continued)

Figure 2.165 Test bench for the Mealy machine of Figure 2.164.

//design for flip-flop y[2]
and2_df inst5 (

.x1(~y[2]),

.x2(y[3]),

.z1(net5)
);

d_ff_bh inst6 (
.rst_n(rst_n),
.clk(clk),
.d(net5),
.q(y[2])
);

//design for flip-flop y[3]
d_ff_bh inst7 (

.rst_n(rst_n),

.clk(clk),

.d(~y[2]),

.q(y[3])
);

//design for output z1
and4_df inst8 (

.x1(y[1]),

.x2(y[2]),

.x3(x1),

.x4(~clk),

.z1(z1)
);

endmodule

//test bench for mealy ssm to detect 111
module mealy_ssm13_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//continued on next page
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Figure 2.165       (Continued)

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 x1 = 1'b0;
rst_n = 1'b0; //reset to state_a (000)

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_d (011)
x1 = 1'b1;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------

x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b0;@ (posedge clk) //go to state_d (011)
x1 = 1'b0;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------

x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b1;@ (posedge clk) //go to state_e (111)
x1 = 1'b1;@ (posedge clk) //assert z1

//go to state_a (000)
//----------------------------------------------------------

#60 $stop;
end

//----------------------------------------------------------

//instantiate the module into the test bench
mealy_ssm13 inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule
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Figure 2.166 Outputs for the Mealy machine of Figure 2.164.

Figure 2.167 Waveforms for the Mealy machine of Figure 2.164.

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 111, z1 = 0

x1 = 0, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 0

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0

x1 = 1, state = 111, z1 = 1
x1 = 1, state = 000, z1 = 0
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2.4.3  Design Using Structural Modeling with                   
JK Flip-Flops

The Mealy machine for the state diagram of Figure 2.157 will now be designed using
JK flip-flops.  Step 1 through step 3 of the synthesis procedure using D flip-flops
remain unchanged for JK flip-flops.  The input maps will be generated from the state
diagram using input x1  as a map-entered variable and are shown in Figure 2.168.

Figure 2.168 Input maps for the Mealy machine of Figure 2.157 using JK flip-flops
and adjacent state codes for state pairs (b, c) and (d, e).  Input x1 is a map-entered vari-
able.
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The logic diagram is shown in Figure 2.169 indicating the instantiation of the 
input logic gates, the net names, and the JK flip-flops which are instantiated as nega-
tive-edge triggered flip-flops.  Although not shown, it is assumed that the flip-flops
have a set and a reset input.  Since the clock is a negative-edge input, therefore, output
z1 will be asserted during the positive voltage level of the clock.

The structural design module is shown in Figure 2.170 and the test bench module
is shown in Figure 2.171.  The outputs and waveforms are shown in Figure 2.172 and
Figure 2.173, respectively.

Figure 2.169 Logic diagram for the Mealy machine of Figure 2.157 using JK flip-
flops.  Output z1 is asserted when a sequence of 111 has been detected in a 3-bit word
on a serial data line x1.  Output z1 is asserted at time t2 and deasserted at time t3.

Figure 2.170 Structural design module for the Mealy machine of Figure 2.169.
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//structural mealy using jk flip-flops to detect 111
module mealy_ssm13_jk (set_n, rst_n, clk, x1, y, z1);

input set_n, rst_n, clk, x1;
output [1:3] y;
output z1;

//define internal nets
wire net1, net2; //continued on next page
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Figure 2.170       (Continued)

and2_df inst1 ( //design for flip-flop y[1]
.x1(~y[3]),
.x2(x1),
.z1(net1)
);

or2_df inst2 (
.x1(y[2]),
.x2(~x1),
.z1(net2)
);

jkff_neg_clk inst3 (
.set_n(set_n),
.rst_n(rst_n),
.clk(clk),
.j(net1),
.k(net2),
.q(y[1])
);

//----------------------------------------------------------
jkff_neg_clk inst4 ( //design for flip-flop y[2]

.set_n(set_n),

.rst_n(rst_n),

.clk(clk),

.j(y[3]),

.k(1'b1),

.q(y[2])
);

//----------------------------------------------------------
jkff_neg_clk inst5 ( //design for flip-flop y[3]

.set_n(set_n),

.rst_n(rst_n),

.clk(clk),

.j(1'b1),

.k(y[2]),

.q(y[3])
);

//----------------------------------------------------------
and4_df inst6 ( //design for output z1

.x1(y[1]),

.x2(y[2]),

.x3(clk),

.x4(x1),

.z1(z1)
);

endmodule
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Figure 2.171 Test bench module for the Mealy machine of Figure 2.170.

//test bench for mealy ssm using jk flip-flops to detect 111

module mealy_ssm13_jk_tb;

reg set_n, rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 x1 = 1'b0;
set_n = 1'b1;
rst_n = 1'b0; //reset to state_a (000)

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (negedge clk) //go to state_b (001)
x1 = 1'b0;@ (negedge clk) //go to state_d (011)
x1 = 1'b1;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_c (101)
x1 = 1'b0;@ (negedge clk) //go to state_d (011)
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_c (101)
x1 = 1'b1;@ (negedge clk) //go to state_e (111)
x1 = 1'b1;@ (negedge clk) //assert z1

//go to state_a (000)
//----------------------------------------------------------

#10 $stop;
end
//----------------------------------------------------------

//continued on next page
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Figure 2.171       (Continued)

Figure 2.172 Outputs for the Mealy machine of Figure 2.170.

Figure 2.173 Waveforms for the Mealy machine of Figure 2.170.

//instantiate the module into the test bench
mealy_ssm13_jk inst1 (

.set_n(set_n),

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 0, state = 101, z1 = 0

x1 = 0, state = 011, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 111, z1 = 1
x1 = 1, state = 000, z1 = 0
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2.5  Moore–Mealy Equivalence
This section presents Verilog design examples of equivalent Moore and Mealy syn-
chronous sequential machines.  The examples include behavioral modeling, structural
modeling, and built-in primitives.

Example 2.22 This example designs a Mealy machine to detect a 1101 sequence
using behavioral modeling.  The state diagram for a Mealy machine which detects an
input sequence of 1101 on a serial data line x1  is shown in Figure 2.174.  Whenever
x1 = 1101 anywhere in the bit stream, output z1 is asserted at time t2 and deasserted at
time t3.  An example of a sequence of bits is shown below.

The behavioral design module is shown in Figure 2.175 and the test bench module
is shown in Figure 2.176.  The outputs and waveforms are shown in Figure 2.177 and
Figure 2.178, respectively.

Figure 2.174 State diagram for a Mealy machine to detect an input sequence of x1
= 1101 anywhere in the bit stream.
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Figure 2.175 Behavioral design module for a Mealy machine to detect a sequence
of 1101 on a serial input x1 anywhere in the bit stream.

//behavioral module for a mealy ssm to detect 1101

module mealy_ssm14_bh (rst_n, clk, x1, y, z1);

input clk, rst_n, x1;
output [1:2] y;
output z1;

reg [1:2] y, next_state;
wire z1;

//assign state codes
parameter state_a = 2'b00,

state_b = 2'b01,
state_c = 2'b11,
state_d = 2'b10;

//set next state
always @ (posedge clk)
begin

if (~rst_n)
y <= state_a;

else
y <= next_state;

end

assign z1 = ((y[1]) && (~y[2]) && (x1)  && (~clk));

//determine next state
always @ (y or x1)
begin

case (y)
state_a:

if (x1)
next_state = state_b;

else
next_state = state_a;

state_b:
if (x1)

next_state = state_c;
else

next_state = state_a;

//continued on next page
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Figure 2.175       (Continued)

Figure 2.176 Test bench module for the Mealy machine to detect a sequence of
1101 on a serial input x1 anywhere in the bit stream.

state_c:
if (x1)

next_state = state_c;
else

next_state = state_d;

state_d:
if (x1)

next_state = state_b;
else

next_state = state_a;

default: next_state = state_a;
endcase

end

endmodule

//test bench for mealy machine to detect 1101
module mealy_ssm14_bh_tb;

reg rst_n, clk, x1;
wire [1:2] y;
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page
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Figure 2.176       (Continued)

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (posedge clk) //go to state_a
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b0;@ (posedge clk) //go to state_a
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b0;@ (posedge clk) //go to state_a
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_b, assert z1 at t2

x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_b, assert z1 at t2

x1 = 1'b0;@ (posedge clk) //go to state_a
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_b, assert z1 at t2

x1 = 1'b0;@ (posedge clk) //go to state_a

#10 $stop;

end

//instantiate the module into the test bench
mealy_ssm14_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule
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Figure 2.177 Outputs for the Mealy machine to detect a sequence of 1101 on a
serial input x1 anywhere in the bit stream.

Figure 2.178 Waveforms for the Mealy machine to detect a sequence of 1101 on a
serial input x1 anywhere in the bit stream.

x1 = 0, state = xx, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 0, state = 01, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 0
x1 = 1, state = 11, z1 = 0
x1 = 0, state = 11, z1 = 0
x1 = 0, state = 10, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 0
x1 = 0, state = 11, z1 = 0
x1 = 1, state = 10, z1 = 0
x1 = 1, state = 10, z1 = 1

x1 = 1, state = 01, z1 = 0
x1 = 0, state = 11, z1 = 0
x1 = 1, state = 10, z1 = 0
x1 = 1, state = 10, z1 = 1

x1 = 0, state = 01, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 0
x1 = 0, state = 11, z1 = 0
x1 = 1, state = 10, z1 = 0
x1 = 1, state = 10, z1 = 1

x1 = 0, state = 01, z1 = 0
x1 = 0, state = 00, z1 = 0
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Example 2.23 This example designs an equivalent Moore machine to detect a 1101
sequence using behavioral modeling.  The characteristics of state d in the state dia-
gram of Figure 2.174 are preserved by two new states, d and e, in the equivalent Moore
state diagram of Figure 2.179.  State d no longer produces an output in the Moore
model.  The output is generated in state e if x1 = 1 in state d.  The addition of the extra
state (e) permits conformation to the definition of a Moore machine.

Figure 2.179 Equivalent Moore state diagram for the Mealy machine of Figure
2.174.  Output z1 is asserted whenever the input sequence is x1 = 1101.

The behavioral design module is shown in Figure 2.180 using the always state-
ment.  The always statement executes the behavioral statements within the always
block repeatedly in a looping manner and begins execution at time zero.  The always
construct never exits the corresponding block.  Execution of the statements continues
indefinitely until the simulation is terminated.

The keyword always specifies a behavior and the statements within a behavior are
classified as behavioral or procedural.  There can be more than one always statement
in a behavioral module and, together with the initial statement, is one of the basic con-
structs for representing concurrency.

The test bench module is shown in Figure 2.181 and takes the machine through a
series of bits on input x1   The series of bits includes nonoverlapping and overlapping
1101 bits.  The outputs and waveforms are shown in Figure 2.182 and Figure 2.183,
respectively.
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1  1  0
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Figure 2.180 Behavioral design module for the Moore state diagram of Figure
2.179 that asserts output z1 whenever the input sequence is x1 = 1101.

//behavioral for moore ssm to detect 1101

module moore_ssm27_bh (rst_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1;

//variables are reg in always
reg [1:3] y, next_state;
reg z1;

//assign state codes
//parameter defines a constant
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110;

//set next state
always @ (posedge clk)
begin

if (~rst_n) //if (~rst_n) is true
y <= state_a; //go to state_a

else
y <= next_state;

end

//determine output
always @ (y or clk)
begin

if (y == state_e) //== specifies logical
begin //equality or compare

if (~clk)
z1 = 1'b1; //assert z1 at t2

else
z1 = 1'b0;

end
else

z1 = 1'b0;
end

//continued on next page
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Figure 2.180       (Continued)

//determine next state
always @ (y or x1)
begin

case (y) //case is a multiple-way
state_a: //... conditional branch

if (~x1)
next_state = state_a;

else
next_state = state_b;

state_b:
if (~x1)

next_state = state_a;
else

next_state = state_c;

state_c:
if (x1)

next_state = state_c;
else

next_state = state_d;

state_d:
if (~x1)

next_state = state_a;
else

next_state = state_e;

state_e:
if (~x1)

next_state = state_a;
else

next_state = state_c;

default: next_state = state_a;

endcase

end

endmodule
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Figure 2.181 Test bench module for the Moore state diagram of Figure 2.179 that
asserts output z1 whenever the input sequence is x1 = 1101.

//test for moore ssm to detect 1101
module moore_ssm27_bh_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//-----------------------------------------------------------

x1 = 1'b0;@ (posedge clk) //go to state_a
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b0;@ (posedge clk) //go to state_a

//-----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b0;@ (posedge clk) //go to state_a

//-----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_e, assert z1 at t2
x1 = 1'b0;@ (posedge clk) //go to state_a

//-----------------------------------------------------------

//continued on next page
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Figure 2.181       (Continued)

Figure 2.182 Outputs for the Moore state diagram of Figure 2.179 that asserts out-
put z1 whenever the input sequence is x1 = 1101.

//-----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_e, assert z1 at t2
x1 = 1'b1;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_e, assert z1 at t2
x1 = 1'b0;@ (posedge clk) //go to state_a

//-----------------------------------------------------------
#10 $stop;

end

//instantiate the module into the test bench
moore_ssm27_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = xxx, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 010, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 0, state = 110, z1 = 0
x1 = 0, state = 110, z1 = 1

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 110, z1 = 1

x1 = 0, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 0, state = 110, z1 = 0
x1 = 0, state = 110, z1 = 1
x1 = 0, state = 000, z1 = 0
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Figure 2.183 Waveforms for the Moore state diagram of Figure 2.179 that asserts
output z1 whenever the input sequence is x1 = 1101.

Example 2.24 This example designs a Mealy machine to detect a 101 and a 110
sequence using behavioral modeling.  The same technique that was used for a single
sequence with a single output also applies to multiple input sequences that generate
multiple outputs, as shown for the Mealy machine in the state diagram of
Figure 2.184.  This machine detects two different word configurations on a serial input
line x1 , as shown below.  The information on input x1  consists of 3-bit words.  There
is no space between adjacent words.  Outputs z1 and z2  are asserted during the third bit
time of a valid word.

The behavioral design module is shown in Figure 2.185 using the case statement,
the always statement, and the assign statement.  The keyword assign is classified as a
continuous assignment statement used to design combinational logic.  The test bench
module is shown in Figure 2.186 and applies different bit sequences which assert both
output z1 and output z2 .  The outputs and waveforms are shown in Figure 2.187 and
Figure 2.188, respectively.

x1  =    b1b2b3 b1b2b3 b1b2b3   

If x1 = 110, then assert z2
z1/z2

If x1 = 101, then assert z1
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Figure 2.184 State diagram for a Mealy machine.  Output z1 is asserted whenever
x1 = 101; output z2 is asserted whenever x1 = 110.

Figure 2.185 Behavioral design module for a Mealy machine that asserts output z1
whenever x1 = 101 and asserts output z2 whenever  x1 = 110.
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//behavioral module for a mealy ssm to detect 101 or 110

module mealy_ssm15 (rst_n, clk, x1, y, z1, z2);

input rst_n, clk, x1;
output [1:2] y;
output z1, z2;

//variables are reg in always
reg [1:2] y, next_state;

//assign state codes
//parameter defines a constant
parameter state_a = 2'b00,

state_b = 2'b01,
state_c = 2'b11,
state_d = 2'b10;

//continued on next page
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Figure 2.185       (Continued)

//set next state
always @ (posedge clk)
begin

if (~rst_n)
y <= state_a;

else
y <= next_state;

end

//determine outputs
assign z1 = ((y[1]) && (y[2]) && (x1) && (~clk));
assign z2 = ((y[1]) && (~y[2]) && (~x1) && (~clk));

//determine next state
always @ (y or x1)
begin

case (y)
state_a:

if (~x1)
next_state = state_a;

else
next_state = state_b;

state_b:
if (~x1)

next_state = state_c;
else

next_state = state_d;

state_c: next_state = state_a;

state_d: next_state = state_a;

default: next_state = state_a;

endcase

end

endmodule
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Figure 2.186 Test bench module for the Mealy machine that asserts output z1
whenever x1 = 101 and asserts output z2 whenever  x1 = 110.

//test bench for mealy machine to detect 101 or 110
module mealy_ssm15_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1, z2;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (posedge clk) //go to state_a
x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b0;@ (posedge clk) //go to state_c
x1 = 1'b0;@ (posedge clk) //go to state_a

x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b0;@ (posedge clk) //go to state_c
x1 = 1'b1;@ (posedge clk) //go to state_a; assert z1 at t2

x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_d
x1 = 1'b0;@ (posedge clk) //go to state_a; assert z2 at t2

x1 = 1'b1;@ (posedge clk) //go to state_b
x1 = 1'b1;@ (posedge clk) //go to state_d
x1 = 1'b1;@ (posedge clk) //go to state_a

#10 $stop;
end

//continued on next page
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Figure 2.186       (Continued)

Figure 2.187 Outputs for the Mealy machine of Figure 2.184 that asserts output z1
whenever x1 = 101 and asserts output z2 whenever x1 = 110.

//instantiate the module into the test bench
mealy_ssm15 inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1 = 0, state = xx, z1 = 0, z2 = x
x1 = 1, state = 00, z1 = 0, z2 = 0
x1 = 0, state = 01, z1 = 0, z2 = 0
x1 = 0, state = 11, z1 = 0, z2 = 0
x1 = 1, state = 00, z1 = 0, z2 = 0
x1 = 0, state = 01, z1 = 0, z2 = 0
x1 = 1, state = 11, z1 = 0, z2 = 0

x1 = 1, state = 11, z1 = 1, z2 = 0

x1 = 1, state = 00, z1 = 0, z2 = 0
x1 = 1, state = 01, z1 = 0, z2 = 0
x1 = 0, state = 10, z1 = 0, z2 = 0

x1 = 0, state = 10, z1 = 0, z2 = 1

x1 = 1, state = 00, z1 = 0, z2 = 0
x1 = 1, state = 01, z1 = 0, z2 = 0
x1 = 1, state = 10, z1 = 0, z2 = 0
x1 = 1, state = 00, z1 = 0, z2 = 0
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Figure 2.188 Waveforms for the Mealy machine of Figure 2.184 that asserts output
z1 whenever x1 = 101 and asserts output z2 whenever  x1 = 110.

Example 2.25 This example designs a Mealy machine to detect a 101 and a 110 se-
quence using structural modeling with D flip-flops.  The state diagram is shown in
Figure 2.189.  This machine detects two different word configurations on a serial input
line x1 .  The information on input x1  consists of 3-bit words.  There is no space be-
tween adjacent words.  Outputs z1 and z2  are asserted during the third bit time of a val-
id word, as shown below.
  

The input maps for the D flip-flops, the input equations, and the output equations
are shown in Figure 2.190.  The output equations are obtained directly from the state
diagram.  The logic diagram containing the  input logic, the state flip-flops, and the 
output logic is shown in Figure 2.191.

The structural design module is shown in Figure 2.192, and shows the instantia-
tions and net names on the various components.  The test bench module is shown in
Figure 2.193, which takes the machine through three different paths in the state dia-
gram, two of which assert z1 and z2 .  The outputs and waveforms are shown in Figure
2.194 an Figure 2.195, respectively.

x1  =    b1b2b3 b1b2b3 b1b2b3   

If x1 = 110, then assert z2

If x1 = 101, then assert z1
z1/z2
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Figure 2.189 State diagram for a Mealy machine.  Output z1 is asserted whenever
x1 = 101; output z2 is asserted whenever x1 = 110.

Dy1 = y1 'y2 Dy2 = y1 'y2 'x1  + y1 'y2x1'
 = y1 '(y2 'x1  + y2x1' )
 = y1 '(x1   y2)

z1 = y1y2x1Clk '
z2  = y1y2 'x1' Clk '

Figure 2.190 Input maps, input equations, and output equations for the Mealy
machine of Example 2.25 to detect a sequence on 101 and 110 on input x1.
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Figure 2.191 Logic diagram for the Mealy machine to detect the input sequences of
101 and 110 on input x1.

Figure 2.192 Structural design module for the Mealy machine to detect the input
sequences of 101 and 110 on input x1.
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//structural mealy ssm to detect 101 and 110
module mealy_ssm16a (rst_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1;
output [1:2] y;
output z1, z2;

//define input nets.  Nets are wire by default
wire net1, net3, net4;

//instantiate the logic for flip-flop y[1]
and2_df inst1 (

.x1(~y[1]),

.x2(y[2]),

.z1(net1)
);

//Continued on next page
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Figure 2.192       (Continued)

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
xor2_df inst3 (

.x1(x1),

.x2(y[2]),

.z1(net3)
);

and2_df inst4 (
.x1(~y[1]),
.x2(net3),
.z1(net4)
);

d_ff_bh inst5 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[2])
);

//instantiate the logic for outputs z1 and z2
and4_df inst6 (

.x1(y[1]),

.x2(y[2]),

.x3(x1),

.x4(~clk),

.z1(z1)
);

and4_df inst7 (
.x1(y[1]),
.x2(~y[2]),
.x3(~x1),
.x4(~clk),
.z1(z2)
);

endmodule
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Figure 2.193 Test bench module for the Mealy machine to detect the input
sequences of 101 and 110 on input x1.

//test bench for mealy machine to detect 101 or 110
module mealy_ssm16a_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0; @ (posedge clk)//go to state_a (00)
#10 x1 = 1'b1; @ (posedge clk)//go to state_b (01)
#15 x1 = 1'b0; @ (posedge clk)//go to state_c (11)

@ (posedge clk)//go to state_a (00)

#40 x1 = 1'b1; @ (posedge clk)//go to state_b (01)
#20 x1 = 1'b0; @ (posedge clk)//go to state_c (11)
#20 x1 = 1'b1; @ (posedge clk)//assert z1 at t2

//then go to state_a (00)
//at posedge clk

@ (posedge clk)//go to state_b (01)
@ (posedge clk)//go to state_d (10)

#20 x1 = 1'b0; @ (posedge clk)//assert z2 at t2
//then go to state_a (00)
//at posedge clk

#40 $stop;
end

//continued on next page



290          Chapter  2     Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL

Figure 2.193       (Continued)

Figure 2.194 Outputs for the Mealy machine to detect the input sequences of 101
and 110 on input x1.

//instantiate the module into the test bench
mealy_ssm16a inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1 = 0, state = 00, z1 = 0, z2 = 0
x1 = 1, state = 00, z1 = 0, z2 = 0

x1 = 1, state = 01, z1 = 0, z2 = 0
x1 = 0, state = 01, z1 = 0, z2 = 0

x1 = 0, state = 11, z1 = 0, z2 = 0
x1 = 0, state = 00, z1 = 0, z2 = 0

x1 = 1, state = 00, z1 = 0, z2 = 0
x1 = 0, state = 01, z1 = 0, z2 = 0

x1 = 1, state = 11, z1 = 0, z2 = 0
x1 = 1, state = 11, z1 = 1, z2 = 0

x1 = 1, state = 00, z1 = 0, z2 = 0
x1 = 1, state = 01, z1 = 0, z2 = 0

x1 = 0, state = 10, z1 = 0, z2 = 0
x1 = 0, state = 10, z1 = 0, z2 = 1

x1 = 0, state = 00, z1 = 0, z2 = 0
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Figure 2.195 Waveforms for the Mealy machine to detect the input sequences of
101 and 110 on input x1.

Example 2.26 This example designs an equivalent Moore machine to detect a 101
and a 110 sequence using behavioral modeling.  Recall that a Moore-type output is a
function of the present state only, whereas, a Mealy-type output is a function of both
the present state and the present input.

A Mealy machine can be transformed into a corresponding Moore machine, where
both machines accept the same set of input vectors and generate the same set of output
vectors.  To obtain a Moore machine from a Mealy machine, it is necessary to generate
two new states for each state of the Mealy model in which different output values
occur for different inputs.

The state diagram for the Moore machine that corresponds to the Mealy machine
of Figure 2.189 is shown in Figure 2.196.  It is possible for the output of the Moore
machine to be valid for the entire state time; however, the output is to be asserted at
time t2 and deasserted at time t3 to maintain compatible output assertion with the
Mealy machine.  Although both machines detect the same valid input sequence and
generate identical output vectors at the same assertion/deassertion times, the output
vectors for the Moore machine are delayed by one clock cycle.  The delayed outputs
are due to the addition of two new states.

The behavioral module using the case statement to determine the next state, is
shown in Figure 2.197.  The test bench module is shown in Figure 2.198, which takes
the machine through all possible state transitions.  The outputs and waveforms are
shown in Figure 2.199 and Figure 2.200, respectively.
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Figure 2.196 Equivalent Moore state diagram for the Mealy machine of Figure
2.189.  Output z1 is asserted whenever x1 = 101; output z2  is asserted whenever x1 =
110.

Figure 2.197 Structural design module for the equivalent Moore machine to detect
sequences of 101 and 110.
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//behavioral moore synchronous sequential machine
module moore_ssm28_bh (rst_n, clk, x1, y, z1, z2);

input rst_n, clk, x1; //define inputs and outputs
output [1:3] y;
output z1, z2;

reg [1:3] y, next_state; //variables are reg in always
reg z1, z2;

//assign state codes.  parameter defines a constant
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b101,
state_e = 3'b010,
state_f = 3'b100; //continued on next page
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Figure 2.197       (Continued)

//set next state
always @ (posedge clk)
begin

if (rst_n == 1'b0) //if (~rst_n) is true,
y <= state_a; //go to state_a

else
y <= next_state; //else go to next_state

end

//---------------------------------------------------
//initialize y and outputs
always @ (rst_n)
begin

if (~rst_n)
y = 3'b000; //initializes state a to 000
z1 = 1'b0; //initializes outputs z1 and z2 to 0
z2 = 1'b0;

end

always @ (y or clk)
begin

if (y == state_e) //== specifies logical
begin //... equality or compare

if (~clk)
z1 = 1'b1; //assert z1 at t2

else
z1 = 1'b0;

end

if (y == state_f)
begin

if (~clk)
z2 = 1'b1;

else
z2 = 1'b0;

end

if (y == state_a)
z1 = 1'b0; //assigns a known value to z1

if (y == state_a)
z2 = 1'b0; //assigns a known value to z2

end

//continued on next page
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Figure 2.197       (Continued)

//determine next state
always @ (y or x1)
begin

case (y) //case is a multiway
state_a: //... conditional branch

if (~x1) //if y = state_a, then
next_state = state_a; //... do if ... else

else
next_state = state_b;

state_b:
if (~x1)

next_state = state_c;
else

next_state = state_d;

state_c:
if (~x1)

next_state = state_a;
else

next_state = state_e;

state_d:
if (~x1)

next_state = state_f;
else

next_state = state_a;

state_e: next_state = state_a;

state_f: next_state = state_a;

default: next_state = state_a;

endcase
end

endmodule
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Figure 2.198 Test bench module for the equivalent Moore machine to detect
sequences of 101 and 110.

//test bench for moore_ssm28_bh
module moore_ssm28_bh_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//----------------------------------------------------------

x1 = 1'b0;@ (posedge clk) //go to state_a (000)
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_c (011)
x1 = 1'b0;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_c (011)
x1 = 1'b1;@ (posedge clk) //go to state_e (010),

//assert z1 at t2
x1 = $random;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b1;@ (posedge clk) //go to state_d (101)
x1 = 1'b0;@ (posedge clk) //go to state_f (100),

//assert z2 at t2
x1 = $random;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
//continued on next page
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Figure 2.198       (Continued)

Figure 2.199 Outputs for the equivalent Moore machine to detect sequences of 101
and 110.

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk)//go to state_b (001)
x1 = 1'b1;@ (posedge clk)//go to state_d (101)
x1 = 1'b1;@ (posedge clk)//go to state_a (000)

//----------------------------------------------------------
#10 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
moore_ssm28_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 011, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 1, z2 = 0

x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 1
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
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Figure 2.200 Waveforms for the equivalent Moore machine to detect sequences of
101 and 110.

Example 2.27 This example designs an equivalent Moore machine to detect a 101
and a 110 sequence using structural modeling with JK flip-flops.  The state diagram
for the Moore machine that corresponds to the Mealy machine of Figure 2.189 is
shown in Figure 2.196.  In this example, however, the outputs are asserted at time t1
and deasserted at time t3.   The excitation table for a JK flip-flop is reproduced in Table
2.9 for convenience.

The next-state table for the equivalent Moore machine using JK flip-flops is
shown in Table 2.10, as obtained from the state diagram.  Using the next-state table,

Table 2.9  Excitation Table for a JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Flip-flop inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0
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the input maps for the JK flip-flops are derived, as shown in Figure 2.201 using x1  as
a map-entered variable.  The input equations for the  next-state logic are also shown
in Figure 2.201.  The logic diagram is displayed in Figure 2.202 and shows the instan-
tiation names and the net names.

Table 2.10  Next-State Table for the Equivalent Moore Machine
Using JK Flip-Flops

Present state
y1    y2    y3

Input
x1

Next state
y1   y2   y3

           Flip-flop inputs
Jy1 Ky1   Jy2 Ky2   Jy3  Ky3 

Outputs
  z1    z2

0     0     0 0 0     0     0   0     –        0     –        0     –    0     0
0     0     0 1 0     0     1   0     –        0     –        1     –    0     0

0     0     1 0 0     1     1   0     –        1     –        –     0    0     0
0     0     1 1 1     0     1   1     –        0     –        –     0    0     0

0     1     0 0 0     0     0   0     –        –     1        0     –    1     0
0     1     0 1 0     0     0   0     –        –     1        0     –    1     0

0     1     1 0 0     0     0   0     –        –     1        –     1    0     0
0     1     1 1 0     1     0   0     –        –     0        –     1    0     0

1     0     0 0 0     0     0   –     1        0     –        0     –    0     1
1     0     0 1 0     0     0   –     1        0     –        0     –    0     1

1     0     1 0 1     0     0   –     0        0     –        –     1    0     0
1     0     1 1 0     0     0   –     1        0     –        –     1    0     0

1     1     0 0 –     –     –   –     –        –     –        –     –    0     0
1     1     0 1 –     –     –   –     –        –     –        –     –    0     0

1     1     1 0 –     –     –   –     –        –     –        –     –    0     0
1     1     1 1 –     –     –   –     –        –     –        –     –    0     0
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Figure 2.201 Input maps for the equivalent Moore machine using JK flip-flops to
detect sequences of 101 and 110 on input x1.

The structural design module is shown in Figure 2.203 and the test bench module
is shown in Figure 2.204, which takes the machine through the four paths and asserts
outputs z1 and z2.  The outputs and waveforms are shown in Figure 2.205 and Figure
2.206, respectively.
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Figure 2.202 Logic diagram for the equivalent Moore machine to detect the
sequences 101 and 110 on input x1.

Figure 2.203 Structural design module for the equivalent Moore machine to detect
the sequences 101 and 110 on input x1.
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//structural moore synchronous sequential machine
//to detect bit sequences of 101 and 110

module moore_ssm28_jk (rst_n, set_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, set_n, clk, x1;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net4, net5, net7, net8;

//continued on next page
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Figure 2.203       (Continued)

//instantiate the logic for flip-flop y[1]
and3_df inst1 (

.x1(~y[2]),

.x2(y[3]),

.x3(x1),

.z1(net1)
);

or2_df inst2 (
.x1(x1),
.x2(~y[3]),
.z1(net2)
);

jkff_neg_clk inst3 (
.rst_n(rst_n),
.set_n(set_n),
.clk(clk),
.j(net1),
.k(net2),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and3_df inst4 (

.x1(~y[1]),

.x2(y[3]),

.x3(~x1),

.z1(net4)
);

or2_df inst5 (
.x1(~x1),
.x2(~y[3]),
.z1(net5)
);

jkff_neg_clk inst6 (
.rst_n(rst_n),
.set_n(set_n),
.clk(clk),
.j(net4),
.k(net5),
.q(y[2])
);

//continued on next page
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Figure 2.203       (Continued)

//instantiate the logic for flip-flop y[3]
and3_df inst7 (

.x1(~y[1]),

.x2(~y[2]),

.x3(x1),

.z1(net7)
);

or2_df inst8 (
.x1(y[1]),
.x2(y[2]),
.z1(net8)
);

jkff_neg_clk inst9 (
.rst_n(rst_n),
.set_n(set_n),
.clk(clk),
.j(net7),
.k(net8),
.q(y[3])
);

//instantiate the logic for outputs z1 and z2
and3_df inst10 (

.x1(~y[1]),

.x2(y[2]),

.x3(~y[3]),

.z1(z1)
);

and3_df inst11 (
.x1(y[1]),
.x2(~y[2]),
.x3(~y[3]),
.z1(z2)
);

endmodule
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Figure 2.204 Test bench module for the equivalent Moore machine to detect the
sequences 101 and 110 on input x1.

//test bench for moore_ssm28_jk
module moore_ssm28_jk_tb;

reg set_n, rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
set_n = 1'b1;
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (negedge clk) //go to state_a (000)
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b0;@ (negedge clk) //go to state_c (011)
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b0;@ (negedge clk) //go to state_c (011)
x1 = 1'b1;@ (negedge clk) //go to state_e (010), assert z1
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b1;@ (negedge clk) //go to state_d (101)
x1 = 1'b0;@ (negedge clk) //go to state_f (100), assert z2
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
//continued on next page
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Figure 2.204       (Continued)

Figure 2.205 Outputs for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b1;@ (negedge clk) //go to state_d (101)
x1 = 1'b1;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
#10 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
moore_ssm28_jk inst1 (

.rst_n(rst_n),

.set_n(set_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 011, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 1, z2 = 0

x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 101, z1 = 0, z2 = 0
x1 = 0, state = 100, z1 = 0, z2 = 1
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
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Figure 2.206 Waveforms for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.

Example 2.28 This example designs an equivalent Moore machine to detect a 101
and a 110 sequence using structural modeling with built-in primitives and D flip-flops.
The state diagram for the Moore machine that corresponds to the Mealy machine of
Figure 2.189 is shown in Figure 2.196.  In this example, however, the outputs are
asserted at time t1 and deasserted at time t3.

The input maps and input equations for the D flip-flops are shown in Figure 2.207
using x1  as a map-entered variable.  The logic diagram is shown in Figure 2.208 using
AND gates and OR gates, together with instantiated D flip-flops.

Dy1 = y1 'y2 'y3x1  + y1y3x1'      Dy2 = y1 'y2 'y3x1'  + y2y3x1
Continued on next page

Figure 2.207 Input maps for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.
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Dy3 = y1 'y2 'x1  + y1 'y2 'y3

Figure 2.207       (Continued)

Figure 2.208 Logic diagram for the equivalent Moore machine to detect the
sequences 101 and 110 on input x1.
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Verilog uses built-in primitives as structural elements that can be instantiated into
a larger design to form a more complex structure.  Examples are: and, nand, or, nor,
xor, and xnor.  These built-in primitive gates are used to describe a net and have one
or more scalar inputs, but only one scalar output.  The output signal is listed first, fol-
lowed by the inputs in any order.  The outputs are declared as wire; the inputs can be
declared as either wire or reg.  The gates represent combinational logic functions and
can be instantiated into a module, as follows, where the instance name is optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

The structural design module using built-in primitives and instantiated D flip-
flops is shown in Figure 2.209.  The test bench module is shown in Figure 2.210,
which takes the machine through the four paths and asserts outputs z1 and z2 .  The out-
puts and waveforms are shown in Figure 2.211 and Figure 2.212, respectively.

Figure 2.209 Structural design module for the equivalent Moore machine to detect
the sequences 101 and 110 on input x1.

//structural moore synchronous sequential machine
//using built-in primitives to detect
//bit sequences of 101 and 110
module moore_ssm28_d (rst_n, clk, x1, y, z1, z2);

input rst_n, clk, x1;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;

//instantiate the logic for flip-flop y[1]
and (net1, ~y[1], ~y[2], y[3], x1);
and (net2, y[1], y[3], ~x1);
or (net3, net1, net2);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and (net4, ~y[1], ~y[2], y[3], ~x1);
and (net5, y[2], y[3], x1);
or (net6, net4, net5);

//continued on next page
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Figure 2.209       (Continued)

Figure 2.210 Test bench module for the equivalent Moore machine to detect the
sequences 101 and 110 on input x1.

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net6),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
and (net7, ~y[1], ~y[2], x1);
and (net8, ~y[1], ~y[2], y[3]);
or (net9, net7, net8);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(net9),
.q(y[3])
);

//instantiate the logic for the outputs
and (z1, ~y[1], y[2], ~y[3]);
and (z2, y[1], ~y[2], ~y[3]);

endmodule

//test bench for moore_ssm28_d
module moore_ssm28_d_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);
initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page
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Figure 2.210       (Continued)

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (negedge clk) //go to state_a (000)
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b0;@ (negedge clk) //go to state_c (011)
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b0;@ (negedge clk) //go to state_c (011)
x1 = 1'b1;@ (negedge clk) //go to state_e (010), assert z1
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b1;@ (negedge clk) //go to state_d (101)
x1 = 1'b0;@ (negedge clk) //go to state_f (100), assert z2
x1 = 1'b0;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (001)
x1 = 1'b1;@ (negedge clk) //go to state_d (101)
x1 = 1'b1;@ (negedge clk) //go to state_a (000)

//----------------------------------------------------------

#10 $stop;
end

//----------------------------------------------------------
//instantiate the module into the test bench
moore_ssm28_d inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule
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Figure 2.211 Outputs for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.

Figure 2.212 Waveforms for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.

x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 010, z1 = 1, z2 = 0
x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 101, z1 = 0, z2 = 0
x1 = 0, state = 101, z1 = 0, z2 = 0
x1 = 0, state = 100, z1 = 0, z2 = 1
x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
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Example 2.29 This example designs an equivalent Moore machine to detect a 101
and a 110 sequence using structural modeling with instantiated logic gates and D flip-
flops.  The state diagram for the Moore machine that corresponds to the Mealy
machine of Figure 2.189 is shown in Figure 2.196.  In this example, however, the out-
puts are asserted at time t1 and deasserted at time t3.

This example instantiates the following dataflow modules into the structural mod-
ule: a 4-input AND gate (and4_df), a 3-input AND gate (and3_df), and a 2-input OR
gate (or2_df).  Also instantiated is a D flip-flop (d_ff_bh) designed using behavioral
modeling.  The input maps of Figure 2.207 also apply to this example.  The logic dia-
gram of Figure 2.208 is redrawn in Figure 2.213 to show the instantiation names of the
logic gates and the net names.

Figure 2.213 Logic diagram for the equivalent Moore machine to detect the
sequences 101 and 110 on input x1.
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The structural design module using the instantiated dataflow gates and the behav-
ioral D flip-flops is shown in Figure 2.214.  The test bench module is shown in Figure
2.215, which takes the machine through the four paths and asserts outputs z1 and z2 .
The outputs and waveforms are shown in Figure 2.216 and Figure 2.217, respectively.

Figure 2.214 Structural design module for the equivalent Moore machine to detect
the sequences 101 and 110 on input x1.

//structural moore synchronous sequential machine
//using module instantiation
//to detect bit sequences of 101 and 110
module moore_ssm28_dff (rst_n, clk, x1, y, z1, z2);

input rst_n, clk, x1; //define inputs and outputs
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net3, net5, net6, net7, net9, net10, net11;

//instantiate the logic for flip-flop y[1]
and4_df inst1 (

.x1(~y[1]),

.x2(~y[2]),

.x3(y[3]),

.x4(x1),

.z1(net1)
);

and3_df inst2 (
.x1(y[1]),
.x2(y[3]),
.x3(~x1),
.z1(net2)
);

or2_df inst3 (
.x1(net1),
.x2(net2),
.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//continued on next page
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Figure 2.214       (Continued)

//instantiate the logic for flip-flop y[2]
and4_df inst5 (

.x1(~y[1]),

.x2(~y[2]),

.x3(y[3]),

.x4(~x1),

.z1(net5)
);

and3_df inst6 (
.x1(y[2]),
.x2(y[3]),
.x3(x1),
.z1(net6)
);

or2_df inst7 (
.x1(net5),
.x2(net6),
.z1(net7)
);

d_ff_bh inst8 (
.rst_n(rst_n),
.clk(clk),
.d(net7),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
and3_df inst9 (

.x1(~y[1]),

.x2(~y[2]),

.x3(x1),

.z1(net9)
);

and3_df inst10 (
.x1(~y[1]),
.x2(~y[2]),
.x3(y[3]),
.z1(net10)
);

//continued on next page
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Figure 2.214       (Continued)

Figure 2.215 Test bench module for the equivalent Moore machine to detect the
sequences 101 and 110 on input x1.

or2_df inst11 (
.x1(net9),
.x2(net10),
.z1(net11)
);

d_ff_bh inst12 (
.rst_n(rst_n),
.clk(clk),
.d(net11),
.q(y[3])
);

//instantiate the logic for outputs z1 and z2
and3_df inst13 (

.x1(~y[1]),

.x2(y[2]),

.x3(~y[3]),

.z1(z1)
);

and3_df inst14 (
.x1(y[1]),
.x2(~y[2]),
.x3(~y[3]),
.z1(z2)
);

endmodule

//test bench for moore_ssm28_dff ssm
module moore_ssm28_dff_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);
//continued on next page
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Figure 2.215       (Continued)

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//----------------------------------------------------------

x1 = 1'b0;@ (posedge clk) //go to state_a (000)
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_c (011)
x1 = 1'b0;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_c (011)
x1 = 1'b1;@ (posedge clk) //go to state_e (010), assert z1 
x1 = $random;@ (posedge clk)//go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b1;@ (posedge clk) //go to state_d (101)
x1 = 1'b0;@ (posedge clk) //go to state_f (100), assert z2
x1 = $random;@ (posedge clk)//go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b1;@ (posedge clk) //go to state_d (101)
x1 = 1'b1;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
#10 $stop;

end

//instantiate the module into the test bench
moore_ssm28_dff inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule
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Figure 2.216 Outputs for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.

Figure 2.217 Waveforms for the equivalent Moore machine to detect the sequences
101 and 110 on input x1.

x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 011, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 1, z2 = 0

x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 1

x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
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2.6 Output Glitches
A glitch in synchronous sequential machines is any false or spurious electronic signal.
These narrow, unwanted pulses wreak havoc in digital systems if the glitch occurs on
an output signal.  Therefore, eliminating output glitches is extremely important, even
at the expense of additional logic.

In synchronous sequential machines, glitches can occur in the time period
between the active clock transition and circuit stabilization.  It is during this time,
when the machine is changing states, that the outputs are susceptible to glitches.
Although momentary in duration, this transient state can cause an output glitch in both
Moore and Mealy machines.  If the outputs are enabled at time t2, then glitches that
occur during the period of instability are of no consequence — the machine has long
since stabilized.  Three methods will be presented, together with the Verilog designs,
to eliminate output glitches :

1. State code assignment
2. Complemented clock
3. Delayed clock

2.6.1  Glitch Elimination Using State Code Assignment

This example designs a Moore machine with glitch-free operation using behavioral
modeling.  The state diagram of Figure 2.218 presents a machine with two Moore-type
outputs.  State codes were selected, such that there would be no glitches on outputs z1
or z2 .  An incorrect state code assignment would be: state a (000), state b (001), state
c (011), state d (101), and state e (111).  With this state code assignment, glitches are
possible for the state transitions shown in Table 2.11.

The path from state b to state e will produce a glitch on output z1 if flip-flop y1  sets
before y2  sets.  The transition from state c to state d will cause output z2  to glitch if
flip-flop y1  sets before y2  resets.  The transition from state e to state a results in all flip-
flops changing state.  Thus, the machine may pass through state d and assert output z1.

Table 2.11  State Transition Sequences that may cause
Glitches on z1 and z2

Start state Transient state End state

y1y2y3 y1y2y3 y1y2y3 Comments

0  0  1 (b)  1  0  1 (d)  1  1  1 (e) Glitch on z1
0  1  1 (c)  1  1  1 (e)  1  0  1 (d) Glitch on z2
1  1  1 (e)  1  0  1 (d)  0  0  0 (a) Glitch on z1
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Figure 2.218 State diagram for a Moore machine with correct state code assign-
ment for glitch-free operation.  Unused states are y1y2y3 = 010, 100, and 110.

The behavioral design module is shown in Figure 2.219 using the case statement.
The test bench module is  shown in Figure 2.220, which takes the machine through dif-
ferent state transitions and causes outputs z1and z2 to be asserted.  The outputs and
waveforms are shown in Figure 2.221 and Figure 2.222, respectively.

Figure 2.219 Behavioral design module for a Moore machine with glitch-free ope-
ation.
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x1' x1'

x1 x1

//behavioral moore synchronous sequential machine
module moore_ssm_29 (rst_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1, z2;

reg [1:3] y, next_state;
wire z1, z2;

//continued on next page
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Figure 2.219       (Continued)

//assign state codes
//parameter defines a constant
parameter state_a = 3'b001,

state_b = 3'b101,
state_c = 3'b011,
state_d = 3'b000,
state_e = 3'b111;

//------------------------------------------------------
//set next state
always @ (posedge clk)
begin

if (~rst_n) //if (~rst_n) is true
y <= state_a; //go to state_a

else
y <= next_state; //else go to next_state

end

//------------------------------------------------------
//define outputs
assign z1 = (~y[1] & ~y[2] & ~y[3]),

z2 = (y[1] & y[2] & y[3]);

//------------------------------------------------------
//determine next state
always @ (x1 or y)
begin

case (y) //case is a multi-way conditional branch
state_a: //if y = state_a, do if ... else

if (~x1)
next_state = state_b;

else
next_state = state_c;

state_b:
if (~x1)

next_state = state_e;
else

next_state = state_d;

state_c:
if (~x1)

next_state = state_d;
else

next_state = state_e;

//continued on next page
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Figure 2.219       (Continued)

Figure 2.220 Test bench module for a Moore machine with glitch-free operation.

state_d: next_state = state_a;

state_e: next_state = state_a;

default: next_state = state_a;
endcase

end

endmodule

//test bench for moore_ssm_29 synchronous sequential machine
module moore_ssm_29_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

initial //display variables
$monitor ("x1= %b, state = %b, z1 = %b, z2 = %b", x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (001)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

//----------------------------------------------------------
@ (posedge clk)//go to state_a (001)

x1 = 1'b1; @ (posedge clk)//go to state_c (011)
x1 = 1'b0; @ (posedge clk)//go to state_d (000); assert z1
x1 = $random;@ (posedge clk)//go to state_a (001)

//continued on next page
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Figure 2.220       (Continued)

Figure 2.221 Outputs for a Moore machine with glitch-free operation.

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_c )011)
x1 = 1'b0;@ (posedge clk) //go to state_d (000); assert z1
x1 = $random;@ (posedge clk)//go to state_a (001)

//----------------------------------------------------------
x1 = 1'b0;@ (posedge clk) //go to state_b (101)
x1 = 1'b0;@ (posedge clk) //go to state_e (111); assert z2
x1 = $random;@ (posedge clk)//go to state_a (001)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_c (011)
x1 = 1'b1;@ (posedge clk) //go to state_e (111); assert z2
x1 = $random;@ (posedge clk)//go to state_a (001)

//----------------------------------------------------------
#20 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
moore_ssm_29 inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1= 0, state = xxx, z1 = x, z2 = x
x1= 1, state = 001, z1 = 0, z2 = 0
x1= 0, state = 011, z1 = 0, z2 = 0
x1= 0, state = 000, z1 = 1, z2 = 0
x1= 1, state = 001, z1 = 0, z2 = 0
x1= 0, state = 011, z1 = 0, z2 = 0
x1= 1, state = 000, z1 = 1, z2 = 0
x1= 0, state = 001, z1 = 0, z2 = 0
x1= 0, state = 101, z1 = 0, z2 = 0
x1= 1, state = 111, z1 = 0, z2 = 1
x1= 1, state = 001, z1 = 0, z2 = 0
x1= 1, state = 011, z1 = 0, z2 = 0
x1= 1, state = 111, z1 = 0, z2 = 1
x1= 1, state = 001, z1 = 0, z2 = 0
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Figure 2.222 Waveforms for a Moore machine with glitch-free operation.

2.6.2  Glitch Elimination Using Complemented Clock

The simplest and most inexpensive method of eliminating output glitches is to include
the complement of the machine clock in the implementation of the  output logic.  The
output logic will consist of an AND gate which decodes the p-tuple state codes.  One
input of the AND gate is connected to the complement of the machine clock; that is,
the negation of the clock signal which drives the state flip-flops.  This will generate an
output signal that is only one-half the duration of the clock cycle, but guarantees that
the output is free from any erroneous assertions.  The output is asserted at time t2 and
deasserted at time t3.

Example 2.30 This example designs a Moore machine with glitch-free operation us-
ing behavioral modeling with complemented clock.  The multiple-output Moore ma-
chine, depicted by the state diagram of Figure 2.223, contains several possible output
glitches if the assertion/deassertion statement for the two outputs z1 and z2  is t1t3.
Using the complement of the machine clock, however, outputs z1 and z2  are asserted
at time t2 and deasserted at time t3.

Table 2.12 lists the state transition sequences that may cause glitches on the out-
puts.  The four possible output glitches are rendered ineffective, however, by includ-
ing the machine clock complement in the output decoder for z1 and z2 .  Therefore,
outputs z1 and z2  are asserted at time t2 and deasserted at time t3.  If the outputs are en-
abled at time t2, then glitches that occur during the period of instability are of no con-
sequence — the machine has long since stabilized.
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Figure 2.223 State diagram for the Moore machine using the complemented clock
to avoid glitches on the outputs.  Unused states are y1y2y3 = 001, 101, and 110.

The behavioral design module is shown in Figure 2.224 using the case statement.
The test bench module is shown in Figure 2.225, which takes the machine through
sequences to assert output z1 and output z2 .  The system task $random is used in the
test bench to randomly select a value for input x1  from the values 0 and 1, because the

Table 2.12  State Transition Sequences for Figure 2.223
That May Cause Glitches on Outputs z1 and z2

Start state
y1y2y3

Transient state
y1y2y3

End state
y1y2y3 Comments

0  0  0 (a)  0  1  0 (c)   0  1  1 (b) Glitch on z1
0  1  1 (b)  0  1  0 (c)   1  0  0 (d) Glitch on z1
1  1  1 (e)  0  1  0 (c)  0  0  0 (a) Glitch on z1
1  1  1 (e)  1  0  0 (d)  0  0  0 (a) Glitch on z2

a

y1y2y3
0 0  0

b
0 1 1

e
1 1 1

c
z1

0 1  0 1 0  0
d
z2

x1'
x1

x1 x1'

z1t2t3 z2t2t3
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sequences c  e, e  a, and d  e are independent of the value for x1 .  The outputs
and waveforms are shown in Figure 2.226 and Figure 2.227, respectively.

Figure 2.224 Behavioral design module for the Moore machine using comple-
mented clock to avoid output glitches.

//behavioral moore machine using 
//complemented clock to avoid glitches
module moore_ssm26_bh (rst_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1, z2;

//variables are reg in always
reg [1:3] y, next_state;
reg z1, z2;

//assign state codes
//parameter defines a constant
parameter state_a = 3'b000,

state_b = 3'b011,
state_c = 3'b010,
state_d = 3'b100,
state_e = 3'b111;

//----------------------------------------------------------
//determine outputs
always @ (y or clk)
begin

if (y == state_c) //== specifies logical
begin //equality or compare

if (~clk)
z1 = 1'b1; //assert z1 at t2

else
z1 = 1'b0;

end

if (y == state_d)
begin

if (~clk)
z2 = 1'b1; //assert z2 at t2

else
z2 = 1'b0;

end

//continued on next page
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Figure 2.224       (Continued)

if (y == state_a)
z1 = 1'b0;

if (y == state_a)
z2 = 1'b0;

end

//----------------------------------------------------------
//determine next state
always @ (posedge clk)
begin

if (~rst_n)
y <= state_a;

else
y <= next_state;

end

//----------------------------------------------------------
//determine next state
always @ (y or x1)
begin

case (y) //case is a multi-way
state_a: //conditional branch

if (~x1) //if y = state_a, then
next_state = state_a; //do if ... else

else
next_state = state_b;

state_b:
if (x1)

next_state = state_c;
else

next_state = state_d;

state_c: next_state = state_e;

state_d: next_state = state_e;

state_e: next_state = state_a;

default: next_state = state_a;
endcase

end

endmodule
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Figure 2.225 Test bench module for the Moore machine using complemented
clock to avoid output glitches.

//test bench for moore machine using complemented clock
module moore_ssm26_bh_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (posedge clk) //go to state_a (000)
x1 = 1'b1;@ (posedge clk) //go to state_b (011)
x1 = 1'b1;@ (posedge clk) //go to state_c (010), assert z1
x1 = $random;@ (posedge clk)//go to state_e (111)
x1 = $random;@ (posedge clk)//go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (011)
x1 = 1'b0;@ (posedge clk) //go to state_d (100), assert z2
x1 = $random;@ (posedge clk)//go to state_e (111)
x1 = $random;@ (posedge clk)//go to state_a (000)

//----------------------------------------------------------

#10 $stop;
end

//continued on next page
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Figure 2.225       (Continued)

Figure 2.226 Outputs for the Moore machine using complemented clock to avoid
output glitches.

Figure 2.227 Waveforms for the Moore machine using complemented clock to
avoid output glitches.

moore_ssm26_bh inst1 ( //instantiate the module
.rst_n(rst_n),
.clk(clk),
.x1(x1),
.y(y),
.z1(z1),
.z2(z2)
);

endmodule

x1 = 0, state = xxx, z1 = x, z2 = x
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 011, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 1, z2 = 0
x1 = 1, state = 111, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 1
x1 = 1, state = 111, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
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Example 2.31 This example designs a Moore machine for glitch-free operation
using structural modeling with JK flip-flops and complemented clock.  The state dia-
gram of Figure 2.223 will also be used in this example.  The excitation table for JK
flip-flops is reproduced in Table 2.13.  Using the state diagram, the input maps for the
JK flip-flops are shown in Figure 2.228; the output maps are shown in Figure 2.229.

Figure 2.228 Input maps for the Moore machine using JK flip-flops and comple-
mented clock to avoid glitches.

Table 2.13  Excitation Table for a JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Flip-flop inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         –       x1'        1

 1       –         –        –         –

 
  0 0      0 1     1 1      10

y2y3
    y1

 0       –         –        –         –

 1       0         –        1         –

Jy1 = y2x1'  + y2y3 ' Ky1 = y2

  0 0      0 1     1 1      10
y2y3

    y1

 0      x1        –        –         –

 1       1         –        –         –

  0 0      0 1     1 1      10
y2y3

    y1

 0       –         –       x1'        0

 1       –         –        1         –

 

 

Jy2 = x1  + y1 Ky2 = y3x1 ' + y1

  0 0      0 1     1 1      10
y2y3

    y1

 0      x1        –        –         1

 1       1          –        –         –

 

 

  0 0      0 1     1 1      10
y2y3

    y1

 0       –         –        1         –

 1       –         –        1         –

 

 

Jy3  = x1 + y1  + y2 Ky3  = 1
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Figure 2.229 Output maps for the Moore machine using JK flip-flops and comple-
mented clock to avoid glitches.

The logic diagram is shown in Figure 2.230 using Boolean equations for the  in-
put logic.  The  output decoders are implemented with NOR logic functioning as
AND gates.  It is assumed that the JK flip-flops have set and reset inputs.  The struc-
tural design module is shown in Figure 2.231 using logic gates designed with dataflow
modeling and JK flip-flops designed with behavioral modeling.  The test bench mod-
ule is shown in Figure 2.232, which asserts outputs z1 and z2 .  The outputs and wave-
forms are shown in Figure 2.233 and Figure 2.234, respectively.

Figure 2.230 Logic diagram for the Moore machine using JK flip-flops and com-
plemented clock to avoid glitches.

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         –        0         1

 1       0         –        0         –

 

 

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         –        0         0

 1       1         –        0         –
 

z1 = y2y3 ' z2  = y1y2 '

y1

>
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>
J
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>
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+(y2x1 ' + y2y3 ')
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–Clock

 Y 
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+(x1 + y1 + y2)

+(y3x1 ' + y1)
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Figure 2.231 Structural design module for a Moore machine with glitch-free oper-
ation.

//structural glitch-free moore using jk flip-flops
module mmore_ssm26_jk (set_n, rst_n, clk, x1, y, z1, z2);

input set_n, rst_n, clk, x1;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net3, net5, net6, net7, net9;

//design the logic for flip-flop y[1]
and2_df inst1 (

.x1(y[2]),

.x2(~x1),

.z1(net1)
);

and2_df inst2 (
.x1(y[2]),
.x2(~y[3]),
.z1(net2)
);

or2_df inst3 (
.x1(net1),
.x2(net2),
.z1(net3)
);

jkff_neg_clk inst4 (
.set_n(set_n),
.rst_n(rst_n),
.clk(clk),
.j(net3),
.k(y[2]),
.q(y[1])
);

//design the logic for flip-flop y[2]
or2_df inst5 (

.x1(x1),

.x2(y[1]),

.z1(net5)
);

//continued on next page
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Figure 2.231       (Continued)

and2_df inst6 (
.x1(~x1),
.x2(y[3]),
.z1(net6)
);

or2_df inst7 (
.x1(net6),
.x2(y[1]),
.z1(net7)
);

jkff_neg_clk inst8 (
.set_n(set_n),
.rst_n(rst_n),
.clk(clk),
.j(net5),
.k(net7),
.q(y[2])
);

//design the logic for flip-flop y[3]
or3_df inst9 (

.x1(y[2]),

.x2(y[1]),

.x3(x1),

.z1(net9)
);

jkff_neg_clk inst10 (
.set_n(set_n),
.rst_n(rst_n),
.clk(clk),
.j(net9),
.k(1'b1),
.q(y[3])
);

//design the logic for outputs z1 and z2
nor3_df inst11 (

.x1(~y[2]),

.x2(y[3]),

.x3(~clk),

.z1(z1)
);

//continued on next page
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Figure 2.231       (Continued)

Figure 2.232 Test bench module for a Moore machine with glitch-free operation.

nor3_df inst12 (
.x1(~y[1]),
.x2(y[2]),
.x3(~clk),
.z1(z2)
);

endmodule

//test bench for glitch-free moore using jk flip-flops
module moore_ssm26_jk_tb;

reg set_n, rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

initial
begin //define clock

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define input sequence
begin

#0 x1 = 1'b0;
set_n = 1'b1;
rst_n = 1'b0; //reset to state_a (000)

#5 rst_n = 1'b1; //deassert reset

x1 = 1'b0;@ (negedge clk) //go to state_a (000)
x1 = 1'b1;@ (negedge clk) //go to state_b (011)
x1 = 1'b1;@ (negedge clk) //go to state_c (010), assert z1
x1 = $random;@ (negedge clk)//go to state_e (111)
x1 = $random;@ (negedge clk)//go to state_a (000)

//continued on next page
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Figure 2.232       (Continued)

Figure 2.233 Outputs for a Moore machine with glitch-free operation.

//----------------------------------------------------------
x1 = 1'b1;@ (negedge clk) //go to state_b (011)
x1 = 1'b0;@ (negedge clk) //go to state_d (100), assert z2
x1 = $random;@ (negedge clk)//go to state_e (111)
x1 = $random;@ (negedge clk)//go to state_a (000)

//----------------------------------------------------------

#10 $stop;
end

//----------------------------------------------------------
//instantiate the module into the test bench
mmore_ssm26_jk inst1 (

.set_n(set_n),

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 011, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 1, z2 = 0

x1 = 1, state = 111, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 011, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 1
x1 = 1, state = 111, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
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Figure 2.234 Waveforms for a Moore machine with glitch-free operation.

2.6.3  Glitch Elimination Using Delayed Clock

Using the delayed clock technique circumvents the negative effects of glitches.  If the
machine specifications require that outputs be asserted at time t1 and deasserted at t2,
then glitches are again possible, because output assertion occurs at the active clock
transition.  This technique applies to both Moore and Mealy machines.

Figure 2.235 shows a general block diagram for a Mealy machine which uses the
active level of the delayed machine clock to enable the  output logic.  The state flip-
flops are clocked by the +Clock signal, whereas the  output logic is asserted by the
+Clock delayed signal.  The duration of the delay circuit must be equal to or greater
than the time t — the time when glitches can occur.  The machine has stabilized at the
termination of the t period.

The delay circuit can be either a delay element with a dedicated driver and receiver
or simply an even number of inverters.  The duration of t is quite small in relation to
the clock cycle, so that the assertion and deassertion of the output is still considered to
be t1t2.

Figure 2.236 shows a state diagram for a Moore machine which will be used to
illustrate the delayed clock technique for glitch-free output assertion.  The specified
assertion and deassertion times for output z1 are t1 and t2, respectively.  Since the out-
put logic for z1 is simply an AND gate to decode y1y2, a glitch is possible on z1 for a
state transition from state b to state d if flip-flop y1  sets before y2  resets.
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Figure 2.235 A general Mealy machine using clock delayed as an output gating
function.

Figure 2.236 Moore machine where a glitch is possible for a transition from state b
to state d.

The input maps and output map are shown in Figure 2.237.  The logic diagram is
shown in Figure 2.238; the D flip-flops have an implied reset input.  During a transi-
tion from state b to state d, assume that flip-flop y1  sets before flip-flop y2 resets.  This
places a high voltage level on the second and third inputs of the AND gate that gen-
erates z1.  If the +Clock delayed signal — which is at a low voltage level at this time —
was not connected to the first input of the AND gate, then a glitch would occur on out-
put z1.  Disabling the  output logic during the time period of t by delaying the active
clock transition as a gating function, provides an output that is free from spurious sig-
nals caused by varying circuit propagation delays.

 Y 
+Xi +Zr>

+Clock

Delay

 Y 
+Xi +Zr>

+Clock

Delay

a

y1y2
0 0

b
0 1

d
1 0

c
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1 1

x1 x1'

x1'

x1

z1t1t2
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Figure 2.237 Input maps and output map for the Moore machine of Figure 2.236.

Figure 2.238 Logic diagram for the Moore machine of Figure 2.236.

The structural design module is shown in Figure 2.239, which instantiates logic
gates that were designed using dataflow modeling and instantiates two D flip-flops
that were designed using behavioral modeling.  A built-in primitive, specified as buf,
is used to delay the machine clock by 5 time units (#5) to prevent output glitches.  The
delay is variable — depending on the logic family being used — and can be reduced,
if necessary.  The buf gate is a noninverting primitive with one scalar input and one or
more scalar outputs.  The output terminals are listed first when instantiated; the input
is listed last.  The time delay of #5 delays the rise and fall times by 5 time units.  The
test bench module is shown in Figure 2.240.  The outputs and waveforms are shown in
Figure 2.241 and Figure 2.242, respectively.
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Figure 2.239 Structural design module for the Moore machine of Figure 2.238.

//structural moore synchronous sequential machine
//using delayed clock to avoid glitches
module moore_ssm_dly (rst_n, clk, x1, y, z1);

input rst_n, clk, x1;
output [1:2]y;
output z1;

wire net1, net3, net5; //define internal nets

//instantiate the logic for flip-flop y[1]
and2_df inst1 (

.x1(~y[1]),

.x2(y[2]),

.z1(net1)
);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and2_df inst3 (

.x1(~y[1]),

.x2(x1),

.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[2])
);

//instantiate the logic for output z1
buf #5 inst5 (net5, clk);
and3_df inst6 (

.x1(net5),

.x2(y[1]),

.x3(y[2]),

.z1(z1)
);

endmodule
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Figure 2.240 Test bench module for the Moore machine of Figure 2.238.

