
The Python
Workbook

Ben Stephenson

A Brief Introduction with Exercises
and Solutions

The Python Workbook

Ben Stephenson

The Python Workbook

A Brief Introduction with Exercises
and Solutions

123

Ben Stephenson
University of Calgary
Calgary, AB
Canada

ISBN 978-3-319-14239-5 ISBN 978-3-319-14240-1 (eBook)
DOI 10.1007/978-3-319-14240-1

Library of Congress Control Number: 2014957402

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To my son, Jonathan, who surprised us all by
arriving before this book was completed, and
to my wife Flora, for 12 fantastic years of
marriage, and many more to come.

Preface

I believe that computer programming is a skill that is best learned through hands-on
experience. While it is valuable for you to read about programming in textbooks
and watch teachers create programs at the front of classrooms, it is even more
important for you to spend time solving problems that allow you to put the ideas
that you have been introduced to previously into practice.

This book is designed to support and encourage hands-on learning about pro-
gramming. It contains 174 exercises, spanning a variety of academic disciplines and
everyday situations, which you can solve using only the material covered in most
introductory Python programming courses. Each exercise that you complete will
strengthen your understanding and enhance your ability to tackle subsequent pro-
gramming challenges. I also hope that the connections that these exercises make to
other academic disciplines and everyday life will keep you interested as you
complete them.

Solutions to approximately half of the exercises are provided in the second half
of this book. Most of the solutions include brief annotations that explain the
technique used to solve the problem, or highlight a specific point of Python syntax.
You will find these annotations in shaded boxes, making it easy to distinguish them
from the solution itself.

I hope that you will take the time to compare each of your solutions with mine,
even when you arrive at your solution without encountering any problems. Per-
forming this comparison may reveal a flaw in your program, or help you become
more familiar with a technique that you could have used to solve the problem more
easily. In some cases, it could also reveal that you have discovered a faster or easier
way to solve the problem than I have. If you become stuck on an exercise, a quick
peek at my solution may help you work through your problem and continue to make
progress without requiring assistance from someone else. Finally, the solutions that
I have provided demonstrate good programming form, including appropriate com-
ments, meaningful variable names and minimal use of magic numbers. I encourage
you to use good programming form so that your solutions compute the correct result
while also being clear, easy to understand and easy to update in the future.

Exercises that include a solution are clearly marked with (Solved) next to the
exercise name. The length of the sample solution is also indicated for every exercise
in this book. While you shouldn’t expect your solution length to match the sample

vii

solution length exactly, I hope that providing this information will prevent you from
going too far astray before seeking assistance.

This book can be used in a variety of ways. It can supplement another textbook
that has a limited selection of exercises, or it can be used as the sole source of
exercises when an instructor has decided not to use another textbook. A motivated
individual could also learn Python programming by carefully studying each of the
included exercises and solutions, though there are probably easier ways to learn the
language. No matter what other resources you use with this book, completing the
exercises and studying the provided solutions will enhance your programming
ability.

Calgary, Canada, November 2014 Ben Stephenson

viii Preface

Contents

Part I Exercises

1 Introduction to Programming Exercises . 3
Exercise 1: Mailing Address . 3
Exercise 2: Hello . 3
Exercise 3: Area of a Room . 4
Exercise 4: Area of a Field . 4
Exercise 5: Bottle Deposits . 4
Exercise 6: Tax and Tip . 4
Exercise 7: Sum of the First n Positive Integers 5
Exercise 8: Widgets and Gizmos . 5
Exercise 9: Compound Interest. 5
Exercise 10: Arithmetic. 5
Exercise 11: Fuel Efficiency . 6
Exercise 12: Distance Between Two Points on Earth 6
Exercise 13: Making Change . 7
Exercise 14: Height Units . 7
Exercise 15: Distance Units . 8
Exercise 16: Area and Volume. 8
Exercise 17: Heat Capacity . 8
Exercise 18: Volume of a Cylinder. 9
Exercise 19: Free Fall . 9
Exercise 20: Ideal Gas Law . 9
Exercise 21: Area of a Triangle . 10
Exercise 22: Area of a Triangle (Again) . 10
Exercise 23: Area of a Regular Polygon . 10
Exercise 24: Units of Time . 11
Exercise 25: Units of Time (Again) . 11
Exercise 26: Current Time. 11
Exercise 27: Body Mass Index. 11

ix

http://dx.doi.org/10.1007/978-3-319-14240-1_1
http://dx.doi.org/10.1007/978-3-319-14240-1_1
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec17
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec18
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec19
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec20
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec21
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec22
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec23
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec24
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec25
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec26
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec27
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec28

Exercise 28: Wind Chill . 12
Exercise 29: Celsius to Fahrenheit and Kelvin 12
Exercise 30: Units of Pressure . 13
Exercise 31: Sum of the Digits in an Integer 13
Exercise 32: Sort 3 Integers . 13
Exercise 33: Day Old Bread . 13

2 If Statement Exercises. 15
Exercise 34: Even or Odd? . 15
Exercise 35: Dog Years . 15
Exercise 36: Vowel or Consonant. 16
Exercise 37: Name that Shape . 16
Exercise 38: Month Name to Number of Days. 16
Exercise 39: Sound Levels . 16
Exercise 40: Name that Triangle . 17
Exercise 41: Note To Frequency . 17
Exercise 42: Frequency To Note . 18
Exercise 43: Faces on Money . 18
Exercise 44: Date to Holiday Name . 19
Exercise 45: What Color is that Square? . 20
Exercise 46: Season from Month and Day. 20
Exercise 47: Birth Date to Astrological Sign 21
Exercise 48: Chinese Zodiac . 21
Exercise 49: Richter Scale . 22
Exercise 50: Roots of a Quadratic Function 23
Exercise 51: Letter Grade to Grade Points . 23
Exercise 52: Grade Points to Letter Grade . 24
Exercise 53: Assessing Employees . 24
Exercise 54: Wavelengths of Visible Light 24
Exercise 55: Frequency to Name . 25
Exercise 56: Cell Phone Bill . 25
Exercise 57: Is it a Leap Year? . 26
Exercise 58: Next Day . 26
Exercise 59: Is a License Plate Valid?. 26
Exercise 60: Roulette Payouts . 27

3 Loop Exercises . 29
Exercise 61: Average . 29
Exercise 62: Discount Table . 29
Exercise 63: Temperature Conversion Table 30
Exercise 64: No More Pennies . 30
Exercise 65: Compute the Perimeter of a Polygon 30
Exercise 66: Compute a Grade Point Average 31
Exercise 67: Admission Price. 31

x Contents

http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec29
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec30
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec31
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec32
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec33
http://dx.doi.org/10.1007/978-3-319-14240-1_1#Sec34
http://dx.doi.org/10.1007/978-3-319-14240-1_2
http://dx.doi.org/10.1007/978-3-319-14240-1_2
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec18
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec19
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec20
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec21
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec22
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec23
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec24
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec25
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec26
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec27
http://dx.doi.org/10.1007/978-3-319-14240-1_2#Sec28
http://dx.doi.org/10.1007/978-3-319-14240-1_3
http://dx.doi.org/10.1007/978-3-319-14240-1_3
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec8

Exercise 68: Parity Bits. 32
Exercise 69: Approximate � . 32
Exercise 70: Caesar Cipher . 32
Exercise 71: Square Root . 33
Exercise 72: Is a String a Palindrome? . 33
Exercise 73: Multiple Word Palindromes. 34
Exercise 74: Multiplication Table . 34
Exercise 75: Greatest Common Divisor . 35
Exercise 76: Prime Factors . 35
Exercise 77: Binary to Decimal . 36
Exercise 78: Decimal to Binary . 36
Exercise 79: Maximum Integer . 36
Exercise 80: Coin Flip Simulation . 37

4 Function Exercises . 39
Exercise 81: Compute the Hypotenuse . 39
Exercise 82: Taxi Fare . 39
Exercise 83: Shipping Calculator . 40
Exercise 84: Median of Three Values . 40
Exercise 85: Convert an Integer to its Ordinal Number 40
Exercise 86: The Twelve Days of Christmas 41
Exercise 87: Center a String in the Terminal 41
Exercise 88: Is it a Valid Triangle? . 42
Exercise 89: Capitalize It . 42
Exercise 90: Does a String Represent an Integer? 42
Exercise 91: Operator Precedence. 43
Exercise 92: Is a Number Prime? . 43
Exercise 93: Next Prime . 43
Exercise 94: Random Password . 44
Exercise 95: Random License Plate . 44
Exercise 96: Check a Password . 44
Exercise 97: Random Good Password . 45
Exercise 98: Hexadecimal and Decimal Digits 45
Exercise 99: Arbitrary Base Conversions. 45
Exercise 100: Days in a Month . 46
Exercise 101: Reduce a Fraction to Lowest Terms 46
Exercise 102: Reduce Measures . 46
Exercise 103: Magic Dates . 47

5 List Exercises . 49
Exercise 104: Sorted Order . 49
Exercise 105: Reverse Order . 49
Exercise 106: Remove Outliers . 50
Exercise 107: Avoiding Duplicates . 50

Contents xi

http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec17
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec18
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec19
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec20
http://dx.doi.org/10.1007/978-3-319-14240-1_3#Sec21
http://dx.doi.org/10.1007/978-3-319-14240-1_4
http://dx.doi.org/10.1007/978-3-319-14240-1_4
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec17
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec18
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec19
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec20
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec21
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec22
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec23
http://dx.doi.org/10.1007/978-3-319-14240-1_4#Sec24
http://dx.doi.org/10.1007/978-3-319-14240-1_5
http://dx.doi.org/10.1007/978-3-319-14240-1_5
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec5

Exercise 108: Negatives, Zeros and Positives 50
Exercise 109: List of Proper Divisors . 51
Exercise 110: Perfect Numbers . 51
Exercise 111: Only the Words . 51
Exercise 112: Below and Above Average . 52
Exercise 113: Formatting a List . 52
Exercise 114: Random Lottery Numbers . 52
Exercise 115: Pig Latin . 53
Exercise 116: Pig Latin Improved . 53
Exercise 117: Line of Best Fit . 53
Exercise 118: Shuffling a Deck of Cards. 54
Exercise 119: Dealing Hands of Cards . 55
Exercise 120: Is a List already in Sorted Order?. 55
Exercise 121: Count the Elements . 56
Exercise 122: Tokenizing a String . 56
Exercise 123: Infix to Postfix. 57
Exercise 124: Evaluate Postfix . 58
Exercise 125: Does a List contain a Sublist? 58
Exercise 126: Generate All Sublists of a List 59
Exercise 127: The Sieve of Eratosthenes . 59

6 Dictionary Exercises . 61
Exercise 128: Reverse Lookup . 61
Exercise 129: Two Dice Simulation . 62
Exercise 130: Text Messaging . 62
Exercise 131: Morse Code. 63
Exercise 132: Postal Codes . 64
Exercise 133: Write Out Numbers in English. 65
Exercise 134: Unique Characters . 65
Exercise 135: Anagrams . 65
Exercise 136: Anagrams Again . 65
Exercise 137: Scrabble™ Score . 66
Exercise 138: Create a Bingo Card . 66
Exercise 139: Checking for a Winning Card 67
Exercise 140: Play Bingo . 67

7 File and Exception Exercises . 69
Exercise 141: Display the Head of a File . 69
Exercise 142: Display the Tail of a File . 70
Exercise 143: Concatenate Multiple Files . 70
Exercise 144: Number the Lines in a File . 70
Exercise 145: Find the Longest Word in a File 71
Exercise 146: Letter Frequencies . 71
Exercise 147: Words that Occur Most. 71

xii Contents

http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec17
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec18
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec19
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec20
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec21
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec22
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec23
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec24
http://dx.doi.org/10.1007/978-3-319-14240-1_5#Sec25
http://dx.doi.org/10.1007/978-3-319-14240-1_6
http://dx.doi.org/10.1007/978-3-319-14240-1_6
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_6#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_7
http://dx.doi.org/10.1007/978-3-319-14240-1_7
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec8

Exercise 148: Sum a List of Numbers. 72
Exercise 149: Both Letter Grades and Grade Points 72
Exercise 150: Remove Comments . 72
Exercise 151: Two Word Random Password 73
Exercise 152: What’s that Element Again? 73
Exercise 153: A Book with No “e” ... 73
Exercise 154: Names that Reached Number One 74
Exercise 155: Gender Neutral Names . 74
Exercise 156: Most Births in a given Time Period 74
Exercise 157: Distinct Names . 74
Exercise 158: Spell Checker . 75
Exercise 159: Repeated Words. 75
Exercise 160: Redacting Text in a File . 76
Exercise 161: Missing Comments. 76
Exercise 162: Consistent Line Lengths . 77
Exercise 163: Words with Six Vowels in Order 78

8 Recursion Exercises . 79
Exercise 164: Total the Values. 79
Exercise 165: Greatest Common Divisor . 80
Exercise 166: Recursive Decimal to Binary 80
Exercise 167: Recursive Palindrome . 80
Exercise 168: Recursive Square Root . 81
Exercise 169: String Edit Distance . 81
Exercise 170: Possible Change. 82
Exercise 171: Spelling with Element Symbols 82
Exercise 172: Element Sequences . 83
Exercise 173: Run-Length Decoding. 83
Exercise 174: Run-Length Encoding . 84

Part II Solutions

9 Introduction to Programming Solutions . 87
Solution to Exercise 1: Mailing Address . 87
Solution to Exercise 3: Area of a Room . 87
Solution to Exercise 4: Area of a Field . 88
Solution to Exercise 5: Bottle Deposits . 88
Solution to Exercise 6: Tax and Tip . 89
Solution to Exercise 7: Sum of the First n Positive Integers. 89
Solution to Exercise 10: Arithmetic . 90
Solution to Exercise 13: Making Change. 90

Contents xiii

http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec17
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec18
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec19
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec20
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec21
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec22
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec23
http://dx.doi.org/10.1007/978-3-319-14240-1_7#Sec24
http://dx.doi.org/10.1007/978-3-319-14240-1_8
http://dx.doi.org/10.1007/978-3-319-14240-1_8
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_8#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_9
http://dx.doi.org/10.1007/978-3-319-14240-1_9
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec8

Solution to Exercise 14: Height Units . 91
Solution to Exercise 17: Heat Capacity . 92
Solution to Exercise 19: Free Fall . 92
Solution to Exercise 23: Area of a Regular Polygon 93
Solution to Exercise 25: Units of Time (Again) 93
Solution to Exercise 28: Wind Chill . 94
Solution to Exercise 32: Sort 3 Integers . 94
Solution to Exercise 33: Day Old Bread . 95

10 If Statement Solutions . 97
Solution to Exercise 34: Even or Odd? . 97
Solution to Exercise 36: Vowel or Consonant 97
Solution to Exercise 37: Name that Shape . 98
Solution to Exercise 38: Month Name to Number of Days 98
Solution to Exercise 40: Name that Triangle 99
Solution to Exercise 41: Note to Frequency 99
Solution to Exercise 42: Frequency to Note 100
Solution to Exercise 46: Season from Month and Day 101
Solution to Exercise 48: Chinese Zodiac . 102
Solution to Exercise 51: Letter Grade to Grade Points. 103
Solution to Exercise 53: Assessing Employees 104
Solution to Exercise 57: Is it a Leap Year? 105
Solution to Exercise 59: Is a License Plate Valid? 105
Solution to Exercise 60: Roulette Payouts . 106

11 Loop Solutions . 107
Solution to Exercise 64: No more Pennies . 107
Solution to Exercise 65: Computer the Perimeter of a Polygon. 108
Solution to Exercise 67: Admission Price . 109
Solution to Exercise 68: Parity Bits . 109
Solution to Exercise 70: Caesar Cipher . 110
Solution to Exercise 72: Is a String a Palindrome? 111
Solution to Exercise 74: Multiplication Table. 111
Solution to Exercise 75: Greatest Common Divisor 112
Solution to Exercise 78: Decimal to Binary 112
Solution to Exercise 79: Maximum Integer 113

12 Function Solutions . 115
Solution to Exercise 84: Median of Three Values 115
Solution to Exercise 86: The Twelve days of Christmas 116
Solution to Exercise 87: Center a String in the Terminal 117
Solution to Exercise 89: Capitalize it . 118

xiv Contents

http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec15
http://dx.doi.org/10.1007/978-3-319-14240-1_9#Sec16
http://dx.doi.org/10.1007/978-3-319-14240-1_10
http://dx.doi.org/10.1007/978-3-319-14240-1_10
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec13
http://dx.doi.org/10.1007/978-3-319-14240-1_10#Sec14
http://dx.doi.org/10.1007/978-3-319-14240-1_11
http://dx.doi.org/10.1007/978-3-319-14240-1_11
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_11#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_12
http://dx.doi.org/10.1007/978-3-319-14240-1_12
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec4

Solution to Exercise 90: Does a String Represent an Integer? 119
Solution to Exercise 92: Is a Number Prime?. 119
Solution to Exercise 94: Random Password 120
Solution to Exercise 96: Check a Password 121
Solution to Exercise 99: Arbitrary Base Conversions 121
Solution to Exercise 101: Reduce a Fraction to Lowest Terms 123
Solution to Exercise 102: Reduce Measures. 124
Solution to Exercise 103: Magic Dates . 126

13 List Solutions . 127
Solution to Exercise 104: Sorted Order . 127
Solution to Exercise 106: Remove Outliers 128
Solution to Exercise 107: Avoiding Duplicates. 129
Solution to Exercise 108: Negatives, Zeros and Positives 129
Solution to Exercise 110: Perfect Numbers 130
Solution to Exercise 113: Formatting a List 131
Solution to Exercise 114: Random Lottery Numbers 132
Solution to Exercise 118: Shuffling a Deck of Cards 132
Solution to Exercise 121: Count the Elements 133
Solution to Exercise 122: Tokenizing a String 134
Solution to Exercise 126: Generate All Sublists of a List. 136
Solution to Exercise 127: The Sieve of Eratosthenes. 136

14 Dictionary Solutions . 139
Solution to Exercise 128: Reverse Lookup 139
Solution to Exercise 129: Two Dice Simulation 140
Solution to Exercise 134: Unique Characters 141
Solution to Exercise 135: Anagrams . 141
Solution to Exercise 137: Scrabble™ Score 142
Solution to Exercise 138: Create a Bingo Card 143

15 File and Exception Solutions . 145
Solution to Exercise 141: Display the Head of a File 145
Solution to Exercise 142: Display the Tail of a File 146
Solution to Exercise 143: Concatenate Multiple Files 146
Solution to Exercise 148: Sum a List of Numbers 147
Solution to Exercise 150: Remove Comments 148
Solution to Exercise 151: Two Word Random Password 149
Solution to Exercise 153: A Book with No “e” 149
Solution to Exercise 154: Names that Reached Number One 151
Solution to Exercise 158: Spell Checker . 152
Solution to Exercise 160: Redacting Text in a File 153
Solution to Exercise 161: Missing Comments 154

Contents xv

http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_12#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_13
http://dx.doi.org/10.1007/978-3-319-14240-1_13
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec11
http://dx.doi.org/10.1007/978-3-319-14240-1_13#Sec12
http://dx.doi.org/10.1007/978-3-319-14240-1_14
http://dx.doi.org/10.1007/978-3-319-14240-1_14
http://dx.doi.org/10.1007/978-3-319-14240-1_14#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_14#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_14#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_14#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_14#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_14#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_15
http://dx.doi.org/10.1007/978-3-319-14240-1_15
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec5
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec6
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec7
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec8
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec9
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec10
http://dx.doi.org/10.1007/978-3-319-14240-1_15#Sec11

16 Recursion Solutions . 157
Solution to Exercise 164: Total the Values 157
Solution to Exercise 167: Recursive Palindrome. 157
Solution to Exercise 169: String Edit Distance 158
Solution to Exercise 172: Element Sequences 159
Solution to Exercise 174: Run-Length Encoding 161

Index . 163

xvi Contents

http://dx.doi.org/10.1007/978-3-319-14240-1_16
http://dx.doi.org/10.1007/978-3-319-14240-1_16
http://dx.doi.org/10.1007/978-3-319-14240-1_16#Sec1
http://dx.doi.org/10.1007/978-3-319-14240-1_16#Sec2
http://dx.doi.org/10.1007/978-3-319-14240-1_16#Sec3
http://dx.doi.org/10.1007/978-3-319-14240-1_16#Sec4
http://dx.doi.org/10.1007/978-3-319-14240-1_16#Sec5

Part I
Exercises

1Introduction toProgramming
Exercises

The exercises in this chapter are designed to help you develop your analysis skills by
providing you with the opportunity to practice breaking small problems down into
sequences of steps. In addition, completing these exercises will help you become
familiar with Python’s syntax. To complete each exercise you should expect to use
some or all of these Python features:

• Generate output with print statements
• Read input, including casting that input to the appropriate type
• Perform calculations involving integers and floating point numbers using Python
operators like +, -, *, /, //, %, and **

• Call functions residing in the math module
• Control how output is displayed using format specifiers

Exercise 1:Mailing Address

(Solved—9 Lines)
Create a program that displays your name and complete mailing address formatted in
the manner that you would usually see it on the outside of an envelope. Your program
does not need to read any input from the user.