//test bench for moore_ssm_dly synchronous sequential machine
module moore_ssm_dly_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//----------------------------------------------------------

x1 = 1'b0;@ (posedge clk) //go to state_a (00)
x1 = 1'b1;@ (posedge clk) //go to state_b (01)
x1 = 1'b1;@ (posedge clk) //go to state_c (11)

//assert z1 (t1 -- t2)
x1 = $random;@ (posedge clk) //go to state_a (00)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (01)
x1 = 1'b0;@ (posedge clk) //go to state_d (10)
x1 = $random;@ (posedge clk) //go to state_a (00)

//----------------------------------------------------------
#10 $stop;

end

//instantiate the module into the test bench
moore_ssm_dly inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule
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Figure 2.241 Outputs for the Moore machine of Figure 2.238.

Figure 2.242 Waveforms for the Moore machine of Figure 2.238.

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 0
x1 = 0, state = 11, z1 = 0
x1 = 0, state = 11, z1 = 1

x1 = 0, state = 11, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 0, state = 01, z1 = 0
x1 = 1, state = 10, z1 = 0
x1 = 1, state = 00, z1 = 0

50 55
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2.7 Problems

2.1 Determine the counting sequence for the counter shown below by designing
the counter using structural modeling with built-in primitives and D flip-
flops that were designed using behavioral modeling.  The D flip-flops have
an implied reset input.  Obtain the structural design module, the test bench
module, the outputs, and the waveforms.  The counter is reset initially; that
is, y1y2  = 00, where y2 is the low-order flip-flop.

2.2 Determine the counting sequence for the counter shown below by designing
the counter using structural modeling with instantiated logic gates that were
designed using dataflow modeling and D flip-flops that were designed using
behavioral modeling.  The D flip-flops have an implied reset input.  Obtain the
structural design module, the test bench module, the outputs, and the wave-
forms.  The counter is reset initially; that is, y1y2  = 00, where y2  is the low-or-
der flip-flop.

2.3 Using behavioral modeling, design a counter that counts in the sequence
shown below.  Obtain the design module, the test bench module, the outputs,
and the waveforms.

y1y2y3y4 = 0000, 1001, 0001, 1011, 0010, 1100, 0011, 1101, 1000, 1110,
  1010, 1111, 0000, . . .

y1

D

>

y2
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>

+Clock

–y1
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–y2
+y1
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2.4 Using structural modeling, design a counter that counts in the sequence shown
below.  Use built-in primitives and D flip-flops that were designed using be-
havioral modeling.  Obtain the design module, the test bench module, the out-
puts, and the waveforms.

y1y2y3y4 = 0000, 1001, 0001, 1011, 0010, 1100, 0011, 1101, 1000, 1110,
  1010, 1111, 0000, . . .

2.5 Design a modulo-11 counter with no self-starting state using structural mod-
eling with built-in primitives and D flip-flops that were designed using behav-
ioral modeling.  Obtain the design module, the test bench module, the outputs,
and the waveforms.

2.6 Design a modulo-11 counter with no self-starting state using structural mod-
eling with logic gates that were designed using dataflow modeling and nega-
tive-edge triggered JK flip-flops that were designed using behavioral
modeling.  Obtain the design module, the test bench module, the outputs, and
the waveforms.

2.7 Design a modulo-11 counter with no self-starting state using behavioral mod-
eling with the case statement.  Obtain the design module, the test bench mod-
ule, the outputs, and the waveforms.

2.8 Design a counter using structural modeling with JK flip-flops that counts in
the sequence shown below.  The counter is not self-starting.  Obtain the design
module, the test bench module, the outputs, and the waveforms.

y1y2y3 = 000, 100, 010, 001, 100, . . . 

2.9 Obtain the input equations for flip-flops y1  and y4 only, for a BCD counter
which counts in the sequence shown below.  The equations are to be in min-
imum form.  Use JK flip-flops.  There is no self-starting state.

y1y2y3y4 = 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,
0000,    .

2.10 Design a counter using structural modeling with JK flip-flops which counts in
the following decimal sequence: 0, 1, 3, 7, 6, 4, 0,    .  Obtain the design mod-
ule, the test bench module, the outputs, and the waveforms.

2.11 Design a 4-bit Gray code counter using structural modeling with built-in
primitives and JK flip-flops.  The counter is initially reset to y1y2y3y4 = 0000.
Show the equations for the JK flip-flops, first in a minimum sum-of-products
form, then in an exclusive-OR/NOR form, where applicable.  Obtain the de-
sign module, the test bench module, the outputs, and the waveforms.
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2.12 Repeat problem 2.11 using behavioral modeling with the case statement.
The counting sequence  is as follows: 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10,
11, 9, 8, 0,    .  The counter is initially reset to y1y2y3y4 = 0000.  Obtain the
design module, the test bench module, the outputs, and the waveforms.

2.13 Generate a reduced state diagram for a Moore machine which generates an
output z1 whenever a serial, 4-bit binary word on an input line x1  is greater
than or equal to six.  The first bit received in each word is the high-order bit.
There is no space between words.  Output z1 is asserted during the fourth bit
of a word.  Then implement the state diagram in behavioral modeling.  Assert
output z1 at time t2 and deassert z1 at time t3.  Obtain the design module, the
test bench module, the outputs, and the waveforms.

2.14 This problem is similar to Problem 2.13 in that it detects a number that is
greater than or equal to six, but uses a user-defined primitive (UDP) that is
created by means of a table that defines the functionality of the primitive.
UDPs utilizing tables were presented in Section 1.2.  The primitive generates
an output z1 whenever a 4-bit binary word x1 , x2 , x3, x4 is greater than or
equal to six, where x4 is the low-order bit.  Obtain the primitive module, the
test bench module, the outputs, and the waveforms.

2.15 A simpler method to detect a number that is greater than or equal to six is to
use a Karnaugh map and the continuous assignment statement.  This tech-
nique models dataflow behavior and is used to design combinational logic.
The continuous assignment statement uses the keyword assign.  The design
generates an output z1 whenever a 4-bit binary word x1 , x2, x3, x4  is greater
than or equal to six, where x4  is the low-order bit.  Obtain the design module,
the test bench module, the outputs, and the waveforms.  

2.16 Generate a reduced state diagram for a Moore machine to detect an input pat-
tern of exactly one group of consecutive 1s on a serial input line x1.  An un-
conditional output z1 is asserted when the first 1 occurs and remains asserted
for all additional 1s in the group.  The output is deasserted for any 0s follow-
ing the group.  If another 1 occurs, then the machine enters and remains in a
terminal state which generates an error output.

For example, a valid input sequence is 000011110000    0, because there
is a single group of 1s.  An invalid sequence is 000010011100    0, because
there is more than one group of 1s.  Show the behavioral design module, the
test bench module, the outputs, and the waveforms.

2.17 Generate a reduced state diagram for a Mealy machine which produces a con-
ditional output z1 whenever a serial data line x1  contains a sequence of three
or more consecutive 1s.  Use behavioral modeling with the case statement.
Show the behavioral design module, the test bench module, the outputs, and
the waveforms.
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2.18 Repeat Problem 2.17 for a Mealy machine which produces a conditional out-
put z1 whenever a serial data line x1  contains a sequence of three or more
consecutive 1s.  Use structural modeling with built-in primitives and JK flip-
flops.  Show the Karnaugh maps and equations, the structural design module,
the test bench module, the outputs, and the waveforms.

2.19 Generate a reduced state diagram for a Mealy machine which detects a 4-bit
word of 1001 on a serial input line x1 .  If a correct sequence is detected, then
a conditional output z1 is generated.  There is no spacing between words.
There is also no overlapping of words.  Assert z1 from time t2 to time t3.  Ob-
tain the behavioral design module, the test bench module, the outputs, and
the waveforms.

2.20 Repeat Problem 2.19 for a Mealy machine which detects a 4-bit word of 1001
on a serial input line x1 .  If a correct sequence is detected, then a conditional
output z1 is generated.  There is no spacing between words.  There is also no
overlapping of words.  Assert z1 from time t2 to time t3.  Obtain the structural
design module using instantiated logic gates and D flip-flops, the test bench
module, the outputs, and the waveforms.

2.21 Obtain the state diagram for a Mealy synchronous sequential machine to de-
tect a sequence of 0110 on a serial input line x1 .  Overlapping sequences are
valid.  Output z1 will be asserted during the last half of the clock cycle in the
state in which the final 0 is detected.  Then obtain the behavioral module, the
test bench module, the outputs, and the waveforms.  In the test bench, check
different paths in the state diagram for correct functional operation and in-
clude valid overlapping sequences.

2.22 In the Moore machine shown on the next page, a glitch is possible on output
z1 for a transition from state b to state d if flip-flop y1  sets before flip-flop y2
resets.  The glitch can be avoided if the output is delayed by a time increment
so that the output is asserted only after the machine has stabilized.  The delay
can be sufficiently small so that the assertion and deassertion of output z1 can
still be considered to be t1t2.  Obtain the behavioral design module with an
output delay of two time units, the test bench module, the outputs, and the
waveforms.
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2.23 Select state codes for states d and e for the Moore machine shown below so
that there will be no output glitches.  Consider all state transitions.  Then de-
sign a structural module for the Moore machine using built-in primitives and
D flip-flops.  Obtain the test bench module, the outputs, and the waveforms.
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2.24 This repeats Problem 2.23 using the same selected state codes for states d and
e for the Moore machine shown in Problem 2.23 so that there will be no output
glitches.  Design a structural module for the Moore machine using built-in
primitives and JK flip-flops.  Obtain the test bench module, the outputs, and
the waveforms.

2.25 Select state codes for states c and d for the Moore machine shown below so
that there will be no output glitches.  Obtain the structural design module us-
ing built-in primitives and D flip-flops, the test bench module, the outputs,
and the waveforms.  The outputs are asserted at time t1 through t3.

2.26 Obtain the behavioral design module for the Moore machine represented by
the state diagram shown below.  To avoid any possible output glitches, delay
the output assertion by two time units.  Obtain the test bench module, the out-
puts, and the waveforms.
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3
Synthesis of Synchronous 
Sequential Machines 2 Using 
Verilog HDL

This chapter implements synchronous sequential machine designs using Verilog
HDL.  The designs will be accomplished by utilizing built-in primitives, dataflow
modeling, behavioral modeling, structural modeling, or a combination of these mod-
eling techniques.  Both linear-select and nonlinear-select multiplexers will be used in
various designs for the  next-state logic.  Synchronous sequential machines using
decoders for the  output logic will be synthesized.  These include both Moore and
Mealy machines.

Programmable logic devices (PLDs) will also be presented in this chapter.  This
chapter extends the concepts to applications in synthesizing synchronous sequential
machines.  Different types of PLDs will be presented using Verilog HDL in the design
of both Moore and Mealy machines.  These include PLDs in the following categories:
programmable read-only memory (PROM), programmable array logic (PAL), and
programmable logic array (PLA).

Sequential iterative machines will also be covered.  An iterative machine is an or-
ganization of identical cells (or elements) which are interconnected in an ordered man-
ner.  This chapter also describes techniques for error detection for synchronous
sequential machines.  An error (fault) in a synchronous sequential machine may alter
the  next-state function, the  output function, or both.

3.1 Multiplexers for  Next-State Logic
3.2 Decoders for  Output Logic
3.3 Programmable Logic Devices
3.4 Iterative Networks
3.5 Error Detection in Synchronous

Sequential Machines
3.6 Problems
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3.1 Multiplexers for  Next-State Logic
A brief review of multiplexers is appropriate at this time.  A multiplexer is a functional
logic device that permits two or more data input sources to share a common output
transmission circuit, where each data source retains its own independent channel.  A
multiplexer is essentially a data selector that operates as an electronic switch by con-
necting one of n inputs to a single output.

There are two general types of multiplexers: linear-select multiplexers and non-
linear-select multiplexers.  Linear-select multiplexers use all of the data inputs as
shown in Figure 3.1(a), for all three flip-flops (y1 , y2 , and y3), that connect to all three
select inputs, yielding an 8:1 multiplexer.  Nonlinear-select multiplexers use fewer
data inputs (y1  and y3) for a smaller 4:1 multiplexer to accomplish the same result, as
shown in Figure 3.1(b).

Figure 3.1 The  next-state logic using multiplexers: (a) linear-select multi-
plexer; and (b) nonlinear-select multiplexer.
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3.1.1  Linear-Select Multiplexers

A general block diagram for a synchronous sequential machine using multiplexers for
the  next-state logic will now be described.  The combinational logic which connects
to the input of the multiplexer array is either very elementary or nonexistent.  In this
method, one multiplexer is needed for each state flip-flop and each multiplexer has p
select inputs, where p represents the number of storage elements.  Therefore, this tech-
nique requires p(2p:1) multiplexers.  A machine with 12 states, requiring four storage
elements, would have four 16:1 multiplexers.  Since most multiplexers have a single
output, a design of this type is most easily implemented with D flip-flops.

The active-high output of each state flip-flop is connected to a corresponding se-
lect input line; that is, y1 , y2 , ... , yp connect to sp–1, ... , s1, s0 , respectively, where yp
is the low-order flip-flop and s0 is the low-order select input.  Thus, if p = 3, then the
following state flip-flip-to-select-input connections are necessary: y3  connects to s0 ,
y2  connects to s1 , and y1  connects to s2 .  Since the flip-flop outputs connect to the
multiplexer select inputs in a one-to-one mapping, this type of connection can be re-
ferred to as linear selection.

Example 3.1 A Moore machine will be synthesized that operates according to the
state diagram of Figure 3.2.  The machine will be synthesized using behavioral mod-
eling with the case statement in this example.  When input x1  = 11, output z1 will be
asserted at time t1 and deasserted at time t2.  Output z1 has an arbitrary delay of two
time units.    A structural design will be implemented in Example 3.2.

The behavioral design module is shown in Figure 3.3.  The test bench module is
shown in Figure 3.4.  The outputs and waveforms are shown in Figure 3.5 and Figure
3.6, respectively.

Figure 3.2 Moore machine to assert output z1 if an input sequence of x1 = 11 is
detected.  There is one unused state: y1y2 = 10.
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Figure 3.3 Behavioral design module for the Moore machine of Figure 3.2.

//behavioral moore to assert z1 whenever x1 = 11
module moore_ssm30_bh (rst_n, clk, x1, y, z1);

input rst_n, clk, x1; //define inputs and outputs
output [1:2] y;
output z1;

reg [1:2] y, next_state; //variables are reg in always
wire z1;

//assign state codes; parameter defines a constant
parameter state_a = 2'b00,

state_b = 2'b01,
state_c = 2'b11;

//set next state
always @ (posedge clk)
begin

if (~rst_n) //if rst_n = 0 (~rst_n is true)
y <= state_a; //go to state_a (00)

else
y <= next_state;

end

assign #2 z1 = (y[1] && y[2] && clk); //determine output

always @ (x1 or y) //determine next state
begin

case (y) //csse is a multiway conditional branch
state_a: //if y = state_a, do if . . . else

if (~x1)
next_state = state_a;

else
next_state = state_b;

state_b:
if (~x1)

next_state = state_a;
else

next_state = state_c;

state_c: next_state = state_a;

default: next_state = state_a;
endcase

end
endmodule
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Figure 3.4 Test bench module for the Moore machine of Figure 3.2.

//test bench for moore to detect x1 = 11
module moore_ssm30_bh_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;

#5 rst_n = 1'b1;
//-----------------------------------------------------

x1 = 1'b0; @ (posedge clk) //go to state_a (00)
x1 = 1'b1; @ (posedge clk) //go to state_b (01)

x1 = 1'b0; @ (posedge clk) //go to state_a (00)
x1 = 1'b1; @ (posedge clk) //go to state_b (01)
x1 = 1'b1; @ (posedge clk) //go to state_c (11)

//assert z1 t1 - t2

x1 = $random; @ (posedge clk) //go to state_a (00)
#20 $stop;

end
//-----------------------------------------------------
//instantiate the module into the test bench
moore_ssm30_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule
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Figure 3.5 Outputs for the Moore machine of Figure 3.2.

Figure 3.6 Waveforms for the Moore machine of Figure 3.2.

Example 3.2 This example implements the state diagram of Figure 3.2 using struc-
tural modeling with 4:1 multiplexers and D flip-flops.  The input and output maps are
shown in Figure 3.7.  The logic diagram using linear-select multiplexers and D flip-
flops is shown in Figure 3.8 with instantiation names.  

Figure 3.7 Input and output maps for the Moore machine of Figure 3.2.
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Figure 3.8 Logic diagram for the Moore machine of Figure 3.2 using multiplex-
ers for the  next-state logic.

The logic diagram for a 4:1 multiplexer is shown in Figure 3.9.  The structural
design module is shown in Figure 3.10.  The test bench module is shown in Figure
3.11.  The outputs and waveforms are shown in Figure 3.12 and Figure 3.13, respec-
tively.

Figure 3.9 Logic diagram for a 4:1 multiplexer.
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Figure 3.10 Structural design module for the 4:1 multiplexer.

Figure 3.11 Test bench module for the 4:1 multiplexer.

//structural 4:1 multiplexer using built-in primitives
module mux_4to1_struc (d, s, z1);

input [3:0] d; //data
input [1:0] s; //select
output z1;

not inst1 (net1, s[0]),
inst2 (net2, s[1]);

and inst3 (net3, d[0], net1, net2),
inst4 (net4, d[1], s[0], net2),
inst5 (net5, d[2], net1, s[1]),
inst6 (net6, d[3], s[0], s[1]);

or inst7 (z1, net3, net4, net5, net6);

endmodule

//test bench for 4:1 multiplexer
module mux_4to1_struc_tb;

reg [3:0] d;
reg [1:0] s;
wire z1;

initial
$monitor ("sel = %b, data = %b, z1 = %b", s, d, z1);

initial
begin

#0 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b0;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;

#10 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;

#10 s[0]=1'b0;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;

//continued on next page
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Figure 3.11       (Continued)

Figure 3.12 Outputs for the 4:1 multiplexer.

The structural design module for the Moore machine is shown in Figure 3.14
which instantiates 4:1 multiplexers and D flip-flops.  Note that the data inputs for the
multiplexer are labelled [3:0] data.  Therefore, when the multiplexer is instantiated
into the structural module representing the state diagram of Figure 3.2, the data inputs
must be listed in the same sequence.  The test bench module for the Moore machine is
shown in Figure 3.15.  The outputs and waveforms are shown in Figure 3.16 and Fig-
ure 3.17, respectively.

#10s [0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b0;  d[2]=1'b0;  d[3]=1'b1;

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;

#10 $stop;
end

//instantiate the module into the test bench
mux_4to1_struc inst1 (

.d(d),

.s(s),

.z1(z1)
);

 
endmodule

sel = 00, data = 1010, z1 = 0
sel = 00, data = 1011, z1 = 1
sel = 01, data = 1011, z1 = 1
sel = 10, data = 1011, z1 = 0
sel = 01, data = 1001, z1 = 0
sel = 11, data = 1011, z1 = 1
sel = 11, data = 0011, z1 = 0
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Figure 3.13 Waveforms for the 4:1 multiplexer.

Figure 3.14 Structural design module for the Moore machine of Figure 3.2.

//structural moore using muxs and D flip-flops
module moore_mux_dff (rst_n, clk, x1, y, z1);

input rst_n, clk, x1; //define inputs and outputs
output [1:2] y;
output z1;

wire net1, net3; //define internal nets
//------------------------------------------------
//instantiate the logic for flip-flop y[1]
mux_4to1_struc inst1 (

.d({1'b0, 1'b0, x1, 1'b0}),

.s({y[1], y[2]}),

.z1(net1)
);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//continued on next page
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Figure 3.14       (Continued)

Figure 3.15 Test bench module for the Moore machine of Figure 3.2.

//------------------------------------------------
//instantiate the logic for flip-flop y[2]
mux_4to1_struc inst3 (

.d({1'b0, 1'b0, x1, x1}),

.s({y[1], y[2]}),

.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[2])
);

assign z1 = y[1];

endmodule

//test bench for moore machine using muxs
//and D flip-flops to detect x1 = 11
module moore_mux_dff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1;
wire [1:2] y;
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page



358          Chapter  3     Synthesis of Synchronous Sequential Machines 2 Using Verilog HDL

Figure 3.15       (Continued)

Figure 3.16 Outputs for the Moore machine of Figure 3.2.

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;

#5 rst_n = 1'b1;

//-----------------------------------------------------
x1 = 1'b0; @ (posedge clk) //go to state_a (00)
x1 = 1'b1; @ (posedge clk) //go to state_b (01)

x1 = 1'b0; @ (posedge clk) //go to state_a (00)
x1 = 1'b1; @ (posedge clk) //go to state_b (01)
x1 = 1'b1; @ (posedge clk) //go to state_c (11)

//assert z1 t1 - t2

x1 = $random; @ (posedge clk) //go to state_a (00)

#20 $stop;
end

//-----------------------------------------------------
//instantiate the module into the test bench
moore_mux_dff inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 0, state = 01, z1 = 0
x1 = 1, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 0
x1 = 0, state = 11, z1 = 1
x1 = 0, state = 00, z1 = 0
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Figure 3.17 Waveforms for the Moore machine of Figure 3.2.

Example 3.3 This example implements the Mealy state diagram of Figure 3.18
using structural modeling with 8:1 multiplexers and D flip-flops.  The input and output
maps are shown in Figure 3.19.  The dataflow design module for an 8:1 multiplexer is
shown in Figure 3.20.

Figure 3.18 Mealy machine that asserts output z1 if a 3-bit word x1 = 000 is
detected and asserts output z2  if x1 = 111.  Unused states are y1y2y3 = 011 and 111.
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Figure 3.19 Input and output maps for the Mealy machine of Figure 3.18 using
input x1 as a map-entered variable.

Figure 3.20 Dataflow design module for an 8:1 multiplexer.

  0 0      0 1     1 1      10
y2y3

    y1

 0       x1      x1'       –        0

 1       x1       0        –        0

 0            1           3            2

 4            5           7           6

  0 0      0 1     1 1      10
y2y3

    y1

 0       0        x1        –         0

 1       1         0        –         0

 0            1           3            2

 4            5           7           6

  0 0      0 1     1 1      10
y2y3

    y1

 0      x1'       x1'      –         0

 1       0         0        –         0

 0            1           3            2

 4            5           7           6

Dy1 Dy2

Dy3

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         0        –         0

 1       0        x1'       –         0

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         0        –         0

 1       0         0        –        x1

 

 

z1 z2

//dataflow 8:1 multiplexer
module mux_8to1_df (sel, data, out);
input [2:0] sel;
input [7:0] data;
output out;

assign out =(data[0] & ~sel[2] & ~sel[1] & ~sel[0]) |
(data[1] & ~sel[2] & ~sel[1] & sel[0]) |
(data[2] & ~sel[2] & sel[1] & ~sel[0]) |
(data[3] & ~sel[2] & sel[1] & sel[0]) |
(data[4] & sel[2] & ~sel[1] & ~sel[0]) |
(data[5] & sel[2] & ~sel[1] & sel[0]) |
(data[6] & sel[2] & sel[1] & ~sel[0]) |
(data[7] & sel[2] & sel[1] & sel[0]);

endmodule
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The logic diagram using 8:1 linear-select multiplexers and D flip-flops is shown in
Figure 3.21 with instantiation and net names.  The D flip-flops have an implied reset
input.

Figure 3.21 Logic diagram for the Mealy machine of Figure 3.18 using multiplex-
ers for the  next-state logic.
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The structural design module is shown in Figure 3.22 using instantiated 8:1 mul-
tiplexers designed with dataflow modeling, instantiated D flip-flops designed using
behavioral modeling, and instantiated four-input AND gates designed with dataflow
modeling.  The test bench module is shown in Figure 3.23 which takes the machine
through various paths in the state diagram and asserts outputs z1 and z2 .  The outputs
and waveforms are shown in Figure 3.24 and Figure 3.25, respectively.

Figure 3.22 Structural design module for the Mealy machine of Figure 3.18,
which asserts output z1 if x1 = 000 and asserts output z2 if x1 = 111.

//structural mealy using muxs and D flip-flops
//to detect x1 = 000 or x1 = 111

module mealy_mux_dff (rst_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net3, net5;

//------------------------------------------------
//instantiate the logic for flip-flop y[1]
mux_8to1_df inst1 (

.sel({y[1], y[2], y[3]}),

.data({{3{1'b0}}, x1, 1'b0, 1'b0, ~x1, x1}),

.out(net1)
);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//------------------------------------------------
//instantiate the logic for flip-flop y[2]
mux_8to1_df inst3 (

.sel({y[1], y[2], y[3]}),

.data({{3{1'b0}}, 1'b1, 1'b0, 1'b0, x1, 1'b0}),

.out(net3)
);

//continued on next page
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Figure 3.22       (Continued)

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[2])
);

//------------------------------------------------
//instantiate the logic for flip-flop y[3]
mux_8to1_df inst5 (

.sel({y[1], y[2], y[3]}),

.data({{6{1'b0}}, ~x1, ~x1}),

.out(net5)
);

d_ff_bh inst6 (
.rst_n(rst_n),
.clk(clk),
.d(net5),
.q(y[3])
);

//------------------------------------------------
//instantiate the and gates for the outputs
and4_df inst7 (

.x1(y[1]),

.x2(~x1),

.x3(y[3]),

.x4(~clk),

.z1(z1)
);

and4_df inst8 (
.x1(y[1]),
.x2(x1),
.x3(y[2]),
.x4(~clk),
.z1(z2)
);

endmodule
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Figure 3.23 Test bench module for the Mealy machine of Figure 3.18, which
asserts output z1 if x1 = 000 and asserts output z2 if x1 = 111.

//test bench for mealy using muxs and D flip-flops
//to detect x1 = 000 or x1 = 111

module mealy_mux_dff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1;
wire [1:3] y;
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b, z2 = %b",

x1, y, z1, z2);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
 @ (posedge clk)

x1 = 1'b0;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_d (101)
x1 = 1'b0;@ (posedge clk) //assert z1, go to stat_a (000)

x1 = 1'b1;@ (posedge clk) //go to state_c (100)
x1 = 1'b1;@ (posedge clk) //go to state_f (110)
x1 = 1'b1;@ (posedge clk) //assert z2, go to state_a (000)

//continued on next page
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Figure 3.23       (Continued)

Figure 3.24 Outputs for the Mealy machine of Figure 3.18, which asserts output z1
if x1 = 000 and asserts output z2 if x1 = 111.

x1 = 1'b1;@ (posedge clk) //go to state_c (100)
x1 = 1'b0;@ (posedge clk) //go to state_e (010)
x1 = 1'b1;@ (posedge clk) //go to state_a (000)
x1 = 1'b0;@ (posedge clk) //go to state_c (100)

#20 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
mealy_mux_dff inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 101, z1 = 0, z2 = 0
x1 = 0, state = 101, z1 = 1, z2 = 0
x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 0, state = 001, z1 = 0, z2 = 0
x1 = 1, state = 101, z1 = 0, z2 = 0
x1 = 1, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 100, z1 = 0, z2 = 0
x1 = 1, state = 110, z1 = 0, z2 = 0
x1 = 1, state = 110, z1 = 0, z2 = 1
x1 = 0, state = 000, z1 = 0, z2 = 0
x1 = 1, state = 001, z1 = 0, z2 = 0
x1 = 0, state = 010, z1 = 0, z2 = 0
x1 = 0, state = 000, z1 = 0, z2 = 0
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Figure 3.25 Waveforms for the Mealy machine of Figure 3.18, which asserts out-
put z1 if x1 = 000 and asserts output z2 if x1 = 111.

Example 3.4 This example designs a Moore machine which operates according to
the state diagram of Figure 3.26.  The machine will be designed using structural mod-
eling with multiplexers and built-in primitives for the  next-state logic.  The input
maps are shown in Figure 3.27; the output maps are shown in Figure 3.28.

Figure 3.26 State diagram of a Moore machine for Example 3.4.  Unused states
are: y1y2y3 = 001, 010, 100, and 111.
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Figure 3.27 Input maps for the Moore machine of Figure 3.26.

Figure 3.28 Output maps for the Moore machine of Figure 3.26.
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The logic diagram is shown in Figure 3.29.  The structural design module is shown
in Figure 3.30 using built-in primitives, 8:1 multiplexers, and D flip-flops.  The test
bench module is shown in Figure 3.31.  The outputs and waveforms are shown in Fig-
ure 3.32 and Figure 3.33, respectively.

Figure 3.29 Logic diagram for the Moore machine of Figure 3.26.
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Figure 3.30 Structural design module for the Moore machine of Figure 3.26.

//structural moore to assert z1 for a sequence: x1x2 --> ~x1x2
//and assert z2 for a sequence: x1x2 --> x1~x2

module moore_mux2_dff (rst_n, clk, x1, x2, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1, x2;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net4, net5, net6, net8, net9;

//-----------------------------------------------------
//instantiate the logic for flip-flop y[1]
xor inst1 (net1, x1, x2);

mux_8to1_df inst2 (
.sel({y[1], y[2], y[3]}),
.data({{4{1'b0}}, net1, {3{1'b0}}}),
.out(net2)
);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(net2),
.q(y[1])
);

//-----------------------------------------------------
//instantiate the logic for flip-flop y[2]
and  inst4 (net4, x1, x2);
and  inst5 (net5, x1, ~x2);

mux_8to1_df inst6 (
.sel({y[1], y[2], y[3]}),
.data({{4{1'b0}}, net5, 1'b0, 1'b0, net4}),
.out(net6)
);

d_ff_bh inst7 (
.rst_n(rst_n),
.clk(clk),
.d(net6),
.q(y[2])
); //continued on next page
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Figure 3.30       (Continued)

Figure 3.31 Test bench module for the Moore machine of Figure 3.26.

//-----------------------------------------------------
//instantiate the logic for flip-flop y[3]
and inst8 (net8, ~x1, x2);

mux_8to1_df inst9 (
.sel({y[1], y[2], y[3]}),
.data({{4{1'b0}}, net8, 1'b0, 1'b0, net4}),
.out(net9)
);

d_ff_bh inst10 (
.rst_n(rst_n),
.clk(clk),
.d(net9),
.q(y[3])
);

//-----------------------------------------------------
//instantiate the logic for the outputs
and inst11 (z1, y[1], ~y[2], y[3]);
and inst12 (z2, y[1], y[2], ~y[3]);

endmodule

//test bench for moore using muxs and D flip-flops
//to assert z1 in state_c (101)
//and assert z2 in state_d (110)

module moore_mux2_dff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1, x2;
wire [1:3] y;
wire z1, z2;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 z2 = %b",

{x1, x2}, y, {z1,z2});

//continued on next page
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Figure 3.31       (Continued)

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
x1 = 1'b1; x2 = 1'b1; @ (posedge clk)//go to state_b (011)
x1 = 1'b0; x2 = 1'b1; @ (posedge clk)//go to state_c (101)

 //assert z1
x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1; x2 = 1'b1; @ (posedge clk)//go to state_b (011)
x1 = 1'b1; x2 = 1'b0; @ (posedge clk)//go to state_d (110)

 //assert z2

//----------------------------------------------------------
x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_a (000)
x1 = 1'b1; x2 = 1'b1; @ (posedge clk)//go to state_b (011)
x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_a (000)

#20 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
//as a single line
moore_mux2_dff inst1 (rst_n, clk, x1, x2, y, z1, z2);

endmodule
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Figure 3.32 Outputs for the Moore machine of Figure 3.26.

Figure 3.33 Waveforms for the Moore machine of Figure 3.26.

Example 3.5 This example is similar to the Moore machine design of Example 3.4,
but with an additional state added to the state diagram, as shown in Figure 3.34.  Also,
the Moore machine will be designed using behavioral modeling; therefore, multiplex-
ers will not be utilized in the design.  Behavioral modeling describes the behavior of a
digital system and is not concerned with the direct implementation of logic gates but
more on the architecture of the system.  This is an algorithmic approach to hardware
implementation and represents a higher level of abstraction than either dataflow mod-
eling or structural modeling.

x1 x2 = 00, state = 000, z1 z2 = 00
x1 x2 = 11, state = 000, z1 z2 = 00
x1 x2 = 01, state = 011, z1 z2 = 00
x1 x2 = 00, state = 101, z1 z2 = 10

x1 x2 = 11, state = 000, z1 z2 = 00
x1 x2 = 10, state = 011, z1 z2 = 00
x1 x2 = 00, state = 110, z1 z2 = 01

x1 x2 = 11, state = 000, z1 z2 = 00
x1 x2 = 00, state = 011, z1 z2 = 00
x1 x2 = 00, state = 000, z1 z2 = 00
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Figure 3.34 State diagram for the Moore machine of Example 3.5.  Unused states
are: y1y2y3 = 001, 100, and 111.

Since behavioral modeling is used in this design, there is no need for input maps,
output maps, or a logic diagram.  The behavioral design module is shown in Figure
3.35.  The test bench module is shown in Figure 3.36, which takes the machine through
all the paths in the state diagram.  The outputs and waveforms are shown in Figure 3.37
and Figure 3.38, respectively.

Figure 3.35 Behavioral design module for the Moore machine of Figure 3.34.
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//behavioral moore with 2 inputs and 2 outputs
module moore_bh (rst_n, clk, x1, x2, y, z1, z2);

input rst_n, clk, x1, x2; //define inputs and outputs
output [1:3] y;
output z1, z2;

reg [1:3] y, next_state; //must be reg for always
wire z1, z2;

//assign state codes
parameter state_a = 3'b000,

state_b = 3'b011,
state_c = 3'b101,
state_d = 3'b010,
state_e = 3'b110; //continued on next page
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Figure 3.35       (Continued)

//set next state
always @ (posedge clk)
begin

if (~rst_n)
y <= state_a;

else
y <= next_state;

end

//determine outputs
assign z1 = (y[1] & ~y[2] & y[3]);
assign z2 = (y[1] & y[2] & ~y[3]);

//determine next state
always @ (y or x1 or x2)
begin

case (y)
state_a:

if (x1==0 & x2==0)
next_state = state_a;

 else if (x1==1 & x2==1)
next_state = state_b;

state_b:
if (x1==0 & x2==1)

next_state = state_c;

else if (x1==1 & x2==0)
next_state = state_e;

else next_state = state_d;

state_c: next_state = state_a;

state_d: next_state = state_a;

state_e: next_state = state_a;

default: next_state = state_a;
endcase

end

endmodule
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Figure 3.36 Test bench module for the Moore machine of Figure 3.34.

//test bench for moore with 2 inputs and 2 outputs

module moore_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1, x2;
wire [1:3] y;
wire z1, z2;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 z2 = %b",

{x1, x2}, y, {z1, z2});

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
 @ (posedge clk)

x1 = 1'b1; x2 = 1'b1; @ (posedge clk)//go to state_b (011)
x1 = 1'b0; x2 = 1'b1; @ (posedge clk)//go to state_c (101)

 //assert z1
x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_a (000)

x1 = 1'b1; x2 = 1'b1; @ (posedge clk)//go to state_b (011)
x1 = 1'b1; x2 = 1'b0; @ (posedge clk)//go to state_e (110)

 //assert z2
x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_a (000)

//continued on next page
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Figure 3.36       (Continued)

Figure 3.37 Outputs for the Moore machine of Figure 3.34.

3.1.2  Nonlinear-Select Multiplexers

If the number of unique entries in an input map for flip-flop yi satisfies the expres-
sion of Equation 3.1, where u is the number of unique entries and p is the number of
storage elements, then at most a (2p  2):1 multiplexer will satisfy the requirements of
Dyi.  

1 < u  (2p  2)              (3.1)

x1 = 1'b1; x2 = 1'b1; @ (posedge clk)//go to state_b (011)
x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_d (010)

x1 = 1'b0; x2 = 1'b0; @ (posedge clk)//go to state_a (000)

#20 $stop;

end
//----------------------------------------------------------
//instantiate the module into the test bench
//as a single line
moore_bh inst1 (rst_n, clk, x1, x2, y, z1, z2);

endmodule

x1 x2 = 00, state = xxx, z1 z2 = xx
x1 x2 = 11, state = 000, z1 z2 = 00
x1 x2 = 01, state = 011, z1 z2 = 00
x1 x2 = 00, state = 101, z1 z2 = 10

x1 x2 = 11, state = 000, z1 z2 = 00
x1 x2 = 10, state = 011, z1 z2 = 00
x1 x2 = 00, state = 110, z1 z2 = 01

x1 x2 = 11, state = 000, z1 z2 = 00
x1 x2 = 00, state = 011, z1 z2 = 00
x1 x2 = 00, state = 010, z1 z2 = 00
x1 x2 = 00, state = 000, z1 z2 = 00
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Figure 3.38 Waveforms for the Moore machine of Figure 3.34.

If, however, u > 2p  2, then a 2p:1 multiplexer is necessary.  The largest multi-
plexer with which to economically implement the input logic is a 16:1 multiplexer,
and then only if the number of distinct entries in the input map warrants a multiplexer
of this size.  Other techniques, such as a PLD implementation, would make more ef-
ficient use of current technology.

If a multiplexer has unused data inputs — corresponding to unused states in the in-
put map — then these unused inputs can be connected to logically adjacent multiplex-
er inputs.  The resulting linked set of inputs can be addressed by a common select
variable.  Thus, in a 4:1 multiplexer, if data input d2 = 1 and d3 = “don’t care,” then d2
and d3 can both be connected to a logic 1.  The two inputs can now be selected by
s1s0 = 10 or 11; that is, s1s0 = 1–.  Also, multiplexers containing the same number of
data inputs should be addressed by the same select input variables, if possible.  This
permits the utilization of noncustom technology, where multiplexers in the same in-
tegrated circuit share common select inputs.

Example 3.6 Given the input map for Dy1 in Figure 3.39(a), the  next-state logic
for flip-flop y1  will be obtained using a nonlinear-select multiplexer.  If linear selec-
tion is used, then an 8:1 multiplexer is required.  However, the input map contains only
three distinct entries: 1, 0, and x1  — the “don’t care” entry can be set to any value.
Therefore, a 4:1 multiplexer is sufficient for this implementation, as shown in the in-
put map of Figure 3.39(b).

Figure 3.40(a) and Figure 3.40(b) show the logic macros for both the linear-select
and the nonlinear-select implementations.  Since a 4:1 multiplexer is required, only
two select inputs are necessary, either y1y2 , y1y3, or y2y3 , where the low-order flip-
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flop y2  or y3  connects to the low-order multiplexer select input s0.  The two multi-
plexers will be designed using structural modeling with instantiated 8:1 and 4:1 mul-
tiplexers.

Figure 3.39 Input maps for Example 3.6: (a) using a linear-select multiplexer and
(b) using a nonlinear-select multiplexer with y1y3 as select inputs.

Figure 3.40 The  next-state logic for the input maps of Figure 3.39 using multi-
plexers: (a) linear-select multiplexer; and (b) nonlinear-select multiplexer.
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Continued on next page
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Figure 3.40       (Continued)

The structural design module is shown in Figure 3.41 for both multiplexers.  The
test bench module is shown in Figure 3.42, which takes the design through all combi-
nations of the concatenated values for y1 , y2, y3 , and x1 , then displays the resulting
values for the outputs, labelled z1 and z2 .  The outputs are shown in Figure 3.43.

Figure 3.41 Structural design module for the linear-select and nonlinear-select
multiplexers of Example 3.6.
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–Logic 0
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//structural linear-select and nonlinear-select multiplexers

module mux_nonlinear6 (x1, y, z1, z2);

//define inputs and outputs
input x1;
input [1:3] y;
output z1, z2;

//instantiate the 8:1 multiplexer
mux_8to1_df inst1 (

.sel({y[1], y[2], y[3]}),

.data({{5{1'b0}}, 1'b1, x1, 1'b1}),

.out(z1)
);

//instantiate the 4:1 multiplexer
mux_4to1_struc inst2 (

.s({y[1], y[3]}),

.d({1'b0, 1'b0, x1, 1'b1}),

.z1(z2)
);

endmodule
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Figure 3.42 Test bench module for the linear-select and nonlinear-select multi-
plexers of Example 3.6.

Figure 3.43 Outputs for the linear-select and nonlinear-select multiplexers of
Example 3.6.

//test bench for linear-select and nonlinear-select muxs
module mux_nonlinear6_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1;
reg [1:3] y;
wire z1, z2;

initial //define input sequence
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{y, x1} = invect [4:0];
#10 $display ("y = %b, x1 = %b, z1 z2 = %b",

y, x1, {z1, z2});
end

end

//instantiate the module into the test bench
mux_nonlinear6 inst1 (

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

y = 000, x1 = 0, z1 z2 = 11
y = 000, x1 = 1, z1 z2 = 11
y = 001, x1 = 0, z1 z2 = 00
y = 001, x1 = 1, z1 z2 = 11

y = 010, x1 = 0, z1 z2 = 11
y = 010, x1 = 1, z1 z2 = 11
y = 011, x1 = 0, z1 z2 = 00
y = 011, x1 = 1, z1 z2 = 01

y = 100, x1 = 0, z1 z2 = 00
y = 100, x1 = 1, z1 z2 = 00
y = 101, x1 = 0, z1 z2 = 00
y = 101, x1 = 1, z1 z2 = 00

y = 110, x1 = 0, z1 z2 = 00
y = 110, x1 = 1, z1 z2 = 00
y = 111, x1 = 0, z1 z2 = 00
y = 111, x1 = 1, z1 z2 = 00
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Example 3.7 Given the input map for Dy1 in Figure 3.44(a), the  next-state logic
for flip-flop y1  will be obtained using two nonlinear-select multiplexer designs.  Fig-
ure 3.44(a) can be permuted, as shown in Figure 3.44(b) and Figure 3.44(c).  Figure
3.44(b) requires an exclusive-OR function; whereas, Figure 3.44(c) yields a solution
that requires no gates.

The designs of the multiplexer logic for the input maps of Figure 3.44(b) and Fig-
ure 3.44(c) are shown in Figure 3.45(a) and Figure 3.45(b), respectively.  Both imple-
mentation methods are presented to illustrate different techniques for synthesizing
with nonlinear-select multiplexers.

Figure 3.44 Input maps for flip-flop y1 for Example 3.7: (a) using y2y3  as select
inputs; (b) using y1y3 as select inputs; and (c) using y1y2 as select inputs.
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Figure 3.45 The  next-state logic for the input maps of Figure 3.44(b) and Figure
3.44(c): (a) non minimized configuration; and (b) minimized configuration.

The structural design module for the nonlinear-select multiplexers is shown in
Figure 3.46.  The test bench module is shown in Figure 3.47, which takes the design
through all combinations of the concatenated values for y1 , y2 , y3 , and x1 , then dis-
plays the resulting values for the outputs, labelled z1 and z2 .  The outputs are shown in
Figure 3.48.

Figure 3.46 Structural design module for the nonlinear-select multiplexers of
Example 3.7.

MUX y1
s0

d0
d1

s1

d3

d2

+y3
+y1

–Logic 0

+y2
+x1

+Logic 1
–y2

+Dy1 (z1)

(a)

MUX y1
s0

d0
d1

s1

d3

d2

+y2
+y1

+x1
–x1
+Logic 1
–y3

+Dy1 (z2)

(b)

inst1
inst2

inst3

//structural nonlinear-select multiplexers
module mux_nonlinear7 (x1, y, z1, z2);

//define inputs and outputs
input x1;
input [1:3] y;
output z1, z2;

//continued on next page
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Figure 3.46       (Continued)

Figure 3.47 Test bench module for the nonlinear-select multiplexers of Example
3.7.

//instantiate the logic and 4:1 multiplexer for z1
xor inst1 (net1, y[2], x1);

mux_4to1_struc inst2 (
.s({y[1], y[3]}),
.d({~y[2], 1'b1, 1'b0, net1}),
.z1(z1)
);

//instantiate the logic and 4:1 multiplexer for z2
mux_4to1_struc inst3 (

.s({y[1], y[2]}),

.d({~y[3], 1'b1, ~x1, x1}),

.z1(z2)
);

endmodule

//test bench for the nonlinear-select multiplexers

module mux_nonlinear7_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1;
reg [1:3] y;
wire z1, z2;

//define input sequence
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect =  invect + 1)

begin
{y, x1} = invect [4:0];
#10 $display ("y = %b, x1 = %b, z1 z2 = %b",

y, x1, {z1, z2});
end

end
//continued on next page
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Figure 3.47       (Continued)

Figure 3.48 Outputs for the nonlinear-select multiplexers of Example 3.7.

Example 3.8 Example 3.8 designs a Moore machine using nonlinear-select multi-
plexers that operates in accordance with the machine specifications described below.

If x1  = 110, then z1t2t3
If x1  = 101, then z2t2t3

The input data on x1  consists of a bit stream of binary data.  Valid overlapping
sequences are possible, such that the input sequence that asserts output z1 may be part

//instantiate the module into the test bench
mux_nonlinear7 inst1 (

.x1(x1),

.y(y),

.z1(z1),

.z2(z2)
);

endmodule

y = 000, x1 = 0, z1 z2 = 00
y = 000, x1 = 1, z1 z2 = 11
y = 001, x1 = 0, z1 z2 = 00
y = 001, x1 = 1, z1 z2 = 01

y = 010, x1 = 0, z1 z2 = 11
y = 010, x1 = 1, z1 z2 = 00
y = 011, x1 = 0, z1 z2 = 01
y = 011, x1 = 1, z1 z2 = 00

y = 100, x1 = 0, z1 z2 = 11
y = 100, x1 = 1, z1 z2 = 11
y = 101, x1 = 0, z1 z2 = 11
y = 101, x1 = 1, z1 z2 = 11

y = 110, x1 = 0, z1 z2 = 11
y = 110, x1 = 1, z1 z2 = 11
y = 111, x1 = 0, z1 z2 = 00
y = 111, x1 = 1, z1 z2 = 00
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of a valid sequence that asserts outputs z2 .  The converse is true for a z2 , z1 sequence.
The outputs are asserted at time t2 and deasserted at time t3.

The state diagram of Figure 3.49 portrays the machine's behavior according to the
machine specifications.  The machine remains in state a until the first 1 appears on
input x1 .  State c is the state that is entered whenever two consecutive 1s occur any-
where in the bit stream, signifying the beginning bit configuration of a valid input
sequence to assert output z1.  State f is the state that is entered whenever the sequence
x1 = ... 10 occurs, signifying the beginning bit configuration of a valid input sequence
to assert output z2 .

Figure 3.49 State diagram for the Moore machine of Example 3.8 to detect input
sequences of x1 = 110 to assert output z1 and x1 = 101 to assert output z2.  Unused states
are: y1y2y3 = 100 and 111.
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The input maps are shown in Figure 3.50, which shows the permuted map for Dy1
and the unchanged map for Dy2, together with the multiplexer data input equations for
both flip-flops.  The input map for Dy3 needs no equations, because every minterm
location contains the value of x1, including the “don’t care” minterms.  The output
maps are obtained from the state diagram and are shown in Figure 3.51.

Figure 3.50 Input maps for the Moore machine of Figure 3.49 using D flip-flops.

Figure 3.51 Output maps for the Moore machine of Figure 3.49.

  0 0      0 1     1 1      10
y1y3

    y2

 0       0        x1      1         –

 1      0        x1       –         0

 0            1           5            4

 2            3           7           6 Dy1

 d0       d1      d3       d2

d0  = 0
d1  = x1
d2  = 0
d3 = 1

  0 0      0 1     1 1      10
y2y3

    y1

 0      x1       x1'      x1'        0

 1       –        x1'      –         0

 0            1           3            2

 4            5           7           6

d0 = x1
d1 = x1'
d2 = 0
d3 = x1'

Dy2

 d0       d1      d3       d2

  0 0      0 1     1 1      10
y2y3

    y1

 0       x1       x1       x1       x1

 1       –        x1       –        x1

 0            1           3            2

 4            5           7           6
Dy3 d0 through d3 = x1

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         0        0         0

 1       –         0        –         1

 0            1           3            2

 4            5           7           6

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         1        0         0

 1       –         0        –         0

 0            1           3            2

 4            5           7           6

z1 z2



3.1     Multiplexers for  Next-State Logic     387

The logic diagram is shown in Figure 3.52 using two 4:1 nonlinear-select multi-
plexers for the  next-state input logic, D flip-flops with implied reset inputs, and
AND gates for the  output logic.

Figure 3.52 Logic diagram for the Moore machine of Figure 3.49 using multi-
plexers for the  next-state logic.

The structural design module is shown in Figure 3.53, which instantiates 4:1 mul-
tiplexers designed using structural modeling, instantiates D flip-flops designed using
behavioral modeling, and instantiates built-in primitives to decode the outputs.  The
test bench module is shown in Figure 3.54, which takes the machine through various
paths in the state diagram and asserts outputs z1 and z2 from t2 to t3.  The outputs and
waveforms are shown in Figure 3.55 and Figure 3.56, respectively.
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Figure 3.53 Structural design module for the logic diagram of Figure 3.52, which
represents the state diagram of Figure 3.49.

//structural moore using muxs to assert 
//z1 if x1 = 110 and to assert z2 if x1 = 101

module moore_mux3_dff (rst_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net3;

//----------------------------------------------
//instantiate the logic for flip-flop y[1]
mux_4to1_struc inst1 (

.s({y[1], y[3]}),

.d({1'b1, 1'b0, x1, 1'b0}),

.z1(net1)
);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//----------------------------------------------
//instantiate the logic for flip-flop y[2]
mux_4to1_struc inst3 (

.s({y[2], y[3]}),

.d({~x1, 1'b0, ~x1, x1}),

.z1(net3)
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[2])
);

//----------------------------------------------
//continued on next page
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Figure 3.53       (Continued)

Figure 3.54 Test bench module for the logic diagram of Figure 3.52.

//----------------------------------------------
//instantiate the logic for flip-flop y[3]
d_ff_bh inst5 (

.rst_n(rst_n),

.clk(clk),

.d(x1),

.q(y[3])
);

//----------------------------------------------
//instantiate the logic for the outputs
and inst6 (z1, y[1], ~y[3], ~clk);
and inst7 (z2, ~y[1], ~y[2], y[3], ~clk);

endmodule

//test bench for moore to detect two sequences.
//assert z1 if x1 = 110; assert z2 if x1 = 101

module moore_mux3_dff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1;
wire [1:3] y;
wire z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 z2 = %b", x1, y, {z1, z2});

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page
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Figure 3.54       (Continued)

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1;

//---------------------------------------------------------
x1 = 1'b0;@ (posedge clk) //go to state_a (000)
x1 = 1'b1;@ (posedge clk) //go to state_b (011)
x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b0;@ (posedge clk) //go to state_d (110)

//assert z1
x1 = 1'b1;@ (posedge clk) //go to state_e (001)

//assert z2
x1 = 1'b0;@ (posedge clk) //go to state_f (010)
x1 = 1'b0;@ (posedge clk) //go to state_a (000)

//---------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (011)
x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b0;@ (posedge clk) //go to state_d (110)

//assert z1
x1 = 1'b1;@ (posedge clk) //go to state_e (001)

//assert z2

//---------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_c (101)
x1 = 1'b0;@ (posedge clk) //go to state_d (110)

//assert z1
x1 = 1'b0;@ (posedge clk) //go to state_a (000)
x1 = 1'b1;@ (posedge clk) //go to state_b (011)

x1 = 1'b0;@ (posedge clk) //go to state_f (010)
x1 = 1'b1;@ (posedge clk) //go to state_e (001)

//assert z2
x1 = 1'b0;@ (posedge clk) //go to state_f (010)
x1 = 1'b0;@ (posedge clk) //go to state_a (000)
#20 $stop;

end

//---------------------------------------------------------
//instantiate the module into the test bench
//as a single line
moore_mux3_dff inst1 (rst_n, clk, x1, y, z1, z2);

endmodule
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Figure 3.55 Outputs for the logic diagram of Figure 3.52.

Figure 3.56 Waveforms for the logic diagram of Figure 3.52.

x1 = 1, state = 000, z1 z2 = 00
x1 = 1, state = 011, z1 z2 = 00
x1 = 0, state = 101, z1 z2 = 00
x1 = 1, state = 110, z1 z2 = 00
x1 = 1, state = 110, z1 z2 = 10
x1 = 0, state = 001, z1 z2 = 00
x1 = 0, state = 001, z1 z2 = 01
x1 = 0, state = 010, z1 z2 = 00
x1 = 1, state = 000, z1 z2 = 00
x1 = 1, state = 011, z1 z2 = 00
x1 = 0, state = 101, z1 z2 = 00
x1 = 1, state = 110, z1 z2 = 00
x1 = 1, state = 110, z1 z2 = 10
x1 = 1, state = 001, z1 z2 = 00
x1 = 1, state = 001, z1 z2 = 01
x1 = 0, state = 101, z1 z2 = 00
x1 = 0, state = 110, z1 z2 = 00
x1 = 0, state = 110, z1 z2 = 10
x1 = 1, state = 000, z1 z2 = 00
x1 = 0, state = 011, z1 z2 = 00
x1 = 1, state = 010, z1 z2 = 00
x1 = 0, state = 001, z1 z2 = 00
x1 = 0, state = 001, z1 z2 = 01
x1 = 0, state = 010, z1 z2 = 00
x1 = 0, state = 000, z1 z2 = 00
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3.2 Decoders for  Output Logic
Decoders are reviewed briefly in this section.  A decoder is a combinational macro
logic circuit that translates a binary input number to an equivalent output number for a
specific radix.  In general, there are n input lines and m output lines, where m = 2n.  For
each combination of the 2n input values, only one unique output signal is active — all
other outputs are inactive.  Thus, a fundamental characteristic of a decoder is the mu-
tual exclusiveness of the outputs.

The multiplexer data inputs correspond to the minterm locations in an input map;
whereas, the outputs of a decoder correspond to the minterms locations in an output
map.  The m output signals, labeled f0, f1, ... , fm–1 correspond to the 2n minterm values
represented by the binary number on inputs xn–1, ... , x1, x0, where x0 is the low-order
input variable.  A decoder consisting of n inputs and 2n outputs can be used to imple-
ment any Boolean switching function, because each output represents a unique min-
term.  By connecting the appropriate decoder outputs to an OR gate, the desired
function can be realized.

Example 3.9 A Moore machine will be designed using structural modeling, which
generates a sequence of six contiguous, nonoverlapping pulses.  The six pulses are mu-
tually exclusive and each pulse is active for one clock period.  The  next-state logic
consists of logic gates and D flip-flops; the  output logic consists of a 3:8 decoder.
The assertion/deassertion statement for all outputs is zit1t3.  A typical application of
this type of Moore machine is as a ring counter, which functions as a finite-state ma-
chine to control the operation of an external digital system.  Each output of the ma-
chine represents a different state.

The state diagram is illustrated in Figure 3.57.  In order to generate glitch-free out-
puts, a Gray code arrangement is used for the state code assignment.  The state codes
adhere to the definition of a Gray code, in which each code word differs from the pre-
ceding word in only one bit position.  However, since only six out of the eight possible
combinations of three variables are used, the code represented in Figure 3.57 differs
slightly from the traditional Gray code in order to maintain logical adjacency between
states e and f and between states f and a.  Each state generates an output and each out-
put is asserted for the entire state time.

The input maps are derived from the state diagram and are shown in Figure 3.58.
Since there are only two values (0 and 1) in any input map, multiplexers are not ap-
propriate — logic gates will suffice for each flip-flop input.  Since a decoder is used for
the  output logic, the output maps are not shown.  Each Moore output corresponds to
a distinct decoder minterm and can be implemented directly from the state diagram.  A
3:8 decoder is ideal for the  output logic for this multiple output machine.  The de-
coder has two unused outputs that correspond to state codes y1y2y3  = 101 and 111.

The logic diagram is shown in Figure 3.59, using logic gates for the  next-state
logic and a modified 3:8 decoder for the  output logic.  The active-high output of each
state flip-flop is connected to the appropriate decoder address input.  Thus, y1, y2 , and
y3  connect to x2 , x1 , and x0, respectively, where y3  and x0 are the low-order variables.
The uncommitted decoder outputs represent the unused states in the state diagram and
input maps.  An enabling function is not necessary for the decoder outputs.
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Figure 3.57 State diagram for the Moore machine of Example 3.9.  Unused states
are: y1y2y3 = 101 and 111.

Figure 3.58 Input maps for Example 3.9.
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Figure 3.58       (Continued)

Figure 3.59 Logic diagram for the Moore machine of Figure 3.57.

Figure 3.60 shows the structural design module for the Moore machine to generate
six contiguous nonoverlapping pulses.  The test bench is shown in Figure 3.61.  The
outputs and waveforms are shown in Figure 3.62 and Figure 3.63, respectively.
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Figure 3.60 Structural design module for the Moore machine of Example 3.9.

//structural moore to generate 6 contiguous pulses
module moore_6_pulses (rst_n, clk, y, z);
input rst_n, clk; //define inputs and outputs
output [1:3] y;
output [1:6] z;

wire net1, net3, net4, net6; //define internal nets

//instantiate the logic for flip-flop y[1]
and inst1 (net1, y[2], ~y[3]);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and inst3 (net3, ~y[1], y[2]);
or  inst4 (net4, y[3], net3);

d_ff_bh inst5 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[2])
);

//instantiate the logic for flip-flop y[3]
and inst6 (net6, ~y[1], ~y[2]);

d_ff_bh inst7 (
.rst_n(rst_n),
.clk(clk),
.d(net6),
.q(y[3])
);

//define the output logic
assign z[1] = ~y[1] & ~y[2] & ~y[3];
assign z[2] = ~y[1] & ~y[2] & y[3];
assign z[3] = ~y[1] & y[2] & y[3];
assign z[4] = ~y[1] & y[2] & ~y[3];
assign z[5] = y[1] & y[2] & ~y[3];
assign z[6] = y[1] & ~y[2] & ~y[3];
endmodule
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Figure 3.61 Test bench module for the Moore machine of Example 3.9.

//test bench for moore to generate 6 contiguous pulses

module moore_6_pulses_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk;
wire [1:3] y;
wire [1:6] z;

//display variables
initial
$monitor ("output = %b", z);

//define reset
initial
begin

#0 rst_n = 1'b0;
#20 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
#10 forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin

#140 $finish;
end 

//instantiate the module into the test bench
moore_6_pulses inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y),

.z(z)
);

endmodule
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Figure 3.62 Outputs for the Moore machine of Example 3.9.

Figure 3.63 Waveforms for the Moore machine of Example 3.9.

Example 3.10 This example repeats Example 3.9 using the same state diagram and
D flip-flops.  However, discrete logic gates are used to implement the decoder outputs,
as shown in the logic diagram of Figure 3.64.  The structural design module is shown
in Figure 3.65.  The test bench module is shown in Figure 3.66.  The outputs and wave-
forms are show in Figure 3.67 and Figure 3.68, respectively.

output = 100000
output = 010000
output = 001000
output = 000100
output = 000010
output = 000001
output = 100000
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Figure 3.64 Logic diagram for the Moore machine of Example 3.10 to generate
six consecutive nonoverlapping pulses.

Figure 3.65 Structural design module for the Moore machine of Example 3.10 to
generate six consecutive nonoverlapping pulses.
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//structural moore to generate 6 contiguous pulses
module moore_decoder_3to8c (rst_n, clk, y, z);
input rst_n, clk; //define inputs and outputs
output [1:3] y;
output [1:6] z;

wire net1, net3, net4, net6; //define internal nets

//---------------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, y[2], ~y[3]);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
); //continued on next page
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Figure 3.65       (Continued)

Figure 3.66 Test bench module for the Moore machine of Example 3.10 to gen-
erate six consecutive nonoverlapping pulses.

//---------------------------------------------
//instantiate the logic for flip-flop y[2]
and inst3 (net3, ~y[1], y[2]);
or  inst4 (net4, y[3], net3);

d_ff_bh inst5 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[2])
);

//---------------------------------------------
//instantiate the logic for flip-flop y[3]
and inst6 (net6, ~y[1], ~y[2]);

d_ff_bh inst7 (
.rst_n(rst_n),
.clk(clk),
.d(net6),
.q(y[3])
);

//---------------------------------------------
//define the logic for the outputs
and inst8  (z[1], ~y[1], ~y[2], ~y[3]);
and inst9  (z[2], ~y[1], ~y[2],  y[3]);
and inst10 (z[3], ~y[1],  y[2],  y[3]);
and inst11 (z[4], ~y[1],  y[2], ~y[3]);
and inst12 (z[5],  y[1],  y[2], ~y[3]);
and inst13 (z[6],  y[1], ~y[2], ~y[3]);

endmodule

//test bench for moore to generate 6 contiguous pulses
module moore_decoder_3to8c_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire [1:6] z; //continued on next page
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Figure 3.66       (Continued)

Figure 3.67 Outputs for the Moore machine of Example 3.10 to generate six con-
secutive nonoverlapping pulses.

//display variables
initial
$monitor ("output = %b", z);

initial //define reset
begin

#0 rst_n = 1'b0;
#20 rst_n = 1'b1;

end

initial //define clock
begin

clk = 1'b0;
#10 forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin

#140 $finish;
end 

//instantiate the module into the test bench
moore_decoder_3to8c inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y),

.z(z)
);

endmodule

output = 100000
output = 010000
output = 001000
output = 000100
output = 000010
output = 000001
output = 100000
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Figure 3.68 Waveforms for the Moore machine of Example 3.10 to generate six
consecutive nonoverlapping pulses.

Example 3.11 This example uses the state diagram of Figure 3.57 to generate six
contiguous nonoverlapping pulses.  The structural module will be designed using
instantiated negative-edge triggered JK flip-flops that are designed with behavioral
modeling.  The instantiated logic elements will be designed using dataflow modeling.

Recall that the JK flip-flop is an edge-triggered storage device in which the active
clock transition can be either the positive or negative edge.  The functional character-
istics of the JK data inputs are defined as shown in Table 3.1.  Table 3.2 shows an ex-
citation table in which a particular state transition predicates a set of values for J and K.
This table is especially useful in the synthesis of synchronous sequential machines.

Table 3.1  JK Functional 
Characteristic Table

J K Function
0 0 No change
0 1 Reset
1 0 Set
1 1 Toggle

Table 3.2  Excitation Table for a
JK Flip-Flop

Present state
Yj(t)

Next state
Yk(t+1)

Data inputs
J K

0 0 0 –
0 1 1 –
1 0 – 1
1 1 – 0
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The state diagram  for the Moore machine to generate six contiguous nonoverlap-
ping pulses is reproduced in Figure 3.69 to assist in generating the JK input maps,
which are shown in Figure 3.70 together with the input equations.

Figure 3.69 State diagram for the Moore machine of Example 3.11 to generate six
contiguous nonoverlapping pulses.  Unused states are: y1y2y3 = 101 and 111.

The logic diagram is shown in Figure 3.71.  The structural design module is shown
in Figure 3.72.  The test bench module is shown in Figure 3.73.  The outputs and wave-
forms are shown in Figure 3.74 and Figure 3.75, respectively.  Since NAND gates are
used to implement the outputs, the six contiguous nonoverlapping pulses are asserted
as negative pulses.
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Jy1 = y2y3 ' Ky1 = y2 '

Jy2 = y3 Ky2 = y1

Jy3  = y1 'y2 ' Ky3  = y2

Figure 3.70 Input maps for the Moore machine of Example 3.11 to generate six
contiguous nonoverlapping pulses.
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Figure 3.71 Logic diagram for the Moore machine of Example 3.11 to generate
six contiguous nonoverlapping pulses.