Exercise 2:Hello

(9 Lines)
Write a program that asks the user to enter his or her name. The program should
respond with a message that says hello to the user, using his or her name.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_1

3

4 1 Introduction to Programming Exercises

Exercise 3: Area of a Room

(Solved—13 Lines)
Write a program that asks the user to enter the width and length of a room. Once
the values have been read, your program should compute and display the area of the
room. The length and the width will be entered as floating point numbers. Include
units in your prompt and output message; either feet or meters, depending on which
unit you are more comfortable working with.

Exercise 4: Area of a Field

(Solved—15 Lines)
Create a program that reads the length and width of a farmer’s field from the user in
feet. Display the area of the field in acres.

Hint: There are 43,560 square feet in an acre.

Exercise 5: Bottle Deposits

(Solved—15 Lines)
Inmany jurisdictions a small deposit is added to drink containers to encourage people
to recycle them. In one particular jurisdiction, drink containers holding one liter or
less have a $0.10 deposit, and drink containers holding more than one liter have a
$0.25 deposit.

Write a program that reads the number of containers of each size from the user.
Your program should continue by computing and displaying the refund that will be
received for returning those containers. Format the output so that it includes a dollar
sign and always displays exactly two decimal places.

Exercise 6:Tax andTip

(Solved—17 Lines)
The program that you create for this exercise will begin by reading the cost of a meal
ordered at a restaurant from the user. Then your program will compute the tax and
tip for the meal. Use your local tax rate when computing the amount of tax owing.
Compute the tip as 18 percent of the meal amount (without the tax). The output from
your program should include the tax amount, the tip amount, and the grand total for
the meal including both the tax and the tip. Format the output so that all of the values
are displayed using two decimal places.

Exercise 7: Sum of the First n Positive Integers 5

Exercise 7: Sum of the First n Positive Integers

(Solved—12 Lines)
Write a program that reads a positive integer, n, from the user and then displays the
sum of all of the integers from 1 to n. The sum of the first n positive integers can be
computed using the formula:

sum = (n)(n + 1)

2

Exercise 8:Widgets and Gizmos

(15 Lines)
An online retailer sells two products: widgets and gizmos. Each widget weighs 75
grams. Each gizmo weighs 112 grams. Write a program that reads the number of
widgets and the number of gizmos in an order from the user. Then your program
should compute and display the total weight of the order.

Exercise 9: Compound Interest

(19 Lines)
Pretend that you have just opened a new savings account that earns 4 percent interest
per year. The interest that you earn is paid at the end of the year, and is added
to the balance of the savings account. Write a program that begins by reading the
amount ofmoney deposited into the account from the user. Then your program should
compute and display the amount in the savings account after 1, 2, and 3 years. Display
each amount so that it is rounded to 2 decimal places.

Exercise 10: Arithmetic

(Solved—20 Lines)
Create a program that reads two integers, a and b, from the user. Your program should
compute and display:

• The sum of a and b
• The difference when b is subtracted from a
• The product of a and b

6 1 Introduction to Programming Exercises

• The quotient when a is divided by b
• The remainder when a is divided by b
• The result of log10 a
• The result of ab

Hint: You will probably find the log10 function in the mathmodule helpful
for computing the second last item in the list.

Exercise 11: Fuel Efficiency

(13 Lines)
In the United States, fuel efficiency for vehicles is normally expressed in miles-per-
gallon (MPG). In Canada, fuel efficiency is normally expressed in liters-per-hundred
kilometers (L/100km). Use your research skills to determine how to convert from
MPG toL/100km.Then create a program that reads a value from the user inAmerican
units and displays the equivalent fuel efficiency in Canadian units.

Exercise 12:Distance BetweenTwo Points on Earth

(27 Lines)
The surface of the Earth is curved, and the distance between degrees of longitude
varieswith latitude.As a result, finding the distance between twopoints on the surface
of the Earth is more complicated than simply using the Pythagorean theorem.

Let (t1, g1) and (t2, g2) be the latitude and longitude of two points on the Earth’s
surface. The distance between these points, following the surface of the Earth, in
kilometers is:

distance = 6371.01 × arccos(sin(t1) × sin(t2) + cos(t1) × cos(t2) × cos(g1 − g2))

The value 6371.01 in the previous equation wasn’t selected at random. It is
the average radius of the Earth in kilometers.

Create a program that allows the user to enter the latitude and longitude of two
points on the Earth in degrees. Your program should display the distance between
the points, following the surface of the earth, in kilometers.

Exercise 12:Distance Between Two Points on Earth 7

Hint: Python’s trigonometric functions operate in radians. As a result, you will
need to convert the user’s input from degrees to radians before computing the
distance with the formula discussed previously. The math module contains a
function named radians which converts from degrees to radians.

Exercise 13:Making Change

(Solved—33 Lines)
Consider the software that runs on a self-checkout machine. One task that it must be
able to perform is to determine how much change to provide when the shopper pays
for a purchase with cash.

Write a program that begins by reading a number of cents from the user as an
integer. Then your program should compute and display the denominations of the
coins that should be used to give that amount of change to the shopper. The change
should be given using as few coins as possible. Assume that the machine is loaded
with pennies, nickels, dimes, quarters, loonies and toonies.

A one dollar coin was introduced in Canada in 1987. It is referred to as a
loonie because one side of the coin has a loon (a type of bird) on it. The two
dollar coin, referred to as a toonie, was introduced 9 years later. It’s name is
derived from the combination of the number two and the name of the loonie.

Exercise 14:Height Units

(Solved—16 Lines)
Many people think about their height in feet and inches, even in some countries that
primarily use the metric system. Write a program that reads a number of feet from
the user, followed by a number of inches. Once these values are read, your program
should compute and display the equivalent number of centimeters.

Hint: One foot is 12 inches. One inch is 2.54 centimeters.

8 1 Introduction to Programming Exercises

Exercise 15:Distance Units

(20 Lines)
In this exercise, you will create a program that begins by reading a measurement
in feet from the user. Then your program should display the equivalent distance in
inches, yards and miles. Use the Internet to look up the necessary conversion factors
if you don’t have them memorized.

Exercise 16: Area andVolume

(15 Lines)
Write a program that begins by reading a radius, r , from the user. The program will
continue by computing and displaying the area of a circle with radius r and the
volume of a sphere with radius r . Use the pi constant in the math module in your
calculations.

Hint: The area of a circle is computed using the formula area = πr2. The
volume of a sphere is computed using the formula volume = 4

3πr3.

Exercise 17:Heat Capacity

(Solved—25 Lines)
The amount of energy required to increase the temperature of one gram of a material
by one degree Celsius is the material’s specific heat capacity, C . The total amount
of energy required to raise m grams of a material by ΔT degrees Celsius can be
computed using the formula:

q = mCΔT .

Write a program that reads the mass of some water and the temperature change
from the user. Your program should display the total amount of energy that must be
added or removed to achieve the desired temperature change.

Hint: The specific heat capacity of water is 4.186 J
g◦C . Because water has a den-

sity of 1.0 grampermillilitre, you can use grams andmillilitres interchangeably
in this exercise.

Extend your program so that it also computes the cost of heating the water. Elec-
tricity is normally billed using units of kilowatt hours rather than Joules. In this
exercise, you should assume that electricity costs 8.9 cents per kilowatt-hour. Use
your program to compute the cost of boiling water for a cup of coffee.

Exercise 17:Heat Capacity 9

Hint: You will need to look up the factor for converting between Joules and
kilowatt hours to complete the last part of this exercise.

Exercise 18:Volume of a Cylinder

(15 Lines)
The volume of a cylinder can be computed by multiplying the area of its circular
base by its height. Write a program that reads the radius of the cylinder, along with
its height, from the user and computes its volume. Display the result rounded to one
decimal place.

Exercise 19: Free Fall

(Solved—16 Lines)
Create a program that determines how quickly an object is traveling when it hits the
ground. The user will enter the height fromwhich the object is dropped inmeters (m).
Because the object is dropped its initial speed is 0m/s. Assume that the acceleration

due to gravity is 9.8m/s2. You can use the formula vf =
√

v2i + 2ad to compute the
final speed, vf , when the initial speed, vi , acceleration, a, and distance, d, are known.

Exercise 20: Ideal Gas Law

(19 Lines)
The ideal gas law is a mathematical approximation of the behavior of gasses as
pressure, volume and temperature change. It is usually stated as:

PV = nRT

where P is the pressure in Pascals, V is the volume in liters, n is the amount of
substance in moles, R is the ideal gas constant, equal to 8.314 J

mol K , and T is the
temperature in degrees Kelvin.

Write a program that computes the amount of gas in moles when the user supplies
the pressure, volume and temperature. Test your program by determining the number
of moles of gas in a SCUBA tank. A typical SCUBA tank holds 12 liters of gas at
a pressure of 20,000,000 Pascals (approximately 3,000 PSI). Room temperature is
approximately 20 degrees Celsius or 68 degrees Fahrenheit.

10 1 Introduction to Programming Exercises

Hint: A temperature is converted from Celsius to Kelvin by adding 273.15
to it. To convert a temperature from Fahrenheit to Kelvin, deduct 32 from it,
multiply it by 5

9 and then add 273.15 to it.

Exercise 21: Area of a Triangle

(13 Lines)
The area of a triangle can be computed using the following formula, where b is the
length of the base of the triangle, and h is its height:

area = b × h

2
Write a program that allows the user to enter values for b and h. The program

should then compute and display the area of a trianglewith base length b and height h.

Exercise 22: Area of a Triangle (Again)

(16 Lines)
In the previous exercise you created a program that computed the area of a triangle
when the length of its base and its height were known. It is also possible to compute
the area of a triangle when the lengths of all three sides are known. Let s1, s2 and s3
be the lengths of the sides. Let s = (s1 + s2 + s3)/2. Then the area of the triangle
can be calculated using the following formula:

area = √
s × (s − s1) × (s − s2) × (s − s3)

Develop a program that reads the lengths of the sides of a triangle from the user and
displays its area.

Exercise 23: Area of a Regular Polygon

(Solved—14 Lines)
A polygon is regular if its sides are all the same length and the angles between all of
the adjacent sides are equal. The area of a regular polygon can be computed using
the following formula, where s is the length of a side and n is the number of sides:

Exercise 23:Area of a Regular Polygon 11

area = n × s2

4 × tan
(π

n

)

Write a program that reads s and n from the user and then displays the area of a
regular polygon constructed from these values.

Exercise 24:Units of Time

(22 Lines)
Create a program that reads a duration from the user as a number of days, hours,
minutes, and seconds. Compute and display the total number of seconds represented
by this duration.

Exercise 25:Units of Time (Again)

(Solved—24 Lines)
In this exercise you will reverse the process described in the previous exercise.
Develop a program that begins by reading a number of seconds from the user.
Then your program should display the equivalent amount of time in the form
D:HH:MM:SS, where D, HH, MM, and SS represent days, hours, minutes and sec-
onds respectively. The hours, minutes and seconds should all be formatted so that
they occupy exactly two digits, with a leading 0 displayed if necessary.

Exercise 26: Current Time

(10 Lines)
Python includes a library of functions for working with time, including a function
called asctime in the time module. It reads the current time from the com-
puter’s internal clock and returns it in a human-readable format. Write a program
that displays the current time and date. Your program will not require any input from
the user.

Exercise 27: BodyMass Index

(14 Lines)
Write a program that computes the body mass index (BMI) of an individual. Your
program should begin by reading a height and weight from the user. Then it should

12 1 Introduction to Programming Exercises

use one of the following two formulas to compute the BMI before displaying it. If
you read the height in inches and the weight in pounds then body mass index is
computed using the following formula:

BMI = weight

height × height
× 703.

If you read the height in meters and the weight in kilograms then body mass index
is computed using this slightly simpler formula:

BMI = weight

height × height
.

Exercise 28:Wind Chill

(Solved—22 Lines)
When the wind blows in cold weather, the air feels even colder than it actually is
because the movement of the air increases the rate of cooling for warm objects, like
people. This effect is known as wind chill.

In 2001, Canada, the United Kingdom and the United States adopted the fol-
lowing formula for computing the wind chill index. Within the formula Ta is the
air temperature in degrees Celsius and V is the wind speed in kilometers per hour.
A similar formula with different constant values can be used with temperatures in
degrees Fahrenheit and wind speeds in miles per hour.

WCI = 13.12 + 0.6215Ta − 11.37V 0.16 + 0.3965Ta V 0.16

Write a program that begins by reading the air temperature and wind speed from the
user. Once these values have been read your program should display the wind chill
index rounded to the closest integer.

The wind chill index is only considered valid for temperatures less than or
equal to 10 degrees Celsius and wind speeds exceeding 4.8 kilometers per
hour.

Exercise 29: Celsius to Fahrenheit and Kelvin

(17 Lines)
Write a program that begins by reading a temperature from the user in degrees
Celsius. Then your program should display the equivalent temperature in degrees
Fahrenheit and degrees Kelvin. The calculations needed to convert between different
units of temperature can be found on the internet.

Exercise 30:Units of Pressure 13

Exercise 30:Units of Pressure

(20 Lines)
In this exercise you will create a program that reads a pressure from the user in kilo-
pascals. Once the pressure has been read your program should report the equivalent
pressure in pounds per square inch, millimeters of mercury and atmospheres. Use
your research skills to determine the conversion factors between these units.

Exercise 31: Sum of the Digits in an Integer

(18 Lines)
Develop a program that reads a four-digit integer from the user and displays the sum
of the digits in the number. For example, if the user enters 3141 then your program
should display 3+1+4+1=9.

Exercise 32: Sort 3 Integers

(Solved—19 Lines)
Create a program that reads three integers from the user and displays them in sorted
order (from smallest to largest). Use the min and max functions to find the smallest
and largest values. The middle value can be found by computing the sum of all three
values, and then subtracting the minimum value and the maximum value.

Exercise 33:Day Old Bread

(Solved—19 Lines)
A bakery sells loaves of bread for $3.49 each. Day old bread is discounted by 60
percent. Write a program that begins by reading the number of loaves of day old
bread being purchased from the user. Then your program should display the regular
price for the bread, the discount because it is a day old, and the total price. All of the
values should be displayed using two decimal places, and the decimal points in all
of the numbers should be aligned when reasonable values are entered by the user.

2IfStatement Exercises

The programming constructs that you used to solve the exercises in the previous
chapter will continue to be useful as you tackle these problems. In addition, the
exercises in this chapter will require you to use decision making constructs so that
your programs can handle a variety of different situations thatmight arise. You should
expect to use some or all of these Python features when completing these problems:

• Make a decision with an if statement
• Select one of two alternatives with an if-else statement
• Select from one of several alternatives by using an if-elif or if-elif-else statement
• Construct a complex condition for an if statement that includes the Boolean oper-
ators and, or and not

• Nest an if statement within the body of another if statement

Exercise 34: Even or Odd?

(Solved—13 Lines)
Write a program that reads an integer from the user. Then your program should
display a message indicating whether the integer is even or odd.

Exercise 35:DogYears

(22 Lines)
It is commonly said that one human year is equivalent to 7 dog years. However this
simple conversion fails to recognize that dogs reach adulthood in approximately two
years. As a result, some people believe that it is better to count each of the first two
human years as 10.5 dog years, and then count each additional human year as 4 dog
years.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_2

15

16 2 If Statement Exercises

Write a program that implements the conversion from human years to dog years
described in the previous paragraph. Ensure that your program works correctly for
conversions of less than two human years and for conversions of two or more human
years. Your program should display an appropriate error message if the user enters
a negative number.

Exercise 36:Vowel or Consonant

(Solved—16 Lines)
In this exercise you will create a program that reads a letter of the alphabet from the
user. If the user enters a, e, i, o or u then your program should display a message
indicating that the entered letter is a vowel. If the user enters y then your program
should display a message indicating that sometimes y is a vowel, and sometimes y is
a consonant. Otherwise your program should display a message indicating that the
letter is a consonant.

Exercise 37:Name that Shape

(Solved—31 Lines)
Write a program that determines the name of a shape from its number of sides. Read
the number of sides from the user and then report the appropriate name as part of
a meaningful message. Your program should support shapes with anywhere from 3
up to (and including) 10 sides. If a number of sides outside of this range is entered
then your program should display an appropriate error message.

Exercise 38:Month Name to Number of Days

(Solved—18 Lines)
The length of a month varies from 28 to 31 days. In this exercise you will create
a program that reads the name of a month from the user as a string. Then your
program should display the number of days in that month. Display “28 or 29 days”
for February so that leap years are addressed.

Exercise 39: Sound Levels

(30 Lines)
The following table lists the sound level in decibels for several common noises.

Exercise 39: Sound Levels 17

Noise Decibel level (dB)

Jackhammer 130
Gas lawnmower 106
Alarm clock 70
Quiet room 40

Write a program that reads a sound level in decibels from the user. If the user
enters a decibel level that matches one of the noises in the table then your program
should display a message containing only that noise. If the user enters a number
of decibels between the noises listed then your program should display a message
indicatingwhich noises the level is between. Ensure that your program also generates
reasonable output for a value smaller than the quietest noise in the table, and for a
value larger than the loudest noise in the table.

Exercise 40:Name that Triangle

(Solved—20 Lines)
A triangle can be classified based on the lengths of its sides as equilateral, isosceles
or scalene. All 3 sides of an equilateral triangle have the same length. An isosceles
triangle has two sides that are the same length, and a third side that is a different
length. If all of the sides have different lengths then the triangle is scalene.

Write a program that reads the lengths of 3 sides of a triangle from the user.
Display a message indicating the type of the triangle.

Exercise 41:Note To Frequency

(Solved—39 Lines)
The following table lists an octave of music notes, beginning with middle C, along
with their frequencies.

Note Frequency (Hz)

C4 261.63
D4 293.66
E4 329.63
F4 349.23
G4 392.00
A4 440.00
B4 493.88

18 2 If Statement Exercises

Begin by writing a program that reads the name of a note from the user and
displays the note’s frequency. Your program should support all of the notes listed
previously.

Once you have your programworking correctly for the notes listed previously you
should add support for all of the notes from C0 to C8. While this could be done by
adding many additional cases to your if statement, such a solution is cumbersome,
inelegant and unacceptable for the purposes of this exercise. Instead, you should
exploit the relationship between notes in adjacent octaves. In particular, the frequency
of any note in octave n is half the frequency of the corresponding note in octave n+1.
By using this relationship, you should be able to add support for the additional notes
without adding additional cases to your if statement.

Hint: To complete this exercise you will need to extract individual characters
from the two-character note name so that you can work with the letter and
the octave number separately. Once you have separated the parts, compute the
frequency of the note in the fourth octave using the data in the table above.
Then divide the frequency by 24−x , where x is the octave number entered by
the user. This will halve or double the frequency the correct number of times.

Exercise 42: Frequency To Note

(Solved—40 Lines)
In the previous question you converted from note name to frequency. In this question
you will write a program that reverses that process. Begin by reading a frequency
from the user. If the frequency is within one Hertz of a value listed in the table in
the previous question then report the name of the note. Otherwise report that the
frequency does not correspond to a known note. In this exercise you only need to
consider the notes listed in the table. There is no need to consider notes from other
octaves.

Exercise 43: Faces onMoney

(31 Lines)
It is common for images of a country’s previous leaders, or other individuals of his-
torical significance, to appear on its money. The individuals that appear on banknotes
in the United States are listed in Table 2.1.

Write a program that begins by reading the denomination of a banknote from the
user. Then your program should display the name of the individual that appears on the

Exercise 43: Faces on Money 19

Table 2.1 Individuals that
appear on Banknotes

Individual Amount

George Washington $1

Thomas Jefferson $2

Abraham Lincoln $5

Alexander Hamilton $10

Andrew Jackson $20

Ulysses S. Grant $50

Benjamin Franklin $100

banknote of the entered amount. An appropriate error message should be displayed
if no such note exists.

While two dollar banknotes are rarely seen in circulation in the United States,
they are legal tender that can be spent just like any other denomination. The
United States has also issued banknotes in denominations of $500, $1,000,
$5,000, and $10,000 for public use. However, high denomination banknotes
have not been printed since 1945 and were officially discontinued in 1969. As
a result, we will not consider them in this exercise.

Exercise 44:Date to Holiday Name

(18 Lines)
Canada has three national holidays which fall on the same dates each year.

Holiday Date

New year’s day January 1
Canada day July 1
Christmas day December 25

Write a program that reads a month and day from the user. If the month and day
match one of the holidays listed previously then your program should display the
holiday’s name. Otherwise your program should indicate that the entered month and
day do not correspond to a fixed-date holiday.

Canada has two additional national holidays, Good Friday and Labour Day,
whose dates vary from year to year. There are also numerous provincial and
territorial holidays, some of which have fixed dates, and some of which have
variable dates. We will not consider any of these additional holidays in this
exercise.

20 2 If Statement Exercises

Exercise 45:What Color is that Square?

(22 Lines)
Positions on a chess board are identified by a letter and a number. The letter identifies
the column, while the number identifies the row, as shown below:

1

2

3

4

5

6

7

8

a b c d e f g h

Write a program that reads a position from the user. Use an if statement to deter-
mine if the column begins with a black square or a white square. Then use modular
arithmetic to report the color of the square in that row. For example, if the user enters
a1 then your program should report that the square is black. If the user enters d5
then your program should report that the square is white. Your program may assume
that a valid position will always be entered. It does not need to perform any error
checking.

Exercise 46: Season fromMonth and Day

(Solved—40 Lines)
The year is divided into four seasons: spring, summer, fall and winter. While the
exact dates that the seasons change vary a little bit from year to year because of the
way that the calendar is constructed, we will use the following dates for this exercise:

Season First day

Spring March 20
Summer June 21
Fall September 22
Winter December 21

Exercise 46: Season fromMonth and Day 21

Create a program that reads a month and day from the user. The user will enter
the name of the month as a string, followed by the day within the month as an
integer. Then your program should display the season associated with the date that
was entered.

Exercise 47: Birth Date to Astrological Sign

(47 Lines)
The horoscopes commonly reported in newspapers use the position of the sun at the
time of one’s birth to try and predict the future. This system of astrology divides the
year into twelve zodiac signs, as outline in the table below:

Zodiac sign Date range

Capricorn December 22 to January 19
Aquarius January 20 to February 18
Pisces February 19 to March 20
Aries March 21 to April 19
Taurus April 20 to May 20
Gemini May 21 to June 20
Cancer June 21 to July 22
Leo July 23 to August 22
Virgo August 23 to September 22
Libra September 23 to October 22
Scorpio October 23 to November 21
Sagittarius November 22 to December 21

Write a program that asks the user to enter his or her month and day of birth. Then
your program should report the user’s zodiac sign as part of an appropriate output
message.

Exercise 48: Chinese Zodiac

(Solved—35 Lines)
The Chinese zodiac assigns animals to years in a 12 year cycle. One 12 year cycle is
shown in the table below. The pattern repeats from there, with 2012 being another
year of the dragon, and 1999 being another year of the hare.

22 2 If Statement Exercises

Year Animal

2000 Dragon
2001 Snake
2002 Horse
2003 Sheep
2004 Monkey
2005 Rooster
2006 Dog
2007 Pig
2008 Rat
2009 Ox
2010 Tiger
2011 Hare

Write a program that reads a year from the user and displays the animal associated
with that year. Your program should work correctly for any year greater than or equal
to zero, not just the ones listed in the table.

Exercise 49: Richter Scale

(30 Lines)
The following table contains earthquake magnitude ranges on the Richter scale and
their descriptors:

Magnitude Descriptor

Less than 2.0 Micro
2.0 to less than 3.0 Very minor
3.0 to less than 4.0 Minor
4.0 to less than 5.0 Light
5.0 to less than 6.0 Moderate
6.0 to less than 7.0 Strong
7.0 to less than 8.0 Major
8.0 to less than 10.0 Great
10.0 or more Meteoric

Write a program that reads a magnitude from the user and displays the appropriate
descriptor as part of a meaningful message. For example, if the user enters 5.5 then
your program should indicate that a magnitude 5.5 earthquake is considered to be a
moderate earthquake.

Exercise 50: Roots of a Quadratic Function 23

Exercise 50: Roots of a Quadratic Function

(24 Lines)
A univariate quadratic function has the form f (x) = ax2 + bx + c, where a, b and
c are constants, and a is non-zero. The roots of a quadratic function can be found
by finding the values of x that satisfy the quadratic equation ax2 + bx + c = 0. A
quadratic function may have 0, 1 or 2 real roots. These roots can be computed using
the quadratic formula, shown below:

root = −b ± √
b2 − 4ac

2a
The portion of the expression under the square root sign is called the discriminant.

If the discriminant is negative then the quadratic equation does not have any real roots.
If the discriminant is 0, then the equation has one real root. Otherwise the equation
has two real roots, and the expression must be evaluated twice, once using a plus
sign, and once using a minus sign, when computing the numerator.

Write a program that computes the real roots of a quadratic function.Your program
should begin by prompting the user for the values of a, b and c. Then it should display
a message indicating the number of real roots, along with the values of the real roots
(if any).

Exercise 51: Letter Grade to Grade Points

(Solved—52 Lines)
At a particular university, letter grades are mapped to grade points in the following
manner:

Letter Grade points

A+ 4.0
A 4.0
A− 3.7
B+ 3.3
B 3.0
B− 2.7
C+ 2.3
C 2.0
C− 1.7
D+ 1.3
D 1.0
F 0

Write a program that begins by reading a letter grade from the user. Then your
program should compute and display the equivalent number of grade points. Ensure

24 2 If Statement Exercises

that your program generates an appropriate error message if the user enters an invalid
letter grade.

Exercise 52:Grade Points to Letter Grade

(47 Lines)
In the previous exercise you created a program that converts a letter grade into the
equivalent number of grade points. In this exercise you will create a program that
reverses the process and converts from a grade point value entered by the user to a
letter grade. Ensure that your program handles grade point values that fall between
letter grades. These should be rounded to the closest letter grade. Your program
should report A+ for a 4.0 (or greater) grade point average.

Exercise 53: Assessing Employees

(Solved—28 Lines)
At a particular company, employees are rated at the end of each year. The rating scale
begins at 0.0, with higher values indicating better performance and resulting in larger
raises. The value awarded to an employee is either 0.0, 0.4, or 0.6 or more. Values
between 0.0 and 0.4, and between 0.4 and 0.6 are never used. Themeaning associated
with each rating is shown in the following table. The amount of an employee’s raise
is $2400.00 multiplied by their rating.

Rating Meaning

0.0 Unacceptable performance
0.4 Acceptable performance
0.6 or more Meritorious performance

Write a program that reads a rating from the user and indicates whether the perfor-
mance was unacceptable, acceptable or meritorious. The amount of the employee’s
raise should also be reported. Your program should display an appropriate error
message if an invalid rating is entered.

Exercise 54:Wavelengths of Visible Light

(38 Lines)
The wavelength of visible light ranges from 380 to 750 nanometers (nm). While the
spectrum is continuous, it is often divided into 6 colors as shown below:

Exercise 54:Wavelengths of Visible Light 25

Color Wavelength (nm)

Violet 380 to less than 450
Blue 450 to less than 495
Green 495 to less than 570
Yellow 570 to less than 590
Orange 590 to less than 620
Red 620 to 750

Write a program that reads awavelength from the user and reports its color.Display
an appropriate error message if the wavelength entered by the user is outside of the
visible spectrum.

Exercise 55: Frequency to Name

(31 Lines)
Electromagnetic radiation can be classified into one of 7 categories according to its
frequency, as shown in the table below:

Name Frequency range (Hz)

Radio waves Less than 3 × 109

Microwaves 3 × 109 to less than 3 × 1012

Infrared light 3 × 1012 to less than 4.3 × 1014

Visible light 4.3 × 1014 to less than 7.5 × 1014

Ultraviolet light 7.5 × 1014 to less than 3 × 1017

X-rays 3 × 1017 to less than 3 × 1019

Gamma rays 3 × 1019 or more

Write a program that reads the frequency of the radiation from the user and displays
the appropriate name.

Exercise 56: Cell Phone Bill

(44 Lines)
A particular cell phone plan includes 50 minutes of air time and 50 text messages
for $15.00 a month. Each additional minute of air time costs $0.25, while additional
text messages cost $0.15 each. All cell phone bills include an additional charge of
$0.44 to support 911 call centers, and the entire bill (including the 911 charge) is
subject to 5 percent sales tax.

26 2 If Statement Exercises

Write a program that reads the number of minutes and text messages used in a
month from the user. Display the base charge, additional minutes charge (if any),
additional text message charge (if any), the 911 fee, tax and total bill amount. Only
display the additional minute and text message charges if the user incurred costs in
these categories. Ensure that all of the charges are displayed using 2 decimal places.

Exercise 57: Is it a LeapYear?

(Solved—22 Lines)
Most years have 365 days. However, the time required for the Earth to orbit the Sun
is actually slightly more than that. As a result, an extra day, February 29, is included
in some years to correct for this difference. Such years are referred to as leap years.
The rules for determining whether or not a year is a leap year follow:

• Any year that is divisible by 400 is a leap year.
• Of the remaining years, any year that is divisible by 100 is not a leap year.
• Of the remaining years, any year that is divisible by 4 is a leap year.
• All other years are not leap years.

Write a program that reads a year from the user and displays a message indicating
whether or not it is a leap year.

Exercise 58:Next Day

(50 Lines)
Write a program that reads a date from the user and computes its immediate successor.
For example, if the user enters values that represent 2013-11-18 then your program
should display a message indicating that the day immediately after 2013-11-18 is
2013-11-19. If the user enters values that represent 2013-11-30 then the program
should indicate that the next day is 2013-12-01. If the user enters values that represent
2013-12-31 then the program should indicate that the next day is 2014-01-01. The
date will be entered in numeric form with three separate input statements; one for
the year, one for the month, and one for the day. Ensure that your program works
correctly for leap years.

Exercise 59: Is a License PlateValid?

(Solved—28 Lines)
In a particular jurisdiction, older license plates consist of three uppercase letters
followed by three numbers. When all of the license plates following that pattern had

Exercise 59: Is a License Plate Valid? 27

been used, the format was changed to four numbers followed by three uppercase
letters.

Write a program that begins by reading a string of characters from the user. Then
your program should display a message indicating whether the characters are valid
for an older style license plate or a newer style license plate. Your program should
display an appropriate message if the string entered by the user is not valid for either
style of license plate.

Exercise 60: Roulette Payouts

(Solved—45 Lines)
A roulette wheel has 38 spaces on it. Of these spaces, 18 are black, 18 are red, and two
are green. The green spaces are numbered 0 and 00. The red spaces are numbered 1,
3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30 32, 34 and 36. The remaining integers
between 1 and 36 are used to number the black spaces.

Many different bets can be placed in roulette. We will only consider the following
subset of them in this exercise:

• Single number (1 to 36, 0, or 00)
• Red versus Black
• Odd versus Even (Note that 0 and 00 do not pay out for even)
• 1 to 18 versus 19 to 36

Write a program that simulates a spin of a roulettewheel by using Python’s random
number generator. Display the number that was selected and all of the bets that must
be payed. For example, if 13 is selected then your program should display:

The spin resulted in 13...
Pay 13
Pay Black
Pay Odd
Pay 1 to 18

If the simulation results in 0 or 00 then your program should display Pay 0 or
Pay 00 without any further output.

3LoopExercises

The exercises that appear in this chapter should all be completed using loops. In
some cases the exercise specifies what type of loop to use. In other cases you must
make this decision yourself. Some of the exercises can be completed easily with
both for loops and while loops. Other exercises are much better suited to one
type of loop than the other. In addition, some of the exercises require multiple loops.
When multiple loops are involved, one loop might need to be nested inside the other.
Carefully consider your choice of loops as you design your solution to each problem.

Exercise 61: Average

(26 Lines)
In this exercise you will create a program that computes the average of a collection
of values entered by the user. The user will enter 0 as a sentinel value to indicate
that no further values will be provided. Your program should display an appropriate
error message if the first value entered by the user is 0.

Hint: Because the 0 marks the end of the input it should not be included in the
average.

Exercise 62:Discount Table

(18 Lines)
A particular retailer is having a 60 percent off sale on a variety of discontinued
products. The retailer would like to help its customers determine the reduced price
of the merchandise by having a printed discount table on the shelf that shows the

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_3

29

30 3 Loop Exercises

original prices and the prices after the discount has been applied.Write a program that
uses a loop to generate this table, showing the original price, the discount amount,
and the new price for purchases of $4.95, $9.95, $14.95, $19.95 and $24.95. Ensure
that the discount amounts and the new prices are rounded to 2 decimal places when
they are displayed.

Exercise 63:Temperature Conversion Table

(22 Lines)
Write a program that displays a temperature conversion table for degrees Celsius and
degrees Fahrenheit. The table should include rows for all temperatures between 0
and 100 degrees Celsius that are multiples of 10 degrees Celsius. Include appropriate
headings on your columns. The formula for converting between degrees Celsius and
degrees Fahrenheit can be found on the internet.

Exercise 64:NoMore Pennies

(Solved—38 Lines)
February 4, 2013was the last day that pennieswere distributed by theRoyalCanadian
Mint. Now that pennies have been phased out retailers must adjust totals so that they
are multiples of 5 cents when they are paid for with cash (credit card and debit card
transactions continue to be charged to the penny).While retailers have some freedom
in how they do this, most choose to round to the closest nickel.

Write a program that reads prices from the user until a blank line is entered.
Display the total cost of all the entered items on one line, followed by the amount
due if the customer pays with cash on a second line. The amount due for a cash
payment should be rounded to the nearest nickel. One way to compute the cash
payment amount is to begin by determining how many pennies would be needed to
pay the total. Then compute the remainder when this number of pennies is divided
by 5. Finally, adjust the total down if the remainder is less than 2.5. Otherwise adjust
the total up.

Exercise 65: Compute the Perimeter of a Polygon

(Solved—42 Lines)
Write a program that computes the perimeter of a polygon. Begin by reading the x
and y values for the first point on the perimeter of the polygon from the user. Then
continue reading pairs of x and y values until the user enters a blank line for the

Exercise 65: Compute the Perimeter of a Polygon 31

x-coordinate. Each time you read an additional coordinate you should compute the
distance to the previous point and add it to the perimeter.When a blank line is entered
for the x-coordinate your program should add the distance from the last point back
to the first point to the perimeter. Then it should display the total perimeter. Sample
input and output is shown below, with user input shown in bold:

Enter the x part of the coordinate: 0
Enter the y part of the coordinate: 0
Enter the x part of the coordinate: (blank to quit): 1
Enter the y part of the coordinate: 0
Enter the x part of the coordinate: (blank to quit): 0
Enter the y part of the coordinate: 1
Enter the x part of the coordinate: (blank to quit):
The perimeter of that polygon is 3.414213562373095

Exercise 66: Compute a Grade Point Average

(62 Lines)
Exercise 51 included a table that shows the conversion from letter grades to grade
points at a particular academic institution. In this exercise you will compute the
grade point average of an arbitrary number of letter grades entered by the user. The
user will enter a blank line to indicate that all of the grades have been provided. For
example, if the user enters A, followed by C+, followed by B, followed by a blank
line then your program should report a grade point average of 3.1.

You may find your solution to Exercise 51 helpful when completing this exercise.
Your program does not need to do any error checking. It can assume that each value
entered by the user will always be a valid letter grade or a blank line.

Exercise 67: Admission Price

(Solved—38 Lines)
A particular zoo determines the price of admission based on the age of the guest.
Guests 2 years of age and less are admitted without charge. Children between 3 and
12 years of age cost $14.00. Seniors aged 65 years and over cost $18.00. Admission
for all other guests is $23.00.

Create a program that begins by reading the ages of all of the guests in a group
from the user, with one age entered on each line. The user will enter a blank line to
indicate that there are nomore guests in the group. Then your program should display
the admission cost for the group with an appropriate message. The cost should be
displayed using two decimal places.

32 3 Loop Exercises

Exercise 68: Parity Bits

(Solved—25 Lines)
A parity bit is a simple mechanism for detecting errors in data transmitted over an
unreliable connection such as a telephone line. The basic idea is that an additional bit
is transmitted after each group of 8 bits so that a single bit error in the transmission
can be detected.

Parity bits can be computed for either even parity or odd parity. If even parity
is selected then the parity bit that is transmitted is chosen so that the total number
of one bits transmitted (8 bits of data plus the parity bit) is even. When odd parity
is selected the parity bit is chosen so that the total number of one bits transmitted
is odd.

Write a program that computes the parity bit for groups of 8 bits entered by the
user using even parity. Your program should read strings containing 8 bits until the
user enters a blank line. After each string is entered by the user your program should
display a clear message indicating whether the parity bit should be 0 or 1. Display
an appropriate error message if the user enters something other than 8 bits.