Figure 3.72 Structural design module for the Moore machine of Example 3.11 to
generate six contiguous nonoverlapping pulses.
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//structural moore to generate 6 contiguous pulses

module moore_decoder_jk (rst_n, clk, y, z);

//define inputs and outputs
input rst_n, clk;
output [1:3] y;

output [1:6] z;

//define internal nets
wire net1, net4;

//continued on next page
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Figure 3.72       (Continued)

//-----------------------------------------------
//instantiate the logic for flip-flop y[1]
and2_df inst1 (

.x1(y[2]),

.x2(~y[3]),

.z1(net1)
);

jkff inst2 (
.set_n(1'b1),
.rst_n(rst_n),
.clk(clk),
.j(net1),
.k(~y[2]),
.q(y[1])
);

//-----------------------------------------------
//instantiate the logic for flip-flop y[2]
jkff inst3 (

.set_n(1'b1),

.rst_n(rst_n),

.clk(clk),

.j(y[3]),

.k(y[1]),

.q(y[2])
);

//-----------------------------------------------
//instantiate the logic for flip-flop y[3]
and2_df inst4 (

.x1(~y[2]),

.x2(~y[1]),

.z1(net4)
);

jkff inst5 (
.set_n(1'b1),
.rst_n(rst_n),
.clk(clk),
.j(net4),
.k(y[2]),
.q(y[3])
);

//-----------------------------------------------
//continued on next page
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Figure 3.72       (Continued)

//-----------------------------------------------
//instantiate the logic for the outputs
nand3_df inst6 (

.x1(~y[1]),

.x2(~y[2]),

.x3(~y[3]),

.z1(z[1])
);

nand3_df inst7 (
.x1(~y[1]),
.x2(~y[2]),
.x3(y[3]),
.z1(z[2])
);

nand3_df inst8 (
.x1(~y[1]),
.x2(y[2]),
.x3(y[3]),
.z1(z[3])
);

nand3_df inst9 (
.x1(~y[1]),
.x2(y[2]),
.x3(~y[3]),
.z1(z[4])
);

nand3_df inst10 (
.x1(y[1]),
.x2(y[2]),
.x3(~y[3]),
.z1(z[5])
);

nand3_df inst11 (
.x1(y[1]),
.x2(~y[2]),
.x3(~y[3]),
.z1(z[6])
);

endmodule



3.2     Decoders for  Output Logic     407

Figure 3.73 Test bench for the Moore machine of Example 3.11 to generate six
contiguous nonoverlapping pulses.

//test bench for moore to generate 6 contiguous pulses

module moore_decoder_jk_tb;

//define inputs and outputs
reg rst_n, clk; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire [1:6] z;

//display outputs
initial
$monitor ("output = %b", z);

//define reset
initial
begin

#0 rst_n = 1'b0;
#20 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
#10 forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin

#140 $finish;
end

//instantiate the module into the test bench
moore_decoder_jk inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y),

.z(z)
);

endmodule
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Figure 3.74 Waveforms for the Moore machine of Example 3.11 to generate six
contiguous nonoverlapping pulses.

Figure 3.75 Waveforms for the Moore machine of Example 3.11 to generate six
contiguous nonoverlapping pulses.

Example 3.12 This example designs a Mealy machine that examines 3-bit words on
a serial input line x1 .  The format for the serial data is shown below, where bi = 0 or 1.
The serial words are contiguous with no space between words.

x1 =    b1b2b3 b1b2b3 b1b2b3   

output = 011111
output = 101111
output = 110111
output = 111011
output = 111101
output = 111110
output = 011111
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The machine generates four different outputs, depending upon the bit configura-
tion of the received data:

If x1  = 001, then assert output z1
If x1  = 011, then assert output z2
If x1  = 101, then assert output z3
If x1  = 111, then assert output z4

For all other bit patterns, the four outputs are inactive.  The assertion/deassertion
statement for all outputs is: zit2t3.  Logic gates will be used for the  next-state logic,
D flip-flops will be used for the storage elements, and continuous assignment state-
ments will be used to generate a decoder for the  output logic.  The state diagram is
developed by generating a path for each of the eight bit sequences (000 through 111)
while maintaining three state levels for each word, as shown in Figure 3.76.

Figure 3.76 State diagram for the Mealy machine of Example 3.12.  There is one
unused state: y1y2y3 = 110.

Notice that all four outputs have one thing in common: All outputs occur in a state
where input x1  = 1.  Therefore, input x1  can be used as an input variable for the
decoder output logic, together with the negative assertion of the clock signal to assert
the outputs from t2 to t3.  The input maps, obtained from the state diagram, are shown
in Figure 3.77 together with the input equations.
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Figure 3.77 Input maps for the Mealy machine of Figure 3.76.

The output maps and equations are shown in Figure 3.78, as obtained from the
state diagram.  The logic diagram is generated from the input maps and is illustrated in
Figure 3.79.  The enable gate for the output decoder logic contains two inputs: the +x1
signal to generate the Mealy-type outputs and the –Clock signal to provide assertion at
time t2 and deassertion at t3.

Figure 3.78 Output maps for the Mealy machine of Figure 3.76.
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Continued on next page
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z1 = y1 'y2 'y3x1 z2  = y1 'y2y3x1 z3  = y1y2 'y3x1 z4  = y1y2x1

Figure 3.78       (Continued)

Figure 3.79 Logic diagram for the Mealy machine of Figure 3.76.  All outputs are
asserted at time t2 and deasserted at t3.
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The structural design module is shown in Figure 3.80 using instantiated D flip-
flops and built-in primitives.  The test bench module is shown in Figure 3.81, which
takes the machine through the four paths to assert the four outputs.  The outputs and
waveforms are shown in Figure 3.82 and Figure 3.83, respectively.

Figure 3.80 Structural design module for the Mealy machine of Example 3.12 to
assert four outputs.

//structural mealy using decoder to generate four outputs

module mealy_dcdr (rst_n, clk, x1, y, z);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output [1:4] z;

//define internal nets
wire net1, net2, net3, net5, net7, net8;

//------------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, ~x1, ~y[1]);
and inst2 (net2, y[2], ~y[3]);
or  inst3 (net3, net1, net2);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//------------------------------------------
//instantiate the logic for flip-flop y[2]
and inst5 (net5, ~y[3], x1);

d_ff_bh inst6 (
.rst_n(rst_n),
.clk(clk),
.d(net5),
.q(y[2])
);

//continued on next page
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Figure 3.80       (Continued)

Figure 3.81 Test bench module for the Mealy machine of Example 3.12 to assert
four outputs.

//------------------------------------------
//instantiate the logic for flip-flop y[3]
or  inst7 (net7, y[2], y[1]);
and inst8 (net8, ~y[3], net7);

d_ff_bh inst9 (
.rst_n(rst_n),
.clk(clk),
.d(net8),
.q(y[3])
);

//------------------------------------------
//generate the decoder logic for the outputs
assign z[1] = ~y[1] & ~y[2] & y[3] & x1 & ~clk;
assign z[2] = ~y[1] & y[2] & y[3] & x1 & ~clk;
assign z[3] = y[1] & ~y[2] & y[3] & x1 & ~clk;
assign z[4] = y[1] & y[2] & y[3] & x1 & ~clk;

endmodule

//test bench for mealy to generate four outputs
module mealy_dcdr_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire [1:4] z;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 z2 z3 z4 = %b", x1, y, z);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page
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Figure 3.81       (Continued)

//define input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;

//--------------------------------------------------------
@ (posedge clk)

x1 = 1'b0; @ (posedge clk) //go to state_b (100)
x1 = 1'b0; @ (posedge clk) //go to state_d (001)
x1 = 1'b1; @ (posedge clk) //assert z1, then

//go to state_a (000)

x1 = 1'b0; @ (posedge clk) //go to state_b (100)
x1 = 1'b1; @ (posedge clk) //go to state_e (011)
x1 = 1'b1; @ (posedge clk) //assert z2, then

//go to state_a (000)

x1 = 1'b1; @ (posedge clk) //go to state_c (010)
x1 = 1'b0; @ (posedge clk) //go to state_f (101)
x1 = 1'b1; @ (posedge clk) //assert z3, then

//go to state_a (000)

x1 = 1'b1; @ (posedge clk) //go to state_c (010)
x1 = 1'b1; @ (posedge clk) //go to state_g (111)
x1 = 1'b1; @ (posedge clk) //assert z4, then

//go to state_a (000)

//--------------------------------------------------------
#20 $stop;

end

//--------------------------------------------------------
//instantiate the module into the test bench
mealy_dcdr inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z(z)
);

endmodule
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Figure 3.82 Outputs for the Mealy machine of Example 3.12 to assert four out-
puts.

Figure 3.83 Waveforms Outputs for the Mealy machine of Example 3.12.

x1 = 0, state = 000, z1 z2 z3 z4 = 0000
x1 = 0, state = 100, z1 z2 z3 z4 = 0000
x1 = 0, state = 001, z1 z2 z3 z4 = 0000
x1 = 0, state = 100, z1 z2 z3 z4 = 0000
x1 = 1, state = 001, z1 z2 z3 z4 = 0000
x1 = 1, state = 001, z1 z2 z3 z4 = 1000
x1 = 0, state = 000, z1 z2 z3 z4 = 0000
x1 = 1, state = 100, z1 z2 z3 z4 = 0000
x1 = 1, state = 011, z1 z2 z3 z4 = 0000
x1 = 1, state = 011, z1 z2 z3 z4 = 0100
x1 = 1, state = 000, z1 z2 z3 z4 = 0000
x1 = 0, state = 010, z1 z2 z3 z4 = 0000
x1 = 1, state = 101, z1 z2 z3 z4 = 0000
x1 = 1, state = 101, z1 z2 z3 z4 = 0010
x1 = 1, state = 000, z1 z2 z3 z4 = 0000
x1 = 1, state = 010, z1 z2 z3 z4 = 0000
x1 = 1, state = 111, z1 z2 z3 z4 = 0000
x1 = 1, state = 111, z1 z2 z3 z4 = 0001
x1 = 1, state = 000, z1 z2 z3 z4 = 0000
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Example 3.13 To complete this section on decoders, a 3:8 decoder will be designed
using the continuous assignment statement, then used to implement a Boolean func-
tion.  As stated before, a decoder is a combinational logic macro that has n binary
inputs and m mutually exclusive outputs, where 2n  m.  An n:m  (n-to-m) decoder is
also classified as a demultiplexer (DX).  Each output represents a minterm that corre-
sponds to the binary representation of the input vector.  Thus,  zi = mi, where mi is the
ith minterm of the n input variables.  For example, if n = 3 and x1x2x3  = 101, then out-
put z5 is asserted.

A decoder with n inputs, therefore, has a maximum of 2n outputs.  Because the
outputs are mutually exclusive, only one output is active for each different combina-
tion of the inputs.  The decoder outputs may be asserted high or low.  Decoders have
many applications in digital engineering, ranging from instruction decoding to mem-
ory addressing to code conversion.

A 3:8 (binary-to-octal) decoder is shown in Figure 3.84 which decodes a binary
number into the corresponding octal number.  The three inputs are x[2:0] with binary
weights of 22, 21, and 20, respectively.  Thus, an input of x[2] x[1] x[0] = 110 will assert
output f [6].  A decoder may also have an enable function which allows the selected
output to be asserted.  The enable function may be a single input or an AND gate with
two or more inputs.  A 3:8 decoder generates all eight minterms z0 through z7 of three
binary variables x2, x1, and x0.

Figure 3.84 A binary-to-octal decoder.

The structural design module of a 3:8 decoder is shown in Figure 3.85 using the
continuous assignment statement.  The test bench module is shown in Figure 3.86,
which applies input vectors for all eight combinations of three variables.  The outputs
and waveforms are shown in Figure 3.87 and Figure 3.88, respectively.

BIN/OCT

+x2
+x1
+x0

+z0
+z1
+z2
+z3
+z4
+z5
+z6
+z7

4
2
1

f [0]
f [1]
f [2]
f [3]
f [4]
f [5]
f [6]
f [7]
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Figure 3.85 Structural design module for a 3:8 decoder.

Figure 3.86 Test bench module for a 3:8 decoder.

//dataflow 3:8 decoder
module decoder_3to8_df2 (x, f);

input [2:0] x;
output [7:0] f;

assign f[0] = ~x[2] & ~x[1] & ~x[0],
f[1] = ~x[2] & ~x[1] &  x[0],
f[2] = ~x[2] &  x[1] & ~x[0],
f[3] = ~x[2] &  x[1] &  x[0],
f[4] =  x[2] & ~x[1] & ~x[0],
f[5] =  x[2] & ~x[1] &  x[0],
f[6] =  x[2] &  x[1] & ~x[0],
f[7] =  x[2] &  x[1] &  x[0];

endmodule

//test bench for 3:8 decoder
module decoder_3to8_df2_tb;

reg [2:0] x;
wire [7:0] f;

initial //display variables
$monitor ("data in = %b, f = %b", x, f);

initial //apply input vectors
begin

#0 x = 3'b000;
#10 x = 3'b001;
#10 x = 3'b010;
#10 x = 3'b011;
#10 x = 3'b100;
#10 x = 3'b101;
#10 x = 3'b110;
#10 x = 3'b111;
#10 $stop;

end

//instantiate the module into the test bench
decoder_3to8_df2 inst1 (

.x(x),

.f(f)
);

endmodule



418          Chapter  3     Synthesis of Synchronous Sequential Machines 2 Using Verilog HDL

Figure 3.87 Outputs for a 3:8 decoder.

Figure 3.88 Waveforms for a 3:8 decoder.

Using the 3:8 decoder of this example, a Boolean function will be synthesized
using the Karnaugh map shown in Figure 3.89, which yields the equation for output z1
as shown in Equation 3.2.  The logic diagram for the implementation is shown in Fig-
ure 3.90.  The structural design module is shown in Figure 3.91.  The test bench mod-
ule is shown in Figure 3.92.  The outputs and waveforms are shown in Figure 3.93 and
Figure 3.94, respectively.

  f[7] -- f[0]

data in = 000, f = 00000001
data in = 001, f = 00000010
data in = 010, f = 00000100
data in = 011, f = 00001000
data in = 100, f = 00010000
data in = 101, f = 00100000
data in = 110, f = 01000000
data in = 111, f = 10000000
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Figure 3.89 Karnaugh map to be implemented with a 3:8 decoder.

z1 = x1' x2' x3  + x1x2' x4'  + x1x2     (3.2)

Figure 3.90 Logic diagram for the 3:8 decoder implementation to design Equation
3.2.

Figure 3.91 Structural design module to implement Figure 3.90.

  0 0      0 1     1 1      10
x2x3

    x1

 0       0         1        0        0

 1       1         0        1        1

 0            1           3            2

 4            5           7           6

z1

BIN/OCT

f [0]
f [1]
f [2]
f [3]
f [4]
f [5]
f [6]
f [7]

x3
x2
x1

+x[3]
+x[2]
+x[1] +z1

//structural design using decoder to
//implement a Boolean function
module decoder_3to8_boolean (x, z1);

//define input and output
input [1:3] x;
output z1;

//continued on next page
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Figure 3.91       (Continued)

Figure 3.92 Test bench module for Figure 3.90.

//define internal nets
wire net0, net1, net2, net3, net4, net5, net6, net7;

//instantiate the logic to implement the function
decoder_3to8_df2 inst1 (

.x(x),

.f({net7, net6, net5, net4, net3, net2, net1, net0})
);

or4_df inst2 (
.x1(net1),
.x2(net4),
.x3(net6),
.x4(net7),
.z1(z1)
);

endmodule

//test bench for decoder to implement a Boolean function
module decoder_3to8_boolean_tb;

reg [1:3] x; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
x = invect [3:0];
#10 $display ("x = %b, z1 = %b", x, z1);

end
end

//instantiate the module into the test bench
decoder_3to8_boolean inst1 (

.x(x),

.z1(z1)
);

endmodule
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Figure 3.93 Outputs for Figure 3.90.

Figure 3.94 Waveforms for Figure 3.90.

3.3 Programmable Logic Devices
Programmable logic devices (PLDs) can be used in applications involving the synthe-
size of synchronous sequential machines using traditional techniques.  This section
synthesizes PLDs using Verilog HDL.  There are three main types of programmable
logic devices (PLDs): programmable read-only memories (PROMs), programmable
array logic (PAL) devices, and programmable logic array (PLA) devices.

Current processors and memory are designed using a hardware description lan-
guage (HDL), such as Verilog HDL.  These HDL software systems simplify the task
of logic design using PLDs and also perform logic minimization and test vector

x = 000, z1 = 0
x = 001, z1 = 1 z1 = x1'x2' x3
x = 010, z1 = 0
x = 011, z1 = 0
x = 100, z1 = 1 z1 = x1x2' x4'
x = 101, z1 = 0
x = 110, z1 = 1 z1 = x1x2
x = 111, z1 = 1 z1 = x1x2
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generation for system simulation.  The ultimate goal is to specify the input/output
characteristics of a machine in a high-level language.  The hardware-software system
then synthesizes the machine to yield a minimized, functionally tested unit.

Programmable logic devices can be used in the synthesis (design) of both combi-
national and sequential logic networks.  PLDs are prefabricated integrated circuits
(ICs) in which fused and hard-wired interconnections are used and implement 2-level
switching functions by means of an AND array and an OR array.

The basic organization of a PLD consists of an AND array driving an OR array as
shown in Figure 3.95.  There is a set of inputs Xi containing n input signals and a set of
outputs Zi containing m output signals.  The amount of programming capability de-
pends upon the type of PLD that is used.  For example, a PROM contains a fixed AND
array and a programmable OR array; a PAL contains a programmable AND array and
a fixed OR array; a PLA contains both a programmable AND array and a programma-
ble OR array.  Both PAL and PLA architectures have versions which contain storage
elements in conjunction with combinational logic.  

Figure 3.95 Basic organization of a programmable logic device.

The following sections illustrate the use of PLDs in the synthesis of combinational
logic and synchronous sequential machines.  The PLDs that will be presented are pro-
grammable read-only memories (PROMs), programmable array logic (PAL) devices,
programmable logic arrays (PLAs).

3.3.1  Programmable Read-Only Memory

A PROM is a storage device in which the information is permanently stored; that is,
the data remains valid even after power is turned off.  PROMs are used for application
programs, tables, code conversion, control store for microprogram sequencers, and
other functions in which the stored data is not changed.  The organization of a PROM
is essentially the same as that for other PLDs: an input vector (an address) connects to
an AND array which in turn connects to an OR array which generates the output vector
(or word) for the PROM.

The concept of read-only memories (ROMs) for sequential machine synthesis and
processor control is quite common.  ROMs are also used extensively in developing
new microprogram-controlled systems.  In general, a PROM contains n inputs and m
outputs.  Because the inputs function as an address, there are 2n unique addresses to

Inputs Xi 
n m p

Outputs Zi AND array OR array
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select one of 2n words.  The AND array decodes the address to select a specific word
in memory.

Thus, the interconnections in the AND array are fixed by the manufacturer and
cannot be programmed by the user.  The OR array, however, is programmable.  The in-
terconnections in the OR array are programmed by the user using special internal cir-
cuitry and a programming device to indicate the bit configuration of each word in
memory.  Each interconnection functions as a fuse; thus, the fuse can be left intact (in-
dicating a logic 1) or opened (indicating a logic 0).

Example 3.14 Equation 3.3 will be implemented using a PROM.  Figure 3.96 illus-
trates the internal organization of a representative PROM to implement the four equa-
tions of Equation 3.3.  There are two address inputs x1  and x2  and four outputs f1 , f2 ,
f3, and f4.  Inputs x1  and x2  select one of four words using the AND array decoder:
word 0, 1, 2, or 3 that corresponds to x1x2 = 00, 01, 10, or 11, respectively.

Thus, the AND array cannot be programmed, as indicated by the “hardwired” con-
nection symbol “  .”  The OR array, however, is programmable.  The symbol “”
indicates an intact fuse at the intersection of the AND gate product term and the OR
gate input and provides a logic 1 to the specified OR gate input.  The absence of an 
indicates an open fuse, which provides a logic 0 to the OR gate input.

Figure 3.96 PROM organization with two address inputs: x2 and x2  and four out-
puts: f1 , f2, f3, and f4 to implement Equation 3.3.

f1(x1,x2) = m (0, 2) = x1' x2'  + x1x2'

f2(x1,x2) = m (1, 2) = x1' x2  + x1x2'

f3(x1,x2) = m(0, 3) = x1' x2'  + x1x2

f4(x1,x2) = m (1, 3) = x1' x2  + x1x2 (3.3)
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 

 
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x1 x1' x2 x2'
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The structural design module is shown in Figure 3.97 using built-in primitives that
represent the logic of a typical PROM to implement the combinational logic equations
of Equation 3.3.  The test bench module is shown in Figure 3.98.  The outputs and
waveforms are shown in Figure 3.99 and Figure 3.100, respectively.

Figure 3.97 Structural design module to implement the equations of Equation 3.3.

//structural prom to generate four equations

module prom2 (x1, x2, f1, f2, f3, f4);

//define inputs and outputs
input x1, x2;
output f1, f2, f3, f4;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//define the input logic
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

//define the logic for the and array
and (net5, net2, net4);
and (net6, net2, net3);
and (net7, net1, net4);
and (net8, net1, net3);

//define the logic for the or array
or  (f1, net5, net7);
or  (f2, net6, net7);
or  (f3, net5, net8);
or  (f4, net6, net8);

endmodule
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Figure 3.98 Test bench for the PROM of Figure 3.97 to implement the equations
of Equation 3.3.

Figure 3.99 Outputs for the logic to implement Equation 3.3.

//test bench for the structural prom module

module prom2_tb;

reg x1, x2; //inputs are reg for test bench
wire f1, f2,f3, f4; //outputs are wire for test bench

//display variables
initial
$monitor ("x1 x2 = %b, f1 f2 f3 f4 = %b",

{x1, x2}, {f1, f2, f3, f4});

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
prom2 inst1 (

.x1(x1),

.x2(x2),

.f1(f1),

.f2(f2),

.f3(f3),

.f4(f4)
);

endmodule

x1 x2 = 00, f1 f2 f3 f4 = 1010 f1 = m (0, 2) = x1' x2'  + x1x2'
x1 x2 = 01, f1 f2 f3 f4 = 0101 f2 = m (1, 2) = x1' x2  + x1x2'
x1 x2 = 10, f1 f2 f3 f4 = 1100 f3 = m (0, 3) = x1' x2'  + x1x2
x1 x2 = 11, f1 f2 f3 f4 = 0011 f4 = m (1, 3) = x1' x2  + x1x2
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Figure 3.100 Waveforms for the logic to implement Equation 3.3.

3.3.2  Programmable Array Logic

A programmable array logic (PAL) device is structured with a programmable AND ar-
ray and a non-programmable (fixed) OR array.  The number of gates in the AND array
is not a function of the number of inputs, as for PROMs.  The AND array allows prod-
uct terms to be programmed which then connect to a predefined OR array.  The re-
striction of the prewired OR array is compensated by the wide variety of available
PAL configurations.  Specifying the configuration of the OR array, therefore, is sim-
ply a matter of device selection.

Example 3.15 The equations of Equation 3.4 will be implemented in the PAL device
shown in Figure 3.101, which is the organization of a basic PAL.  Each AND gate has
2n inputs, where n is the number of device inputs.  The symbol “” indicates an intact
fuse, which connects a unique variable — either true or complemented — to one of the
six AND gate inputs.  The absence of an  indicates an open fuse, which supplies a log-
ic 1 to the AND gate.  Thus, the product terms consist only of the input variables spec-
ified by an .

z1 = x1x2 ' + x1' x2

z2 = x1x2x3  + x1' x2' x3'

z3 = x1x2' x3 (3.4)
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Figure 3.101 Organization of a PAL to implement the following equations: z1 =
x1x2' + x1'x2 ;  z2  = x1x2x3 + x1'x2 'x3';  z3  = x1x2 'x3.

All programmed terms of the three input variables x1 , x2 , and x3 are available at
the three outputs z1, z2 , and z3  in a sum-of-minterms or sum-of-products form.  Each
hardwired connection in the OR array indicates that the corresponding product term is
a component of the appropriate output function.

The structural design module is shown in Figure 3.102 using built-in primitives
that represent the logic of a typical PAL device to implement the equations of Equa-
tion 3.4.  The test bench module is shown in Figure 3.103.  The outputs and waveforms
are shown in Figure 3.104 and Figure 3.105, respectively.

More complex PALs contain not only the basic AND-OR array organization but
also additional circuitry for feedback signals and output registers specified by flip-
flops.  The basic organization of a PAL conforms to the general structure of a synchro-
nous sequential machine.  The input drivers, together with the AND-OR arrays, con-
stitute the  next-state logic; the flip-flops are the storage elements; and the drivers
represent the  output logic.

The input equations obtained from input maps are in a sum-of-products form,
which is the requisite format for programming the AND array.  Thus, PALs and other
PLDs are ideally suited for synthesizing synchronous sequential machines.
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x1 x1' x2 x2'
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Figure 3.102 Structural design module to implement the equations of Equation 3.4.

Figure 3.103 Test bench module to implement the equations of Equation 3.4.

//structural pal to generate equations for z1, z2, and z3

module pal (x1, x2, x3, z1,z2, z3);

//define inputs and outputs
input x1, x2, x3;
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net5, net6,

net7, net8, net9, net10, net11;

//define the input logic
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

//define the logic for the and array
and (net7, net1, net4);
and (net8, net1, net3, net5);
and (net9, net2, net4, net6);
and (net10, net2, net3);
and (net11, net1, net4, net5);

//define the logic for the or array
or  (z1, net7, net10);
or  (z2, net8, net9);
or  (z3, net11);

endmodule

//test bench pal to generate equations for z1, z2, and z3

module pal_tb;

reg x1, x2, x3; //inputs are reg for test bench
wire z1, z2, z3; //outputs are wire for test bench

//continued on next page
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Figure 3.103       (Continued)

Figure 3.104 Outputs for the PAL device of Figure 3.101 to implement the equa-
tions of Equation 3.4.

//display variables
initial
$monitor ("x1 x2 x3 = %b, z1, z2, z3 = %b",

{x1, x2, x3}, {z1, z2, z3});

initial //apply input vectors
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
pal inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule

z1 = x1x2' + x1'x2; z2  = x1x2x3 + x1'x2 'x3'; z3 = x1x2 'x3

x1 x2 x3 = 000, z1, z2, z3 = 010
x1 x2 x3 = 001, z1, z2, z3 = 000
x1 x2 x3 = 010, z1, z2, z3 = 100
x1 x2 x3 = 011, z1, z2, z3 = 100
x1 x2 x3 = 100, z1, z2, z3 = 100
x1 x2 x3 = 101, z1, z2, z3 = 101
x1 x2 x3 = 110, z1, z2, z3 = 000
x1 x2 x3 = 111, z1, z2, z3 = 010
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Figure 3.105 Waveforms for the PAL device of Figure 3.101 to implement the
equations of Equation 3.4.

Example 3.16 A 3-bit Gray code counter will be synthesized that counts in the fol-
lowing sequence: 000, 001, 011, 010, 110, 111, 101, 100, 000, ... .  A single PAL de-
vice will be used for both the  next-state logic and the storage elements, which consist
of positive-edge-triggered D flip-flops.  The input maps are shown in Figure 3.106.
The equations for flip-flops y1 , y2 , and y3  are listed in Equation 3.5 in a sum-of-prod-
ucts form.  The logic diagram using PAL technology is shown in Figure 3.107 and is
programmed directly from the sum-of-products input equations of Equation 3.5.  The
only inputs to the counter are the Clock signal and an implied Reset for the flip-flops.

Figure 3.106 Input maps for the Gray code counter.
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Figure 3.107 Logic diagram for the Gray code counter using a PAL device.

Dy1 = y1y3  + y2y3 '

Dy2 = y1 ' y3  + y2y3 '

Dy3 = y1 'y2 ' + y1y2 (3.5)
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All AND array inputs are feedback signals from the state flip-flops through driv-
ers with inverting and noninverting outputs.  The complemented output of flip-flop yi
is fed back to an input driver.  Thus, when flip-flop yi is set (=1), the complemented
output of the driver generates a positive voltage level which is available to all AND
gate inputs.

If the input equation for yi contains a flip-flop variable in its true form, then the
complemented output of the driver is programmed to connect to the appropriate pos-
itive-input AND gate in the AND array.  The  next-state logic consists of the feedback
drivers, the programmable AND array, and the fixed OR array.  Outputs f1 , f2 , and f3
of the OR gates connect to Dy1, Dy2, and Dy3, respectively.  The present state Yj(t) is
fed back through drivers to the AND array and, after an appropriate propagation delay,
appears at the flip-flop D inputs as the next state Yk(t+1).

The structural design module that represents the logic of a typical PAL device to
implement the counter is shown in Figure 3.108 using built-in primitives and instan-
tiated D flip-flops.  The test bench module is shown in Figure 3.109.  The outputs and
waveforms are shown in Figure 3.110 and Figure 3.111, respectively.

Figure 3.108 Structural design module for the 3-bit Gray code counter.

//structural pal to design a Gray code counter
module pal2 (rst_n, clk, y);

input rst_n, clk; //define inputs and outputs
output [1:3] y;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8,

net9, net10, net11, net12, f1, f2, f3;

//define the input drivers
buf (net1, ~y[1]);
not (net2, ~y[1]);

buf (net3, ~y[2]);
not (net4, ~y[2]);

buf (net5, ~y[3]);
not (net6, ~y[3]);

//define the logic for and array, or array, and y[1]
and (net7, net2, net6);
and (net8, net4, net5);
or  (f1, net7, net8);
d_ff_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.d(f1),

.q(y[1])
); //continued on next page
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Figure 3.108       (Continued)

Figure 3.109 Test bench module for the 3-bit Gray code counter.

//define the logic for and array, or array, and y[2]
and (net9, net1, net6);
and (net10, net4, net5);
or  (f2, net9, net10);
d_ff_bh inst2 (

.rst_n(rst_n),

.clk(clk),

.d(f2),

.q(y[2])
);

//define the logic for and array, or array, and y[3]
and (net11, net1, net3);
and (net12, net2, net4);
or  (f3, net11, net12);
d_ff_bh inst3 (

.rst_n(rst_n),

.clk(clk),

.d(f3),

.q(y[3])
);

endmodule

//test bench for Gray code counter

module pal2_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench

//display outputs
initial
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end //continued on next page
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Figure 3.109       (Continued)

Figure 3.110 Outputs for the 3-bit Gray code counter.

Figure 3.111 Waveforms for the 3-bit Gray code counter.

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define length of simulation
begin

#145 $finish;
end

//instantiate the module into the test bench
pal2 inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule

count = 000
count = 001
count = 011
count = 010

count = 110
count = 111
count = 101
count = 100
count = 000
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Example 3.17 PAL devices can be used to implement any synchronous sequential
machine, including a sequence detector.  A Mealy machine will be synthesized that
checks for the sequence 01111110 on a serial input line x1.  Input x1  remains at a high
voltage level until transmission is to begin, at which time x1  assumes a low voltage
level for one bit period, providing a negative transition.

The state diagram for the Mealy machine is shown in Figure 3.112.  The machine
remains in state a until the start of transmission is indicated by a high-to-low transition
on input x1 .  The bit sequence is then received beginning with bit 0, one bit per clock
period.  When the first 1 bit has been detected in state b, any subsequent 0 bit that oc-
curs before six consecutive 1s returns the machine to state b to begin checking for a
new valid sequence.  Similarly, seven consecutive 1s returns the machine to state a to
begin checking for a new valid sequence.  Only when x1 = 01111110 is output z1 as-
serted.

Figure 3.112 State diagram for the Mealy machine of Example 3.17.
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The input maps are shown in Figure 3.113.  In state a (y1y2y3 = 000), the next
states for flip-flops y1  and y2  are 0 and 0, respectively, regardless of the value of x1 .
The next state for y3 , however, is determined by the value of x1 ; if x1 = 0, then the next
state for y3  is 1, otherwise the next state is 0.  In states d, e, f, and g, flip-flop y1 has a
next state of 1 only if x1 = 1.  Therefore, x1  is entered in the map as a map-entered vari-
able.

Similarly, in states b, c, d, and e, flip-flop y2  has a next value of 1 only if x1 = 1.
In the input map for flip-flop y3 , the next state is never an unconditional 0, irrespective
of the path taken.  The next state will be either an unconditional 1 or a value dependent
upon x1 ; that is, if x1 = 0, then y3 = 1.  Since a logic 1 = x1 + x1 ', therefore, every min-
term location in the map can be given a value of x1 '.  This accounts for the x1 ' term in
the equation for Dy3 of the input equations shown in Equation 3.6.  The x1 term of the
logic 1 expression must now be taken into account.  This is very easily accomplished
by reverting to the minterm value of 1, which generates the two remaining terms for
Dy3.  The PAL logic diagram is illustrated in Figure 3.114.

Figure 3.113 Input maps for the Mealy machine of Figure 3.112.
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Figure 3.114 Logic diagram for the Mealy machine of Figure 3.112 using a PAL
device.
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The structural design module that represents the logic of a typical PAL device to
implement the design is shown in Figure 3.115 using built-in primitives and instanti-
ated D flip-flops.  The test bench module is shown in Figure 3.116.  The outputs and
waveforms are shown in Figure 3.117 and Figure 3.118, respectively.

Figure 3.115 Structural design module for the PAL device of Example 3.17 to
detect the sequence x1 = 01111110.

//structural pal to detect the sequence x1 = 01111110

module pal3 (rst_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9,

net10, net11, net12, net13, net14, net15, net16,
f1, f2, f3;

//define the input drivers
buf (net1, ~x1);
not (net2, ~x1);

buf (net3, ~y[1]);
not (net4, ~y[1]);

buf (net5, ~y[2]);
not (net6, ~y[2]);

buf (net7, ~y[3]);
not (net8, ~y[3]);

//define the logic for and array, or array, and y[1]
and (net9, net2, net4, net8);
and (net10, net2, net6, net7);
or  (f1, net9, net10);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(f1),
.q(y[1])
);

//continued on next page
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Figure 3.115       (Continued)

Figure 3.116 Test bench module for the PAL device of Example 3.17.

//define the logic for and array, or array, and y[2]
and (net11, net2, net3, net8);
and (net12, net2, net6, net7);
or  (f2, net11, net12);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(f2),
.q(y[2])
);

//define the logic for and array, or array, and y[3]
and (net13, net1);
and (net14, net3, net5, net8);
and (net15, net4, net6);
or  (f3, net13, net14, net15);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(f3),
.q(y[3])
);

//define the logic for output z1
and (z1, net1, net4, net5, net7, ~clk);

endmodule

//test bench to detect the sequence x1 = 01111110
module pal3_tb;

reg rst_n, clk,x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//continued on next page
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Figure 3.116       (Continued)

Figure 3.117 Outputs for the PAL device to detect the sequence x1 = 01111110.

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define input sequence
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;
//---------------------------------------------------

#25 x1 = 1'b1;
#120 x1 = 1'b0;

#40 $stop;
end

//instantiate the module into the test bench
pal3 inst1 (

.rst_n(rst_n),

.clk(clk),

.x1(x1),

.y(y),

.z1(z1)
);

endmodule

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 0, state = 100, z1 = 0
x1 = 0, state = 100, z1 = 1
x1 = 0, state = 001, z1 = 0
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Figure 3.118 Waveforms for a PAL device to detect the sequence x1 = 01111110.

Example 3.18 As a final example utilizing programmable array logic, a PAL device
will be used to implement the Boolean equations specified in Equation 3.7.  When de-
signing with a PAL, the Boolean expressions should be minimized, if necessary, to re-
duce the number of product terms in each expression of the AND-OR structure.

Using Boolean algebra or Karnaugh maps, the above functions convert to the sum-
of-products forms shown in Equation 3.8.  The PAL logic diagram is illustrated in
Figure 3.119.

z1(x1, x2, x3) = m(1, 2, 6)

z2(x1, x2, x3) = m(0, 1, 5, 6, 7)

z3(x1, x2, x3) = m(1, 2, 4, 6, 7) (3.7)

z1 = x1' x2' x3  + x2x3 '

z2  = x1' x2'  + x1x2 + x2' x3

z3  = x1' x2' x3  + x2x3 ' + x1x2  + x1x3'

= z1 + x1x2  + x1x3' (3.8)
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Figure 3.119 A PAL device using three inputs and three outputs to implement the
Boolean expressions of Equation 3.8.

Each input of Figure 3.119 is connected to a buffer-driver which generates both
true and complemented outputs of the corresponding input.  The device consists of
eight AND gates forming the programmable AND array and three OR gates which
form the fixed OR array.  Each AND gate has eight fused programmable inputs as
shown by the eight vertical lines intersecting each horizontal line.  The horizontal line
is called the product line and symbolizes the multiple-input configuration of the AND
gate.  The output of each AND gate is the corresponding product term.

The structural design module is shown in Figure 3.120 using built-in primitives.
The test bench module is shown in Figure 3.121, which applies all eight combinations
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of the three variables x1x2x3.  The outputs and waveforms are shown in Figure 3.122
and Figure 3.123, respectively.

Figure 3.120 Structural design module to implement the Boolean equations of
Equation 3.8.

//structural pal to implement three equations:
//z1 = x1'x2'x3 + x2x3'
//z2 = x1'x2' + x1x2 + x2'x3
//z3 = z1 + x1x2 + x1x3'
module pal4 (x1, x2, x3, z1, z2, z3);

input x1, x2, x3; //define inputs and outputs
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;
wire net10, net11, net12, net13, net14, net15, net16;

//define the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

buf (net7, z1);
not (net8, z1);

//define the logic for the and array and the or array for z1
and (net9, net2, net4, net5);
and (net10, net3, net6);
or  (z1, net9, net10);

//define the logic for the and array and the or array for z2
and (net11, net2, net4);
and (net12, net1, net3);
and (net13, net4, net5);
or  (z2, net11, net12, net13);

//define the logic for the and array and the or array for z3
and (net14, net7);
and (net15, net1, net3);
and (net16, net1, net6);
or  (z3, net14, net15, net16);

endmodule
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Figure 3.121 Test bench module to implement the Boolean equations of Equation
3.8.

//test bench to implement the three equations of pal4
//z1 = x1'x2'x3 + x2x3'
//z2 = x1'x2' + x1x2 + x2'x3
//z3 = z1 + x1x2 + x1x3'

module pal4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg  x1, x2, x3;
wire z1, z2, z3;

//display variables
initial
$monitor ("x1 x2 x3 = %b, z1 z2 z3 = %b",

{x1, x2, x3}, {z1, z2, z3});

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
pal4 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule
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Figure 3.122 Outputs for the Boolean equations of Equation 3.8.

Figure 3.123 Waveforms for the Boolean equations of Equation 3.8.

3.3.3  Programmable Logic Array

Programmable logic arrays (PLAs) offer a high degree of flexibility, because both the
AND array and the OR array are programmable.  Unlike the AND array for a PROM,
the AND array for a PLA does not require 2n AND gates to accommodate all combi-
nations of n inputs.  A PLA has n input variables, x1 , x2 , ... , xn and m output functions,
z1, z2, ... , zm.  The OR array permits each OR gate to access any product term.  Thus,
the programmable OR array allows all OR gates to access the same product terms si-
multaneously.  Each output zi is generated from a sum-of-product expression which is
a function of the input variables.

x1 x2 x3 = 000, z1 z2 z3 = 010
x1 x2 x3 = 001, z1 z2 z3 = 111
x1 x2 x3 = 010, z1 z2 z3 = 101
x1 x2 x3 = 011, z1 z2 z3 = 000

x1 x2 x3 = 100, z1 z2 z3 = 001
x1 x2 x3 = 101, z1 z2 z3 = 010
x1 x2 x3 = 110, z1 z2 z3 = 111
x1 x2 x3 = 111, z1 z2 z3 = 011
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The output function in a PLA is limited only by the number of AND gates in the
AND array, since all AND gates can be programmed to connect to all OR gates.  The
output function in a PAL, however, is restricted not only by the number of AND gates
in the AND array, but also by the fixed connections from the AND array outputs to the
OR array.

Example 3.19 The basic organization of a PLA is shown in Figure 3.124 and will be
used in this example to implement the Boolean functions of Equation 3.9.  Both the
AND array and the OR array are programmable.  Since both arrays are programmable,
the PLA has more programming capability and thus, more flexibility than the PROM
or PAL.

Figure 3.124 Basic organization of a PLA implementation using three inputs and
three outputs.

z1 = x1x2 ' + x1' x2

z2  = x1x3  + x1' x3'

z3  = x1x2 ' + x1x3  + x1' x2' x3' (3.9)
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The structural design module is shown in Figure 3.125 using built-in primitives.
The test bench module is shown in Figure 3.126, which applies all eight combinations
of the three variables x1x2x3.  The outputs and waveforms are shown in Figure 3.127
and Figure 3.128, respectively.

Figure 3.125 Structural design module to implement the three equations of Equa-
tion 3.9.

//structural pla to implement three equations:
//z1 = x1x2' + x1'x2
//z2 = x1x3 + x1'x3'
//z3 = x1x2' + x1x3 + x1'x2'x3'

module pla (x1, x2, x3, z1, z2, z3);

//define inputs and outputs
input x1, x2, x3;
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11;

//define the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

//define the logic for the and array and the or array for z1
and (net7, net1, net4);
and (net8, net2, net3);
or  (z1, net7, net8);

//define the logic for the and array and the or array for z2
and (net9, net1, net5);
and (net10, net2, net6);
or  (z2, net9, net10);

//define the logic for the and array and the or array for z3
and (net11, net2, net4, net6);
or  (z3, net7, net9, net11);

endmodule
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Figure 3.126 Test bench module to implement the three equations of Example
3.19.

//test bench to implement the three equations of pla

module pla_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg  x1, x2, x3;
wire z1, z2, z3;

//display variables
initial
$monitor ("x1 x2 x3 = %b, z1 z2 z3 = %b",

{x1, x2, x3}, {z1, z2, z3});

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
pla inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule
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Figure 3.127 Outputs for the Boolean functions of Equation 3.9.

Figure 3.128 Waveforms for the Boolean functions of Equation 3.9.

Example 3.20 PLAs are characterized by the number of input variables, the number
of product terms, and the number of output functions.  All Boolean expressions can be
decomposed into a sum-of-products representation.  For example, the exclusive-OR
function x1   x2  equates to x1x2 ' + x1 'x2 .  The equations shown in Equation 3.10 will
be implemented in a programmable representation using the PLA device shown in
Figure 3.129.  The symbol  indicates an intact fuse; the absence of an  indicates an
open fuse, where the unconnected input assumes a logic 1 voltage level for an AND
gate input and a logic 0 voltage level for an OR gate input.

x1 x2 x3 = 000, z1 z2 z3 = 011
x1 x2 x3 = 001, z1 z2 z3 = 000
x1 x2 x3 = 010, z1 z2 z3 = 110
x1 x2 x3 = 011, z1 z2 z3 = 100

x1 x2 x3 = 100, z1 z2 z3 = 101
x1 x2 x3 = 101, z1 z2 z3 = 111
x1 x2 x3 = 110, z1 z2 z3 = 000
x1 x2 x3 = 111, z1 z2 z3 = 011

z1 = x1x2 ' + x1 'x2

z2 = x1' x2x3  + x1x3 '  + x4' (3.10)
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Figure 3.129 Implementation of a multiple-input, multiple-output, 2-level logic
circuit using a PLA device.  Output z1 = x1x2' + x1'x2.  Output z2  = x1'x2x3 + x1x3 ' +
x4'.

The structural design module is shown in Figure 3.130 using built-in primitives.
The test bench module is shown in Figure 3.131, which applies all 16 combinations of
the four variables x1x2x3x4 .  The outputs and waveforms are shown in Figure 3.132
and Figure 3.133, respectively.

Figure 3.130 Structural design module to implement the two equations of Equation
3.10.
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//structural pla to implement two equations:
//z1 = x1x2' + x1'x2
//z2 = x1'x2x3 + x1x3' + x4'

module pla2 (x1, x2, x3, x4, z1, z2);
//continued on next page
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Figure 3.130       (Continued)

Figure 3.131 Test bench module to implement the two equations of Equation 3.10.

//define inputs and outputs
input x1, x2, x3, x4;
output z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8,

net9, net10, net11, net12, net13;

//define the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

buf (net7, x4);
not (net8, x4);

//define the logic for the and array and the or array for z1
and (net9, net1, net4);
and (net10, net2, net3);
or  (z1, net9, net10);

//define the logic for the and array and the or array for z2
and (net11, net2, net3, net5);
and (net12, net1, net6);
and (net13, net8);
or  (z2, net11, net12, net13);

endmodule

//test bench to implement the two equations of pla2

module pla2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1, z2;

//continued on next page
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Figure 3.131       (Continued)

Figure 3.132 Outputs to display the results of Equation 3.10.

Figure 3.133 Waveforms to display the results of Equation 3.10.

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 z2 = %b",

{x1, x2, x3, x4}, {z1, z2});
end

end

//instantiate the module into the test bench as a single line
pla2 inst1 (x1, x2, x3, x4, z1, z2);
endmodule

x1 x2 x3 x4 = 0000, z1 z2 = 01
x1 x2 x3 x4 = 0001, z1 z2 = 00
x1 x2 x3 x4 = 0010, z1 z2 = 01
x1 x2 x3 x4 = 0011, z1 z2 = 00
x1 x2 x3 x4 = 0100, z1 z2 = 11
x1 x2 x3 x4 = 0101, z1 z2 = 10
x1 x2 x3 x4 = 0110, z1 z2 = 11
x1 x2 x3 x4 = 0111, z1 z2 = 11

x1 x2 x3 x4 = 1000, z1 z2 = 11
x1 x2 x3 x4 = 1001, z1 z2 = 11
x1 x2 x3 x4 = 1010, z1 z2 = 11
x1 x2 x3 x4 = 1011, z1 z2 = 10
x1 x2 x3 x4 = 1100, z1 z2 = 01
x1 x2 x3 x4 = 1101, z1 z2 = 01
x1 x2 x3 x4 = 1110, z1 z2 = 01
x1 x2 x3 x4 = 1111, z1 z2 = 00
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Example 3.21 The synthesis of synchronous sequential machines can be realized us-
ing PLAs in a manner analogous to that used for PROMs and PALs.  The assignment
of state codes, however, is more crucial, since a judicious choice of state codes can re-
duce the number of product terms required, and thus, reduce the size of the PLA de-
vice.

Figure 3.134 illustrates a state diagram for a Moore machine with one input x1  and
two outputs z1 and z2 .  The machine will be implemented using a PLA and three pos-
itive-edge-triggered D flip-flops.  Because the outputs are asserted at time t1 and deas-
serted at t3, the  output logic simply decodes states c (y1y2y3 = 111) and
f (y1y2y3 = 100), asserting outputs z1 and z2 , respectively.  Glitches may occur on
these Moore outputs, however, unless state codes are assigned, such that no state tran-
sition will generate a transient state equal to state c or state f .

Figure 3.134 State diagram for the Moore machine of Example 3.21.  Unused states
are: y1y2y3 = 101 and 110.

Using the rules for state code adjacency, states a and f should be adjacent, because
the next state for both is state a.  Also, states c and d should be adjacent, because they
are both possible next states for state b and have the same next state, e.  The state as-
signment shown in Figure 3.134 precludes the possibility of glitches on outputs z1 and

a

y1y2y3
0 0  0

b
0 0 1

c
z1

1 1  1

e
0 1 0

d
0 1 1

f
z2

1 0  0

x1' x1

x1'

x1

z1t1t3

z2t1t3
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z2 .  This can be verified by checking all paths to determine if any state transition pro-
duces a transient state that is identical to the state codes for states c or f.  This condition
can occur only if two or more flip-flops change state for a particular state transition.

The path from state a to state b produces a change of state for only one flip-
flop (y3).  Similarly, the path from state b to state d produces only one change — y2
changes from 0 to 1.  Although the transition from state b to state c produces two
changes, flip-flop y3  remains set — y3  must be reset for the machine to enter state f and
assert output z2 .

The path from state d to state e results in only one change of flip-flop variable (y3).
Both y1  and y3 change state when the machine proceeds from state c to state e; how-
ever, y2  remains set, thus negating a glitch on z2  in state f.  The path from state e to
state f produces a change to both y1  and y2, but flip-flop y3  remains reset — y3  must
be set for the machine to enter state c and assert output z1.  Finally, the path from state
f to state a occurs when only y1  changes state.  Thus, no state transition will produce a
glitch on either output z1 or z2 .

The input maps are shown in Figure 3.135 as obtained from the state diagram us-
ing input x1  as a map-entered variable.  A Karnaugh map yields a minimum sum-of-
products expression, which is a requirement for generating output functions for a PLA
device.  Five product terms are required as shown in Equation 3.11.

Figure 3.135 Input maps for the Moore machine of Figure 3.134.

  0 0      0 1     1 1      10
y2y3

    y1

 0       0        x1       0         1

 1       0        –        0         –

 0            1           3            2

 4            5           7           6

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         1        1         0

 1       0         –        1         –

 0            1           3            2

 4            5           7           6

  0 0      0 1     1 1      10
y2y3

    y1

 0      x1        1        0         0

 1       0         –        0         –

 0            1           3            2

 4            5           7           6

Dy1 Dy2

Dy3

Dy1 = y2 'y3x1  + y2y3 '

Dy2 = y3

Dy3 = y1 'y2 'x1  + y2 'y3 (3.11)
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The output maps are shown in Figure 3.136.  The output equations can be mini-
mized if the minterms for z1 and z2  are combined with unused minterm y1y2y3 = 101
or 110.  If these unused states are to be used for minimization, however, they must not
function as transient states for any state sequence that does not include the correspond-
ing output.

The only transition that may pass through unused state y1y2y3 = 101 is the path
from state b to state c.  This presents no hazard for output z1, however, because this se-
quence includes z1.  Output z1 may be asserted slightly early, but no glitch will be gen-
erated.  Therefore, a 1 can be inserted in y1y2y3 = 101 in order to minimize the
equation for z1.

This is not true for z2 , however.  The path from state b to state c does not include
output z2  in either the initial state or the destination state; therefore, a 0 must be in-
serted in state y1y2y3 = 101 in the output map for z2 .  The output equations are shown
in Equation 3.12.

Figure 3.136 Output maps for the Moore machine of Figure 3.134.

The logic diagram is shown in Figure 3.137 using a PLA with positive-edge-trig-
gered D flip-flops.  To obtain the logic function for Dy1, Dy2, and Dy3, the AND array
is programmed according to the product terms of Equation 3.11 and the OR array is
programmed to obtain the appropriate sum-of-products for the respective Dyi input.  In
the same manner, the AND and OR arrays are programmed to generate outputs z1 and
z2  according to Equation 3.12.

The structural design module that represents the logic of a typical PAL device to
implement the design is shown in Figure 3.138 using built-in primitives and instanti-
ated D flip-flops.  The test bench module is shown in Figure 3.139.  The outputs and
waveforms are shown in Figure 3.140 and Figure 3.141, respectively.
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Figure 3.137 Implementation of the Moore machine of Figure 3.134 using a PLA
device.
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Figure 3.138 Structural design module for the Moore machine of Figure 3.134
using a PLA device.

//structural pla to implement the three equations:
//Dy1 = y2'y3x1 + y2y3'
//Dy2 = y3
//Dy3 = y1'y2'x1 + y2'y3

module pla3 (rst_n, clk, x1, y, z1, z2);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;
wire net10, net11, net12, net13, net14, net15, f1, f2, f3;

//define the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, y[1]);
not (net4, y[1]);

buf (net5, y[2]);
not (net6, y[2]);

buf (net7, y[3]);
not (net8, y[3]);

//define the logic for the and array, the or array, and y[1]
and (net9, net1, net6, net7);
and (net10, net5, net8);
or  (f1, net9, net10);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(f1),
.q(y[1])
);

//continued on next page
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Figure 3.138       (Continued)

Figure 3.139 Test bench module for the Moore machine of Figure 3.134 using a
PLA device.

//define the logic for the and array, the or array, and y[2]
and (net11, net7);
or  (f2, net11);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(f2),
.q(y[2])
);

//define the logic for the and array, the or array, and y[3]
and (net12, net1, net4, net6);
and (net13, net6, net7);
or  (f3, net12, net13);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(f3),
.q(y[3])
);

//define the logic for output z1
and (net14, net3, net7);
or  (z1, net14);

//define the logic for output z2
and (net15, net3, net6, net8);
or  (z2, net15);

endmodule

//test bench to implement the three equations of pla3
module pla3_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1;
wire [1:3] y;
wire z1, z2; //continued on next page



3.3     Programmable Logic Devices     459

Figure 3.139       (Continued)

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 z2 = %b", x1, y, {z1, z2});

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0;//reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
 @ (posedge clk)

x1 = 1'b0;@ (posedge clk) //go to state_a (000)
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b1;@ (posedge clk) //go to state_c (111)

//assert z1
x1 = $random;@ (posedge clk) //go to state_e (010)
x1 = $random;@ (posedge clk) //go to state_f (100)

//assert z2
x1 = $random;@ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1;@ (posedge clk) //go to state_b (001)
x1 = 1'b0;@ (posedge clk) //go to state_d (011)
x1 = $random;@ (posedge clk) //go to state_e (010)
x1 = $random;@ (posedge clk) //go to state_f (100)

//assert z2
x1 = $random;@ (posedge clk) //go to state_a (000)

#10 $stop;
end

//----------------------------------------------------------
//instantiate the module into the test bench as a single line
pla3 inst1 (rst_n, clk, x1, y, z1, z2);

endmodule
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Figure 3.140 Outputs for the Moore machine of Figure 3.134 using a PLA device.

Figure 3.141 Waveforms for the Moore machine of Figure 3.134 using a PLA
device.

3.4 Iterative Networks
An iterative network is a logical structure composed of identical cells.  It is a cascade
of identical combinational or sequential circuits (cells) in which the first or last cells
may be different than the other cells in the network.  Since an iterative network con-
sists of identical cells, it is only necessary to design a typical cell, and then to replicate
that cell for the entire network.

x1 = 0, state = 000, z1 z2 = 00
x1 = 1, state = 000, z1 z2 = 00
x1 = 1, state = 001, z1 z2 = 00
x1 = 0, state = 111, z1 z2 = 10

x1 = 1, state = 010, z1 z2 = 00
x1 = 1, state = 100, z1 z2 = 01
x1 = 1, state = 000, z1 z2 = 00
x1 = 0, state = 001, z1 z2 = 00
x1 = 1, state = 011, z1 z2 = 00
x1 = 1, state = 010, z1 z2 = 00
x1 = 1, state = 100, z1 z2 = 01
x1 = 1, state = 000, z1 z2 = 00
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An iterative machine (or network) may consist of combinational logic arranged in
a linear array in which signals between cells propagate in one direction only.  A parity
checker and comparator are examples of combinational iterative networks.  Or, the
iterative network may consist of sequential cells, such as found in shift registers and
simple binary counters.

Example 3.22 This example demonstrates a method to design a single-bit detection
circuit.  In this example, a typical cell will be designed, then instantiated four times
into a higher-level module to detect a single bit in a 4-bit input vector x[1:4].  Figure
3.142 shows the block diagram of a typical cell and Figure 3.143 shows the internal
logic of the cell, which will be instantiated four times into the higher-level circuit of
Figure 3.144.

Figure 3.142 Typical cell for a single-bit detection circuit that will be instantiated
four times into a higher-level structural module.

Figure 3.143 Internal logic for a typical cell for the single-bit detection circuit of
Example 3.22.

In a combinational network, the operation is complete after an appropriate prop-
agation delay, at which time the outputs are stable.  In a functionally equivalent se-
quential machine, the operation is complete only when all inputs have been sequenced
through the machine and the outputs have stabilized.  Thus, k clock cycles are required
to establish the final machine outputs, where k is the number of input sets.  That is, one
clock is necessary to process each set of inputs xij, where 1  i  k and 1  j  n.
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Figure 3.144 Block diagram to detect a single 1 bit in a 4-bit input vector x[1:4].

In Figure 3.144, the input and output lines are defined as follows:

• y1_in is an active-high input line indicating that a single 1 bit was detected up
to that cell.

• y0_in is an active-high input line indicating that no 1 bits were detected up to
that cell.

• y1_out is an active-high output line indicating that a single 1 bit was detected
up to and including that cell.

• y0_out is an active-high output line indicating that no 1 bits were detected up to
and including that cell.

The structural design module for the typical cell is shown in Figure 3.145 using
built-in logic primitives.  The structural design module for the single-bit detection cir-
cuit and the test bench module are shown in Figure 3.146 and Figure 3.147, respec-
tively.  The outputs are shown in Figure 3.148.
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Figure 3.145 Typical cell that is instantiated four times into a structural module to
detect a single 1 bit in an input vector x[1:4].

Figure 3.146 Structural design module to detect a single 1 bit in a 4-bit input vector
x[1:4] in which the typical cell of Figure 3.145 is instantiated four times.

 //typical cell for single-bit detection
 module sngl_bit_cell (x1_in, y1_in, y0_in, y1_out, y0_out);

 input x1_in, y1_in, y0_in;
 output y1_out, y0_out;

 not inst1 (net1, x1_in);
 and inst2 (net2, net1, y1_in);
 and inst3 (net3, x1_in, y0_in);
 and inst4 (y0_out, net1, y0_in);
 or inst5 (y1_out, net2, net3);

 endmodule

//structural single-bit detection module
module sngl_bit_detect2 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//instantiate the single-bit cell modules
//cell 1
sngl_bit_cell  inst1(

.x1_in(x1),

.y1_in(1'b0), 

.y0_in(1'b1),

.y1_out(net1_1),

.y0_out(net1_0)
);

//cell 2
sngl_bit_cell  inst2(

.x1_in(x2),

.y1_in(net1_1), 

.y0_in(net1_0),

.y1_out(net2_1),

.y0_out(net2_0)
);

//continued on next page
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Figure 3.146       (Continued)

Figure 3.147 Test bench module for the single-bit detector.

//cell 3
sngl_bit_cell  inst3(

.x1_in(x3),

.y1_in(net2_1), 

.y0_in(net2_0),

.y1_out(net3_1),

.y0_out(net3_0)
);

//cell 4
sngl_bit_cell  inst4(

.x1_in(x4),

.y1_in(net3_1), 

.y0_in(net3_0),

.y1_out(z1)
);

endmodule

//test bench for the single-bit detection module
module sngl_bit_detect2_tb;

reg x1, x2, x3, x4;
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end
//instantiate the module into the test bench
sngl_bit_detect2 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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Figure 3.148 Outputs for the single-bit detection module of Figure  3.146.

Example 3.23 This example repeats Example 3.22 for a single-bit detection; how-
ever, built-in primitives will be used to design the four cells using the logic diagram of
Figure 3.143 for each cell.  The general equations for celli are shown in Equation 3.13.
The input vector consists of four bits: x1x2x3x4 .  The equations for the single-bit
detector are shown in Equation 3.14 for each cell.  As stated previously, the first and
last cell of the network may be different than the other cells.  This is evident in the
logic diagram of the iterative network shown in Figure 3.149.

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 1
x1x2x3x4 = 0011, z1 = 0
x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 0
x1x2x3x4 = 0110, z1 = 0
x1x2x3x4 = 0111, z1 = 0

x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 0
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 0
x1x2x3x4 = 1100, z1 = 0
x1x2x3x4 = 1101, z1 = 0
x1x2x3x4 = 1110, z1 = 0
x1x2x3x4 = 1111, z1 = 0

yi(1) = xi 'yi – 1(1)  + xi yi – 1(0)

yi(0) = xi 'yi – 1(0) (3.13)

Bit 1 cell y1(1) = x1 One 1

y1(0) = x1' No 1s

Bit 2 cell y2(1) = y1(1) x2'  + y1(0) x2 One 1

y2(0) = y1(0) x2' No 1s

Bit 3 cell y3(1) = y2(1) x3'  + y2(0) x3 One 1

y3(0) = y2(0) x3' No 1s

Bit 4 cell y4(1) = y3(1) x4'  + y3(0) x4 One 1 to assert output z1

y4(0) = y3(0) x4' No 1s (3.14)
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Figure 3.149 Iterative network to detect a single 1 bit in an input vector of x1x2x3x4.

Referring to the iterative network logic diagram, the leftmost cell (cell1) is simply
an inverter.  Cell2 and cell3 are identical, but cell4 is different than the other cells.  The
output of cell4, indicating that the input vector contained a single 1 bit, is z1 from

+x1

Cell2

+y2(1)

+y2(0)

+x2

net1

net2 net3

net4

net5

net6
inst1

inst2

inst3

inst4

inst5

inst6

Cell3

+y3(1)

+y3(0)

+x3

net7 net8

net9

net10

net11

inst7

inst8

inst9

inst10

inst11

Cell4

+z1

+x4

net12 net13

net14

inst12

inst13

inst14

inst15



3.4     Iterative Networks     467

instantiation inst15.  Output z1 will be a logical 1 if the previous cells detected a single
1 bit and x4  = 0 or if the previous cells detected all 0s and x4  = 1.

The structural design module is shown in Figure 3.150 using built-in primitives.
The test bench, outputs, and waveforms are shown in Figure 3.151, Figure 3.152, and
Figure 3.153, respectively.

Figure 3.150 Structural design module for the single-bit detector iterative network
of Figure 3.149.

//single bit detector
module sngl_bit_detect (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//cell 1 ************************************************
not   inst1   (net1, x1);

//cell 2 ************************************************
not   inst2   (net2, x2);
and   inst3   (net3, net2, x1);
and   inst4   (net4, x2, net1);
and   inst5   (net5, net2, net1);
or    inst6   (net6, net3, net4);

//cell 3 ************************************************
not   inst7   (net7, x3);
and   inst8   (net8, net7, net6);
and   inst9   (net9, x3, net5);
and   inst10  (net10, net7, net5);
or    inst11  (net11, net8, net9);

//cell 4 ************************************************
not   inst12  (net12, x4);
and   inst13  (net13, net12, net11);
and   inst14  (net14, x4, net10);
or #1 inst15  (z1, net13, net14);

endmodule
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Figure 3.151 Test bench module for the single-bit detector iterative network of Fig-
ure 3.149.

Figure 3.152 Outputs for the single-bit detector iterative network of Figure 3.149.

//test bench for single bit detection
module sngl_bit_detect_tb;

reg x1, x2, x3, x4;
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sngl_bit_detect inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 1
x1x2x3x4 = 0011, z1 = 0
x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 0
x1x2x3x4 = 0110, z1 = 0
x1x2x3x4 = 0111, z1 = 0

x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 0
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 0
x1x2x3x4 = 1100, z1 = 0
x1x2x3x4 = 1101, z1 = 0
x1x2x3x4 = 1110, z1 = 0
x1x2x3x4 = 1111, z1 = 0
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Figure 3.153 Waveforms for the single-bit detector iterative network of Figure
3.149.

Example 3.24 As a final example for iterative networks, Example 3.23 will be re-
peated to illustrate an alternative method to design a single-bit detector.  In this im-
plementation, all four cells are identical, including the first cell and the fourth cell, as
shown in Figure 3.154.  The logic diagram is shown in Figure 3.155.

Figure 3.154 Single-bit detector using identical cells.

The structural design module is shown in Figure 3.156 using built-in primitives.
The OR built-in primitive for cell 4 delays output z1 by one time unit to avoid possible
glitches.  The test bench module is shown in Figure 3.157 using a for loop, which exe-
cutes a procedural statement or a block of procedural statements a specified number of
times.  The outputs and waveforms are shown in Figure 3.158 and Figure 3.159,
respectively.