Hint: You should read the input from the user as a string. Then you can use
the countmethod to help you determine the number of zeros and ones in the
string. Information about the count method is available online.

Exercise 69: Approximate π

(23 Lines)
The value of π can be approximated by the following infinite series:

π ≈ 3+ 4

2 × 3 × 4
− 4

4 × 5 × 6
+ 4

6 × 7 × 8
− 4

8 × 9 × 10
+ 4

10 × 11 × 12
−· · ·

Write a program that displays 15 approximations of π . The first approximation
shouldmakeuseof only thefirst term from the infinite series. Each additional approxi-
mation displayed by your program should include onemore term in the series,making
it a better approximation of π than any of the approximations displayed previously.

Exercise 70: Caesar Cipher

(Solved—35 Lines)
One of the first known examples of encryption was used by Julius Caesar. Caesar
needed to provide written instructions to his generals, but he didn’t want his enemies

Exercise 70: Caesar Cipher 33

to learn his plans if the message slipped into their hands. As result, he developed
what later became known as the Caesar Cipher.

The idea behind this cipher is simple (and as a result, it provides no protection
against modern code breaking techniques). Each letter in the original message is
shifted by 3 places. As a result, A becomes D, B becomes E, C becomes F, D
becomes G, etc. The last three letters in the alphabet are wrapped around to the
beginning: X becomes A, Y becomes B and Z becomes C. Non-letter characters are
not modified by the cipher.

Write a program that implements a Caesar cipher. Allow the user to supply the
message and the shift amount, and then display the shifted message. Ensure that
your program encodes both uppercase and lowercase letters. Your program should
also support negative shift values so that it can be used both to encode messages and
decode messages.

Exercise 71: Square Root

(14 Lines)
Write a program that implementsNewton’smethod to compute and display the square
root of a number entered by the user. The algorithm for Newton’s method follows:

Read x from the user
Initialize guess to x /2
While guess is not good enough do

Update guess to be the average of guess and x /guess

When this algorithm completes, guess contains an approximation of the square
root. The quality of the approximation depends on how you define “good enough”.
In the author’s solution, guess was considered good enough when the absolute value
of the difference between guess ∗ guess and x was less than or equal to 10−12.

Exercise 72: Is a String a Palindrome?

(Solved—23 Lines)
A string is a palindrome if it is identical forward and backward. For example “anna”,
“civic”, “level” and “hannah” are all examples of palindromicwords.Write a program
that reads a string from the user and uses a loop to determines whether or not it is a
palindrome. Display the result, including a meaningful output message.

34 3 Loop Exercises

Exercise 73:MultipleWord Palindromes

(35 Lines)
There are numerous phrases that are palindromes when spacing is ignored. Examples
include “go dog”, “flee to me remote elf” and “some men interpret nine memos”,
among many others. Extend your solution to Exercise 72 so that it ignores spacing
while determiningwhether or not a string is a palindrome.For an additional challenge,
extend your solution so that is also ignores punctuation marks and treats uppercase
and lowercase letters as equivalent.

Exercise 74:Multiplication Table

(Solved—18 Lines)
In this exercise you will create a program that displays a multiplication table that
shows the products of all combinations of integers from 1 times 1 up to and including
10 times 10. Your multiplication table should include a row of labels across the top
of it containing the numbers 1 through 10. It should also include labels down the left
side consisting of the numbers 1 through 10. The expected output from the program
is shown below:

When completing this exercise you will probably find it helpful to be able to
print out a value without moving down to the next line. This can be accomplished
by added end="" as the last parameter to your print statement. For example,
print("A") will display the letter A and then move down to the next line. The
statement print("A", end="") will display the letter A without moving down
to the next line, causing the next print statement to display its result on the same line
as the letter A.

Exercise 75:Greatest Common Divisor 35

Exercise 75:Greatest Common Divisor

(Solved—17 Lines)
The greatest common divisor of two positive integers, n and m, is the largest number,
d, which divides evenly into both n and m. There are several algorithms that can be
used to solve this problem, including:

Initialize d to the smaller of m and n.
While d does not evenly divide m or d does not evenly divide n do

Decrease the value of d by 1
Report d as the greatest common divisor of n and m

Write a program that reads two positive integers from the user and uses this algorithm
to determine and report their greatest common divisor.

Exercise 76: Prime Factors

(27 Lines)
The prime factorization of an integer, n, can be determined using the following steps:

Initialize factor to two
While factor is less than or equal to n do

If n is evenly divisible by factor then
Conclude that factor is a factor of n
Divide n by factor using integer division

Else
Increase factor by one

Write a program that reads an integer from the user. If the value entered by the
user is less than 2 then your program should display an appropriate error message.
Otherwise your program should display the prime numbers that can be multiplied
together to compute n, with one factor appearing on each line. For example:

36 3 Loop Exercises

Exercise 77: Binary to Decimal

(18 Lines)
Write a program that converts a binary (base 2) number to decimal (base 10). Your
program should begin by reading the binary number from the user as a string. Then
it should compute the equivalent decimal number by processing each digit in the
binary number. Finally, your program should display the equivalent decimal number
with an appropriate message.

Exercise 78:Decimal to Binary

(Solved—26 Lines)
Write a program that converts a decimal (base 10) number to binary (base 2). Read the
decimal number from the user as an integer and then use the division algorithm shown
below to perform the conversion. When the algorithm completes, result contains the
binary representation of the number. Display the result, along with an appropriate
message.

Let result be an empty string
Let q represent the number to convert
repeat

Set r equal to the remainder when q is divided by 2
Convert r to a string and add it to the beginning of result
Divide q by 2, discarding any remainder, and store the result back into q

until q is 0

Exercise 79:Maximum Integer

(Solved—34 Lines)
This exercise examines the process of identifying the maximum value in a collection
of integers. Each of the integers will be randomly selected from the numbers between
1 and 100. The collection of integers may contain duplicate values, and some of the
integers between 1 and 100 may not be present.

Take a moment and think about how you would handle this problem on paper.
Many people would check each integer in sequence and ask themself if the number
that they are currently considering is larger than the largest number that they have seen
previously. If it is, then they forget the previous maximum number and remember
the current number as the new maximum number. This is a reasonable approach,
and will result in the correct answer when the process is performed carefully. If you
were performing this task, how many times would you expect to need to update the
maximum value and remember a new number?

Exercise 79:Maximum Integer 37

Whilewe can answer the question posed at the end of the previous paragraph using
probability theory, we are going to explore it by simulating the situation. Create a
program that begins by selecting a random integer between 1 and 100. Save this
integer as the maximum number encountered so far. After the initial integer has been
selected, generate 99 additional random integers between 1 and 100. Check each
integer as it is generated to see if it is larger than the maximum number encountered
so far. If it is then your program should update the maximum number encountered
and count the fact that you performed an update. Display each integer after you
generate it. Include a notation with those integers which represent a new maximum.

After you have displayed 100 integers your program should display the max-
imum value encountered, along with the number of times the maximum value
was updated during the process. Partial output for the program is shown below,
with… representing the remaining integers that your program will display. Run your
program several times. Is the number of updates performed on the maximum value
what you expected?

Exercise 80: Coin Flip Simulation

(47 Lines)
What’s the minimum number of times you have to flip a coin before you can have
three consecutive flips that result in the same outcome (either all three are heads or
all three are tails)? What’s the maximum number of flips that might be needed? How

38 3 Loop Exercises

many flips are needed on average? In this exercise we will explore these questions
by creating a program that simulates several series of coin flips.

Create a program that uses Python’s randomnumber generator to simulate flipping
a coin several times. The simulated coin should be fair, meaning that the probability
of heads is equal to the probability of tails. Your program should flip simulated
coins until either 3 consecutive heads of 3 consecutive tails occur. Display an H each
time the outcome is heads, and a T each time the outcome is tails, with all of the
outcomes shown on the same line. Then display the number of flips needed to reach
3 consecutive flips with the same outcome. When your program is run it should
perform the simulation 10 times and report the average number of flips needed.
Sample output is shown below:

4Function Exercises

Functions allow a programmer to break a problem into pieces that can be reused.
They can also help a programmer focus on one part a larger problem at a time. As
a result, writing functions is often an important part of developing larger pieces of
software. The exercises in this chapter will help you practice these skills:

• Define a function for later use
• Pass one or more values into a function
• Perform a complex calculation within a function
• Return one or more results from a function
• Call a function that you have defined previously

Exercise 81: Compute the Hypotenuse

(23 Lines)
Write a function that takes the lengths of the two shorter sides of a right triangle as
its parameters. Return the hypotenuse of the triangle, computed using Pythagorean
theorem, as the function’s result. Include a main program that reads the lengths of
the shorter sides of a right triangle from the user, uses your function to compute the
length of the hypotenuse, and displays the result.

Exercise 82:Taxi Fare

(22 Lines)
In a particular jurisdiction, taxi fares consist of a base fare of $4.00, plus $0.25
for every 140 meters traveled. Write a function that takes the distance traveled (in
kilometers) as its only parameter and returns the total fare as its only result. Write a
main program that demonstrates the function.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_4

39

40 4 Function Exercises

Hint: Taxi fares change over time. Use constants to represent the base fare and
the variable portion of the fare so that the program can be updated easily when
the rates increase.

Exercise 83: Shipping Calculator

(23 Lines)
An online retailer provides express shipping for many of its items at a rate of $10.95
for the first item, and $2.95 for each subsequent item. Write a function that takes the
number of items in the order as its only parameter. Return the shipping charge for
the order as the function’s result. Include a main program that reads the number of
items purchased from the user and displays the shipping charge.

Exercise 84:Median of ThreeValues

(Solved—42 Lines)
Write a function that takes three numbers as parameters, and returns themedian value
of those parameters as its result. Include a main program that reads three values from
the user and displays their median.

Hint: The median value is the middle of the three values when they are sorted
into ascending order. It can be found using if statements, or with a little bit of
mathematical creativity.

Exercise 85: Convert an Integer to its Ordinal Number

(47 Lines)
Words like first, second and third are referred to as ordinal numbers. In this exercise,
you will write a function that takes an integer as its only parameter and returns a
string containing the appropriate English ordinal number as its only result. Your
function must handle the integers between 1 and 12 (inclusive). It should return an
empty string if a value outside of this range is provided as a parameter. Include a
main program that demonstrates your function by displaying each integer from 1 to
12 and its ordinal number. Your main program should only run when your file has
not been imported into another program.

Exercise 86:The Twelve Days of Christmas 41

Exercise 86:The Twelve Days of Christmas

(Solved—48 Lines)
The Twelve Days of Christmas is a repetitive song that describes an increasingly
long list of gifts sent to one’s true love on each of 12 days. A single gift is sent on
the first day. A new gift is added to the collection on each additional day, and then
the complete collection is sent. The first three verses of the song are shown below.
The complete lyrics are available on the internet.

On the first day of Christmas
my true love sent to me:
A partridge in a pear tree.

On the second day of Christmas
my true love sent to me:
Two turtle doves,
And a partridge in a pear tree.

On the third day of Christmas
my true love sent to me:
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

Your task is to write a program that displays the complete lyrics for The Twelve
Days of Christmas.Write a function that takes the verse number as its only parameter
and displays the specified verse of the song. Then call that function 12 times with
integers that increase from 1 to 12.

Each item that is sent to the recipient in the song should only appear once in your
program, with the possible exception of the partridge. It may appear twice if that
helps you handle the difference between “A partridge in a pear tree” in the first verse
and “And a partridge in a pear tree” in the subsequent verses. Import your solution
to Exercise 85 to help you complete this exercise.

Exercise 87: Center a String in the Terminal

(Solved—31 Lines)
Write a function that takes a string of characters as its first parameter, and thewidth of
the terminal in characters as its second parameter. Your function should return a new
string that consists of the original string and the correct number of leading spaces
so that the original string will appear centered within the provided width when it is
printed. Do not add any characters to the end of the string. Include a main program
that demonstrates your function.

42 4 Function Exercises

Exercise 88: Is it a Valid Triangle?

(33 Lines)
If you have 3 straws, possibly of differing lengths, it may or may not be possible
to lay them down so that they form a triangle when their ends are touching. For
example, if all of the straws have a length of 6 inches. then one can easily construct
an equilateral triangle using them. However, if one straw is 6 inches. long, while the
other two are each only 2 inches. long, then a triangle cannot be formed. In general,
if any one length is greater than or equal to the sum of the other two then the lengths
cannot be used to form a triangle. Otherwise they can form a triangle.

Write a function that determines whether or not three lengths can form a triangle.
The function will take 3 parameters and return a Boolean result. In addition, write a
program that reads 3 lengths from the user and demonstrates the behaviour of this
function.

Exercise 89: Capitalize It

(Solved—48 Lines)
Many people do not use capital letters correctly, especially when typing on small
devices like smart phones. In this exercise, you will write a function that capitalizes
the appropriate characters in a string. A lowercase “i” should be replaced with an
uppercase “I” if it is both preceded and followed by a space. The first character in
the string should also be capitalized, as well as the first non-space character after a
“.”, “!” or “?”. For example, if the function is provided with the string “what time
do i have to be there? what’s the address?” then it should return the string “What
time do I have to be there? What’s the address?”. Include a main program that reads
a string from the user, capitalizes it using your function, and displays the result.

Exercise 90:Does a String Represent an Integer?

(Solved—30 Lines)
In this exercise you will write a function named isInteger that determines
whether or not the characters in a string represent a valid integer. When determining
if a string represents an integer you should ignore any leading or trailing white space.
Once this white space is ignored, a string represents an integer if its length is at least
1 and it only contains digits, or if its first character is either + or - and the first
character is followed by one or more characters, all of which are digits.

Write a main program that reads a string from the user and reports whether or
not it represents an integer. Ensure that the main program will not run if the file
containing your solution is imported into another program.

Exercise 90:Does a String Represent an Integer? 43

Hint: You may find the lstrip, rstrip and/or stripmethods for strings
helpful when completing this exercise. Documentation for these methods is
available online.

Exercise 91:Operator Precedence

(30 Lines)
Write a function namedprecedence that returns an integer representing the prece-
dence of a mathematical operator. A string containing the operator will be passed to
the function as its only parameter. Your function should return 1 for + and -, 2 for *
and /, and 3 for ˆ. If the string passed to the function is not one of these operators
then the function should return -1. Include a main program that reads an operator
from the user and either displays the operator’s precedence or an error message indi-
cating that the input was not an operator. Your main program should only run when
the file containing your solution has not been imported into another program.

In this exercise, along with others that appear later in the book, we will use ˆ to
represent exponentiation. Using ˆ instead of Python’s choice of ** will make
these exercises easier because an operator will always be a single character.

Exercise 92: Is a Number Prime?

(Solved—28 Lines)
A prime number is an integer greater than 1 that is only divisible by one and itself.
Write a function that determines whether or not its parameter is prime, returning
True if it is, and False otherwise. Write a main program that reads an integer
from the user and displays a message indicating whether or not it is prime. Ensure
that the main program will not run if the file containing your solution is imported
into another program.

Exercise 93:Next Prime

(27 Lines)
In this exercise you will create a function named nextPrime that finds and returns
the first prime number larger than some integer, n. The value of n will be passed to

44 4 Function Exercises

the function as its only parameter. Include a main program that reads an integer from
the user and displays the first prime number larger than the entered value. Import
and use your solution to Exercise 92 while completing this exercise.

Exercise 94: Random Password

(Solved—33 Lines)
Write a function that generates a random password. The password should have a
random length of between 7 and 10 characters. Each character should be randomly
selected from positions 33 to 126 in the ASCII table. Your function will not take
any parameters. It will return the randomly generated password as its only result.
Display the randomly generated password in your file’s main program. Your main
program should only run when your solution has not been imported into another file.

Hint: You will probably find the chr function helpful when completing this
exercise. Detailed information about this function is available online.

Exercise 95: Random License Plate

(45 Lines)
In a particular jurisdiction, older license plates consist of three letters followed by
three numbers. When all of the license plates following that pattern had been used,
the format was changed to four numbers followed by three letters.

Write a function that generates a random license plate. Your function should have
approximately equal odds of generating a sequence of characters for an old license
plate or a new license plate. Write a main program that calls your function and
displays the randomly generated license plate.

Exercise 96: Check a Password

(Solved—40 Lines)
In this exercise you will write a function that determines whether or not a password
is good. We will define a good password to be a one that is at least 8 characters
long and contains at least one uppercase letter, at least one lowercase letter, and at
least one number. Your function should return true if the password passed to it as
its only parameter is good. Otherwise it should return false. Include a main program
that reads a password from the user and reports whether or not it is good. Ensure

Exercise 96: Check a Password 45

that your main program only runs when your solution has not been imported into
another file.

Exercise 97: RandomGood Password

(22 Lines)
Using your solutions to Exercises 94 and 96, write a program that generates a random
good password and displays it. Count and display the number of attempts that were
needed before a good password was generated. Structure your solution so that it
imports the functions you wrote previously and then calls them from a function
named main in the file that you create for this exercise.

Exercise 98:Hexadecimal and Decimal Digits

(41 Lines)
Write two functions, hex2int and int2hex, that convert between hexadecimal
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F) and base 10 integers. The
hex2int function is responsible for converting a string containing a single hexadec-
imal digit to a base 10 integer, while the int2hex function is responsible for con-
verting an integer between 0 and 15 to a single hexadecimal digit. Each function
will take the value to convert as its only parameter and return the converted value
as the function’s only result. Ensure that the hex2int function works correctly for
both uppercase and lowercase letters. Your functions should end the program with a
meaningful error message if an invalid parameter is provided.

Exercise 99: Arbitrary Base Conversions

(Solved—61 Lines)
Write a program that allows the user to convert a number from one base to another.
Your program should support bases between 2 and 16 for both the input number and
the result number. If the user chooses a base outside of this range then an appropriate
error message should be displayed and the program should exit. Divide your program
into several functions, including a function that converts from an arbitrary base to
base 10, a function that converts from base 10 to an arbitrary base, and a main
program that reads the bases and input number from the user. You may find your
solutions to Exercises 77, 78 and 98 helpful when completing this exercise.

46 4 Function Exercises

Exercise 100:Days in aMonth

(47 Lines)
Write a function that determines howmany days there are in a particular month. Your
function will take two parameters: The month as an integer between 1 and 12, and
the year as a four digit integer. Ensure that your function reports the correct number
of days in February for leap years. Include a main program that reads a month and
year from the user and displays the number of days in that month. You may find your
solution to Exercise 57 helpful when solving this problem.

Exercise 101: Reduce a Fraction to Lowest Terms

(Solved—47 Lines)
Write a function that takes two positive integers that represent the numerator and
denominator of a fraction as its only two parameters. The body of the function
should reduce the fraction to lowest terms and then return both the numerator and
denominator of the reduced fraction as its result. For example, if the parameters
passed to the function are 6 and 63 then the function should return 2 and 21. Include
a main program that allows the user to enter a numerator and denominator. Then
your program should display the reduced fraction.

Hint: In Exercise 75 you wrote a program for computing the greatest common
divisor of two positive integers.Youmayfind that code usefulwhen completing
this exercise.

Exercise 102: ReduceMeasures

(Solved—83 Lines)
Many recipe books still use cups, tablespoons and teaspoons to describe the volumes
of ingredients used when cooking or baking. While such recipes are easy enough to
follow if you have the appropriate measuring cups and spoons, they can be difficult
to double, triple or quadruple when cooking Christmas dinner for the entire extended
family. For example, a recipe that calls for 4 tablespoons of an ingredient requires 16
tablespoons when quadrupled. However, 16 tablespoons would be better expressed
(and easier to measure) as 1 cup.