Cell1 Cell2 Cell3 Cell4Logic 0

Logic 1

Single 1 Single 1 Single 1

All 0s All 0s All 0s All 0s

Single 1

x1                         x2                         x3                         x4
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Figure 3.155 Logic diagram for a single-bit detector using four identical cells.
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Figure 3.156 Design module for the single-bit detection circuit of Figure 3.155
using four identical cells.

//single bit detector
module sngl_bit_detect1 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//cell 1 ************************************************
not inst1 (net1, x1);
and inst2 (net2, net1, 1'b0);
and inst3 (net3, x1, 1'b1);
and inst4 (net4, net1, 1'b1);
or inst5 (net5, net2, net3);

//cell 2 ************************************************
not inst6 (net6, x2);
and inst7 (net7, net6, net5);
and inst8 (net8, x2, net4);
and inst9 (net9, net6, net4);
or inst10 (net10, net7, net8);

//cell 3 ************************************************
not inst11 (net11, x3);
and inst12 (net12, net11, net10);
and inst13 (net13, x3, net9);
and inst14 (net14, net11, net9);
or inst15 (net15, net12, net13);

//cell 4 ************************************************
not inst16 (net16, x4);
and inst17 (net17, net16, net15);
and inst18 (net18, x4, net14);
and inst19 (net19, net16, net14);
or #1 inst20 (z1, net17, net18);

endmodule
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Figure 3.157 Test bench for the single-bit detection module of Figure 3.156.

Figure 3.158 Outputs for the single-bit detection module of Figure 3.156.

//test bench for single bit detection
module sngl_bit_detect1_tb;

reg x1, x2, x3, x4;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sngl_bit_detect1 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

 
endmodule

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 1
x1x2x3x4 = 0011, z1 = 0
x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 0
x1x2x3x4 = 0110, z1 = 0
x1x2x3x4 = 0111, z1 = 0

x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 0
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 0
x1x2x3x4 = 1100, z1 = 0
x1x2x3x4 = 1101, z1 = 0
x1x2x3x4 = 1110, z1 = 0
x1x2x3x4 = 1111, z1 = 0
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Figure 3.159 Waveforms for the single-bit detection module of Figure 3.156.

3.5  Error Detection in Synchronous 
Sequential Machines

Before discussing error detection in synchronous sequential machines, a brief presen-
tation will be given on general error detection and correction.  Transferring data within
a computer or between computers is subject to error, either permanent or transient.
Permanent errors can be caused by hardware malfunctions; transient errors can be
caused by transmission errors due to noise.  In either case, the data error must at least
be detected and preferably corrected.

3.5.1  Overview of Error Detection and Correction

Parity An extra bit can be added to a message to make the overall parity of the code
word either odd or even; that is, the number of 1s in the code word — message bits plus
parity bit — will be either odd or even.  The parity bit to maintain even parity for a 4-
bit message x1x2x3x4  can be generated by modulo-2 addition, as shown in Equation
3.15.  The parity bit for odd parity generation is the complement of Equation 3.15,
which is shown in Equation 3.16 and designed in Figure 3.160.

Parity bit (even) = x1   x2  x3  x4 (3.15)

Parity bit (odd) = (x1  x2   x3   x4)' (3.16)
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Figure 3.160 Odd parity generator shown in Equation 3.16.

Parity implementation can detect an odd number of errors, but cannot correct the
errors, because the bits in error cannot be determined.  If a single error occurred, then
an incorrect code word would be generated and the error would be detected.  If two
errors occurred, then parity would be unchanged and still correct.  Every adjacent pair
of code words — message plus parity — has a minimum distance of two; that is, they
differ in two bit positions.  This means that two bits must change to still maintain a cor-
rect code word.

Hamming code Richard W. Hamming developed a code in 1950 that resolves the
problem associated with parity implementation.  The Hamming code can be consid-
ered as an extension of the parity code, because multiple parity bits provide parity for
subsets of the message bits.  The subsets overlap, such that each message bit is con-
tained in at least two subsets.  The basic Hamming code can detect single or double er-
rors and can correct a single error.

A code word contains n bits consisting of m message bits plus k parity check bits
as shown in Figure 3.161.  The m bits represent the information or message part of the
code word; the k bits are used for detecting and correcting errors, where k = n – m.

Figure 3.161 Code word of n bits containing m message bits and k parity check bits.

Since there can be an error in any bit position, including the parity check bits, there
must be a sufficient number of k parity check bits to identify any of the m + k bit
positions.  The parity check bits are normally embedded in the code word and are

+x1
+x2

+x3
+x4

+Odd parity bit

m1, m2,       mm    p1, p2,   pk

Code word (n bits)
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(k bits)(m bits)

Code word X = x1, x2,       xm,   xm + 1,    , xn
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positioned in columns with column numbers that are a power of two, as shown below
for a code word containing four message bits (m3, m5, m6, m7) and three parity bits ( p1,
p2, p4).

Each parity bit maintains odd parity over a unique group of bits as shown below
for a code word of four message bits.

The placement of the parity bits in certain columns is not arbitrary.  Each of the
variables in group E1 contains a 1 in column 1 (20) of the binary representation of the
column number as shown below.

Since p1 has only a single 1 in the binary representation of column 1, p1 can there-
fore be used as a parity check bit for a message bit in any column in which the binary
representation of the column number has a 1 in column 1 (20).  Thus, group E1 can be
expanded to include other message bits, as shown below.

p1, m3, m5, m7, m9, m11, m13, m15, m17, . . .

In a similar manner, each of the variables in group E2 contains a 1 in column 2 (21)
of the binary representation of the column number.  Thus, group E2 can be expanded
to include other message bits, as shown below.

p2, m3, m6, m7, m10, m11, m14, m15, m18, . . .

Column number 1 2 3 4 5 6 7
Code word = p1 p2 m3 p4 m5 m6 m7

E1 = p1 m3 m5 m7
E2 = p2 m3 m6 m7
E4 = p4 m5 m6 m7

8 4 2 1
Group E1 23 22 21 20

p1 0 0 0 1
m3 0 0 1 1
m5 0 1 0 1
m7 0 1 1 1
. . .
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Each of the variables in group E4 contains a 1 in column 4 (22) of the binary rep-
resentation of the column number.  Since p4 has only a single 1 in the binary repre-
sentation of column 4, p4 can therefore be used as a parity check bit for a message bit
in any column in which the binary representation of the column number has a 1 in col-
umn 4 (22).  Thus, group E4 can be expanded to include other message bits, as shown
below.

p4, m5, m6, m7, m12, m13, m14, m15, m20, . . .

The format for embedding parity bits in the code word can be extended easily to
any size message.  For example, the code word for an 8-bit message is encoded as fol-
lows:

p1, p2, m3, p4, m5, m6, m7, p8, m9, m10, m11, m12

where m3, m5, m6, m7, m9, m10, m11, m12 are the message bits and p1, p2, p4, p8 are the
parity check bits for groups E1, E2, E4, E8, respectively.

Example 3.25 A 4-bit message (0110) will be encoded using the Hamming code
then transmitted.  The message, transmitted code word, and received code word are
shown below.

From the received code word, it is seen that bit 5 is in error.  When the code word
is received, the parity of each group is checked using the bits assigned to that group, as
shown below.

A parity error is assigned a value of 1; no parity error is assigned a value of 0.  The
groups are then listed according to their binary weight.  The resulting binary number is
called the syndrome word and indicates the bit in error; in this case, bit 5.  The bit in er-
ror is then complemented to yield a correct message of 0110.

p1 p2 m3 p4 m5 m6 m7

Message to be sent 0 1 1 0

Code word sent 0 0 0 1 1 1 0
Code word received 0 0 0 1 0 1 0

Group E1 = p1 m3 m5 m7 = 0 0 0 0 = Error = 1

Group E2 = p2 m3 m6 m7 = 0 0 1 0 = No error = 0
Group E4 = p4 m5 m6 m7 = 1 0 1 0 = Error = 1
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Cyclic redundancy check code A class of codes has been developed specifi-
cally for serial data transfer called cyclic redundancy check (CRC) codes.  This section
will provide a brief introduction to the CRC codes.  Cyclic redundancy check codes
can detect both single-bit errors and multiple-bit errors and are especially useful for
large strings of serial binary data found on single-track storage devices, such as disk
drives.  They are also used in serial data transmission networks and in 9-track mag-
netic tape systems, where each track is treated as a serial bit stream.

The generation of a CRC character uses modulo-2 addition, which is a linear oper-
ation; therefore, a linear feedback shift register is used in its implementation.  The
CRC character that is generated is placed at or near the end of the message.

A possible track format for a disk drive is shown in Figure 3.162, which has sep-
arate address and data fields.  There is a CRC character for each of the two fields; the
CRC character in the address field checks the cylinder, head, and sector addresses; the
CRC character in the data field checks the data stream.

The address field and data field both have a preamble and a postamble.  The pre-
amble consists of fifteen 0s followed by a single 1 and is used to synchronize the clock
to the data and to differentiate between 0s and 1s.  The postamble consists of sixteen 0s
and is used to separate the address and data fields.

Figure 3.162 Possible  track format for a disk drive.

Checksum The checksum is the sum derived from the application of an algorithm
that is calculated before and after transmission to ensure that the data is free from
errors.  The checksum character is a numerical value that is based on the number of
asserted bits in the message and is appended to the end of the message.  The receiving
unit then applies the same algorithm to the message and compares the results with the
appended checksum character.

There are many versions of checksum algorithms — one version is described next.
If the information consists of n bytes of data, then a simple checksum algorithm is to
perform modulo-256 addition on the bytes in the message.  The sum thus obtained is
the checksum byte and is appended to the last byte creating a message of n + 1 bytes.

00 ... 1                    CRC    00 ... 0    00 ... 1                                  CRC     00 ... 0

Preamble

Cylinder
Head
Sector

Check
character

Postamble

Preamble Data
Check
character

Postamble

Bytes:   2            2             2            2             2                  256                  2            2

Address field                                                 Data field
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The receiving unit then regenerates the checksum by obtaining the sum of the first n
bytes and compares that sum to byte n + 1.  This method can detect a single byte error.

Alternatively, the sum that is obtained by modulo-256 addition in the transmitting
unit is 2s complemented and becomes the checksum character which is appended to
the end of the transmitted message.  The receiving unit uses the same algorithm and
adds the recalculated uncomplemented checksum character to the transmitted check-
sum character, resulting in a sum of zero if the message had no errors.  An example of
this algorithm is shown in Figure 3.163 for a 4-byte message.

Figure 3.163 Checksum generated for a 4-byte message.

Two-out-of five code The two-out-of-five code is 5-bit nonweighted code that is
characterized by having exactly two 1s and three 0s in any code word — 0 = 00011,
00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 9 = 11000.  This code has
a minimum distance of two and it is relatively easy to provide error detection by count-
ing the number of 1s in a code word.

An error is detected whenever the number of 1s in a code word is not equal to two.
This can result from a change of one or more bits which cause the total number of 1s
to differ from two.  However, an error will be undetected if there are two simultaneous
bit changes which result in a valid code word with two 1s.  For example, if code word
01100 (7) were changed during transmission to 01010 (5), then the error would be
undetected.  The two-out-of-five code is representative of m-out-of-n codes.

3.5.2  Examples of Error Detection in Synchronous 
Sequential Machines

This section describes techniques of error detection for synchronous sequential ma-
chines, such as counters and Moore machines.  Where applicable, the designs will

 4516      7B16      AF16      C916       3816

Message with checksum

Message transmitted with 2s complement of checksum 

Message Checksum

 4516      7B16      AF16      C916       C816

Message Checksum
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include the state diagram and the logic diagram.  All designs will be implemented in
Verilog.  It is assumed that the design procedure resulted in a correctly synthesized
machine which operates reliably according to the machine specifications and has no
output glitches.

Example 3.26 The synthesis of a parity-checked counter will now be presented.  If
each state code differs by only one bit between contiguous state codes, then parity
checking is easily implemented.  The Gray code meets this requirement.  The state di-
agram for a 3-bit Gray code counter is shown in Figure 3.164 together with the state
code assignment and the corresponding state of the parity flip-flop.

The flip-flop yp is the parity flip-flop which maintains odd parity for the four flip-
flops y1y2y3yp.  The parity flip-flop is set to a value of 1 initially and will change state
with each clock pulse.  If an incorrect state transition occurs, then the parity of
y1y2y3yp will be even and an error will be indicated.  Parity is checked by means of a
parity checker 2k + 1, which is an odd parity circuit, as shown in the logic diagram of
Figure 3.165.

Figure 3.164 State diagram for the parity-checked 3-bit Gray code counter.

a

y1y2y3    yp
0 0 0       1

b
0 0 1       0

d
0 1 0       0

c
0 1 1       1

e
1 1 0       1

f
1 1 1       0

g
1 0 1       1

h
1 0 0       0
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Figure 3.165 Logic diagram for a 4-bit odd parity generator.

The input maps are derived from the state diagram and are shown in Figure 3.166
using D flip-flops.  The input equations are listed in Equation 3.17.  The logic diagram
is shown in Figure 3.167.  The error signal (+error) can be stored in a flip-flop to in-
dicate that an error has occurred.  The counter logic can then be examined in order to
correct the error.  In order to minimize the possibility of double errors, the term y2y3 '
in the equations for Dy1 and Dy2 will be duplicated.  Thus, a fault in the logic repre-
sented by the term y2y3 ' in flip-flop y1 or y2, but not both, will result in an incorrect
state transition for only one flip-flop.

Figure 3.166 Input maps for the parity-checked Gray code counter.

Dy1 = y1y3  + y2y3 '
Dy2 = y1 ' y3  + y2y3 '
Dy3 = y1 ' y2 ' + y1y2   (3.17)
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Figure 3.167 Logic diagram for the parity-checked 3-bit Gray code counter.

The structural design module is shown in Figure 3.168 using built-in primitives
and instantiated D flip-flops.  The test bench module is shown in Figure 3.169, which
takes the counter through the Gray code sequence for three bits.  The outputs are
shown in Figure 3.170.  The initial reset signal resets all flip-flops to a 0000 state —
causing an error signal to be asserted.  However, when the counter begins a new
sequence at y1y2y3  = 000, the parity flip-flop is asserted, resulting in no parity error.
The waveforms are shown in Figure 3.171.

y1

D

>
R

yp

y2

D

>
R

y3

D

>
R

 Y 

+Clock

+y1
+y3+y2
–y3

–Reset

–y1

–y2

+error

+y1

–y1

+y2

–y2

+y3

–y3

+yp

+y1
+y2
+y3
+yp

inst1

inst2

inst3

inst4

net1

net2

net3

net4

net5

net6

net7

net8

net9

net10

net11

net12

D

>

S

R

2k+1



482          Chapter  3     Synthesis of Synchronous Sequential Machines 2 Using Verilog HDL

Figure 3.168 Structural design module for a 3-bit, parity-checked Gray code
counter.

//structural parity checked gray code counter

module gray_code_ctr_par_chk (rst_n, clk, y, yp, error);

//define inputs and outputs
input rst_n, clk;
output [1:3] y;
output yp, error;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11, net12;

//---------------------------------------------
//define the logic for flip-flop y[1]
and (net1, y[1], y[3]);
and (net2, y[2], ~y[3]);
or  (net3, net1, net2);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//---------------------------------------------
//define the logic for flip-flop y[2]
and (net4, y[3], ~y[1]);
and (net5, ~y[3], y[2]);
or  (net6, net4, net5);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net6),
.q(y[2])
);

//---------------------------------------------
//define the logic for flip-flop y[3]
and (net7, ~y[1], ~y[2]);
and (net8, y[1], y[2]);
or  (net9, net7, net8);

//continued on next page
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Figure 3.168       (Continued)

Figure 3.169 Test bench module for a 3-bit, parity-checked Gray code counter.

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(net9),
.q(y[3])
);

//---------------------------------------------
//define the logic for the parity flip-flop yp
d_ff inst4 (

.rst_n(rst_n),

.set_n(rst_n),

.clk(clk),

.d(~yp),

.q(yp)
);

//---------------------------------------------
//define the logic (2k+1) to detect a parity error
xor (net10, y[1], y[2]);
xor (net11, y[3], yp);
xnor (error, net10, net11);

endmodule

//test bench for the gray code parity-checked counter
module gray_code_ctr_par_chk_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire yp, error;

//display outputs
initial
$monitor ("count = %b, parity = %b, error = %b", y, yp, error);

initial //define reset
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end //continued on next page
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Figure 3.169       (Continued)

Figure 3.170 Outputs for a 3-bit, parity-checked Gray code counter.

//define clock
initial
begin

clk = 1'b0;
forever

#10  clk = ~clk;
end

//define length of simulation
initial
begin

#150  $finish;
end

//instantiate the module into the test bench
gray_code_ctr_par_chk inst1 (

.rst_n(rst_n),

.clk(clk),

.y(y),

.yp(yp),

.error(error)
);

endmodule

count = 000, parity = 0, error = 1
count = 001, parity = 0, error = 0
count = 011, parity = 1, error = 0
count = 010, parity = 0, error = 0
count = 110, parity = 1, error = 0
count = 111, parity = 0, error = 0
count = 101, parity = 1, error = 0
count = 100, parity = 0, error = 0

count = 000, parity = 1, error = 0



3.5     Error Detection in Synchronous Sequential Machines     485

Figure 3.171 Waveforms for a 3-bit, parity-checked Gray code counter.

Example 3.27 This example synthesizes a Moore machine using structural model-
ing that accepts serial data in the form of 3-bit words on an input line x1 .  There is one
bit space between contiguous words, as shown below, where bi = 0 or 1.  Whenever a
word contains the bit pattern b1b2b3 = 111, the machine will assert output z1 during the
bit time between words.  The assertion/deassertion will be as follows: z1t2t3.

An example of a valid word in a series of words is shown below.  Notice that the
output signal is displaced in time with respect to the input sequence and occurs one
state time later.

The state diagram is shown in Figure 3.172 and includes the parity flip-flop yp
which maintains odd parity over the four flip-flops y1 , y2, y3 , and yp.  The input maps
for all four flip-flops are shown in Figure 3.173 using input x1  as a map-entered vari-
able.  The input equations and output equation are shown in Equation 3.18.

x1 =    b1b2b3 b1b2b3 b1b2b3    

x1 =    0 0 1 1 0 1 0 1 1 1 1 1 0 1 0    

Output z1t2t3
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Figure 3.172 State diagram for the Moore machine using D flip-flops with adjacent
state codes.  Output z1 is asserted whenever a 3-bit word x1 = 111.  There is one unused
state (100).

Figure 3.173 Input maps for the Moore machine of Figure 3.172.
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The logic diagram is shown in Figure 3.174.  The structural design module is
shown in Figure 3.175 using built-in primitives and instantiated D flip-flops.  The
2k+1 logic uses two exclusive-OR circuits and one exclusive-NOR circuit.   The test
bench is shown in Figure 3.176, which takes the machine through two sequences.  The
outputs and waveforms are shown in Figure 3.177 and Figure 3.178, respectively.

Figure 3.174 Logic diagram for the Moore machine of Figure 3.172.
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Figure 3.175 Structural design module for the Moore machine of Figure 3.172
including error checking logic using a parity flip-flop yp.

//structural parity-checked moore machine

module moore_par_chk (rst_n, clk, x1, y, yp, z1, error);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1, yp, error;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//------------------------------------------------
//define the logic for flip-flop y[1]
and (net1, ~y[2], ~y[3], x1);
and (net2, x1, y[1], y[3]);
or  (net3, net1, net2);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//------------------------------------------------
//define the logic for flip-flop y[2]
d_ff_bh inst2 (

.rst_n(rst_n),

.clk(clk),

.d(y[3]),

.q(y[2])
);

//------------------------------------------------
//define the logic for flip-flop y[3]
d_ff_bh inst3 (

.rst_n(rst_n),

.clk(clk),

.d(~y[2]),

.q(y[3])
);

//------------------------------------------------
//continued on next page
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Figure 3.175       (Continued)

Figure 3.176 Test bench for the Moore machine of Figure 3.172.

//------------------------------------------------
//define the logic for flip-flop yp
and (net4, ~y[1], ~y[2], x1);
and (net5, ~y[2], y[3], ~x1);
and (net6, x1, y[1], y[2]);
and (net7, y[2], ~y[3]);
or  (net8, net4, net5, net6, net7);

d_ff inst4 (
.rst_n(rst_n),
.set_n(rst_n),
.clk(clk),
.d(net8),
.q(yp)
);

//------------------------------------------------
//define the logic (2k+1) to detect a parity error
xor  (net10, y[1], y[2]);
xor  (net11, y[3], yp);
xnor (error, net10, net11);

//------------------------------------------------
//define the logic for output z1
and (z1, y[1], ~y[3], ~clk);

endmodule

//test bench for the parity-checked moore machine
module moore_par_chk_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, yp, error;

//display variables
initial
$monitor ("x1 = %b, state = %b, par = %b, z1 = %b",

x1, y, yp, z1);
//continued on next page
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Figure 3.176       (Continued)

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
x1 = 1'b0; @ (posedge clk) //go to state_b (001)
x1 = 1'b0; @ (posedge clk) //go to state_d (011)
x1 = 1'b0; @ (posedge clk) //go to state_f (010)
x1 = 1'b1; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1; @ (posedge clk) //go to state_c (101)
x1 = 1'b1; @ (posedge clk) //go to state_e (111)
x1 = 1'b1; @ (posedge clk) //go to state_g (110)

//assert z1 (t2 - t3)
x1 = 1'b1; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
$stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench as a single line
moore_par_chk inst1 (rst_n, clk, x1, y, yp, z1, error);

endmodule
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Figure 3.177 Outputs for the Moore machine of Figure 3.172.

Figure 3.178 Waveforms for the Moore machine of Figure 3.172.

3.6 Problems

3.1 Given the input map shown below for flip-flop z1, design the logic using a lin-
ear-select multiplexer.  Use the least amount of logic.  Obtain the design mod-
ule, the test bench module, the outputs, and the waveforms.

x1 = 0, state = 000, par = 0, z1 = 0
x1 = 0, state = 001, par = 0, z1 = 0
x1 = 0, state = 011, par = 1, z1 = 0
x1 = 0, state = 010, par = 0, z1 = 0
x1 = 1, state = 000, par = 1, z1 = 0
x1 = 1, state = 101, par = 1, z1 = 0
x1 = 1, state = 111, par = 0, z1 = 0
x1 = 1, state = 110, par = 1, z1 = 0
x1 = 1, state = 110, par = 1, z1 = 1
x1 = 1, state = 000, par = 1, z1 = 0



492          Chapter  3     Synthesis of Synchronous Sequential Machines 2 Using Verilog HDL

3.2 Given the state diagram shown below for a synchronous sequential machine
containing Moore- and Mealy-type outputs, synthesize the machine using lin-
ear-select multiplexers for the  next-state logic.  Use inputs x1  and x2  as map-
entered variables.  Use the least amount of logic.  Obtain the structural design
module, the test bench module, the outputs, and the waveforms.

3.3 The state diagram for a Moore synchronous sequential machine is shown be-
low.  Implement the machine using linear-select multiplexers for the  next-
state logic, D flip-flops for the storage elements, and any additional logic for
the  output logic.  Use x1  and x2  as map-entered variables.  Obtain the struc-
tural design module, the test bench module, the outputs, and the waveforms.

y1

0          0              0               1               1

1        x1x2           x3          x1 + x2         x1

y2 y3
0 0           0 1            1 1           1 0
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x2'

z1t2t3

z2t1t3
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3.4 Given the state diagram shown below for a Moore synchronous sequential
machine, derive the input maps for flip-flops y1 , y2, and y3 and the corre-
sponding input equations.  Synthesize the machine using linear-select multi-
plexers for the  next-state logic, D flip-flops for the storage elements, and
built-in primitives for any additional logic.  Obtain the structural design mod-
ule, the test bench module, the outputs, and the waveforms.
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3.5 Given the Karnaugh map shown below for output z1 of a synchronous sequen-
tial machine, implement the  next-state logic using a nonlinear-select multi-
plexer and additional logic gates, if necessary.  Use the least amount of logic.
The Karnaugh map can be permuted, allowing only y1  and y2  to be used as the
multiplexer select inputs.  Obtain the structural design module, the test bench
module, the outputs, and the waveforms.

3.6 Given the output map shown below for output z1 of a synchronous sequential
machine, implement the logic using a nonlinear-select multiplexer and addi-
tional logic gates, if necessary.  Use the least amount of logic.  Obtain the
structural design module, the test bench module, the outputs, and the wave-
forms.

3.7 Given the state diagram shown below for a Moore machine, implement the
design using nonlinear-select multiplexers for the  next-state logic, D flip-
flops for the storage elements, and continuous assignment statements for the 
output logic.  Outputs z1, z2 , and z3  are asserted at time t2 and deasserted at t3.
Obtain the structural design module, the test bench module, the outputs, and
the waveforms.
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3.8 Design a 3-bit Johnson counter using a PAL device for the  next-state logic,
the storage elements using D flip-flops, and the  output logic.  The counter
counts in the following sequence:  000, 100, 110, 111, 011, 001, 000, ... .  Ob-
tain the structural design module, the test bench module, the outputs, and the
waveforms.

3.9 Design a 4-bit Moore sequential machine that operates according to the fol-
lowing sequence:  y1y2y3y4 = 0000, 1000, 1100, 1110, 1111, 0000, ... .  Out-
put z1 is asserted unconditionally in state y1y2y3y4 = 1111.  The assertion/
deassertion statement for z1 is: t2t3.  Use a PAL device for the  next-state
logic, the storage elements using D flip-flops, and the  output logic.  Obtain
the structural design module, the test bench module, the outputs, and the
waveforms.

3.10 Design a synchronous count-down counter that counts according to the fol-
lowing sequence: y1y2y3 = 111, 110, 101, 100, 011, 010,  001, 000.  The
counter has an initial state of y1y2y3 = 111.  Use a PLA device for the  next-
state logic and the D flip-flops, which specify the state of the counter.  Obtain
the structural design module, the test bench module, the outputs, and the
waveforms.  Review Section 3.3.3 for the architecture of a typical program-
mable logic array device.

3.11 Design a 4-bit Johnson counter using D flip-flops.  The counter counts in the
following sequence: 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000.
Obtain the structural design module, the test bench module, the outputs, and
the waveforms.
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3.12 Design a 4-bit Gray code counter using NOR, exclusive-OR, exclusive-NOR,
AND, and OR logic built-in primitives for the  next-state logic.  Use nega-
tive-edge-triggered JK flip-flops for the storage elements.  Obtain the struc-
tural design module, the test bench module, the outputs, and the waveforms.
The counting sequence is as follows:

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110,
 1010, 1011, 1001, 1000, 0000, ... .

3.13 Design a parity-checked Mealy synchronous sequential machine that gener-
ates an output z1 whenever the sequence 1001 is detected on a serial data input
line x1 .  Overlapping sequences are valid.  Output z1 is asserted at time t2 and
deasserted at t3.  The parity flip-flop maintains odd parity over the state flip-
flops and the parity flip-flop itself.  Use built-in primitives for the  next-state
logic and the output logic.  Use D flip-flops as the storage elements.  Obtain
the structural design module, the test bench module, the outputs, and the
waveforms.

3.14 Design a parity-checked Mealy synchronous sequential machine that gener-
ates an output z1 whenever the sequence 1001 is detected on a serial data input
line x1 .  Overlapping sequences are valid.  Output z1 is asserted at time t2 and
deasserted at t3.  The parity flip-flop maintains odd parity over the state flip-
flops and the parity flip-flop itself.  Use built-in primitives for the  next-state
logic and the output logic.  This problem repeats Problem 3.13, but uses JK
flip-flops as the storage elements.  Obtain the structural design module, the
test bench module, the outputs, and the waveforms.

3.15 Design a parity-checked Mealy synchronous sequential machine that gener-
ates an output z1 whenever the sequence 1001 is detected on a serial data input
line x1 .  Overlapping sequences are valid.  Output z1 is asserted at time t2 and
deasserted at t3.  The parity flip-flop maintains odd parity over the state flip-
flops and the parity flip-flop itself.  This problem repeats Problem 3.13, but
uses behavioral modeling.  Obtain the structural design module, the test bench
module, the outputs, and the waveforms.
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4
Synthesis of Asynchronous 
Sequential Machines Using
Verilog HDL

This chapter implements asynchronous sequential machine designs using Verilog
HDL.  The designs will be accomplished by utilizing one or more of the following
modeling methods for each design: built-in primitive gates, dataflow modeling,
behavioral modeling, structural modeling.  These four modeling methods are briefly
reviewed in the following section.

4.1   Introduction
This section briefly describes the four modeling methods of the Verilog hardware
description language that will be used to design asynchronous sequential machines.
Different types of asynchronous sequential machines will be designed using Verilog.

4.1.1    Built-In Primitive Gates

These gates describe a net and have one or more scalar inputs, but only one scalar out-
put.  The multiple-input gates are and, nand, or, nor, xor, and xnor.  The output
signal is listed first, followed by the inputs in any order.  The outputs are declared as

4.1 Introduction
4.2 Synthesis Examples
4.3 Problems
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wire; the inputs can be declared as either wire or reg.  The gates represent combina-
tional logic functions and can be instantiated into a module, as follows, where the
instance name is optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

Two or more instances of the same type of gate can be specified in the same construct,
as shown below.  Note that only the last instantiation has a semicolon terminating the
line.  All previous lines are terminated by a comma.

gate_type  inst1 (output_1, input_11, input_12, . . . , input_1n),
       inst2 (output_2, input_21, input_22, . . . , input_2n),

.

.
     instm (output_m, input_m1, input_m2, . . . , input_mn);

4.1.2    Dataflow Modeling

This method is at a higher level of abstraction than gate-level modeling using built-in
primitives.  Design automation tools are used to create gate-level logic from dataflow
modeling by a process called logic synthesis.  Register transfer level (RTL) is a com-
bination of dataflow modeling and behavioral modeling and characterizes the flow of
data through logic circuits.  The continuous assignment statement models dataflow be-
havior and is used to design combinational logic without using gates and interconnect-
ing nets.  Continuous assignment statements provide a Boolean correspondence
between the right-hand side expression and the left-hand side target.  The continuous
assignment statement uses the keyword assign and has the following syntax with op-
tional drive strength and delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The assign statement continuously monitors the right-hand side expression.  If a
variable changes value, then the expression is evaluated and the result is assigned to
the target after any specified delay.  If no delay is specified, then the default delay is
zero.  The continuous assignment statement can be considered to be a form of behav-
ioral modeling, because the behavior of the circuit is specified, not the implementa-
tion.

4.1.3    Behavioral Modeling

This method describes the behavior of a digital system and is not concerned with the
direct implementation of logic gates but more on the architecture of the system.  This
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is an algorithmic approach to hardware implementation and represents a higher level
of abstraction than the previous modeling methods.  A Verilog module may contain a
mixture of the four modeling constructs.  The constructs in behavioral modeling close-
ly resemble those used in the C programming language.

A procedure is a series of operations taken to design a module.  A Verilog module
that is designed using behavioral modeling contains no internal structural details; it
simply defines the behavior of the hardware in an abstract, algorithmic description.
Verilog contains two structured procedure statements or behaviors: initial and al-
ways.  A behavior may consist of a single statement or a block of statements delimited
by the keywords begin . . . end.  A module may contain multiple initial and always
statements.  These statements are the basic statements used in behavioral modeling
and execute concurrently starting at time zero in which the order of execution is not
important.  All other behavioral statements are contained inside these structured pro-
cedure statements.

Initial statement All statements within an initial statement comprise an initial
block.  An initial statement executes only once beginning at time zero, then suspends
execution.  An initial statement provides a method to initialize and monitor variables
before the variables are used in a module; it is  also used to generate waveforms.  For
a given time unit, all statements within the initial block execute sequentially.  The syn-
tax for an initial statement is shown below.

initial [optional timing control] procedural statement or
    block of procedural statements

Always statement The always statement executes the behavioral statements
within the always block repeatedly in a looping manner and begins execution at time
zero.  Execution of the statements continues indefinitely until the simulation is termi-
nated.  The keywords initial and always specify a behavior and the statements within
a behavior are classified as behavioral or procedural.  The syntax for the always state-
ment is shown below.

always [optional timing control] procedural statement or
   block of procedural statements

Conditional statements Conditional statements alter the flow within a behavior
based upon certain conditions.  The choice among alternative statements depends on
the Boolean value of an expression.  The alternative statements can be a single state-
ment or a block of statements delimited by the keywords begin . . . end.  The keywords
if and else are used in conditional statements.  There are three categories of the con-
ditional statement as shown below.  A true value is 1 or any nonzero value; a false val-
ue is 0, x, or z.  If the evaluation is false, then the next expression in the activity flow
is evaluated.

//no else statement
if (expression) statement1; //if expression is true, then statement1 is executed.
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//one else statement //choice of two statements.  Only one is executed.
if (expression) statement1; //if expression is true, then statement1 is executed.
else statement2; //if expression is false, then statement2  is executed.

//nested if-else if //choice of multiple statements.  Only one is execut-
ed.

if (expression1) statement1; //if expression1 is true, then statement1 is executed.
else if (expression2) statement2; //if expression2 is true, then statement2 is executed.
else if (expression3) statement3; //if expression3 is true, then statement3 is executed.
else default statement;

Case statement The case statement is an alternative to the if . . . else if construct
and may simplify the readability of the Verilog code.  The case statement is a multiple-
way conditional branch.  It executes one of several different procedural statements de-
pending on the comparison of an expression with a case item.  The expression and the
case item are compared bit-by-bit and must match exactly.  The statement that is as-
sociated with a case item may be a single procedural statement or a block of statements
delimited by the keywords begin . . . end.  The  case statement has the following syn-
tax:

case (expression)
case_item1 : procedural_statement1;
case_item2 : procedural_statement2;
case_item3 : procedural_statement3;

.

.

.
case_itemn : procedural_statementn;
default : default_statement;

endcase

While loop The while loop executes a procedural statement or a block of proce-
dural statements as long as a Boolean expression returns a value of true.  When the pro-
cedural statements are executed, the Boolean expression is reevaluated.  The loop is
executed until the expression returns a value of false.  If the evaluation of the expres-
sion is false, then the while loop is terminated and control is passed to the next state-
ment in the module.  If the expression is false before the loop is initially entered, then
the while loop is never executed.  The syntax for a while statement is as follows:

while (expression)
procedural statement or block of procedural statements
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4.1.4    Structural Modeling

Structural modeling consists of instantiating one or more of the following design ob-
jects:

• Built-in primitives
• User-defined primitives (UDPs)
• Design modules

Instantiation means to use one or more lower-level modules — including built-in
primitives — that are interconnected in the construction of a higher-level structural
module.  A module can be a logic gate, an adder, a multiplexer, a counter, or some oth-
er logical function.  The objects that are instantiated are called instances.  Structural
modeling is described by the interconnection of these lower-level logic primitives or
modules.  The interconnections are made by wires that connect primitive terminals or
module ports.  Ports provide a means for the module to communicate with its external
environment.

4.2    Synthesis Examples
The examples which follow illustrate the synthesis procedure for asynchronous se-
quential machines using a timing diagram and/or a verbal specification.  The tradition-
al synthesis procedure is used in designing the asynchronous sequential machines.  In
order to prevent possible race conditions and associated timing problems when two or
more inputs change value simultaneously, it will be assumed that only one input vari-
able will change state at a time.  This is referred to as a fundamental-mode model, fur-
ther defined with the following characteristics:

1. Only one input will change at a time.
2. No other input will change until the machine has sequenced to a stable state.

Example 4.1 A Mealy asynchronous sequential machine has two inputs x1 and x2
and one output z1.  The initial conditions are: x1x2z1 = 000.  Output z1 is asserted
whenever x1x2 = 11 if and only if the input sequence was x1x2 = 00, 01, 11.  The out-
put  is to change as fast as possible.  The waveforms of Figure 4.1 depict some typical
input sequences.  Many other input sequences are possible and must be considered in
order to thoroughly construct a primitive flow table.

The primitive flow table is the initial step in the design process and is constructed
by plotting the sequence of state changes as specified by the timing diagram, while al-
lowing only one stable state per row.  Beginning at the leftmost section of the timing
diagram, where the initial conditions are specified, a stable state is assigned to each
different combination of the input vector.  Figure 4.2 shows the complete primitive
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flow table.  The column headings represent the input vector.  The table entries specify
the stable states, transient states, invalid state transitions which are represented as
dashes, and outputs.

Figure 4.1 Timing diagram for the asynchronous sequential machine of Exam-
ple 4.1.

Figure 4.2 Complete (reduced) primitive flow table for the asynchronous
sequential machine of Example 4.1.
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The merger diagram graphically portrays the result of the merging process in
which an attempt is made to combine two or more rows of the reduced primitive flow
table into a single row.  The merger diagram is shown in Figure 4.3.

Figure 4.3 Merger diagram for the asynchronous sequential machine of Exam-
ple 4.1.

The merged flow table is constructed from the reduced primitive flow table and
the merger diagram as shown in Figure 4.4.  The merged flow table is obtained by
transferring the individual rows from the primitive flow table to the merged flow table
in accordance with the partition assignment of Figure 4.3.

Figure 4.4 Merged flow table obtained from the merger diagram of Figure 4.3.

The transition diagram graphically portrays the information displayed in the
merged flow table and is shown in Figure 4.5.  The arrows in the transition diagram are
added to visualize the sequence of transitions.  As mentioned previously, a transition
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diagram with only three vertices (rows) cannot all have adjacent contiguous rows;
therefore, a fourth row must be added, as shown in Figure 4.5.

Figure 4.5 Transition diagram for the merged flow table of Figure 4.4.

The combined excitation map for excitation variables Y1e and Y2e is shown in
Figure 4.6.  This is a combined excitation map for excitation variables Y1e and Y2e, in
which the feedback variables are y1f  and y2f , respectively.  The stable states in each
row are assigned excitation values that are equal to the feedback values of the corre-
sponding row.  The unstable states are assigned excitation values that direct the
machine to the destination stable state.

Figure 4.6 Combined excitation map for the merged flow table of  Figure 4.5.

The combined excitation map of Figure 4.6 is now separated into its constituent
parts to obtain individual excitation maps for Y1e  and Y2e , as shown in Figure 4.7.  To
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obtain the excitation map for Y1e, simply transfer the values for Y1e  from the minterm
locations in the combined map to the same squares in the individual map.  Repeat the
process to obtain the excitation map for Y2e.

Figure 4.7 Individual excitation maps obtained from Figure 4.6 for the asynchro-
nous sequential machine of Example 4.1.

The equations for the excitation variables are derived directly from the individual
excitation maps.  The equations can be specified in either a sum-of-products form or a
product-of-sums form.  Regardless of the form used, the Boolean equations must be
free of static-1 and static-0 hazards.  A course in asynchronous sequential machines
specifies that if an input variable changes value causing an output to be deasserted mo-
mentarily when the output should remain asserted, then this is classified as a static-1
hazard.  Conversely, when an input change causes an output to become asserted mo-
mentarily when it should remain deasserted, a static-0 hazard results.  The sum-of-
products notation is shown in Equation 4.1 for Y1e  and Y2e .  All  equations are free of
static hazards.

The map for output z1 is shown in Figure 4.8.  Output values are assigned for all
nonstable states so that no transient signals appear on the output.  In this step, the speed
of the asynchronous sequential machine can also be determined.  The values entered in
the  unstable  states can permit fast or slow output changes.  In this example, output z1
is to change as fast as possible;  therefore, a value of 1 is placed in minterm location
y1f y2f x1x2  = 0011.  Then the output equation is derived from the output map assuring
that the output will be free of static-1 hazards, as shown in Equation 4.2.

 0 0      0 1     1 1     1 0

0 0      0         0        0        1

0 1      –        1         0        1

1 1      1         1        1         1

1 0      0         –        –         –
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0 1      –        1         1         1

1 1      0         1        1         1

1 0      0         –        –         –
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Y2e

Y1e = x1x2'  + y1f y2f  + y2f x1 ' + y2f x2'  (Hazard cover)

Y2e = x1  + y2f x2 (4.1)
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Figure 4.8 Output map for the asynchronous sequential machine of Example 4.1.

The Verilog design module is shown in Figure 4.9 using built-in primitives.  The
test bench module is shown in Figure 4.10 and takes the machine through the
sequences of the timing diagram.  The outputs and waveforms are shown in Figure
4.11 and Figure 4.12, respectively.  The waveforms clearly show the sequences dis-
played in the timing diagram where output z1 is asserted whenever x1x2 = 11 if and
only if the input sequence was x1x2 = 00, 01, 11.

Figure 4.9 Output z1 is asserted whenever x1x2 = 11 if and only if the input
sequence was x1x2 = 00, 01, 11.
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               d            f            e

z1 = x1x2y1f ' (4.2)

//built-in primitive design for asm

module asm25_bip (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5;

//continued on next page
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Figure 4.9       (Continued)

Figure 4.10 Test bench for the asynchronous sequential machine of Example 4.1.

//design the logic for y1e
and (net1, x1, ~x2),

(net2, y1e, y2e, rst_n),
(net3, y2e, ~x1, rst_n),
(net4, y2e, ~x2, rst_n);

or (y1e, net1, net2, net3, net4);

//design the logic for y2e
and (net5, y2e, x2, rst_n);
or (y2e, x1, net5);

//design the logic for output z1
and (z1, x1, x2, ~y1e);

endmodule

//test bench for the asm using built-in primitives

module asm25_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;
//continued on next page



508          Chapter 4     Synthesis of Asynchronous Sequential Machines Using Verilog HDL

Figure 4.10       (Continued)

Figure 4.11 Outputs for the asynchronous sequential machine of Example 4.1.

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; //assert z1
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; //assert z1
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench as a single line
asm25_bip inst1 (rst_n, x1, x2, y1e, y2e, z1);

endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 01, z1 = 1
x1x2 = 01, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 01, z1 = 1
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Figure 4.12 Waveforms for the asynchronous sequential machine of Example 4.1.

Example 4.2 This example repeats Example 4.1; however, the continuous assign-
ment statement of dataflow modeling is used rather than built-in primitives.  The exci-
tation equations of Equation 4.1 and the output equation of Equation 4.2 will be used
in this design.  Recall that the asynchronous sequential machine has two inputs x1  and
x2  and one output z1.  The initial conditions are: x1x2z1 = 000.  Output z1 is asserted
whenever x1x2 = 11 if and only if the input sequence was x1x2 = 00, 01, 11.  The out-
put  is to change as fast as possible.  The excitation equations and the output  equation
are reproduced in Equation 4.3 for Y1e, Y2e , and z1.

The design module is shown in Figure 4.13 in a sum-of-products form using the
assign statement of dataflow modeling.  When a variable on the right-hand side chang-
es value, the right-hand side expression is evaluated and the value is assigned to the
left-hand side net after the specified delay.  The continuous assignment is used to place
a value on a net.

The test bench module is shown in Figure 4.14 and takes the machine through the
sequences of the timing diagram of Figure 4.1.  The outputs and waveforms are shown
in Figure 4.15 and Figure 4.16, respectively.  The waveforms indicate the sequences
displayed in the timing diagram of Figure 4.1, where output z1 is asserted whenever
x1x2 = 11 if and only if the input sequence was x1x2 = 00, 01, 11.

Y1e = x1x2'  + y1f y2f  + y2f x1 ' + y2f x2'  (Hazard cover)

Y2e = x1  + y2f x2

z1 = x1x2y1f '

(4.3)
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Figure 4.13 Design module for the asynchronous sequential machine of Example
4.2 using dataflow modeling.

Figure 4.14 Test bench for Example 4.2.

//dataflow for sum-of-products asm

module asm25_df (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5;

//design the logic for y1e
assign net1 = x1 & ~x2,

net2 = y1e & y2e & rst_n,
net3 = ~x1 & y2e & rst_n,
net4 = ~x2 & y2e & rst_n,
y1e = net1 | net2 | net3 | net4;

//design the logic for y2e
assign net5 = x2 & y2e,

y2e = x1 | net5;

//design the logic for output z1
assign z1 = x1 & x2 & ~y1e;

endmodule

module asm25_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);
//continued on next page
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Figure 4.14       (Continued)

Figure 4.15 Outputs for Example 4.2.

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; //assert z1
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; //assert z1
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 $stop;

end

//instantiate the module into the test bench as a single line
asm25_df inst1 (rst_n, x1, x2, y1e, y2e, z1);
endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 01, z1 = 1
x1x2 = 01, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 01, z1 = 1
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Figure 4.16 Waveforms for Example 4.2.

Example 4.3 This example repeats Example 4.1; however, behavioral modeling is
used with the case statement rather than built-in primitives.  The waveforms are repro-
duced in Figure 4.17 for convenience and depict some typical input sequences.  Recall
that the asynchronous sequential machine has two inputs x1  and x2  and one output z1.
The initial conditions are: x1x2z1 = 000.  Output z1 is asserted whenever x1x2 = 11 if
and only if the input sequence was x1x2 = 00, 01, 11.  The output  is to change as fast
as possible.

Figure 4.17 Waveforms for the asynchronous sequential machine of Example 4.3.

The primitive flow table is shown in Figure 4.18 indicating the possible transition
sequences for the machine.  Note that state  sequences to state  if x1x2 = 11, but
does not assert output z1 because the input sequence was not x1x2 = 00, 01, 11.  Six
states require three excitation variables.

x1

x2

z1

 0     0     1     0     0     1     0     0     0     0     1     1     0

 0     1     1     1     0     0     0     1     0     1     1     0     0
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e f
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Figure 4.18 Primitive flow table for the asynchronous sequential machine of
Example 4.1 that is used in Example 4.3.

The design module is shown in Figure 4.19.  The test bench module is shown in
Figure 4.20 and takes the machine through the sequences of the timing diagram of Fig-
ure 4.17.  The outputs and waveforms are shown in Figure 4.21 and Figure 4.22,
respectively.  The waveforms indicate the sequences displayed in the timing diagram
of Figure 4.17, where output z1 is asserted whenever x1x2 = 11 if and only if the input
sequence was x1x2 = 00, 01, 11.

Figure 4.19 Behavioral design module for the asynchronous sequential machine
of Example 4.3.
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//behavioral asynchronous sequential machine

module asm25_bh (rst_n, x1, x2, ye, z1);

//define inputs and outputs
//do not have to declare inputs as wire
//they are wire by default

input rst_n, x1, x2;
output [1:3] ye;
output z1;

//continued on next page
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Figure 4.19       (Continued)

reg [1:3] ye, next_state; //variables are reg in always
reg z1;

//assign state codes; parameter defines a constant
//state names must have at least 2 characters
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110,
state_f = 3'b111;

always @ (rst_n or x1 or x2) //set next state
begin

if (~rst_n)
ye <= state_a;

else
ye <= next_state;

end

always @ (x1 or x2 or ye) //define output z1
begin

if (ye == state_c) //== is a logical equality
z1 = 1'b1;

else
z1 = 1'b0;

end

//determine next state
always @ (x1 or x2)
begin

case (ye)
state_a:

if (x1==1'b0 &  x2==1'b1)
next_state = state_b;

else if (x1==1'b1 & x2==1'b0)
next_state = state_e;

else
next_state = state_a;

state_b:
if (x1==1'b0 &  x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_c;
else

next_state = state_b; //continued on next page
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Figure 4.19       (Continued)

state_c:
if (x1==1'b0 &  x2==1'b1)

next_state = state_d;
else if (x1==1'b1 & x2==1'b0)

next_state = state_e;
else

next_state = state_c;

state_d:
if (x1==1'b0 &  x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_f;
else

next_state = state_d;

state_e:
if (x1==1'b0 &  x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_f;
else

next_state = state_e;

state_f:
if (x1==1'b0 &  x2==1'b1)

next_state = state_d;
else if (x1==1'b1 & x2==1'b0)

next_state = state_e;
else

next_state = state_f;

default: next_state = state_a;

endcase

end

endmodule
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Figure 4.20 Test bench module for the asynchronous sequential machine of
Example 4.3.

//test bench for the asynchronous sequential machine

module asm25_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire [1:3] ye;
wire z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b", {x1, x2}, ye, z1);

//define input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0; //go to state_a
#10 x1 = 1'b0; x2 = 1'b1; //go to state_b
#10 x1 = 1'b1; x2 = 1'b1; //go to state_c, assert z1
#10 x1 = 1'b0; x2 = 1'b1; //go to state_d
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a

#10 x1 = 1'b1; x2 = 1'b0; //go to state_e
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a
#10 x1 = 1'b0; x2 = 1'b1; //go to state_b
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a
#10 x1 = 1'b0; x2 = 1'b1; //go to state_b
#10 x1 = 1'b1; x2 = 1'b1; //go to state_c, assert z1
#10 x1 = 1'b1; x2 = 1'b0; //go to state_e
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm25_bh inst1 (rst_n, x1, x2, ye, z1);

endmodule
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Figure 4.21 Outputs for the asynchronous sequential machine of Example 4.3.

Figure 4.22 Waveforms for the asynchronous sequential machine of Example 4.3.

Example 4.4 This example repeats Example 4.1; however, structural modeling is
used with instantiated AND gates and OR gates that are designed with dataflow mod-
eling.  The waveforms are reproduced in Figure 4.23 for convenience and depict some
typical input sequences.  The excitation and output equations are reproduced in Equa-
tion 4.4 for Y1e , Y2e, and z1.  The logic diagram for the asynchronous sequential
machine is shown in Figure 4.24.  Recall that the initial conditions are: x1x2z1 = 000.
Therefore, there will be a reset input to initialize the machine.  Output z1 is asserted
whenever x1x2 = 11 if and only if the input sequence was x1x2 = 00, 01, 11.  The out-
put is to change as fast as possible.

x1x2 = 00, state = 000, z1 = 0
x1x2 = 01, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 1
x1x2 = 01, state = 010, z1 = 0
x1x2 = 00, state = 000, z1 = 0

x1x2 = 10, state = 110, z1 = 0
x1x2 = 00, state = 000, z1 = 0
x1x2 = 01, state = 001, z1 = 0
x1x2 = 00, state = 000, z1 = 0
x1x2 = 01, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 1
x1x2 = 10, state = 110, z1 = 0
x1x2 = 00, state = 000, z1 = 0
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Figure 4.23 Waveforms for the asynchronous sequential machine of Example 4.4.

Figure 4.24 Logic diagram for Example 4.4.

x1

x2

z1

 0     0     1     0     0     1     0     0     0     0     1     1     0

 0     1     1     1     0     0     0     1     0     1     1     0     0

a b c d ea a b c e

Y1e = x1x2'  + y1f y2f  + y2f x1 ' + y2f x2'  (Hazard cover)

Y2e = x1  + y2f x2

z1 = x1x2y1f '

(4.4)
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The structural design module is shown in Figure 4.25.  The test bench module is
shown in Figure 4.26 and takes the machine through the sequences of the timing dia-
gram of Figure 4.23.  The outputs and waveforms are shown in Figure 4.27 and Figure
4.28, respectively.  The waveforms indicate the sequences displayed in the timing dia-
gram of Figure 4.23, where output z1 is asserted whenever x1x2 = 11 if and only if the
input sequence was x1x2 = 00, 01, 11.

Figure 4.25 Structural design module for the asynchronous sequential machine of
Example 4.4.

//structural asynchronous sequential machine

module asm25_struc (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net6;

//instantiate the logic for y1e
and2_df inst1 (

.x1(x1),

.x2(~x2),

.z1(net1)
);

and3_df inst2 (
.x1(y1e),
.x2(y2e),
.x3(rst_n),
.z1(net2)
);

and3_df inst3 (
.x1(y2e),
.x2(~x1),
.x3(rst_n),
.z1(net3)
);

and3_df inst4 (
.x1(y2e),
.x2(~x2),
.x3(rst_n),
.z1(net4)
); //continued on next page
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Figure 4.25       (Continued)

Figure 4.26 Test bench module for the asynchronous sequential machine of
Example 4.4.

or4_df inst5 (
.x1(net1),
.x2(net2),
.x3(net3),
.x4(net4),
.z1(y1e)
);

//instantiate the logic for y2e
and3_df inst6 (

.x1(y2e),

.x2(x2),

.x3(rst_n),

.z1(net6)
);

or2_df inst7 (
.x1(x1),
.x2(net6),
.z1(y2e)
);

//instantiate the logic for output z1
and3_df inst8 (

.x1(x2),

.x2(x1),

.x3(~y1e),

.z1(z1)
);

endmodule

//test bench for the structural asm

module asm25_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//continued on next page
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Figure 4.26       (Continued)

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; //assert z1
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; //assert z1
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench
asm25_struc inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.y1e(y1e),

.y2e(y2e),

.z1(z1)
);

endmodule
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Figure 4.27 Outputs for the asynchronous sequential machine of Example 4.4.

Figure 4.28 Waveforms for the asynchronous sequential machine of Example 4.4.

Example 4.5 This example designs a Mealy machine with two inputs x1  and x2 and
one output z1.  The machine specifications state that z1 is to be asserted coincident with
the first assertion of x2  if and only if x1  is already asserted.  Output z1 is to be deas-
serted simultaneously with the deassertion of x1 .  Output z1 is to change value as fast
as possible.  The excitation equations will be in a sum-of-products form.  The machine
will be implemented with a programmable logic array (PLA) device using built-in
primitives.  A representative timing diagram depicting one possible sequence is shown
in Figure 4.29.

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 01, z1 = 1
x1x2 = 01, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 01, z1 = 1
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Figure 4.29 A representative timing diagram for the asynchronous sequential
machine of Example 4.5.

The primitive flow table is shown in Figure 4.30 and is constructed from the
sequences depicted in the timing diagram.  Proceeding through the design procedure,
the combined excitation map for Y1e and Y2e  is obtained as shown in Figure 4.31.  The
individual excitation maps are shown in Figure 4.32.  The excitation equations are
shown in Equation 4.5 in a sum-of-products form.  The output map for the fastest pos-
sible change is shown in Figure 4.33 and the corresponding output equation is shown
in Equation 4.6.

Figure 4.30 Primitive flow table for the asynchronous sequential machine of
Example 4.5.
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a        –        f        –       0       0

b

c

a

e

–        e        –        b       0       0f
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Figure 4.31 Combined excitation map for Example 4.5.

Figure 4.32 Individual excitation maps for Example 4.5.

Figure 4.33 Output map for Example 4.5 indicating the fastest change.
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The logic diagram using a PLA is shown in Figure 4.34.  The structural design
module is shown in Figure 4.35 and the test bench module is shown in Figure 4.36.
The outputs and waveforms are shown in Figure 4.37 and Figure 4.38, respectively.

Figure 4.34 Logic diagram for Example 4.5 using a PLA implementation, which
represents the fastest possible output changes.

Y1e  = y1f y2f  + y2f x2

Y2e  = y2f x1 + x1x2 ' (4.5)

z1 = y1f x1  + y2f x1x2 Fastest operation (4.6)
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Figure 4.35 Structural design module for the asynchronous sequential machine of
Example 4.5.

//structural pla for an asynchronous sequential machine

module asm_pla (x1, x2, y1e, y2e, z1);

//define inputs and outputs
input x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;
wire net9, net10, net11, net12, net13, net14;

//define the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, y1e);
not (net6, y1e);

buf (net7, y2e);
not (net8, y2e);

//define the logic for the and array and the or array for y1e
and (net9, net5, net7);
and (net10, net3, net7);
or  (y1e, net9, net10);

//define the logic for the and array and the or array for y2e
and (net11, net1, net7);
and (net12, net1, net4);
or  (y2e, net11, net12);

//define the logic for z1
and (net13, net1, net5);
and (net14, net1, net3, net7);
or  (z1, net13, net14);

endmodule
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Figure 4.36 Test bench module for the asynchronous sequential machine of
Example 4.5.

//test bench for the asynchronous sequential machine

module asm_pla_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor("x1x2 = %b, z1 = %b", {x1, x2}, z1);

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm_pla inst1 (x1, x2, y1e, y2e, z1);

endmodule
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Figure 4.37 Outputs for the asynchronous sequential machine of Example 4.5.

Figure 4.38 Waveforms for the asynchronous sequential machine of Example 4.5.

Example 4.6 This example repeats the Mealy machine of Example 4.5 without
using a PLA.  Also, this example uses dataflow modeling instead of built-in primi-
tives.  Recall that the machine has two inputs x1 and x2  and one output z1.  The
machine specifications state that z1 is to be asserted coincident with the first assertion

x1x2 = 00, z1 = 0
x1x2 = 10, z1 = 0
x1x2 = 11, z1 = 1
x1x2 = 10, z1 = 1
x1x2 = 11, z1 = 1
x1x2 = 10, z1 = 1
x1x2 = 00, z1 = 0

x1x2 = 01, z1 = 0
x1x2 = 11, z1 = 0
x1x2 = 10, z1 = 0
x1x2 = 11, z1 = 1
x1x2 = 10, z1 = 1

x1x2 = 00, z1 = 0
x1x2 = 01, z1 = 0
x1x2 = 00, z1 = 0
x1x2 = 10, z1 = 0
x1x2 = 11, z1 = 1
x1x2 = 01, z1 = 0
x1x2 = 00, z1 = 0
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of x2 if and only if x1  is already asserted.  Output z1 is to be deasserted simultaneously
with the deassertion of x1 .  Output z1 is to change value as fast as possible.  The exci-
tation equations will be in a sum-of-products form.  The timing diagram is reproduced
in Figure 4.39.

Figure 4.39 A representative timing diagram for the asynchronous sequential
machine of Example 4.6.

Dataflow modeling using the continuous assignment statement is used to describe
combinational logic where the output of the circuit is evaluated whenever an input
changes value; that is, the value of the right-hand side expression is continuously
assigned to the left-hand side net.  Continuous assignments are similar to Boolean
algebra, which is a systematic treatment of logical operations.  Continuous assign-
ments can be used only for nets, not for register variables.

Dataflow modeling allows implementation of a logical function at a higher level
of abstraction than gate level modeling using built-in primitives.  The fundamental
method of designing in dataflow is the continuous assignment statement assign, an ex-
ample of which is shown below.  The excitation and output equations are reproduced
in Equation 4.7 and Equation 4.8, respectively.

assign  sum = a ^ b ^ cin

+x1

+x2

+z1

a b c d e fc d a b e c e

Y1e  = y1f y2f  + y2f x2

Y2e  = y2f x1 + x1x2 ' (4.7)

z1 = y1f x1  + y2f x1x2 Fastest operation (4.8)
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The dataflow design module is shown in Figure 4.40.  The test bench module is
shown in Figure 4.41.  The outputs and waveforms are shown in Figure 4.42 and Fig-
ure 4.43, respectively.

Figure 4.40 Dataflow design module for the asynchronous sequential machine of
Example 4.6.

Figure 4.41 Test bench module for Example 4.6.

//dataflow for asm pla using dataflow modeling

module asm26_df (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6;

//define the logic for y1e
assign net1 = y1e & y2e & rst_n,

net2 = y2e & x2 & rst_n,
y1e = net1 | net2;

//define the logic for y2e
assign net3 = y2e & x1 & rst_n,

net4 = x1 & ~x2,
y2e = net3 | net4;

//define the logic for output z1
assign net5 = y1e & x1,

net6 = y2e & x1 & x2,
z1 = net5 | net6;

endmodule

//test bench for the pla asm using dataflow modeling

module am26_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1; //continued on next page
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Figure 4.41       (Continued)

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench as a single line
asm26_df inst1 (rst_n, x1, x2, y1e, y2e, z1);

endmodule
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Figure 4.42 Outputs for Example 4.6.

Figure 4.43 Waveforms for Example 4.6.

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 1
x1x2 = 10, state = 11, z1 = 1
x1x2 = 11, state = 11, z1 = 1
x1x2 = 10, state = 11, z1 = 1
x1x2 = 00, state = 00, z1 = 0

x1x2 = 01, state = 00, z1 = 0
x1x2 = 11, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 1
x1x2 = 10, state = 11, z1 = 1

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 1
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Example 4.7 This example repeats the Mealy machine of Example 4.5, but uses
behavioral modeling with the case statement, which is a convenient way to achieve
multiple-way branching.  The keywords case, endcase, and default are used in the
case statement as previously indicated in Section 4.1.3.  The case statement executes
one of several different procedural statements depending on the comparison of an
expression with a case item.  For convenience, the timing diagram and the primitive
flow table are reproduced in Figure 4.44 and Figure 4.45, respectively.

Figure 4.44 A representative timing diagram for the asynchronous sequential
machine of Example 4.7.

Figure 4.45 Primitive flow table for the asynchronous sequential machine of
Example 4.7.
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The behavioral design module is shown in Figure 4.46 and the test bench module
is shown in Figure 4.47.  The outputs and waveforms are shown in Figure 4.48 and
Figure 4.49, respectively.

Figure 4.46 Behavioral design module for the asynchronous sequential machine
of Example 4.7.

//behavioral for asynchronous sequential machine

module asm26_bh (rst_n, x1, x2, ye, z1);

//define inputs and outputs
input rst_n, x1, x2;
output [1:3] ye;
output z1;

//inputs are wire by default

//variables are reg in always
reg [1:3] ye, next_state;
reg z1;

//assign state codes; parameter defines a constant
//state names must have at least 2 characters
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110,
state_f = 3'b111;

//set next state
always @ (rst_n or x1 or x2)
begin

if (~rst_n) //if (~rst_n) is true
ye <= state_a;

else
ye <= next_state;

end

//define output z1 for each state
always @ (ye)
begin

if (ye == state_a)
z1 = 1'b0;

if (ye == state_b)
z1 = 1'b0; //continued on next page
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Figure 4.46       (Continued)

if (ye == state_c)
z1 = 1'b1;

if (ye == state_d)
z1 = 1'b1;

if (ye == state_e)
z1 = 1'b0;

if (ye == state_f)
z1 = 1'b0;

end

always @ (x1 or x2) //determine next state
begin

case (ye)
state_a:

if (x1==1'b0 & x2==1'b1)
next_state = state_e;

else if (x1==1'b1 & x2==1'b0)
next_state = state_b;

else
next_state = state_a;

state_b:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_c;
else

next_state = state_b;

state_c:
if (x1==1'b0 & x2==1'b1)

next_state = state_e;
else if (x1==1'b1 & x2==1'b0)

next_state = state_d;
else

next_state = state_c;

state_d:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_c;
else

next_state = state_d; //continued on next page
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Figure 4.46       (Continued)

Figure 4.47 Test bench module for the asynchronous sequential machine of
Example 4.7.

state_e:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_f;
else

next_state = state_e;

state_f:
if (x1==1'b0 & x2==1'b1)

next_state = state_e;
else if (x1==1'b1 & x2==1'b0)

next_state = state_b;
else

next_state = state_f;

default: next_state = state_a;

endcase
end

endmodule

//test bench for the asm using behavioral modeling

module asm26_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire [1:3] ye;
wire z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b", {x1, x2}, ye, z1);

//continued on next page
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Figure 4.47       (Continued)

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm26_bh inst1 (rst_n, x1, x2, ye, z1);

endmodule



538          Chapter 4     Synthesis of Asynchronous Sequential Machines Using Verilog HDL

Figure 4.48 Outputs for the asynchronous sequential machine of Example 4.7.

Figure 4.49 Waveforms for the asynchronous sequential machine of Example 4.7.

x1x2 = 00, state = 000, z1 = 0
x1x2 = 10, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 1
x1x2 = 10, state = 010, z1 = 1
x1x2 = 11, state = 011, z1 = 1
x1x2 = 10, state = 010, z1 = 1
x1x2 = 00, state = 000, z1 = 0

x1x2 = 01, state = 110, z1 = 0
x1x2 = 11, state = 111, z1 = 0
x1x2 = 10, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 1
x1x2 = 10, state = 010, z1 = 1

x1x2 = 00, state = 000, z1 = 0
x1x2 = 01, state = 110, z1 = 0
x1x2 = 00, state = 000, z1 = 0
x1x2 = 10, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 1
x1x2 = 01, state = 110, z1 = 0
x1x2 = 00, state = 000, z1 = 0
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Example 4.8 A Mealy asynchronous sequential machine has two inputs x1 and x2
and one output z1.  The merged flow table is shown in Figure 4.50.  The transition dia-
gram is shown in Figure 4.51 in which the rows of the merged flow table are arranged
so that all state transitions can be realized without regard for race conditions.  Thus, all
contiguous rows in a cycle are adjacent.

Figure 4.50 Merged flow table for Example 4.8..

Figure 4.51 Transition diagram for Example 4.8.

Figure 4.52 illustrates the combined excitation map in which the rows are reor-
dered and assigned the appropriate state variable codes.  The individual excitation
maps are shown in Figure 4.53.  The excitation equations are listed in Equation 4.9
and in Equation 4.10 in a sum-of-products form and in a product-of-sums form.  Both
forms are free of static-1 and static-0 hazards, respectively.  The sum-of-products form
will be used in the implementation of the asynchronous sequential machine, since the
product-of-sums equation requires additional logic gates.
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Figure 4.52 Combined excitation map for Example 4.8.

Figure 4.53 Individual excitation maps for Example 4.8.

 0 0      0 1     1 1     1 0

0 0      0        10        0       01

0 1     11         0      00         0

1 1      0        01        –       10

1 0     00        –       00      11

y1f y2f

x1x2

 a                         b

               f                         d

 

   e                         

Y1e Y2e

00 00

01 01

11
c                          g

10 10

1

2

4

3

 0 0      0 1     1 1     1 0

0 0      0         1        0         0

0 1      1         0        0         0

1 1      1         0        –         1

1 0      0         1        0         1

y1f y2f

x1x2

 a                         b

               f                         d

 

   e  

                 c                         g

Y1e

 0 0      0 1     1 1     1 0

0 0      0         0        0         1

0 1      1         1        0         1

1 1      1         1        –         0

1 0      0         0        0         0

y1f y2f

x1x2

 

 

 

   

Y2e

 a                         b

               f                         d

   e  

                 c                         g

Y1e = y2f x1' x2'  + y2f ' x1' x2 + y1f x1x2 ' + y1f y2f x2'   (net1 . . . net4)
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 (4.9)
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Assume that output z1 has the values in the corresponding stable states, as shown
below.  The output map is shown in Figure 4.54.  All state transitions preclude the
possibility of momentary false outputs.  This is achieved by assigning appropriate out-
put values to the intermediate transient states of a cycle, in which the initial and final
stable states contain identical output values.  Also, output response time is devised to
be as fast as possible.  Thus, if the initial and final stable states have different output
values, then the output variable changes value in the first unstable state of a cycle.  The
output equation is shown in Equation 4.11.

Figure 4.54 Output map for the asynchronous sequential machine of Example 4.8.
Output values are assigned such that there will be no momentary false outputs and out-
put changes will be as fast as possible.
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The design module using nand built-in primitive logic gates is shown in Figure
4.55.  A reset input is applied so that all excitation variables are initialized to a value of
logic zero.  The test bench module is shown in Figure 4.56.  The outputs and wave-
forms are shown in Figure 4.57 and Figure 4.58, respectively.

Figure 4.55 Design module for the Mealy asynchronous sequential machine of
Example 4.8.

//built-in primitive design for a Mealy asm

module asm29_bip (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and output
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//design the logic for y1e
nand (net1, y2e, ~x1, ~x2, rst_n),

(net2, ~y2e, ~x1, x2, rst_n),
(net3, y1e, x1, ~x2, rst_n),
(net4, y1e, y2e, ~x2, rst_n),
(y1e, net1, net2, net3, net4);

//design the logic for y2e
nand (net5, y2e, ~x1, rst_n),

(net6, ~y1e, x1, ~x2, rst_n),
(net7, ~y1e, y2e, ~x2, rst_n),
(y2e, net5, net6, net7);

//design the logic for output z1
nand (net8, y2e, x2),

(z1, ~x1, net8);

endmodule
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Figure 4.56 Test bench for the Mealy machine of Example 4.8.

//test bench for the Mealy asm
module ams_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x1 = %b, state = %b, z1= %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 $stop;

end

//instantiate the module into the test bench
asm29_bip inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.y1e(y1e),

.y2e(y2e),

.z1(z1)
);

endmodule
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Figure 4.57 Outputs for the Mealy machine of Example 4.8.

Figure 4.58 Waveforms for the Mealy machine of Example 4.8.

Example 4.9 This example designs a Mealy asynchronous sequential machine
using dataflow modeling with the continuous assignment statement.  The continuous
assignment statement uses the keyword assign and has the following syntax with
optional drive strength and delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The excitation equations and the output equation are shown in Equation 4.12 and
Equation 4.13 in a sum-of-products form, respectively.  The logic diagram is shown in
Figure 4.59 using AND, OR,  and NAND gates displaying the net names.  There is an
implied reset input to initialize the machine to a value of logic zero.

x1x1 = 00, state = 00, z1= 0
x1x1 = 10, state = 01, z1= 1
x1x1 = 11, state = 00, z1= 1
x1x1 = 01, state = 10, z1= 0
x1x1 = 00, state = 00, z1= 0
x1x1 = 10, state = 01, z1= 1
x1x1 = 00, state = 11, z1= 0
x1x1 = 01, state = 01, z1= 1
x1x1 = 11, state = 00, z1= 1
x1x1 = 10, state = 01, z1= 1
x1x1 = 00, state = 11, z1= 0
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Figure 4.59 Logic diagram for the Mealy asynchronous sequential machine of
Example 4.9.

The dataflow design module is shown in Figure 4.60 and the test bench module is
shown in Figure 4.61.  The outputs and waveforms are shown in Figure 4.62 and Fig-
ure 4.63, respectively.

Y1e  = y2f x1' x2'  + y2f ' x1' x2  + y1f x1x2 ' + y1f y2f x2'

Y2e  = y2f x1'  + y1f ' x1x2 ' + y1f ' y2f x2'

(4.12)

z1 = x1 + y2f x2 (4.13)
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Figure 4.60 Dataflow design module for the Mealy machine of Example 4.9.

Figure 4.61 Test bench module for the Mealy machine of Example 4.9.

//dataflow for Mealy asm

module asm29_df (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and output
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net6, net7, net8, net10;

//define the logic for y1e
assign net1 = ~(y2e & ~x1 & ~x2 & rst_n),

net2 = ~(~y2e & ~x1 & x2 & rst_n),
net3 = ~(y1e & x1 & ~x2 & rst_n),
net4 = ~(y1e & y2e & ~x2 & rst_n),
y1e  = ~(net1 & net2 & net3 & net4);

//define the logic for y2e
assign net5 = ~(y2e & ~x1 & rst_n),

net6 = ~(~y1e & x1 & ~x2 & rst_n),
net7 = ~(~y1e & y2e & ~x2 & rst_n),
y2e = ~(net5 & net6 & net7);

//define the logic for output z1
assign net8 = (y2e & x2);
assign z1 = x1 | net8;

endmodule

//test bench for the Mealy asm

module asm29_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//continued on next page
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Figure 4.61       (Continued)

//display variables
initial
$monitor ("x1x1 = %b, state = %b, z1= %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench
asm29_df inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.y1e(y1e),

.y2e(y2e),

.z1(z1)
);

endmodule
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Figure 4.62 Outputs for the Mealy machine of Example 4.9.

Figure 4.63 Waveforms for the Mealy machine of Example 4.9.

Example 4.10     A Mealy asynchronous sequential machine has two inputs x1  and x2
and one output z1.  The machine is reset initially; that is, x1x2z1 = 000.  A specific con-
dition of the operational characteristics is that input x1  must envelop all occurrences of
the x2 pulse.  Thus, the allowable input vectors are x1x2 = 00, 10, or 11; the input com-
bination of x1x2 = 01 will never occur.  Output z1 is to be asserted coincident with the
assertion of every second x2  pulse and is to remain asserted until the deassertion of x2 .
Output assertion is to be as fast as possible.

A representative timing diagram is shown in Figure 4.64.  Although the timing di-
agram illustrates a valid input sequence to generate an output, other variations are

x1x1 = 00, state = 00, z1= 0
x1x1 = 10, state = 01, z1= 1
x1x1 = 11, state = 00, z1= 1
x1x1 = 01, state = 10, z1= 0
x1x1 = 00, state = 00, z1= 0
x1x1 = 10, state = 01, z1= 1
x1x1 = 00, state = 11, z1= 0
x1x1 = 01, state = 01, z1= 1
x1x1 = 11, state = 00, z1= 1
x1x1 = 10, state = 01, z1= 1
x1x1 = 00, state = 11, z1= 0
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possible and must be considered to adequately represent the operation of the machine
for all valid input sequences.  The primitive flow table, shown in Figure 4.65, is ob-
tained by assigning a unique stable state name to each different combination of the in-
put vector and the associated output z1 in the timing diagram.

Figure 4.64 Timing diagram for the asynchronous sequential machine of Exam-
ple 4.10.

Figure 4.65 Primitive flow table for the asynchronous sequential machine of
Example 4.10.

The reduced primitive flow table is shown in Figure 4.66.  Rows  and  can
merge, because there is no conflict in any column of the two rows.  The only other row
with which row  can merge is row  — all other rows have a conflict in at least one
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column.  The merged flow table for partition { , }, { }, { }, { } is shown in
Figure 4.67.

Figure 4.66 Reduced primitive flow table obtained from the primitive flow table
of Figure 4.65.

Figure 4.67 Merged flow table for partition { , }, { }, { }, { }.

The combined excitation map for excitation variables Y1e and Y2e is shown in
Figure 4.68.  The stable states are assigned excitation values that are the same as the
feedback values of the corresponding rows.  It is important to not inadvertently assign
excitation values to the “don’t care” states that would generate a stable state.  The indi-
vidual excitation maps are shown in Figure 4.69 and the resulting hazard-free excita-
tion equations in Equation 4.14 in a sum-of-products form.  The rightmost term in
each equation is the hazard cover.
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Figure 4.68 Combined excitation map for the merged flow table of  Figure 4.67.

Figure 4.69 Individual excitation maps for Y1e  and Y2e obtained from the com-
bined excitation map of Figure 4.68.

The output map is constructed from the merged flow table of Figure 4.67 and the
reduced primitive flow table of Figure 4.66.  The merged flow table indicates the lo-
cation of the stable states and the reduced primitive flow table specifies the output val-
ues of the stable states.  The output map is shown in Figure 4.70 and the output
equation is shown in Equation 4.15.
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Figure 4.70 Output map for Example 4.10.

The design module using dataflow modeling is shown in Figure 4.71 using the
excitation and output equations of Equation 4.14 and Equation 4.15, respectively.  The
test bench module is shown in Figure 4.72.  The outputs and waveforms are shown in
Figure 4.73 and Figure 4.74, respectively.

Figure 4.71 Dataflow design module for Mealy machine of Example 4.10.
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z1 = y2f ' x2 (4.15)

//dataflow asynchronous sequential machine
module asm24_df (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5;

//design the logic for y1e
assign net1 = y2e & x2 & rst_n,

net2 = y1e & x1 & ~x2 & rst_n,
net3 = y1e & y2e & rst_n,
y1e = net1 | net2 | net3; //continued on next page
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Figure 4.71       (Continued)

Figure 4.72 Test bench module for the Mealy machine of Example 4.10.

//design the logic for y2e
assign net4 = ~y1e & x1 & ~x2 & rst_n,

net5 = ~y1e & y2e & x1 & rst_n,
y2e = net1 | net4 | net5;

//design the logic for output z1
assign z1 = ~y2e & x2;

endmodule

//test bench for the asynchronous sequential machine

module asm24_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)
#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

//continued on next page
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Figure 4.72       (Continued)

Figure 4.73 Outputs for the Mealy machine of Example 4.10.

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e (110)   //assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e (110)   //assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 $stop;

end

//instantiate the module into the test bench as a single line
asm24_df inst1 (rst_n, x1, x2, y1e, y2e, z1);

endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 11, state = 00, z1 = 1

x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 11, state = 00, z1 = 1

x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Figure 4.74 Waveforms for the Mealy machine of Example 4.10.

Example 4.11    This example repeats Example 4.10, but uses behavioral modeling
with the case statement in the design process.  The case statement is an alternative to
the if . . . else construct and may simplify the readability of the Verilog code.  The case
statement is a multiple-way conditional branch.

Behavioral modeling describes the behavior of the machine and does not require
direct implementation with logic gates.  This is an algorithmic approach which
describes the architecture of the machine.  Therefore, only a primitive flow table is
required for this design.  The timing diagram is reproduced in Figure 4.75 and the
primitive flow table is reproduced in Figure 4.76 for convenience.

Figure 4.75 Timing diagram for the asynchronous sequential machine of Exam-
ple 4.11.
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Figure 4.76 Primitive flow table for the asynchronous sequential machine of
Example 4.11.

The behavioral design module is shown in Figure 4.77.  The test bench module is
shown in Figure 4.78, which takes the Mealy machine through a variety of paths in the
primitive flow table.  The outputs and the waveforms are shown in Figure 4.79 and
Figure 4.80, respectively.

Figure 4.77 Behavioral design module for the Mealy asynchronous sequential
machine of Example 4.11.
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[1:3] ye

//behavioral Mealy asynchronous sequential machine

module asm24_bh (rst_n, x1, x2, ye, z1);

//define inputs and outputs
input rst_n, x1, x2;
output [1:3] ye;
output z1;

wire rst_n, x1, x2; //alternatively do not declare wires
//because inputs are wire by default

reg [1:3] ye, next_state; //variables are reg in always
reg z1;

//continued on next page
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Figure 4.77       (Continued)

//assign state codes; parameter defines a constant
//state names must have at least 2 characters
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110,
state_f = 3'b111;

//set next state
always @ (rst_n or x1 or x2)
begin

if (~rst_n)
ye <= state_a;
else

ye <= next_state;
end

//define output z1
always @ (x1 or x2 or ye)
begin

if (ye == state_e) //== is a logical equality
z1 = 1'b1;

else
z1 = 1'b0;

end

//determine next state
always @ (x1 or x2)
begin

case (ye)
state_a:

if (x1==1'b1 & x2==1'b0)
next_state = state_b;

else
next_state = state_a;

state_b:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_c;
else

next_state = state_b;

//continued on next page
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Figure 4.77       (Continued)

Figure 4.78 Test bench module for the Mealy asynchronous sequential machine
of Example 4.11.

state_c:
if (x1==1'b1 & x2==1'b0)

next_state = state_d;
else

next_state = state_c;

state_d:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_e;
else

next_state = state_d;

state_e:
if (x1==1'b1 & x2==1'b0)

next_state = state_f;
else

next_state = state_e;

state_f:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_c;
else

next_state = state_f;

default: next_state = state_a;
endcase

end
endmodule

//test bench for asynchronous sequential machine
module asm24_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire [1:3] ye; //continued on next page
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Figure 4.78       (Continued)

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b", {x1, x2}, ye, z1);

//define input vectors
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1; //deassert reset

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)
#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e  (110)   //assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e  (110)   //assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm24_bh inst1 (rst_n, x1, x2, ye, z1);

endmodule
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Figure 4.79 Outputs for the Mealy asynchronous sequential machine of Example
4.11.

Figure 4.80 Waveforms for the Mealy asynchronous sequential machine of
Example 4.11.

x1x2 = 00, state = 000, z1 = 0
x1x2 = 10, state = 001, z1 = 0
x1x2 = 00, state = 000, z1 = 0
x1x2 = 10, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 0
x1x2 = 10, state = 010, z1 = 0
x1x2 = 00, state = 000, z1 = 0

x1x2 = 10, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 0
x1x2 = 10, state = 010, z1 = 0
x1x2 = 00, state = 000, z1 = 0

x1x2 = 10, state = 001, z1 = 0
x1x2 = 11, state = 011, z1 = 0
x1x2 = 10, state = 010, z1 = 0
x1x2 = 11, state = 110, z1 = 1
x1x2 = 10, state = 111, z1 = 0
x1x2 = 11, state = 011, z1 = 0
x1x2 = 10, state = 010, z1 = 0
x1x2 = 11, state = 110, z1 = 1
x1x2 = 10, state = 111, z1 = 0
x1x2 = 00, state = 000, z1 = 0



4.2     Synthesis Examples     561

Example 4.12    This example repeats Example 4.10, but uses built-in primitives in
the structural design.  The timing diagram is reproduced in Figure 4.81.  The equations
for excitation variables Y1e  and Y2e  are shown in Equation 4.16 in a product-of-sums
form.  The equation for output z1 is also shown in Equation 4.16.  The logic diagram is
shown in Figure 4.82.

Figure 4.81 Timing diagram for the asynchronous sequential machine of Exam-
ple 4.12.

Figure 4.82 Logic diagram for Example 4.12.

+x1

+x2

+z1

a b c d fe a

Y1e  = (x1) (y2f  + x2' ) (y1f  + x2)

Y2e  = (x1) (y2f  + x2' ) (y1f ' + x2)

z1 = y2f ' x2

(4.16)

+x1
+y2f
–x2
+y1f
+x2
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+x2

+Y1e (+y1f )
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The structural design module using built-in primitives is shown in Figure 4.83.
The test bench module is shown in Figure 4.84, which takes the Mealy machine
through a variety of paths in the primitive flow table of Figure 4.76.  The outputs and
the waveforms are shown in Figure 4.85 and Figure 4.86, respectively.

Figure 4.83 Structural design module for the Mealy asynchronous sequential
machine of Example 4.12.

Figure 4.84 Test bench module for the Mealy asynchronous sequential machine
of Example 4.12.

//structural asynchronous sequential machine

module asm24_struc (x1, x2, y1e, y2e, z1);

//define inputs and outputs
input x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3;

//design the logic for y1e
or (net1, y2e, ~x2),

(net2, y1e, x2);
and (y1e, x1, net1, net2);

//design the logic for y2e
or (net3, ~y1e, x2);
and (y2e, net1, x1, net3);

//design the logic for output z1
and (z1, ~y2e, x2);

endmodule

//test bench for the asynchronous sequential machine

module asm24_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2;
wire y1e, y2e, z1; //continued on next page
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Figure 4.84       (Continued)

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 x1 = 1'b0;
x2 = 1'b0;

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)
#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e (110)  //assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e (110)  //assert z1

#10 x1=1'b1; x2=1'b0;//go to state_f (111)
#10 x1=1'b0; x2=1'b0;//go to state_a (000)

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm24_struc inst1 (x1, x2, y1e, y2e, z1);

endmodule
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Figure 4.85 Outputs for the Mealy asynchronous sequential machine of Example
4.12.

Figure 4.86 Waveforms for the Mealy asynchronous sequential machine of
Example 4.12.

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 11, state = 00, z1 = 1
x1x2 = 10, state = 01, z1 = 0
x1x2 = 11, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 0
x1x2 = 11, state = 00, z1 = 1
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Example 4.13     An asynchronous sequential machine has two inputs x1  and x2 .  The
machine generates two outputs z1 and z2  in accordance with a prescribed input se-
quence.  Output z1 will be asserted coincident with every second x2  pulse, but only if
x1  is asserted for the duration of the pair of x2  pulses.  Output z2 is asserted for every
second x2  pulse, but only if x1  is deasserted for the duration of the pair of x2  pulses.
Input x1  will not change state while x2  is asserted.  The outputs will never be active si-
multaneously, because the outputs are asserted for different values of input x1 .  A rep-
resentative timing diagram is shown in Figure 4.87 illustrating the two sequences that
assert outputs z1 and z2.

Figure 4.87 Representative timing diagram for the asynchronous sequential
machine of Example 4.13.

Using traditional design techniques, the following results of the design procedure
will be presented: the primitive flow table; the merged flow table; the augmented
merged flow table; the combined excitation map; the individual excitation maps; the
excitation equations; the output maps; and the output equations.

The primitive flow table is shown in Figure 4.88; the merged flow table in Figure
4.89; the augmented merged flow table in Figure 4.90; the combined excitation map in
Figure 4.91; the individual excitation maps in Figure 4.92; the excitation equations in
Equation 4.17 in a sum-of-products form; the output maps in Figure 4.93; and the out-
put equations in Equation 4.18.

+x1

+x2

+z1

+z2

a b c d e fb a g h a
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Figure 4.88 Primitive flow table for the asynchronous sequential machine of
Example 4.13.

Figure 4.89 Merged flow table for the asynchronous sequential machine of Exam-
ple 4.13.

x1x2
 00       01      11      10       z1       z2
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Figure 4.90 Augmented merged flow table for the asynchronous sequential
machine of Example 4.13.

Figure 4.91 Combined excitation map constructed from the augmented merged
flow table of Figure 4.90 for Example 4.13.

x1x2
 00       01      11      10       

 f         c        c        1        0

 g         –        f        d        0        1

a        g        e                 1        1

–        h         e        b        0        0

d

–        –        –        –       

g

b

c

a

e

1

2

3

4

5

6

7

8

–        –        –        –       

–        –        –        –       

–        –        –        –       

f

h

 x1x2
0 0      0 1      1 1     1 0 y1f y2f y3f

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

 Y1e Y2e Y3e

000     001     001    000
a                               b

011     001     001    101
f          c

010       –        –        –

010     110     010    000
g                      e

 –       100     010      –

–         –        –        –

–         –        –      100

000     100     110     100
h                      d

1

2

6

4

7

8

5

3



568          Chapter 4     Synthesis of Asynchronous Sequential Machines Using Verilog HDL

Figure 4.92 Individual excitation maps obtained from the combined excitation
map of Figure 4.91 for the asynchronous sequential machine of Example 4.13.

Y1e = net 1 . . . net5. Y2e = net6 . . . net11. Y3e = net12, net13.
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Y1e

0     0     0     0
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0    0     0     0

Y1e = y3f x1x2 ' + y1f y2f 'x1  + y1f y2f 'x2 + y2f x1' x2  + y1f y3f

Y2e = y2f x1' x2 ' + y3f x1' x2 ' + y1f x1x2  + y1f 'y2f x1'  + y1f 'y2f x2  + y2f x1x2

Y3e = y1f ' y2f 'y3f  + y1f ' y2f 'x2 (4.17)
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Figure 4.93 Output maps for the asynchronous sequential machine of Example
4.13.

The dataflow design module is shown in Figure 4.94 using the continuous assign-
ment statement, which can be applied to nets only.  The continuous assignment state-
ment uses the keyword assign, which has the following syntax with optional drive
strength and delay.

assign [drive_strength] [delay] left-hand side target = right-hand side expression

  The continuous assignment statement assigns a value to a net (wire) that has been
previously declared — it cannot be used to assign a value to a register.  Therefore, the
left-hand target must be a scalar or vector net or a concatenation of scalar and vector
nets.  The operands on the right-hand side can be registers, nets, or function calls.  The
registers and nets can be declared as either scalars or vectors.

The test bench module is shown in Figure 4.95, which displays the two outputs in
accordance with their respective input sequence.  The outputs and waveforms are
shown in Figure 4.96 and Figure 4.97, respectively.
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z2 = y1f x1' x2 (4.18)



570          Chapter 4     Synthesis of Asynchronous Sequential Machines Using Verilog HDL

Figure 4.94 Dataflow design module for the asynchronous sequential machine of
Example 4.13 in a sum-of-products form.

//dataflow for asm

module asm_sop (rst_n, x1, x2, y1e, y2e, y3e, z1, z2);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, y3e, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;
wire net8, net9, net10, net11, net12, net13;

//design the logic for y1e
assign net1 = y3e & x1 & ~x2 & rst_n,

net2 = y1e & ~y2e & x1 & rst_n,
net3 = y1e & ~y2e & x2 & rst_n,
net4 = y2e & ~x1 & x2 & rst_n,
net5 = y1e & y3e & rst_n,
y1e = net1 | net2 | net3 | net4 | net5;

//design the logic for y2e
assign net6 = y2e & ~x1 & ~x2 & rst_n,

net7 = y3e & ~x1 & ~x2 & rst_n,
net8 = y1e & x1 & x2 & rst_n,
net9 = ~y1e & y2e & ~x1 & rst_n,
net10 = ~y1e & y2e & x2 & rst_n,
net11 = y2e & x1 & x2 & rst_n,
y2e = net6 | net7 | net8 | net9 | net10 | net11;

//design the logic for y3e
assign net12 = ~y1e & ~y2e & y3e & rst_n,

net13 = ~y1e & ~y2e & x2 & rst_n,
y3e = net12 | net13;

//define the logic for outputs z1 and z2
assign z1 = y2e & x1 & x2,

z2 = y1e & ~x1 & x2;

endmodule
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Figure 4.95 Test bench module for the asynchronous sequential machine of
Example 4.13.

//test bench for the asm
module asm_pos_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, y3e, z1, z2;

initial //display variables
$monitor ("x1x2 = %b, state = %b, z1z2 = %b",

{x1, x2}, {y1e, y2e, y3e}, {z1, z2});

initial //apply input vectors
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;   //assert z2
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 $stop;

end

//instantiate the module into the test bench
asm_sop inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.y1e(y1e),

.y2e(y2e),

.y3e(y3e),

.z1(z1),

.z2(z2)
);

endmodule
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Figure 4.96 Outputs for the asynchronous sequential machine of Example 4.13.

Figure 4.97 Waveforms for the asynchronous sequential machine of Example
4.13.

Example 4.14    This example repeats Example 4.13, however built-in primitives are
used in the design module.  Also, the excitation and output equations are in a product-
of-sums form.  The individual excitation maps are reproduced in Figure 4.98.  The
excitation equations are shown in Equation 4.19 in a product-of-sums form.  The out-
put maps are reproduced in Figure 4.99 and the output equations in Equation 4.20.

Recall that a product-of-sums is an expression in which at least one term does not
contain all the variables; that is, at least one term is a proper subset of the possible vari-
ables or their complements.

x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 10, state = 000, z1z2 = 00
x1x2 = 11, state = 001, z1z2 = 00
x1x2 = 10, state = 100, z1z2 = 00
x1x2 = 11, state = 010, z1z2 = 10
x1x2 = 10, state = 000, z1z2 = 00

x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 01, state = 001, z1z2 = 00
x1x2 = 00, state = 010, z1z2 = 00
x1x2 = 01, state = 100, z1z2 = 01
x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 10, state = 000, z1z2 = 00
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Figure 4.98 Individual excitation maps for the asynchronous sequential machine
of Example 4.14.
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Figure 4.99 Output maps for the asynchronous sequential machine of Example
4.14.

The design module using built-in primitives is shown in Figure 4.100.  A reset
input is applied to the machine so that the outputs are initialized to a value of logic
zero.  The test bench module is shown in Figure 4.101, which displays the two outputs
in accordance with their respective input sequence.  The outputs and waveforms are
shown in Figure 4.102 and Figure 4.103, respectively.

Y1e = (x1  + x2) (y2f '  + x1' ) (y1f  + y2f  + x2' ) (y1f  + y2f  + y3f )
(y1f  + x1'  + x2' ) (y2f ' + x2) (y1f  + y2f  + x1)   (net1 . . . net7)

Y2e = (x1'  + x2) (y1f ' + x1) (y1f  + y2f  + y3f ) (y1f  + y2f  + x2' ) (y1f '  + x2)
(y1f + y2f  + x1' )   (net8 . . . net13)

Y3e = (y1f ' ) (y2f ' ) (y3f  + x2)   (net14) (4.19)
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z1 = (x1) (y2f ) (x2)

z2 = (x1' ) (y1f ) (x2) (4.20)
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Figure 4.100 Design module using built-in primitives for the asynchronous
sequential machine of Example 4.14.

//built-in primitive design for pos asm

module asm_pos (rst_n, x1, x2, y1e, y2e, y3e, z1, z2);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, y3e, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;
wire net9, net10, net11, net12, net13, net14;

//design the logic for y1e
or (net1, x1, x2),

(net2, ~y2e, ~x1),
(net3, y1e, y2e, ~x2),
(net4, y1e, y2e, y3e),
(net5, ~y2e, x2),
(net6, y1e, ~x1, ~x2),
(net7, y1e, x1, y2e);

and (y1e, rst_n, net1, net2, net3, net4, net5, net6, net7);

//design the logic for y2e
or  (net8, ~x1, x2),

(net9, ~y1e, x1),
(net10, y1e, y2e, y3e),
(net11, y1e, y2e, ~x2),
(net12, ~y1e, x2),
(net13, y1e, y2e, ~x1);

and (y2e, rst_n, net8, net9, net10, net11, net12, net13);

//design the logic for y3e
or  (net14, y3e, x2);
and (y3e, rst_n, ~y1e, ~y2e, net14);

//design the logic for output z1 and output z2
and (z1, x1, x2, y2e);
and (z2, ~x1, x2, y1e);

endmodule
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Figure 4.101 Test bench module for the asynchronous sequential machine of
Example 4.14.

//test bench for the pos asynchronous sequential machine

module asm_pos_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, y3e, z1, z2;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1z2 = %b",

{x1, x2}, {y1e, y2e, y3e}, {z1, z2});

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;   //assert z2
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench
asm_pos inst1 (rst_n, x1, x2, y1e, y2e, y3e, z1, z2);

endmodule
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Figure 4.102 Outputs for the asynchronous sequential machine of Example 4.14.

Figure 4.103 Waveforms for the asynchronous sequential machine of Example
4.14.

Example 4.15    This example repeats Example 4.13, however, the design is accom-
plished using behavioral modeling with the case statement.  The waveforms are repro-
duced in Figure 4.104 for convenience.  Since behavioral modeling is the method of
implementation, only the primitive flow table is required, as shown in Figure 4.105.
The behavioral design module is shown in Figure 4.106 and the test bench module is
shown in Figure 4.107, which displays the two outputs in accordance with their
respective input sequence.  The outputs and waveforms are shown in Figure 4.108 and
Figure 4.109, respectively.

x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 10, state = 000, z1z2 = 00
x1x2 = 11, state = 001, z1z2 = 00
x1x2 = 10, state = 100, z1z2 = 00
x1x2 = 11, state = 010, z1z2 = 10
x1x2 = 10, state = 000, z1z2 = 00

x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 01, state = 001, z1z2 = 00
x1x2 = 00, state = 010, z1z2 = 00
x1x2 = 01, state = 100, z1z2 = 01
x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 10, state = 000, z1z2 = 00
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Figure 4.104  Representative timing diagram for the asynchronous sequential
machine of Example 4.15.

Figure 4.105  Primitive flow table for the asynchronous sequential machine of
Example 4.15.
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Figure 4.106  Behavioral design module for the asynchronous sequential machine
of Example 4.15.

//behavioral asynchronous sequential machine

module asm30_bh (rst_n, x1, x2, ye, z1, z2);

input rst_n, x1, x2; //define inputs and outputs
output [1:3] ye; //inputs are wire by default
output z1, z2;

//variables are reg in always
reg [1:3] ye, next_state;
reg z1, z2;

//assign state codes; parameter defines a constant
//state names must have at least 2 characters
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110,
state_f = 3'b111,
state_g = 3'b101,
state_h = 3'b100;

//set next state
always @ (rst_n or x1 or x2)
begin

if (~rst_n)
ye <= state_a;

else
ye <= next_state;

end

//define outputs z1 and z2
always @ (x1 or x2 or ye)
begin

if (ye == state_e) //== is a logical equality
z1 = 1'b1;

else
z1 = 1'b0;

if (ye == state_h)
z2 = 1'b1;

else
z2 = 1'b0;

end //continued on next page
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Figure 4.106       (Continued)

//determine next state
always @ (x1 or x2)
begin

case (ye)
state_a:

if (x1==1'b0 & x2==1'b1)
next_state = state_f;

else if (x1==1'b1 & x2==1'b0)
next_state = state_b;

else
next_state = state_a;

state_b:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_c;
else

next_state = state_b;

state_c:
if (x1==1'b1 & x2==1'b0)

next_state = state_d;
else

next_state = state_c;

state_d:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else if (x1==1'b1 & x2==1'b1)

next_state = state_e;
else

next_state = state_d;

state_e:
if (x1==1'b1 & x2==1'b0)

next_state = state_b;
else

next_state = state_e;

state_f:
if (x1==1'b0 & x2==1'b0)

next_state = state_g;
else

next_state = state_f;
//continued on next page
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Figure 4.106       (Continued)

Figure 4.107  Test bench for the asynchronous sequential machine of Example
4.15.

state_g:
if (x1==1'b0 & x2==1'b1)

next_state = state_h;
else if (x1==1'b1 & x2==1'b0)

next_state = state_b;
else

next_state = state_g;

state_h:
if (x1==1'b0 & x2==1'b0)

next_state = state_a;
else

next_state = state_h;

default: next_state = state_a;
endcase

end
endmodule

//test bench for the behavioral asm
module asm30_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire [1:3] ye;
wire z1, z2;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1z2 = %b",

{x1, x2}, ye, {z1, z2});

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1; //continued on next page
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Figure 4.107       (Continued)

Figure 4.108  Outputs for the asynchronous sequential machine of Example 4.15.

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;   //assert z1

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;   //assert z2
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
asm30_bh inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.ye(ye),

.z1(z1),

.z2(z2)
);

endmodule

x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 10, state = 001, z1z2 = 00
x1x2 = 11, state = 011, z1z2 = 00
x1x2 = 10, state = 010, z1z2 = 00
x1x2 = 11, state = 110, z1z2 = 10
x1x2 = 10, state = 001, z1z2 = 00

x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 01, state = 111, z1z2 = 00
x1x2 = 00, state = 101, z1z2 = 00
x1x2 = 01, state = 100, z1z2 = 01
x1x2 = 00, state = 000, z1z2 = 00
x1x2 = 10, state = 001, z1z2 = 00
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Figure 4.109  Waveforms for the asynchronous sequential machine of Example
4.15.

Example 4.16      Consider an asynchronous sequential machine with three inputs x1 ,
x2 , and x3  and one output z1.  The machine operates according to the specifications de-
fined below and the representative timing diagram of Figure 4.110.

The input signals are nonoverlapping, disjoint positive pulses of equal duration.
Valid input vectors are x1x2x3 = 000, 001, 010, and 100.  Between each input vector
in which a pulse xi is asserted, a vector of x1x2x3 = 000 is inserted, as shown in
Figure 4.110.

Figure 4.110 Representative timing diagram for the asynchronous sequential
machine of Example 4.16.
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The initial assertion of z1 occurs coincident with the first assertion of x3  if and
only if x3 is preceded by an input sequence of x1x2 = 10, 00, 01, 00.  Thus, a valid se-
quence, which includes the assertion of z1, is x1x2x3z1 = 0000, 1000, 0000, 0100,
0000, 0011, 0000, 0011, ... , 0000, 0011, 0000, 0100, 0000, 1000, 0000, ... , as shown
in the timing diagram.

Therefore, once the initial output has been generated, every x3  pulse will generate
a z1 pulse, provided that neither x1  nor x2  has been asserted during the x3z1 sequence.
The duration of output z1 is identical to the duration of input x3 .  Input x1  frames the
x2x3z1 sequence of pulses; input x2  frames the x3z1 sequence of pulses.  Simultaneous
input changes will not occur.

The reduced primitive flow table is shown in Figure 4.111 in which there are no
equivalent states, as obtained by analyzing the machine specifications in conjunction
with the timing diagram.

Figure 4.111 Reduced primitive flow table for the asynchronous sequential
machine of Example 4.16.

The merger diagram is shown in Figure 4.112.  Recall that two or more rows in a
reduced primitive flow table can merge into a single row if the entries in the same col-
umn of each row satisfy one of the following requirements:

1. Identical state names
2. A state name and an unspecified entry
3. Two unspecified entries
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a i          –        g         –         –        –        b         0

c         –         –        –         –        –        –                   0
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e         –        –                    –        –         –        –         0
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f

g

i

  f         –         g         –        –         –        b         0

 e                   –         –         –        –         –        –         1

a         –        –                    –        –         –        –         0

 a                   –         –        –        –         –        –         0
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Figure 4.112 Merger diagram obtained from the reduced primitive flow table of
Figure 4.111.

The merged flow table is constructed from the reduced primitive flow table using
the assignments of the following partition:

{ , }, { , }, { }, { , , }

Rows { , }, { , }, { }, { , , } are transferred from the reduced
primitive flow table to the merged flow table as shown in Figure 4.113.

Figure 4.113 Merged flow table for the asynchronous sequential machine of Exam-
ple 4.16 obtained from the reduced primitive flow table of Figure 4.111 using the par-
tition { , }, { , }, { }, { , , }.
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The combined excitation map for Y1e and Y2e  is shown in Figure 4.114.  The in-
dividual excitation maps are shown in Figure 4.115 and the corresponding excitation
equations in Equation 4.21 in both a sum-of-products form and a product-of-sums
form.

Figure 4.114   Combined excitation map for the asynchronous sequential machine
of Example 4.16.

Figure 4.115  Individual excitation maps for Y1e and Y2e.
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The output map for z1 is shown in Figure 4.116 and the equation for z1 is shown in
Equation 4.22.  The map is derived from the reduced primitive flow table and the
merged flow table.  The merged flow table shows the location of the stable states and
the reduced primitive flow table specifies the value of z1 for the corresponding stable
states.  The values assigned to z1 for the intermediate transient states provide glitch-
free operation for all state transition sequences.

Figure 4.116  Output map for z1 for the asynchronous sequential machine of Exam-
ple 4.16.

The logic diagram is shown in Figure 4.117 using the product-of-sums form of
Equation 4.21.  The product-of-sums form yields the fewest number of logic gates.
The machine is synthesized using the logic primitives of AND, OR, and NOT.  The
feedback variables y1f and y2f become equal to the excitation variables after a delay of
t, at which time the machine has stabilized.  This is indicated by the signals  y1f  and
 y2f  in parentheses.

Y1e = y2f x2' x3'  + y1f y2f ' x1'  + y1f x2  + y2f ' x1' x3  + y1f x1' x3'

Y2e = y2f x1' x2'  + y1f ' x2  + y1f ' y2f

Y1e = (y1f  + x2' ) (y2f  + x1' ) (y2f ' + x3' ) (y1f  + y2f  + x2  + x3)

Y2e = (y2f  + x2) (y1f ' + x2' ) (x1' )

(4.21)
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1 0       0        0         –        0        –         –        –        0

0 0 0   0 0 1   0 1 1   0 1 0   1 1 0   1 1 1    1 0 1   1 0 0
c                                                                         b

f                    d

e

a         i                   g

z1

z1 = y2f x3 (4.22)
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Figure 4.117   Logic diagram for the asynchronous sequential machine of Example
4.16.

The design module for the asynchronous sequential machine of Example 4.16 is
shown in Figure 4.118 using built-in primitives.  The test bench module is shown in
Figure 4.119, which displays the timing diagram for the input variables and the output
variable.  The outputs and waveforms are shown in Figure 4.120 and Figure 4.121,
respectively.

Figure 4.118   Design module for Example 4.16 using built-in primitives.
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//built-in primitive design for asm

module asm_pos2 (rst_n, x1, x2, x3, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6;

//continued on next page
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Figure 4.118       (Continued)

Figure 4.119  Test bench module for Example 4.16 using built-in primitives.

//design the logic for y1e
or (net1, y1e, ~x2),

(net2, y2e, ~x1),
(net3, ~y2e, ~x3),
(net4, y1e, y2e, x2, x3);

and (y1e, rst_n, net1, net2, net3, net4);

//design the logic for y2e
or (net5, y2e, x2),

(net6, ~y1e, ~x2);
and (y2e, rst_n, net5, net6, ~x1);

//design the logic for output z1
and (z1, y2e, x3);

endmodule

//test bench for the pos asynchronous sequential machine

module asm_pos2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1;
//continued on next page
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Figure 4.119       (Continued)

Figure 4.120  Outputs for Example 4.16.

#10 x1=1'b0; x2=1'b0; x3=1'b0;
#10 x1=1'b1; x2=1'b0; x3=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b0;
#10 x1=1'b0; x2=1'b1; x3=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b1; //assert z1

#10 x1=1'b0; x2=1'b0; x3=1'b0; //state_e (11)
#10 x1=1'b0; x2=1'b0; x3=1'b0; //state_e (11)
#10 x1=1'b0; x2=1'b0; x3=1'b0; //state_e (11)
#10 x1=1'b0; x2=1'b0; x3=1'b0; //state_e (11)

#10 x1=1'b0; x2=1'b0; x3=1'b1; //assert z1
#10 x1=1'b0; x2=1'b0; x3=1'b0;
#10 x1=1'b0; x2=1'b1; x3=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b0;
#10 x1=1'b1; x2=1'b0; x3=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b0;
#10 $stop;

end

//instantiate the module as a single line
asm_pos2 inst1 (rst_n, x1, x2, x3, y1e, y2e, z1);

endmodule

x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 001, state = 01, z1 = 1

x1x2x3 = 000, state = 11, z1 = 0

x1x2x3 = 001, state = 01, z1 = 1
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 010, state = 10, z1 = 0
x1x2x3 = 000, state = 10, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
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Figure 4.121  Waveforms for Example 4.16.

Example 4.17    This example repeats Example 4.16, but uses built-in primitives in
a sum-of-products form.  The excitation equations are reproduced in Equation 4.23
and the output equation is shown in Equation 4.24.  The design module is shown in
Figure 4.122.  The test bench module is shown in Figure 4.123.  The outputs and wave-
forms are shown in Figure 4.124 and Figure 4.125, respectively.

Figure 4.122 Design module for Example 4.17 using built-in primitives.

Y1e = y2f x2' x3'  + y1f y2f ' x1'  + y1f x2  + y2f ' x1' x3  + y1f x1' x3'

Y2e = y2f x1' x2'  + y1f ' x2  + y1f ' y2f (4.23)

z1 = y2f x3 (4.24)

//built-in primitive design for asm in a sum-of-products form

module asm_sop3_bip (rst_n, x1, x2, x3, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//continued on next page
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Figure 4.122       (Continued)

Figure 4.123 Test bench module for Example 4.17 using built-in primitives.

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//design the logic for y1e
and (net1, y2e, ~x2, ~x3, rst_n),

(net2, y1e, ~y2e, ~x1, rst_n),
(net3, y1e, x2, rst_n),
(net4, ~y2e, ~x1, x3, rst_n),
(net5, y1e, ~x1, ~x3, rst_n);

or (y1e, net1, net2, net3, net4, net5);

//design the logic for y2e
and (net6, y2e, ~x1, ~x2, rst_n),

(net7, ~y1e, x2, rst_n),
(net8, ~y1e, y2e, rst_n);

or (y2e, net6, net7, net8);

//design the logic for output z1
and (z1, y2e, x3);

endmodule

//test bench for the sop asynchronous sequential machine
module asm_sop3_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1e, y2e, z1;

initial //display variables
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1e, y2e}, z1);

initial //apply input vectors
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1; //continued on next page
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Figure 4.123       (Continued)

Figure 4.124  Outputs for Example 4.17 using built-in primitives.

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 $stop;

end

//instantiate the module into the test bench as a single line
asm_sop3_bip inst1 (rst_n, x1, x2, x3, y1e, y2e, z1);

endmodule

x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 001, state = 01, z1 = 1

x1x2x3 = 000, state = 11, z1 = 0

x1x2x3 = 001, state = 01, z1 = 1
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 010, state = 10, z1 = 0
x1x2x3 = 000, state = 10, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
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Figure 4.125  Waveforms for Example 4.17 using built-in primitives.

Example 4.18       This example repeats Example 4.16, but uses dataflow modeling
in a product-of-sums form.  Recall that the continuous assignment statement models
dataflow behavior and is used to design combinational logic without using gates and
interconnecting nets.  The continuous assignment statement uses the keyword assign
and provides a Boolean correspondence between the right-hand side expression and
the left-hand side target.

The excitation equations are reproduced in Equation 4.25 in a sum-of-products
form and the output equation is shown in Equation 4.26 for convenience.  The design
module is shown in Figure 4.126.  The test bench module is shown in Figure 4.127.
The outputs and waveforms are shown in Figure 4.128 and Figure 4.129, respectively.

 

Figure 4.126 Design module using dataflow modeling for Example 4.18.

Y1e = (y1f  + x2' ) (y2f  + x1' ) (y2f ' + x3' ) (y1f  + y2f  + x2  + x3)

Y2e = (y2f  + x2) (y1f ' + x2' ) (x1' ) (4.25)

z1 = y2f x3 (4.26)

//dataflow for product-of-sums asm
module asm_df (rst_n, x1, x2, x3, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1e, y2e, z1; //continued on next page
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Figure 4.126       (Continued)

Figure 4.127 Test bench module for Example 4.18.

//define internal nets
wire net1, net2, net3, net4, net5, net6;

//design the logic for y1e
assign net1 = (y1e | ~x2),

net2 = (y2e | ~x1),
net3 = (~y2e | ~x3),
net4 = (y1e | y2e | x2 | x3),
y1e = (net1 & net2 & net3 & net4);

//design the logic for y2e
assign net5 = (y2e | x2),

net6 = (~y1e | ~x2),
y2e = (net5 & net6 & ~x1);

//design the logic for output z1
assign z1 = (y2e & x3);

endmodule

//test bench for the pos asynchronous sequential machine

module asm_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1e, y2e}, z1);

initial //apply input vectors
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1; //continued on next page
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Figure 4.127       (Continued)

Figure 4.128  Outputs for Example 4.18.

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //state_e (11)

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 $stop;

end

//instantiate the module into the test bench as a single line
asm_df inst1 (rst_n, x1, x2, x3, y1e, y2e, z1);

endmodule

x1x2x3 = 000, state = xx, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 001, state = 01, z1 = 1

x1x2x3 = 000, state = 11, z1 = 0

x1x2x3 = 001, state = 01, z1 = 1
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 010, state = 10, z1 = 0
x1x2x3 = 000, state = 10, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
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Figure 4.129  Waveforms for Example 4.18.

Example 4.19  This example repeats the previous example, but uses behavioral
modeling to design the asynchronous sequential machine.  The example uses the case
statement, which is an alternative to the if . . . else if construct.  As stated previously,
the case statement is a multiple-way conditional branch, in which the left-hand case
item is assigned the value of the right-hand expression.  The parameter keyword
declares and assigns values to the left-hand case item.  For example, let the case item
be state_a.  Then the case statement shown below assigns a value of 3'b000 to state_a.

parameter   state_a = 3'b000;

The timing diagram is reproduced below in Figure 4.130 for convenience and
shows the various stable states through which the machine sequences.  It must be
stressed that every possible input sequence should be considered to exactly replicate
the operational characteristics of the machine.

The reduced primitive flow table is shown in Figure 4.131 and is the primary
mechanism used in behavioral modeling, because it illustrates the various paths that
the machine executes.  The primitive flow table also depicts the values assigned to the
various stable states; in this case, three feedback variables that are equal to the exci-
tation variables after a delay of t.  The primitive flow table is obtained by carefully
analyzing the machine specifications in conjunction with the timing diagram.  This
method yields a primitive flow table in which there are no equivalent states.

The three inputs, x1x2x3 , are shown in the reduced primitive flow table and are
assigned the following Gray code values: 000, 001, 011, 010, 110, 111, 101, 100.  The
Gray code allows minterm locations that are physically adjacent to also be logically
adjacent.  The bold center line in the primitive flow table acts as a hinge such that the
columns on both sides are adjacent.  For example, column x1x2x3  = 011 is adjacent to
column x1x2x3  = 111.
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Figure 4.130 Representative timing diagram for the asynchronous sequential
machine of Example 4.19.

Figure 4.131 Reduced primitive flow table for the asynchronous sequential
machine of Example 4.19.
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The behavioral design module is shown in Figure 4.132 using the case statement.
The test bench module is shown in Figure 4.133.  The outputs and waveforms are
shown in Figure 4.134 and Figure 4.135, respectively.

Figure 4.132  Behavioral design module for Example 4.19.

//behavioral asynchronous sequential machine

module asm_bh (rst_n, x1, x2, x3, ye, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output [1:3] ye;
output z1;

//do not have to declare inputs as wire 
//they are wire by default

//variables are reg in always
reg [1:3] ye, next_state;
reg z1;

//assign state codes; parameter defines a constant
//state names must have at least 2 characters
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110,
state_f = 3'b111,
state_g = 3'b101,
state_i = 3'b100;

//set next state
always @ (rst_n or x1 or x2 or x3)
begin

if (~rst_n)//if reset = 1.b0
ye <= state_a;

else
ye <= next_state;

end
//continued on next page
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Figure 4.132       (Continued)

//determine next state
always @ (x1 or x2 or x3)
begin

case (ye)
state_a:

if (x1==1'b0 & x2==1'b0 & x3==1'b1)
next_state = state_i;

else if (x1==1'b0 & x2==1'b1 & x3==1'b0)
next_state = state_g;

else if (x1==1'b1 & x2==1'b0 & x3==1'b0)
next_state = state_b;

else
next_state = state_a;

state_b:
if (x1==1'b0 & x2==1'b0 & x3==1'b0)

next_state = state_c;
else

next_state = state_b;

state_c:
if (x1==1'b0 & x2==1'b0 & x3==1'b1)

next_state = state_i;
else if (x1==1'b0 & x2==1'b1 & x3==1'b0)

next_state = state_d;
else if (x1==1'b1 & x2==1'b0 & x3==1'b0)

next_state = state_b;
else

next_state = state_c;

state_d:
if (x1==1'b0 & x2==1'b0 & x3==1'b0)

next_state = state_e;
else

next_state = state_d;

state_e:
if (x1==1'b0 & x2==1'b0 & x3==1'b1)

next_state = state_f;
else if (x1==1'b0 & x2==1'b1 & x3==1'b0)

next_state = state_g;
else if (x1==1'b1 & x2==1'b0 & x3==1'b0)

next_state = state_b;
else

next_state = state_e;
//continued on next page
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Figure 4.132       (Continued)

Figure 4.133  Test bench module for Example 4.19.

state_f:
if (x1==1'b0 & x2==1'b0 & x3==1'b0)

next_state = state_e;
else

next_state = state_f;

state_g:
if (x1==1'b0 & x2==1'b0 & x3==1'b0)

next_state = state_a;
else

next_state = state_g;

state_i:
if (x1==1'b0 & x2==1'b0 & x3==1'b0)

next_state = state_a;
else

next_state = state_i;

default: next_state = state_a;
endcase

end

//define output z1
always @ (x1 or x2 or x3 or ye)
begin

if (ye == state_f)
z1 = 1'b1;

else
z1 = 1'b0;

end
endmodule

//test bench for the asynchronous sequential machine

module asm_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire [1:3] ye;
wire z1; //continued on next page
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Figure 4.133       (Continued)

//display variables
initial
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, ye, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench as a single line
asm_bh inst1 (rst_n, x1, x2, x3, ye, z1);

endmodule
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Figure 4.134  Outputs for Example 4.19.

Figure 4.135  Waveforms for Example 4.19.

Example 4.20   This example repeats the previous example, but uses structural mod-
eling in the design process by instantiating dataflow-designed logic gates.  This is
accomplished by adding the appropriate dataflow modules to the Project Properties
screen.  Each instantiated gate will be inserted into the module as a single line.  The
asynchronous sequential machine will be synthesized using a product-of-sums design.

Using the traditional design process, the combined excitation map is shown in Fig-
ure 4.136 and the individual excitation maps are shown in Figure 4.137.  The excita-
tion equations are listed in Equation 4.27.  The output equation is listed in Equation
4.28.  Both are reproduced from a previous example.

x1x2x3 = 000, state = 000, z1 = 0
x1x2x3 = 100, state = 001, z1 = 0
x1x2x3 = 000, state = 011, z1 = 0
x1x2x3 = 010, state = 010, z1 = 0
x1x2x3 = 000, state = 110, z1 = 0
x1x2x3 = 001, state = 111, z1 = 1

x1x2x3 = 000, state = 110, z1 = 0

x1x2x3 = 001, state = 111, z1 = 1
x1x2x3 = 000, state = 110, z1 = 0
x1x2x3 = 010, state = 101, z1 = 0
x1x2x3 = 000, state = 000, z1 = 0
x1x2x3 = 100, state = 001, z1 = 0
x1x2x3 = 000, state = 011, z1 = 0
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Figure 4.136 Combined excitation map for the asynchronous sequential machine
of Example 4.20.

Figure 4.137  Individual excitation maps for Y1e and Y2e.
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The logic diagram is shown in Figure 4.138 in a product-of-sums form.  The struc-
tural design module is shown in Figure 4.139 using instantiated dataflow logic gates
that are inserted as a single line.  The test bench module is shown in Figure 4.140.  The
outputs and waveforms are shown in Figure 4.141 and Figure 4.142, respectively.

Figure 4.138  Logic diagram for the asynchronous sequential machine of Example
4.20.

Y1e = (y1f  + x2' ) (y2f  + x1' ) (y2f ' + x3' ) (y1f  + y2f  + x2  + x3)

Y2e = (y2f  + x2) (y1f ' + x2' ) (x1' ) (4.27)

z1 = y2f x3 (4.28)
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Figure 4.139 Structural design module for Example 4.20.

Figure 4.140  Test bench module for Example 4.20.

//structural for pos asm

module asm_pos2_sngl (rst_n, x1, x2, x3, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net6, net7;

//instantiate the logic for y1e
or2_df  inst1 (y1e, ~x2, net1);
or2_df  inst2 (y2e, ~x1, net2);
or2_df  inst3 (~y2e, ~x3, net3);
or4_df  inst4 (y1e, y2e, x2, x3, net4);
and4_df inst5 (net1, net2, net3, net4, y1e);

//instantiate the logic for y2e
or2_df  inst6 (y2e, x2, net6);
or2_df  inst7 (~y1e, ~x2, net7);
and3_df inst8 (net6, net7, ~x1, y2e);

//instantiate the logic for output z1
and3_df inst9 (y2e, x3, rst_n, z1);

endmodule

//test bench for pos asm

module asm_pos2_sngl_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1e, y2e}, z1); //next page
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Figure 4.140       (Continued)

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench as a single line
asm_pos2_sngl inst1 (rst_n, x1, x2, x3, y1e, y2e, z1);

endmodule
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Figure 4.141  Outputs for Example 4.20.

Figure 4.142  Waveforms for Example 4.20.

In conclusion, many of the examples in this chapter are repeated using different
design methodologies.  The different design techniques include built-in primitives,
dataflow modeling, behavioral modeling, and structural modeling.  Some examples
use a combination of these modeling constructs.  A similar test bench module can be
used for each different modeling method for the same asynchronous sequential
machine.  Using different design methodologies illustrates alternative methods to
design identical asynchronous sequential machines.

x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 010, state = 00, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 001, state = 01, z1 = 1

x1x2x3 = 000, state = 11, z1 = 0

x1x2x3 = 001, state = 01, z1 = 1
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 010, state = 10, z1 = 0
x1x2x3 = 000, state = 10, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
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4.3    Problems

4.1 Given the merged flow table shown below, design the asynchronous sequen-
tial machine using dataflow modeling.  Obtain the design module, the test
bench module, the outputs, and the waveforms.  The excitation equations are
to be in a sum-of-products form.  There is one output z1 that is asserted for
Y1eY2ex1  = 111.

4.2 Synchronize an asynchronous sequential machine, using built-in-primitives,
which has two inputs x1  and x2 and two outputs z1 and z2 .  The two inputs
may overlap, but will not change state simultaneously.  Only the following
sequences are valid:

x1x2 = 00  10  11  01  00
x1x2 = 00  10  11  10  00
x1x2 = 00  10  00
x1x2 = 00  01  00

Output z1 is asserted whenever x1  is active and x2 is asserted or when x2  is
active and x1 is asserted.  Output z1 will be deasserted when either x1  or x2  is
deasserted.  Output z2  is asserted coincident with the assertion of z1 and
remains active until the deassertion of the last active input of an overlapping
sequence.  A representative timing diagram is shown below.  Use AND gates
and OR gates for the logic.
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4.3 A merged flow table for an asynchronous sequential machine is shown below
with the accompanying transition diagram indicating that all four rows must
be adjacent, which is clearly impossible.  Adjacency can be achieved by redi-
recting some state transitions through rows containing unspecified entries.
Obtain the dataflow design module using the continuous assignment state-
ment.  Assume that there are two outputs z1 and z2  that satisfy the equations
shown below.  Then generate the test bench module.  Obtain the outputs and
the waveforms. 

z1 = Y1e Y2e 'x1 z2  = Y1e ' Y2e x2'

4.4 Synthesize an asynchronous sequential machine which has two inputs x1  and
x2  and one output z1.  Output z1 is asserted for the duration of x2 if and only if
x1  is already asserted.  Assume that the initial state of the machine is
x1x2z1 = 000.  A representative timing diagram is shown below.  Obtain the
excitation equations in both a sum-of-products form and a product-of-sums
form and use sum-of-products form for the design using built-in primitives.
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4.5 Synthesize an asynchronous sequential machine that has one input x1  and one
output z1 which operates according to the timing diagram shown below.  As-
sign values to the transient states in the output map such that the  output logic
will be minimized.  The output response is to be as fast as possible.  Use only
NAND logic in a sum-of-products form.

4.6 Synthesize an asynchronous sequential machine which has one input x1  and
one output z1.  The machine operates according to the timing diagram shown
below.  The assertion of x1  toggles output z1.  Assign values to the transient
states in the output map such that the  output logic will be minimized.  Obtain
the excitation equations in a sum-of-products form.  Use NAND logic with the
continuous assignment statement in the design module.

4.7 This example repeats Problem 4.6 using NOR logic.  The asynchronous se-
quential machine has one input x1  and one output z1.  The machine operates
according to the timing diagram shown below.  The assertion of x1  toggles
output z1.  Assign values to the transient states in the output map such that the
 output logic will be minimized.  Obtain the excitation equations in a prod-
uct-of-sums form.  Use NOR logic with the continuous assignment statement.

x1 

z1 

+x1

+z1

+x1

+z1
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4.8 Synthesize an asynchronous sequential machine using the continuous assign-
ment statement, which has one input x1  and two outputs z1 and z2 , as shown
below.  Output z1 is toggled at the positive transition of x1; output z2  is tog-
gled at the negative transition of x1 .  Obtain the output maps for the fewest
number of gates.  Assume that the initial state of the machine is x1z1z2 = 000.

4.9 Synthesize an asynchronous sequential machine which has two inputs x1  and
x2  and one output z1.  Output z1 will be asserted coincident with the assertion
of x2 , but only if x1  is already asserted.  The deassertion of x2  causes the
deassertion of z1.  Input x1  will not become deasserted while x2  is asserted.
The timing diagram shown below further illustrates the operation of the ma-
chine for various states through which the machine sequences.

Derive the primitive flow table, the merger diagram, the merged flow
table, the excitation map and equation, the output map and equation, and the
logic diagram.  Obtain the dataflow design module, the test bench module,
the outputs, and the waveforms.

4.10 Obtain the excitation and output equations for an asynchronous sequential
machine which has one input x1  and two outputs z1 and z2.  Output z1 is as-
serted for the duration of every second x1  pulse; output z2  is asserted for the
duration of every second z1 pulse.  The outputs are to respond as fast as pos-
sible to changes in the input vector.  A representative timing diagram is shown
below.  Go through the design process to obtain the excitation equations and
the output equations.  Then obtain the design module using built-in primitives,
the test bench module, the outputs, and the waveforms.
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z1 
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4.11 This repeats problem 4.10, but uses behavioral modeling with the case state-
ment.  The timing diagram is reproduced below for convenience.  Obtain the
behavioral design module, the test bench module, the outputs, and the wave-
forms.

4.12 Use behavioral modeling to synthesize an asynchronous sequential machine
which has two inputs x1  and x2  and one output z1.  Output z1 will be asserted
coincident with the assertion of the first x2  pulse and will remain active for the
duration of the first x2  pulse.  The output will be asserted only if the assertion
of x1 precedes the assertion of x2 .  Input x1  will not become deasserted while
x2  is asserted.  Obtain the behavioral design module, the test bench module,
the outputs, and the waveforms.  A representative timing diagram is shown
below.
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4.13 This problem repeats Problem 4.12, but uses dataflow modeling with logic
gates that are instantiated and used as a single line.  Synthesize an asynchro-
nous sequential machine using dataflow modeling that has two inputs x1  and
x2  and one output z1.  Output z1 will be asserted coincident with the assertion
of the first x2  pulse and will remain active for the duration of the first x2 pulse.
The output will be asserted only if the assertion of x1  precedes the assertion of
x2 .  Input x1  will not become deasserted while x2  is asserted.  The  output
logic must have a minimal number of logic gates.  A representative timing di-
agram is reproduced below for convenience.

4.14 Repeat Problem 4.12 using dataflow modeling with the continuous assign-
ment statement — which is used in dataflow modeling.  The excitation equa-
tions and the output equation are reproduced below.

Y1e = y1f x1  + y2f x2
Y2e =  y2f x2  + y1f ' x1x2'  + y1f ' y2f x1

z1 = y1f y2f

4.15 Synthesize an asynchronous sequential machine using built-in primitives,
which has one input x1  and two outputs z1 and z2 .  The machine functions as
a two-output bistable multivibrator, whose operation is characterized by the
timing diagram shown below.  Output z1 toggles on the positive transition of
x1  and output z2  toggles on the negative transition of x1 .  Obtain equations for
z1 and z2  which produce the least amount of logic.  Obtain the design module
using built-in primitives, the test bench module, the outputs, and the wave-
forms.
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4.16 Repeat Problem 4.15 using behavioral modeling.  The timing diagram is re-
produced below.

4.17 An asynchronous sequential machine has two inputs x1  and x2  and one out-
put z1.  The machine operates according to the following specifications:

If x1x2  = 00, then the state of z1 is unchanged.
If x1x2  = 01, then z1 is deasserted.
If x1x2  = 10, then z1 is asserted.
If x1x2  = 11, then z1 changes state.

Design the machine using dataflow modeling.  The inputs are available in
both high and low assertion.  Assume that the initial conditions are x1x2z1 =
000.  The output must change as fast as possible.  There must be no output
glitches.  A representative timing diagram is shown below.  Obtain the data-
flow design module, the test bench module, the outputs, and the waveforms.

4.18 Given the merged flow table shown below, design the asynchronous sequen-
tial machine using dataflow modeling with the continuous assignment state-
ment.  Assume that output z1 is asserted in the following stable states:  , ,

, and .   Obtain the design module and the test bench module that takes
the machine through the paths to assert output z1.  The excitation equations
and the output equation are to be in a sum-of-products form.  Obtain the out-
puts and the waveforms.  There should be no static-1 or static-0 hazards in the
equations.
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4.19 An asynchronous sequential machine has two inputs x1  and x2  and one output
z1.  Input x1  will always be asserted whenever x2  is asserted; that is, there will
never be a situation where x1  is deasserted and x2  is asserted.  Output z1 is as-
serted coincident with every third x2  pulse and remains active for the duration
of x2 .  A representative timing diagram is shown below.  Synthesize the asyn-
chronous sequential machine using behavioral modeling in the design mod-
ule.  Obtain the test bench module to show two assertions of output z1.  Obtain
the outputs and the waveforms.