Write a function that expresses an imperial volume using the largest units pos-
sible. The function will take the number of units as its first parameter, and the unit
of measure (cup, tablespoon or teaspoon) as its second parameter. Return a string
representing the measure using the largest possible units as the function’s only result.

Exercise 102: Reduce Measures 47

For example, if the function is provided with parameters representing 59 teaspoons
then it should return the string “1 cup, 3 tablespoons, 2 teaspoons”.

Hint: One cup is equivalent to 16 tablespoons. One tablespoon is equivalent to
3 teaspoons.

Exercise 103:Magic Dates

(Solved—26 Lines)
Amagic date is a date where the day multiplied by the month is equal to the two digit
year. For example, June 10, 1960 is a magic date because June is the sixth month, and
6 times 10 is 60, which is equal to the two digit year.Write a function that determines
whether or not a date is a magic date. Use your function to create a main program
that finds and displays all of the magic dates in the 20th century. You will probably
find your solution to Exercise 100 helpful when completing this exercise.

5List Exercises

Lists help programmers manage larger amounts of data by allowing several (or even
many) values to be stored in one variable. This makes it practical to solve larger
problems that involve many data values. To solve the exercises in this chapter you
should expect to:

• Create a variable that holds a list of values
• Modify a list by appending, inserting, updating and deleting elements
• Search a list for a value
• Display some or all of the values in a list
• Write a function that takes a list as a parameter
• Write a function that returns a list as its result

Exercise 104: Sorted Order

(Solved—21 Lines)
Write a program that reads integers from the user and stores them in a list. Your
program should continue reading values until the user enters 0. Then it should display
all of the values entered by the user (except for the 0) in order from smallest to largest,
with one value appearing on each line. Use either the sortmethod or the sorted
function to sort the list.

Exercise 105: Reverse Order

(20 Lines)
Write a program that reads integers from the user and stores them in a list. Use 0 as
a sentinel value to mark the end of the input. Once all of the values have been read
your program should display them (except for the 0) in reverse order, with one value
appearing on each line.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_5

49

50 5 List Exercises

Exercise 106: Remove Outliers

(Solved—43 Lines)
When analysing data collected as part of a science experiment it may be desirable
to remove the most extreme values before performing other calculations. Write a
function that takes a list of values and an non-negative integer, n, as its parameters.
The function should create a new copy of the list with the n largest elements and the
n smallest elements removed. Then it should return the new copy of the list as the
function’s only result. The order of the elements in the returned list does not have to
match the order of the elements in the original list.

Write a main program that demonstrates your function. Your function should read
a list of numbers from the user and remove the two largest and two smallest values
from it. Display the list with the outliers removed, followed by the original list. Your
program should generate an appropriate error message if the user enters less than 4
values.

Exercise 107: Avoiding Duplicates

(Solved—21 Lines)
In this exercise, you will create a program that reads words from the user until the
user enters a blank line. After the user enters a blank line your program should dis-
play each word entered by the user exactly once. The words should be displayed in
the same order that they were entered. For example, if the user enters:

first
second
first
third
second

then your program should display:

first
second
third

Exercise 108:Negatives, Zeros and Positives

(Solved—38 Lines)
Create a program that reads integers from the user until a blank line is entered. Once
all of the integers have been read your program should display all of the negative
numbers, followed by all of the zeros, followed by all of the positive numbers.Within
each group the numbers should be displayed in the same order that they were entered

Exercise 108:Negatives, Zeros and Positives 51

by the user. For example, if the user enters the values 3, -4, 1, 0, -1, 0, and -2 then
your program should output the values -4, -1, -2, 0, 0, 3, and 1. Your program
should display each value on its own line.

Exercise 109: List of Proper Divisors

(36 Lines)
A proper divisor of a positive integer, n, is a positive integer less than n which divides
evenly into n. Write a function that computes all of the proper divisors of a positive
integer. The integer will be passed to the function as its only parameter. The function
will return a list containing all of the proper divisors as its only result. Complete
this exercise by writing a main program that demonstrates the function by reading
a value from the user and displaying the list of its proper divisors. Ensure that your
main program only runs when your solution has not been imported into another file.

Exercise 110: Perfect Numbers

(Solved—35 Lines)
An integer, n, is said to be perfect when the sum of all of the proper divisors of n is
equal to n. For example, 28 is a perfect number because its proper divisors are 1, 2,
4, 7 and 14, and 1 + 2 + 4 + 7 + 14 = 28.

Write a function that determines whether or not a positive integer is perfect. Your
functionwill take one parameter. If that parameter is a perfect number then your func-
tion will return true. Otherwise it will return false. In addition, write a main program
that uses your function to identify and display all of the perfect numbers between 1
and 10,000. Import your solution to Exercise 109 when completing this task.

Exercise 111:Only theWords

(38 Lines)
In this exercise you will create a program that identifies all of the words in a string
entered by the user. Begin by writing a function that takes a string of text as its only
parameter.Your function should return a list of thewords in the stringwith the punctu-
ation marks at the edges of the words removed. The punctuation marks that you must
remove include commas, periods, question marks, hyphens, apostrophes, exclama-
tion points, colons, and semicolons. Do not remove punctuation marks that appear in
the middle of a words, such as the apostrophes used to form a contraction. For exam-
ple, if your function is providedwith the string"Examples of contractions
include: don’t, isn’t, and wouldn’t." then your function should
return the list ["Examples", "of", "contractions", "include",
"don’t", "isn’t", "and", "wouldn’t"].

52 5 List Exercises

Write a main program that demonstrates your function. It should read a string
from the user and display all of the words in the string with the punctuation marks
removed. You will need to import your solution to this exercise when completing
Exercise 158. As a result, you should ensure that your main program only runs when
your file has not been imported into another program.

Exercise 112: Below and Above Average

(44 Lines)
Write a program that reads numbers from the user until a blank line is entered. Your
program should display the average of all of the values entered by the user. Then
the program should display all of the below average values, followed by all of the
average values (if any), followed by all of the above average values. An appropriate
label should be displayed before each list of values.

Exercise 113: Formatting a List

(Solved—43 Lines)
When writing out a list of items in English, one normally separates the items with
commas. In addition, the word “and” is normally included before the last item, unless
the list only contains one item. Consider the following four lists:

apples
apples and oranges
apples, oranges and bananas
apples, oranges, bananas and lemons

Write a function that takes a list of strings as its only parameter. Your function
should return a string that contains all of the items in the list formatted in the manner
described previously as its only result. While the examples shown previously only
include lists containing four elements or less, your function should behave correctly
for lists of any length. Include a main program that reads several items from the user,
formats them by calling your function, and then displays the result returned by the
function.

Exercise 114: Random Lottery Numbers

(Solved—28 Lines)
In order to win the top prize in a particular lottery, one must match all 6 numbers
on his or her ticket to the 6 numbers between 1 and 49 that are drawn by the lottery
organizer. Write a program that generates a random selection of 6 numbers for a

Exercise 114: Random Lottery Numbers 53

lottery ticket. Ensure that the 6 numbers selected do not contain any duplicates.
Display the numbers in ascending order.

Exercise 115: Pig Latin

(32 Lines)
Pig Latin is a language constructed by transforming English words. While the ori-
gins of the language are unknown, it is mentioned in at least two documents from
the nineteenth century, suggesting that it has existed for more than 100 years. The
following rules are used to translate English into Pig Latin:

• If theword beginswith a consonant (includingy), then all letters at the beginning of
theword, up to the first vowel (excludingy), are removed and then added to the end
of the word, followed by ay. For example, computer becomes omputercay
and think becomes inkthay.

• If the word begins with a vowel (not including y), then way is added to the end
of the word. For example, algorithm becomes algorithmway and office
becomes officeway.

Write a program that reads a line of text from the user. Then your program should
translate the line into Pig Latin and display the result. Youmay assume that the string
entered by the user only contains lowercase letters and spaces.

Exercise 116: Pig Latin Improved

(51 Lines)
Extend your solution to Exercise 115 so that it correctly handles uppercase letters and
punctuationmarks such as commas, periods, questionmarks and exclamationmarks.
If an English word begins with an uppercase letter then its Pig Latin representation
should also beginwith an uppercase letter and the uppercase lettermoved to the end of
the word should be changed to lowercase. For example, Computer should become
Omputercay. If a word ends in a punctuation mark then the punctuation mark
should remain at the end of the word after the transformation has been performed.
For example, Science! should become Iencescay!.

Exercise 117: Line of Best Fit

(41 Lines)
A line of best fit is a straight line that best approximates a collection of n data points.
In this exercise, we will assume that each point in the collection has an x coordinate
and a y coordinate. The symbols x̄ and ȳ are used to represent the average x value in

54 5 List Exercises

the collection and the average y value in the collection respectively. The line of best
fit is represented by the equation y = mx + b where m and b are calculated using
the following formulas:

m =
∑

xy − (
∑

x)(
∑

y)

n
∑

x2 − (
∑

x)2

n
b = ȳ − mx̄

Write a program that reads a collection of points from the user. The user will enter
the x part of the first coordinate on its own line, followed by the y part of the first
coordinate on its own line. Allow the user to continue entering coordinates, with the
x and y parts each entered on their own line, until your program reads a blank line for
the x coordinate. Display the formula for the line of best fit in the form y = mx + b
by replacing m and b with the values you calculated using the preceding formulas.
For example, if the user inputs the coordinates (1, 1), (2, 2.1) and (3, 2.9) then your
program should display y = 0.95x + 0.1.

Exercise 118: Shuffling a Deck of Cards

(Solved—48 Lines)
A standard deck of playing cards contains 52 cards. Each card has one of four suits
along with a value. The suits are normally spades, hearts, diamonds and clubs while
the values are 2 through 10, Jack, Queen, King and Ace.

Each playing card can be represented using two characters. The first character is
the value of the card, with the values 2 through 9 being represented directly. The
characters “T”, “J”, “Q”, “K” and “A” are used to represent the values 10, Jack,
Queen, King and Ace respectively. The second character is used to represent the suit
of the card. It is normally a lowercase letter: “s” for spades, “h” for hearts, “d” for
diamonds and “c” for clubs. The following table provides several examples of cards
and their two-character representations.

Card Abbreviation

Jack of spades Js
Two of clubs 2c
Ten of diamonds Td
Ace of hearts Ah
Nine of spades 9s

Begin by writing a function named createDeck. It will use loops to create a
complete deck of cards by storing the two-character abbreviations for all 52 cards
into a list. Return the list of cards as the function’s only result. Your function will
not take any parameters.

Exercise 118: Shuffling a Deck of Cards 55

Write a second function named shuffle that randomizes the order of the cards
in a list. One technique that can be used to shuffle the cards is to visit each element
in the list and swap it with another random element in the list. You must write your
own loop for shuffling the cards. You cannot make use of Python’s built-in shuffle
function.

Use both of the functions described in the previous paragraphs to create a main
program that displays a deck of cards before and after it has been shuffled. Ensure
that your main program only runs when your functions have not been imported into
another file.

Exercise 119:Dealing Hands of Cards

(44 Lines)
In many card games each player is dealt a specific number of cards after the deck
has been shuffled. Write a function, deal, which takes the number of hands, the
number of cards per hand, and a deck of cards as its three parameters. Your function
should return a list containing all of the hands that were dealt. Each hand will be
represented as a list of cards.

When dealing the hands, your function should modify the deck of cards passed
to it as a parameter, removing each card from the deck as it is added to a player’s
hand. When cards are dealt, it is customary to give each player a card before any
player receives an additional card. Your function should follow this custom when
constructing the hands for the players.

Use your solution to Exercise 118 to help you construct a main program that
creates and shuffles a deck of cards, and then deals out four hands of five cards each.
Display all of the hands of cards, along with the cards remaining in the deck after
the hands have been dealt.

Exercise 120: Is a List already in Sorted Order?

(41 Lines)
Write a function that determines whether or not a list of values is in sorted order
(either ascending or descending). The function should return True if the list is
already sorted. Otherwise it should return False. Write a main program that reads
a list of numbers from the user and then uses your function to report whether or not
the list is sorted.

Make sure you consider these questions when completing this exercise: Is a
list that is empty in sorted order? What about a list containing one element?

56 5 List Exercises

Exercise 121: Count the Elements

(Solved—49 Lines)
Python’s standard library includes a method named count that determines how
many times a specific value occurs in a list. In this exercise, you will create a new
function namedcountRangewhich determines and returns the number of elements
within a list that are greater than or equal to someminimum value and less than some
maximum value. Your function will take three parameters: the list, the minimum
value and the maximum value. It will return an integer result greater than or equal to
0. Include a main program that demonstrates your function for several different lists,
minimum values and maximum values. Ensure that your program works correctly
for both lists of integers and lists of floating point numbers.

Exercise 122:Tokenizing a String

(Solved—64 Lines)
Tokenizing is the process of converting a string into a list of substrings, known as
tokens. In many circumstances, a list of tokens is far easier to work with than the
original string because the original string may have irregular spacing. In some cases
substantial work is also required to determine where one token ends and the next one
begins.

In a mathematical expression, tokens are items such as operators, numbers and
parentheses. Some tokens, such as *, /, ˆ, (and) are easy to identify because the
token is a single character, and the character is never part of another token. The + and
- symbols are a little bit more challenging to handle because they might represent
the addition or subtraction operator, or they might be part of a number token.

Hint: A + or - is an operator if the non-whitespace character immediately
before it is part of a number, or if the non-whitespace character immediately
before it is a close parenthesis. Otherwise it is part of a number.

Write a function that takes a string containing a mathematical expression as its
only parameter and breaks it into a list of tokens. Each token should be a parenthesis,
an operator, or a number with an optional leading + or - (for simplicity we will
only work with integers in this problem). Return the list of tokens as the function’s
result.

You may assume that the string passed to your function always contains a valid
mathematical expression consisting of parentheses, operators and integers. How-
ever, your function must handle variable amounts of whitespace between these
elements. Include a main program that demonstrates your tokenizing function by
reading an expression from the user and printing the list of tokens. Ensure that the

Exercise 122:Tokenizing a String 57

main program will not run when the file containing your solution is imported into
another program.

Exercise 123: Infix to Postfix

(62 Lines)
Mathematical expressions are often written in infix form, where operators appear
between the operands on which they act. While this is a common form, it is also
possible to express mathematical expressions in postfix form, where the operator
appears after both operands. For example, the infix expression 3 + 4 is written as
3 4 + in postfix form. One can convert an infix expression to postfix form using
the following algorithm:

Create a new empty list, operators
Create a new empty list, postfix

For each token in the infix expression
If the token is an integer then

Add the token to the end of postfix
If the token is an operator then

While operators is not empty and
the last item in operators is not an open parenthesis and
precedence(token) < precedence(last item in operators) do

Remove the last item from operators and add it to postfix
Add token to the end of operators

If the token is an open parenthesis then
Add token to the end of operators

If the token is a close parenthesis then
While the last item in operators is not an open parenthesis do

Remove the last item from operators and add it to postfix
Remove the open parenthesis from operators

While operators is not the empty list do
Remove the last item from operators and add it to postfix

Return postfix as the result of the algorithm

Use your solution to Exercise 122 to tokenize a mathematical expression. Then
use the algorithm above to transform the expression from infix form to postfix form.
Your code that implements the preceding algorithm should reside in a function that
takes a list of tokens representing an infix expression as its only parameter. It should
return a list of tokens representing the equivalent postfix expression as its only result.
Include a main program that demonstrates your infix to postfix function by reading
an expression from the user in infix form and displaying it in postfix form.

58 5 List Exercises

The purpose of converting from infix form to postfix form will become apparent
when you read Exercise 124. You may find your solutions to Exercises 90 and 91
helpful when completing this problem.

The algorithms provided in Exercises 123 and 124 do not perform any error
checking. As a result, you may crash your program or receive incorrect results
if you provide them with invalid input. These algorithms can be extended to
detect invalid input and respond to it in a reasonable manner. Doing so is left
as an independent study exercise for the interested student.

Exercise 124: Evaluate Postfix

(58 Lines)
Evaluating a postfix expression is easier than evaluating an infix expression because it
does not contain any brackets and there are no operator precedence rules to consider.
A postfix expression can be evaluated using the following algorithm:

Create a new empty list, values

For each token in the postfix expression
If the token is a number then

Convert it to an integer and add it to the end of values
Else

Remove an item from the end of values and call it right
Remove an item from the end of values and call it left
Apply the operator to left and right
Append the result to the end of values

Return the first item in values as the value of the expression

Write a program that reads a mathematical expression in infix form from the user,
evaluates it, and displays its value. Uses your solutions to Exercises 122 and 123
along with the algorithm shown above to solve this problem.

Exercise 125:Does a List contain a Sublist?

(44 Lines)
A sublist is a list that makes up part of a larger list. A sublist may be a list containing
a single element, multiple elements, or even no elements at all. For example, [1],
[2], [3] and [4] are all sublists of [1, 2, 3, 4]. The list [2, 3] is also a

Exercise 125:Does a List contain a Sublist? 59

sublist of [1, 2, 3, 4], but [2, 4] is not a sublist [1, 2, 3, 4] because
the elements 2 and 4 are not adjacent in the longer list. The empty list is a sublist of
any list. As a result, [] is a sublist of [1, 2, 3, 4]. A list is a sublist of itself,
meaning that [1, 2, 3, 4] is also a sublist of [1, 2, 3, 4].

In this exercise you will create a function, isSublist, that determines whether
or not one list is a sublist of another. Your function should take two lists, larger
andsmaller, as its only parameters. It should returnTrue if and only ifsmaller
is a sublist of larger. Write a main program that demonstrates your function.

Exercise 126:Generate All Sublists of a List

(Solved—40 Lines)
Using the definition of a sublist from Exercise 125, write a function that returns a list
containing every possible sublist of a list. For example, the sublists of [1, 2, 3]
are [], [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. Note that your func-
tion will always return a list containing at least the empty list because the empty list
is a sublist of every list. Include a main program that demonstrate your function by
displaying all of the sublists of several different lists.

Exercise 127:The Sieve of Eratosthenes

(Solved—33 Lines)
The Sieve of Eratosthenes is a technique that was developed more than 2,000 years
ago to easily find all of the prime numbers between 2 and some limit, say 100. A
description of the algorithm follows:

Write down all of the numbers from 0 to the limit
Cross out 0 and 1 because they are not prime

Set p equal to 2
While p is less than the limit do

Cross out all multiples of p (but not p itself)
Set p equal to the next number in the list that is not crossed out

Report all of the numbers that have not been crossed out as prime

The key to this algorithm is that it is relatively easy to cross out every nth number
on a piece of paper. This is also an easy task for a computer—a for loop can simulate
this behavior when a third parameter is provided to the range function. When a
number is crossed out, we know that it is no longer prime, but it still occupies space on
the piece of paper, andmust still be consideredwhen computing later prime numbers.

60 5 List Exercises

As a result, you should not simulate crossing out a number by removing it from the
list. Instead, you should simulate crossing out a number by replacing it with 0. Then,
once the algorithm completes, all of the non-zero values in the list are prime.

Create a Python program that uses this algorithm to display all of the prime
numbers between 2 and a limit entered by the user. If you implement the algorithm
correctly you should be able to display all of the prime numbers less than 1,000,000
in a few seconds.