4.20 Repeat Problem 4.19 using dataflow modeling by instantiating logic gates
that were designed using dataflow modeling and using them as a single line.
Obtain the excitation and output equations in a sum-of-products form and use
them in the dataflow design.  Obtain the test bench module to show two as-
sertions of output z1.  Obtain the outputs and the waveforms.  The timing di-
agram is duplicated below.
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5
Synthesis of Pulse-Mode    
Asynchronous Sequential 
Machines Using Verilog HDL

This chapter implements pulse-mode asynchronous sequential machine designs using
Verilog HDL.  The designs will be accomplished by utilizing one or more of the fol-
lowing modeling methods for each design: built-in primitive gates, dataflow model-
ing, behavioral modeling, structural modeling.  These four modeling methods are
briefly summarized in Section 5.1 for convenience.

5.1    Introduction
This section briefly describes the four modeling methods of the Verilog hardware
description language that will be used to design the pulse-mode asynchronous sequen-
tial machines.  Several different types of  pulse-mode asynchronous sequential
machines will be designed using Verilog HDL.

5.1.1    Built-In Primitive Gates

These gates describe a net and have one or more scalar inputs, but only one scalar out-
put.  The multiple-input gates are and, nand, or, nor, xor, and xnor.  The output
signal is listed first, followed by the inputs in any order.  Two or more instances of the

5.1 Introduction
5.2 Synthesis Examples
5.3 Problems
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same type of gate can be specified in the same construct, as shown below.  Note that
only the last instantiation has a semicolon terminating the line.  All previous lines are
terminated by a comma.

gate_type  inst1 (output_1, input_11, input_12, . . . , input_1n),
       inst2 (output_2, input_21, input_22, . . . , input_2n),

.

.
     instm (output_m, input_m1, input_m2, . . . , input_mn);

5.1.2    Dataflow Modeling

This method is at a higher level of abstraction than gate-level modeling using built-in
primitives.  The continuous assignment statement models dataflow behavior and is
used to design combinational logic without using gates and interconnecting nets.  Con-
tinuous assignment statements provide a Boolean correspondence between the right-
hand side expression and the left-hand side target.  The continuous assignment state-
ment uses the keyword assign and has the following syntax with optional drive
strength and delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The assign statement continuously monitors the right-hand side expression.  If a
variable changes value, then the expression is evaluated and the result is assigned to
the target after any specified delay.  If no delay is specified, then the default delay is
zero.  The continuous assignment statement can be considered to be a form of behav-
ioral modeling, because the behavior of the circuit is specified, not the implementa-
tion.

5.1.3    Behavioral Modeling

This method describes the behavior of a digital system and is not concerned with the
direct implementation of logic gates but more on the architecture of the system.  This
is an algorithmic approach to hardware implementation and represents a higher level
of abstraction than the previous modeling methods.

A Verilog module that is designed using behavioral modeling contains no internal
structural details, it simply defines the behavior of the hardware in an abstract, algo-
rithmic description.  Verilog contains two structured procedure statements or behav-
iors: initial and always.

Initial statement An initial statement executes only once beginning at time zero,
then suspends execution.  An initial statement provides a method to initialize and
monitor variables before the variables are used in a module; it can also be used to
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generate waveforms.  For a given time unit, all statements within the initial block ex-
ecute sequentially.  The syntax for an initial statement is shown below.

initial [optional timing control] procedural statement or
    block of procedural statements

Always statement The always statement executes the behavioral statements
within the always block repeatedly in a looping manner and begins execution at time
zero.  Execution of the statements continues indefinitely until the simulation is termi-
nated.  The syntax for the always statement is shown below.

always [optional timing control] procedural statement or
   block of procedural statements

Conditional statements Conditional statements alter the flow within a behavior
based upon certain conditions.  The choice among alternative statements depends on
the Boolean value of an expression.  The alternative statements can be a single state-
ment or a block of statements delimited by the keywords begin . . . end.  The keywords
if and else are used in conditional statements as shown below.  The case statement —
defined in Section 4.1.3 — is an alternative to conditional statements.

//no else statement
if (expression) statement1; //if expression is true, then statement1 is executed.
//one else statement //choice of two statements.  Only one is executed.
if (expression) statement1; //if expression is true, then statement1 is executed.
else statement2; //if expression is false, then statement2  is executed.

//nested if-else if //choice of multiple statements.  Only one is execut-
ed.

if (expression1) statement1; //if expression1 is true, then statement1 is executed.
else if (expression2) statement2; //if expression2 is true, then statement2 is executed.
else if (expression3) statement3; //if expression3 is true, then statement3 is executed.
else default statement;

While loop The while loop executes a procedural statement or a block of proce-
dural statements as long as a Boolean expression returns a value of true.  When the pro-
cedural statements are executed, the Boolean expression is reevaluated.  If the
evaluation of the expression is false, then the while loop is terminated and control is
passed to the next statement in the module.  If the expression is false before the loop is
initially entered, then the while loop is never executed.  The syntax for a while state-
ment is as follows:

while (expression)
procedural statement or block of procedural statements
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5.1.4    Structural Modeling

Structural modeling consists of instantiating one or more of the following design ob-
jects: built-in primitives, user-defined primitives (UDPs), design modules.

Instantiation means to use one or more lower-level modules — including built-in
primitives — that are interconnected in the construction of a higher-level structural
module.  A module can be a logic gate, an adder, a multiplexer, a counter, or some oth-
er logical function.  The objects that are instantiated are called instances.  Structural
modeling is described by the interconnection of these lower-level logic primitives or
modules.

5.2    Synthesis Examples
The examples which follow illustrate the synthesis procedure for pulse-mode asyn-
chronous sequential machines using a timing diagram and/or a verbal specification.  In
order to prevent possible race conditions and associated timing problems when two or
more inputs change value simultaneously, it will be assumed that only one input vari-
able will change state at a time.  This is referred to as a fundamental-mode model, fur-
ther defined with the following characteristics:

1. Only one input will change at a time.
2. No other input will change until the machine has sequenced to a stable state.

Reliability of pulse-mode machines can be increased by inserting delay circuits of
an appropriate duration in the output networks of the storage elements or by delaying
the clock input to the storage elements.  The aggregate delay of the storage elements
and the delay circuit must be of sufficient duration so that the input pulse will be deas-
serted before the storage element output signals arrive at the  next-state logic.

The techniques that are commonly used to insert delays in the storage element out-
puts are: An even number of inverters are connected in series with each latch output; a
linear delay circuit is connected in series with each latch output; an edge-triggered D
flip-flop is connected in series with each latch output; or a T flip-flop with a delay cir-
cuit from the T input is connected to the clock input.  The D flip-flops are set to the
state of the latches, but are triggered on the trailing edge of the input pulses.  Thus, the
flip-flop outputs — and therefore the state of the machine as represented by the SR
latch outputs — are received at the  next-state logic only when the active input pulse
has been deasserted.  The SR latches and the flip-flops constitute a master-slave rela-
tionship.

The synthesis procedures will be accomplished using two different types of stor-
age elements: SR latches configured as T flip-flops, and SR latches with D flip-flops
arranged in a master-slave configuration.
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Example 5.1 A Moore pulse-mode asynchronous sequential machine will be de-
signed that has two inputs x1  and x2  and one output z1.  The storage elements consist
of SR latches and D flip-flops.  The machine operates according to the representative
timing diagram shown in Figure 5.1.  The corresponding state diagram is shown in
Figure 5.2.

Figure 5.1 Representative timing diagram for the Moore pulse-mode sequential
machine of  Example 5.1.

Figure 5.2 State diagram for the pulse-mode sequential machine of Example 5.1.
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Table 5.1 presents the same information as the state diagram, but in a tabular rep-
resentation.  Although there are two input variables, only one input can be asserted at
a time; therefore, only two combinations are listed for x1  and x2: x1x2 = 10 and 01.
The remaining two combinations, x1x2 = 00 and 11, are not used in pulse-mode syn-
thesis.  If x1x2 = 00, then the machine does not change state; if x1x2 = 11, then this
represents an invalid combination, since input pulses cannot occur simultaneously.

Each latch requires two input maps, one map for x1  and one map for x2, as shown
in the input maps of Figure 5.3.  The maps are arranged such that the maps correspond-
ing to each latch are in the same row, and each column of maps corresponds to a sep-
arate input.  The map entries are defined as follows: S and s indicate that the latch
will be set or remain set, respectively; R and r indicate that the latch will be reset or re-
main reset, respectively.

The map entries correlate directly to the entries in the next-state table.  For exam-
ple, in state y1y2 = 10, latch Ly1  will be reset if x1  is pulsed, as indicated by the letter
R in minterm location 2 of the map in row Ly1 , column x1 .  Also, in state y1y2 = 10,
latch Ly2  will be set if x1  is pulsed, as indicated by the letter S in minterm location 2
of the map in row Ly2 , column x1 .

Now consider the effect when input x2  is asserted in state y1y2 = 10.  When x2  is
activated, a reset pulse is applied to latch Ly1 , as shown in the next-state table.  Since
latch Ly1  was set, the letter R is entered in minterm location 2 of the map for latch Ly1
in row Ly1 , column x2.  The assertion of x2  will also generate a reset pulse to latch
Ly2 .  However, since latch Ly2  is already reset, an x2  pulse causes latch Ly2  to remain
in a reset state, as specified by the letter r in minterm location 2 of the map for latch
Ly2  in row Ly2, column x2 .

Table 5.1  Next-State Table for the Moore
Pulse-Mode Machine of Example 5.1

State name
Present state

y1  y2
Inputs
x1  x2

Next state
y1 y2

Output
z1

a 0   0 1   0 0   1 0
0   0 0   1 0   0 0

b 0   1 1   0 0   1 0
0   1 0   1 1   1 0

c 1   1 1   0 1   0 0
1   1 0   1 1   0 0

d 1   0 1   0 0   1 1
1   0 0   1 0   0 1
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Figure 5.3 Input maps for the Moore pulse-mode sequential machine of Exam-
ple 5.1.

The input equations are obtained directly from the input maps and are shown in
Equation 5.1.  Since the input equations refer to the latches, the equations are labelled
as follows: SLy1 , RLy1 , SLy2 , and RLy2 , indicating the set (S) and reset (R) of the
latches (L), respectively.  The D flip-flops are labelled simply y1  and y2 .  Latch Ly1
will be set if flip-flop y2  is set and x2  is pulsed.    Latch Ly1  will be reset if y2  is reset
and either x1  or x2  is pulsed.  Thus, the set and reset conditions for latch Ly1 are
SLy1 = y2x2  and RLy1 = y2 ' (x1  + x2), respectively.

Similarly, latch Ly2  will be set if flip-flop y2  is reset and x1 is pulsed.  Latch y2
will be reset if flip-flops y1  and y2 are both set and x1  is pulsed or if flip-flop y1  is set
and x2 is pulsed.  Thus, the set and reset conditions for latch Ly2 are SLy2  = y2 ' x1  and
RLy2  = y1y2x1  + y1x2 , respectively.
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SLy1  = y2x2

RLy1  = y2 ' (x1  + x2)

SLy2  = y2 ' x1

RLy2  = y1y2x1 + y1x2 (5.1)
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Since the pulse-mode machine of Example 5.1 is a Moore machine, the output is
a function of the present state only.  Thus, output z1 is asserted if flip-flops y1 and y2
are set and reset, respectively, yielding the equation of Equation 5.2.

z1 = y1y2 '    (5.2)

The logic diagram for the pulse-mode asynchronous sequential machine of Exam-
ple 5.1 is shown in Figure 5.4 using SR latches and D flip-flops in a master-slave con-
figuration together with the net names.  There is an implied reset for the SR latches and
the D flip-flops.  The machine is designed from the input and output equations of
Equation 5.1 and Equation 5.2, respectively.  The design module using built-in prim-
itives and D flip-flops — that were designed using behavioral modeling — is shown in
Figure 5.5.  The test bench module is shown in Figure 5.6.  The outputs and waveforms
are shown in Figure 5.7 and Figure 5.8, respectively.

Figure 5.4 Logic diagram for the Moore pulse-mode sequential machine of
Example 5.1.
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Figure 5.5 Design module using built-in primitives and D flip-flops for Example
5.1.

//moore pulse-mode asm using bip with D flip-flops
module pm_asm_moore (rst_n, x1, x2, y1, y2, z1);

input rst_n, x1, x2; //define inputs and outputs
output y1, y2, z1;

wire net1, net2, net3, net4, net5,  //define internal nets
net6, net7, net8, net9, net10, net11, net12;

//design the D flip-flop clock
nor (net1, x1, x2);

//design the logic for latch Ly1 and D flip-flop y1
nand (net2, y2, x2);
or (net3, x1, x2);
nand (net4, ~y2, net3);
nand (net5, net2, net6),

(net6, net5, net4, rst_n);

//instantiate the D flip-flop for y1
d_ff_bh inst1 (

.rst_n(rst_n),

.clk(net1),

.d(net5),

.q(y1)
);

//design the logic for latch Ly2 and D flip-flop y2
nand (net7, ~y2, x1);
and (net8, y1, y2, x1),

(net9, x2, y1);
nor (net10, net8, net9);
nand (net11, net7, net12),

(net12, net11, net10, rst_n);

//instantiate the D flip-flop for y2
d_ff_bh inst2 (

.rst_n(rst_n),

.clk(net1),

.d(net11),

.q(y2)
);

//design the logic for output z1
and (z1, y1, ~y2);
endmodule
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Figure 5.6 Test bench module for Example 5.1.

//test bench for moore pulse-mode asm

module pm_asm_moore_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

initial //display variables
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

initial //apply input sequence
begin

#0 rst_n = 1'b0;
x1 = 1'b0;   x2 = 1'b0;

#5 rst_n = 1'b1;
//--------------------------------------------------

#10 x1 = 1'b0; x2 = 1'b0;
#10 x2 = 1'b1; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
#20 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;   //assert z1
#20 x1 = 1'b0; x2 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0;

$stop;
end

//instantiate the module into the test bench as a single line
pm_asm_moore inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule
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Figure 5.7 Outputs for Example 5.1.

Figure 5.8 Waveforms for Example 5.1.

Example 5.2 A T flip-flop will be designed in this example.  A T flip-flop has an
input T and two outputs: y1  and y1 '.  If the flip-flop is reset, then an active pulse on the
T input will toggle the flip-flop to the set state; if the flip-flop is set, then a pulse on the
T input will toggle the flip-flop to the reset state.  The T flip-flop characteristics are
shown in Table 5.2.

The T flip-flop utilized in this example incorporates a D flip-flop, an exclusive-
OR circuit, and a delay circuit as a buf built-in primitive, as shown in Figure 5.9.  The
T input connects to the clock input of the D flip-flop through a delay circuit, which
allows the clock input to be delayed until the signal on the D input has stabilized.
When T has a value of 0, the next state is the same as the present state; when T has a
value of 1, the next state is the complement of the present state.

x1x2 = 00, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 10, z1 = 1
x1x2 = 10, state = 10, z1 = 1
x1x2 = 00, state = 01, z1 = 0

x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 01, state = 11, z1 = 0
x1x2 = 00, state = 10, z1 = 1
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 00, z1 = 0
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Figure 5.9 Alternative T flip-flop configuration.

The design module for the T flip-flop is shown in Figure 5.10.  The test bench
module is shown in Figure 5.11.  The outputs and waveforms are shown in Figure 5.12
and Figure 5.13, respectively.

Figure 5.10 Design module for a T flip-flop.

Table 5.2  T Flip-Flop Characteristics

Present state
Y j(t)

Input
T

Next state
Yk(t+1) State  transition sequence

0 0 0 0  0
1 0 1 1  1

0 1 1 0  1
1 1 0 1  0

y1

D

>
R

Delay
+T +y1

+Reset
–y1

net1

net2

buf

//T flip-flop design using a D flip-flop and an xor

module t_ff_da (rst_n, t, y1);

input rst_n, t; //define inputs and output
output y1;

wire net1, net2; //net2 is the T input delayed

//define the logic for the T flip-flop
xor (net1, t, y1); //flip-flop D input
buf (net2, t); //flip-flop clk input delayed

//continued on next page
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Figure 5.10       (Continued)

Figure 5.11 Test bench for the T flip-flop.

//instantiate the D flip-flop
d_ff_bh inst1 (

.rst_n(rst_n),

.clk(net2),

.d(net1),

.q(y1)
);

endmodule

//test bench for the T-flop-flop
module t_ff_da_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, t;
wire y1;

initial //display variables
$monitor ($time, "ns, t = %b, y1 = %b", t, y1);

//define input sequence
initial
begin

#0 rst_n = 1'b0;
t = 1'b0;

#5 rst_n = 1'b1;
//------------------------------

#20 t = 1'b1;
#10 t = 1'b0;
#30 t = 1'b1;
#10 t = 1'b0;
#20 t = 1'b1;
#10 t = 1'b0;
#10 t = 1'b1;
#10 $stop;

end

//instantiate the module into the test bench as a single line
t_ff_da inst1 (rst_n, t, y1);

endmodule



630          Chapter 5     Synthesis of Pulse-Mode ASM Using Verilog HDL

Figure 5.12 Outputs for the T flip-flop.

Figure 5.13 Waveforms for the T flip-flop.

Example 5.3 A Moore pulse-mode asynchronous sequential machine will be de-
signed that has two inputs x1  and x2  and one output z1.  This example repeats Example
5.1 that used built-in primitives and storage elements which consisted of SR latches
and D flip-flops.  However, the machine in this example will be designed using logic
gates that were designed using dataflow modeling and with D flip-flops that were de-
signed using behavioral modeling.

The output of each latch connects to the D input of the associated flip-flop forming
a master-slave relationship.  Since the D flip-flops are clocked on the trailing edge of
the positive input pulses, state changes are not fed back to the  next-state logic until
the active input has been deasserted.  Clocking the flip-flops on the negative edge of
the positive input pulses delays the next state from affecting the input logic while an
input pulse is still active.  Thus, the machine operates in a deterministic manner.

The machine operates according to the representative timing diagram shown in
Figure 5.14, which is reproduced from Example 5.1 for convenience.  The correspond-
ing state diagram is also reproduced for convenience and is shown in Figure 5.15.

0ns,   t = 0, y1 = 0
25ns,  t = 1, y1 = 1
35ns,  t = 0, y1 = 1
65ns,  t = 1, y1 = 0
75ns,  t = 0, y1 = 0
95ns,  t = 1, y1 = 1
105ns, t = 0, y1 = 1
115ns, t = 1, y1 = 0
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Figure 5.14 Representative timing diagram for the Moore pulse-mode sequential
machine of  Example 5.3.

Figure 5.15 State diagram for the Moore pulse-mode sequential machine of
Example 5.3.
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The input equations and output equation are shown in Equation 5.3 and Equation
5.4, respectively.  The logic diagram is shown in Figure 5.16 using NAND, NOR,
AND, and OR instantiated modules.  The design module is shown in Figure 5.17.  The
test bench module is shown in Figure 5.18.  The outputs and waveforms are shown in
Figure 5.19 and Figure 5.20, respectively.

Figure 5.16 Logic diagram for the Moore pulse-mode sequential machine of
Example 5.3.

SLy1  = y2x2

RLy1  = y2 ' (x1  + x2)

SLy2  = y2 ' x1

RLy2  = y1y2x1 + y1x2

z1 = y1y2 '

(5.3)

(5.4)
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Figure 5.17 Design module for the Moore pulse-mode asynchronous sequential
machine of Example 5.3.

//moore structural pulse-mode asm using instantiation

module pm_asm_moore2 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;
wire net8, net9, net10, net11, net12, net13;

//define the D flip-flop clock
nor2_df inst1 (x1, x2, net1);

//----------------------------------------------------
//design the logic for latch Ly1 and D flip-flop y1
nand2_df inst2 (y2, x2, net2);
or2_df inst3 (x1, x2, net3);
nand2_df inst4 (~y2, net3, net4);

//latch Ly1
nand2_df inst5 (net2, net6, net5);
nand3_df inst6 (net5, net4, rst_n, net6);

//instantiate the D flip-flop for y1
d_ff_bh inst7 (

.rst_n(rst_n),

.clk(net1),

.d(net5),

.q(y1)
);

//----------------------------------------------------
//design the logic for latch Ly2 and D flip-flop y2
nand2_df inst8 (~y2, x1, net8);
and3_df inst9 (y1, y2, x1, net9);
and2_df inst10 (x2, y1, net10);
nor2_df inst11 (net9, net10, net11);

//latch Ly2
nand2_df inst12 (net8, net13, net12);
nand3_df inst13 (net12, net11, rst_n, net13);

//continued on next page
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Figure 5.17       (Continued)

Figure 5.18 Test bench module for the Moore pulse-mode asynchronous sequen-
tial machine of Example 5.3.

//instantiate the D flip-flop for y2
d_ff_bh inst14 (

.rst_n(rst_n),

.clk(net1),

.d(net12),

.q(y2)
);

//design the logic for output z1
and2_df inst15 (y1, ~y2, z1);

endmodule

//test bench for moore pulse-mode asm

module pm_asm_moore2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//apply input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

//--------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;

//continued on next page
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Figure 5.18       (Continued)

Figure 5.19 Outputs for the pulse-mode machine of Example 5.3.

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
#20 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;   //assert z1
#20 x1 = 1'b0; x2 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
$stop;

end

//instantiate the module into the test bench as a single line
pm_asm_moore2 inst1 (rst_n, x1, x2, y1, y2, z1);
endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 10, z1 = 1
x1x2 = 10, state = 10, z1 = 1
x1x2 = 00, state = 01, z1 = 0

x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 01, state = 11, z1 = 0
x1x2 = 00, state = 10, z1 = 1
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 00, z1 = 0
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Figure 5.20 Waveforms for the pulse-mode machine of Example 5.3.

Example 5.4 A Moore pulse-mode asynchronous sequential machine will be de-
signed that has two inputs x1  and x2  and one output z1.  This example repeats Example
5.1 in which the storage elements consisted of SR latches and D flip-flops.  However,
the machine in this example will be designed using built-in primitives and T flip-flops.
The timing diagram is reproduced in Figure 5.21 and the state diagram is reproduced
in Figure 5.22.

Figure 5.21 Timing diagram for Example 5.4.

The input maps, obtained from the state diagram, are shown in Figure 5.23 using
the entry T in appropriate minterm locations.  The T entry indicates that the state of the
machine will change state; that is, it will toggle from 0 to 1 or toggle from 1 to 0.  The
entries that must be considered are the T entries, since these are the only entries for a
T flip-flop that result in a change of state for y1  and y2.  The s and r entries cannot

+x1

+x2

+z1

a b c d b c d a
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combine with the T in the minimization process, since these entries maintain a con-
stant flip-flop state, whereas a T will change the state of the corresponding flip-flop.

Figure 5.22 State diagram for Example 5.4.

Figure 5.23 Input maps for the Moore pulse-mode machine of Example 5.4.
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The input equations to toggle the T flip-flops — obtained from the input maps —
are shown in Equation 5.5.  The output equation for z1 is obtained from the state dia-
gram and is shown in Equation 5.6.  The logic diagram is designed from the input and
output equations and is shown in Figure 5.24.

Figure 5.24 Logic diagram for Example 5.4.

The design module is shown in Figure 5.25 using built-in primitives and instanti-
ated T flip-flops that were also designed with built-in primitives.  The outputs of the T
flip-flops are delayed by 11 time units, using a buf built-in primitive before being fed
back to the  next-state logic.  This allows the inputs to be deasserted before the state
of the machine is received at the input logic, which is a characteristic of a fundamental-
mode model.  The test bench module is shown in Figure 5.26.  The outputs and wave-
forms are shown in Figure 5.27 and Figure 5.28, respectively.

Ty1 = y1y2 ' x1  +y1 ' y2x2  + y1y2 ' x2
Ty2 = y2 ' x1  + y1x1  + y1y2x2 (5.5)

z1 = y1y2 ' (5.6)
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Figure 5.25 Design module for the Moore pulse-mode asynchronous sequential
machine of Example 5.4.

//moore pulse-mode asm using built-in primitives and T ff

module pm_asm_moore3 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;
wire nety1, nety2;

//------------------------------------------
//define the logic for flip-flop y1
and (net1, y1, ~y2, x1),

(net2, ~y1, y2, x2),
(net3, y1, ~y2, x2);

or (net4, net1, net2, net3);

//instantiate the T flip-flop as a single line
t_ff_da inst1 (rst_n, net4, nety1); //(rst_n, t, y1)

buf #11 (y1, nety1);

//------------------------------------------
//define the logic for flip-flop y2
and (net5, ~y2, x1),

(net6, y1, x1),
(net7, y1, y2, x2);

or (net8, net5, net6, net7);

//instantiate the T flip-flop as a single line
t_ff_da inst2 (rst_n, net8, nety2); //(rst_n, t, y2)

buf #11 (y2, nety2);

//------------------------------------------
//define the logic for output z1
and (z1, y1, ~y2);

endmodule
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Figure 5.26 Test bench module for the Moore pulse-mode asynchronous sequen-
tial machine of Example 5.4.

//test bench for moore pulse-mode asm
module pm_asm_moore3_tb;

reg rst_n, x1, x2; //inputs are reg for test bench
wire y1, y2, z1; //outputs are wire for test bench

initial //display variables
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

initial //apply input sequence
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;
//--------------------------------------------------

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;   //assert z1
#10 x1 = 1'b1; x2 = 1'b0;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;   //assert z1
#20 x1 = 1'b0; x2 = 1'b1;   //assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0;

//--------------------------------------------------
$stop;

end

//instantiate the module into the test bench as a single line
pm_asm_moore3 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule
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Figure 5.27 Outputs for the Moore pulse-mode asynchronous sequential machine
of Example 5.4.

Figure 5.28 Waveforms for the Moore pulse-mode asynchronous sequential
machine of Example 5.4.

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 11, z1 = 0

x1x2 = 00, state = 10, z1 = 1
x1x2 = 10, state = 10, z1 = 1
x1x2 = 00, state = 10, z1 = 1

x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 01, state = 11, z1 = 0
x1x2 = 00, state = 11, z1 = 0

x1x2 = 00, state = 10, z1 = 1
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 10, z1 = 1

x1x2 = 00, state = 00, z1 = 0
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Example 5.5 Using built-in primitives and D flip-flops, a Mealy machine will be
synthesized that operates according to the following specifications:  The machine has
two inputs x1  and x2 and one output z1.  The inputs are pulses and will never be active
concurrently.  Output z1 is also a pulse and is asserted coincident with x2  whenever x2
immediately follows exactly two x1  pulses, as shown in the timing diagram of
Figure 5.29.  No output will be generated for three or more consecutive x1 pulses.  For
this occurrence, the machine will be reinitialized by the next x2  pulse.  Assume that
timing restrictions for pulse width and duty cycle have been satisfied.

The operation of the machine is graphically depicted by the state diagram of
Figure 5.30.  Since the inputs will not be asserted simultaneously, the state transition
sequence depends on the occurrence of only a single pulse, either x1  or x2 . 

Figure 5.29 Representative timing diagram for the Mealy pulse-mode machine of
Example 5.5.

Figure 5.30 State diagram for the Mealy pulse-mode machine of Example 5.5.
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The input maps are shown in Figure 5.31, as obtained from the state diagram.  The
input equations are shown in Equation 5.7.  The output map is shown in Figure 5.32
and the output equation is shown in Equation 5.8.  The logic diagram, derived from the
input and output equations, is shown in Figure 5.33.

Figure 5.31 Input maps for the Mealy pulse-mode machine of Figure 5.30.

Figure 5.32 Output map for z1 for the Mealy pulse-mode machine.

z1 = y1y2x2               (5.8)
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Figure 5.33 Logic diagram for the Mealy pulse-mode machine of Example 5.5.

The design module using built-in primitives and instantiated D flip-flops that were
designed using behavioral modeling is shown in Figure 5.34.  The test bench module
is shown in Figure 5.35, which takes the machine through a sequence of inputs to
assert output z1.  The outputs and waveforms are shown in Figure 5.36 and Figure
5.37, respectively.

Figure 5.34 Design module for the Mealy pulse-mode machine of Example 5.5.
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//mealy pulse-mode asm using built-in primitives
module pm_asm13 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;

//continued on next page
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Figure 5.34       (Continued)

Figure 5.35 Test bench for the Mealy pulse-mode machine of Example 5.5.

//design the D flip-flop clock
nor (net1, x1, x2);

//---------------------------------------
//design the logic for latch Ly1
nand (net2, x1, y2),

(net3, net2, net4),
(net4, net3, ~x2, rst_n);

//instantiate the D flip-flop for y1 as a single line
d_ff_bh inst1 (rst_n, net1, net3, y1);  //rst_n, clk, d, q)

//---------------------------------------
//design the logic for latch Ly2
nand(net5, x1, ~y1);
and (net6, x1, y1);
nor (net7, x2, net6);
nand (net8, net5, net9),

(net9, net8, net7, rst_n);

//instantiate the D flip-flop for y2 as a single line
d_ff_bh inst2 (rst_n, net1, net8, y2);  //rst_n, clk, d, q)

//---------------------------------------
//design the logic for output z1
and (z1, y1, y2, x2);

endmodule

//test bench for mealy pulse-mode asm
module pm_asm13_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);
//continued on next page
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Figure 5.35       (Continued)

//apply input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

//------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0; //a
#10 x1 = 1'b1; x2 = 1'b0; //b

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; //c

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; //a

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; //z1, back to a

//------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0; //a
#10 x1 = 1'b1; x2 = 1'b0; //b

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; //c

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; //d

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; //a

//------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; //b

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; //c

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; //z1, back to a

//continued on next page
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Figure 5.35       (Continued)

Figure 5.36 Outputs for the Mealy pulse-mode machine of Example 5.5.

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;

//------------------------------------------------
$stop;

end

//instantiate the module into the test bench as a single line
pm_asm13 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 01, state = 11, z1 = 1
x1x2 = 00, state = 00, z1 = 0

x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 10, state = 11, z1 = 0
x1x2 = 00, state = 10, z1 = 0
x1x2 = 01, state = 10, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 11, z1 = 0
x1x2 = 01, state = 11, z1 = 1
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
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Figure 5.37 Waveforms for the Mealy pulse-mode machine of Example 5.5.

Example 5.6 In this example, built-in primitives will be utilized for the  next-state
logic and T flip-flops will be used as the storage elements for a Moore machine which
operates according to the following specifications: A pulse on input x2  will assert out-
put z1.  Output z1 will be deasserted by the second x1  pulse in a sequence of consec-
utive x1  pulses, but only if the two x1  pulses are preceded by an x2  pulse, as shown in
the timing diagram of Figure 5.38.

Figure 5.39 depicts the state diagram for this machine.  Since this is a Moore ma-
chine, the choice of state codes is critical to ensure that output z1 will not glitch.  The
machine is initially reset to state a (y1y2 = 00).  Pulses on input x1 maintain the ma-
chine in state a, whereas an x2  pulse sequences the machine to state b, where output z1
is asserted as a level.  The continued assertion of x2  pulses in state b causes the ma-
chine to remain in state b, according to the machine specifications.  The next x1  pulse
sequences the machine to state c, where z1 remains asserted.  It is only after the second
x1  pulse that the machine proceeds to state a, where z1 is deasserted and the process re-
peats.  The input maps are illustrated in Figure 5.40.

Figure 5.38 Representative timing diagram for the Moore pulse-mode machine of
Example 5.6.
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Figure 5.39 State diagram for the Moore pulse-mode machine of Example 5.6.
There is one unused state: y1y2  = 10.

Figure 5.40 Input maps for the Moore pulse-mode machine of Figure 5.39 for
Example 5.6.
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The maps representing flip-flop y1  are in the row corresponding to y1 ; the maps
representing flip-flop y2  are in row y2 .  The input variables x1  and x2  denote the col-
umn headings.  The following different types of map entries are shown in Figure 5.40
and are obtained directly from the state diagram using the attributes of the T flip-flop:

T indicates that the flip-flop toggles from 0 to 1 or from 1 to 0.
s indicates that the flip-flop remains set.
r indicates that the flip-flop remains reset.

To derive the input equations, refer to the input maps of Figure 5.40.  The entries
that must be considered are the T entries, since these are the only entries for a T flip-
flop that result in a change of state for y1  and y2.  The unused state y1y2 = 10 can be
used for minimization.  The s and r entries cannot combine with the T in the minimi-
zation process, since these entries maintain a constant flip-flop state, whereas a T will
change the state of the corresponding flip-flop.

The equations for toggling flip-flops y1  and y2  consist of the terms shown in
Equation 5.9.  Refer to the input map in row y1 , column x1 , state y1y2 = 01.  Flip-flop
y1  will toggle from 0 to 1 if input x1  is pulsed and the machine is in state y1y2 = 01 or
from 1 to 0 if x1  is pulsed in state y1y2  = 11.  The T entries in minterm locations 1 and
3 can combine, resulting in the term y2x1 .  The other occurrence where y1  will toggle
(from 1 to 0) is: if x2  is pulsed in state y1y2 = 11.  These conditions, when combined
with the unused state y1y2 = 10, yield two toggle terms, y2x1  and y1x2 .  Thus, the
complete toggle equation for flip-flop y1  is Ty1 = y2x1  + y1x2 .  The toggle equation
for flip-flop y2  is obtained in a similar manner.

Output z1 will be asserted whenever flip-flop y2 is set.  The equation for z1 is
shown in Equation 5.10.  The logic diagram is shown in Figure 5.41.  The storage el-
ements are T flip-flops of the type shown in Figure 5.9.  Correct operation of the ma-
chine can be verified by applying an appropriate sequence of x1  and x2 pulses and
observing that the machine functions in accordance with the machine specifications as
depicted by the state diagram of Figure 5.39.

z1 = y2              (5.10)

The design module is shown in Figure 5.42.  The test bench module is shown in
Figure 5.43.  The outputs and waveforms are shown in Figure 5.44 and Figure 5.45,
respectively.

Ty1  = y2x1  + y1x2

Ty2  = y1x1  + y2 ' x2 (5.9)
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Figure 5.41 Logic diagram for the pulse-mode Moore machine of Figure 5.39 of
Example 5.6 using positive-input T flip-flops for the storage elements.

Figure 5.42 Design module using built-in primitives and T flip-flops for the
Moore pulse-mode machine of Example 5.6.
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//moore pulse-mode asm using built-in primitives

module pm_asm14 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, nety1, nety2;

//--------------------------------------
//design the logic for flip-flop y1
and (net1, x1, y2),

(net2, x2, y1);
or (net3, net1, net2);

//instantiate the T flip-flop
t_ff_da inst1 (rst_n, net3, nety1);   //rst_n, t, y1

buf #4 (y1, nety1);
//continued on next page
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Figure 5.42       (Continued)

Figure 5.43 Test bench module for the Moore pulse-mode machine of Example
5.6

//--------------------------------------
//design the logic for flip-flop y2
and (net4, x1, y1),

(net5, x2, ~y2);
or (net6, net4, net5);

//instantiate the T flip-flop
t_ff_da inst2 (rst_n, net6, nety2);   //rst_n, t, y1

buf #4 (y2, nety2);

//--------------------------------------
//design the logic for output z1
assign z1 = y2;

endmodule

//test bench for the moore pulse=-mode asm

module pm_asm14_tb;

//inputs are reg for test bench 
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//apply input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;
//continued on next page
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Figure 5.43       (Continued)

Figure 5.44 Outputs for the pulse-mode machine of Example 5.6.

//-------------------------------------
#5 x1 = 1'b1;
#3 x1 = 1'b0;
#7 x2 = 1'b1;   //20
#3 x2 = 1'b0;
#7 x2 = 1'b1;   //30
#3 x2 = 1'b0;

#7 x1 = 1'b1;   //40
#3 x1 = 1'b0;
#7 x2 = 1'b1;   //50
#3 x2 = 1'b0;
#7 x1 = 1'b1;   //60
#3 x1 = 1'b0;

#7 x1 = 1'b1;   //70
#3 x1 = 1'b0;
#7 x1 = 1'b1;   //80
#3 x1 = 1'b0;

#10 $stop;
end

//-------------------------------------
//instantiate the module into the test bench as a single line
pm_asm14 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 01, state = 01, z1 = 1
x1x2 = 00, state = 01, z1 = 1
x1x2 = 01, state = 01, z1 = 1
x1x2 = 00, state = 01, z1 = 1
x1x2 = 10, state = 01, z1 = 1
x1x2 = 10, state = 11, z1 = 1
x1x2 = 00, state = 11, z1 = 1

x1x2 = 01, state = 11, z1 = 1
x1x2 = 01, state = 01, z1 = 1
x1x2 = 00, state = 01, z1 = 1
x1x2 = 10, state = 01, z1 = 1
x1x2 = 10, state = 11, z1 = 1
x1x2 = 00, state = 11, z1 = 1
x1x2 = 10, state = 11, z1 = 1
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Figure 5.45 Waveforms for the Moore pulse-mode machine of Example 5.6.

Example 5.7 A Mealy machine will be synthesized which has three pulse input
variables x1 , x2 , and x3  and one output z1 that is asserted coincident with x3  whenever
the sequence x1x2x3 = 100, 010, 001 occurs.  The storage elements will consist of SR
latches and positive-edge-triggered D flip-flops.

A representative timing diagram displaying valid input sequences and corre-
sponding outputs is shown in Figure 5.46.  The state diagram is shown in Figure 5.47.
State code assignment is arbitrary, since input pulses trigger all state transitions and
the machine does not begin to sequence to the next state until the input pulse, which
initiated the transition, has been deasserted.  Thus, output z1 will not glitch.

Figure 5.46 Representative timing diagram for the pulse-mode Mealy machine of
Example 5.7.
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Figure 5.47 State diagram for the Mealy pulse-mode machine of Example 5.7.

A tabular representation of the state diagram is shown in Table 5.3.  Since only
one input variable can be active at a time, only three combinations are listed:
x1x2x3 = 100, 010, and 001.  With the exception of x1x2x3 = 000, all other combina-
tions of the inputs are invalid.

Table 5.3  Next-State Table for the Mealy
Pulse-Mode Machine of Figure 5.47

State name
Present state

y1 y2
Inputs

x1  x2 x3
Next state

y1  y2
Output

z1

a 0   0 1   0   0 0   1 0
0   0 0   1   0 0   0 0
0   0 0   0   1 0   0 0

b 0   1 1   0   0 0   1 0
0   1 0   1   0 1   1 0
0   1 0   0   1 0   0 0

c 1   1 1   0   0 0   1 0
1   1 0   1   0 0   0 0
1   1 0   0   1 0   0 1

b

a

c

z1

x2

x1

y1 y2
0  0

0 1

1 1

x1

x3

x2 + x3

x1

x3

x2

b

c

a



656          Chapter 5     Synthesis of Pulse-Mode ASM Using Verilog HDL

The input maps are shown in Figure 5.48.  Each latch requires three input maps,
one each for x1 , x2 , and x3 .  As in previous examples, the maps are arranged such that
the maps corresponding to each latch are in the same row, and each column of maps
corresponds to a unique input.  The map entries are defined as follows:

S indicates that the latch will be set.
s indicates that the latch will remain set.
R indicates that the latch will be reset.
r indicates that the latch will remain reset.

Figure 5.48 Input maps for the Mealy pulse-mode machine of Figure 5.47.

The map entries are obtained as in previous examples.  Refer to the state diagram
and minterm location 0 of the map in row Ly1 , column x1.  In state a (y1y2 = 00), if x1
is pulsed, then the machine sequences to state b (y1y2 = 01) where flip-flop y1  re-
mains reset.  Thus, the letter r is inserted in minterm location 0.  In the same map, min-
term location 3 contains the entry R.  That is, in state c (y1y2 = 11), flip-flop y1  is reset
if x1  is pulsed.  In a similar manner, the remaining input maps are derived.

When obtaining the equations for the latches from the input maps, only the upper-
case letters must be considered.  The lowercase letters and the unused states are used
only if they contribute to a minimized equation.  The set and reset input equations are
listed in Equation 5.11, where SLy1 , RLy1  and SLy2 , RLy2  are the set and reset equa-
tions for latches Ly1 and Ly2 , respectively.  Note that all equations contain an input
variable xi, since the machine is triggered by input pulses.
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The output map for z1 is shown in Figure 5.49.  Since z1 is asserted coincident
with x3, input x3  is used as a map-entered variable in state c (y1y2 = 11) and combines
with the unused state to yield Equation 5.12, which specifies a Mealy pulse-mode
asynchronous sequential machine.

Figure 5.49 Output map for z1 for the pulse-mode machine of Figure 5.47.

z1 = y1x3              (5.12)

The logic diagram for this Mealy machine is shown in Figure 5.50, using SR latch-
es and D flip-flops in a master-slave relationship with an implied reset.  The logic is
synthesized from the input and output equations of Equation 5.11 and Equation 5.12,
respectively.  Each of the three mutually exclusive input pulses is inverted through the
three-input NOR gate.

When the pulses are active, a low voltage level is applied to the clock inputs of D
flip-flops y1  and y2 .  The active level of the pulses also sets or resets latches Ly1  and
Ly2 , depending on the present state and the present input.  The latches stabilize to their
respective next states while the input pulse is still active and provide the next-state val-
ues to the D inputs of flip-flops y1  and y2 .  When the input pulse is deasserted, a pos-
itive transition is applied to the clock inputs of flip-flops y1 and y2 , which then
sequence the machine to the next state.

SLy1  = y1 ' y2x2

RLy1  = x1  + y1x2  + x3

SLy2  = x1

RLy2  = y1x2  + x3 (5.11)

y1

y2
 0         1

0      0        0

1      –        x3

z1
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Figure 5.50 Logic diagram for the Mealy pulse-mode machine of Figure 5.47,
using SR latches and D flip-flops in a master-slave configuration.

The design module is shown in Figure 5.51 using built-in primitives and D flip-
flops that were designed using behavioral modeling.  The test bench module is shown
in Figure 5.52.  The outputs and waveforms are shown in Figure 5.53 and Figure 5.54,
respectively.

Figure 5.51 Design module for the Mealy pulse-mode machine of Example 5.7.
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//mealy pulse-mode asm using built-in primitives
module pm_asm16 (rst_n, rst, x1, x2, x3, y1, y2, z1);

//define inputs and outputs
input rst_n, rst, x1, x2, x3;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;

//continued on next page
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Figure 5.51       (Continued)

//design the D flip-flop clock
nor (net1, x1, x2, x3);

//--------------------------------------
//design the logic for latch y1
and (net2, x2, ~y1, y2),

(net3, x2, y1);

or (net4, x1, x3, net3);

nor (net5, net2, net6),
(net6, net5, net4, rst);

//instantiate the D flip-flop for y1
d_ff_bh inst1 (

.rst_n(rst_n),

.clk(net1),

.d(net6),

.q(y1)
);

//--------------------------------------
//design the logic for latch y2
or (net7, net3, x3);

nor (net8, x1, net9),
(net9, net8, net7, rst);

//instantiate the D flip-flop for y2
d_ff_bh inst2 (

.rst_n(rst_n),

.clk(net1),

.d(net9),

.q(y2)
);

//--------------------------------------
//design the logic for output z1
and (z1, y1, x3);

endmodule
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Figure 5.52 Test bench module for the Mealy pulse-mode machine of Example
5.7.

//test bench for mealy pulse-mode asm

module pm_asm16_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, rst, x1, x2, x3;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0;
rst = 1'b1;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1;
rst = 1'b0;

//----------------------------------------------------------
#5 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;   //10
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //15

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //25
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //30

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //40
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //45

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //55
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //60

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;   //70
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //75

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //85
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //90

//continued on next page
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Figure 5.52       (Continued)

Figure 5.53 Outputs for the Mealy pulse-mode machine of Example 5.7.

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //100, assert z1
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //105

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //115
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //120

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //130
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //135

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;   //145
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //150

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //160
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //165

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //175, assert z1
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //180

#10 $stop;
end

//instantiate the module into the test bench as a single line
pm_asm16 inst1 (rst_n, rst, x1, x2, x3, y1, y2, z1);

endmodule

x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 010, state = 11, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 001, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 001, state = 11, z1 = 1

x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 001, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 010, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 001, state = 11, z1 = 1

x1x2x3 = 000, state = 00, z1 = 0
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Figure 5.54 Waveforms for the Mealy pulse-mode machine of Example 5.7.

Example 5.8 A Mealy machine will be synthesized which has three pulse input
variables x1 , x2 , and x3  and one output z1 that is asserted coincident with x3  whenever
the sequence x1x2x3 = 100, 010, 001 occurs.  The storage elements will consist of T
flip-flops.  Recall that a T flip-flop has a T input, a Reset input, and two outputs y1  and
y1 '.  If the flip-flop is reset, then an active pulse on the T input will toggle the flip-flop
to the set state; if the flip-flop is set, then a pulse on the T input will toggle the flip-flop
to the reset state.

The T flip-flop utilized in this example incorporates a D flip-flop and an exclu-
sive-OR circuit.  The T input connects to the clock input of the D flip-flop through a
delay circuit, which allows the clock input to be delayed until the signal on the D input
has stabilized.  When T has a value of 0, the next state is the same as the present state;
when T has a value of 1, the next state is the complement of the present state.

A representative timing diagram displaying valid input sequences and corre-
sponding outputs is shown in Figure 5.55.  The state diagram is shown in Figure 5.56.

The input maps, obtained from the state diagram, are shown in Figure 5.57 using
the entry T in appropriate minterm locations.  The T entry indicates that the state of the
flip-flop will change state; that is, it will toggle from 0 to 1 or toggle from 1 to 0.  The
entries that must be considered are the T entries, since these are the only entries for a
T flip-flop that result in a change of state for y1  and y2.  The s and r entries cannot
combine with the T in the minimization process, since these entries maintain a con-
stant flip-flop state, whereas a T will change the state of the corresponding flip-flop.
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Figure 5.55 Representative timing diagram for the pulse-mode Mealy machine of
Example 5.8.

Figure 5.56 State diagram for the pulse-mode Mealy machine of Example 5.8.

The input equations obtained from the input maps are shown in Equation 5.13.
The “don’t care” entries are used to minimize the input equations.  The output equa-
tion is shown in Equation 5.14 and is obtained directly from the state diagram in state
c.
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Figure 5.57 Input maps for the pulse-mode Mealy machine of Example 5.8.

The logic diagram is shown in Figure 5.58 and displays the net names for all of the
internal nets.  The design module is shown in Figure 5.59 using T flip-flops and built-
in primitives for and, or, and buf.  Recall that built-in primitive gates are used to
describe a net and have one or more scalar inputs, but only one scalar output.  The out-
put signal is listed first, followed by the inputs in any order.  The gates represent com-
binational logic functions and can be instantiated into a module, as follows, where the
instance name is optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

The test bench module is shown in Figure 5.60 and takes the machine through var-
ious states represented in the timing diagram of Figure 5.55.  The outputs and wave-
forms are shown in Figure 5.61 and Figure 5.62, respectively.
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Ty1  = y1x1  + y2x2  + y1x3

Ty2  = y2 ' x1  + y1x2  + y2x3

z1 = y1x3

(5.13)

(5.14)
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Figure 5.58 Logic diagram for the pulse-mode Mealy machine of Example 5.8.

Figure 5.59 Design module for the pulse-mode Mealy machine of Example 5.8.
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//mealy pulse-mode asm using built-in primitives and T ff

module pm_asm16_tff (rst_n, x1, x2, x3, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;
wire nety1, nety2;

//continued on next page
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Figure 5.59       (Continued)

Figure 5.60 Test bench module for the pulse-mode Mealy machine of Example
5.8.

//-------------------------------------------------
//design the logic for T flip-flop y1
and (net1, y1, x1),

(net2, y2, x2),
(net3, y1, x3);

or (net4, net1, net2, net3);

//instantiate the T flip-flop as a single line
t_ff_da inst1 (rst_n, net4, nety1);   //rst_n, t, y1

buf #11 (y1, nety1);

//-------------------------------------------------
//design the logic for T flip-flop y2
and (net5, ~y2, x1),

(net6, y1, x2),
(net7, y2, x3);

or (net8, net5, net6, net7);

//instantiate the T flip-flop as a single line
t_ff_da inst2 (rst_n, net8, nety2);   //rst_n, t, y1

buf #11 (y2, nety2);

//-------------------------------------------------
//design the logic for output z1
and (z1, y1, x3);

endmodule

//test bench for mealy pulse-mode asm
module pm_asm16_tff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1, y2, z1;

initial //display variables
$monitor ("x1x2x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1, y2}, z1);  //continued next pg
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Figure 5.60       (Continued)

initial //apply input sequence
begin

#0 rst_n = 1'b0;
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#5 rst_n = 1'b1;
//----------------------------------------------------------

#5 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;   //10
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //15

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //25
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //30

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //40
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //45

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //55
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //60

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;   //70
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //75

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //85
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //90

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //100, assert z1
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //105

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //115
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //120

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //130
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //135

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;   //145
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //150

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;   //160
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //165

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;   //175, assert z1
#5 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;   //180
#10 $stop;

end

//instantiate the module into the test bench as a single line
pm_asm16_tff inst1 (rst_n, x1, x2, x3, y1, y2, z1);
endmodule
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Figure 5.61 Outputs for the pulse-mode Mealy machine of Example 5.8.

x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0

x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 010, state = 11, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 001, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0

x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0

x1x2x3 = 001, state = 11, z1 = 1

x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 001, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 010, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0

x1x2x3 = 100, state = 00, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 010, state = 01, z1 = 0
x1x2x3 = 000, state = 01, z1 = 0
x1x2x3 = 000, state = 11, z1 = 0

x1x2x3 = 001, state = 11, z1 = 1

x1x2x3 = 000, state = 11, z1 = 0
x1x2x3 = 000, state = 00, z1 = 0
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Figure 5.62 Waveforms for the pulse-mode Mealy machine of Example 5.8.

Example 5.9 A Mealy pulse-mode asynchronous sequential machine will be syn-
thesized which has two inputs x1  and x2  and one output z1.  Output z1 is asserted coin-
cident with every second x2  pulse, if and only if the pair of x2  pulses is immediately
preceded by an x1 pulse.  and, nand and nor built-in primitives will be utilized, plus
inverters as required.  The storage elements will consist of SR latches and D flip-flops
in a master-slave configuration.  Output z1 is asserted as a logic 1 level.

A representative timing diagram is illustrated in Figure 5.63 and the state diagram
is shown in Figure 5.64.  The input maps are shown in Figure 5.65 and the input equa-
tions are shown in Equation 5.15.  The output equation is shown in Equation 5.16.  The
logic diagram is displayed in Figure 5.66.

Figure 5.63 Representative timing diagram for the Mealy pulse-mode machine of
Example 5.9.

+x1

+x2

+z1
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Figure 5.64 State diagram for the Mealy pulse-mode machine of Example 5.9.

Figure 5.65 Input maps for the Mealy pulse-mode machine of Example 5.9.
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Figure 5.66 Logic diagram for the Mealy pulse-mode machine of Example 5.9.
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The design module is shown in Figure 5.67 using built-in primitives and D flip-
flops that were designed using behavioral modeling.  The D flip-flops are instantiated
as a single line.  The test bench module is shown in Figure 5.68.  The outputs and
waveforms and shown in Figure 5.69 and Figure 5.70, respectively.

Figure 5.67 Design module for the Mealy pulse-mode machine of Example 5.9.

//dataflow mealy pulse-mode asm using built-in primitives

module pm_asm12 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;

//design the D flip-flop clock
nor (net1, x1, x2);

//--------------------------------------
//design the logic for latch Ly1
nand (net2, x2, y2),

(net3, x2, y1),
(net4, ~x1, net3);

not (net5, net4);
nand (net6, net2, net7),

(net7, net6, net5, rst_n);

//instantiate the D flip-flop for y1
d_ff_bh inst1 (rst_n, net1, net6, y1);   //rst_n, clk, d, q

//--------------------------------------
//design the logic for latch Ly2
nand (net8, ~x1, net9),

(net9, net8, ~x2, rst_n);

//instantiate the D flip-flop for y2
d_ff_bh inst2 (rst_n, net1, net8, y2);   //rst_n, clk, d, q

//--------------------------------------
//design the logic for output z1
and (z1, y1, x2);

endmodule
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Figure 5.68 Test bench module for the Mealy pulse-mode machine of Example
5.9.

//test bench for pulse-mode
//asynchronous sequential machine

module pm_asm12_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_b (01)

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_b (01)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_c (10)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a (00); assert z1

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_b (01)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_c (10)

//continued on next page
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Figure 5.68       (Continued)

Figure 5.69 Outputs for the Mealy pulse-mode machine of Example 5.9.

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a (00); assert z1

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 $stop;

end

//instantiate the module into the test bench as a single line
pm_asm12 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 10, z1 = 0
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 00, z1 = 0

x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 10, z1 = 0
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 00, z1 = 0

x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Figure 5.70 Waveforms for the Mealy pulse-mode machine of Example 5.9.

Example 5.10   A Mealy pulse-mode asynchronous sequential machine will be syn-
thesized which has two inputs x1  and x2  and one output z1.  Output z1 is asserted coin-
cident with every second x2  pulse, if and only if the pair of x2  pulses is immediately
preceded by an x1  pulse.  This example repeats Example 5.9, however nand built-in
primitives will be utilized together with storage elements that consist of T flip-flops.
Output z1 is asserted as a logic 1 level.

A represented timing diagram is illustrated in Figure 5.71 and the state diagram is
shown in Figure 5.72.  The input maps are shown in Figure 5.73 and the input equa-
tions are shown in Equation 5.17.  The output equation is shown in Equation 5.18.  The
logic diagram is displayed in Figure 5.74.

Figure 5.71 Representative timing diagram for the Mealy pulse-mode machine of
Example 5.10.

+x1

+x2

+z1
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Figure 5.72 State diagram for the Mealy pulse-mode machine of Example 5.10.

Figure 5.73 Input maps for the pulse-mode Mealy machine of Figure 5.72 for
Example 5.10.
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Figure 5.74 Logic diagram for the pulse-mode Mealy machine of Figure 5.72 of
Example 5.10 using positive-input T flip-flops for the storage elements.

The design module for the pulse-mode asynchronous sequential machine of
Example 5.10 is shown in Figure 5.75 using nand and buf built-in primitives and T
flip-flops.  The T flip-flops were designed using built-in primitives and D flip-flops
that were designed using behavioral modeling.  The T flip-flops are instantiated into
the design module as a single line.  The test bench module is shown in Figure 5.76,
which takes the machine through various input sequences to illustrate the representa-
tive timing diagram.  The outputs and waveforms are shown in Figure 5.77 and Figure
5.78, respectively.

Ty1  = y1x1  + y1x2  + y2x2

Ty2  = y2 ' x1  + y2x2 (5.17)

z1 = y1x2                                                              (5.18)
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R

y2
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R

 Y 
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Figure 5.75 Design module for the pulse-mode Mealy machine of Example 5.10.

Figure 5.76 Test bench for the pulse-mode Mealy machine of Example 5.10.

//mealy pulse-mode asm using T flip-flops and bip
module pm_asm15 (rst_n, x1, x2, y1, y2, z1);

input rst_n, x1, x2; //define inputs and outputs
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, nety1, nety2;

//------------------------------------------
//design the logic for flip-flop y1
nand (net1, x1, y1),

(net2, x2, y1),
(net3, x2, y2),
(net4, net1, net2, net3);

//instantiate the T flip-flop
t_ff_da inst1 (rst_n, net4, y1);   //rst_n, t, y1

buf #11 (y1, nety1);

//------------------------------------------
//design the logic for flip-flop y2
nand (net5, x1, ~y2),

(net6, net3, net5);

//instantiate the T flip-flop
t_ff_da inst2 (rst_n, net6, y2);   //rst_n, t, y1

buf #11 (y2, nety2);

//------------------------------------------
//design the logic for output z1
assign z1 = y1 & x2;

//test bench for the mealy pulse-mode asm
module pm_asm15_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1; //continued on next page
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Figure 5.76       (Continued)

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0;  //reset to state_a (00)
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_b (01)

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_b (01)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_c (10)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a (00); assert z1

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_b (01)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_c (10)

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //go to state_a (00); assert z1

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 $stop;
end

//instantiate the module into the test bench as a single line
pm_asm15 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule
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Figure 5.77 Outputs for the pulse-mode machine of Example 5.10.

Figure 5.78 Waveforms for the pulse-mode machine of Example 5.10.

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 10, state = 01, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 00, state = 10, z1 = 0
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 10, z1 = 0

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 01, state = 01, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 00, state = 10, z1 = 0
x1x2 = 01, state = 10, z1 = 1
x1x2 = 00, state = 10, z1 = 0

x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 00, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Example 5.11   A state diagram is shown in Figure 5.79 for a Moore pulse-mode
asynchronous sequential machine with three inputs x1 , x2 , and x3 , and two outputs z1
and z2 .  Dataflow modules for the logic gates will be instantiated into the structural
module.  Also, D flip-flops are used in the implementation.  The input maps and equa-
tions are shown in Figure 5.80 and Equation 5.19, respectively.  The output equations
are shown in Equation 5.20 and the logic diagram is shown in Figure 5.81.  The design
module is shown in Figure 5.82 and the test bench module that takes the machine
through various sequences to assert output z1 and output z2  is shown in Figure 5.83.
The outputs and waveforms are shown in Figure 5.84 and Figure 5.85, respectively.

Figure 5.79 State diagram for the Moore pulse-mode machine of Example 5.11.
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Figure 5.80 Input maps for the Moore pulse-mode machine of Example 5.11.
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SLy1  = y1 ' x1  + x3

RLy1  = y1x1

SLy2  = y1x1  + y2 ' x3

RLy2  = y1 ' x2  + y2x3 (5.19)

z1 = y1

z2 = y2 (5.20)
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Figure 5.81 Logic diagram for the Moore pulse-mode machine of Example 5.11.

Figure 5.82 Design module for the Moore pulse-mode machine of Example 5.11.
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//moore pulse-mode asm using instantiated dataflow
//modules and D flip-flops

module pm_asm_moore9 (rst_n, x1, x2, x3, y1, y2, z1, z2);

//design inputs and outputs
input rst_n, x1, x2, x3;
output y1, y2, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;
wire net9, net10, net11, net12, net13, net14;

//continued on next page
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Figure 5.82       (Continued)

//--------------------------------------------------
//define the D flip-flop clock
nor3_df inst1 (x1, x2, x3, net1);

//--------------------------------------------------
//design the logic for latch Ly1 and D flip-flop y1
and2_df inst2 (~y1, x1, net2);
nor2_df inst3 (net2, x3, net3);
nand2_df inst4 (x1, y1, net4);

//latch Ly1
nand2_df inst5 (net3, net6, net5);
nand3_df inst6 (net5, net4, rst_n, net6);

//instantiate the D flip-flop as a single line
d_ff_bh inst15 (rst_n, net1, net5, y1);   //rst_n, clk, d, q

//--------------------------------------------------
//design the logic for latch Ly2 and D flip-flop y2
and2_df inst7 (x1, y1, net7);
and2_df inst8 (x3, ~y2, net8);
nor2_df inst9 (net7, net8, net9);
and2_df inst10 (~y1, x2, net10);
and2_df inst11 (x3, y2, net11);
nor2_df inst12 (net10, net11, net12);

//latch Ly2
nand2_df inst13 (net9, net14, net13);
nand3_df inst14 (net13, net12, rst_n, net14);

//instantiate the D flip-flop as a single line
d_ff_bh inst16 (rst_n, net1, net13, y2);   //rst_n, clk, d, q

//design the logic for outputs z1 and z2
assign z1 = y1;
assign z2 = y2;

endmodule
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Figure 5.83 Test bench module for the Moore pulse-mode machine of Example
5.11.

//test bench for moore pulse-mode asm
module pm_asm_moore9_tb;

reg rst_n, x1, x2, x3; //inputs are reg for test bench
wire y1, y2, z1, z2; //outputs are wire for test bench

initial //display inputs and outputs
$monitor ("x1x2x3 = %b, state = %b, z1z2 = %b",

{x1, x2, x3}, {y1, y2}, {z1, z2});

initial //define input sequence
begin

#0 rst_n = 1'b0;  x1 = 1'b0;  x2 = 1'b0;  x3 = 1'b0;
#5 rst_n = 1'b1;

#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   //b, assert z1
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   //d, assert z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b0;   x2=1'b0;   x3=1'b1;   //b, assert z1
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b0;   x2=1'b0;   x3=1'b1;   //c, assert z1,z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   //d, assert z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   //c, assert z1,z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   //d, assert z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b0;   x2=1'b1;   x3=1'b0;   //a
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;
#20 $stop;

end

//instantiate the module into the test bench
pm_asm_moore9 inst1 (rst_n, x1, x2, x3, y1, y2, z1, z2);
endmodule
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Figure 5.84 Outputs for the Moore pulse-mode machine of Example 5.11.

Figure 5.85 Waveforms for the Moore pulse-mode machine of Example 5.11.

x1x2x3 = 000, state = 00, z1z2 = 00
x1x2x3 = 100, state = 00, z1z2 = 00
x1x2x3 = 000, state = 10, z1z2 = 10
x1x2x3 = 100, state = 10, z1z2 = 10

x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 001, state = 01, z1z2 = 01
x1x2x3 = 000, state = 10, z1z2 = 10
x1x2x3 = 001, state = 10, z1z2 = 10

x1x2x3 = 000, state = 11, z1z2 = 11
x1x2x3 = 100, state = 11, z1z2 = 11
x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 100, state = 01, z1z2 = 01

x1x2x3 = 000, state = 11, z1z2 = 11
x1x2x3 = 100, state = 11, z1z2 = 11
x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 010, state = 01, z1z2 = 01

x1x2x3 = 000, state = 00, z1z2 = 00
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5.3    Problems

5.1 Design a Moore pulse-mode asynchronous sequential machine which has two
inputs x1  and x2 and one output z1.  The deassertion of every second consec-
utive x1  pulse will assert output z1 as a level.  The output will remain set for all
following contiguous x1  pulses.  The output will be deasserted at the trailing
edge of the second of two consecutive x2  pulses.  A state diagram is shown be-
low that represents the complete sequencing for this Moore machine.

Obtain the design module using the continuous assignment statement, SR
latches, and D flip-flops.  The D flip-flops are to be designed using behavioral
modeling.  Obtain the test bench module that takes the machine through the
various sequences required to generate the output assertion and deassertion as
specified above.  Obtain the outputs and the waveforms.
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5.2 Design a Moore pulse-mode asynchronous sequential machine which has two
inputs x1  and x2  and one output z1.  The deassertion of every second consec-
utive x1  pulse will assert output z1 as a level.  The output will remain set for all
following contiguous x1  pulses.  The output will be deasserted at the trailing
edge of the second of two consecutive x2  pulses.  Built-in primitives are to be
utilized together with T flip-flops.  The state diagram is shown below.  Obtain
the design module and the test bench module that takes the machine through
the various sequences required to generate the output assertion and deasser-
tion as specified above.  Obtain the outputs and the waveforms.

5.3 Design a Moore pulse-mode asynchronous sequential machine which has two
inputs x1  and x2 and one output z1.  The deassertion of every second consec-
utive x1  pulse will assert output z1 as a level.  The output will remain set for all
following contiguous x1  pulses.  The output will be deasserted at the trailing
edge of the second of two consecutive x2  pulses.  Use nand built-in primitives
together with SR latches and D flip-flops.  The state diagram is shown below
and represents the complete sequencing for this Moore machine.

Obtain the design module using D flip-flops that were designed using
behavioral modeling.  Obtain the test bench module that takes the machine
through the various sequences required to generate the output assertion and
deassertion as specified above.  Obtain the outputs and the waveforms.

a

y1y2
0 0

b
0 1

c
z1

1 1

d
z1

1 0

x1
x2

x2
x1

x2
x1

x1
x2



5.3     Problems     689

5.4 Design a Moore pulse-mode asynchronous sequential machine which has two
inputs x1  and x2 and one output z1.  The deassertion of every second consec-
utive x1  pulse will assert output z1 as a level.  The output will remain set for all
following contiguous x1  pulses.  The output will be deasserted at the trailing
edge of the second of two consecutive x2  pulses.  Use nor built-in primitives
together with SR latches, D flip-flops, and inverters where required.  The state
diagram is shown below and represents the complete sequencing for this
Moore machine.  Obtain the design module using D flip-flops that are designed
using behavioral modeling.  Obtain the test bench module that takes the ma-
chine through the various sequences required to generate the output assertion
and deassertion as specified above.  Obtain the outputs and the waveforms.
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5.5 Synthesize a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with
every second x2  pulse, if and only if the pair of x2  pulses is immediately pre-
ceded by an x1  pulse.  Use logic gates that were  designed using dataflow mod-
eling.  The storage elements will consist of SR latches and D flip-flops in a
master-slave configuration.  Output z1 is asserted as a logic 1 level.  A repre-
sentative timing diagram and the state diagram are shown below.  Obtain the
design module, the test bench module, the outputs, and the waveforms.
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5.6 Design a Mealy pulse-mode asynchronous sequential machine which has two
inputs x1  and x2  and one output z1.  For a Mealy machine, the outputs are a
function of the present states and the present inputs.  Output z1 is asserted co-
incident with the x2  pulse if the x2  pulse is immediately preceded by a pair of
x1  pulses.  Use SR latches and D flip-flops in a master-slave configuration.
Use NAND logic for all gates and latches except for output z1, which will be
an AND gate.

Derive the state diagram, input maps, output map, and logic diagram.
Then use the continuous assignment statement to design the module.  Obtain
the test bench, outputs, and waveforms.

5.7 Given the state diagram shown below for a Moore pulse-mode asynchronous
sequential machine, synthesize the machine using SR latches and D flip-flops
in a master-slave configuration.  Obtain the input maps and equations, the out-
put equations, and the logic diagram using and, nand, and nor built-in prim-
itives for the  next-state logic and latches.  Then develop the design module
using built-in primitives and the test bench module that takes the machine
through various sequences to assert output z1 and output z2 .  Obtain the out-
puts and the waveforms.
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5.8 A state diagram is shown below for a Moore pulse-mode asynchronous se-
quential machine with three inputs x1 , x2, and x3 , and two outputs z1 and z2 .
Use T flip-flops in the implementation.  Obtain the input maps and equations,
the output equations, and the logic diagram using AND and OR gates for the
 next-state logic.  Obtain the design module using and and or built-in prim-
itives and T flip-flops.  Then develop the test bench module that takes the ma-
chine through various sequences to assert output z1 and output z2 .  Obtain the
outputs, and the waveforms.
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5.9 Design a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with
every second x2 pulse, if and only if  the pair of x2 pulses is immediately pre-
ceded by an x1 pulse.  Use the continuous assignment statement of dataflow
modeling in the implementation.  The storage elements will consist of SR
latches and D flip-flops in a master-slave configuration.  The design will be
implemented primarily with NOR logic for the SR latches and the logic prim-
itives.  A representative timing diagram is shown below.

Generate a state diagram that depicts all possible state transition
sequences that conform to the functional specifications.  Obtain the input
maps and equations, the output equation, and the logic diagram.  Obtain the
design module, the test bench module, the outputs, and the waveforms.
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5.10 Design a Moore pulse-mode asynchronous sequential machine which has
three inputs x1 , x2 , and x3  and one output z1.  Output z1 will be asserted co-
incident with the assertion of the x3  pulse if and only if the x3  pulse was pre-
ceded by an x1  pulse followed by an x2 pulse.  That is, the input vector must
be x1x2x3  = 100, 000,  010, 000, 001 to assert z1.  Output z1 will be deas-
serted at the next x1  pulse or x2  pulse.

A representative timing diagram is shown below.  Obtain the state dia-
gram, the input maps and equations, the output equation, and the logic dia-
gram using NOR gates for the SR latches and D flip-flops that were designed
using behavioral modeling.  Obtain the design module using the continuous
assignment statement, the test bench module, the outputs, and the wave-
forms.

5.11 Design a Moore pulse-mode asynchronous sequential machine which has
three inputs x1 , x2 , and x3  and one output z1.  Output z1 will be asserted co-
incident with the assertion of the x3  pulse if and only if the x3  pulse was pre-
ceded by an x1  pulse followed by an x2  pulse.  That is, the input vector must
be x1x2x3  = 100, 000,  010, 000, 001 to assert z1.  Output z1 will be deasserted
at the next x1 pulse or x2  pulse.  Use structural modeling that instantiates data-
flow modules for the  next-state logic and the SR latches.  Instantiate the
dataflow modules as single lines.  Instantiate the D flip-flops as single lines
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+z1

+x1
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that were designed using behavioral modeling.  The timing diagram is shown
below.  Obtain the design module, the test bench module, the outputs, and the
waveforms.

5.12 Design a Mealy pulse-mode asynchronous sequential machine that has three
input variables x1 , x2 , and x3  and one output z1 that is asserted coincident
with x3  whenever the sequence x1x2x3 = 100, 010, 001 occurs.  The storage
elements consist of SR latches and positive-edge-triggered D flip-flops in a
master-slave configuration.

A representative timing diagram displaying valid input sequences and
corresponding outputs is shown below.  Obtain the state diagram that repre-
sents the functional operation of the machine.  State code assignment is arbi-
trary for the state diagram, since input pulses trigger all state transitions and
the machine does not begin to sequence to the next state until the input pulse,
which initiated the transition, has been deasserted.  Thus, output z1 will not
glitch.  Obtain the input maps, the input equations, the output equation, and
the logic diagram.  Then obtain the structural design module using dataflow
modeling for the logic primitives, which are instantiated as a single line.  Use
NOR logic for the SR latches.  Use behavioral modeling for the D flip-flop.
Obtain the test bench, the outputs, and the waveforms.
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5.13 Given the state diagram shown below for a Moore pulse-mode asynchronous
sequential machine, implement the machine using NAND gates for the SR
latches and D flip-flops as the storage elements in a master-slave configura-
tion.  Use any type of gates for the logic primitives.

Derive the input maps, the input equations, the output equations, and the
the logic diagram.  Generate the design module using the continuous assign-
ment statement construct for the logic primitives and latches.  Instantiate
positive-edge-triggered D flip-flops that were designed using behavioral
modeling.  Obtain the test bench module, the outputs, and the waveforms.

5.14 Given the state diagram shown below for a Moore pulse-mode asynchronous
sequential machine, implement the machine using built-in primitives gates
for the  next-state logic and the SR latches.  This problem uses built-in prim-
itives and D flip-flops — instantiated as a single line — as the storage ele-
ments in a master-slave configuration with the latches.

Derive the input maps, the input equations, the output equations, and the
the logic diagram.  Obtain the design module and instantiate positive-edge-
triggered D flip-flops that were designed using behavioral modeling.  Obtain
the test bench module, the outputs, and the waveforms.
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5.15 Given the state diagram shown below for a Moore pulse-mode asynchronous
sequential machine, implement the machine using built-in primitives gates
for the  next-state logic and T flip-flops — instantiated as a single line — as
the storage elements.

Derive the input maps, the input equations, the output equations, and the
the logic diagram.  Obtain the design module, the test bench module, the out-
puts, and the waveforms.
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5.16 Design a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  For a Mealy machine, the outputs are
a function of the present states and the present inputs.  Output z1 is asserted
coincident with the x2 pulse if the x2  pulse is immediately preceded by a pair
of x1  pulses.

Use SR latches and instantiate D flip-flops as a single line.  The D flip-
flops are designed using behavioral modeling.  Use NAND dataflow mod-
ules logic for all gates and latches except for output z1, which will be an AND
gate.  Derive the state diagram, the input maps and equations, the output
equation, and the logic diagram.  Then obtain the design module using logic
gates that were designed using dataflow modeling and instantiated as a single
line.  Obtain the test bench, the outputs, and the waveforms.

5.17 Design a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with
the x2 pulse if the x2  pulse is immediately preceded by a pair of x1  pulses.

Use SR latches and instantiate D flip-flops as a single line.  Use nand
built-in primitives for all logic gates and latches except for output z1, which
will be an and built-in primitive.  Derive the state diagram, the input maps
and equations, the output equation, and the logic diagram.  Then obtain the
design module, the test bench module, the outputs, and the waveforms. 

5.18 Design a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with
the x2 pulse if the x2  pulse is immediately preceded by a pair of x1  pulses.

Use SR latches and instantiate D flip-flops as a single line.  Use NAND,
NOR, and AND logic with the continuous assignment statement for all logic
gates and latches.  Derive the state diagram, the input maps and equations,
the output equation, and the logic diagram.  Then obtain the design module,
the test bench module, the outputs, and the waveforms.

5.19 Design a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with
the x2 pulse if the x2  pulse is immediately preceded by a pair of x1  pulses.

Use SR latches and D flip-flops.  Instantiate the D flip-flops as a single
line.  Use instantiated dataflow modules for the AND and OR gates for the 
next-state logic and NOR logic for the latches.  The not built-in primitive can
also be utilized in the design.  Instantiate the dataflow modules for all logic
gates as a single line.  Derive the state diagram, the input maps and equations,
the output equation, and the logic diagram.  Then obtain the design module,
the test bench module, the outputs, and the waveforms.
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Appendix A

Event Queue
Event management in Verilog hardware description language (HDL) is controlled by
an event queue.  Verilog modules generate events in the test bench, which provide
stimulus to the module under test.  These events can then produce new events by the
modules under test.  Since the Verilog HDL Language Reference Manual (LRM) does
not specify a method of handling events, the simulator must provide a way to arrange
and schedule these events in order to accurately model delays and obtain the correct
order of execution.  The manner of implementing the event queue is vendor-depen-
dent.

Time in the event queue advances when every event that is scheduled in that time
step is executed.  Simulation is finished when all event queues are empty.  An event at
time t may schedule another event at time t or at time t + n.

A.1 Event Handling for Dataflow             
Assignments

Dataflow constructs consist of continuous assignments using the assign statement.
The assignment occurs whenever simulation causes a change to the right-hand side ex-
pression.  Unlike procedural assignments, continuous assignments are order indepen-
dent  —  they can be placed anywhere in the module.

Consider the logic diagram shown in Figure A.1 which is represented by the two
dataflow modules of Figure A.2 and Figure A.3.  The test bench for both modules is
shown in Figure A.4.  The only difference between the two dataflow modules is the re-
versal of the two assign statements.  The order in which the two statements execute is
not defined by the Verilog HDL LRM; therefore, the order of execution is indetermi-
nate.

Figure A.1     Logic diagram to demonstrate event handling.

+a
+b

+c +out

net1
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Figure A.2     Dataflow module 1. Figure A.3     Dataflow module 2.

Figure A.4     Test bench for Figure A.2 and Figure A.3.

Assume that the simulator executes the assignment order shown in Figure A.2
first.  When the simulator reaches time unit #10 in the test bench, it will evaluate the
right-hand side of test_b = 1'b1; and place its value in the event queue for an imme-
diate scheduled assignment.  Since this is a blocking statement, the next statement will
not execute until the assignment has been made.  Figure A.5 represents the event
queue after the evaluation.  The input signal b will assume the value of test_b through
instantiation.

module dataflow (a, b, c, out);

input a, b, c;
output out;

wire a, b, c;
wire out;

//define internal net
wire net1;

assign net1 = a & b;
assign out = net1 & c;

endmodule

module dataflow (a, b, c, out);

input a, b, c;
output out;

wire a, b, c;
wire out;

//define internal net
wire net1;

assign out = net1 & c;
assign net1 = a & b;

endmodule

module dataflow_tb;

reg test_a, test_b, test_c;
wire test_out;

initial
begin

test_a = 1'b1;
test_b = 1'b0;
test_c = 1'b0;

#10 test_b = 1'b1;
test_c = 1'b1;

#10 $stop;

end
//instantiate the module
dataflow inst1 

.a(test_a),

.b(test_b),

.c(test_c),

.out(test_out)
);

endmodule
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Figure A.5     Event queue after execution of test_b = 1'b1;.

After the assignment has been made, the simulator will execute the test_c = 1'b1;
statement by evaluating the right-hand side, and then placing its value in the event
queue for immediate assignment.  The new event queue is shown in Figure A.6.  The
entry that is not shaded represents an executed assignment.

Figure A.6     Event queue after execution of test_c = 1'b1;.

When the two assignments have been made, time unit #10 will have ended in the
test bench, which is the top-level module in the hierarchy.  The simulator will then en-
ter the instantiated dataflow module during this same time unit and determine that
events have occurred on input signals b and c and execute the two continuous assign-
ments.  At this point, inputs a, b, and c will be at a logic 1 level.  However, net1 will
still contain a logic 0 level as a result of the first three assignments that executed at
time #0 in the test bench.  Thus, the statement assign out = net1 & c; will evaluate to
a logic 0, which will be placed in the event queue and immediately assigned to out, as
shown in Figure A.7.
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Figure A.7     Event queue after execution of assign out = net1 & c;.

The simulator will then execute the assign net1 = a & b; statement in which the
right-hand side evaluates to a logic 1 level.  This will be placed on the queue and im-
mediately assigned to net1 as shown in Figure A.8.

Figure A.8     Event queue after execution of assign net1 = a & b;.

When the assignment has been made to net1, the simulator will recognize this as
an event on net1, which will cause all statements that use net1 to be reevaluated.  The
only statement to be reevaluated is assign out = net1 & c;.  Since both net1 and c equal
a logic 1 level, the right-hand side will evaluate to a logic 1, resulting in the event
queue shown in Figure A.9.
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Figure A.9    Event queue after execution of assign out = net1 & c;.

The test bench signal test_out must now be updated because it is connected to out
through instantiation.  Because the signal out is not associated with any other state-
ments within the module, the output from the module will now reflect the correct out-
put.  Since all statements within the dataflow module have been processed, the
simulator will exit the module and return to the test bench.  All events have now been
processed; therefore, time unit #10 is complete and the simulator will advance the sim-
ulation time.

Since the order of executing the assign statements is irrelevant, processing of the
dataflow events will now begin with the assign net1 = a & b; statement to show that
the result is the same.  The event queue is shown in Figure A.10.

Figure A.10     Event queue beginning with the statement assign net1 = a & b;.

Once the assignment to net1 has been made, the simulator recognizes this as a new
event on net1.  The existing event on input c requires the evaluation of statement
assign out = net1 & c;.  The right-hand side of the statement will evaluate to a logic 1,
and will be placed on the event queue for immediate assignment, as shown in Figure
A.11.
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Figure A.11     Event queue after execution of assign out = net1 & c;.

A.2 Event Handling for Blocking       
Assignments

The blocking assignment operator is the equal (=) symbol.  A blocking assignment
evaluates the right-hand side arguments and completes the assignment to the left-hand
side before executing the next statement; that is, the assignment blocks other assign-
ments until the current assignment has been executed.

Example A.1 Consider the code segment shown in Figure A.12 using blocking as-
signments in conjunction with the event queue of Figure A.13.  There are no inter-
statement delays and no intrastatement delays associated with this code segment.  In
the first blocking assignment, the right-hand side is evaluated and the assignment is
scheduled in the event queue.  Program flow is blocked until the assignment is exe-
cuted.  This is true for all blocking assignment statements in this code segment.  The
assignments all occur in the same simulation time step t.

Figure A.12     Code segment with blocking assignments.
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always @ (x2 or x3 or x5 or x7)
begin

x1 = x2 | x3;
x4 = x5;
x6 = x7;

end
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Figure A.13 Event queue for Figure A.12.

Example A.2 The code segment shown in Figure A.14 contains an interstatement
delay.  Both the evaluation and the assignment are delayed by two time units.  When
the delay has taken place, the right-hand side is evaluated and the assignment is sched-
uled in the event queue as shown in Figure A.15.  The program flow is blocked until
the assignment is executed.

Figure A.14     Blocking statement with interstatement delay.

Figure A.15 Event queue for Figure A.14.

Example A.3 The code segment of Figure A.16 shows three statements with inter-
statement delays of t + 2 time units.  The first statement does not execute until simu-
lation time t + 2 as shown in Figure A.17.  The right-hand side (x2 | x3) is evaluated at
the current simulation time which is t + 2 time units, and then assigned to the left-hand
side.  At t + 2, x1  receives the output of x2  | x3 .
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Figure A.16    Code segment for delayed blocking assignment with interstatement de-
lays.

Figure A.17     Event queue for Figure A.16.

Example A.4     The code segment in Figure A.18 shows three statements using block-
ing assignments with intrastatement delays.  Evaluation of x3  = #2 x4 and x5  = #2 x6
is blocked until x2  has been assigned to x1 , which occurs at t + 2 time units.  When the
second statement is reached, it is scheduled in the event queue at time t + 2, but the as-
signment to x3  will not occur until t + 4 time units.  The evaluation in the third state-
ment is blocked until the assignment is made to x3 .  Figure A.19 shows the event
queue.

Figure A.18     Code segment using blocking assignments with interstatement delays.

always @ (x2 or x3 or x5 or x7)
begin

#2 x1 = x2 | x3;
#2 x4 = x5;
#2 x6 = x7;

end
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Order of execution

always @ (x2 or x4 or x6)
begin

x1 = #2 x2; //first statement
x3 = #2 x4; //second statement
x5 = #2 x6; //third statement

end
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Figure A.19     Event queue for the code segment of Figure A.18.

A.3 Event Handling for Nonblocking 
Assignments

Whereas blocking assignments block the sequential execution of an always block un-
til the simulator performs the assignment, nonblocking statements evaluate each state-
ment in succession and place the result in the event queue.  Assignment occurs when
all of the always blocks in the module have been processed for the current time unit.
The assignment may cause new events that require further processing by the simulator
for the current time unit.

Example A.5     For nonblocking statements, the right-hand side is evaluated and the
assignment is scheduled at the end of the queue.  The program flow continues and the
assignment occurs at the end of the time step.  This is shown in the code segment of
Figure A.20 and the event queue of Figure A.21.

Figure A.20     Code segment for a nonblocking assignment.
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always @ (posedge clk)
begin
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end
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Figure A.21     Event queue for Figure A.20.

Example A.6     The code segment of Figure A.22 shows a nonblocking statement with
an interstatement delay.  The evaluation is delayed by the timing control, and then the
right-hand side expression is evaluated and assignment is scheduled at the end of the
queue.  Program flow continues and assignment is made at the end of the current time
step as shown in the event  queue of Figure A.23.

Figure A.22     Nonblocking assignment with interstatement delay.

Figure A.23     Event queue for Figure A.22.

Example A.7     The code segment of Figure A.24 shows a nonblocking statement with
an intrastatement delay.  The right-hand side expression is evaluated and assignment is
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delayed by the timing control and is scheduled at the end of the queue.  Program flow
continues and assignment is made at the end of the current time step as shown in the
event  queue of Figure A.25.

Figure A.24     Nonblocking assignment with intrastatement delay.

Figure A.25     Event queue for Figure A.24.

Example A.8     The code segment of Figure A.26 shows nonblocking statements with
intrastatement delays.  The right-hand side expressions are evaluated and assignment
is delayed by the timing control and is scheduled at the end of the queue.  Program
flow continues and assignment is made at the end of the current time step as shown in
the event  queue of Figure A.27.

Figure A.26     Nonblocking assignments with intrastatement delays.

always @ (posedge clk)
begin

x1 <= #2 x2;
end
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always @ (posedge clk)
begin

x1 <= #2 x2;
x3 <= #2 x4;
x5 <= #2 x6;

end
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Figure A.27     Event queue for Figure A.26.

Example A.9     Figure A.28 shows a code segment using nonblocking assignment
with an intrastatement delay.  The right-hand expression is evaluated at the current
time.  The assignment is scheduled, but delayed by the timing control #2.  This method
allows for propagation delay through a logic element; for example, a D flip-flop.  The
event queue is shown in Figure A.29.

Figure A.28     Code segment using intrastatement delay with blocking assignment.

Figure A.29     Event queue for the code segment of Figure A.28.
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A.4   Event Handling for Mixed Blocking 
and Nonblocking Assignments

All nonblocking assignments are placed at the end of the queue while all blocking as-
signments are placed at the beginning of the queue in their respective order of evalu-
ation.  Thus, for any given simulation time t, all blocking statements are evaluated and
assigned first, then all nonblocking statements are evaluated.

This is the reason why combinational logic requires the use of blocking assign-
ments while sequential logic, such as flip-flops, requires the use of nonblocking as-
signments.  In this way, Verilog events can model real hardware in which
combinational logic at the input to a flip-flop can stabilize before the clock sets the
flip-flop to the state of the input logic.  Therefore, blocking assignments are placed at
the top of the queue to allow the input data to be stable, whereas nonblocking assign-
ments are placed at the bottom of the queue to be executed after the input data has sta-
bilized.

The logic diagram of Figure A.30 illustrates this concept for two multiplexers con-
nected to the D inputs of their respective flip-flops.  The multiplexers represent com-
binational logic; the D flip-flops represent sequential logic.  The behavioral module is
shown in Figure A.31 and the event queue is shown in Figure A.32.

Figure A.30     Combinational logic connected to sequential logic to illustrate the use
of blocking and nonblocking assignments.

Because multiplexers are combinational logic, the outputs mux_out0 and
mux_out1 are placed at the beginning of the queue, as shown in Figure A.32.  Nets
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+din3
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mux_out1

+dout0

+dout1
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mux_out0 and mux_out1 are in separate always blocks; therefore, the order in which
they are placed in the queue is arbitrary and can differ with each simulator.  The result,
however, is the same.  If mux_out0 and mux_out1 were placed in the same always
block, then the order in which they are placed in the queue must be the same order as
they appear in the always block.

Because dout0 and dout1 are sequential, they are placed at the end of the queue.
Since they appear in separate always blocks, the order of their placement in the queue
is irrelevant.  Once the values of mux_out0 and mux_out1 are assigned in the queue,
their values will then be used in the assignment of dout0 and dout1; that is, the state of
mux_out0 and mux_out1 will be set into the D flip-flops at the next positive clock tran-
sition and assigned to dout0 and dout1.

Figure A.31     Mixed blocking and nonblocking assignments that represent combi-
national and sequential logic.

//behavioral module with combinational and sequential logic
//to illustrate their placement in the event queue

module mux_plus_flop (clk, rst_n, 
din0, din1, sel0, dout0,
din2, din3, sel1, dout1);

input clk, rst_n;
input din0, din1, sel0;
input din2, din3, sel1;
output dout0, dout1;

reg mux_out0, mux_out1;
reg dout0, dout1;

//combinational logic for multiplexers
always @ (din0 or din1 or sel0)
begin

if (sel0)
mux_out0 = din1;

else
mux_out0 = din0;

end

always @ (din2 or din3 or sel1)
begin

if (sel1)
mux_out1 = din3;

else
mux_out1 = din2;

end
//continued on next page
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Figure A.31     (Continued)

Figure A.32     Event queue for Figure A.31.

//sequential logic for D flip-flops
always @ (posedge clk or negedge rst_n)
begin

if (~rst_n)
dout0 <= 1’b0;

else
dout0 <= mux_out0;

end

always @ (posedge clk or negedge rst_n)
begin

if (~rst_n)
dout1 <= 1’b0;

else
dout1 <= mux_out1;

end

endmodule

Event queue
Scheduled

event 4
Scheduled

event 3
N/A Scheduled

event 2
Scheduled

event 1
Time
unit

dout1  
mux_out1 (t)

dout0  
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mux_out1  
din3 (t)
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din1 (t)
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Appendix B

Verilog Project Procedure

• Create a folder (Do only once)
Local disk (C:) > New Folder <Verilog> > Enter > Exit local disk C.

• Create a project (Do for each project)
Bring up Silos Simulation Environment.

File > Close Project.  Minimize Silos.
Local disk (C:) > Verilog > File > New Folder <new folder name> Enter.
Exit Local disk (C:).  Maximize Silos.
File > New Project.
Create New Project.  Save In: Verilog folder.

Click new folder name.  Open.
Create New Project.  Filename: Give project name — usually same name

as the folder name.  Save
Project Properties > Cancel.

• File > New
.
.     Design module code goes here
.

• File > Save As > File name: <filename.v> > Save

• Compile code
Edit > Project Properties > Add.  Select one or more files to add.

Click on the file > Open.
Project Properties.  The selected files are shown > OK.
Load/Reload Input Files.  This compiles the code.
Check screen output for errors.  “Simulation stopped at the end of time 0”

indicates no compilation errors.
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• Test bench
File > New

.

.     Test bench module code goes here

.

• File > Save As > File name: < filename.v> > Save.

• Compile test bench
Edit > Project Properties > Add.  Select one or more files to add.

Click on the file > Open
Project Properties.  The selected files are shown > OK.
Load/Reload Input Files.  This compiles the code.
Check screen output for errors.  “Simulation stopped at end of time 0”

indicates no compilation errors.

• Binary Output and Waveforms
For binary output: click on the GO icon.
For waveforms: click on the Analyzer icon.

Click on the Explorer icon.  The signals are listed in Silos Explorer.
Click on the desired signal names.
Right click.  Add Signals to Analyzer.
Waveforms are displayed.
Exit Silos Explorer.

• Change Time Scale
With the waveforms displayed, click on Analyzer > X-Axis > Timescale

Enter Time / div > OK

• Exit the project
Close the waveforms, module, and test bench.
File > Close Project.
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Appendix C

Answers to Select Problems
Chapter 1     Introduction to Verilog HDL

1.2 Design a circuit using built-in primitive NAND gates that satisfies the fol-
lowing specifications: 3 < N  8 and 10  N < 15.  Obtain the Karnaugh map,
the equation in a sum-of-products form, and the logic diagram using NAND
gates.  Then obtain the design module using built-in primitives, the test
bench module, the outputs, and the waveforms.

z1 = x1' x2  +  x2x3'  +  x1x4'  +  x1x2' x3

 0 0      0 1     1 1     1 0

0 0      0        0         0         0

0 1      1        1         1         1

1 1      1        1         0         1

1 0      1        0         1         1

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

–x1
+x2

–x3

+x1
–x4

–x2+x3

+z1

inst2

inst3

inst4

inst5

net1

net2

net3

net4

inst1
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//built-in primitive number range
module num_range3 (x1, x2, x3, x4, z1);
input x1, x2, x3, x4;
output z1;

nand inst1 (net1, ~x1, x2),
inst2 (net2, x2, ~x3),
inst3 (net3, x1, ~x4),
inst4 (net4, x1, ~x2, x3);

nand inst5 (z1, net1, net2, net3, net4);
endmodule

//test bench for number range module
module num_range3_tb;

//inputs are reg for test bench
reg x1, x2, x3, x4;

//outputs are wire for test bench
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
num_range3 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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1.7 Given the Karnaugh map shown below, obtain the equation for output z1 in a
sum-of-products notation and the corresponding logic diagram using AND
and OR gates.  Then use dataflow modeling for the design module and gen-
erate a test bench.  Obtain the outputs and the waveforms.

x1 x2 x3 x4 = 0000, z1 = 0
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0
x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 1
x1 x2 x3 x4 = 0111, z1 = 1
x1 x2 x3 x4 = 1000, z1 = 1
x1 x2 x3 x4 = 1001, z1 = 0
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 1
x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 0
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z1 = x2' x3' x4'  + x1' x3' x4  + x2x3

 0 0      0 1     1 1     1 0

0 0      1        1         0         0

0 1      0        1         1         1

1 1      0        0         1         1

1 0      1        0         0         0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

–x2–x3–x4

–x1+x4

+x2
+x3

+z1

net1

net2

net3

//dataflow for a sum-of-products equation
module sop_eqn_df2 (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//define internal nets
wire net1, net2, net3;

//design logic
assign net1 = ~x2 & ~x3 & ~x4,

net2 = ~x1 & ~x3 & x4,
net3 = x2 & x3;

assign z1 = net1 | net2 | net3;

endmodule
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//test bench for the dataflow sop
module sop_eqn_df2_tb;

reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sop_eqn_df2 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 1
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0
x1 x2 x3 x4 = 0100, z1 = 0
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 1
x1 x2 x3 x4 = 0111, z1 = 1
x1 x2 x3 x4 = 1000, z1 = 1
x1 x2 x3 x4 = 1001, z1 = 0
x1 x2 x3 x4 = 1010, z1 = 0
x1 x2 x3 x4 = 1011, z1 = 0
x1 x2 x3 x4 = 1100, z1 = 0
x1 x2 x3 x4 = 1101, z1 = 0
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 1
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1.11 Use the three bitwise operators of AND (&), OR ( | ), and exclusive-OR ( ^ )
to implement the logical operations shown below.  Obtain the dataflow
design module, the test bench module for eight variations of the three 4-bit
operands a, b, and c, the outputs, and the waveforms.

z1 = (a & b) | c
z2  = (a ^ b) & c
z3  = (a | c) ^ b

//dataflow bitwise operators
module bitwise3 (a, b, c, z1, z2, z3);

input [3:0] a, b, c;
output [3:0] z1, z2, z3;

assign z1 = (a & b) | c,
z2 = (a ^ b) & c,
z3 = (a | c) ^ b;

endmodule
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//test bench for bitwise operators
module bitwise3_tb;

reg [3:0] a, b, c;
wire [3:0] z1, z2, z3;

//display variables
initial
$monitor ("a=%b, b=%b, c=%b, z1=%b, z2=%b, z3=%b",

a, b, c, z1, z2, z3);

//apply input vectors
initial
begin

#0 a = 4'b0001;b = 4'b0001;c = 4'b0001;
#10 a = 4'b0011;b = 4'b0011;c = 4'b0011;
#10 a = 4'b1111;b = 4'b0000;c = 4'b1000;
#10 a = 4'b0000;b = 4'b1000;c = 4'b0000;

#10 a = 4'b0100;b = 4'b0110;c = 4'b0111;
#10 a = 4'b0111;b = 4'b0000;c = 4'b1000;
#10 a = 4'b0000;b = 4'b0000;c = 4'b0000;
#10 a = 4'b1111;b = 4'b1111;c = 4'b1111;

#10 $stop;
end

//instantiate the module into the test bench
bitwise3 inst1 (

.a(a),

.b(b),

.c(c),

.z1(z1),

.z2(z2),

.z3(z3)
);

endmodule
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1.19 Use behavioral modeling to design a full adder.  A full adder has three scalar
inputs a, b, and cin; there are two scalar outputs sum and cout.  Obtain the
design module, the test bench module for all combinations of the inputs, the
outputs, and the waveforms.  The equations for sum and cout are shown
below.

z1 = (a & B) | c
z2 = (a ^ b) & c
z3 = (a | c) ^ b

a=0001, b=0001, c=0001, z1=0001, z2=0000, z3=0000
a=0011, b=0011, c=0011, z1=0011, z2=0000, z3=0000
a=1111, b=0000, c=1000, z1=1000, z2=1000, z3=1111
a=0000, b=1000, c=0000, z1=0000, z2=0000, z3=1000

a=0100, b=0110, c=0111, z1=0111, z2=0010, z3=0001
a=0111, b=0000, c=1000, z1=1000, z2=0000, z3=1111
a=0000, b=0000, c=0000, z1=0000, z2=0000, z3=0000
a=1111, b=1111, c=1111, z1=1111, z2=0000, z3=0000

sum = a'b'cin + a'bcin' + ab'cin' + abcin

= a  b  cin

cout = a'bcin + ab'cin + ab cin' + abcin

= ab + a cin + bcin
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//behavioral full adder
module full_adder_bh (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

wire a, b, cin;
reg sum, cout;

always @ (a or b or cin)
begin

sum = a ^ b ^ cin;
cout = (a & b) | (a & cin) | (b & cin);

end

endmodule

//test bench for behavioral full adder
module full_adder_bh_tb;

reg a, b, cin;
wire sum, cout;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{a, b, cin} = invect [3:0];
#10 $display ("a b cin = %b, cout = %b,

sum = %b", {a, b, cin}, cout, sum);
end

end

//instantiate the module into the test bench
full_adder_bh inst1 (

.a(a),

.b(b),

.cin(cin),

.sum(sum),

.cout(cout)
);

endmodule
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1.22 Design a 4:1 multiplexer using a combination of behavioral modeling and
dataflow modeling.  The multiplexer has four data inputs, which are speci-
fied as a 4-bit vector d[3:0], two select inputs, specified as a 2-bit vector
s[1:0], one scalar enable input enbl, and one scalar output z1.  Obtain the
design module and the test bench module containing eight combinations of
the data inputs.  Obtain the outputs and the waveforms.

a b cin = 000, cout = 0, sum = 0
a b cin = 001, cout = 0, sum = 1
a b cin = 010, cout = 0, sum = 1
a b cin = 011, cout = 1, sum = 0

a b cin = 100, cout = 0, sum = 1
a b cin = 101, cout = 1, sum = 0
a b cin = 110, cout = 1, sum = 0
a b cin = 111, cout = 1, sum = 1
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//behavioral/dataflow 4:1 multiplexer
module mux4_bh_df (d, s, enbl, z1);

input [3:0] d;
input [1:0] s;
input enbl;
output z1;

wire [3:0] d;
wire [1:0] s;
wire enbl;
wire net0, net1, net2, net3;
reg z1;

assign net0 = (enbl & ~s[1] & ~s[0] & d[0]),
net1 = (enbl & ~s[1] & s[0] & d[1]),
net2 = (enbl & s[1] & ~s[0] & d[2]),
net3 = (enbl & s[1] & s[0] & d[3]);

always @ (net0 or net1 or net2 or net3)
begin

z1 = (net0 || net1 || net2 || net3);
end

endmodule
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//test bench for 4:1 multiplexer
module mux4_bh_df_tb;

reg [3:0] d;
reg [1:0] s;
reg enbl;
wire z1;

//display variables
initial
$monitor ("select = %b, data = %b, z1 = %b", s, d, z1);

//apply input vectors
initial
begin

#0 s = 2'b00; d = 4'b0001; enbl = 1'b1;
#10 s = 2'b00; d = 4'b0100; enbl = 1'b1;

#10 s = 2'b01; d = 4'b1010; enbl = 1'b1;
#10 s = 2'b01; d = 4'b1100; enbl = 1'b1;

#10 s = 2'b10; d = 4'b1100; enbl = 1'b1;
#10 s = 2'b10; d = 4'b1000; enbl = 1'b1;

#10 s = 2'b11; d = 4'b1100; enbl = 1'b1;
#10 s = 2'b11; d = 4'b0111; enbl = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
mux4_bh_df inst1 (

.d(d),

.s(s),

.enbl(enbl),

.z1(z1)
);

endmodule
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1.25 Use behavioral modeling with the case statement to design a 6-function logic
unit for the following six functions: add, subtract, multiply, AND, OR, and
exclusive-OR.  The operands are 4-bit vectors: a[3:0] and b[3:0].  Obtain the
design module and the test bench module for four variations of the operands
for each function.  Obtain the outputs and waveforms.

select = 00, data = 0001, z1 = 1
select = 00, data = 0100, z1 = 0
select = 01, data = 1010, z1 = 1
select = 01, data = 1100, z1 = 0
select = 10, data = 1100, z1 = 1
select = 10, data = 1000, z1 = 0
select = 11, data = 1100, z1 = 1
select = 11, data = 0111, z1 = 0
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//demonstrate arithmetic operations
module arith_log_ops (a, b, opcode, rslt);

input [3:0] a, b;
input [2:0] opcode;
output [7:0] rslt;

reg [7:0] rslt;

parameter addop = 3'b000,
subop = 3'b001,
mulop = 3'b010,
andop = 3'b011,
orop  = 3'b100,
xorop = 3'b101;

always @ (a or b or opcode)
begin

case (opcode)
addop: rslt = a + b;
subop: rslt = a - b; 
mulop: rslt = a * b;
andop: rslt = a & b;
orop:  rslt = a | b;
xorop: rslt = a ^ b;

default: rslt = 8'bxxxxxxxx;
endcase
end

endmodule

//arithmetic operations test bench
module arith_log_ops_tb;

reg [3:0] a, b;
reg [2:0] opcode;
wire [7:0] rslt ;

initial
$monitor ("a = %b, b = %b, opcode = %b, rslt = %b",

a , b, opcode, rslt);

//continued on next page
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initial
begin

#0 a = 4'b0011;b = 4'b0111;opcode = 3'b000;//add
#10 a = 4'b0111;b = 4'b0001;opcode = 3'b000;
#10 a = 4'b0011;b = 4'b0110;opcode = 3'b000;
#10 a = 4'b1011;b = 4'b0100;opcode = 3'b000;

#10 a = 4'b1111;b = 4'b1111;opcode = 3'b001;//sub
#10 a = 4'b1000;b = 4'b0101;opcode = 3'b001;
#10 a = 4'b1110;b = 4'b0111;opcode = 3'b001;
#10 a = 4'b1111;b = 4'b1110;opcode = 3'b001;

#10 a = 4'b1110;b = 4'b1110;opcode = 3'b010;//mul
#10 a = 4'b1111;b = 4'b1111;opcode = 3'b010;
#10 a = 4'b0110;b = 4'b0110;opcode = 3'b010;
#10 a = 4'b0111;b = 4'b0111;opcode = 3'b010;

#10 a = 4'b1000;b = 4'b0010;opcode = 3'b011;//and
#10 a = 4'b1111;b = 4'b0110;opcode = 3'b011;
#10 a = 4'b0110;b = 4'b0010;opcode = 3'b011;
#10 a = 4'b0111;b = 4'b0011;opcode = 3'b011;

#10 a = 4'b0111;b = 4'b0011;opcode = 3'b100;//or
#10 a = 4'b0100;b = 4'b0011;opcode = 3'b100;
#10 a = 4'b1101;b = 4'b0111;opcode = 3'b100;
#10 a = 4'b0110;b = 4'b1100;opcode = 3'b100;

#10 a = 4'b0110;b = 4'b1100;opcode = 3'b101;//xor
#10 a = 4'b0100;b = 4'b1100;opcode = 3'b101;
#10 a = 4'b1110;b = 4'b0100;opcode = 3'b101;
#10 a = 4'b0111;b = 4'b0000;opcode = 3'b101;

#10 $stop;
end

//instantiate the module into the test bench
arith_log_ops inst1 (

.a(a),

.b(b),

.opcode(opcode),

.rslt(rslt)
);

endmodule
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1.27 Design a structural 4-bit, [3:0], binary-to-excess-3 code converter by instan-
tiating behavioral full adders into the design.  The excess-3 code will contain
five bits to include the carry out of the high-order bit position of adder[3].
For example, binary = 1111, excess3 = 10010.  Obtain the design
module and the test bench module for all 16 combinations of the binary
inputs.  Obtain the outputs and the waveforms.

a = 0011, b = 0111, opcode = 000, rslt = 00001010//add
a = 0111, b = 0001, opcode = 000, rslt = 00001000
a = 0011, b = 0110, opcode = 000, rslt = 00001001
a = 1011, b = 0100, opcode = 000, rslt = 00001111
a = 1111, b = 1111, opcode = 001, rslt = 00000000//sub
a = 1000, b = 0101, opcode = 001, rslt = 00000011
a = 1110, b = 0111, opcode = 001, rslt = 00000111
a = 1111, b = 1110, opcode = 001, rslt = 00000001
a = 1110, b = 1110, opcode = 010, rslt = 11000100//mul
a = 1111, b = 1111, opcode = 010, rslt = 11100001
a = 0110, b = 0110, opcode = 010, rslt = 00100100
a = 0111, b = 0111, opcode = 010, rslt = 00110001
a = 1000, b = 0010, opcode = 011, rslt = 00000000//and
a = 1111, b = 0110, opcode = 011, rslt = 00000110
a = 0110, b = 0010, opcode = 011, rslt = 00000010
a = 0111, b = 0011, opcode = 011, rslt = 00000011
a = 0111, b = 0011, opcode = 100, rslt = 00000111//or
a = 0100, b = 0011, opcode = 100, rslt = 00000111
a = 1101, b = 0111, opcode = 100, rslt = 00001111
a = 0110, b = 1100, opcode = 100, rslt = 00001110
a = 0110, b = 1100, opcode = 101, rslt = 00001010//xor
a = 0100, b = 1100, opcode = 101, rslt = 00001000
a = 1110, b = 0100, opcode = 101, rslt = 00001010
a = 0111, b = 0000, opcode = 101, rslt = 00000111
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//structural binary-to-excess3 conversion 
//by instantiating full adders
module binary_excess3_struc (bin, ex3);

input [3:0] bin;
output [4:0] ex3;

//define internal nets
wire cout0, cout1, cout2;

//instantiate the full adder for binary bit[0]
full_adder_bh inst1 (

.a(bin[0]), //binary input[0], low order

.b(1'b1), //adder b input

.cin(1'b0),

.sum(ex3[0]), //excess3[0], low order

.cout(cout0)
);

//instantiate the full adder for binary bit[1]
full_adder_bh inst2 (

.a(bin[1]),

.b(1'b1),

.cin(cout0),

.sum(ex3[1]),

.cout(cout1)
);

//instantiate the full adder for binary bit[2]
full_adder_bh inst3 (

.a(bin[2]),

.b(1'b0),

.cin(cout1),

.sum(ex3[2]),

.cout(cout2)
);

//instantiate the full adder for binary bit[3]
full_adder_bh inst4 (

.a(bin[3]),

.b(1'b0),

.cin(cout2),

.sum(ex3[3]),

.cout(ex3[4])
);

endmodule
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//test bench for binary to excess3 conversion
module binary_excess3_struc_tb;

reg [3:0] bin;
wire [4:0] ex3;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
bin = invect [4:0];
#10 $display ("binary = %b, excess3 = %b",

bin, ex3);
end

end

//instantiate the module into the test bench
binary_excess3_struc inst1 (

.bin(bin),

.ex3(ex3)
);

endmodule

binary = 0000, excess3 = 00011
binary = 0001, excess3 = 00100
binary = 0010, excess3 = 00101
binary = 0011, excess3 = 00110

binary = 0100, excess3 = 00111
binary = 0101, excess3 = 01000
binary = 0110, excess3 = 01001
binary = 0111, excess3 = 01010

binary = 1000, excess3 = 01011
binary = 1001, excess3 = 01100
binary = 1010, excess3 = 01101
binary = 1011, excess3 = 01110

binary = 1100, excess3 = 01111
binary = 1101, excess3 = 10000
binary = 1110, excess3 = 10001
binary = 1111, excess3 = 10010
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1.29 Design a logic circuit that will generate a high logic level on output z1 if a 4-
bit binary number x[3:0] has a value less than or equal to five or greater than
nine.  Obtain the structural design module and the test bench module for all
16 combinations of the inputs.  Obtain the outputs and the waveforms.

z1 = x[3]' x[2]' + x[3] x[2] + x[2] x[1]' + x[2]' x[1]
    = (x[3]  x[2])' + (x[2]  x[1])

 0 0      0 1     1 1     1 0

0 0      1        1        1         1

0 1      1        1        0         0

1 1      1        1        1         1

1 0      0         0        1         1

x[3]x[2]
x[1]x[0]

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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//structural for a number in the range >=5 N > 9
module num_range5 (x, z1);

input [3:0] x;
output z1;

//define internal nets
wire net1, net2;

//instantiate the logic gates
xnor2_df inst1 (

.x1(x[3]),

.x2(x[2]),

.z1(net1)
);

xor2_df inst2 (
.x1(x[2]),
.x2(x[1]),
.z1(net2)
);

or2_df inst3 (
.x1(net1),
.x2(net2),
.z1(z1)
);

endmodule
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//test bench for num_range5 module
module num_range5_tb;

reg [3:0] x;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
x = invect [4:0];
#10 $display ("x = %b, z1=%b", x, z1);

end
end

//instantiate the module into the test bench
num_range5 inst1 (

.x(x),

.z1(z1)
);

 
endmodule

x = 0000, z1=1
x = 0001, z1=1
x = 0010, z1=1
x = 0011, z1=1

x = 0100, z1=1
x = 0101, z1=1
x = 0110, z1=0
x = 0111, z1=0

x = 1000, z1=0
x = 1001, z1=0
x = 1010, z1=1
x = 1011, z1=1

x = 1100, z1=1
x = 1101, z1=1
x = 1110, z1=1
x = 1111, z1=1
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1.31 Given the logic diagram shown below, obtain the minimum product-of-sums
equation, then design a structural module using NOR gates to implement the
equation.  Then design the test bench using all 16 combinations of the four
input variables.  Verify the results by displaying the outputs and the wave-
forms.

z1 = (x1x2x3  + x2' x3' x4  + x1x2' x4) (x2  + x3x4' )
= (x1x2x3x2  +x1x2x3x3x4' ) + (x2' x3' x4x2 + x2' x3' x4x3x4' ) +

(x1x2' x4x2  + x1x2' x4x3x4' )
= x1x2x3 + x1x2x3x4'
= x1x2x3(1 + x4' )
= x1x2x3

–x1–x2–x3

+x2+x3–x4

+x4

+z1

inst1

inst2

inst3

inst4

inst5
inst6

inst7

net1

net2

net3

net4

net5
net6
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//structural logic equation as a product of sums
//using only NOR logic
module log_eqn_pos_nor (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6;

//instantiate the logic gates
nor3_df inst1 (

.x1(~x1),

.x2(~x2),

.x3(~x3),

.z1(net1)
);

nor3_df inst2 (
.x1(x2),
.x2(x3),
.x3(~x4),
.z1(net2)
);

nor3_df inst3 (
.x1(~x1),
.x2(x2),
.x3(~x4),
.z1(net3)
);

nor3_df inst4 (
.x1(net1),
.x2(net2),
.x3(net3),
.z1(net4)
);

nor2_df inst5 (
.x1(~x3),
.x2(x4),
.z1(net5)
);

//continued on next page
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nor2_df inst6 (
.x1(x2),
.x2(net5),
.z1(net6)
);

nor2_df inst7 (
.x1(net4),
.x2(net6),
.z1(z1)
);

endmodule

//test bench for the product of sums using NOR gates
module log_eqn_pos_nor_tb;

reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
log_eqn_pos_nor inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule
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x1 x2 x3 x4 = 0000, z1 = 0
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0

x1 x2 x3 x4 = 0100, z1 = 0
x1 x2 x3 x4 = 0101, z1 = 0
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 0

x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 0
x1 x2 x3 x4 = 1010, z1 = 0
x1 x2 x3 x4 = 1011, z1 = 0

x1 x2 x3 x4 = 1100, z1 = 0
x1 x2 x3 x4 = 1101, z1 = 0
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 1
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Chapter 2 Synthesis of Synchronous 
Sequential Machines 1 Using Verilog HDL

2.2 Determine the counting sequence for the counter shown below by designing
the counter using structural modeling with built-in primitives and D flip-
flops that were designed using behavioral modeling.  The D flip-flops have
an implied reset input.  Obtain the structural design module, the test bench
module, the outputs, and the waveforms.  The counter is reset initially; that
is, y1y2  = 00, where y2 is the low-order flip-flop.

y1

D

>

y2

D

>

+Clock

–y1

–y1

–y2
+y1
+y2

+y1

–y1

+y2

–y2

net1

net2

net3

//structural counter using built-in primitives

module ctr_struc2 (rst_n, clk, y);

input rst_n, clk;
output [1:2] y;

//define internal nets
wire net1, net2, net3;

//instantiate the logic for flip-flop y[1]
d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(~y[1]),
.q(y[1])
);

//instantiate the logic for flip-flop y[2]
and2_df inst1 (
.x1(~y[1]),
.x2(~y[2]),
.z1(net1)
);

//continued on next page
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and2_df inst2 (
.x1(y[1]),
.x2(y[2]),
.z1(net2)
);

nor2_df inst3 (
.x1(net1),
.x2(net2),
.z1(net3)
);

d_ff_bh inst5 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[2])
);

endmodule

//test bench for ctr_struc2

module ctr_struc2_tb;

reg rst_n, clk;
wire [1:2] y;

//display outputs
initial
$monitor ("count = %b", y);

//define reset
initial
begin
#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin
clk = 1'b0;
forever
#10 clk = ~clk;

end
//continued on next page
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//define length of simulation
initial
begin
#60 $finish;

end

//instantiate the module into the test bench
ctr_struc2 inst1 (
.rst_n(rst_n),
.clk(clk),
.y(y)
);

endmodule

count = 00
count = 10
count = 01
count = 11
count = 00
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2.5 Design a modulo-11 counter with no self-starting state using structural mod-
eling with built-in primitives and D flip-flops that were designed using
behavioral modeling.  Obtain the design module, the test bench module, the
outputs, and the waveforms.

Dy1 = y1y3 ' + y2y3y4 Dy2 = y2y3 ' + y2 'y3y4 + y2y4'

y1 y2 y3 y4

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
0 0 0 0

 0 0      0 1     1 1     1 0

0 0     

0 1     

1 1      

1 0      

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      0         0        1         0

1 1      –         –        –         –

1 0      1         1        –         0

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

y1

 0 0      0 1     1 1     1 0

0 0      0         0        1         0

0 1      1         1        0         1

1 1      –         –        –         –

1 0      0         0        –         0

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

y2
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Dy3 = y3 'y4 + y1 'y3y4' Dy4 = y3 'y4' + y1 'y4'
 = y4'(y1 ' + y3 ')

 0 0      0 1     1 1     1 0

0 0     

0 1     

1 1      

1 0      

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

 0 0      0 1     1 1     1 0

0 0      0         1        0         1

0 1      0         1        0         1

1 1      –         –        –         –

1 0      0         1        –         0

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

y3

 0 0      0 1     1 1     1 0

0 0      1         0        0         1

0 1      1         0        0         1

1 1      –         –        –         –

1 0      1         0        –         0

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

y4

//structural modulo-11 counter

module ctr_mod11_struc_d (rst_n, clk, y);

input rst_n, clk;
output [1:4] y;

//define internal nets
wire net1, net2, ner3, net4, net5, net6, net7, net8, net9,

net10, net11, net12;

//--------------------------------------------
//instantiate the logic for flip-flop y[1]
and (net1, y[1], ~y[3]);
and (net2, y[2], y[3], y[4]);
or (net3, net1, net2);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[1])
);

//continued on next page
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//--------------------------------------------
//instantiate the logic for flip-flop y[2]
and (net4, y[2], ~y[3]);
and (net5, ~y[2], y[3], y[4]);
and (net6, y[2], ~y[4]);
or (net7, net4, net5, net6);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net7),
.q(y[2])
);

//--------------------------------------------
//instantiate the logic for flip-flop y[3]
and (net8, ~y[3], y[4]);
and (net9, ~y[1], y[3], ~y[4]);
or (net10, net8, net9);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(net10),
.q(y[3])
);

//--------------------------------------------
//instantiate the logic for flip-flop y[4]
or (net11, ~y[1], ~y[3]);
and (net12, ~y[4], net11);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(net12),
.q(y[4])
);

endmodule



     Chapter 2    Synthesis of Synchronous Sequential Machines 1 Using Verilog HDL     749

//test bench for modulo-11 counter
module ctr_mod11_struc_d_tb;

//define inputs and outputs
reg rst_n, clk;
wire [1:4] y;

//display outputs
initial
$monitor ("count = %b", y);

//define reset
initial
begin
#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin
clk = 1'b0;
forever
#10 clk = ~clk;

end

//define length of simulation
initial
begin
#200 $finish;

end

//instantiate the module into the test bench
ctr_mod11_struc_d inst1 (
.rst_n(rst_n),
.clk(clk),
.y(y)
);

endmodule
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2.9 Obtain the input equations for flip-flops y1  and y4 only, for a BCD counter
which counts in the sequence shown below.  The equations are to be in min-
imum form.  Use JK flip-flops.  There is no self-starting state.

 y1y2y3y4 = 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,
 0000,    . 

Jy1 = y2y3y4 Ky1 = y4

count = 0000
count = 0001
count = 0010
count = 0011
count = 0100
count = 0101

count = 0110
count = 0111
count = 1000
count = 1001
count = 1010
count = 0000

 0 0      0 1     1 1     1 0

0 0     

0 1     

1 1      

1 0      

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      0         0        1         0

1 1      –         –        –         –

1 0      –         –        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Jy1

 0 0      0 1     1 1     1 0

0 0      –         –        –         –

0 1      –         –        –         –

1 1      –         –        –         –

1 0      0         1        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Ky1
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Jy4 = 1 Ky4 = 1

2 .13 Generate a reduced state diagram for a Moore machine which generates an
output z1 whenever a serial, 4-bit binary word on an input line x1  is greater
than or equal to six.  The first bit received in each word is the high-order bit.
There is no space between words.  Output z1 is asserted during the fourth bit
of a word.  Then implement the state diagram in behavioral modeling.  Assert
output z1 at time t2 and deassert z1 at time t3.  Obtain the design module, the
test bench module, the outputs, and the waveforms.

 0 0      0 1     1 1     1 0

0 0     

0 1     

1 1      

1 0      

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

 0 0      0 1     1 1     1 0

0 0      1         –        –         1

0 1      1         –        –         1

1 1      –         –        –         –

1 0      1         –        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Jy4

 0 0      0 1     1 1     1 0

0 0      –         1        1         –

0 1      –         1        1         –

1 1      –         –        –         –

1 0      –         1        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Ky4

a
0 0 0

d
0 1 1

e
1 0 0

f
1 0 1

g
1 1 0

h
1 1 1

b
0 0 1

c
0 1 0

z1

y1y2y3

x1' x1

x1' x1

x1'

x1

z1 = t2t3
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//behavioral moore ssm to detect greater/equal to 6
module moore_ssm_ge6 (rst_n, clk, x1, y, z1);

//define inputs and outputs
input rst_n, clk, x1;
output [1:3] y;
output z1;

//variables are reg in always
reg [1:3] y, next_state;
reg z1;

//assign state codes
//parameter defines a constant
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b010,
state_d = 3'b011,
state_e = 3'b100,
state_f = 3'b101,
state_g = 3'b110,
state_h = 3'b111;

//set next state
always @ (posedge clk)
begin

if (~rst_n) //if rst_n = 0 (~rst_n is true)
y <= state_a; //go to state_a (000)

else
y <= next_state; //else go to next_state

end

//determine output
always @ (y or clk)
begin

if (y == state_h)
begin
if (~clk)
z1 = 1'b1;

else
z1 = 1'b0;

end

else
z1 = 1'b0;

end

//continued on next page
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//determine next state
always @ (x1 or y)
begin

case (y)//case is a multiway conditional branch
state_a://if y = state_a, do if ... else

if (~x1)
next_state = state_b;

else
next_state = state_c;

state_b:
if (~x1)

next_state = state_d;
else

next_state = state_e;

state_c: next_state = state_f;

state_d: next_state = state_g;

state_e:
if (~x1)

next_state = state_g;
else

next_state = state_h;

state_f: next_state = state_h;

state_g: next_state = state_a;

state_h: next_state = state_a;

default: next_state = state_a;
endcase

end

endmodule
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//test bench for moore_ssm_ge6

module moore_ssm_ge6_tb;

regrst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//----------------------------------------------------------

@ (posedge clk) //go to state_a (000)
x1 = 1'b0; @ (posedge clk) //go to state_b (001)
x1 = 1'b0; @ (posedge clk) //go to state_d (011)
x1 = $random; @ (posedge clk) //go to state_g (110)
x1 = $random; @ (posedge clk) //go to state_a (000)

//continued on next page
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//----------------------------------------------------------
x1 = 1'b0; @ (posedge clk) //go to state_b (001)
x1 = 1'b1; @ (posedge clk) //go to state_e (100)
x1 = 1'b1; @ (posedge clk) //go to state_h (111)

//assert z1
x1 = $random; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b0; @ (posedge clk) //go to state_b (001)
x1 = 1'b1; @ (posedge clk) //go to state_e (100)
x1 = 1'b0; @ (posedge clk) //go to state_g (110)
x1 = $random; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
x1 = 1'b1; @ (posedge clk) //go to state_c (010)
x1 = $random; @ (posedge clk) //go to state_f (101)
x1 = $random; @ (posedge clk) //go to state_h (111)

//assert z1
x1 = $random; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
#20  $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
moore_ssm_ge6 inst1 (
.rst_n(rst_n),
.clk(clk),
.x1(x1),
.y(y),
.z1(z1)
);

endmodule



756           Appendix C     Answers to Select Problems

x1 = 0, state = xxx, z1 = 0
x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 1, state = 110, z1 = 0

x1 = 0, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 100, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 111, z1 = 1

x1 = 0, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 0, state = 100, z1 = 0
x1 = 1, state = 110, z1 = 0

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 111, z1 = 0
x1 = 1, state = 111, z1 = 1

x1 = 1, state = 000, z1 = 0
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2.19 Generate a reduced state diagram for a Mealy machine which detects a 4-bit
word of 1001 on a serial input line x1 .  If a correct sequence is detected, then
a conditional output z1 is generated.  There is no spacing between words.
There is also no overlapping of words.  Assert z1 from time t2 to time t3.
Obtain the behavioral design module, the test bench module, the outputs, and
the waveforms.

a

y1y2y3
0 0  0

d
0 1 0

e
1 0 0

f
1 0 1

g
1 1 0

z1

c
0 1 1

b
0 0 1

x1'

x1

x1

d
x1'

x1

x1'

x1'

x1

z1 t2t3
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//behavioral detect 1001
module detect_1001_bh (rst_n, clk, x1, y, z1);

//define inputs and output
input rst_n, clk, x1;
output [1:3] y;
output z1;

reg [1:3] y, next_state; //variables are reg in always
wire z1;

//assign state codes, parameter defines a constant
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b100,
state_f = 3'b101,
state_g = 3'b110;

//set next state
always @ (posedge clk)
begin

if (~rst_n) //reset = 1'b0
y <= state_a; //y <= state_a (000)

else
y = next_state;

end

//determine output
assign z1 = ((~y[1]) && (y[2]) && (~y[3]) && x1 && ~clk);

//determine next state
always @ (y or x1)
begin

case (y)
state_a:

if (x1)
next_state = state_b;

else
next_state = state_e;

state_b:
if (~x1)

next_state = state_c;
else

next_state = state_f;
//continued on next page
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state_c:
if (~x1)

next_state = state_d;
else

next_state = state_g;

state_d: 
if (x1)

next_state = state_a;
else

next_state = state_a;

state_e: next_state = state_f;

state_f: next_state = state_g;

state_g: next_state = state_a;

default: next_state =  state_a;

endcase
end
endmodule

//test bench to detect 1001

module detect_1001_bh_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page
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//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (000)
x1 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//--------------------------------------------------------

   @ (posedge clk) //go to state_a (000)
x1 = 1'b1; @ (posedge clk) //go to state_b (001)
x1 = 1'b0; @ (posedge clk) //go to state_c (011)
x1 = 1'b0; @ (posedge clk) //go to state_d (010)
x1 = 1'b1; @ (posedge clk) //go to state_a (000)

//assert z1 at t2
//--------------------------------------------------------

x1 = 1'b0; @ (posedge clk) //go to state_e (100)
x1 = $random; @ (posedge clk) //go to state_f (101)
x1 = $random; @ (posedge clk) //go to state_g (110)
x1 = $random; @ (posedge clk) //go to state_a (000)

#20 $stop;
end

//instantiate the module into the test bench
detect_1001_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.x1(x1),
.y(y),
.z1(z1)
);

endmodule

x1 = 0, state = xxx, z1 = 0
x1 = 1, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 010, z1 = 1

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 100, z1 = 0
x1 = 1, state = 101, z1 = 0
x1 = 1, state = 110, z1 = 0
x1 = 1, state = 000, z1 = 0
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2.23 Select state codes for states d and e for the Moore machine shown below so
that there will be no output glitches.  Consider all state transitions.  Then
design a structural module for the Moore machine using built-in primitives
and D flip-flops.  Obtain the test bench module, the outputs, and the wave-
forms.