This algorithm for finding prime numbers is not Eratosthenes’ only claim to
fame. His other noteworthy accomplishments include calculating the circum-
ference of the Earth and the tilt of the Earth’s axis. He also served as the Chief
Librarian at the Library of Alexandria.

6Dictionary Exercises

Dictionaries are another data structure that Python programmers can use to manage
larger amounts of data.Whilemany of the exercises in this chapter can be solvedwith
lists or if statements, most (or even all) of them have solutions that are well suited to
dictionaries. As a result, you should use dictionaries to solve all of these exercises
instead of (or in addition to) using the constructs that you have been introduced
to in the previous chapters. Completing the exercises in this chapter will help you
learn to:

• Create a new variable that holds a dictionary
• Add a key-value pair to a dictionary
• Update the value associated with a key in a dictionary
• Iterate over all of the keys and/or values in a dictionary
• Write functions that take dictionaries as parameters

Exercise 128: Reverse Lookup

(Solved—40 Lines)
Write a function named reverseLookup that finds all of the keys in a dictionary
that map to a specific value. The function will take the dictionary and the value to
search for as its only parameters. It will return a (possibly empty) list of keys from
the dictionary that map to the provided value.

Include amain program that demonstrates thereverseLookup function as part
of your solution to this exercise. Your program should create a dictionary and then
show that the reverseLookup function works correctly when it returns multiple
keys, a single key, and no keys. Ensure that your main program only runs when
the file containing your solution to this exercise has not been imported into another
program.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_6

61

62 6 Dictionary Exercises

Exercise 129:Two Dice Simulation

(Solved—42 Lines)
In this exercise you will simulate 1,000 rolls of two dice. Begin by writing a func-
tion that simulates rolling a pair of six-sided dice. Your function will not take any
parameters. It will return the total that was rolled on two dice as its only result.

Write a main program that uses your function to simulate rolling two six-sided
dice 1,000 times. As your program runs, it should count the number of times that each
total occurs. Then it should display a table that summarizes this data. Express the
frequency for each total as a percentage of the total number of rolls. Your program
should also display the percentage expected by probability theory for each total.
Sample output is shown below.

Exercise 130:Text Messaging

(21 Lines)
On some basic cell phones, text messages can be sent using the numeric keypad.
Because each key has multiple letters associated with it, multiple key presses are
needed for most letters. Pressing the number once generates the first letter on the
key. Pressing the number 2, 3, 4 or 5 times generates the second, third, fourth or fifth
character listed for that key.

Key Symbols

1 . , ? ! :
2 A B C
3 D E F
4 G H I

Exercise 130:Text Messaging 63

5 J K L
6 M N O
7 P Q R S
8 T U V
9 W X Y Z
0 space

Write a program that displays the key presses that must be made to enter a text
message read from the user. Construct a dictionary that maps from each letter or
symbol to the key presses. Then use the dictionary to generate and display the presses
for the user’s message. For example, if the user enters Hello, World! then your
program should output 4433555555666110966677755531111. Ensure that
your program handles both uppercase and lowercase letters. Ignore any characters
that aren’t listed in the table above such as semicolons and brackets.

Exercise 131:Morse Code

(15 Lines)
Morse code is an encoding scheme that uses dashes and dots to represent numbers
and letters. In this exercise, you will write a program that uses a dictionary to store
the mapping from letters and numbers toMorse code. Use a period to represent a dot,
and a hyphen to represent a dash. The mapping from letters and numbers to dashes
and dots is shown in Table 6.1.

Your program should read a message from the user. Then it should translate each
letter and number in the message to Morse code, leaving a space between each
sequence of dashes and dots. Your program should ignore any characters that are not
letters or numbers. The Morse code for Hello, World! is shown below:

.... . .-.. .-.. --- .-- --- .-. .-.. -..

Table 6.1 Morse Code Letters and Numbers

Letter Code Letter Code Letter Code Number Code

A .- J .- - - S ... 1 .- - - -

B -... K -.- T - 2 ..- - -

C -.-. L .-.. U ..- 3 ...- -

D -.. M - - V ...- 4-

E . N -. W .- - 5

F ..-. O - - - X -..- 6 -....

G - -. P .- -. Y -.- - 7 - -...

H Q - -.- Z - -.. 8 - - -..

I .. R .-. 0 - - - - - 9 - - - -.

64 6 Dictionary Exercises

Morse code was originally developed in the nineteenth century for use over
telegraph wires. It is still used today, over 160 years after it was first created.

Exercise 132: Postal Codes

(24 Lines)
In a Canadian postal code, the first, third and fifth characters are letters while the
second, fourth and sixth characters are numbers. The province can be determined
from the first character of a postal code, as shown in the following table. No valid
postal codes currently begin with D, F, I, O, Q, U, W, or Z.

Province First character(s)

Newfoundland A
Nova Scotia B
Prince Edward Island C
New Brunswick E
Quebec G, H and J
Ontario K, L, M, N and P
Manitoba R
Saskatchewan S
Alberta T
British Columbia V
Nunavut X
Northwest Territories X
Yukon Y

The second character in a postal code identifies whether the address is rural or
urban. If that character is a 0 then the address is rural. Otherwise it is urban.

Create a program that reads a postal code from the user and displays the province
associated with it, along with whether the address is urban or rural. For example,
if the user enters T2N 1N4 then your program should indicate that the postal code
is for an urban address in Alberta. If the user enters X0A 1B2 then your program
should indicate that the postal code is for a rural address in Nunavut or Northwest
Territories. Use a dictionary to map from the first character of the postal code to the
province name. Display a meaningful error message if the postal code begins with
an invalid character.

Exercise 133:Write Out Numbers in English 65

Exercise 133:Write Out Numbers in English

(65 Lines)
While the popularity of cheques as a payment method has diminished in recent years,
some companies still issue them to pay employees or vendors. The amount being
paid normally appears on a cheque twice, with one occurrence written using digits,
and the other occurrence written using English words. Repeating the amount in two
different formsmakes it muchmore difficult for an unscrupulous employee or vendor
to modify the amount on the cheque before depositing it.

In this exercise, your task is to create a function that takes an integer between 0 and
999 as its only parameter, and returns a string containing the English words for that
number. For example, if the parameter to the function is 142 then your function should
return “one hundred forty two”. Use one or more dictionaries to implement
your solution rather than large if/elif/else constructs. Include a main program that
reads an integer from the user and displays its value in English words.

Exercise 134:Unique Characters

(Solved—14 Lines)
Create a program that determines and displays the number of unique characters in a
string entered by the user. For example, Hello, World! has 10 unique characters
whilezzzhas only one unique character.Use a dictionary or set to solve this problem.

Exercise 135: Anagrams

(Solved—39 Lines)
Two words are anagrams if they contain all of the same letters, but in a different
order. For example, “evil” and “live” are anagrams because each contains one e, one
i, one l, and one v. Create a program that reads two strings from the user, determines
whether or not they are anagrams, and reports the result.

Exercise 136: Anagrams Again

(48 Lines)
The notion of anagrams can be extended to multiple words. For example, “William
Shakespeare” and “I am a weakish speller” are anagrams when capitalization and
spacing are ignored.

66 6 Dictionary Exercises

Extend your program from Exercise 135 so that it is able to check if two phrases
are anagrams. Your program should ignore capitalization, punctuation marks and
spacing when making the determination.

Exercise 137: Scrabble™ Score

(Solved—18 Lines)
In the game of Scrabble™, each letter has points associated with it. The total score
of a word is the sum of the scores of its letters. More common letters are worth fewer
points while less common letters are worth more points. The points associated with
each letter are shown below:

One point A, E, I, L, N, O, R, S, T and U
Two points D and G
Three points B, C, M and P
Four points F, H, V, W and Y
Five points K
Eight points J and X
Ten points Q and Z

Write a program that computes and displays the Scrabble™ score for a word.
Create a dictionary that maps from letters to point values. Then use the dictionary to
compute the score.

A Scrabble™ board includes some squares that multiply the value of a letter
or the value of an entire word. We will ignore these squares in this exercise.

Exercise 138: Create a Bingo Card

(Solved—58 Lines)
A Bingo card consists of 5 columns of 5 numbers. The columns are labeled with the
letters B, I, N, G and O. There are 15 numbers that can appear under each letter. In
particular, the numbers that can appear under the B range from 1 to 15, the numbers
that can appear under the I range from 16 to 30, the numbers that can appear under
the N range from 31 to 45, and so on.

Write a function that creates a randomBingo card and stores it in a dictionary. The
keys will be the letters B, I, N, G and O. The values will be the lists of five numbers
that appear under each letter. Write a second function that displays the Bingo card
with the columns labeled appropriately. Use these functions to write a program that

Exercise 138: Create a Bingo Card 67

displays a random Bingo card. Ensure that the main program only runs when the file
containing your solution has not been imported into another program.

You may be aware that Bingo cards often have a “free” space in the middle of
the card. We won’t consider the free space in this exercise.

Exercise 139: Checking for aWinning Card

(102 Lines)
A winning Bingo card contains a line of 5 numbers that have all been called. Players
normally mark the numbers that have been called by crossing them out or marking
them with a Bingo dauber. In our implementation we will mark that a number has
been called by replacing it with a 0 in the Bingo card dictionary.

Write a function that takes a dictionary representing a Bingo card as its only
parameter. If the card contains a line of five zeros (vertical, horizontal or diagonal)
then your function should return True, indicating that the card has won. Otherwise
the function should return False.

Create a main program that demonstrates your function by creating several Bingo
cards, displaying them, and indicating whether or not they contain a winning line.
You should demonstrate your function with at least one card with a horizontal line,
at least one card with a vertical line, at least one card with a diagonal line, and at
least one card that has some numbers crossed out but does not contain a winning line.
You will probably want to import your solution to Exercise 138 when completing
this exercise.

Hint: Because there are no negative numbers on a Bingo card, finding a line
of 5 zeros is the same problem as finding a line of 5 entries that sum to zero.
You may find the summation problem easier to solve.

Exercise 140: Play Bingo

(88 Lines)
In this exercise you will write a program that simulates a game of Bingo for a single
card. Begin by generating a list of all of the valid Bingo calls (B1 throughO75). Once
the list has been created you can randomize the order of its elements by calling the
shuffle function in therandommodule.Thenyour programshould consumecalls
out of the list, crossing out numbers on the card, until the card contains a crossed out
line (horizontal, vertical or diagonal). Simulate 1,000 games and report theminimum,
maximumand average number of calls thatmust bemadebefore the cardwins. Import
your solutions to Exercises 138 and 139 when completing this exercise.

7File andException Exercises

Files allow us to work with data, without needing to enter it each time our program
runs. Files also allow us to store results from our program in a more permanent man-
ner. These features are often used when creating larger programs. When completing
the exercises in this chapter, you should expect to:

• Open a file for reading and/or writing
• Read data from a file
• Write data to a new file
• Use values provided to the program as command line parameters
• Detect and recover from errors such as attempting to open a file that doesn’t exist
• Detect and recover from other errors that are not specifically related to files

Some of the exercises in this chapter involve reading from existing files such as
a list of words, names or chemical elements. You can download these files from the
author’s website: http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook.

Exercise 141:Display the Head of a File

(Solved—40 Lines)
Unix-based operating systems usually include a tool named head. It displays the
first 10 lines of a file whose name is provided as a command line parameter. Write
a Python program that provides the same behavior. Display an appropriate error
message if the file requested by the user does not exist or if the command line
parameter is omitted.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_7

69

http://www.cpsc.ucalgary.ca/~bdstephe/PythonWorkbook

70 7 File and Exception Exercises

Exercise 142:Display the Tail of a File

(Solved—35 Lines)
Unix-based operating systems also typically include a tool named tail. It displays
the last 10 lines of a file whose name is provided as a command line parameter.
Write a Python program that provides the same behavior. Display an appropriate
error message if the file requested by the user does not exist or if the command line
parameter is omitted.

There are several different approaches that can be taken to solve this problem.
One option is to load the entire contents of the file into a list and then display the
last 10 elements. Another option is to read the contents of the file twice, once to
count the lines, and a second time to display the last 10 lines. However, both of these
solutions are undesirable when working with large files. Another solution exists that
only requires you to read the file once, and only requires you to store 10 lines from
the file at one time. For an added challenge, develop such a solution.

Exercise 143: Concatenate Multiple Files

(Solved—27 Lines)
Unix-based operating systems typically include a tool named cat, which is short
for concatenate. Its purpose is to concatenate and display one or more files whose
names are provided as command line parameters. The files are displayed in the same
order that they appear on the command line.

Create a Python program that performs this task. It should generate an appropriate
error message for any file that cannot be displayed, and then proceed to the next file.
Display an appropriate errormessage if your program is startedwithout any command
line parameters.

Exercise 144:Number the Lines in a File

(23 Lines)
Create a program that adds line numbers to a file. The name of the input file will be
read from the user, as will the name of the new file that your program will create.
Each line in the output file should begin with the line number, followed by a colon
and a space, followed by the line from the input file.

Exercise 145: Find the LongestWord in a File 71

Exercise 145: Find the LongestWord in a File

(39 Lines)
In this exercise you will create a Python program that identifies the longest word(s)
in a file. Your program should output an appropriate message that includes the length
of the longest word, along with all of the words of that length that occurred in the
file. Treat any group of non-white space characters as a word, even if it includes
numbers or punctuation marks.

Exercise 146: Letter Frequencies

(43 Lines)
One technique that can be used to help break some simple forms of encryption is
frequency analysis. This analysis examines the encrypted text to determine which
characters are most common. Then it tries to map the most common letters in Eng-
lish, such as E and T, to the most commonly occurring characters in the encrypted
text.

Write a program that initiates this process by determining and displaying the
frequencies of all letters in a file. Ignore spaces, punctuation marks, and numbers as
you perform this analysis. Your program should be case insensitive, treating a and
A as equivalent. The user will provide the file name as a command line parameter.
Your program should display a meaningful error message if the user provides the
wrong number of command line parameters, or if the program is unable to open the
file indicated by the user.

Exercise 147:Words that Occur Most

(37 Lines)
Write a program that displays the word (or words) that occur most frequently in a
file. Your program should begin by reading the name of the file from the user. Then
it should find the word(s) by splitting each line in the file at each space. Finally,
any leading or trailing punctuation marks should be removed from each word. In
addition, your program should ignore capitalization. As a result, apple, apple!,
Apple and ApPlE should all be treated as the same word. You will probably find
your solution to Exercise 111 helpful when completing this problem.

72 7 File and Exception Exercises

Exercise 148: Sum a List of Numbers

(Solved—26 Lines)
Create a program that sums all of the numbers entered by the user while ignoring
any lines entered by the user that are not valid numbers. Your program should dis-
play the current sum after each number is entered. It should display an appropriate
error message after any invalid input, and then continue to sum any additional num-
bers entered by the user. Your program should exit when the user enters a blank
line. Ensure that your program works correctly for both integers and floating point
numbers.

Hint: This exercise requires you to use exceptions without using files.

Exercise 149: Both Letter Grades and Grade Points

(106 Lines)
Write a program that converts from letter grades to grade points and vice-versa.
Your program will convert multiple values entered by the user, with one value
entered on each line. Begin by attempting to convert each value entered by the
user from a number of grade points to a letter grade. If an exception occurs dur-
ing the attempt then your program should attempt to convert the value from a let-
ter grade to a number of grade points. If both conversions fail then your program
should provide a message indicating that the supplied input is invalid. Design your
program so that it continues performing conversions until the user enters a blank
line. Your solutions to Exercises 51 and 52 may be helpful when completing this
exercise.

Exercise 150: Remove Comments

(Solved—46 Lines)
Python uses the # character to mark the beginning of a comment. The comment ends
at the end of the line containing the # character. In this exercise, you will create a
program that removes all of the comments from a Python source file. Check each
line in the file to determine if a # character is present. If it is then your program
should remove all of the characters from the # character to the end of the line (we’ll
ignore the situation where the comment character occurs inside of a string). Save the
modified file using a new name that will be entered by the user. The user will also
enter the name of the input file. Ensure that an appropriate error message is displayed
if a problem is encountered while accessing the files.

Exercise 151:TwoWord Random Password 73

Exercise 151:TwoWord Random Password

(Solved—37 Lines)
While generating a password by selecting random characters generally gives a rela-
tively secure password, it also generally gives a password that is difficult tomemorize.
As an alternative, some systems construct a password by taking two English words
and concatenating them. While this password isn’t as secure, it is much easier to
memorize.

Write a program that reads a file containing a list of words, randomly selects two
of them, and concatenates them to produce a new password. When producing the
password ensure that the total length is between 8 and 10 characters, and that each
word used is at least three letters long. Capitalize each word in the password so that
the user can easily see where one word ends and the next one begins. Display the
password for the user.

Exercise 152:What’s that Element Again?

(59 Lines)
Write a program that reads a file containing information about chemical elements
and stores it in one or more appropriate data structures. Then your program should
read and process input from the user. If the user enters an integer then your program
should display the symbol and name of the element with the number of protons
entered. If the user enters a string then your program should display the number
of protons for the element with that name or symbol. Your program should display
an appropriate error message if no element exists for the name, symbol or num-
ber of protons entered. Continue to read input from the user until a blank line is
entered.

Exercise 153: A Book with No“e”…

(Solved—49 Lines)
The novel “Gadsby” is over 50,000 words in length. While 50,000 words isn’t nor-
mally remarkable for a novel, it is in this case because none of the words in the book
use the letter “e”. This is particularly noteworthy when one considers that “e” is the
most common letter in English.

Write a program that reads a list of words from a file and determines what pro-
portion of the words use each letter of the alphabet. Display the result for all 26
letters. Include an additional message identifying the letter that is used in the small-
est proportion of the words. Your program should ignore any punctuation marks and
it should treat uppercase and lowercase letters as equivalent.

74 7 File and Exception Exercises

Exercise 154:Names that Reached Number One

(Solved—50 Lines)
The baby names data set consists of over 200 files. Each file contains a list of 100
names, along with the number of times each name was used. There are two files for
each year: one containing names used for girls and the other containing names used
for boys. The data set includes data for every year from 1900 to 2012.

Write a program that reads every file in the data set and identifies all of the names
that were most popular in at least one year. Your program should output two lists:
one containing the most popular names for boys and the other containing the most
popular names for girls. Neither of your lists should include any repeated values.

Exercise 155:Gender Neutral Names

(56 Lines)
Some names, like Ben and Jonathan, are normally only used for boys while names
like Rebbecca and Flora are normally only used for girls. Other names, like Chris
and Alex, may be used for both boys and girls.

Write a program that determines and displays all of the baby names that were
used for both boys and girls in a year specified by the user. Your program should
generate an appropriatemessage if therewere no gender neutral names in the selected
year. Display an appropriate error message if you do not have data for the year
requested by the user. Additional details about the baby names data set are included
in Exercise 154.

Exercise 156:Most Births in a givenTime Period

(76 Lines)
Write a program that uses the baby names data set described in Exercise 154 to
determine which names were used most often within a time period. Have the user
supply the first and last years of the range to analyze. Display the boy’s name and
the girl’s name given to the most children during the indicated years.

Exercise 157:Distinct Names

(41 Lines)
In this exercise, you will create a program that reads every file in the baby names data
set described in Exercise 154. As your program reads the files, it should keep track
of each name used for a boy and each name used for a girl. Your program should

Exercise 157:Distinct Names 75

output two lists. One list will contain all of the names that have been used for girls.
The other list will contain all of the names that have been used for boys. Neither of
your lists should contain any repeated values.