State d:  y1y2y3  = 110.  State e: y1y2y3  = 100.
Unused states: y1y2y3  = 001, 010, 111.

d
z3

a
z1

y1y2y3
0 0  0

c
z2

1 0  1

b
0 1 1

e

x1

x2

x1'

x2'
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Dy1 = y3  + y2 Dy2 = y1 'y2 'x1  + y2y3x2'

Dy3 = y1 'y2 'x1  + y2y3x2

  0 0      0 1     1 1      10
y2y3

    y1

 0       0         –        1        –

 1       0         1        –        1

 0            1           3            2

 4            5           7           6

  0 0      0 1     1 1      10
y2 y3

    y1

 0       x1       –        x2'       –

 1       0         0        –        0

 0            1           3            2

 4            5           7           6

Dy1 Dy2

  0 0      0 1     1 1      10
y2y3

    y1

 0       x1       –        x2        –

 1       0         0        –        0

 0            1           3            2

 4            5           7           6

Dy3

//structural moore with no glitches
module moore_no_glitch_d (rst_n, clk, x1, x2, y, z1, z2, z3);

//define inputs and outputs
input rst_n, clk, x1, x2;
output [1:3] y;
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;

//-------------------------------------------------
//instantiate the logic for flip-flop y[1]
or (net1, y[3], y[2]);

d_ff_bh inst1 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//continued on next page
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//-------------------------------------------------
//instantiate the logic for flip-flop y[2]
and (net2, ~y[1], ~y[2], x1);
and (net3, y[2], y[3], ~x2);
or (net4, net2, net3);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[2])
);

//-------------------------------------------------
//instantiate the logic for flip-flop y[3]
and (net5, ~y[1], ~y[2], x1);
and (net6, y[2], y[3], x2);
or (net7, net5, net6);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(net7),
.q(y[3])
);

//define the outputs
assign z1 = ~y[1] && ~y[2] && ~y[3];
assign z2 = y[1] && ~y[2] && y[3];
assign z3 = y[1] && y[2] && ~y[3];

endmodule

//test bench for moore no glitch machine

module moore_no_glitch_d_tb;

reg rst_n, clk, x1, x2; //inputs are reg for test bench
wire [1:3] y; //outputs are wire for test bench
wire z1, z2, z3;

//display variables
initial
$monitor ("x1 x1 = %b, state = %b, z1 = %b, z2 = %b, z3 = %b",

{x1, x2}, y, z1, z2, z3);
//continued on next page
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//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1; //deassert reset
//----------------------------------------------------------

x1 = 1'b0; x2 = $random;@ (posedge clk) //assert z1
x1 = 1'b1; x2 = $random;@ (posedge clk) //go to state_b
x1 = $random; x2 = 1'b1; @ (posedge clk) //go to state_c

//assert z2
x1 = $random; x2 = $random; @ (posedge clk) //go to state_e
x1 = $random; x2 = $random; @ (posedge clk) //go to state_a

//assert z1
//----------------------------------------------------------

x1 = 1'b1; x2 = $random; @ (posedge clk) //go to state_b
x1 = $random; x2 = 1'b0; @ (posedge clk) //go to state_d

//assert z3
x1 = $random; x2 = $random; @ (posedge clk) //go to state_a

//----------------------------------------------------------

#10 $stop;
end

//instantiate the module into the test bench
moore_no_glitch_d inst1 (
.rst_n(rst_n),
.clk(clk),
.x1(x1),
.x2(x2),
.y(y),
.z1(z1),
.z2(z2),
.z3(z3)
);

endmodule
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x1 x2 = 00, state = 000, z1 = 1, z2 = 0, z3 = 0
x1 x2 = 11, state = 000, z1 = 1, z2 = 0, z3 = 0

x1 x2 = 11, state = 011, z1 = 0, z2 = 0, z3 = 0
x1 x2 = 11, state = 101, z1 = 0, z2 = 1, z3 = 0

x1 x2 = 11, state = 100, z1 = 0, z2 = 0, z3 = 0
x1 x2 = 10, state = 000, z1 = 1, z2 = 0, z3 = 0
x1 x2 = 10, state = 011, z1 = 0, z2 = 0, z3 = 0
x1 x2 = 10, state = 110, z1 = 0, z2 = 0, z3 = 1

x1 x2 = 10, state = 100, z1 = 0, z2 = 0, z3 = 0
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Chapter 3 Synthesis of Synchronous 
Sequential Machines 2 Using Verilog HDL

3.3 The state diagram for a Moore synchronous sequential machine is shown
below.  Implement the machine using linear-select multiplexers for the 
next-state logic, D flip-flops for the storage elements, and any additional
logic for the  output logic.  Use x1  and x2 as map-entered variables.  Obtain
the structural design module, the test bench module, the outputs, and the
waveforms.

a

y1y2
0 0

b
0 1 

c
z1

1 1

d
z2

1 0

z1t2t3

z2t2t4x2
x2'

x1'

x1

   0        1     1 1      10
y2

   y1

 0      x1'      x2'

 1       1        0

 0            1           3            2

 2            3           7           6

   0        1     1 1      10
y2

    y1

 0      x1       1

 1       1        0

 0            1           3            2

 2            3           7           6

Dy1 Dy2
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>
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>
R
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>
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//structural moore using multiplexers
module moore_mux_linear (rst_n, clk, x1, x2, y, z1, z2);

input rst_n, clk, x1, x2; //define inputs and outputs
output [1:2] y;
output z1, z2;

wire net1, net3; //define internal nets
//-----------------------------------------
//instantiate the logic for flip-flop y[1]
mux_4to1_struc inst1 (

.d({1'b0, 1'b1, ~x2, ~x1}),

.s({y[1], y[2]}),

.z1(net1)
);

d_ff_bh insr2 (
.rst_n(rst_n),
.clk(clk),
.d(net1),
.q(y[1])
);

//-----------------------------------------
//instantiate the logic for flip-flop y[2]
mux_4to1_struc inst3 (

.d({1'b0, 1'b1, 1'b1, x1}),

.s({y[1], y[2]}),

.z1(net3)
);

d_ff_bh insr4 (
.rst_n(rst_n),
.clk(clk),
.d(net3),
.q(y[2])
);

//-----------------------------------------
//instantiate the logic for output z1
and inst5 (z1, y[1], y[2], ~clk);
//-----------------------------------------
//instantiate the logic for output z2
and inst6 (net6, y[1], ~y[2]);
d_ff_bh insr7 (

.rst_n(rst_n),

.clk(~clk),

.d(net6),

.q(z2)
);

endmodule
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//test bench for the moore machine using multiplexers
module moore_mux_linear_tb;

reg rst_n, clk, x1, x2; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1, z2;

initial //display variables
$monitor ("x1 x2 = %b, state = %b, z1 z2 = %b",

{x1, x2}, y, {z1, z2});

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a (00)
x1 = 1'b1; x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
x1 = 1'b1; x2 = 1'b1;@ (posedge clk)//go to state_b (01)
x1 = 1'b1; x2 = 1'b1;@ (posedge clk)//go to state_b (01)
x1 = 1'b1; x2 = 1'b0;@ (posedge clk)//go to state_c (11)

 //assert z1, t2 -- t3
x1 = 1'b0; x2 = 1'b0;@ (posedge clk)//go to state_a (00)

//----------------------------------------------------------
x1 = 1'b0; x2 = 1'b0;@ (posedge clk)//go to state_d (10)

 //assert z2, t2 -- t4
x1 = 1'b0; x2 = 1'b0;@ (posedge clk)//go to state_c (11)

 //assert z1, t2 -- t3
x1 = 1'b0; x2 = 1'b0;@ (posedge clk)//go to state_a (00)

//----------------------------------------------------------
#11 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
moore_mux_linear inst1 (rst_n, clk, x1, x2, y, z1, z2);

endmodule
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3.7 Given the state diagram shown below for a Moore machine, implement the
design using nonlinear-select multiplexers for the  next-state logic, D flip-
flops for the storage elements, and continuous assignment statements for the
 output logic.  Outputs z1, z2 , and z3  are asserted at time t2 and deasserted at
t3.  Obtain the structural design module, the test bench module, the outputs,
and the waveforms.

x1 x2 = 10, state = 00, z1 z2 = 00
x1 x2 = 11, state = 01, z1 z2 = 00
x1 x2 = 10, state = 01, z1 z2 = 00
x1 x2 = 00, state = 11, z1 z2 = 00
x1 x2 = 00, state = 11, z1 z2 = 10
x1 x2 = 00, state = 00, z1 z2 = 00
x1 x2 = 00, state = 10, z1 z2 = 00
x1 x2 = 00, state = 10, z1 z2 = 01
x1 x2 = 00, state = 11, z1 z2 = 01
x1 x2 = 00, state = 11, z1 z2 = 10
x1 x2 = 00, state = 00, z1 z2 = 00
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//structural moore nonlinear multiplexer with three outputs

module mux_nonlinear10 (rst_n, clk, x, y, z1, z2, z3);

//define inputs and outputs
input rst_n, clk;
input [1:3] x;
output [1:3] y;
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net6, net7, net9, net10;

//----------------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, ~y[2], ~x[1]);
or  inst2 (net2, ~x[2], x[3]);
and inst3 (net3, net2, ~y[2]);

mux_4to1_struc inst4 (
.d({net3, 1'b0, 1'b0, net1}),
.s({y[1], y[3]}),
.z1(net4)
);

d_ff_bh inst5 (
.rst_n(rst_n),
.clk(clk),
.d(net4),
.q(y[1])
);

//----------------------------------------------
//instantiate the logic for flip-flop y[2
and inst6 (net6, ~y[2], ~x[2]);

mux_4to1_struc inst7 (
.d({net6, 1'b0, x[2], 1'b0}),
.s({y[1], y[3]}),
.z1(net7)
);

d_ff_bh inst8 (
.rst_n(rst_n),
.clk(clk),
.d(net7),
.q(y[2])
);

//continued on next page
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//----------------------------------------------
//instantiate the logic for flip-flop y[3]
and inst9 (net9, ~y[2], ~x[2], ~x[3]);

mux_4to1_struc inst10 (
.d({net9, 1'b0, 1'b0, ~y[2]}),
.s({y[1], y[3]}),
.z1(net10)
);

d_ff_bh inst11 (
.rst_n(rst_n),
.clk(clk),
.d(net10),
.q(y[3])
);

//----------------------------------------------
//instantiate the logic for the outputs
assign z1 = (~y[1] & y[2] & ~y[3] & ~ clk);
assign z2 = (y[1] & ~y[2] & ~y[3] & ~clk);
assign z3 = (y[1] & y[2] & y[3] & ~clk);

endmodule

//test bench for moore nonlineat multiplexer with 3 outputs
module mux_nonlinear10_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk;
reg [1:3] x;
wire [1:3] y;
wire z1, z2, z3;

//display variables
initial
$monitor ("inputs = %b, state = %b, z1 z2 z3 = %b",

x, y, {z1, z2, z3});

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end //continued on next page
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//define input sequence
initial
begin

#0 rst_n = 1'b0;
x = 3'b100;

#5 rst_n = 1'b1;

//----------------------------------------------------------

x = 3'b010; @ (posedge clk) //go to state_d (010)
//assert z1

x = 3'b000; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------

x = 3'b011; @ (posedge clk) //go to state_c (101)
x = 3'b011; @ (posedge clk) //go to state_e (100)

//assert z2
x = 3'b000; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------

x = 3'b011; @ (posedge clk) //go to state_c (101)
x = 3'b100; @ (posedge clk) //go to state_g (111)

//assert z3
x = 3'b000; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------

x = 3'b011; @ (posedge clk) //go to state_c (101)
x = 3'b101; @ (posedge clk) //go to state_f (110)
x = 3'b000; @ (posedge clk) //go to state_a (000)

//----------------------------------------------------------
#10 $stop;

end

//----------------------------------------------------------
//instantiate the module into the test bench
mux_nonlinear10 inst1 (rst_n, clk, x, y, z1, z2, z3);

endmodule
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inputs = 100, state = 000, z1 z2 z3 = 000
inputs = 010, state = 001, z1 z2 z3 = 000
inputs = 000, state = 010, z1 z2 z3 = 000
inputs = 000, state = 010, z1 z2 z3 = 100

inputs = 011, state = 000, z1 z2 z3 = 000
inputs = 011, state = 101, z1 z2 z3 = 000
inputs = 000, state = 100, z1 z2 z3 = 000
inputs = 000, state = 100, z1 z2 z3 = 010

inputs = 011, state = 000, z1 z2 z3 = 000
inputs = 100, state = 101, z1 z2 z3 = 000
inputs = 000, state = 111, z1 z2 z3 = 000
inputs = 000, state = 111, z1 z2 z3 = 001

inputs = 011, state = 000, z1 z2 z3 = 000
inputs = 101, state = 101, z1 z2 z3 = 000
inputs = 000, state = 110, z1 z2 z3 = 000
inputs = 000, state = 000, z1 z2 z3 = 000
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3.11 Design a 4-bit Johnson counter using D flip-flops.  The counter counts in the
following sequence: 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000.
Obtain the structural design module, the test bench module, the outputs, and
the waveforms.

Dy1 = y4'     Dy2 = y1

     Dy3 = y2     Dy4 = y3

 0 0      0 1     1 1     1 0

0 0     

0 1     

1 1      

1 0      

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

 0 0      0 1     1 1     1 0

0 0      1         0        0         –

0 1      –        –        0         –

1 1      1         –        0         1

1 0      1         –        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Dy1

 0 0      0 1     1 1     1 0

0 0      0         0        0         –

0 1      –         –        0         –

1 1      1         –        1         1

1 0      1         –        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Dy2

 0 0      0 1     1 1     1 0

0 0     

0 1     

1 1      

1 0      

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

 0 0      0 1     1 1     1 0

0 0      0         0        0         –

0 1      –         –        1         –

1 1      1         –        1         1

1 0      0         –        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Dy3

 0 0      0 1     1 1     1 0

0 0      0         0        1         –

0 1      –         –        1         –

1 1      0         –        1         1

1 0      0         –        –         –

y1y2

y3y4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

Dy4
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//structural for 4-bit johnson counter
module ctr_johnson4_dff (set_n, rst_n, clk, y);

//define inputs and outputs
input set_n, rst_n, clk;
output [1:4] y;

//instantiate the logic for y[1], y[2], y[3], and y[4]
d_ff_bh inst1 (

.rst_n(rst_n),

.clk(clk),

.d(~y[4]),

.q(y[1])
);

d_ff_bh inst2 (
.rst_n(rst_n),
.clk(clk),
.d(y[1]),
.q(y[2])
);

d_ff_bh inst3 (
.rst_n(rst_n),
.clk(clk),
.d(y[2]),
.q(y[3])
);

d_ff_bh inst4 (
.rst_n(rst_n),
.clk(clk),
.d(y[3]),
.q(y[4])
);

endmodule
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//test bench for the 4-bit johnson counter
module ctr_johnson4_dff_tb;

reg set_n, rst_n, clk; //inputs are reg for test bench
wire [1:4] y; //outputs are wire for test bench

initial //display count
$monitor ("count = %b", y);

//initialize the counter
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial
begin
#140 $finish;
end

//instantiate the module into the test bench
ctr_johnson4_dff inst1 (

.set_n(set_n),

.rst_n(rst_n),

.clk(clk),

.y(y)
);

endmodule
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3.14 Design a parity-checked Mealy synchronous sequential machine that gener-
ates an output z1 whenever the sequence 1001 is detected on a serial data
input line x1 .  Overlapping sequences are valid.  Output z1 is asserted at time
t2 and deasserted at t3.  The parity flip-flop maintains odd parity over the
state flip-flops and the parity flip-flop itself.  Use built-in primitives for the 
next-state logic and the output logic.  This problem repeats Problem 3.13, but
uses JK flip-flops as the storage elements.  Obtain the structural design mod-
ule, the test bench module, the outputs, and the waveforms.

count = 0000
count = 1000
count = 1100
count = 1110
count = 1111
count = 0111
count = 0011
count = 0001
count = 0000
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Jy1 = y2x1' Ky1 = x1  + y2 '

Jy2 = x1 Ky2 = y1x1'

a

y1y2      yp
0 0       1

d
1 0      0

b
0 1      0

c
1 1      1

z1

x1

x1'

x1' x1

x1

x1

x1'

x1'

   0        1     1 1      10
y2

   y1

 0       0        x1'

 1       –        –

 0            1           3            2

 2            3           7           6

   0        1     1 1      10
y2

    y1

 0       –        –

 1       1        x1

 0            1           3            2

 2            3           7           6

Jy1 Ky1

   0        1     1 1      10
y2

   y1

 0       x1       –

 1       x1       –

 0            1           3            2

 2            3           7           6

   0        1     1 1      10
y2

    y1

 0       –        0

 1       –       x1'

 0            1           3            2

 2            3           7           6

Jy2 Ky2



784           Appendix C     Answers to Select Problems

Jyp = x1' Kyp = x1  + y1

   0        1     1 1      10
y2

   y1

 0       –        x1'

 1       x1'       –

 0            1           3            2

 2            3           7           6

   0        1     1 1      10
y2

    y1

 0      x1        –

 1       –        1

 0            1           3            2

 2            3           7           6

Jyp Kyp

y1

>
K
Reset

J

y2

>
K
Reset

J

yp

>
K

Set

Reset

J

2k+1

–Clock

–x1
+y2
+x1
–y2

+x1

+y1

+Logic 1

–Init_n

+y1

+error

+y2

+yp

–Clock
+z1

inst1

inst2
inst3

inst4
inst5

inst6
inst7

inst8

inst9
inst10

inst11

net1

net2

net4

net6
net7
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//structural parity-checked mealy machine using JK
//flip-flops to detect overlapping sequences of 1001
module mealy_par_chk_jk (init_n, clk, x1, y, yp, z1, err);

input init_n, clk, x1; //define inputs and outputs
output [1:2] y;
output yp, z1, err;

wire net1, net2, net4, net6, net7; //define internal nets
//-------------------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, ~x1, y[2]);
or  inst2 (net2, x1, ~y[2]);

jkff_neg_clk inst3 (
.set_n(1'b1),
.rst_n(init_n),
.clk(clk),
.j(net1),
.k(net2),
.q(y[1])
);

//-------------------------------------------------
//instantiate the logic for flip-flop y[2]
and inst4 (net4, ~x1, y[1]);

jkff_neg_clk inst5 (
.set_n(1'b1),
.rst_n(init_n),
.clk(clk),
.j(x1),
.k(net4),
.q(y[2])
);

//-------------------------------------------------
//instantiate the logic for flip-flop yp
and inst6 (net6, y[1], y[2]);
or  inst7 (net7, net6, x1);

jkff_neg_clk inst8 (
.set_n(init_n),
.rst_n(1'b1),
.clk(clk),
.j(~x1),
.k(net7),
.q(yp)
);

//continued on next page
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//-------------------------------------------------
//instantiate the logic for the parity error
xor  inst9 (net9, y[1], y[2]);
xnor inst10 (err, net9, yp);

//-------------------------------------------------
//instantiate the logic for output z1
and #1 inst11 (z1, y[1], ~y[2], x1, ~clk);

endmodule

//test bench for the parity-checked mealy machine
//using JK flip-flops

module mealy_par_chk_jk_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg  init_n, clk, x1;
wire [1:2] y;
wire yp, z1, err;

//display variables
initial
$monitor ("x1 = %b, state = %b, yp = %b, output = %b,

parity_err = %b", x1, y, yp, z1, err);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 init_n = 1'b0; //reset to state_a (00)
x1 = 1'b0;

#5 init_n = 1'b1; //deassert reset

//continued on next page
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//---------------------------------------------------------
x1 = 1'b0; @ (negedge clk) //go to state_a (00)
x1 = 1'b1; @ (negedge clk) //go to state_b (01)
x1 = 1'b0; @ (negedge clk) //go to state_c (11)
x1 = 1'b0; @ (negedge clk) //go to state_d (10)
x1 = 1'b1; @ (negedge clk) //go to state_b (01)

//assert z1 t2 -- t3
//---------------------------------------------------------

x1 = 1'b0; @ (negedge clk) //go to state_c (11)
x1 = 1'b0; @ (negedge clk) //go to state_d (10)
x1 = 1'b1; @ (negedge clk) //go to state_b (01)

//assert z1 t2 -- t3
//---------------------------------------------------------

x1 = 1'b0; @ (negedge clk) //go to state_c (11)
x1 = 1'b0; @ (negedge clk) //go to state_d (10)
x1 = 1'b0; @ (negedge clk) //go to state_a (00)

//---------------------------------------------------------
x1 = 1'b1; @ (negedge clk) //go to state_b (01)
x1 = 1'b0; @ (negedge clk) //go to state_c (11)
x1 = 1'b1; @ (negedge clk) //go to state_b (01)

//---------------------------------------------------------
x1 = 1'b0; @ (negedge clk) //go to state_c (11)
x1 = 1'b0; @ (negedge clk) //go to state_d (10)
x1 = 1'b1; @ (negedge clk) //go to state_b (01)

//assert z1 t2 -- t3

//---------------------------------------------------------
#10 $stop;

end

//---------------------------------------------------------
//instantiate the module into the test bench
mealy_par_chk_jk inst1 (

.init_n(init_n),

.clk(clk),

.x1(x1),

.y(y),

.yp(yp),

.z1(z1),

.err(err)
);

endmodule
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x1 = 0, state = 00, yp = 1, output = 0, parity_err = 0
x1 = 1, state = 00, yp = 1, output = 0, parity_err = 0
x1 = 0, state = 01, yp = 0, output = 0, parity_err = 0
x1 = 0, state = 11, yp = 1, output = 0, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 1, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 0, state = 01, yp = 0, output = 0, parity_err = 0
x1 = 0, state = 11, yp = 1, output = 0, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 1, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 0, state = 01, yp = 0, output = 0, parity_err = 0
x1 = 0, state = 11, yp = 1, output = 0, parity_err = 0
x1 = 0, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 1, state = 00, yp = 1, output = 0, parity_err = 0
x1 = 0, state = 01, yp = 0, output = 0, parity_err = 0
x1 = 1, state = 11, yp = 1, output = 0, parity_err = 0
x1 = 0, state = 01, yp = 0, output = 0, parity_err = 0
x1 = 0, state = 11, yp = 1, output = 0, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 1, parity_err = 0
x1 = 1, state = 10, yp = 0, output = 0, parity_err = 0
x1 = 1, state = 01, yp = 0, output = 0, parity_err = 0
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Chapter 4 Synthesis of Asynchronous 
Sequential Machines Using Verilog HDL

4.2 Synchronize an asynchronous sequential machine, using built-in-primitives,
which has two inputs x1  and x2 and two outputs z1 and z2 .  The two inputs
may overlap, but will not change state simultaneously.  Only the following
sequences are valid:

x1x2 = 00  10  11  01  00
x1x2 = 00  10  11  10  00
x1x2 = 00  10  00
x1x2 = 00  01  00

Output z1 is asserted whenever x1  is active and x2 is asserted or when x2  is
active and x1 is asserted.  Output z1 will be deasserted when either x1  or x2  is
deasserted.  Output z2  is asserted coincident with the assertion of z1 and
remains active until the deassertion of the last active input of an overlapping
sequence.  A representative timing diagram is shown below.  Use AND gates
and OR gates for the logic.

+x1

+x2

+z1

+z2
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Primitive flow table

Merger diagram

Transition diagram

x1x2
 00       01      11      10       z1       z2

 e         –        b       0        0

 a         –        c        –        0        0

–        d        m        –      1        1

a                 –         –         0        1d

a                  f        –       0       0

b

c

a

e

–        –                  g        1       1

a        –        –                  0       1

f

g

a

d

b

c

ef

g

1 2

34

00 01

11 10
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Combined excitation map

Individual excitation maps

Y1e = y1f x1  + y2f ' x2 Y2e = y2f x2  + y1f ' x1

z1 = x1x2 z2  = y2f x2 + y1f x1

 0 0      0 1     1 1     1 0

0 0      0        10        –       01

0 1     00         0      

1 1      –        –         –        –

1 0     00        –       

y1f y2f

x1x2

 a  

               d            c           b

 

Y1e Y2e

00

0101 01

10
e             f            g

10 10

1

2

4

3

 0 0      0 1     1 1     1 0

0 0      0         1        –         0

0 1      0         0        0         0

1 1      –         –        –         –

1 0      0         1        1         1

y1f y2f

x1x2

 

     

   

Y1e

 0 0      0 1     1 1     1 0

0 0      0         0        –         1

0 1      0         1        1         1

1 1      –         –        –         –

1 0      0         0        0         0

y1f y2f

x1x2

 

 

   

Y2e

 

               

   

                 

 0 0      0 1     1 1     1 0

0 0      0         0        –         0

0 1      0         1        1         0

1 1      –         –        –         –

1 0      0        0        1         1

y1f y2f

x1x2

 a 

 

   

z2

 0 0      0 1     1 1     1 0

0 0      0         0        –         0

0 1      0        0        1         0

1 1      –         –        –         –

1 0      0        0        1         0

y1f y2f

x1x2

 a  

              d            c           b

 

   

z1

               e            f            g

              d            c           b

               e            f            g
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//asm using built-in-primitives

module asm_bip2 (rst_n, x1, x2, y1e, y2e, z1, z2);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1, z2;

//define internal nets
wire net1, net2, net3, net4;

//design the logic for y1e
and (net1, y1e, x1, rst_n),

(net2, ~y2e, x2, rst_n);
or (y1e, net1, net2);

//design the logic for y2e
and (net3, y2e, x2, rst_n),

(net4, ~y1e, x1, rst_n);
or (y2e, net3, net4);

//design the logic for outputs z1 and z2
and (z1, x1, x2);
or (z2, net1, net3);

endmodule
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//test bench for the asm using built-in-primitives
module asm_bip2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1, z2;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1z2 = %b",

{x1, x2}, {y1e, y2e}, {z1, z2});

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; //z1 = 1, z2 = 1
#10 x1 = 1'b0; x2 = 1'b1; //z1 = 0, z2 = 1
#10 x1 = 1'b0; x2 = 1'b0; //z1 = 0, z2 = 0
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //z1 = 0, z2 = 0
#10 x1 = 1'b1; x2 = 1'b1; //z1 = 1, z2 = 1
#10 x1 = 1'b1; x2 = 1'b0; //z1 = 0, z2 = 1
#10 x1 = 1'b0; x2 = 1'b0; //z1 = 0, z2 = 0

#10 $stop;
end

//instantiate the module into the test bench
asm_bip2 inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.y1e(y1e),

.y2e(y2e),

.z1(z1),

.z2(z2)
);

endmodule



794           Appendix C     Answers to Select Problems

4.6 Synthesize an asynchronous sequential machine which has one input x1  and
one output z1.  The machine operates according to the timing diagram shown
below.  The assertion of x1 toggles output z1.  Assign values to the transient
states in the output map such that the  output logic will be minimized.
Obtain the excitation equations in a sum-of-products form.  Use NAND logic
with the continuous assignment statement in the design module.

x1x2 = 00, state = 00, z1z2 = 00
x1x2 = 10, state = 01, z1z2 = 00
x1x2 = 11, state = 01, z1z2 = 11
x1x2 = 01, state = 01, z1z2 = 01
x1x2 = 00, state = 00, z1z2 = 00

x1x2 = 01, state = 10, z1z2 = 00
x1x2 = 11, state = 10, z1z2 = 11
x1x2 = 10, state = 10, z1z2 = 01
x1x2 = 00, state = 00, z1z2 = 00

+x1

+z1

a c d ab cb
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Primitive flow table

Combined excitation map

Individual excitation maps

   Y1e = y1f x1  + y2f x1'  + y1f y2f       Y2e  = y1f ' x1  + y2f x1'  + y1f ' y2f

x1
  0        1        z1    10       

d

c

a  b        0        b

 c                 1         

          d         1         –        

a                  0          

b

  0        1     1 1     1 0

0 0                                    01

0 1     11                11

1 1               10                 10

1 0     00        

y1f y2f

x1

 a

               b                         c

     

                              d

Y1e Y2e

01

01 

00

                           f            e

11 
 c

10 
 d

  0        1     1 1     1 0

0 0      0         0        0         0

0 1      1         0        1         0

1 1      1         1        1         1

1 0      0         1        1         1

y1f y2f

x1

 

Y1e 

  0        1     1 1     1 0

0 0      0         1        0         1

0 1      1         1        1         1

1 1      1         0        1         0

1 0      0         0        0         0

y1f y2f

x1

 

 Y2e
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Output map
z1 = y2f

  0        1     1 1     1 0

0 0      0         0       0         0

0 1      1         1        1         0

1 1      1         1        1         1

1 0      0         0        1         1

y1f y2f

x1

 

z1

 a

 b

 c

 d

//dataflow nand for asynchronous sequential machine

module asm_nand (rst_n, x1, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6;

//design the logic for y1e
assign net1 = ~(y2e & ~x1 & rst_n),

net2 = ~(y1e & x1 & rst_n),
net3 = ~(y1e & y2e & rst_n),
y1e = ~(net1 & net2 & net3);

//design the logic for y2e
assign net4 = ~(y2e & ~x1 & rst_n),

net5 = ~(~y1e & x1 & rst_n),
net6 = ~(~y1e & y2e & rst_n),

y2e = ~(net1 & net4 & net5);

//define the logic for output z1
assign z1 = y2e;

endmodule
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//test bench for the nand asm

module asm_nand_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0;
#10 x1 = 1'b1; //assert z1
#10 x1 = 1'b0; //assert z1
#10 x1 = 1'b1;
#10 x1 = 1'b0;
#10 x1 = 1'b1; //assert z1
#10 x1 = 1'b0; //assert z1
#10 x1 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm_nand inst1 (

.rst_n(rst_n),

.x1(x1),

.y1e(y1e),

.y2e(y2e),

.z1(z1)
);

endmodule
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4.10 Obtain the excitation and output equations for an asynchronous sequential
machine which has one input x1  and two outputs z1 and z2.  Output z1 is
asserted for the duration of every second x1  pulse; output z2  is asserted for
the duration of every second z1 pulse.  The outputs are to respond as fast as
possible to changes in the input vector.  A representative timing diagram is
shown below.  Go through the design process to obtain the excitation equa-
tions and the output equations.  Then obtain the design module using built-in
primitives, the test bench module, the outputs, and the waveforms.

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 1
x1 = 0, state = 11, z1 = 1
x1 = 1, state = 10, z1 = 0

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 1
x1 = 0, state = 11, z1 = 1
x1 = 1, state = 10, z1 = 0

+x1

+z1

+z2

a b c d e f g h a
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Primitive flow table Combined excitation map

Individual excitation maps

x1
  0         1        z1       z2

b

d

e

f

g

h

c

a b         0        0

c                   0        0

d         0        0

e                   1        0

f         0        0

g                   0        0

h         0        0

a                   1        1

 x1
 0         1      1 1     1 0 y1f y2f y3f

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

Y1eY2e Y3e

000     001     001    000
a                               

011     001     001    101
b          c

011     010        –        –

110     010     010    000
            d                      

110     111     010      –

101     111   –        –

101     100        100

000     100     110     100
h                      

c 

e

f

g

  0    1   11   10
000    0    0

001    0    0

011    0    0

010    1    0

110    1    1

111    1    1

101    1    1

100    0    1

x1
y1f y2f y3

Y1e

  0    1   11   10
000    0    0

001    1    0

011    1    1

010    1    1

110    1    1

111    0    1

101    0    0

100    0    0

x1
y1f y2f y3

Y2e

  0    1   11   10
000    0    1

001    1    1

011    1    0

010    0    0

110    0    1

111    1    1

101    1    0

100    0    0

x1
y1f y2f y3

Y3e
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Output maps

                          net14           net15
   z1 = y1f ' y2f x1  + y1f y2f 'x1

   z2  = y1f y2f 'x1

  0    1   11   10
000    0    0

001    0    0

011    0    1

010    0    1

110    0    0

111    0    0

101    0    1

100    0    1

x1
y1f y2f y3

 z1

a

b

c

d

e

f

g

h

  0    1   11   10
000    0    0

001    0    0

011    0    0

010    0    0

110    0    0

111    0    0

101    0    1

100    0    1

x1
y1f y2f y3

 z2

a

b

c

d

e

f

g

h

 net1       net2           net3           net4

Y1e  = y1f x1 + y1f y3f + y2f y3f ' x1'  + y1f y2f

  net5         net6         net7           net8

Y2e  = y2f y3f ' + y2f x1  + y1f ' y3f x1'  + y1f ' y2f

 net9          net10            net11             net12            net13

Y3e = y3f x1'  + y1f ' y2f ' x1  + y1f y2f x1  + y1f ' y2f ' y3f + y1f y2f y3f
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//asm using built-in primitives

module asm13_bip (rst_n, x1, y1e, y2e, y3e, z1, z2);

//define inputs and outputs
input rst_n, x1;
output y1e, y2e, y3e, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;
wire net9, net10, net11, net12, net13, net14, net15;

//design the logic for y1e
and (net1, y1e, x1, rst_n),

(net2, y1e, y3e, rst_n),
(net3, y2e, ~y3e, ~x1, rst_n),
(net4, y1e, y2e, rst_n);

or (y1e, net1, net2, net3, net4);

//design the logic for y2e
and (net5, y2e, ~y3e, rst_n),

(net6, y2e, x1, rst_n),
(net7, ~y1e, y3e, ~x1, rst_n),
(net8, ~y1e, y2e, rst_n);

or (y2e, net5, net6, net7, net8);

//design the logic for y3e
and (net9, y3e, ~x1, rst_n),

(net10, ~y1e, ~y2e, x1, rst_n),
(net11, y1e, y2e, x1, rst_n),
(net12, ~y1e, ~y2e, y3e, rst_n),
(net13, y1e, y2e, y3e, rst_n);

or (y3e, net9, net10, net11, net12, net13);

//design the logic for outputs z1 and z2
and (net14, ~y1e, y2e, x1),

(net15, y1e, ~y2e, x1);

or (z1, net14, net15);

and (z2, y1e, ~y2e, x1);

endmodule
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//test bench for the bip asm

module asm13_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1;
wire y1e, y2e, y3e, z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1z2 = %b",

x1, {y1e, y2e, y3e}, {z1, z2});

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; //state_a
#10 x1 = 1'b1; //state_b
#10 x1 = 1'b0; //state_c
#10 x1 = 1'b1; //state_d, assert z1

#10 x1 = 1'b0; //state_e
#10 x1 = 1'b1; //state_f
#10 x1 = 1'b0; //state_g
#10 x1 = 1'b1; //state_h, assert z1 and z2

#10 x1 = 1'b0; //state_a
#10 x1 = 1'b1; //state_b
#10 x1 = 1'b0; //state_c
#10 x1 = 1'b1; //state_d, assert z1

#10 x1 = 1'b0; //state_e
#10 x1 = 1'b1; //state_f
#10 x1 = 1'b0; //state_g
#10 x1 = 1'b1; //state_h, assert z1 and z2

#10 x1 = 1'b0; //state_a
#10 $stop;

end

//instantiate the module into the test bench as a single line
asm13_bip inst1 (rst_n, x1, y1e, y2e, y3e, z1, z2);

endmodule
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4.15 Synthesize an asynchronous sequential machine using built-in primitives,
which has one input x1  and two outputs z1 and z2 .  The machine functions as
a two-output bistable multivibrator, whose operation is characterized by the
timing diagram shown below.  Output z1 toggles on the positive transition of
x1  and output z2  toggles on the negative transition of x1 .  Obtain equations
for z1 and z2  which produce the least amount of logic.  Obtain the design
module using built-in primitives, the test bench module, the outputs, and the
waveforms.

x1 = 0, state = 000, z1z2 = 00
x1 = 1, state = 001, z1z2 = 00
x1 = 0, state = 011, z1z2 = 00
x1 = 1, state = 010, z1z2 = 10

x1 = 0, state = 110, z1z2 = 00
x1 = 1, state = 111, z1z2 = 00
x1 = 0, state = 101, z1z2 = 00
x1 = 1, state = 100, z1z2 = 11

x1 = 0, state = 000, z1z2 = 00
x1 = 1, state = 001, z1z2 = 00
x1 = 0, state = 011, z1z2 = 00
x1 = 1, state = 010, z1z2 = 10

x1 = 0, state = 110, z1z2 = 00
x1 = 1, state = 111, z1z2 = 00
x1 = 0, state = 101, z1z2 = 00
x1 = 1, state = 100, z1z2 = 11

x1 = 0, state = 000, z1z2 = 00
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Primitive flow table.  There are no equivalent states, because each state has different
outputs.

Merger diagram in which no rows can merge because both columns for x1  have at least
one different state in each selected row.

+x1

+z1

+z2

ab c da

x1
  0         1        z1       z2

b

d

c

a b         0        0

c                   1        0

d         1        1

a                   0        1

a b

cd
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Combined excitation map and individual excitation maps.

Output maps

y1f y2f

x1
  0           1         1 1         1 0

0 0

0 1

1 1

1 0

a                                

                  b                 

c                                 

                  d                

00         01          00          00

11         01          00          00

11         10          00          00

00         10          00          00

Y1e Y2e

y1f y2f

x1
  0           1         1 1         1 0

0 0

0 1

1 1

1 0

                                

                                   

                                 

                                  

 0          0          00          00

1           0          00          00

1           1          00          00

0           1          00          00

Y1e

y1f y2f

x1
  0           1         1 1         1 0

0 0

0 1

1 1

1 0

                                

                                   

                                 

                                  

 0          1          00          00

 1           1          00          00

 1           0          00          00

 0           0          00          00

Y2e

Y1e  = x1' y2f  + x1y1f + y1f y2f

Y2e  = x1' y2f  + x1y1f ' + y1f ' y2f

y1f y2f

x1
  0           1         1 1         1 0

0 0

0 1

1 1

1 0

a                                

                  b                 

c                                 

                  d                

00         –0          00          00

1–         10          00          00

11         –1          00          00

0–         01          00          00

z1z2

y1f y2f

x1
  0           1         1 1         1 0

0 0

0 1

1 1

1 0

                                

                                   

                                 

                                  

 0          –          00          00

1           1          00          00

1           –          00          00

0           0          00          00

z1

y1f y2f

x1
  0           1         1 1         1 0

0 0

0 1

1 1

1 0

                                

                                   

                                 

                                  

 0          0          00          00

 –           0          00          00

 1           1          00          00

 –           1          00          00

z2

z1 = y2f

z2 = y1f
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–x1+y2f

+x1+y1f

–y1f

–reset

+Y1e (+y1f , z2)

+Y2e (+y2f , z1)

net1

net2

net3

net4

net5

//asm using built-in primitives

module asm_bip4 (rst_n, x1, y1e, y2e, z1, z2);

//define the inputs and  outputs
input rst_n, x1;
output y1e, y2e, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5;

//define the logic for y1e
and (net1, ~x1, y2e, rst_n),

(net2, x1, y1e, rst_n),
(net3, y1e, y2e, rst_n);

or (y1e, net1, net2, net3);

//define the logic for y2e
and (net4, x1, ~y1e, rst_n),

(net5, ~y1e, y2e, rst_n);

or (y2e, net1, net4, net5);

//define the logic for outputs z1 and z2
or (z1, y2e),

(z2, y1e);

endmodule
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//test bench for the asm using built-in primitives

module asm_bip4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1;
wire y1e, y2e, z1, z2;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1z2 = %b",

x1, {y1e, y2e}, {z1, z2});

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0;
#10 x1 = 1'b1; //state_b, assert z1
#10 x1 = 1'b0; //state_c, assert z2

#30 x1 = 1'b0;

#10 x1 = 1'b1; //state_d, deassert z1
#10 x1 = 1'b0; //state_a, deassert z2

#10 x1 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm_bip4 inst1 (rst_n, x1, y1e, y2e, z1, z2);

endmodule
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4.18 Given the merged flow table shown below, design the asynchronous sequen-
tial machine using dataflow modeling with the continuous assignment state-
ment.  Assume that output z1 is asserted in the following stable states:  ,

, , and .   Obtain the design module and the test bench module that
takes the machine through the paths to assert output z1.  The excitation equa-
tions and the output equation are to be in a sum-of-products form.  Obtain the
outputs and the waveforms.  There should be no static-1 or static-0 hazards in
the  equations.

 

Merged flow table

x1 = 0, state = 00, z1z2 = 00
x1 = 1, state = 01, z1z2 = 10
x1 = 0, state = 11, z1z2 = 11
x1 = 1, state = 10, z1z2 = 01
x1 = 0, state = 00, z1z2 = 00

b
d f g

x1x2
 00       01      11      10       

 c        d        d        1        0

 e         –        b        –        0        1

a        g        b                 1        1

–        f         –        g        0        0

d

g

b

c

a

e

1

2

3

4

f
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Transition diagram

   Combined excitation map

Individual excitation maps

1 2

34

00 01

11 10

 0 0      0 1     1 1     1 0

0 0      0        10        0       01

0 1     11         0      00         0

1 1      0        01        –       10

1 0     00        –       00      11

y1f y2f

x1x2

 a                         b

               f                         d

 

   e                         
Y1e Y2e

00 00

01 01

11
c                          g

10 10

1

2

4

3

 0 0      0 1     1 1     1 0

0 0      0         1        0         0

0 1      1         0        0         0

1 1      1         0        –         1

1 0      0         1        0         1

y1f y2f

x1x2

 a                         b

               f                         d

 

   e  

                 c                         g

Y1e

 0 0      0 1     1 1     1 0

0 0      0         0        0         1

0 1      1         1        0         1

1 1      1         1        –         0

1 0      0         0        0         0

y1f y2f

x1x2

 

 

 

   

Y2e

 a                         b

               f                         d

   e  

                 c                         g

     net1             net2            net3           net4

Y1e = y2f x1' x2'  + y2f ' x1' x2 + y1f x1x2 ' + y1f y2f x2'

 net5            net6            net7

Y2e = y2f x1'  + y1f ' x1x2 ' + y1f ' y2f x2'
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   Output map

 0 0      0 1     1 1     1 0

0 0      0         0        1         1

0 1      0         1        1         1

1 1      0         1        –         1

1 0      0         0        1         1

y1f y2f

x1x2

 a                         b

               f                         d

 

   e  

                 c                         g

z1

z1 = x1  + y2f x2

//dataflow asynchronous sequential machine

module asm21a (rst_n, x1, x2, y1e, y2e, z1);

input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;

//design the logic for y1e
assign net1 = y2e & ~x1 & ~x2 & rst_n,

net2 = ~y2e & ~x1 & x2 & rst_n,
net3 = y1e & x1 & ~x2 & rst_n,
net4 = y1e & y2e & ~x2 & rst_n,
y1e = net1 | net2 | net3 | net4;

//design the logic for y2e
assign net5 = y2e & ~x1 & rst_n,

net6 = ~y1e & x1 & ~x2 & rst_n,
net7 = ~y1e & y2e & ~x2 & rst_n,
y2e = net5 | net6 | net7;

//design for output z1
assign z1 = x1 | (y2e & x2);

endmodule
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//test bench the asynchronous sequential machine
module asm21a_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0; x1 = 1'b0; x2 = 1'b0;
#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b0; //state_a
#10 x1 = 1'b1; x2 = 1'b0;  //state_d, assert z1

#10 x1 = 1'b0; x2 = 1'b0;  //state_e
#10 x1 = 1'b1; x2 = 1'b0;  //state_g, assert z1

#10 x1 = 1'b1; x2 = 1'b1;  //state_b, assert z1

#10 x1 = 1'b0; x2 = 1'b1; //state_c  
#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0;  //state_e
#10 x1 = 1'b0; x2 = 1'b1; //state_f, assert z1

#10 x1 = 1'b0; x2 = 1'b0;  //state_e

#10 x1 = 1'b0; x2 = 1'b0;
#10 $stop;

end

//instantiate the module into the test bench
asm21a inst1 (

.rst_n(rst_n),

.x1(x1),

.x2(x2),

.y1e(y1e),

.y2e(y2e),

.z1(z1)
);

endmodule
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x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 01, z1 = 1

x1x2 = 00, state = 11, z1 = 0
x1x2 = 10, state = 10, z1 = 1
x1x2 = 11, state = 00, z1 = 1

x1x2 = 01, state = 10, z1 = 0
x1x2 = 10, state = 10, z1 = 1
x1x2 = 00, state = 00, z1 = 0
x1x2 = 01, state = 10, z1 = 0
x1x2 = 00, state = 00, z1 = 0
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Chapter 5 Synthesis of Pulse-Mode 
Asynchronous Sequential Machines Using 
Verilog HDL

5.3 Design a Moore pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  The deassertion of every second con-
secutive x1  pulse will assert output z1 as a level.  The output will remain set
for all following contiguous x1  pulses.  The output will be deasserted at the
trailing edge of the second of two consecutive x2  pulses.  Use NAND built-
in primitives together with SR latches and D flip-flops.  The state diagram is
shown below and represents the complete sequencing for this Moore
machine.

Obtain the design module using D flip-flops that were designed using
behavioral modeling.  Obtain the test bench module that takes the machine
through the various sequences required to generate the output assertion and
deassertion as specified above.  Obtain the outputs and the waveforms.

a

y1y2
0 0

b
0 1

c
z1

1 1

d
z1

1 0

x1
x2

x2
x1

x2
x1

x1
x2
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The input maps and input equations are shown below together with the equation
for output z1.

    y1

    y2
 0

 0       r        S

 1

 1       s        s

 0            1

    2            3

     y1

    y2
 0

 0       r        r

 1

 1       R        s

 0            1

    2            3

 

    y1

    y2
 0

 0       S        s

 1

 1       S        s

 0            1

    2            3

     y1

    y2
 0

 0       r        R

 1

 1       r        R

 0            1

    2            3

 

x1                                        x2
Inputs

Latches

Ly1

Ly2

SLy1  = y2x1

RLy1  = y2 ' x2

SLy2  = x1

RLy2  = x2

z1 = y1

//moore pulse-mode asm using built-in primitives and D ff

module pm_asm_moore6 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;

//continued on next page
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//-------------------------------------------------
//design the D flip-flop clock
nor (net1, x1, x2);

//-------------------------------------------------
//design the logic for latch Ly1
nand (net2, x1, y2),

(net3, x2, ~y2);

nand (net4, net2, net5),
(net5, net4, net3, rst_n);

//instantiate the D flip-flop for y1 as a single line
d_ff_bh inst1 (rst_n, net1, net4, y1);   //rst_n, clk, d, q

//-------------------------------------------------
//design the logic for latch Ly2
nand (net6, ~x1, net7),

(net7, net6, ~x2, rst_n);

//instantiate the D flip-flop for y2 as a single line
d_ff_bh inst2 (rst_n, net1, net6, y2);   //rst_n, clk, d, q

//-------------------------------------------------
//design the logic for output z1
assign z1 = y1;

endmodule

//test bench for moore pulse-mode asm
module pm_asm_moore6_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display inputs and outputs ----------------------------
initial
$monitor ("x1x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence ---------------------------------
initial
begin

#0 rst_n = 1'b0; //reset to state_a(00); no output
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1; //continued on next page
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#10 x1 = 1'b1; // state_b
#10 x1 = 1'b0; //no output

#10 x1 = 1'b1; // state_c
#10 x1 = 1'b0; //assert output z1

#10 x1 = 1'b1; //remain in state_c
#10 x1 = 1'b0; //output z1 remains asserted

#20 x2 = 1'b1; // state_d
#10 x2 = 1'b0; //output z1 remains asserted

#10 x1 = 1'b1; // state_c(11)
#10 x1 = 1'b0; //output z1 remains asserted

#10 x2 = 1'b1; // state_d(10)
#10 x2 = 1'b0; //output z1 remains asserted

#10 x2 = 1'b1; // state_a
#10 x2 = 1'b0; //deassert output z1

#30 $stop;
end

//instantiate the module into the test bench -------------
pm_asm_moore6 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1x2 = 00, state = 00, z1 = 0
x1x2 = 10, state = 00, z1 = 0
x1x2 = 00, state = 01, z1 = 0
x1x2 = 10, state = 01, z1 = 0

x1x2 = 00, state = 11, z1 = 1
x1x2 = 10, state = 11, z1 = 1
x1x2 = 00, state = 11, z1 = 1
x1x2 = 01, state = 11, z1 = 1
x1x2 = 00, state = 10, z1 = 1
x1x2 = 10, state = 10, z1 = 1
x1x2 = 00, state = 11, z1 = 1
x1x2 = 01, state = 11, z1 = 1
x1x2 = 00, state = 10, z1 = 1
x1x2 = 01, state = 10, z1 = 1

x1x2 = 00, state = 00, z1 = 0
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5.8 A state diagram is shown below for a Moore pulse-mode asynchronous
sequential machine with three inputs x1, x2 , and x3, and two outputs z1 and
z2 .  T flip-flops are used in the implementation.  Obtain the input maps and
equations, the output equations, and the logic diagram using AND and OR
gates for the  next-state logic.  Obtain the design module using AND and
OR built-in primitives and T flip-flops.  Then develop the test bench module
that takes the machine through various sequences to assert output z1 and out-
put z2 .  Obtain the outputs and the waveforms.
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a

y1y2
0 0

b
z1

1 0

z2

c
z1

1 1

d
z2

0 1

x1
x2

x3

x2

x3
x1

x2x1
x3

x1

x2 x3

    y1
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Ty1  = x1  + y1 ' x3

Ty2  = y1y2 ' x1  + y1 ' y2x2  + x3

z1 = y1

z2  = y2

y1

T

R

 Y 

y1

T

R

+x1

–y1
+x3

+y1–y2

+y2
+x2

–reset

+y1(+z1)

+y2(z2)

–y1

–y2

net1 net2

net3

net4 net5

nety1

nety2

//moore pulse-mode asm using built-in primitives and T ff

module pm_asm_moore8 (rst_n, x1, x2, x3, y1, y2, z1, z2);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1, y2, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, nety1, nety2;

//-------------------------------------------------
//continued on next page
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//-------------------------------------------------
//define the logic for flip-flop y1
and (net1, ~y1, x3);
or (net2, x1, net1);

//instantiate the T flip-flop as a single line
t_ff_da inst1 (rst_n, net2, nety1);   //rst_n, t, y1

buf #11 (y1, nety1);

//-------------------------------------------------
//define the logic for flip-flop y2
and (net3, y1, ~y2, x1),

(net4, ~y1, y2, x2);
or (net5, net3, net4, x3);

//instantiate the T flip-flop as a single line
t_ff_da inst2 (rst_n, net5, nety2);   //rst_n, t, y1

buf #11 (y2, nety2);

//-------------------------------------------------
//define the logic for outputs z1 and z2
assign z1 = y1;
assign z2 = y2;

endmodule

//test bench for moore pulse-mode asm

module pm_asm_moore8_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1, y2, z1, z2;

//display inputs and outputs
initial
$monitor ("x1x2x3 = %b, state = %b, z1z2 = %b",

{x1, x2, x3}, {y1, y2}, {z1, z2});

//continued on next page
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//define input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;
x3 = 1'b0;

#5 rst_n = 1'b1;

#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   // b, assert z1
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   // d, assert z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b0;   x2=1'b0;   x3=1'b1;   // b, assert z1
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b0;   x2=1'b0;   x3=1'b1;   // c, assert z1,z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   // d, assert z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   // c, assert z1,z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b1;   x2=1'b0;   x3=1'b0;   // d, assert z2
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#10 x1=1'b0;   x2=1'b1;   x3=1'b0;   // a
#10 x1=1'b0;   x2=1'b0;   x3=1'b0;

#20 $stop;

end

//instantiate the module into the test bench
pm_asm_moore8 inst1 (rst_n, x1, x2, x3, y1, y2, z1, z2);

endmodule
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x1x2x3 = 000, state = 00, z1z2 = 00
x1x2x3 = 100, state = 00, z1z2 = 00
x1x2x3 = 000, state = 00, z1z2 = 00
x1x2x3 = 000, state = 10, z1z2 = 10

x1x2x3 = 100, state = 10, z1z2 = 10
x1x2x3 = 000, state = 10, z1z2 = 10
x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 001, state = 01, z1z2 = 01

x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 000, state = 10, z1z2 = 10
x1x2x3 = 001, state = 10, z1z2 = 10
x1x2x3 = 000, state = 10, z1z2 = 10

x1x2x3 = 000, state = 11, z1z2 = 11
x1x2x3 = 100, state = 11, z1z2 = 11
x1x2x3 = 000, state = 11, z1z2 = 11
x1x2x3 = 000, state = 01, z1z2 = 01

x1x2x3 = 100, state = 01, z1z2 = 01
x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 000, state = 11, z1z2 = 11
x1x2x3 = 100, state = 11, z1z2 = 11

x1x2x3 = 000, state = 11, z1z2 = 11
x1x2x3 = 000, state = 01, z1z2 = 01
x1x2x3 = 010, state = 01, z1z2 = 01
x1x2x3 = 000, state = 01, z1z2 = 01

x1x2x3 = 000, state = 00, z1z2 = 00
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5.12 Design a Mealy pulse-mode asynchronous sequential machine that has three
input variables x1 , x2 , and x3  and one output z1 that is asserted coincident
with x3  whenever the sequence x1x2x3 = 100, 010, 001 occurs.  The storage
elements consist of SR latches and positive-edge-triggered D flip-flops in a
master-slave configuration.

A representative timing diagram displaying valid input sequences and
corresponding outputs is shown below.  Obtain the state diagram that repre-
sents the functional operation of the machine.  State code assignment is arbi-
trary for the state diagram, since input pulses trigger all state transitions and
the machine does not begin to sequence to the next state until the input pulse,
which initiated the transition, has been deasserted.  Thus, output z1 will not
glitch.  Obtain the input maps, the input equations, the output equation, and
the logic diagram.  Then obtain the structural design module using dataflow
modeling for the logic primitives, which are instantiated as a single line.  Use
NOR logic for the SR latches.  Use behavioral modeling for the D flip-flop.
Obtain the test bench, the outputs, and the waveforms.

+x1

+x2

+x3

+z1
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–y1

+y1

+y2

+x1+x2+x3

–y1+y2

+y1

+z1

Ly1

Ly2

y1

D
>
rst

y2

D
>
rst

–reset
+reset

inst1

inst2

inst3

inst4

inst5

inst6
inst7

inst8

inst9

inst10
inst11
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net3

net4 net6
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net9

net10

//structural module for a Mealy pulse-mode asm

module pm_asm6a (rst_n, rst, x1, x2, x3, y1, y2, z1);

//define inputs and outputs
input rst_n, rst, x1, x2, x3;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net8, net9, net10;

//--------------------------------------------------
//design for clock
nor3_df inst1 (x1, x2, x3, net1);

//--------------------------------------------------
//design for latch Ly1
and3_df inst2 (x2, ~y1, y2, net2);

and2_df inst3 (x2, y1, net3);
//continued on next page
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or3_df inst4 (x1, x3, net3, net4);

nor2_df inst5 (net2, net6, net5);

nor3_df inst6 (net5, net4, rst, net6);

//design for D flip-flop y1
d_ff_bh inst7 (rst_n, net1, net6, y1);   //rst_n, clk, d, q 

//--------------------------------------------------
//design for latch Ly2
or2_df inst8 (net3, x3, net8);

nor2_df inst9 (x1, net10, net9);

nor3_df inst10 (net9, net8, rst, net10);

//design for D flip-flop y2
d_ff_bh inst11 (rst_n, net1, net10, y2);   //rst_n, clk, d, q

//--------------------------------------------------
//design for z1
and2_df inst12 (y1, x3, z1);

endmodule

//test bench for Mealy pulse-mode machine
module pm_asm6a_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, rst, set_n, x1, x2, x3;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1=%b, x2=%b, x3=%b, state=%b, z1=%b",

x1, x2, x3, {y1, y2}, z1);

//apply stimulus
initial
begin

#0 rst = 1'b1; //reset latches
rst_n = 1'b0; //reset flip-flops to state_a

//continued on next page
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x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#5 rst = 1'b0; //remove reset from latches
rst_n = 1'b1; //remove reset from flip-flops

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_a

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_a

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_b

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_a

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_b

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_c

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_b

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_c
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_a

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_b

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_c

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; //z1;  state_a 

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; // state_a
#10 $stop;

end

//instantiate the module into the test bench
pm_asm6a inst1 (rst_n, rst, x1, x2, x3, y1, y2, z1);

endmodule
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x1=0, x2=0, x3=0, state=00, z1=0
x1=0, x2=1, x3=0, state=00, z1=0
x1=0, x2=0, x3=0, state=00, z1=0
x1=0, x2=0, x3=1, state=00, z1=0
x1=0, x2=0, x3=0, state=00, z1=0
x1=1, x2=0, x3=0, state=00, z1=0
x1=0, x2=0, x3=0, state=01, z1=0
x1=0, x2=0, x3=1, state=01, z1=0
x1=0, x2=0, x3=0, state=00, z1=0
x1=1, x2=0, x3=0, state=00, z1=0
x1=0, x2=0, x3=0, state=01, z1=0
x1=0, x2=1, x3=0, state=01, z1=0
x1=0, x2=0, x3=0, state=11, z1=0
x1=1, x2=0, x3=0, state=11, z1=0
x1=0, x2=0, x3=0, state=01, z1=0
x1=0, x2=1, x3=0, state=01, z1=0
x1=0, x2=0, x3=0, state=11, z1=0
x1=0, x2=1, x3=0, state=11, z1=0
x1=0, x2=0, x3=0, state=00, z1=0
x1=1, x2=0, x3=0, state=00, z1=0
x1=0, x2=0, x3=0, state=01, z1=0
x1=0, x2=1, x3=0, state=01, z1=0
x1=0, x2=0, x3=0, state=11, z1=0
x1=0, x2=0, x3=1, state=11, z1=1
x1=0, x2=0, x3=0, state=00, z1=0
x1=0, x2=1, x3=0, state=00, z1=0
x1=0, x2=0, x3=0, state=00, z1=0
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5.15 Given the state diagram shown below for a Moore pulse-mode asynchronous
sequential machine, implement the machine using built-in primitives gates
for the  next-state logic and T flip-flops — instantiated as a single line — as
the storage elements.

Derive the input maps, the input equations, the output equations, and the
the logic diagram.  Obtain the design module, the test bench module, the out-
puts, and the waveforms.
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z2  = y1y2 ' y3 '
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//moore pulse-mode asm using built-in primitives and T ff

module pm_asm10c (rst_n, x1, x2, y1, y2, y3, z1, z2);

//define inputs and outputs
input rst_n, x1,x2;
output y1, y2, y3, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11, net12, net13,
net14, net15, net16, nety1, nety2, nety3;

//----------------------------------------------------
//design the logic for flip-flop y1
and (net1, y2, ~y3, x1),

(net2, y1, x1),
(net3, ~y1, y3, x2),
(net4, y1, x2);

or net5, net1, net2, net3, net4);

//instantiate the T flip-flop for y1
t_ff_da inst1 (rst_n, net5, nety1);   //rst_n, t, y1

buf #6 (y1, nety1);

//----------------------------------------------------
//design the logic for flip-flop y2
and (net6, y2, x1),

(net7, ~y1, y3, x1),
(net8, ~y1, ~y2, ~y3, x2),
(net9, y2, y3, x2);

or (net10, net6, net7, net8, net9);

//instantiate the T flip-flop for y2
t_ff_da inst2 (rst_n, net10, nety2);   //rst_n, t, y1

buf #6 (y2, nety2);

//continued on next page
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//----------------------------------------------------
//design the logic for flip-flop y3
and (net11, ~y1, ~y3, x1),

(net12, y2, y3, x1),
(net13, y1, y3, x1),
(net14, y2, x2),
(net15, y3, x2);

or (net16, net11, net12, net13, net14, net15);

//instantiate the T flip-flop for y3
t_ff_da inst3 (rst_n, net16, nety3);   //rst_n, t, y1

buf #6 (y3, nety3);

//design the logic for outputs z1 and z2
and (z1, y1, ~y2, y3),

(z2, y1, ~y2, ~y3);

endmodule

//test bench for moore pulse-mode asm

module pm_asm10c_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, y3, z1, z2;

//display inputs and outputs
initial
$monitor ("x1x2 = %b, y1y2y3 = %b, z1z2 = %b",

{x1, x2}, {y1, y2, y3}, {z1, z2});

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;

//continued on next page
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#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;

$stop;
end

//instantiate the module into the test bench
pm_asm10c inst1 (rst_n, x1, x2, y1, y2, y3, z1, z2);

endmodule
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x1x2 = 00, y1y2y3 = 000, z1z2 = 00
x1x2 = 10, y1y2y3 = 000, z1z2 = 00
x1x2 = 10, y1y2y3 = 001, z1z2 = 00
x1x2 = 00, y1y2y3 = 001, z1z2 = 00
x1x2 = 00, y1y2y3 = 011, z1z2 = 00
x1x2 = 10, y1y2y3 = 011, z1z2 = 00
x1x2 = 10, y1y2y3 = 000, z1z2 = 00
x1x2 = 00, y1y2y3 = 000, z1z2 = 00
x1x2 = 10, y1y2y3 = 000, z1z2 = 00
x1x2 = 10, y1y2y3 = 001, z1z2 = 00
x1x2 = 00, y1y2y3 = 001, z1z2 = 00
x1x2 = 00, y1y2y3 = 011, z1z2 = 00
x1x2 = 01, y1y2y3 = 011, z1z2 = 00

x1x2 = 01, y1y2y3 = 100, z1z2 = 01
x1x2 = 00, y1y2y3 = 100, z1z2 = 01
x1x2 = 01, y1y2y3 = 100, z1z2 = 01

x1x2 = 01, y1y2y3 = 000, z1z2 = 00
x1x2 = 00, y1y2y3 = 000, z1z2 = 00
x1x2 = 00, y1y2y3 = 010, z1z2 = 00
x1x2 = 01, y1y2y3 = 010, z1z2 = 00
x1x2 = 01, y1y2y3 = 011, z1z2 = 00
x1x2 = 00, y1y2y3 = 011, z1z2 = 00

x1x2 = 00, y1y2y3 = 101, z1z2 = 10
x1x2 = 10, y1y2y3 = 101, z1z2 = 10

x1x2 = 10, y1y2y3 = 000, z1z2 = 00
x1x2 = 00, y1y2y3 = 000, z1z2 = 00
x1x2 = 01, y1y2y3 = 000, z1z2 = 00
x1x2 = 01, y1y2y3 = 010, z1z2 = 00
x1x2 = 00, y1y2y3 = 010, z1z2 = 00
x1x2 = 00, y1y2y3 = 011, z1z2 = 00
x1x2 = 10, y1y2y3 = 011, z1z2 = 00
x1x2 = 10, y1y2y3 = 000, z1z2 = 00
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5.18 Design a Mealy pulse-mode asynchronous sequential machine which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with
the x2 pulse if the x2  pulse is immediately preceded by a pair of x1  pulses.

Use SR latches and instantiate D flip-flops as a single line.  Use NAND,
NOR, and AND logic with the continuous assignment statement for all logic
gates and latches.  Derive the state diagram, the input maps and equations,
the output equation, and the logic diagram.  Then obtain the design module,
the test bench module, the outputs, and the waveforms.

a

y1y2
0 0

d
1 0

b
0 1

c
1 1

z1

x1

x2

x2

x2

x2

x1

x1

x1
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y1

D

>
rst

 Y 

y2

D

>
rst

+x1
+x2

+y2

–y1

+y1

–reset

–y1

+y1

–y2

+y2

+z1

net1

net2 net3

net4

net5

net6 net7

net8

net9

//mealy pulse-mode asm using continuous assignment and D ff

module pm_asm_mealy6 (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9;

//-----------------------------------------------------
//design the D flip-flop clock
assign net1 = ~(x1 | x2);

//continued on next page
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//-----------------------------------------------------
//design the logic for latch Ly1
assign net2 = ~(x1 & y2),

net3 = ~(net2 & net4),
net4 = ~(net3 & x2 & rst_n);

//instantiate the D flip-flop for y1 as a single line
d_ff_bh inst1 (rst_n, net1, net3, y1);   //rst_n, clk, d, q

//-----------------------------------------------------
//design the logic for latch Ly2
assign net5 = ~(~y1 & x1),

net6 = (x1 & y1),
net7 = ~(net6 | x2),
net8 = ~(net5 & net9),
net9 = ~(net8 & net7 & rst_n);

//instantiate the D flip-flop for y2 as a single line
d_ff_bh inst2 (rst_n, net1, net8, y2);   //rst_n, clk, d, q

//-----------------------------------------------------
//design the logic for output z1
assign z1 = y1 & y2 & x2;

endmodule

//test bench for pulse-mode asynchronous sequential machine
module pm_asm_mealy6_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display inputs and outputs ----------------------------
initial
$monitor ("x1x2 = %b, y1y2 = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence ---------------------------------
initial
begin

#0 rst_n = 1'b0; //reset to state_a; no output
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1; //continued on next page
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#10 x1 = 1'b1; // state_b
#10 x1 = 1'b0;

#10 x1 = 1'b1; // state_c
#10 x1 = 1'b0;

#10 x2 = 1'b1; //set z1;  state_a
#10 x2 = 1'b0;

#10 x1 = 1'b1; // state_b
#10 x1 = 1'b0;

#10 x1 = 1'b1; // state_c
#10 x1 = 1'b0;

#10 x1 = 1'b1; // state_d
#10 x1 = 1'b0;

#20 x2 = 1'b1; // state_a
#10 x2 = 1'b0;

#10 x1 = 1'b1; // state_b
#10 x1 = 1'b0;

#10 x1 = 1'b1; // state_c
#10 x1 = 1'b0;

#10 x2 = 1'b1; //set z1;  state_a
#10 x2 = 1'b0;

#30 $stop;
end

//instantiate the module into the test bench -------------
pm_asm_mealy6 inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule
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x1x2 = 00, y1y2 = 00, z1 = 0
x1x2 = 10, y1y2 = 00, z1 = 0
x1x2 = 00, y1y2 = 01, z1 = 0
x1x2 = 10, y1y2 = 01, z1 = 0
x1x2 = 00, y1y2 = 11, z1 = 0

x1x2 = 01, y1y2 = 11, z1 = 1

x1x2 = 00, y1y2 = 00, z1 = 0
x1x2 = 10, y1y2 = 00, z1 = 0
x1x2 = 00, y1y2 = 01, z1 = 0
x1x2 = 10, y1y2 = 01, z1 = 0
x1x2 = 00, y1y2 = 11, z1 = 0
x1x2 = 10, y1y2 = 11, z1 = 0
x1x2 = 00, y1y2 = 10, z1 = 0
x1x2 = 01, y1y2 = 10, z1 = 0
x1x2 = 00, y1y2 = 00, z1 = 0
x1x2 = 10, y1y2 = 00, z1 = 0
x1x2 = 00, y1y2 = 01, z1 = 0
x1x2 = 10, y1y2 = 01, z1 = 0
x1x2 = 00, y1y2 = 11, z1 = 0

x1x2 = 01, y1y2 = 11, z1 = 1

x1x2 = 00, y1y2 = 00, z1 = 0
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