Exercise 158: Spell Checker

(Solved—51 Lines)
A spell checker can be a helpful tool for people who struggle to spell words correctly.
In this exercise, youwill write a program that reads a file and displays all of the words
in it that are misspelled. Misspelled words will be identified by checking each word
in the file against a list of known words. Any words in the user’s file that do not
appear in the list of known words will be reported as spelling mistakes.

The user will provide the name of the file to check for spelling mistakes as a
command line parameter. Your program should display an appropriate error message
if the command line parameter is missing. An error message should also be displayed
if your program is unable to open the user’s file. Use your solution to Exercise 111
when creating your solution to this exercise so that words followed by a comma,
period or other punctuation mark are not reported as spelling mistakes. Ignore the
capitalization of the words when checking their spelling.

Hint: While you could load all of the English words from the words data set
into a list, searching a list is slow if you use Python’s in operator. It is much
faster to check if a key is present in a dictionary, or if a value is present in a
set. If you use a dictionary, the words will be the keys. The values can be the
integer 0 (or any other value) because the values will never be used.

Exercise 159: RepeatedWords

(61 Lines)
Spelling mistakes are only one of many different kinds of errors that might appear in
awrittenwork. Another error that is common for somewriters is a repeatedword. For
example, an author might inadvertently duplicate a word, as shown in the following
sentence:

At least one value must be entered
entered in order to compute the average.

Somewordprocessorswill detect this error and identify itwhen a spelling or grammar
check is performed.

76 7 File and Exception Exercises

In this exercise you will write a program that detects repeated words in a text file.
When a repeated word is found your program should display a message that contains
the line number and the repeated word. Ensure that your program correctly handles
the case where the same word appears at the end of one line and the beginning of the
following line, as shown in the previous example. The name of the file to examinewill
be provided as the program’s only command line parameter. Display an appropriate
error message if the user fails to provide a command line parameter, or if an error
occurs while processing the file.

Exercise 160: Redacting Text in a File

(Solved—49 Lines)
Sensitive information is often removed, or redacted, from documents before they
are released to the public. When the documents are released it is common for the
redacted text to be replaced with black bars.

In this exercise you will write a program that redacts all occurrences of sensitive
words in a text file by replacing them with asterisks. Your program should redact
sensitive words wherever they occur, even if they occur in the middle of another
word. The list of sensitive words will be provided in a separate text file. Save the
redacted version of the original text in a new file. The names of the original text file,
sensitive words file, and redacted file will all be provided by the user.

You may find the replace method for strings helpful when completing this
exercise. Information about the replacemethod can either be found in your
textbook or on the internet.

For an added challenge, extend your program so that it redacts words in a case
insensitive manner. For example, if exam appears in the list of sensitive words then
redact exam, Exam, ExaM and EXAM, among other possible capitalizations.

Exercise 161:Missing Comments

(Solved—44 Lines)
When one writes a function, it is generally a good idea to include a comment that
outlines the function’s purpose, its parameters and its return value. However, some-
times comments are forgotten, or left out by well-intentioned programmers that plan
to write them later but then never get around to it.

Create a python program that reads one or more Python source files and identifies
functions that are not immediately preceded by a comment. For the purposes of this
exercise, assume that any line that begins with def, followed by a space, is the

Exercise 161:Missing Comments 77

beginning of a function definition. Assume that the comment character, #, will be
the first character on the previous line when the function has a comment. Display the
names of all of the functions that are missing comments, along with the file name
and line number where the function definition is located.

The user will provide the names of one or more Python files as command line
parameters. If your program encounters a file that doesn’t exist or can’t be opened
then it should display an appropriate error message before moving on and processing
the remaining files.

Exercise 162: Consistent Line Lengths

(45 Lines)
While 80 characters is a common width for a terminal window, some terminals are
narrow or wider. This can present challenges when displaying documents containing
paragraphs of text. The lines might be too long and wrap, making them difficult to
read, or they might be too short and fail to make use of the available space.

Write a program that opens a file and displays it so that each line is filled as full as
possible. If you read a line that is too long then your program should break it up into
words and add words to the current line until it is full. Then your program should
start a new line and display the remaining words. Similarly, if you read a line that is
too short then you will need to use words from the next line of the file to finish filling
the current line of output. For example, consider a file containing the following lines
from “Alice’s Adventures in Wonderland”:

Alice was
beginning to get very tired of sitting by her
sister
on the bank, and of having nothing to do: once
or twice she had peeped into the book her sister
was reading, but it had
no
pictures or conversations in it,"and what is
the use of a book," thought Alice, "without
pictures or conversations?"

When formatted for a line length of 50 characters, it should be displayed as:

Alice was beginning to get very tired of sitting
by her sister on the bank, and of having nothing
to do: once or twice she had peeped into the book
her sister was reading, but it had no pictures or
conversations in it, "and what is the use of a
book," thought Alice, "without pictures or
conversations?"

78 7 File and Exception Exercises

Ensure that your programworks correctly for files containingmultiple paragraphs
of text. You can detect the end of one paragraph and the beginning of the next by
looking for lines that are empty once the end of line marker has been removed. You
may perform error checking if you want to, but it is not required for this exercise.

Hint: Use a constant to represent the maximum line length. This will make it
easier to update the program when the window size changes.

Exercise 163:Words with Six Vowels in Order

(56 Lines)
There is at least one word in the English language that contains each of the vowels
a, e, i , o, u and y exactly once and in order. Write a program that searches a file
containing a list of words and displays all of the words that meet this constraint. The
user will provide the name of the file that will be searched. Display an appropriate
error message and exit the program if the user provides an invalid file name or if
something else goes wrong while searching for words with six vowels in order.

8Recursion Exercises

A recursive function is a function that calls itself. In this chapter, you will use
recursive functions to solve a variety of problems. The programs that you write will
help you learn to:

• Identify the base case(s) for a recursive function
• Identify the recursive case(s) for a recursive function
• Write a non-trivial recursive function
• Use a recursive function that you have written to solve a problem

Exercise 164:Total theValues

(Solved—28 Lines)
Write a program that reads values from the user until a blank line is entered. Display
the total of all of the values entered by the user (or 0.0 if the first value entered is
a blank line). Complete this task using recursion. Your program may not use any
loops.

Hint: The body of your recursive function will need to read one value from
the user, and then determine whether or not to make a recursive call. Your
function does not need to take any parameters, but it will need to return a
numeric result.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_8

79

80 8 Recursion Exercises

Exercise 165:Greatest Common Divisor

(24 Lines)
Euclid was a Greek mathematician who lived approximately 2,300 years ago. His
algorithm for computing the greatest common divisor of two positive integers, a and
b, is both efficient and recursive. It is outlined below:

If b is 0 then
Return a

Else
Set c equal to the remainder when a is divided by b
Return the greatest common divisor of b and c

Write a program that implements Euclid’s algorithm and uses it to determine the
greatest common divisor of two integers entered by the user.

Exercise 166: Recursive Decimal to Binary

(34 Lines)
In Exercise 78 you wrote a program that used a loop to convert a decimal number
to its binary representation. In this exercise you will perform the same task using
recursion.

Write a recursive function that converts a non-negative decimal number to binary.
Treat 0 and 1 as base cases which return a string containing the appropriate digit. For
all other positive integers, n, you should compute the next digit using the remainder
operator and then make a recursive call to compute the digits of n // 2. Finally, you
should concatenate the result of the recursive call (which will be a string) and the
next digit (which you will need to convert to a string) and return this string as the
result of the function.

Write a main program that uses your recursive function to convert a non-negative
integer entered by the user from decimal to binary. Your program should display an
appropriate error message if the user enters a negative value.

Exercise 167: Recursive Palindrome

(Solved—29 Lines)
The notion of a palindrome was introduced previously in Exercise 72. In this exer-
cise you will write a recursive function that determines whether or not a string is
a palindrome. The empty string is a palindrome, as is any string containing only

Exercise 167: Recursive Palindrome 81

one character. Any longer string is a palindrome if its first and last characters
match, and if the string formed by removing the first and last characters is also
a palindrome.

Write amain program that reads a string from the user. Use your recursive function
to determine whether or not the string is a palindrome. Then display an appropriate
message for the user.

Exercise 168: Recursive Square Root

(20 Lines)
Exercise 71 explored how iteration can be used to compute the square root of a
number. In that exercise a better approximation of the square root was generated with
each additional iteration of a loop. In this exercise you will use the same approxi-
mation strategy, but you will use recursion instead of iteration.

Create a square root function that takes two parameters. The first parameter, n, will
be the number for which the square root is being computed. The second parameter,
guess, will be the current guess for the square root. The guess parameter should have
a default value of 1.0. Do not provide a default value for the first parameter.

Your square root function will be recursive. The base case occurs when guess2 is
within 10−12 of n. In this case your function should return guess because it is close
enough to the square root of n. Otherwise your function should return the result of

calling itself recursively with n as the first parameter and
guess+ n

guess
2 as the second

parameter.
Write a main program that demonstrate your square root function by computing

the square root of several different values. When you call your square root function
from the main program you should only pass one parameter to it so that the default
value for guess is used.

Exercise 169: String Edit Distance

(Solved—42 Lines)
The edit distance between two strings is ameasure of their similarity—the smaller the
edit distance, the more similar the strings are with regard to the minimum number of
insert, delete and substitute operations needed to transform one string into the other.

Consider the strings kitten and sitting. The first string can be transformed
into the second string with the following operations: Substitute the k with an s,
substitute the e with an i, and insert a g at the end of the string. This is the smallest
number of operations that can be performed to transform kitten into sitting.
As a result, the edit distance is 3.

82 8 Recursion Exercises

Write a recursive function that computes the edit distance between two strings.
Use the following algorithm:

Let s and t be the strings
If the length of s is 0 then

Return the length of t
Else if the length of t is 0 then

Return the length of s
Else

Set cost to 0
If the last character in s does not equal the last character in t then

Set cost to 1
Set d1 equal to the edit distance between all characters except the last one
in s, and all characters in t , plus 1
Set d2 equal to the edit distance between all characters in s, and all
characters except the last one in t , plus 1
Set d3 equal to the edit distance between all characters except the last one
in s, and all characters except the last one in t , plus cost
Return the minimum of d1, d2 and d3

Use your recursive function to write a program that reads two strings from the
user and displays the edit distance between them.

Exercise 170: Possible Change

(41 Lines)
Create a program that determineswhether or not it is possible to construct a particular
total using a specific number of coins. For example, it is possible to have a total of
$1.00 using four coins if they are all quarters. However, there is no way to have a
total of $1.00 using 5 coins. Yet it is possible to have $1.00 using 6 coins by using
3 quarters, 2 dimes and a nickel. Similarly, a total of $1.25 can be formed using 5
coins or 8 coins, but a total of $1.25 can not be formed using 4, 6 or 7 coins.

Your program should read both the dollar amount and the number of coins from
the user. It should display a clearmessage indicatingwhether or not the entered dollar
amount can be formed using the number of coins indicated. Assume the existence of
quarters, dimes, nickels and pennies when completing this problem. Your solution
must use recursion. It can not contain any loops.

Exercise 171: Spelling with Element Symbols

(68 Lines)
Each chemical element has a standard symbol that is one, two or three letters long.
One game that some people like to play is to determine whether or not a word can
be spelled using only element symbols. For example, silicon can be spelled using

Exercise 171: Spelling with Element Symbols 83

the symbols Si, Li, C, O and N. However, hydrogen can not be spelled with any
combination of element symbols.

Write a recursive function that determines whether or not a word can be spelled
using only element symbols. Your function will take two parameters: the word that
you are trying to spell and a list of the symbols that can be used. Your function will
return two results: a Boolean value indicating whether or not a spelling was found,
and the string of symbols used to achieve the spelling (or an empty string if no spelling
exists). Your function should ignore capitalization when searching for a spelling.

Create a program that uses your function to find and display all of the element
names that can be spelled using only element symbols. Display the names of the ele-
ments along with the sequences of symbols. For example, one line of your output
will be:

Silver can be spelled as SiLvEr

Your program will use the elements data set, which can be downloaded from the
author’s website. This data set includes the names and symbols of all 118 chemical
elements.

Exercise 172: Element Sequences

(Solved—83 Lines)
Another game that some people play with the names of chemical elements involves
constructing a sequence of elements where each element in the sequence begins with
the last letter of its predecessor. For example, if a sequence begins with Hydrogen,
then the next element must be an element that begins with N, such as Nickel. The
element following Nickel must begin with L, such as Lithium. The element sequence
that is constructed can not contain any duplicates.

Write a program that reads the name of an element from the user. Your program
should use a recursive function to find the longest sequence of elements that begins
with the entered element. Then it should display the sequence. Ensure that your
program responds in a reasonableway if the user does not enter a valid element name.

Hint: It may take your program up to two minutes to find the longest sequence
for some elements. As a result, you might want to use elements like Molyb-
denum and Magnesium as your first test cases. Each has a longest sequence
that is only 8 elements long which your program should find in a fraction of a
second.

Exercise 173: Run-Length Decoding

(33 Lines)
Run-length encoding is a simple data compression technique that can be effec-
tive when repeated values occur at adjacent positions within a list. Compression is

84 8 Recursion Exercises

achieved by replacing groups of repeated values with one copy of the value, followed
by the number of times that the value should be repeated. For example, the list["A",
"A","A","A","A","A","A","A","A","A","A","A","B","B",
"B", "B", "A", "A", "A", "A", "A", "A", "B"] would be compressed
as ["A", 12, "B", 4, "A", 6, "B", 1]. Decompression is performed by
replicating each value in the list the number of times indicated.

Write a recursive function that decompresses a run-length encoded list. Your
recursive function will take a run-length compressed list as its only parameter. It will
return the decompressed list as its only result. Create a main program that displays
a run-length encoded list and the result of decoding it.

Exercise 174: Run-Length Encoding

(Solved—36 Lines)
Write a recursive function that implements the run-length compression technique
described in Exercise 173. Your function will take a list or a string as its only para-
meter. It should return the run-length compressed list as its only result. Include amain
program that reads a string from the user, compresses it, and displays the run-length
encoded result.

Hint:Youmaywant to include a loop inside the body of your recursive function.

Part II
Solutions

9Introduction toProgramming
Solutions

Solution to Exercise 1:Mailing Address

Solution to Exercise 3: Area of a Room

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_9

87

88 9 Introduction to Programming Solutions

Solution to Exercise 4: Area of a Field

Solution to Exercise 5: Bottle Deposits

Solution to Exercise 6:Tax and Tip 89

Solution to Exercise 6:Tax andTip

Solution to Exercise 7: Sum of the First n Positive Integers

90 9 Introduction to Programming Solutions

Solution to Exercise 10: Arithmetic

Solution to Exercise 13:Making Change

Solution to Exercise 13:Making Change 91

Solution to Exercise 14:Height Units

92 9 Introduction to Programming Solutions

Solution to Exercise 17:Heat Capacity

Solution to Exercise 19: Free Fall

Solution to Exercise 19: Free Fall 93

Solution to Exercise 23: Area of a Regular Polygon

Solution to Exercise 25:Units of Time (Again)

94 9 Introduction to Programming Solutions

Solution to Exercise 28:Wind Chill

Solution to Exercise 32: Sort 3 Integers

Solution to Exercise 32: Sort 3 Integers 95

Solution to Exercise 33:Day Old Bread

10IfStatement Solutions

Solution to Exercise 34: Even or Odd?

Solution to Exercise 36:Vowel or Consonant

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_10

97

98 10 If Statement Solutions

Solution to Exercise 37:Name that Shape

Solution to Exercise 38:Month Name to Number of Days

Solution to Exercise 38:Month Name to Number of Days 99

Solution to Exercise 40:Name that Triangle

Solution to Exercise 41:Note to Frequency

100 10 If Statement Solutions

Solution to Exercise 42: Frequency to Note

Solution to Exercise 42: Frequency to Note 101

Solution to Exercise 46: Season fromMonth and Day

102 10 If Statement Solutions

Solution to Exercise 48: Chinese Zodiac

Solution to Exercise 51: Letter Grade to Grade Points 103

Solution to Exercise 51: Letter Grade to Grade Points

104 10 If Statement Solutions

Solution to Exercise 53: Assessing Employees

Solution to Exercise 57: Is it a Leap Year? 105

Solution to Exercise 57: Is it a LeapYear?

Solution to Exercise 59: Is a License PlateValid?

106 10 If Statement Solutions

Solution to Exercise 60: Roulette Payouts

11LoopSolutions

Solution to Exercise 64:Nomore Pennies

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_11

107

108 11 Loop Solutions

Solution to Exercise 65: Computer the Perimeter of a Polygon

Solution to Exercise 65: Computer the Perimeter of a Polygon 109

Solution to Exercise 67: Admission Price

Solution to Exercise 68: Parity Bits

110 11 Loop Solutions

Solution to Exercise 70: Caesar Cipher

Solution to Exercise 70: Caesar Cipher 111

Solution to Exercise 72: Is a String a Palindrome?

Solution to Exercise 74:Multiplication Table

112 11 Loop Solutions

Solution to Exercise 75:Greatest Common Divisor

Solution to Exercise 78:Decimal to Binary

Solution to Exercise 78:Decimal to Binary 113

Solution to Exercise 79:Maximum Integer

12Function Solutions

Solution to Exercise 84:Median of ThreeValues

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_12

115

116 12 Function Solutions

Solution to Exercise 86:The Twelve days of Christmas

Solution to Exercise 86:The Twelve days of Christmas 117

Solution to Exercise 87: Center a String in the Terminal

118 12 Function Solutions

Solution to Exercise 89: Capitalize it

Solution to Exercise 90:Does a String Represent an Integer? 119

Solution to Exercise 90:Does a String Represent an Integer?

Solution to Exercise 92: Is a Number Prime?

120 12 Function Solutions

Solution to Exercise 94: Random Password

Solution to Exercise 96: Check a Password 121

Solution to Exercise 96: Check a Password

Solution to Exercise 99: Arbitrary Base Conversions

122 12 Function Solutions

Solution to Exercise 99:Arbitrary Base Conversions 123

Solution to Exercise 101: Reduce a Fraction to Lowest Terms

124 12 Function Solutions

Solution to Exercise 102: ReduceMeasures

Solution to Exercise 102: Reduce Measures 125

126 12 Function Solutions

Solution to Exercise 103:Magic Dates

13List Solutions

Solution to Exercise 104: Sorted Order

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_13

127

128 13 List Solutions

Solution to Exercise 106: Remove Outliers

Solution to Exercise 107:Avoiding Duplicates 129

Solution to Exercise 107: Avoiding Duplicates

Solution to Exercise 108:Negatives, Zeros and Positives

130 13 List Solutions

Solution to Exercise 110: Perfect Numbers

Solution to Exercise 113: Formatting a List 131

Solution to Exercise 113: Formatting a List

132 13 List Solutions

Solution to Exercise 114: Random Lottery Numbers

Solution to Exercise 118: Shuffling a Deck of Cards

Solution to Exercise 118: Shuffling a Deck of Cards 133

Solution to Exercise 121: Count the Elements

134 13 List Solutions

Solution to Exercise 122:Tokenizing a String

Solution to Exercise 122:Tokenizing a String 135

136 13 List Solutions

Solution to Exercise 126:Generate All Sublists of a List

Solution to Exercise 127:The Sieve of Eratosthenes

Solution to Exercise 127:The Sieve of Eratosthenes 137

14Dictionary Solutions

Solution to Exercise 128: Reverse Lookup

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_14

139

140 14 Dictionary Solutions

Solution to Exercise 129:Two Dice Simulation

Solution to Exercise 129:Two Dice Simulation 141

Solution to Exercise 134:Unique Characters

Solution to Exercise 135: Anagrams

142 14 Dictionary Solutions

Solution to Exercise 137: ScrabbleTM Score

Solution to Exercise 138: Create a Bingo Card 143

Solution to Exercise 138: Create a Bingo Card

144 14 Dictionary Solutions

15File andException Solutions

Solution to Exercise 141:Display the Head of a File

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_15

145

146 15 File and Exception Solutions

Solution to Exercise 142:Display the Tail of a File

Solution to Exercise 143: Concatenate Multiple Files

Solution to Exercise 143: Concatenate Multiple Files 147

Solution to Exercise 148: Sum a List of Numbers

148 15 File and Exception Solutions

Solution to Exercise 150: Remove Comments

Solution to Exercise 151:TwoWord Random Password 149

Solution to Exercise 151:TwoWord Random Password

Solution to Exercise 153: A Book with No“e”…

150 15 File and Exception Solutions

Solution to Exercise 154:Names that Reached Number One 151

Solution to Exercise 154:Names that Reached Number One

152 15 File and Exception Solutions

Solution to Exercise 158: Spell Checker

Solution to Exercise 158: Spell Checker 153

Solution to Exercise 160: Redacting Text in a File

154 15 File and Exception Solutions

Solution to Exercise 161:Missing Comments

Solution to Exercise 161:Missing Comments 155

16Recursion Solutions

Solution to Exercise 164:Total theValues

Solution to Exercise 167: Recursive Palindrome

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_16

157

158 16 Recursion Solutions

Solution to Exercise 169: String Edit Distance

Solution to Exercise 169: String Edit Distance 159

Solution to Exercise 172: Element Sequences

160 16 Recursion Solutions

Solution to Exercise 174: Run-Length Encoding 161

Solution to Exercise 174: Run-Length Encoding

Index

Symbols
π , 32

A
Acceleration, 9
Ace, 54
Admission, 31
Alice’s Adventures in Wonderland, 77
Alphabet, 16
Anagram, 65
Approximation, 32, 33, 81
Area, 4, 8, 10
ASCII, 44
Astrology, 21
Average, 29, 52, 53

B
Baby names, 74
Banknote, 19
Binary, 36, 80
Bingo, 66, 67
Body mass index, 11
Bread, 13

C
Caesar Cipher, 33
Capitalize, 42
Cards, 54, 55
Cat, 70
Cell phone, 25, 62
Celsius, 9, 30
Chess, 20
Circle, 8
Clubs, 54

Coin, 7, 37, 38, 82
Command line parameter, 69–71, 75, 76
Comments, 72, 76
Compression, 83
Concatenate, 70
Consonant, 16, 53
Coordinate, 31, 53
Cup, 46
Cylinder, 9

D
Date, 11, 26, 47
Day, 11, 19, 21, 26, 47
Decibels, 16
Decimal, 36
Deck of cards, 54, 55
Default value, 81
Degrees, 7
Denominator, 46
Deposit, 4
Diamonds, 54
Dice, 62
Difference, 5
Digit, 13, 45, 80
Discount, 13, 29
Discriminant, 23
Distance, 6, 8, 9, 31, 39
Divisible, 43
Dog years, 15

E
Earth, 6
Earthquake, 22
Edit distance, 81
Element, 82, 83

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1

163

164 Index

Encode, 33, 63, 83
Encryption, 32
Equilateral, 17
Eratosthenes, 60
Euclid, 80
Euclid’s algorithm, 80
Even number, 15
Even parity, 32

F
Fahrenheit, 9, 30
Frequency, 18, 25
Frequency analysis, 71
Fuel efficiency, 6

G
Gadsby, 73
Grade points, 23, 24, 31, 72
Greatest common divisor, 35, 46, 80

H
Head, 37, 69
Hearts, 54
Heat capacity, 8
Height, 7, 9, 12
Hexadecimal, 45
Holiday, 19
Horoscope, 21
Hour, 11
Hypotenuse, 39

I
Ideal gas law, 9
Infinite series, 32
Infix, 57
Interest, 5
Isosceles, 17

J
Jack, 54

K
Kelvin, 9
King, 54

L
Latitude, 6

Leap year, 16, 26, 46
Letter grade, 23, 24, 31, 72
License plate, 26, 44
Line number, 70
Line of best fit, 53
List, 52
Longest word, 71
Longitude, 6
Lottery, 52

M
Magic date, 47
Mailing address, 3
Maximum, 36
Median, 40
Merit, 24
Minute, 11
Money, 18
Month, 16, 19, 21, 26, 46, 47
Morse code, 63
Multiplication table, 34
Music, 17

N
Newton’s method, 33
Nickel, 7, 30
Numerator, 46

O
Octave, 17
Odd number, 15
Odd parity, 32
Operator, 43, 56
Ordinal number, 40

P
Palindrome, 33, 34, 80
Paragraph, 77, 78
Parity, 32
Password, 44, 45, 73
Penny, 7, 30
Perfect number, 51
Pig Latin, 53
Playing cards, 54
Polygon, 10, 30
Postal code, 64
Postfix, 57, 58
Precedence, 43, 58
Pressure, 9, 13
Prime factorization, 35

Index 165

Prime number, 43, 59, 60
Product, 5, 34
Proper divisor, 51
Proton, 73
Province, 64
Punctuation mark, 51, 53, 71
Pythagorean theorem, 6, 39

Q
Quadratic equation, 23
Quadratic formula, 23
Quadratic function, 23
Queen, 54
Quotient, 6

R
Radians, 7
Radiation, 25
Radius, 8
Random, 27, 38, 44, 45, 52, 55, 66, 73
Redact, 76
Remainder, 6
Repeated word, 75
Reverse, 49
Reverse lookup, 61
Richter scale, 22
Roulette, 27
Round, 30
Run-length encoding, 83
Rural, 64

S
Scalene, 17
Scrabble™, 66
Season, 20
Second, 11
Shape, 16
Shipping, 40
Sieve of Eratosthenes, 59
Sort, 13, 49, 55
Spades, 54
Spelling, 75

Sphere, 8
Square root, 33, 81
String similarity, 81
Sublist, 58, 59
Sum, 5, 13, 72

T
Tablespoon, 46
Tail, 37, 70
Tax, 4, 25
Taxi, 39
Teaspoon, 46
Temperature, 8, 9, 12, 30
Text message, 25, 62
The Twelve Days of Christmas, 41
Time, 11
Tip, 4
Token, 56
Triangle, 10, 17, 39, 42

U
Urban, 64

V
Visible light, 24
Volume, 8, 9
Vowel, 16, 53, 78

W
Wavelength, 24
Wind chill, 12

Y
Year, 16, 21, 26, 46, 47

Z
Zodiac, 21
Zoo, 31

	Preface
	Contents
	Part IExercises
	1 Introduction to Programming Exercises
	Exercise 1: Mailing Address
	Exercise 2: Hello
	Exercise 3: Area of a Room
	Exercise 4: Area of a Field
	Exercise 5: Bottle Deposits
	Exercise 6: Tax and Tip
	Exercise 7: Sum of the First n Positive Integers
	Exercise 8: Widgets and Gizmos
	Exercise 9: Compound Interest
	Exercise 10: Arithmetic
	Exercise 11: Fuel Efficiency
	Exercise 12: Distance Between Two Points on Earth
	Exercise 13: Making Change
	Exercise 14: Height Units
	Exercise 15: Distance Units
	Exercise 16: Area and Volume
	Exercise 17: Heat Capacity
	Exercise 18: Volume of a Cylinder
	Exercise 19: Free Fall
	Exercise 20: Ideal Gas Law
	Exercise 21: Area of a Triangle
	Exercise 22: Area of a Triangle (Again)
	Exercise 23: Area of a Regular Polygon
	Exercise 24: Units of Time
	Exercise 25: Units of Time (Again)
	Exercise 26: Current Time
	Exercise 27: Body Mass Index
	Exercise 28: Wind Chill
	Exercise 29: Celsius to Fahrenheit and Kelvin
	Exercise 30: Units of Pressure
	Exercise 31: Sum of the Digits in an Integer
	Exercise 32: Sort 3 Integers
	Exercise 33: Day Old Bread

	2 If Statement Exercises
	Exercise 34: Even or Odd?
	Exercise 35: Dog Years
	Exercise 36: Vowel or Consonant
	Exercise 37: Name that Shape
	Exercise 38: Month Name to Number of Days
	Exercise 39: Sound Levels
	Exercise 40: Name that Triangle
	Exercise 41: Note To Frequency
	Exercise 42: Frequency To Note
	Exercise 43: Faces on Money
	Exercise 44: Date to Holiday Name
	Exercise 45: What Color is that Square?
	Exercise 46: Season from Month and Day
	Exercise 47: Birth Date to Astrological Sign
	Exercise 48: Chinese Zodiac
	Exercise 49: Richter Scale
	Exercise 50: Roots of a Quadratic Function
	Exercise 51: Letter Grade to Grade Points
	Exercise 52: Grade Points to Letter Grade
	Exercise 53: Assessing Employees
	Exercise 54: Wavelengths of Visible Light
	Exercise 55: Frequency to Name
	Exercise 56: Cell Phone Bill
	Exercise 57: Is it a Leap Year?
	Exercise 58: Next Day
	Exercise 59: Is a License Plate Valid?
	Exercise 60: Roulette Payouts

	3 Loop Exercises
	Exercise 61: Average
	Exercise 62: Discount Table
	Exercise 63: Temperature Conversion Table
	Exercise 64: No More Pennies
	Exercise 65: Compute the Perimeter of a Polygon
	Exercise 66: Compute a Grade Point Average
	Exercise 67: Admission Price
	Exercise 68: Parity Bits
	Exercise 69: Approximate π
	Exercise 70: Caesar Cipher
	Exercise 71: Square Root
	Exercise 72: Is a String a Palindrome?
	Exercise 73: Multiple Word Palindromes
	Exercise 74: Multiplication Table
	Exercise 75: Greatest Common Divisor
	Exercise 76: Prime Factors
	Exercise 77: Binary to Decimal
	Exercise 78: Decimal to Binary
	Exercise 79: Maximum Integer
	Exercise 80: Coin Flip Simulation

	4 Function Exercises
	Exercise 81: Compute the Hypotenuse
	Exercise 82: Taxi Fare
	Exercise 83: Shipping Calculator
	Exercise 84: Median of Three Values
	Exercise 85: Convert an Integer to its Ordinal Number
	Exercise 86: The Twelve Days of Christmas
	Exercise 87: Center a String in the Terminal
	Exercise 88: Is it a Valid Triangle?
	Exercise 89: Capitalize It
	Exercise 90: Does a String Represent an Integer?
	Exercise 91: Operator Precedence
	Exercise 92: Is a Number Prime?
	Exercise 93: Next Prime
	Exercise 94: Random Password
	Exercise 95: Random License Plate
	Exercise 96: Check a Password
	Exercise 97: Random Good Password
	Exercise 98: Hexadecimal and Decimal Digits
	Exercise 99: Arbitrary Base Conversions
	Exercise 100: Days in a Month
	Exercise 101: Reduce a Fraction to Lowest Terms
	Exercise 102: Reduce Measures
	Exercise 103: Magic Dates

	5 List Exercises
	Exercise 104: Sorted Order
	Exercise 105: Reverse Order
	Exercise 106: Remove Outliers
	Exercise 107: Avoiding Duplicates
	Exercise 108: Negatives, Zeros and Positives
	Exercise 109: List of Proper Divisors
	Exercise 110: Perfect Numbers
	Exercise 111: Only the Words
	Exercise 112: Below and Above Average
	Exercise 113: Formatting a List
	Exercise 114: Random Lottery Numbers
	Exercise 115: Pig Latin
	Exercise 116: Pig Latin Improved
	Exercise 117: Line of Best Fit
	Exercise 118: Shuffling a Deck of Cards
	Exercise 119: Dealing Hands of Cards
	Exercise 120: Is a List already in Sorted Order?
	Exercise 121: Count the Elements
	Exercise 122: Tokenizing a String
	Exercise 123: Infix to Postfix
	Exercise 124: Evaluate Postfix
	Exercise 125: Does a List contain a Sublist?
	Exercise 126: Generate All Sublists of a List
	Exercise 127: The Sieve of Eratosthenes

	6 Dictionary Exercises
	6.1 Exercise 128: Reverse Lookup
	6.2 Exercise 129: Two Dice Simulation
	6.3 Exercise 130: Text Messaging
	6.4 Exercise 131: Morse Code
	6.5 Exercise 132: Postal Codes
	6.6 Exercise 133: Write Out Numbers in English
	6.7 Exercise 134: Unique Characters
	6.8 Exercise 135: Anagrams
	6.9 Exercise 136: Anagrams Again
	6.10 Exercise 137: Scrabble� Score
	6.11 Exercise 138: Create a Bingo Card
	6.12 Exercise 139: Checking for a Winning Card
	6.13 Exercise 140: Play Bingo

	7 File and Exception Exercises
	Exercise 141: Display the Head of a File
	Exercise 142: Display the Tail of a File
	Exercise 143: Concatenate Multiple Files
	Exercise 144: Number the Lines in a File
	Exercise 145: Find the Longest Word in a File
	Exercise 146: Letter Frequencies
	Exercise 147: Words that Occur Most
	Exercise 148: Sum a List of Numbers
	Exercise 149: Both Letter Grades and Grade Points
	Exercise 150: Remove Comments
	Exercise 151: Two Word Random Password
	Exercise 152: What's that Element Again?
	Exercise 153: A Book with No ``e'' �
	Exercise 154: Names that Reached Number One
	Exercise 155: Gender Neutral Names
	Exercise 156: Most Births in a given Time Period
	Exercise 157: Distinct Names
	Exercise 158: Spell Checker
	Exercise 159: Repeated Words
	Exercise 160: Redacting Text in a File
	Exercise 161: Missing Comments
	Exercise 162: Consistent Line Lengths
	Exercise 163: Words with Six Vowels in Order

	8 Recursion Exercises
	Exercise 164: Total the Values
	Exercise 165: Greatest Common Divisor
	Exercise 166: Recursive Decimal to Binary
	Exercise 167: Recursive Palindrome
	Exercise 168: Recursive Square Root
	Exercise 169: String Edit Distance
	Exercise 170: Possible Change
	Exercise 171: Spelling with Element Symbols
	Exercise 172: Element Sequences
	Exercise 173: Run-Length Decoding
	Exercise 174: Run-Length Encoding

	Part IISolutions
	9 Introduction to Programming Solutions
	Solution to Exercise 1: Mailing Address
	Solution to Exercise 3: Area of a Room
	Solution to Exercise 4: Area of a Field
	Solution to Exercise 5: Bottle Deposits
	Solution to Exercise 6: Tax and Tip
	Solution to Exercise 7: Sum of the First n Positive Integers
	Solution to Exercise 10: Arithmetic
	Solution to Exercise 13: Making Change
	Solution to Exercise 14: Height Units
	Solution to Exercise 17: Heat Capacity
	Solution to Exercise 19: Free Fall
	Solution to Exercise 23: Area of a Regular Polygon
	Solution to Exercise 25: Units of Time (Again)
	Solution to Exercise 28: Wind Chill
	Solution to Exercise 32: Sort 3 Integers
	Solution to Exercise 33: Day Old Bread

	10 If Statement Solutions
	Solution to Exercise 34: Even or Odd?
	Solution to Exercise 36: Vowel or Consonant
	Solution to Exercise 37: Name that Shape
	Solution to Exercise 38: Month Name to Number of Days
	Solution to Exercise 40: Name that Triangle
	Solution to Exercise 41: Note to Frequency
	Solution to Exercise 42: Frequency to Note
	Solution to Exercise 46: Season from Month and Day
	Solution to Exercise 48: Chinese Zodiac
	Solution to Exercise 51: Letter Grade to Grade Points
	Solution to Exercise 53: Assessing Employees
	Solution to Exercise 57: Is it a Leap Year?
	Solution to Exercise 59: Is a License Plate Valid?
	Solution to Exercise 60: Roulette Payouts

	11 Loop Solutions
	Solution to Exercise 64: No more Pennies
	Solution to Exercise 65: Computer the Perimeter of a Polygon
	Solution to Exercise 67: Admission Price
	Solution to Exercise 68: Parity Bits
	Solution to Exercise 70: Caesar Cipher
	Solution to Exercise 72: Is a String a Palindrome?
	Solution to Exercise 74: Multiplication Table
	Solution to Exercise 75: Greatest Common Divisor
	Solution to Exercise 78: Decimal to Binary
	Solution to Exercise 79: Maximum Integer

	12 Function Solutions
	Solution to Exercise 84: Median of Three Values
	Solution to Exercise 86: The Twelve days of Christmas
	Solution to Exercise 87: Center a String in the Terminal
	Solution to Exercise 89: Capitalize it
	Solution to Exercise 90: Does a String Represent an Integer?
	Solution to Exercise 92: Is a Number Prime?
	Solution to Exercise 94: Random Password
	Solution to Exercise 96: Check a Password
	Solution to Exercise 99: Arbitrary Base Conversions
	Solution to Exercise 101: Reduce a Fraction to Lowest Terms
	Solution to Exercise 102: Reduce Measures
	Solution to Exercise 103: Magic Dates

	13 List Solutions
	Solution to Exercise 104: Sorted Order
	Solution to Exercise 106: Remove Outliers
	Solution to Exercise 107: Avoiding Duplicates
	Solution to Exercise 108: Negatives, Zeros and Positives
	Solution to Exercise 110: Perfect Numbers
	Solution to Exercise 113: Formatting a List
	Solution to Exercise 114: Random Lottery Numbers
	Solution to Exercise 118: Shuffling a Deck of Cards
	Solution to Exercise 121: Count the Elements
	Solution to Exercise 122: Tokenizing a String
	Solution to Exercise 126: Generate All Sublists of a List
	Solution to Exercise 127: The Sieve of Eratosthenes

	14 Dictionary Solutions
	Solution to Exercise 128: Reverse Lookup
	Solution to Exercise 129: Two Dice Simulation
	Solution to Exercise 134: Unique Characters
	Solution to Exercise 135: Anagrams
	Solution to Exercise 137: ScrabbleTM Score
	Solution to Exercise 138: Create a Bingo Card

	15 File and Exception Solutions
	Solution to Exercise 141: Display the Head of a File
	Solution to Exercise 142: Display the Tail of a File
	Solution to Exercise 143: Concatenate Multiple Files
	Solution to Exercise 148: Sum a List of Numbers
	Solution to Exercise 150: Remove Comments
	Solution to Exercise 151: Two Word Random Password
	Solution to Exercise 153: A Book with No ``e'' �
	Solution to Exercise 154: Names that Reached Number One
	Solution to Exercise 158: Spell Checker
	Solution to Exercise 160: Redacting Text in a File
	Solution to Exercise 161: Missing Comments

	16 Recursion Solutions
	Solution to Exercise 164: Total the Values
	Solution to Exercise 167: Recursive Palindrome
	Solution to Exercise 169: String Edit Distance
	Solution to Exercise 172: Element Sequences
	Solution to Exercise 174: Run-Length Encoding

	Index

